i386-common.c (OPTION_MASK_ISA_AVX512F_SET): New.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
24
25 /* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
40 /* Redefines for option macros. */
41
42 #define TARGET_64BIT TARGET_ISA_64BIT
43 #define TARGET_MMX TARGET_ISA_MMX
44 #define TARGET_3DNOW TARGET_ISA_3DNOW
45 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
46 #define TARGET_SSE TARGET_ISA_SSE
47 #define TARGET_SSE2 TARGET_ISA_SSE2
48 #define TARGET_SSE3 TARGET_ISA_SSE3
49 #define TARGET_SSSE3 TARGET_ISA_SSSE3
50 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1
51 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2
52 #define TARGET_AVX TARGET_ISA_AVX
53 #define TARGET_AVX2 TARGET_ISA_AVX2
54 #define TARGET_AVX512F TARGET_ISA_AVX512F
55 #define TARGET_AVX512PF TARGET_ISA_AVX512PF
56 #define TARGET_AVX512ER TARGET_ISA_AVX512ER
57 #define TARGET_AVX512CD TARGET_ISA_AVX512CD
58 #define TARGET_FMA TARGET_ISA_FMA
59 #define TARGET_SSE4A TARGET_ISA_SSE4A
60 #define TARGET_FMA4 TARGET_ISA_FMA4
61 #define TARGET_XOP TARGET_ISA_XOP
62 #define TARGET_LWP TARGET_ISA_LWP
63 #define TARGET_ROUND TARGET_ISA_ROUND
64 #define TARGET_ABM TARGET_ISA_ABM
65 #define TARGET_BMI TARGET_ISA_BMI
66 #define TARGET_BMI2 TARGET_ISA_BMI2
67 #define TARGET_LZCNT TARGET_ISA_LZCNT
68 #define TARGET_TBM TARGET_ISA_TBM
69 #define TARGET_POPCNT TARGET_ISA_POPCNT
70 #define TARGET_SAHF TARGET_ISA_SAHF
71 #define TARGET_MOVBE TARGET_ISA_MOVBE
72 #define TARGET_CRC32 TARGET_ISA_CRC32
73 #define TARGET_AES TARGET_ISA_AES
74 #define TARGET_PCLMUL TARGET_ISA_PCLMUL
75 #define TARGET_CMPXCHG16B TARGET_ISA_CX16
76 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
77 #define TARGET_RDRND TARGET_ISA_RDRND
78 #define TARGET_F16C TARGET_ISA_F16C
79 #define TARGET_RTM TARGET_ISA_RTM
80 #define TARGET_HLE TARGET_ISA_HLE
81 #define TARGET_RDSEED TARGET_ISA_RDSEED
82 #define TARGET_PRFCHW TARGET_ISA_PRFCHW
83 #define TARGET_ADX TARGET_ISA_ADX
84 #define TARGET_FXSR TARGET_ISA_FXSR
85 #define TARGET_XSAVE TARGET_ISA_XSAVE
86 #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
87
88 #define TARGET_LP64 TARGET_ABI_64
89 #define TARGET_X32 TARGET_ABI_X32
90
91 /* SSE4.1 defines round instructions */
92 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
93 #define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
94
95 #include "config/vxworks-dummy.h"
96
97 #include "config/i386/i386-opts.h"
98
99 #define MAX_STRINGOP_ALGS 4
100
101 /* Specify what algorithm to use for stringops on known size.
102 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
103 known at compile time or estimated via feedback, the SIZE array
104 is walked in order until MAX is greater then the estimate (or -1
105 means infinity). Corresponding ALG is used then.
106 When NOALIGN is true the code guaranting the alignment of the memory
107 block is skipped.
108
109 For example initializer:
110 {{256, loop}, {-1, rep_prefix_4_byte}}
111 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
112 be used otherwise. */
113 struct stringop_algs
114 {
115 const enum stringop_alg unknown_size;
116 const struct stringop_strategy {
117 const int max;
118 const enum stringop_alg alg;
119 int noalign;
120 } size [MAX_STRINGOP_ALGS];
121 };
122
123 /* Define the specific costs for a given cpu */
124
125 struct processor_costs {
126 const int add; /* cost of an add instruction */
127 const int lea; /* cost of a lea instruction */
128 const int shift_var; /* variable shift costs */
129 const int shift_const; /* constant shift costs */
130 const int mult_init[5]; /* cost of starting a multiply
131 in QImode, HImode, SImode, DImode, TImode*/
132 const int mult_bit; /* cost of multiply per each bit set */
133 const int divide[5]; /* cost of a divide/mod
134 in QImode, HImode, SImode, DImode, TImode*/
135 int movsx; /* The cost of movsx operation. */
136 int movzx; /* The cost of movzx operation. */
137 const int large_insn; /* insns larger than this cost more */
138 const int move_ratio; /* The threshold of number of scalar
139 memory-to-memory move insns. */
140 const int movzbl_load; /* cost of loading using movzbl */
141 const int int_load[3]; /* cost of loading integer registers
142 in QImode, HImode and SImode relative
143 to reg-reg move (2). */
144 const int int_store[3]; /* cost of storing integer register
145 in QImode, HImode and SImode */
146 const int fp_move; /* cost of reg,reg fld/fst */
147 const int fp_load[3]; /* cost of loading FP register
148 in SFmode, DFmode and XFmode */
149 const int fp_store[3]; /* cost of storing FP register
150 in SFmode, DFmode and XFmode */
151 const int mmx_move; /* cost of moving MMX register. */
152 const int mmx_load[2]; /* cost of loading MMX register
153 in SImode and DImode */
154 const int mmx_store[2]; /* cost of storing MMX register
155 in SImode and DImode */
156 const int sse_move; /* cost of moving SSE register. */
157 const int sse_load[3]; /* cost of loading SSE register
158 in SImode, DImode and TImode*/
159 const int sse_store[3]; /* cost of storing SSE register
160 in SImode, DImode and TImode*/
161 const int mmxsse_to_integer; /* cost of moving mmxsse register to
162 integer and vice versa. */
163 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
164 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
165 const int prefetch_block; /* bytes moved to cache for prefetch. */
166 const int simultaneous_prefetches; /* number of parallel prefetch
167 operations. */
168 const int branch_cost; /* Default value for BRANCH_COST. */
169 const int fadd; /* cost of FADD and FSUB instructions. */
170 const int fmul; /* cost of FMUL instruction. */
171 const int fdiv; /* cost of FDIV instruction. */
172 const int fabs; /* cost of FABS instruction. */
173 const int fchs; /* cost of FCHS instruction. */
174 const int fsqrt; /* cost of FSQRT instruction. */
175 /* Specify what algorithm
176 to use for stringops on unknown size. */
177 struct stringop_algs *memcpy, *memset;
178 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
179 load and store. */
180 const int scalar_load_cost; /* Cost of scalar load. */
181 const int scalar_store_cost; /* Cost of scalar store. */
182 const int vec_stmt_cost; /* Cost of any vector operation, excluding
183 load, store, vector-to-scalar and
184 scalar-to-vector operation. */
185 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
186 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
187 const int vec_align_load_cost; /* Cost of aligned vector load. */
188 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
189 const int vec_store_cost; /* Cost of vector store. */
190 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
191 cost model. */
192 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
193 vectorizer cost model. */
194 };
195
196 extern const struct processor_costs *ix86_cost;
197 extern const struct processor_costs ix86_size_cost;
198
199 #define ix86_cur_cost() \
200 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
201
202 /* Macros used in the machine description to test the flags. */
203
204 /* configure can arrange to make this 2, to force a 486. */
205
206 #ifndef TARGET_CPU_DEFAULT
207 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
208 #endif
209
210 #ifndef TARGET_FPMATH_DEFAULT
211 #define TARGET_FPMATH_DEFAULT \
212 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
213 #endif
214
215 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
216
217 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
218 compile-time constant. */
219 #ifdef IN_LIBGCC2
220 #undef TARGET_64BIT
221 #ifdef __x86_64__
222 #define TARGET_64BIT 1
223 #else
224 #define TARGET_64BIT 0
225 #endif
226 #else
227 #ifndef TARGET_BI_ARCH
228 #undef TARGET_64BIT
229 #if TARGET_64BIT_DEFAULT
230 #define TARGET_64BIT 1
231 #else
232 #define TARGET_64BIT 0
233 #endif
234 #endif
235 #endif
236
237 #define HAS_LONG_COND_BRANCH 1
238 #define HAS_LONG_UNCOND_BRANCH 1
239
240 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
241 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
242 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
243 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
244 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
245 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
246 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
247 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
248 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
249 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
250 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
251 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
252 #define TARGET_COREI7 (ix86_tune == PROCESSOR_COREI7)
253 #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
254 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
255 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
256 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
257 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
258 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
259 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
260 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
261 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
262 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
263 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
264 #define TARGET_SLM (ix86_tune == PROCESSOR_SLM)
265
266 /* Feature tests against the various tunings. */
267 enum ix86_tune_indices {
268 #undef DEF_TUNE
269 #define DEF_TUNE(tune, name, selector) tune,
270 #include "x86-tune.def"
271 #undef DEF_TUNE
272 X86_TUNE_LAST
273 };
274
275 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
276
277 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
278 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
279 #define TARGET_ZERO_EXTEND_WITH_AND \
280 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
281 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
282 #define TARGET_BRANCH_PREDICTION_HINTS \
283 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
284 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
285 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
286 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
287 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
288 #define TARGET_PARTIAL_FLAG_REG_STALL \
289 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
290 #define TARGET_LCP_STALL \
291 ix86_tune_features[X86_TUNE_LCP_STALL]
292 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
293 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
294 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
295 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
296 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
297 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
298 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
299 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
300 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
301 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
302 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
303 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
304 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
305 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
306 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
307 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
308 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
309 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
310 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
311 #define TARGET_INTEGER_DFMODE_MOVES \
312 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
313 #define TARGET_PARTIAL_REG_DEPENDENCY \
314 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
315 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
316 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
317 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
318 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
319 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
320 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
321 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
322 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
323 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
324 #define TARGET_SSE_TYPELESS_STORES \
325 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
326 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
327 #define TARGET_MEMORY_MISMATCH_STALL \
328 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
329 #define TARGET_PROLOGUE_USING_MOVE \
330 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
331 #define TARGET_EPILOGUE_USING_MOVE \
332 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
333 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
334 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
335 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
336 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
337 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
338 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
339 #define TARGET_INTER_UNIT_CONVERSIONS \
340 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
341 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
342 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
343 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
344 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
345 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
346 #define TARGET_PAD_SHORT_FUNCTION \
347 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
348 #define TARGET_EXT_80387_CONSTANTS \
349 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
350 #define TARGET_AVOID_VECTOR_DECODE \
351 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
352 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
353 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
354 #define TARGET_SLOW_IMUL_IMM32_MEM \
355 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
356 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
357 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
358 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
359 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
360 #define TARGET_USE_VECTOR_FP_CONVERTS \
361 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
362 #define TARGET_USE_VECTOR_CONVERTS \
363 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
364 #define TARGET_FUSE_CMP_AND_BRANCH \
365 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
366 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
367 #define TARGET_VECTORIZE_DOUBLE \
368 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
369 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
370 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
371 #define TARGET_AVX128_OPTIMAL \
372 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
373 #define TARGET_REASSOC_INT_TO_PARALLEL \
374 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
375 #define TARGET_REASSOC_FP_TO_PARALLEL \
376 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
377 #define TARGET_GENERAL_REGS_SSE_SPILL \
378 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
379 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
380 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
381 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
382 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
383
384 /* Feature tests against the various architecture variations. */
385 enum ix86_arch_indices {
386 X86_ARCH_CMOV,
387 X86_ARCH_CMPXCHG,
388 X86_ARCH_CMPXCHG8B,
389 X86_ARCH_XADD,
390 X86_ARCH_BSWAP,
391
392 X86_ARCH_LAST
393 };
394
395 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
396
397 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
398 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
399 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
400 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
401 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
402
403 /* For sane SSE instruction set generation we need fcomi instruction.
404 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
405 expands to a sequence that includes conditional move. */
406 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
407
408 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
409
410 extern unsigned char x86_prefetch_sse;
411 #define TARGET_PREFETCH_SSE x86_prefetch_sse
412
413 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
414
415 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
416 #define TARGET_MIX_SSE_I387 \
417 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
418
419 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
420 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
421 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
422 #define TARGET_SUN_TLS 0
423
424 #ifndef TARGET_64BIT_DEFAULT
425 #define TARGET_64BIT_DEFAULT 0
426 #endif
427 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
428 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
429 #endif
430
431 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
432 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
433
434 /* Fence to use after loop using storent. */
435
436 extern tree x86_mfence;
437 #define FENCE_FOLLOWING_MOVNT x86_mfence
438
439 /* Once GDB has been enhanced to deal with functions without frame
440 pointers, we can change this to allow for elimination of
441 the frame pointer in leaf functions. */
442 #define TARGET_DEFAULT 0
443
444 /* Extra bits to force. */
445 #define TARGET_SUBTARGET_DEFAULT 0
446 #define TARGET_SUBTARGET_ISA_DEFAULT 0
447
448 /* Extra bits to force on w/ 32-bit mode. */
449 #define TARGET_SUBTARGET32_DEFAULT 0
450 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
451
452 /* Extra bits to force on w/ 64-bit mode. */
453 #define TARGET_SUBTARGET64_DEFAULT 0
454 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
455
456 /* Replace MACH-O, ifdefs by in-line tests, where possible.
457 (a) Macros defined in config/i386/darwin.h */
458 #define TARGET_MACHO 0
459 #define TARGET_MACHO_BRANCH_ISLANDS 0
460 #define MACHOPIC_ATT_STUB 0
461 /* (b) Macros defined in config/darwin.h */
462 #define MACHO_DYNAMIC_NO_PIC_P 0
463 #define MACHOPIC_INDIRECT 0
464 #define MACHOPIC_PURE 0
465
466 /* For the RDOS */
467 #define TARGET_RDOS 0
468
469 /* For the Windows 64-bit ABI. */
470 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
471
472 /* For the Windows 32-bit ABI. */
473 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
474
475 /* This is re-defined by cygming.h. */
476 #define TARGET_SEH 0
477
478 /* This is re-defined by cygming.h. */
479 #define TARGET_PECOFF 0
480
481 /* The default abi used by target. */
482 #define DEFAULT_ABI SYSV_ABI
483
484 /* The default TLS segment register used by target. */
485 #define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
486
487 /* Subtargets may reset this to 1 in order to enable 96-bit long double
488 with the rounding mode forced to 53 bits. */
489 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
490
491 /* -march=native handling only makes sense with compiler running on
492 an x86 or x86_64 chip. If changing this condition, also change
493 the condition in driver-i386.c. */
494 #if defined(__i386__) || defined(__x86_64__)
495 /* In driver-i386.c. */
496 extern const char *host_detect_local_cpu (int argc, const char **argv);
497 #define EXTRA_SPEC_FUNCTIONS \
498 { "local_cpu_detect", host_detect_local_cpu },
499 #define HAVE_LOCAL_CPU_DETECT
500 #endif
501
502 #if TARGET_64BIT_DEFAULT
503 #define OPT_ARCH64 "!m32"
504 #define OPT_ARCH32 "m32"
505 #else
506 #define OPT_ARCH64 "m64|mx32"
507 #define OPT_ARCH32 "m64|mx32:;"
508 #endif
509
510 /* Support for configure-time defaults of some command line options.
511 The order here is important so that -march doesn't squash the
512 tune or cpu values. */
513 #define OPTION_DEFAULT_SPECS \
514 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
515 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
516 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
517 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
518 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
519 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
520 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
521 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
522 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
523
524 /* Specs for the compiler proper */
525
526 #ifndef CC1_CPU_SPEC
527 #define CC1_CPU_SPEC_1 ""
528
529 #ifndef HAVE_LOCAL_CPU_DETECT
530 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
531 #else
532 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
533 "%{march=native:%>march=native %:local_cpu_detect(arch) \
534 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
535 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
536 #endif
537 #endif
538 \f
539 /* Target CPU builtins. */
540 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
541
542 /* Target Pragmas. */
543 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
544
545 enum target_cpu_default
546 {
547 TARGET_CPU_DEFAULT_generic = 0,
548
549 TARGET_CPU_DEFAULT_i386,
550 TARGET_CPU_DEFAULT_i486,
551 TARGET_CPU_DEFAULT_pentium,
552 TARGET_CPU_DEFAULT_pentium_mmx,
553 TARGET_CPU_DEFAULT_pentiumpro,
554 TARGET_CPU_DEFAULT_pentium2,
555 TARGET_CPU_DEFAULT_pentium3,
556 TARGET_CPU_DEFAULT_pentium4,
557 TARGET_CPU_DEFAULT_pentium_m,
558 TARGET_CPU_DEFAULT_prescott,
559 TARGET_CPU_DEFAULT_nocona,
560 TARGET_CPU_DEFAULT_core2,
561 TARGET_CPU_DEFAULT_corei7,
562 TARGET_CPU_DEFAULT_haswell,
563 TARGET_CPU_DEFAULT_atom,
564 TARGET_CPU_DEFAULT_slm,
565
566 TARGET_CPU_DEFAULT_geode,
567 TARGET_CPU_DEFAULT_k6,
568 TARGET_CPU_DEFAULT_k6_2,
569 TARGET_CPU_DEFAULT_k6_3,
570 TARGET_CPU_DEFAULT_athlon,
571 TARGET_CPU_DEFAULT_athlon_sse,
572 TARGET_CPU_DEFAULT_k8,
573 TARGET_CPU_DEFAULT_amdfam10,
574 TARGET_CPU_DEFAULT_bdver1,
575 TARGET_CPU_DEFAULT_bdver2,
576 TARGET_CPU_DEFAULT_bdver3,
577 TARGET_CPU_DEFAULT_btver1,
578 TARGET_CPU_DEFAULT_btver2,
579
580 TARGET_CPU_DEFAULT_max
581 };
582
583 #ifndef CC1_SPEC
584 #define CC1_SPEC "%(cc1_cpu) "
585 #endif
586
587 /* This macro defines names of additional specifications to put in the
588 specs that can be used in various specifications like CC1_SPEC. Its
589 definition is an initializer with a subgrouping for each command option.
590
591 Each subgrouping contains a string constant, that defines the
592 specification name, and a string constant that used by the GCC driver
593 program.
594
595 Do not define this macro if it does not need to do anything. */
596
597 #ifndef SUBTARGET_EXTRA_SPECS
598 #define SUBTARGET_EXTRA_SPECS
599 #endif
600
601 #define EXTRA_SPECS \
602 { "cc1_cpu", CC1_CPU_SPEC }, \
603 SUBTARGET_EXTRA_SPECS
604 \f
605
606 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
607 FPU, assume that the fpcw is set to extended precision; when using
608 only SSE, rounding is correct; when using both SSE and the FPU,
609 the rounding precision is indeterminate, since either may be chosen
610 apparently at random. */
611 #define TARGET_FLT_EVAL_METHOD \
612 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
613
614 /* Whether to allow x87 floating-point arithmetic on MODE (one of
615 SFmode, DFmode and XFmode) in the current excess precision
616 configuration. */
617 #define X87_ENABLE_ARITH(MODE) \
618 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
619
620 /* Likewise, whether to allow direct conversions from integer mode
621 IMODE (HImode, SImode or DImode) to MODE. */
622 #define X87_ENABLE_FLOAT(MODE, IMODE) \
623 (flag_excess_precision == EXCESS_PRECISION_FAST \
624 || (MODE) == XFmode \
625 || ((MODE) == DFmode && (IMODE) == SImode) \
626 || (IMODE) == HImode)
627
628 /* target machine storage layout */
629
630 #define SHORT_TYPE_SIZE 16
631 #define INT_TYPE_SIZE 32
632 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
633 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
634 #define LONG_LONG_TYPE_SIZE 64
635 #define FLOAT_TYPE_SIZE 32
636 #define DOUBLE_TYPE_SIZE 64
637 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80)
638
639 /* Define this to set long double type size to use in libgcc2.c, which can
640 not depend on target_flags. */
641 #ifdef __LONG_DOUBLE_64__
642 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
643 #else
644 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
645 #endif
646
647 #define WIDEST_HARDWARE_FP_SIZE 80
648
649 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
650 #define MAX_BITS_PER_WORD 64
651 #else
652 #define MAX_BITS_PER_WORD 32
653 #endif
654
655 /* Define this if most significant byte of a word is the lowest numbered. */
656 /* That is true on the 80386. */
657
658 #define BITS_BIG_ENDIAN 0
659
660 /* Define this if most significant byte of a word is the lowest numbered. */
661 /* That is not true on the 80386. */
662 #define BYTES_BIG_ENDIAN 0
663
664 /* Define this if most significant word of a multiword number is the lowest
665 numbered. */
666 /* Not true for 80386 */
667 #define WORDS_BIG_ENDIAN 0
668
669 /* Width of a word, in units (bytes). */
670 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
671
672 #ifndef IN_LIBGCC2
673 #define MIN_UNITS_PER_WORD 4
674 #endif
675
676 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
677 #define PARM_BOUNDARY BITS_PER_WORD
678
679 /* Boundary (in *bits*) on which stack pointer should be aligned. */
680 #define STACK_BOUNDARY \
681 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
682
683 /* Stack boundary of the main function guaranteed by OS. */
684 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
685
686 /* Minimum stack boundary. */
687 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
688
689 /* Boundary (in *bits*) on which the stack pointer prefers to be
690 aligned; the compiler cannot rely on having this alignment. */
691 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
692
693 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
694 both 32bit and 64bit, to support codes that need 128 bit stack
695 alignment for SSE instructions, but can't realign the stack. */
696 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
697
698 /* 1 if -mstackrealign should be turned on by default. It will
699 generate an alternate prologue and epilogue that realigns the
700 runtime stack if nessary. This supports mixing codes that keep a
701 4-byte aligned stack, as specified by i386 psABI, with codes that
702 need a 16-byte aligned stack, as required by SSE instructions. */
703 #define STACK_REALIGN_DEFAULT 0
704
705 /* Boundary (in *bits*) on which the incoming stack is aligned. */
706 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
707
708 /* According to Windows x64 software convention, the maximum stack allocatable
709 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
710 instructions allowed to adjust the stack pointer in the epilog, forcing the
711 use of frame pointer for frames larger than 2 GB. This theorical limit
712 is reduced by 256, an over-estimated upper bound for the stack use by the
713 prologue.
714 We define only one threshold for both the prolog and the epilog. When the
715 frame size is larger than this threshold, we allocate the area to save SSE
716 regs, then save them, and then allocate the remaining. There is no SEH
717 unwind info for this later allocation. */
718 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
719
720 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
721 mandatory for the 64-bit ABI, and may or may not be true for other
722 operating systems. */
723 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
724
725 /* Minimum allocation boundary for the code of a function. */
726 #define FUNCTION_BOUNDARY 8
727
728 /* C++ stores the virtual bit in the lowest bit of function pointers. */
729 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
730
731 /* Minimum size in bits of the largest boundary to which any
732 and all fundamental data types supported by the hardware
733 might need to be aligned. No data type wants to be aligned
734 rounder than this.
735
736 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
737 and Pentium Pro XFmode values at 128 bit boundaries. */
738
739 #define BIGGEST_ALIGNMENT \
740 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
741
742 /* Maximum stack alignment. */
743 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
744
745 /* Alignment value for attribute ((aligned)). It is a constant since
746 it is the part of the ABI. We shouldn't change it with -mavx. */
747 #define ATTRIBUTE_ALIGNED_VALUE 128
748
749 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
750 #define ALIGN_MODE_128(MODE) \
751 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
752
753 /* The published ABIs say that doubles should be aligned on word
754 boundaries, so lower the alignment for structure fields unless
755 -malign-double is set. */
756
757 /* ??? Blah -- this macro is used directly by libobjc. Since it
758 supports no vector modes, cut out the complexity and fall back
759 on BIGGEST_FIELD_ALIGNMENT. */
760 #ifdef IN_TARGET_LIBS
761 #ifdef __x86_64__
762 #define BIGGEST_FIELD_ALIGNMENT 128
763 #else
764 #define BIGGEST_FIELD_ALIGNMENT 32
765 #endif
766 #else
767 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
768 x86_field_alignment (FIELD, COMPUTED)
769 #endif
770
771 /* If defined, a C expression to compute the alignment given to a
772 constant that is being placed in memory. EXP is the constant
773 and ALIGN is the alignment that the object would ordinarily have.
774 The value of this macro is used instead of that alignment to align
775 the object.
776
777 If this macro is not defined, then ALIGN is used.
778
779 The typical use of this macro is to increase alignment for string
780 constants to be word aligned so that `strcpy' calls that copy
781 constants can be done inline. */
782
783 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
784
785 /* If defined, a C expression to compute the alignment for a static
786 variable. TYPE is the data type, and ALIGN is the alignment that
787 the object would ordinarily have. The value of this macro is used
788 instead of that alignment to align the object.
789
790 If this macro is not defined, then ALIGN is used.
791
792 One use of this macro is to increase alignment of medium-size
793 data to make it all fit in fewer cache lines. Another is to
794 cause character arrays to be word-aligned so that `strcpy' calls
795 that copy constants to character arrays can be done inline. */
796
797 #define DATA_ALIGNMENT(TYPE, ALIGN) \
798 ix86_data_alignment ((TYPE), (ALIGN), true)
799
800 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
801 some alignment increase, instead of optimization only purposes. E.g.
802 AMD x86-64 psABI says that variables with array type larger than 15 bytes
803 must be aligned to 16 byte boundaries.
804
805 If this macro is not defined, then ALIGN is used. */
806
807 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
808 ix86_data_alignment ((TYPE), (ALIGN), false)
809
810 /* If defined, a C expression to compute the alignment for a local
811 variable. TYPE is the data type, and ALIGN is the alignment that
812 the object would ordinarily have. The value of this macro is used
813 instead of that alignment to align the object.
814
815 If this macro is not defined, then ALIGN is used.
816
817 One use of this macro is to increase alignment of medium-size
818 data to make it all fit in fewer cache lines. */
819
820 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
821 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
822
823 /* If defined, a C expression to compute the alignment for stack slot.
824 TYPE is the data type, MODE is the widest mode available, and ALIGN
825 is the alignment that the slot would ordinarily have. The value of
826 this macro is used instead of that alignment to align the slot.
827
828 If this macro is not defined, then ALIGN is used when TYPE is NULL,
829 Otherwise, LOCAL_ALIGNMENT will be used.
830
831 One use of this macro is to set alignment of stack slot to the
832 maximum alignment of all possible modes which the slot may have. */
833
834 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
835 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
836
837 /* If defined, a C expression to compute the alignment for a local
838 variable DECL.
839
840 If this macro is not defined, then
841 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
842
843 One use of this macro is to increase alignment of medium-size
844 data to make it all fit in fewer cache lines. */
845
846 #define LOCAL_DECL_ALIGNMENT(DECL) \
847 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
848
849 /* If defined, a C expression to compute the minimum required alignment
850 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
851 MODE, assuming normal alignment ALIGN.
852
853 If this macro is not defined, then (ALIGN) will be used. */
854
855 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
856 ix86_minimum_alignment (EXP, MODE, ALIGN)
857
858
859 /* Set this nonzero if move instructions will actually fail to work
860 when given unaligned data. */
861 #define STRICT_ALIGNMENT 0
862
863 /* If bit field type is int, don't let it cross an int,
864 and give entire struct the alignment of an int. */
865 /* Required on the 386 since it doesn't have bit-field insns. */
866 #define PCC_BITFIELD_TYPE_MATTERS 1
867 \f
868 /* Standard register usage. */
869
870 /* This processor has special stack-like registers. See reg-stack.c
871 for details. */
872
873 #define STACK_REGS
874
875 #define IS_STACK_MODE(MODE) \
876 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
877 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
878 || (MODE) == XFmode)
879
880 /* Number of actual hardware registers.
881 The hardware registers are assigned numbers for the compiler
882 from 0 to just below FIRST_PSEUDO_REGISTER.
883 All registers that the compiler knows about must be given numbers,
884 even those that are not normally considered general registers.
885
886 In the 80386 we give the 8 general purpose registers the numbers 0-7.
887 We number the floating point registers 8-15.
888 Note that registers 0-7 can be accessed as a short or int,
889 while only 0-3 may be used with byte `mov' instructions.
890
891 Reg 16 does not correspond to any hardware register, but instead
892 appears in the RTL as an argument pointer prior to reload, and is
893 eliminated during reloading in favor of either the stack or frame
894 pointer. */
895
896 #define FIRST_PSEUDO_REGISTER 69
897
898 /* Number of hardware registers that go into the DWARF-2 unwind info.
899 If not defined, equals FIRST_PSEUDO_REGISTER. */
900
901 #define DWARF_FRAME_REGISTERS 17
902
903 /* 1 for registers that have pervasive standard uses
904 and are not available for the register allocator.
905 On the 80386, the stack pointer is such, as is the arg pointer.
906
907 REX registers are disabled for 32bit targets in
908 TARGET_CONDITIONAL_REGISTER_USAGE. */
909
910 #define FIXED_REGISTERS \
911 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
912 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
913 /*arg,flags,fpsr,fpcr,frame*/ \
914 1, 1, 1, 1, 1, \
915 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
916 0, 0, 0, 0, 0, 0, 0, 0, \
917 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
918 0, 0, 0, 0, 0, 0, 0, 0, \
919 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
920 0, 0, 0, 0, 0, 0, 0, 0, \
921 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
922 0, 0, 0, 0, 0, 0, 0, 0, \
923 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
924 0, 0, 0, 0, 0, 0, 0, 0, \
925 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
926 0, 0, 0, 0, 0, 0, 0, 0 }
927
928 /* 1 for registers not available across function calls.
929 These must include the FIXED_REGISTERS and also any
930 registers that can be used without being saved.
931 The latter must include the registers where values are returned
932 and the register where structure-value addresses are passed.
933 Aside from that, you can include as many other registers as you like.
934
935 Value is set to 1 if the register is call used unconditionally.
936 Bit one is set if the register is call used on TARGET_32BIT ABI.
937 Bit two is set if the register is call used on TARGET_64BIT ABI.
938 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
939
940 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
941
942 #define CALL_USED_REGISTERS \
943 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
944 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
945 /*arg,flags,fpsr,fpcr,frame*/ \
946 1, 1, 1, 1, 1, \
947 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
948 1, 1, 1, 1, 1, 1, 6, 6, \
949 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
950 1, 1, 1, 1, 1, 1, 1, 1, \
951 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
952 1, 1, 1, 1, 2, 2, 2, 2, \
953 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
954 6, 6, 6, 6, 6, 6, 6, 6, \
955 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
956 6, 6, 6, 6, 6, 6, 6, 6, \
957 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
958 6, 6, 6, 6, 6, 6, 6, 6 }
959
960 /* Order in which to allocate registers. Each register must be
961 listed once, even those in FIXED_REGISTERS. List frame pointer
962 late and fixed registers last. Note that, in general, we prefer
963 registers listed in CALL_USED_REGISTERS, keeping the others
964 available for storage of persistent values.
965
966 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
967 so this is just empty initializer for array. */
968
969 #define REG_ALLOC_ORDER \
970 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
971 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
972 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
973 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
974 63, 64, 65, 66, 67, 68 }
975
976 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
977 to be rearranged based on a particular function. When using sse math,
978 we want to allocate SSE before x87 registers and vice versa. */
979
980 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
981
982
983 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
984
985 /* Return number of consecutive hard regs needed starting at reg REGNO
986 to hold something of mode MODE.
987 This is ordinarily the length in words of a value of mode MODE
988 but can be less for certain modes in special long registers.
989
990 Actually there are no two word move instructions for consecutive
991 registers. And only registers 0-3 may have mov byte instructions
992 applied to them. */
993
994 #define HARD_REGNO_NREGS(REGNO, MODE) \
995 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
996 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
997 : ((MODE) == XFmode \
998 ? (TARGET_64BIT ? 2 : 3) \
999 : (MODE) == XCmode \
1000 ? (TARGET_64BIT ? 4 : 6) \
1001 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1002
1003 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1004 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1005 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1006 ? 0 \
1007 : ((MODE) == XFmode || (MODE) == XCmode)) \
1008 : 0)
1009
1010 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1011
1012 #define VALID_AVX256_REG_MODE(MODE) \
1013 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1014 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1015 || (MODE) == V4DFmode)
1016
1017 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1018 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1019
1020 #define VALID_AVX512F_SCALAR_MODE(MODE) \
1021 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1022 || (MODE) == SFmode)
1023
1024 #define VALID_AVX512F_REG_MODE(MODE) \
1025 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1026 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode)
1027
1028 #define VALID_SSE2_REG_MODE(MODE) \
1029 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1030 || (MODE) == V2DImode || (MODE) == DFmode)
1031
1032 #define VALID_SSE_REG_MODE(MODE) \
1033 ((MODE) == V1TImode || (MODE) == TImode \
1034 || (MODE) == V4SFmode || (MODE) == V4SImode \
1035 || (MODE) == SFmode || (MODE) == TFmode)
1036
1037 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1038 ((MODE) == V2SFmode || (MODE) == SFmode)
1039
1040 #define VALID_MMX_REG_MODE(MODE) \
1041 ((MODE == V1DImode) || (MODE) == DImode \
1042 || (MODE) == V2SImode || (MODE) == SImode \
1043 || (MODE) == V4HImode || (MODE) == V8QImode)
1044
1045 #define VALID_DFP_MODE_P(MODE) \
1046 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1047
1048 #define VALID_FP_MODE_P(MODE) \
1049 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1050 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1051
1052 #define VALID_INT_MODE_P(MODE) \
1053 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1054 || (MODE) == DImode \
1055 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1056 || (MODE) == CDImode \
1057 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1058 || (MODE) == TFmode || (MODE) == TCmode)))
1059
1060 /* Return true for modes passed in SSE registers. */
1061 #define SSE_REG_MODE_P(MODE) \
1062 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1063 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1064 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1065 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1066 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1067 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1068 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1069 || (MODE) == V16SFmode)
1070
1071 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1072
1073 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1074 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1075
1076 /* Value is 1 if it is a good idea to tie two pseudo registers
1077 when one has mode MODE1 and one has mode MODE2.
1078 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1079 for any hard reg, then this must be 0 for correct output. */
1080
1081 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1082
1083 /* It is possible to write patterns to move flags; but until someone
1084 does it, */
1085 #define AVOID_CCMODE_COPIES
1086
1087 /* Specify the modes required to caller save a given hard regno.
1088 We do this on i386 to prevent flags from being saved at all.
1089
1090 Kill any attempts to combine saving of modes. */
1091
1092 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1093 (CC_REGNO_P (REGNO) ? VOIDmode \
1094 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1095 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1096 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1097 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)) ? SImode \
1098 : (MODE))
1099
1100 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1101 need to check the current ABI here), and with AVX enabled Win64 only
1102 guarantees that the low 16 bytes are saved. */
1103 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1104 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1105
1106 /* Specify the registers used for certain standard purposes.
1107 The values of these macros are register numbers. */
1108
1109 /* on the 386 the pc register is %eip, and is not usable as a general
1110 register. The ordinary mov instructions won't work */
1111 /* #define PC_REGNUM */
1112
1113 /* Register to use for pushing function arguments. */
1114 #define STACK_POINTER_REGNUM 7
1115
1116 /* Base register for access to local variables of the function. */
1117 #define HARD_FRAME_POINTER_REGNUM 6
1118
1119 /* Base register for access to local variables of the function. */
1120 #define FRAME_POINTER_REGNUM 20
1121
1122 /* First floating point reg */
1123 #define FIRST_FLOAT_REG 8
1124
1125 /* First & last stack-like regs */
1126 #define FIRST_STACK_REG FIRST_FLOAT_REG
1127 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1128
1129 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1130 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1131
1132 #define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
1133 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1134
1135 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
1136 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1137
1138 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
1139 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1140
1141 #define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1142 #define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1143
1144 /* Override this in other tm.h files to cope with various OS lossage
1145 requiring a frame pointer. */
1146 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1147 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1148 #endif
1149
1150 /* Make sure we can access arbitrary call frames. */
1151 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1152
1153 /* Base register for access to arguments of the function. */
1154 #define ARG_POINTER_REGNUM 16
1155
1156 /* Register to hold the addressing base for position independent
1157 code access to data items. We don't use PIC pointer for 64bit
1158 mode. Define the regnum to dummy value to prevent gcc from
1159 pessimizing code dealing with EBX.
1160
1161 To avoid clobbering a call-saved register unnecessarily, we renumber
1162 the pic register when possible. The change is visible after the
1163 prologue has been emitted. */
1164
1165 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1166
1167 #define PIC_OFFSET_TABLE_REGNUM \
1168 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
1169 || TARGET_PECOFF)) \
1170 || !flag_pic ? INVALID_REGNUM \
1171 : reload_completed ? REGNO (pic_offset_table_rtx) \
1172 : REAL_PIC_OFFSET_TABLE_REGNUM)
1173
1174 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1175
1176 /* This is overridden by <cygwin.h>. */
1177 #define MS_AGGREGATE_RETURN 0
1178
1179 #define KEEP_AGGREGATE_RETURN_POINTER 0
1180 \f
1181 /* Define the classes of registers for register constraints in the
1182 machine description. Also define ranges of constants.
1183
1184 One of the classes must always be named ALL_REGS and include all hard regs.
1185 If there is more than one class, another class must be named NO_REGS
1186 and contain no registers.
1187
1188 The name GENERAL_REGS must be the name of a class (or an alias for
1189 another name such as ALL_REGS). This is the class of registers
1190 that is allowed by "g" or "r" in a register constraint.
1191 Also, registers outside this class are allocated only when
1192 instructions express preferences for them.
1193
1194 The classes must be numbered in nondecreasing order; that is,
1195 a larger-numbered class must never be contained completely
1196 in a smaller-numbered class.
1197
1198 For any two classes, it is very desirable that there be another
1199 class that represents their union.
1200
1201 It might seem that class BREG is unnecessary, since no useful 386
1202 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1203 and the "b" register constraint is useful in asms for syscalls.
1204
1205 The flags, fpsr and fpcr registers are in no class. */
1206
1207 enum reg_class
1208 {
1209 NO_REGS,
1210 AREG, DREG, CREG, BREG, SIREG, DIREG,
1211 AD_REGS, /* %eax/%edx for DImode */
1212 Q_REGS, /* %eax %ebx %ecx %edx */
1213 NON_Q_REGS, /* %esi %edi %ebp %esp */
1214 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1215 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1216 CLOBBERED_REGS, /* call-clobbered integer registers */
1217 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1218 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1219 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1220 FLOAT_REGS,
1221 SSE_FIRST_REG,
1222 SSE_REGS,
1223 EVEX_SSE_REGS,
1224 ALL_SSE_REGS,
1225 MMX_REGS,
1226 FP_TOP_SSE_REGS,
1227 FP_SECOND_SSE_REGS,
1228 FLOAT_SSE_REGS,
1229 FLOAT_INT_REGS,
1230 INT_SSE_REGS,
1231 FLOAT_INT_SSE_REGS,
1232 ALL_REGS, LIM_REG_CLASSES
1233 };
1234
1235 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1236
1237 #define INTEGER_CLASS_P(CLASS) \
1238 reg_class_subset_p ((CLASS), GENERAL_REGS)
1239 #define FLOAT_CLASS_P(CLASS) \
1240 reg_class_subset_p ((CLASS), FLOAT_REGS)
1241 #define SSE_CLASS_P(CLASS) \
1242 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1243 #define MMX_CLASS_P(CLASS) \
1244 ((CLASS) == MMX_REGS)
1245 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1246 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1247 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1248 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1249 #define MAYBE_SSE_CLASS_P(CLASS) \
1250 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1251 #define MAYBE_MMX_CLASS_P(CLASS) \
1252 reg_classes_intersect_p ((CLASS), MMX_REGS)
1253
1254 #define Q_CLASS_P(CLASS) \
1255 reg_class_subset_p ((CLASS), Q_REGS)
1256
1257 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1258 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1259
1260 /* Give names of register classes as strings for dump file. */
1261
1262 #define REG_CLASS_NAMES \
1263 { "NO_REGS", \
1264 "AREG", "DREG", "CREG", "BREG", \
1265 "SIREG", "DIREG", \
1266 "AD_REGS", \
1267 "Q_REGS", "NON_Q_REGS", \
1268 "INDEX_REGS", \
1269 "LEGACY_REGS", \
1270 "CLOBBERED_REGS", \
1271 "GENERAL_REGS", \
1272 "FP_TOP_REG", "FP_SECOND_REG", \
1273 "FLOAT_REGS", \
1274 "SSE_FIRST_REG", \
1275 "SSE_REGS", \
1276 "EVEX_SSE_REGS", \
1277 "ALL_SSE_REGS", \
1278 "MMX_REGS", \
1279 "FP_TOP_SSE_REGS", \
1280 "FP_SECOND_SSE_REGS", \
1281 "FLOAT_SSE_REGS", \
1282 "FLOAT_INT_REGS", \
1283 "INT_SSE_REGS", \
1284 "FLOAT_INT_SSE_REGS", \
1285 "ALL_REGS" }
1286
1287 /* Define which registers fit in which classes. This is an initializer
1288 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1289
1290 Note that CLOBBERED_REGS are calculated by
1291 TARGET_CONDITIONAL_REGISTER_USAGE. */
1292
1293 #define REG_CLASS_CONTENTS \
1294 { { 0x00, 0x0, 0x0 }, \
1295 { 0x01, 0x0, 0x0 }, /* AREG */ \
1296 { 0x02, 0x0, 0x0 }, /* DREG */ \
1297 { 0x04, 0x0, 0x0 }, /* CREG */ \
1298 { 0x08, 0x0, 0x0 }, /* BREG */ \
1299 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1300 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1301 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1302 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1303 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1304 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1305 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1306 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1307 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1308 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1309 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1310 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1311 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1312 { 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1313 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1314 { 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1315 { 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1316 { 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1317 { 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1318 { 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1319 { 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1320 { 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1321 { 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1322 { 0xffffffff,0xffffffff, 0x1f } \
1323 }
1324
1325 /* The same information, inverted:
1326 Return the class number of the smallest class containing
1327 reg number REGNO. This could be a conditional expression
1328 or could index an array. */
1329
1330 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1331
1332 /* When this hook returns true for MODE, the compiler allows
1333 registers explicitly used in the rtl to be used as spill registers
1334 but prevents the compiler from extending the lifetime of these
1335 registers. */
1336 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1337
1338 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1339 #define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
1340
1341 #define GENERAL_REG_P(X) \
1342 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1343 #define GENERAL_REGNO_P(N) \
1344 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
1345
1346 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1347 #define ANY_QI_REGNO_P(N) \
1348 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1349
1350 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1351 #define REX_INT_REGNO_P(N) \
1352 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1353
1354 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1355 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1356
1357 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1358 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1359
1360 #define X87_FLOAT_MODE_P(MODE) \
1361 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1362
1363 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1364 #define SSE_REGNO_P(N) \
1365 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1366 || REX_SSE_REGNO_P (N) \
1367 || EXT_REX_SSE_REGNO_P (N))
1368
1369 #define REX_SSE_REGNO_P(N) \
1370 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1371
1372 #define EXT_REX_SSE_REGNO_P(N) \
1373 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1374
1375 #define SSE_REGNO(N) \
1376 ((N) < 8 ? FIRST_SSE_REG + (N) \
1377 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1378 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1379
1380
1381 #define SSE_FLOAT_MODE_P(MODE) \
1382 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1383
1384 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1385 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1386 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1387
1388 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1389 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1390
1391 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
1392
1393 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1394 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1395
1396 /* The class value for index registers, and the one for base regs. */
1397
1398 #define INDEX_REG_CLASS INDEX_REGS
1399 #define BASE_REG_CLASS GENERAL_REGS
1400
1401 /* Place additional restrictions on the register class to use when it
1402 is necessary to be able to hold a value of mode MODE in a reload
1403 register for which class CLASS would ordinarily be used.
1404
1405 We avoid classes containing registers from multiple units due to
1406 the limitation in ix86_secondary_memory_needed. We limit these
1407 classes to their "natural mode" single unit register class, depending
1408 on the unit availability.
1409
1410 Please note that reg_class_subset_p is not commutative, so these
1411 conditions mean "... if (CLASS) includes ALL registers from the
1412 register set." */
1413
1414 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1415 (((MODE) == QImode && !TARGET_64BIT \
1416 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1417 : (((MODE) == SImode || (MODE) == DImode) \
1418 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1419 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1420 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1421 : (X87_FLOAT_MODE_P (MODE) \
1422 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1423 : (CLASS))
1424
1425 /* If we are copying between general and FP registers, we need a memory
1426 location. The same is true for SSE and MMX registers. */
1427 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1428 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1429
1430 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1431 There is no need to emit full 64 bit move on 64 bit targets
1432 for integral modes that can be moved using 32 bit move. */
1433 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1434 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1435 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1436 : MODE)
1437
1438 /* Return a class of registers that cannot change FROM mode to TO mode. */
1439
1440 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1441 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1442 \f
1443 /* Stack layout; function entry, exit and calling. */
1444
1445 /* Define this if pushing a word on the stack
1446 makes the stack pointer a smaller address. */
1447 #define STACK_GROWS_DOWNWARD
1448
1449 /* Define this to nonzero if the nominal address of the stack frame
1450 is at the high-address end of the local variables;
1451 that is, each additional local variable allocated
1452 goes at a more negative offset in the frame. */
1453 #define FRAME_GROWS_DOWNWARD 1
1454
1455 /* Offset within stack frame to start allocating local variables at.
1456 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1457 first local allocated. Otherwise, it is the offset to the BEGINNING
1458 of the first local allocated. */
1459 #define STARTING_FRAME_OFFSET 0
1460
1461 /* If we generate an insn to push BYTES bytes, this says how many the stack
1462 pointer really advances by. On 386, we have pushw instruction that
1463 decrements by exactly 2 no matter what the position was, there is no pushb.
1464
1465 But as CIE data alignment factor on this arch is -4 for 32bit targets
1466 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1467 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1468
1469 #define PUSH_ROUNDING(BYTES) \
1470 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1471
1472 /* If defined, the maximum amount of space required for outgoing arguments
1473 will be computed and placed into the variable `crtl->outgoing_args_size'.
1474 No space will be pushed onto the stack for each call; instead, the
1475 function prologue should increase the stack frame size by this amount.
1476
1477 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1478 function prologue and apilogue. This is not possible without
1479 ACCUMULATE_OUTGOING_ARGS. */
1480
1481 #define ACCUMULATE_OUTGOING_ARGS \
1482 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
1483
1484 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1485 instructions to pass outgoing arguments. */
1486
1487 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1488
1489 /* We want the stack and args grow in opposite directions, even if
1490 PUSH_ARGS is 0. */
1491 #define PUSH_ARGS_REVERSED 1
1492
1493 /* Offset of first parameter from the argument pointer register value. */
1494 #define FIRST_PARM_OFFSET(FNDECL) 0
1495
1496 /* Define this macro if functions should assume that stack space has been
1497 allocated for arguments even when their values are passed in registers.
1498
1499 The value of this macro is the size, in bytes, of the area reserved for
1500 arguments passed in registers for the function represented by FNDECL.
1501
1502 This space can be allocated by the caller, or be a part of the
1503 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1504 which. */
1505 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1506
1507 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1508 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1509
1510 /* Define how to find the value returned by a library function
1511 assuming the value has mode MODE. */
1512
1513 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1514
1515 /* Define the size of the result block used for communication between
1516 untyped_call and untyped_return. The block contains a DImode value
1517 followed by the block used by fnsave and frstor. */
1518
1519 #define APPLY_RESULT_SIZE (8+108)
1520
1521 /* 1 if N is a possible register number for function argument passing. */
1522 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1523
1524 /* Define a data type for recording info about an argument list
1525 during the scan of that argument list. This data type should
1526 hold all necessary information about the function itself
1527 and about the args processed so far, enough to enable macros
1528 such as FUNCTION_ARG to determine where the next arg should go. */
1529
1530 typedef struct ix86_args {
1531 int words; /* # words passed so far */
1532 int nregs; /* # registers available for passing */
1533 int regno; /* next available register number */
1534 int fastcall; /* fastcall or thiscall calling convention
1535 is used */
1536 int sse_words; /* # sse words passed so far */
1537 int sse_nregs; /* # sse registers available for passing */
1538 int warn_avx; /* True when we want to warn about AVX ABI. */
1539 int warn_sse; /* True when we want to warn about SSE ABI. */
1540 int warn_mmx; /* True when we want to warn about MMX ABI. */
1541 int sse_regno; /* next available sse register number */
1542 int mmx_words; /* # mmx words passed so far */
1543 int mmx_nregs; /* # mmx registers available for passing */
1544 int mmx_regno; /* next available mmx register number */
1545 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1546 int caller; /* true if it is caller. */
1547 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1548 SFmode/DFmode arguments should be passed
1549 in SSE registers. Otherwise 0. */
1550 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1551 MS_ABI for ms abi. */
1552 } CUMULATIVE_ARGS;
1553
1554 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1555 for a call to a function whose data type is FNTYPE.
1556 For a library call, FNTYPE is 0. */
1557
1558 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1559 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1560 (N_NAMED_ARGS) != -1)
1561
1562 /* Output assembler code to FILE to increment profiler label # LABELNO
1563 for profiling a function entry. */
1564
1565 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1566
1567 #define MCOUNT_NAME "_mcount"
1568
1569 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1570
1571 #define PROFILE_COUNT_REGISTER "edx"
1572
1573 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1574 the stack pointer does not matter. The value is tested only in
1575 functions that have frame pointers.
1576 No definition is equivalent to always zero. */
1577 /* Note on the 386 it might be more efficient not to define this since
1578 we have to restore it ourselves from the frame pointer, in order to
1579 use pop */
1580
1581 #define EXIT_IGNORE_STACK 1
1582
1583 /* Output assembler code for a block containing the constant parts
1584 of a trampoline, leaving space for the variable parts. */
1585
1586 /* On the 386, the trampoline contains two instructions:
1587 mov #STATIC,ecx
1588 jmp FUNCTION
1589 The trampoline is generated entirely at runtime. The operand of JMP
1590 is the address of FUNCTION relative to the instruction following the
1591 JMP (which is 5 bytes long). */
1592
1593 /* Length in units of the trampoline for entering a nested function. */
1594
1595 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1596 \f
1597 /* Definitions for register eliminations.
1598
1599 This is an array of structures. Each structure initializes one pair
1600 of eliminable registers. The "from" register number is given first,
1601 followed by "to". Eliminations of the same "from" register are listed
1602 in order of preference.
1603
1604 There are two registers that can always be eliminated on the i386.
1605 The frame pointer and the arg pointer can be replaced by either the
1606 hard frame pointer or to the stack pointer, depending upon the
1607 circumstances. The hard frame pointer is not used before reload and
1608 so it is not eligible for elimination. */
1609
1610 #define ELIMINABLE_REGS \
1611 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1612 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1613 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1614 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1615
1616 /* Define the offset between two registers, one to be eliminated, and the other
1617 its replacement, at the start of a routine. */
1618
1619 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1620 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1621 \f
1622 /* Addressing modes, and classification of registers for them. */
1623
1624 /* Macros to check register numbers against specific register classes. */
1625
1626 /* These assume that REGNO is a hard or pseudo reg number.
1627 They give nonzero only if REGNO is a hard reg of the suitable class
1628 or a pseudo reg currently allocated to a suitable hard reg.
1629 Since they use reg_renumber, they are safe only once reg_renumber
1630 has been allocated, which happens in reginfo.c during register
1631 allocation. */
1632
1633 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1634 ((REGNO) < STACK_POINTER_REGNUM \
1635 || REX_INT_REGNO_P (REGNO) \
1636 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1637 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1638
1639 #define REGNO_OK_FOR_BASE_P(REGNO) \
1640 (GENERAL_REGNO_P (REGNO) \
1641 || (REGNO) == ARG_POINTER_REGNUM \
1642 || (REGNO) == FRAME_POINTER_REGNUM \
1643 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1644
1645 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1646 and check its validity for a certain class.
1647 We have two alternate definitions for each of them.
1648 The usual definition accepts all pseudo regs; the other rejects
1649 them unless they have been allocated suitable hard regs.
1650 The symbol REG_OK_STRICT causes the latter definition to be used.
1651
1652 Most source files want to accept pseudo regs in the hope that
1653 they will get allocated to the class that the insn wants them to be in.
1654 Source files for reload pass need to be strict.
1655 After reload, it makes no difference, since pseudo regs have
1656 been eliminated by then. */
1657
1658
1659 /* Non strict versions, pseudos are ok. */
1660 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1661 (REGNO (X) < STACK_POINTER_REGNUM \
1662 || REX_INT_REGNO_P (REGNO (X)) \
1663 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1664
1665 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1666 (GENERAL_REGNO_P (REGNO (X)) \
1667 || REGNO (X) == ARG_POINTER_REGNUM \
1668 || REGNO (X) == FRAME_POINTER_REGNUM \
1669 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1670
1671 /* Strict versions, hard registers only */
1672 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1673 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1674
1675 #ifndef REG_OK_STRICT
1676 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1677 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1678
1679 #else
1680 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1681 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1682 #endif
1683
1684 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1685 that is a valid memory address for an instruction.
1686 The MODE argument is the machine mode for the MEM expression
1687 that wants to use this address.
1688
1689 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1690 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1691
1692 See legitimize_pic_address in i386.c for details as to what
1693 constitutes a legitimate address when -fpic is used. */
1694
1695 #define MAX_REGS_PER_ADDRESS 2
1696
1697 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1698
1699 /* Try a machine-dependent way of reloading an illegitimate address
1700 operand. If we find one, push the reload and jump to WIN. This
1701 macro is used in only one place: `find_reloads_address' in reload.c. */
1702
1703 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1704 do { \
1705 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1706 (int)(TYPE), (INDL))) \
1707 goto WIN; \
1708 } while (0)
1709
1710 /* If defined, a C expression to determine the base term of address X.
1711 This macro is used in only one place: `find_base_term' in alias.c.
1712
1713 It is always safe for this macro to not be defined. It exists so
1714 that alias analysis can understand machine-dependent addresses.
1715
1716 The typical use of this macro is to handle addresses containing
1717 a label_ref or symbol_ref within an UNSPEC. */
1718
1719 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1720
1721 /* Nonzero if the constant value X is a legitimate general operand
1722 when generating PIC code. It is given that flag_pic is on and
1723 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1724
1725 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1726
1727 #define SYMBOLIC_CONST(X) \
1728 (GET_CODE (X) == SYMBOL_REF \
1729 || GET_CODE (X) == LABEL_REF \
1730 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1731 \f
1732 /* Max number of args passed in registers. If this is more than 3, we will
1733 have problems with ebx (register #4), since it is a caller save register and
1734 is also used as the pic register in ELF. So for now, don't allow more than
1735 3 registers to be passed in registers. */
1736
1737 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1738 #define X86_64_REGPARM_MAX 6
1739 #define X86_64_MS_REGPARM_MAX 4
1740
1741 #define X86_32_REGPARM_MAX 3
1742
1743 #define REGPARM_MAX \
1744 (TARGET_64BIT \
1745 ? (TARGET_64BIT_MS_ABI \
1746 ? X86_64_MS_REGPARM_MAX \
1747 : X86_64_REGPARM_MAX) \
1748 : X86_32_REGPARM_MAX)
1749
1750 #define X86_64_SSE_REGPARM_MAX 8
1751 #define X86_64_MS_SSE_REGPARM_MAX 4
1752
1753 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1754
1755 #define SSE_REGPARM_MAX \
1756 (TARGET_64BIT \
1757 ? (TARGET_64BIT_MS_ABI \
1758 ? X86_64_MS_SSE_REGPARM_MAX \
1759 : X86_64_SSE_REGPARM_MAX) \
1760 : X86_32_SSE_REGPARM_MAX)
1761
1762 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1763 \f
1764 /* Specify the machine mode that this machine uses
1765 for the index in the tablejump instruction. */
1766 #define CASE_VECTOR_MODE \
1767 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1768
1769 /* Define this as 1 if `char' should by default be signed; else as 0. */
1770 #define DEFAULT_SIGNED_CHAR 1
1771
1772 /* Max number of bytes we can move from memory to memory
1773 in one reasonably fast instruction. */
1774 #define MOVE_MAX 16
1775
1776 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1777 move efficiently, as opposed to MOVE_MAX which is the maximum
1778 number of bytes we can move with a single instruction. */
1779 #define MOVE_MAX_PIECES UNITS_PER_WORD
1780
1781 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1782 move-instruction pairs, we will do a movmem or libcall instead.
1783 Increasing the value will always make code faster, but eventually
1784 incurs high cost in increased code size.
1785
1786 If you don't define this, a reasonable default is used. */
1787
1788 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1789
1790 /* If a clear memory operation would take CLEAR_RATIO or more simple
1791 move-instruction sequences, we will do a clrmem or libcall instead. */
1792
1793 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1794
1795 /* Define if shifts truncate the shift count which implies one can
1796 omit a sign-extension or zero-extension of a shift count.
1797
1798 On i386, shifts do truncate the count. But bit test instructions
1799 take the modulo of the bit offset operand. */
1800
1801 /* #define SHIFT_COUNT_TRUNCATED */
1802
1803 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1804 is done just by pretending it is already truncated. */
1805 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1806
1807 /* A macro to update M and UNSIGNEDP when an object whose type is
1808 TYPE and which has the specified mode and signedness is to be
1809 stored in a register. This macro is only called when TYPE is a
1810 scalar type.
1811
1812 On i386 it is sometimes useful to promote HImode and QImode
1813 quantities to SImode. The choice depends on target type. */
1814
1815 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1816 do { \
1817 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1818 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1819 (MODE) = SImode; \
1820 } while (0)
1821
1822 /* Specify the machine mode that pointers have.
1823 After generation of rtl, the compiler makes no further distinction
1824 between pointers and any other objects of this machine mode. */
1825 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1826
1827 /* A C expression whose value is zero if pointers that need to be extended
1828 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1829 greater then zero if they are zero-extended and less then zero if the
1830 ptr_extend instruction should be used. */
1831
1832 #define POINTERS_EXTEND_UNSIGNED 1
1833
1834 /* A function address in a call instruction
1835 is a byte address (for indexing purposes)
1836 so give the MEM rtx a byte's mode. */
1837 #define FUNCTION_MODE QImode
1838 \f
1839
1840 /* A C expression for the cost of a branch instruction. A value of 1
1841 is the default; other values are interpreted relative to that. */
1842
1843 #define BRANCH_COST(speed_p, predictable_p) \
1844 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1845
1846 /* An integer expression for the size in bits of the largest integer machine
1847 mode that should actually be used. We allow pairs of registers. */
1848 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1849
1850 /* Define this macro as a C expression which is nonzero if accessing
1851 less than a word of memory (i.e. a `char' or a `short') is no
1852 faster than accessing a word of memory, i.e., if such access
1853 require more than one instruction or if there is no difference in
1854 cost between byte and (aligned) word loads.
1855
1856 When this macro is not defined, the compiler will access a field by
1857 finding the smallest containing object; when it is defined, a
1858 fullword load will be used if alignment permits. Unless bytes
1859 accesses are faster than word accesses, using word accesses is
1860 preferable since it may eliminate subsequent memory access if
1861 subsequent accesses occur to other fields in the same word of the
1862 structure, but to different bytes. */
1863
1864 #define SLOW_BYTE_ACCESS 0
1865
1866 /* Nonzero if access to memory by shorts is slow and undesirable. */
1867 #define SLOW_SHORT_ACCESS 0
1868
1869 /* Define this macro to be the value 1 if unaligned accesses have a
1870 cost many times greater than aligned accesses, for example if they
1871 are emulated in a trap handler.
1872
1873 When this macro is nonzero, the compiler will act as if
1874 `STRICT_ALIGNMENT' were nonzero when generating code for block
1875 moves. This can cause significantly more instructions to be
1876 produced. Therefore, do not set this macro nonzero if unaligned
1877 accesses only add a cycle or two to the time for a memory access.
1878
1879 If the value of this macro is always zero, it need not be defined. */
1880
1881 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1882
1883 /* Define this macro if it is as good or better to call a constant
1884 function address than to call an address kept in a register.
1885
1886 Desirable on the 386 because a CALL with a constant address is
1887 faster than one with a register address. */
1888
1889 #define NO_FUNCTION_CSE
1890 \f
1891 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1892 return the mode to be used for the comparison.
1893
1894 For floating-point equality comparisons, CCFPEQmode should be used.
1895 VOIDmode should be used in all other cases.
1896
1897 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1898 possible, to allow for more combinations. */
1899
1900 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1901
1902 /* Return nonzero if MODE implies a floating point inequality can be
1903 reversed. */
1904
1905 #define REVERSIBLE_CC_MODE(MODE) 1
1906
1907 /* A C expression whose value is reversed condition code of the CODE for
1908 comparison done in CC_MODE mode. */
1909 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1910
1911 \f
1912 /* Control the assembler format that we output, to the extent
1913 this does not vary between assemblers. */
1914
1915 /* How to refer to registers in assembler output.
1916 This sequence is indexed by compiler's hard-register-number (see above). */
1917
1918 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1919 For non floating point regs, the following are the HImode names.
1920
1921 For float regs, the stack top is sometimes referred to as "%st(0)"
1922 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1923 "y" code. */
1924
1925 #define HI_REGISTER_NAMES \
1926 {"ax","dx","cx","bx","si","di","bp","sp", \
1927 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1928 "argp", "flags", "fpsr", "fpcr", "frame", \
1929 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1930 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1931 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1932 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
1933 "xmm16", "xmm17", "xmm18", "xmm19", \
1934 "xmm20", "xmm21", "xmm22", "xmm23", \
1935 "xmm24", "xmm25", "xmm26", "xmm27", \
1936 "xmm28", "xmm29", "xmm30", "xmm31" }
1937
1938 #define REGISTER_NAMES HI_REGISTER_NAMES
1939
1940 /* Table of additional register names to use in user input. */
1941
1942 #define ADDITIONAL_REGISTER_NAMES \
1943 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1944 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1945 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1946 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1947 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1948 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1949
1950 /* Note we are omitting these since currently I don't know how
1951 to get gcc to use these, since they want the same but different
1952 number as al, and ax.
1953 */
1954
1955 #define QI_REGISTER_NAMES \
1956 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1957
1958 /* These parallel the array above, and can be used to access bits 8:15
1959 of regs 0 through 3. */
1960
1961 #define QI_HIGH_REGISTER_NAMES \
1962 {"ah", "dh", "ch", "bh", }
1963
1964 /* How to renumber registers for dbx and gdb. */
1965
1966 #define DBX_REGISTER_NUMBER(N) \
1967 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1968
1969 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1970 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1971 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1972
1973 extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
1974
1975 /* Before the prologue, RA is at 0(%esp). */
1976 #define INCOMING_RETURN_ADDR_RTX \
1977 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1978
1979 /* After the prologue, RA is at -4(AP) in the current frame. */
1980 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1981 ((COUNT) == 0 \
1982 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
1983 -UNITS_PER_WORD)) \
1984 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
1985
1986 /* PC is dbx register 8; let's use that column for RA. */
1987 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
1988
1989 /* Before the prologue, the top of the frame is at 4(%esp). */
1990 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1991
1992 /* Describe how we implement __builtin_eh_return. */
1993 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1994 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1995
1996
1997 /* Select a format to encode pointers in exception handling data. CODE
1998 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1999 true if the symbol may be affected by dynamic relocations.
2000
2001 ??? All x86 object file formats are capable of representing this.
2002 After all, the relocation needed is the same as for the call insn.
2003 Whether or not a particular assembler allows us to enter such, I
2004 guess we'll have to see. */
2005 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2006 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2007
2008 /* This is how to output an insn to push a register on the stack.
2009 It need not be very fast code. */
2010
2011 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2012 do { \
2013 if (TARGET_64BIT) \
2014 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2015 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2016 else \
2017 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2018 } while (0)
2019
2020 /* This is how to output an insn to pop a register from the stack.
2021 It need not be very fast code. */
2022
2023 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2024 do { \
2025 if (TARGET_64BIT) \
2026 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2027 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2028 else \
2029 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2030 } while (0)
2031
2032 /* This is how to output an element of a case-vector that is absolute. */
2033
2034 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2035 ix86_output_addr_vec_elt ((FILE), (VALUE))
2036
2037 /* This is how to output an element of a case-vector that is relative. */
2038
2039 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2040 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2041
2042 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2043
2044 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2045 { \
2046 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2047 (PTR) += TARGET_AVX ? 1 : 2; \
2048 }
2049
2050 /* A C statement or statements which output an assembler instruction
2051 opcode to the stdio stream STREAM. The macro-operand PTR is a
2052 variable of type `char *' which points to the opcode name in
2053 its "internal" form--the form that is written in the machine
2054 description. */
2055
2056 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2057 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2058
2059 /* A C statement to output to the stdio stream FILE an assembler
2060 command to pad the location counter to a multiple of 1<<LOG
2061 bytes if it is within MAX_SKIP bytes. */
2062
2063 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2064 #undef ASM_OUTPUT_MAX_SKIP_PAD
2065 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2066 if ((LOG) != 0) \
2067 { \
2068 if ((MAX_SKIP) == 0) \
2069 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2070 else \
2071 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2072 }
2073 #endif
2074
2075 /* Write the extra assembler code needed to declare a function
2076 properly. */
2077
2078 #undef ASM_OUTPUT_FUNCTION_LABEL
2079 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2080 ix86_asm_output_function_label (FILE, NAME, DECL)
2081
2082 /* Under some conditions we need jump tables in the text section,
2083 because the assembler cannot handle label differences between
2084 sections. This is the case for x86_64 on Mach-O for example. */
2085
2086 #define JUMP_TABLES_IN_TEXT_SECTION \
2087 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2088 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2089
2090 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2091 and switch back. For x86 we do this only to save a few bytes that
2092 would otherwise be unused in the text section. */
2093 #define CRT_MKSTR2(VAL) #VAL
2094 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2095
2096 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2097 asm (SECTION_OP "\n\t" \
2098 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2099 TEXT_SECTION_ASM_OP);
2100
2101 /* Default threshold for putting data in large sections
2102 with x86-64 medium memory model */
2103 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2104 \f
2105 /* Which processor to tune code generation for. */
2106
2107 enum processor_type
2108 {
2109 PROCESSOR_I386 = 0, /* 80386 */
2110 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2111 PROCESSOR_PENTIUM,
2112 PROCESSOR_PENTIUMPRO,
2113 PROCESSOR_GEODE,
2114 PROCESSOR_K6,
2115 PROCESSOR_ATHLON,
2116 PROCESSOR_PENTIUM4,
2117 PROCESSOR_K8,
2118 PROCESSOR_NOCONA,
2119 PROCESSOR_CORE2,
2120 PROCESSOR_COREI7,
2121 PROCESSOR_HASWELL,
2122 PROCESSOR_GENERIC32,
2123 PROCESSOR_GENERIC64,
2124 PROCESSOR_AMDFAM10,
2125 PROCESSOR_BDVER1,
2126 PROCESSOR_BDVER2,
2127 PROCESSOR_BDVER3,
2128 PROCESSOR_BTVER1,
2129 PROCESSOR_BTVER2,
2130 PROCESSOR_ATOM,
2131 PROCESSOR_SLM,
2132 PROCESSOR_max
2133 };
2134
2135 extern enum processor_type ix86_tune;
2136 extern enum processor_type ix86_arch;
2137
2138 /* Size of the RED_ZONE area. */
2139 #define RED_ZONE_SIZE 128
2140 /* Reserved area of the red zone for temporaries. */
2141 #define RED_ZONE_RESERVE 8
2142
2143 extern unsigned int ix86_preferred_stack_boundary;
2144 extern unsigned int ix86_incoming_stack_boundary;
2145
2146 /* Smallest class containing REGNO. */
2147 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2148
2149 enum ix86_fpcmp_strategy {
2150 IX86_FPCMP_SAHF,
2151 IX86_FPCMP_COMI,
2152 IX86_FPCMP_ARITH
2153 };
2154 \f
2155 /* To properly truncate FP values into integers, we need to set i387 control
2156 word. We can't emit proper mode switching code before reload, as spills
2157 generated by reload may truncate values incorrectly, but we still can avoid
2158 redundant computation of new control word by the mode switching pass.
2159 The fldcw instructions are still emitted redundantly, but this is probably
2160 not going to be noticeable problem, as most CPUs do have fast path for
2161 the sequence.
2162
2163 The machinery is to emit simple truncation instructions and split them
2164 before reload to instructions having USEs of two memory locations that
2165 are filled by this code to old and new control word.
2166
2167 Post-reload pass may be later used to eliminate the redundant fildcw if
2168 needed. */
2169
2170 enum ix86_entity
2171 {
2172 AVX_U128 = 0,
2173 I387_TRUNC,
2174 I387_FLOOR,
2175 I387_CEIL,
2176 I387_MASK_PM,
2177 MAX_386_ENTITIES
2178 };
2179
2180 enum ix86_stack_slot
2181 {
2182 SLOT_TEMP = 0,
2183 SLOT_CW_STORED,
2184 SLOT_CW_TRUNC,
2185 SLOT_CW_FLOOR,
2186 SLOT_CW_CEIL,
2187 SLOT_CW_MASK_PM,
2188 MAX_386_STACK_LOCALS
2189 };
2190
2191 enum avx_u128_state
2192 {
2193 AVX_U128_CLEAN,
2194 AVX_U128_DIRTY,
2195 AVX_U128_ANY
2196 };
2197
2198 /* Define this macro if the port needs extra instructions inserted
2199 for mode switching in an optimizing compilation. */
2200
2201 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2202 ix86_optimize_mode_switching[(ENTITY)]
2203
2204 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2205 initializer for an array of integers. Each initializer element N
2206 refers to an entity that needs mode switching, and specifies the
2207 number of different modes that might need to be set for this
2208 entity. The position of the initializer in the initializer -
2209 starting counting at zero - determines the integer that is used to
2210 refer to the mode-switched entity in question. */
2211
2212 #define NUM_MODES_FOR_MODE_SWITCHING \
2213 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2214
2215 /* ENTITY is an integer specifying a mode-switched entity. If
2216 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2217 return an integer value not larger than the corresponding element
2218 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2219 must be switched into prior to the execution of INSN. */
2220
2221 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2222
2223 /* If this macro is defined, it is evaluated for every INSN during
2224 mode switching. It determines the mode that an insn results in (if
2225 different from the incoming mode). */
2226
2227 #define MODE_AFTER(ENTITY, MODE, I) ix86_mode_after ((ENTITY), (MODE), (I))
2228
2229 /* If this macro is defined, it is evaluated for every ENTITY that
2230 needs mode switching. It should evaluate to an integer, which is
2231 a mode that ENTITY is assumed to be switched to at function entry. */
2232
2233 #define MODE_ENTRY(ENTITY) ix86_mode_entry (ENTITY)
2234
2235 /* If this macro is defined, it is evaluated for every ENTITY that
2236 needs mode switching. It should evaluate to an integer, which is
2237 a mode that ENTITY is assumed to be switched to at function exit. */
2238
2239 #define MODE_EXIT(ENTITY) ix86_mode_exit (ENTITY)
2240
2241 /* This macro specifies the order in which modes for ENTITY are
2242 processed. 0 is the highest priority. */
2243
2244 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2245
2246 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2247 is the set of hard registers live at the point where the insn(s)
2248 are to be inserted. */
2249
2250 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2251 ix86_emit_mode_set ((ENTITY), (MODE), (HARD_REGS_LIVE))
2252 \f
2253 /* Avoid renaming of stack registers, as doing so in combination with
2254 scheduling just increases amount of live registers at time and in
2255 the turn amount of fxch instructions needed.
2256
2257 ??? Maybe Pentium chips benefits from renaming, someone can try....
2258
2259 Don't rename evex to non-evex sse registers. */
2260
2261 #define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2262 (EXT_REX_SSE_REGNO_P (SRC) == \
2263 EXT_REX_SSE_REGNO_P (TARGET)))
2264
2265 \f
2266 #define FASTCALL_PREFIX '@'
2267 \f
2268 /* Machine specific frame tracking during prologue/epilogue generation. */
2269
2270 #ifndef USED_FOR_TARGET
2271 struct GTY(()) machine_frame_state
2272 {
2273 /* This pair tracks the currently active CFA as reg+offset. When reg
2274 is drap_reg, we don't bother trying to record here the real CFA when
2275 it might really be a DW_CFA_def_cfa_expression. */
2276 rtx cfa_reg;
2277 HOST_WIDE_INT cfa_offset;
2278
2279 /* The current offset (canonically from the CFA) of ESP and EBP.
2280 When stack frame re-alignment is active, these may not be relative
2281 to the CFA. However, in all cases they are relative to the offsets
2282 of the saved registers stored in ix86_frame. */
2283 HOST_WIDE_INT sp_offset;
2284 HOST_WIDE_INT fp_offset;
2285
2286 /* The size of the red-zone that may be assumed for the purposes of
2287 eliding register restore notes in the epilogue. This may be zero
2288 if no red-zone is in effect, or may be reduced from the real
2289 red-zone value by a maximum runtime stack re-alignment value. */
2290 int red_zone_offset;
2291
2292 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2293 value within the frame. If false then the offset above should be
2294 ignored. Note that DRAP, if valid, *always* points to the CFA and
2295 thus has an offset of zero. */
2296 BOOL_BITFIELD sp_valid : 1;
2297 BOOL_BITFIELD fp_valid : 1;
2298 BOOL_BITFIELD drap_valid : 1;
2299
2300 /* Indicate whether the local stack frame has been re-aligned. When
2301 set, the SP/FP offsets above are relative to the aligned frame
2302 and not the CFA. */
2303 BOOL_BITFIELD realigned : 1;
2304 };
2305
2306 /* Private to winnt.c. */
2307 struct seh_frame_state;
2308
2309 struct GTY(()) machine_function {
2310 struct stack_local_entry *stack_locals;
2311 const char *some_ld_name;
2312 int varargs_gpr_size;
2313 int varargs_fpr_size;
2314 int optimize_mode_switching[MAX_386_ENTITIES];
2315
2316 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2317 has been computed for. */
2318 int use_fast_prologue_epilogue_nregs;
2319
2320 /* For -fsplit-stack support: A stack local which holds a pointer to
2321 the stack arguments for a function with a variable number of
2322 arguments. This is set at the start of the function and is used
2323 to initialize the overflow_arg_area field of the va_list
2324 structure. */
2325 rtx split_stack_varargs_pointer;
2326
2327 /* This value is used for amd64 targets and specifies the current abi
2328 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2329 ENUM_BITFIELD(calling_abi) call_abi : 8;
2330
2331 /* Nonzero if the function accesses a previous frame. */
2332 BOOL_BITFIELD accesses_prev_frame : 1;
2333
2334 /* Nonzero if the function requires a CLD in the prologue. */
2335 BOOL_BITFIELD needs_cld : 1;
2336
2337 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2338 expander to determine the style used. */
2339 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2340
2341 /* If true, the current function needs the default PIC register, not
2342 an alternate register (on x86) and must not use the red zone (on
2343 x86_64), even if it's a leaf function. We don't want the
2344 function to be regarded as non-leaf because TLS calls need not
2345 affect register allocation. This flag is set when a TLS call
2346 instruction is expanded within a function, and never reset, even
2347 if all such instructions are optimized away. Use the
2348 ix86_current_function_calls_tls_descriptor macro for a better
2349 approximation. */
2350 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2351
2352 /* If true, the current function has a STATIC_CHAIN is placed on the
2353 stack below the return address. */
2354 BOOL_BITFIELD static_chain_on_stack : 1;
2355
2356 /* During prologue/epilogue generation, the current frame state.
2357 Otherwise, the frame state at the end of the prologue. */
2358 struct machine_frame_state fs;
2359
2360 /* During SEH output, this is non-null. */
2361 struct seh_frame_state * GTY((skip(""))) seh;
2362 };
2363 #endif
2364
2365 #define ix86_stack_locals (cfun->machine->stack_locals)
2366 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2367 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2368 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2369 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2370 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2371 (cfun->machine->tls_descriptor_call_expanded_p)
2372 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2373 calls are optimized away, we try to detect cases in which it was
2374 optimized away. Since such instructions (use (reg REG_SP)), we can
2375 verify whether there's any such instruction live by testing that
2376 REG_SP is live. */
2377 #define ix86_current_function_calls_tls_descriptor \
2378 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2379 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2380
2381 /* Control behavior of x86_file_start. */
2382 #define X86_FILE_START_VERSION_DIRECTIVE false
2383 #define X86_FILE_START_FLTUSED false
2384
2385 /* Flag to mark data that is in the large address area. */
2386 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2387 #define SYMBOL_REF_FAR_ADDR_P(X) \
2388 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2389
2390 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2391 have defined always, to avoid ifdefing. */
2392 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2393 #define SYMBOL_REF_DLLIMPORT_P(X) \
2394 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2395
2396 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2397 #define SYMBOL_REF_DLLEXPORT_P(X) \
2398 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2399
2400 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2401 #define SYMBOL_REF_STUBVAR_P(X) \
2402 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2403
2404 extern void debug_ready_dispatch (void);
2405 extern void debug_dispatch_window (int);
2406
2407 /* The value at zero is only defined for the BMI instructions
2408 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2409 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2410 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2411 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2412 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
2413
2414
2415 /* Flags returned by ix86_get_callcvt (). */
2416 #define IX86_CALLCVT_CDECL 0x1
2417 #define IX86_CALLCVT_STDCALL 0x2
2418 #define IX86_CALLCVT_FASTCALL 0x4
2419 #define IX86_CALLCVT_THISCALL 0x8
2420 #define IX86_CALLCVT_REGPARM 0x10
2421 #define IX86_CALLCVT_SSEREGPARM 0x20
2422
2423 #define IX86_BASE_CALLCVT(FLAGS) \
2424 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2425 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2426
2427 #define RECIP_MASK_NONE 0x00
2428 #define RECIP_MASK_DIV 0x01
2429 #define RECIP_MASK_SQRT 0x02
2430 #define RECIP_MASK_VEC_DIV 0x04
2431 #define RECIP_MASK_VEC_SQRT 0x08
2432 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2433 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2434 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2435
2436 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2437 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2438 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2439 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2440
2441 #define IX86_HLE_ACQUIRE (1 << 16)
2442 #define IX86_HLE_RELEASE (1 << 17)
2443
2444 /*
2445 Local variables:
2446 version-control: t
2447 End:
2448 */