i386.c (struct ix86_address): Add seg.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #define TARGET_CPU_DEFAULT 0
101 #endif
102
103 /* Masks for the -m switches */
104 #define MASK_80387 0x00000001 /* Hardware floating point */
105 #define MASK_RTD 0x00000002 /* Use ret that pops args */
106 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
107 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
108 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
109 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
110 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
111 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
112 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
113 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
114 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
115 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
116 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
117 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
118 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
119 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
120 #define MASK_3DNOW 0x00010000 /* Support 3Dnow builtins */
121 #define MASK_3DNOW_A 0x00020000 /* Support Athlon 3Dnow builtins */
122 #define MASK_128BIT_LONG_DOUBLE 0x00040000 /* long double size is 128bit */
123 #define MASK_64BIT 0x00080000 /* Produce 64bit code */
124 #define MASK_MS_BITFIELD_LAYOUT 0x00100000 /* Use native (MS) bitfield layout */
125 #define MASK_TLS_DIRECT_SEG_REFS 0x00200000 /* Avoid adding %gs:0 */
126
127 /* Unused: 0x03e0000 */
128
129 /* ... overlap with subtarget options starts by 0x04000000. */
130 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
131
132 /* Use the floating point instructions */
133 #define TARGET_80387 (target_flags & MASK_80387)
134
135 /* Compile using ret insn that pops args.
136 This will not work unless you use prototypes at least
137 for all functions that can take varying numbers of args. */
138 #define TARGET_RTD (target_flags & MASK_RTD)
139
140 /* Align doubles to a two word boundary. This breaks compatibility with
141 the published ABI's for structures containing doubles, but produces
142 faster code on the pentium. */
143 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
144
145 /* Use push instructions to save outgoing args. */
146 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
147
148 /* Accumulate stack adjustments to prologue/epilogue. */
149 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
150 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
151
152 /* Put uninitialized locals into bss, not data.
153 Meaningful only on svr3. */
154 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
155
156 /* Use IEEE floating point comparisons. These handle correctly the cases
157 where the result of a comparison is unordered. Normally SIGFPE is
158 generated in such cases, in which case this isn't needed. */
159 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
160
161 /* Functions that return a floating point value may return that value
162 in the 387 FPU or in 386 integer registers. If set, this flag causes
163 the 387 to be used, which is compatible with most calling conventions. */
164 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
165
166 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
167 This mode wastes cache, but avoid misaligned data accesses and simplifies
168 address calculations. */
169 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
170
171 /* Disable generation of FP sin, cos and sqrt operations for 387.
172 This is because FreeBSD lacks these in the math-emulator-code */
173 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
174
175 /* Don't create frame pointers for leaf functions */
176 #define TARGET_OMIT_LEAF_FRAME_POINTER \
177 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
178
179 /* Debug GO_IF_LEGITIMATE_ADDRESS */
180 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
181
182 /* Debug FUNCTION_ARG macros */
183 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
184
185 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
186 compile-time constant. */
187 #ifdef IN_LIBGCC2
188 #ifdef __x86_64__
189 #define TARGET_64BIT 1
190 #else
191 #define TARGET_64BIT 0
192 #endif
193 #else
194 #ifdef TARGET_BI_ARCH
195 #define TARGET_64BIT (target_flags & MASK_64BIT)
196 #else
197 #if TARGET_64BIT_DEFAULT
198 #define TARGET_64BIT 1
199 #else
200 #define TARGET_64BIT 0
201 #endif
202 #endif
203 #endif
204
205 /* Avoid adding %gs:0 in TLS references; use %gs:address directly. */
206 #define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
207
208 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
209 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
210 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
211 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
212 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
213 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
214 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
215 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
216 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
217
218 #define TUNEMASK (1 << ix86_tune)
219 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
220 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
221 extern const int x86_branch_hints, x86_unroll_strlen;
222 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
223 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
224 extern const int x86_use_cltd, x86_read_modify_write;
225 extern const int x86_read_modify, x86_split_long_moves;
226 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
227 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
228 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
229 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
230 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
231 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
232 extern const int x86_epilogue_using_move, x86_decompose_lea;
233 extern const int x86_arch_always_fancy_math_387, x86_shift1;
234 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
235 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
236 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
237 extern const int x86_inter_unit_moves;
238 extern int x86_prefetch_sse;
239
240 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
241 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
242 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
243 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
244 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
245 /* For sane SSE instruction set generation we need fcomi instruction. It is
246 safe to enable all CMOVE instructions. */
247 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
248 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
249 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
250 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
251 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
252 #define TARGET_MOVX (x86_movx & TUNEMASK)
253 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
254 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
255 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
256 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
257 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
258 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
259 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
260 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
261 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
262 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
263 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
264 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
265 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
266 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
267 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
268 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
269 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
270 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
271 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
272 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
273 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
274 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
275 (x86_sse_partial_reg_dependency & TUNEMASK)
276 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
277 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
278 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
279 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
280 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
281 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
282 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
283 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
284 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
285 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
286 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
287 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
288 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
289 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
290 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
291
292 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
293
294 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
295 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
296
297 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
298
299 #define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
300 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
301 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
302 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
303 && (ix86_fpmath & FPMATH_387))
304 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
305 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
306 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
307
308 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
309
310 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
311
312 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
313 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
314
315 /* WARNING: Do not mark empty strings for translation, as calling
316 gettext on an empty string does NOT return an empty
317 string. */
318
319
320 #define TARGET_SWITCHES \
321 { { "80387", MASK_80387, N_("Use hardware fp") }, \
322 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
323 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
324 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
325 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
326 { "386", 0, "" /*Deprecated.*/}, \
327 { "486", 0, "" /*Deprecated.*/}, \
328 { "pentium", 0, "" /*Deprecated.*/}, \
329 { "pentiumpro", 0, "" /*Deprecated.*/}, \
330 { "intel-syntax", 0, "" /*Deprecated.*/}, \
331 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
332 { "rtd", MASK_RTD, \
333 N_("Alternate calling convention") }, \
334 { "no-rtd", -MASK_RTD, \
335 N_("Use normal calling convention") }, \
336 { "align-double", MASK_ALIGN_DOUBLE, \
337 N_("Align some doubles on dword boundary") }, \
338 { "no-align-double", -MASK_ALIGN_DOUBLE, \
339 N_("Align doubles on word boundary") }, \
340 { "svr3-shlib", MASK_SVR3_SHLIB, \
341 N_("Uninitialized locals in .bss") }, \
342 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
343 N_("Uninitialized locals in .data") }, \
344 { "ieee-fp", MASK_IEEE_FP, \
345 N_("Use IEEE math for fp comparisons") }, \
346 { "no-ieee-fp", -MASK_IEEE_FP, \
347 N_("Do not use IEEE math for fp comparisons") }, \
348 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
349 N_("Return values of functions in FPU registers") }, \
350 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
351 N_("Do not return values of functions in FPU registers")}, \
352 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
353 N_("Do not generate sin, cos, sqrt for FPU") }, \
354 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
355 N_("Generate sin, cos, sqrt for FPU")}, \
356 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
357 N_("Omit the frame pointer in leaf functions") }, \
358 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
359 { "stack-arg-probe", MASK_STACK_PROBE, \
360 N_("Enable stack probing") }, \
361 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
362 { "windows", 0, 0 /* undocumented */ }, \
363 { "dll", 0, 0 /* undocumented */ }, \
364 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
365 N_("Align destination of the string operations") }, \
366 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
367 N_("Do not align destination of the string operations") }, \
368 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
369 N_("Inline all known string operations") }, \
370 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
371 N_("Do not inline all known string operations") }, \
372 { "push-args", -MASK_NO_PUSH_ARGS, \
373 N_("Use push instructions to save outgoing arguments") }, \
374 { "no-push-args", MASK_NO_PUSH_ARGS, \
375 N_("Do not use push instructions to save outgoing arguments") }, \
376 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
377 N_("Use push instructions to save outgoing arguments") }, \
378 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
379 N_("Do not use push instructions to save outgoing arguments") }, \
380 { "mmx", MASK_MMX, \
381 N_("Support MMX built-in functions") }, \
382 { "no-mmx", -MASK_MMX, \
383 N_("Do not support MMX built-in functions") }, \
384 { "3dnow", MASK_3DNOW, \
385 N_("Support 3DNow! built-in functions") }, \
386 { "no-3dnow", -MASK_3DNOW, \
387 N_("Do not support 3DNow! built-in functions") }, \
388 { "sse", MASK_SSE, \
389 N_("Support MMX and SSE built-in functions and code generation") }, \
390 { "no-sse", -MASK_SSE, \
391 N_("Do not support MMX and SSE built-in functions and code generation") },\
392 { "sse2", MASK_SSE2, \
393 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
394 { "no-sse2", -MASK_SSE2, \
395 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
396 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
397 N_("sizeof(long double) is 16") }, \
398 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
399 N_("sizeof(long double) is 12") }, \
400 { "64", MASK_64BIT, \
401 N_("Generate 64bit x86-64 code") }, \
402 { "32", -MASK_64BIT, \
403 N_("Generate 32bit i386 code") }, \
404 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
405 N_("Use native (MS) bitfield layout") }, \
406 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
407 N_("Use gcc default bitfield layout") }, \
408 { "red-zone", -MASK_NO_RED_ZONE, \
409 N_("Use red-zone in the x86-64 code") }, \
410 { "no-red-zone", MASK_NO_RED_ZONE, \
411 N_("Do not use red-zone in the x86-64 code") }, \
412 { "tls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS, \
413 N_("Use direct references against %gs when accessing tls data") }, \
414 { "no-tls-direct-seg-refs", -MASK_TLS_DIRECT_SEG_REFS, \
415 N_("Do not use direct references against %gs when accessing tls data") }, \
416 SUBTARGET_SWITCHES \
417 { "", \
418 TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT \
419 | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
420
421 #ifndef TARGET_64BIT_DEFAULT
422 #define TARGET_64BIT_DEFAULT 0
423 #endif
424 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
425 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
426 #endif
427
428 /* Once GDB has been enhanced to deal with functions without frame
429 pointers, we can change this to allow for elimination of
430 the frame pointer in leaf functions. */
431 #define TARGET_DEFAULT 0
432
433 /* This is not really a target flag, but is done this way so that
434 it's analogous to similar code for Mach-O on PowerPC. darwin.h
435 redefines this to 1. */
436 #define TARGET_MACHO 0
437
438 /* This macro is similar to `TARGET_SWITCHES' but defines names of
439 command options that have values. Its definition is an
440 initializer with a subgrouping for each command option.
441
442 Each subgrouping contains a string constant, that defines the
443 fixed part of the option name, and the address of a variable. The
444 variable, type `char *', is set to the variable part of the given
445 option if the fixed part matches. The actual option name is made
446 by appending `-m' to the specified name. */
447 #define TARGET_OPTIONS \
448 { { "tune=", &ix86_tune_string, \
449 N_("Schedule code for given CPU"), 0}, \
450 { "fpmath=", &ix86_fpmath_string, \
451 N_("Generate floating point mathematics using given instruction set"), 0},\
452 { "arch=", &ix86_arch_string, \
453 N_("Generate code for given CPU"), 0}, \
454 { "regparm=", &ix86_regparm_string, \
455 N_("Number of registers used to pass integer arguments"), 0},\
456 { "align-loops=", &ix86_align_loops_string, \
457 N_("Loop code aligned to this power of 2"), 0}, \
458 { "align-jumps=", &ix86_align_jumps_string, \
459 N_("Jump targets are aligned to this power of 2"), 0}, \
460 { "align-functions=", &ix86_align_funcs_string, \
461 N_("Function starts are aligned to this power of 2"), 0}, \
462 { "preferred-stack-boundary=", \
463 &ix86_preferred_stack_boundary_string, \
464 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
465 { "branch-cost=", &ix86_branch_cost_string, \
466 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
467 { "cmodel=", &ix86_cmodel_string, \
468 N_("Use given x86-64 code model"), 0}, \
469 { "debug-arg", &ix86_debug_arg_string, \
470 "" /* Undocumented. */, 0}, \
471 { "debug-addr", &ix86_debug_addr_string, \
472 "" /* Undocumented. */, 0}, \
473 { "asm=", &ix86_asm_string, \
474 N_("Use given assembler dialect"), 0}, \
475 { "tls-dialect=", &ix86_tls_dialect_string, \
476 N_("Use given thread-local storage dialect"), 0}, \
477 SUBTARGET_OPTIONS \
478 }
479
480 /* Sometimes certain combinations of command options do not make
481 sense on a particular target machine. You can define a macro
482 `OVERRIDE_OPTIONS' to take account of this. This macro, if
483 defined, is executed once just after all the command options have
484 been parsed.
485
486 Don't use this macro to turn on various extra optimizations for
487 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
488
489 #define OVERRIDE_OPTIONS override_options ()
490
491 /* These are meant to be redefined in the host dependent files */
492 #define SUBTARGET_SWITCHES
493 #define SUBTARGET_OPTIONS
494
495 /* Define this to change the optimizations performed by default. */
496 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
497 optimization_options ((LEVEL), (SIZE))
498
499 /* Support for configure-time defaults of some command line options. */
500 #define OPTION_DEFAULT_SPECS \
501 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
502 {"tune", "%{!mtune=*:%{!mcpu=*:-mtune=%(VALUE)}}" }, \
503 {"cpu", "%{!mtune=*:%{!mcpu=*:-mtune=%(VALUE)}}" }
504
505 /* Specs for the compiler proper */
506
507 #ifndef CC1_CPU_SPEC
508 #define CC1_CPU_SPEC "\
509 %{!mtune*: \
510 %{m386:mtune=i386 \
511 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
512 %{m486:-mtune=i486 \
513 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
514 %{mpentium:-mtune=pentium \
515 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
516 %{mpentiumpro:-mtune=pentiumpro \
517 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
518 %{mcpu=*:-mtune=%* \
519 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
520 %<mcpu=* \
521 %{mintel-syntax:-masm=intel \
522 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
523 %{mno-intel-syntax:-masm=att \
524 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
525 #endif
526 \f
527 /* Target CPU builtins. */
528 #define TARGET_CPU_CPP_BUILTINS() \
529 do \
530 { \
531 size_t arch_len = strlen (ix86_arch_string); \
532 size_t tune_len = strlen (ix86_tune_string); \
533 int last_arch_char = ix86_arch_string[arch_len - 1]; \
534 int last_tune_char = ix86_tune_string[tune_len - 1]; \
535 \
536 if (TARGET_64BIT) \
537 { \
538 builtin_assert ("cpu=x86_64"); \
539 builtin_define ("__amd64"); \
540 builtin_define ("__amd64__"); \
541 builtin_define ("__x86_64"); \
542 builtin_define ("__x86_64__"); \
543 builtin_define ("__amd64"); \
544 builtin_define ("__amd64__"); \
545 } \
546 else \
547 { \
548 builtin_assert ("cpu=i386"); \
549 builtin_assert ("machine=i386"); \
550 builtin_define_std ("i386"); \
551 } \
552 \
553 /* Built-ins based on -mtune= (or -march= if no \
554 -mtune= given). */ \
555 if (TARGET_386) \
556 builtin_define ("__tune_i386__"); \
557 else if (TARGET_486) \
558 builtin_define ("__tune_i486__"); \
559 else if (TARGET_PENTIUM) \
560 { \
561 builtin_define ("__tune_i586__"); \
562 builtin_define ("__tune_pentium__"); \
563 if (last_tune_char == 'x') \
564 builtin_define ("__tune_pentium_mmx__"); \
565 } \
566 else if (TARGET_PENTIUMPRO) \
567 { \
568 builtin_define ("__tune_i686__"); \
569 builtin_define ("__tune_pentiumpro__"); \
570 switch (last_tune_char) \
571 { \
572 case '3': \
573 builtin_define ("__tune_pentium3__"); \
574 /* FALLTHRU */ \
575 case '2': \
576 builtin_define ("__tune_pentium2__"); \
577 break; \
578 } \
579 } \
580 else if (TARGET_K6) \
581 { \
582 builtin_define ("__tune_k6__"); \
583 if (last_tune_char == '2') \
584 builtin_define ("__tune_k6_2__"); \
585 else if (last_tune_char == '3') \
586 builtin_define ("__tune_k6_3__"); \
587 } \
588 else if (TARGET_ATHLON) \
589 { \
590 builtin_define ("__tune_athlon__"); \
591 /* Only plain "athlon" lacks SSE. */ \
592 if (last_tune_char != 'n') \
593 builtin_define ("__tune_athlon_sse__"); \
594 } \
595 else if (TARGET_K8) \
596 builtin_define ("__tune_k8__"); \
597 else if (TARGET_PENTIUM4) \
598 builtin_define ("__tune_pentium4__"); \
599 \
600 if (TARGET_MMX) \
601 builtin_define ("__MMX__"); \
602 if (TARGET_3DNOW) \
603 builtin_define ("__3dNOW__"); \
604 if (TARGET_3DNOW_A) \
605 builtin_define ("__3dNOW_A__"); \
606 if (TARGET_SSE) \
607 builtin_define ("__SSE__"); \
608 if (TARGET_SSE2) \
609 builtin_define ("__SSE2__"); \
610 if (TARGET_SSE_MATH && TARGET_SSE) \
611 builtin_define ("__SSE_MATH__"); \
612 if (TARGET_SSE_MATH && TARGET_SSE2) \
613 builtin_define ("__SSE2_MATH__"); \
614 \
615 /* Built-ins based on -march=. */ \
616 if (ix86_arch == PROCESSOR_I486) \
617 { \
618 builtin_define ("__i486"); \
619 builtin_define ("__i486__"); \
620 } \
621 else if (ix86_arch == PROCESSOR_PENTIUM) \
622 { \
623 builtin_define ("__i586"); \
624 builtin_define ("__i586__"); \
625 builtin_define ("__pentium"); \
626 builtin_define ("__pentium__"); \
627 if (last_arch_char == 'x') \
628 builtin_define ("__pentium_mmx__"); \
629 } \
630 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
631 { \
632 builtin_define ("__i686"); \
633 builtin_define ("__i686__"); \
634 builtin_define ("__pentiumpro"); \
635 builtin_define ("__pentiumpro__"); \
636 } \
637 else if (ix86_arch == PROCESSOR_K6) \
638 { \
639 \
640 builtin_define ("__k6"); \
641 builtin_define ("__k6__"); \
642 if (last_arch_char == '2') \
643 builtin_define ("__k6_2__"); \
644 else if (last_arch_char == '3') \
645 builtin_define ("__k6_3__"); \
646 } \
647 else if (ix86_arch == PROCESSOR_ATHLON) \
648 { \
649 builtin_define ("__athlon"); \
650 builtin_define ("__athlon__"); \
651 /* Only plain "athlon" lacks SSE. */ \
652 if (last_arch_char != 'n') \
653 builtin_define ("__athlon_sse__"); \
654 } \
655 else if (ix86_arch == PROCESSOR_K8) \
656 { \
657 builtin_define ("__k8"); \
658 builtin_define ("__k8__"); \
659 } \
660 else if (ix86_arch == PROCESSOR_PENTIUM4) \
661 { \
662 builtin_define ("__pentium4"); \
663 builtin_define ("__pentium4__"); \
664 } \
665 } \
666 while (0)
667
668 #define TARGET_CPU_DEFAULT_i386 0
669 #define TARGET_CPU_DEFAULT_i486 1
670 #define TARGET_CPU_DEFAULT_pentium 2
671 #define TARGET_CPU_DEFAULT_pentium_mmx 3
672 #define TARGET_CPU_DEFAULT_pentiumpro 4
673 #define TARGET_CPU_DEFAULT_pentium2 5
674 #define TARGET_CPU_DEFAULT_pentium3 6
675 #define TARGET_CPU_DEFAULT_pentium4 7
676 #define TARGET_CPU_DEFAULT_k6 8
677 #define TARGET_CPU_DEFAULT_k6_2 9
678 #define TARGET_CPU_DEFAULT_k6_3 10
679 #define TARGET_CPU_DEFAULT_athlon 11
680 #define TARGET_CPU_DEFAULT_athlon_sse 12
681 #define TARGET_CPU_DEFAULT_k8 13
682
683 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
684 "pentiumpro", "pentium2", "pentium3", \
685 "pentium4", "k6", "k6-2", "k6-3",\
686 "athlon", "athlon-4", "k8"}
687
688 #ifndef CC1_SPEC
689 #define CC1_SPEC "%(cc1_cpu) "
690 #endif
691
692 /* This macro defines names of additional specifications to put in the
693 specs that can be used in various specifications like CC1_SPEC. Its
694 definition is an initializer with a subgrouping for each command option.
695
696 Each subgrouping contains a string constant, that defines the
697 specification name, and a string constant that used by the GNU CC driver
698 program.
699
700 Do not define this macro if it does not need to do anything. */
701
702 #ifndef SUBTARGET_EXTRA_SPECS
703 #define SUBTARGET_EXTRA_SPECS
704 #endif
705
706 #define EXTRA_SPECS \
707 { "cc1_cpu", CC1_CPU_SPEC }, \
708 SUBTARGET_EXTRA_SPECS
709 \f
710 /* target machine storage layout */
711
712 /* Define for XFmode or TFmode extended real floating point support.
713 The XFmode is specified by i386 ABI, while TFmode may be faster
714 due to alignment and simplifications in the address calculations. */
715 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
716 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
717 #ifdef __x86_64__
718 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
719 #else
720 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
721 #endif
722
723 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
724 FPU, assume that the fpcw is set to extended precision; when using
725 only SSE, rounding is correct; when using both SSE and the FPU,
726 the rounding precision is indeterminate, since either may be chosen
727 apparently at random. */
728 #define TARGET_FLT_EVAL_METHOD \
729 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
730
731 #define SHORT_TYPE_SIZE 16
732 #define INT_TYPE_SIZE 32
733 #define FLOAT_TYPE_SIZE 32
734 #define LONG_TYPE_SIZE BITS_PER_WORD
735 #define MAX_WCHAR_TYPE_SIZE 32
736 #define DOUBLE_TYPE_SIZE 64
737 #define LONG_LONG_TYPE_SIZE 64
738
739 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
740 #define MAX_BITS_PER_WORD 64
741 #define MAX_LONG_TYPE_SIZE 64
742 #else
743 #define MAX_BITS_PER_WORD 32
744 #define MAX_LONG_TYPE_SIZE 32
745 #endif
746
747 /* Define this if most significant byte of a word is the lowest numbered. */
748 /* That is true on the 80386. */
749
750 #define BITS_BIG_ENDIAN 0
751
752 /* Define this if most significant byte of a word is the lowest numbered. */
753 /* That is not true on the 80386. */
754 #define BYTES_BIG_ENDIAN 0
755
756 /* Define this if most significant word of a multiword number is the lowest
757 numbered. */
758 /* Not true for 80386 */
759 #define WORDS_BIG_ENDIAN 0
760
761 /* Width of a word, in units (bytes). */
762 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
763 #ifdef IN_LIBGCC2
764 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
765 #else
766 #define MIN_UNITS_PER_WORD 4
767 #endif
768
769 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
770 #define PARM_BOUNDARY BITS_PER_WORD
771
772 /* Boundary (in *bits*) on which stack pointer should be aligned. */
773 #define STACK_BOUNDARY BITS_PER_WORD
774
775 /* Boundary (in *bits*) on which the stack pointer prefers to be
776 aligned; the compiler cannot rely on having this alignment. */
777 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
778
779 /* As of July 2001, many runtimes to not align the stack properly when
780 entering main. This causes expand_main_function to forcibly align
781 the stack, which results in aligned frames for functions called from
782 main, though it does nothing for the alignment of main itself. */
783 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
784 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
785
786 /* Minimum allocation boundary for the code of a function. */
787 #define FUNCTION_BOUNDARY 8
788
789 /* C++ stores the virtual bit in the lowest bit of function pointers. */
790 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
791
792 /* Alignment of field after `int : 0' in a structure. */
793
794 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
795
796 /* Minimum size in bits of the largest boundary to which any
797 and all fundamental data types supported by the hardware
798 might need to be aligned. No data type wants to be aligned
799 rounder than this.
800
801 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
802 and Pentium Pro XFmode values at 128 bit boundaries. */
803
804 #define BIGGEST_ALIGNMENT 128
805
806 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
807 #define ALIGN_MODE_128(MODE) \
808 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
809
810 /* The published ABIs say that doubles should be aligned on word
811 boundaries, so lower the alignment for structure fields unless
812 -malign-double is set. */
813
814 /* ??? Blah -- this macro is used directly by libobjc. Since it
815 supports no vector modes, cut out the complexity and fall back
816 on BIGGEST_FIELD_ALIGNMENT. */
817 #ifdef IN_TARGET_LIBS
818 #ifdef __x86_64__
819 #define BIGGEST_FIELD_ALIGNMENT 128
820 #else
821 #define BIGGEST_FIELD_ALIGNMENT 32
822 #endif
823 #else
824 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
825 x86_field_alignment (FIELD, COMPUTED)
826 #endif
827
828 /* If defined, a C expression to compute the alignment given to a
829 constant that is being placed in memory. EXP is the constant
830 and ALIGN is the alignment that the object would ordinarily have.
831 The value of this macro is used instead of that alignment to align
832 the object.
833
834 If this macro is not defined, then ALIGN is used.
835
836 The typical use of this macro is to increase alignment for string
837 constants to be word aligned so that `strcpy' calls that copy
838 constants can be done inline. */
839
840 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
841
842 /* If defined, a C expression to compute the alignment for a static
843 variable. TYPE is the data type, and ALIGN is the alignment that
844 the object would ordinarily have. The value of this macro is used
845 instead of that alignment to align the object.
846
847 If this macro is not defined, then ALIGN is used.
848
849 One use of this macro is to increase alignment of medium-size
850 data to make it all fit in fewer cache lines. Another is to
851 cause character arrays to be word-aligned so that `strcpy' calls
852 that copy constants to character arrays can be done inline. */
853
854 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
855
856 /* If defined, a C expression to compute the alignment for a local
857 variable. TYPE is the data type, and ALIGN is the alignment that
858 the object would ordinarily have. The value of this macro is used
859 instead of that alignment to align the object.
860
861 If this macro is not defined, then ALIGN is used.
862
863 One use of this macro is to increase alignment of medium-size
864 data to make it all fit in fewer cache lines. */
865
866 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
867
868 /* If defined, a C expression that gives the alignment boundary, in
869 bits, of an argument with the specified mode and type. If it is
870 not defined, `PARM_BOUNDARY' is used for all arguments. */
871
872 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
873 ix86_function_arg_boundary ((MODE), (TYPE))
874
875 /* Set this nonzero if move instructions will actually fail to work
876 when given unaligned data. */
877 #define STRICT_ALIGNMENT 0
878
879 /* If bit field type is int, don't let it cross an int,
880 and give entire struct the alignment of an int. */
881 /* Required on the 386 since it doesn't have bit-field insns. */
882 #define PCC_BITFIELD_TYPE_MATTERS 1
883 \f
884 /* Standard register usage. */
885
886 /* This processor has special stack-like registers. See reg-stack.c
887 for details. */
888
889 #define STACK_REGS
890 #define IS_STACK_MODE(MODE) \
891 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
892 || (MODE) == TFmode)
893
894 /* Number of actual hardware registers.
895 The hardware registers are assigned numbers for the compiler
896 from 0 to just below FIRST_PSEUDO_REGISTER.
897 All registers that the compiler knows about must be given numbers,
898 even those that are not normally considered general registers.
899
900 In the 80386 we give the 8 general purpose registers the numbers 0-7.
901 We number the floating point registers 8-15.
902 Note that registers 0-7 can be accessed as a short or int,
903 while only 0-3 may be used with byte `mov' instructions.
904
905 Reg 16 does not correspond to any hardware register, but instead
906 appears in the RTL as an argument pointer prior to reload, and is
907 eliminated during reloading in favor of either the stack or frame
908 pointer. */
909
910 #define FIRST_PSEUDO_REGISTER 53
911
912 /* Number of hardware registers that go into the DWARF-2 unwind info.
913 If not defined, equals FIRST_PSEUDO_REGISTER. */
914
915 #define DWARF_FRAME_REGISTERS 17
916
917 /* 1 for registers that have pervasive standard uses
918 and are not available for the register allocator.
919 On the 80386, the stack pointer is such, as is the arg pointer.
920
921 The value is a mask - bit 1 is set for fixed registers
922 for 32bit target, while 2 is set for fixed registers for 64bit.
923 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
924 */
925 #define FIXED_REGISTERS \
926 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
927 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
928 /*arg,flags,fpsr,dir,frame*/ \
929 3, 3, 3, 3, 3, \
930 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
931 0, 0, 0, 0, 0, 0, 0, 0, \
932 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
933 0, 0, 0, 0, 0, 0, 0, 0, \
934 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
935 1, 1, 1, 1, 1, 1, 1, 1, \
936 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
937 1, 1, 1, 1, 1, 1, 1, 1}
938
939
940 /* 1 for registers not available across function calls.
941 These must include the FIXED_REGISTERS and also any
942 registers that can be used without being saved.
943 The latter must include the registers where values are returned
944 and the register where structure-value addresses are passed.
945 Aside from that, you can include as many other registers as you like.
946
947 The value is a mask - bit 1 is set for call used
948 for 32bit target, while 2 is set for call used for 64bit.
949 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
950 */
951 #define CALL_USED_REGISTERS \
952 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
953 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
954 /*arg,flags,fpsr,dir,frame*/ \
955 3, 3, 3, 3, 3, \
956 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
957 3, 3, 3, 3, 3, 3, 3, 3, \
958 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
959 3, 3, 3, 3, 3, 3, 3, 3, \
960 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
961 3, 3, 3, 3, 1, 1, 1, 1, \
962 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
963 3, 3, 3, 3, 3, 3, 3, 3} \
964
965 /* Order in which to allocate registers. Each register must be
966 listed once, even those in FIXED_REGISTERS. List frame pointer
967 late and fixed registers last. Note that, in general, we prefer
968 registers listed in CALL_USED_REGISTERS, keeping the others
969 available for storage of persistent values.
970
971 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
972 so this is just empty initializer for array. */
973
974 #define REG_ALLOC_ORDER \
975 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
976 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
977 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
978 48, 49, 50, 51, 52 }
979
980 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
981 to be rearranged based on a particular function. When using sse math,
982 we want to allocate SSE before x87 registers and vice vera. */
983
984 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
985
986
987 /* Macro to conditionally modify fixed_regs/call_used_regs. */
988 #define CONDITIONAL_REGISTER_USAGE \
989 do { \
990 int i; \
991 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
992 { \
993 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
994 call_used_regs[i] = (call_used_regs[i] \
995 & (TARGET_64BIT ? 2 : 1)) != 0; \
996 } \
997 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
998 { \
999 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1000 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1001 } \
1002 if (! TARGET_MMX) \
1003 { \
1004 int i; \
1005 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1006 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1007 fixed_regs[i] = call_used_regs[i] = 1; \
1008 } \
1009 if (! TARGET_SSE) \
1010 { \
1011 int i; \
1012 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1013 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1014 fixed_regs[i] = call_used_regs[i] = 1; \
1015 } \
1016 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1017 { \
1018 int i; \
1019 HARD_REG_SET x; \
1020 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1021 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1022 if (TEST_HARD_REG_BIT (x, i)) \
1023 fixed_regs[i] = call_used_regs[i] = 1; \
1024 } \
1025 } while (0)
1026
1027 /* Return number of consecutive hard regs needed starting at reg REGNO
1028 to hold something of mode MODE.
1029 This is ordinarily the length in words of a value of mode MODE
1030 but can be less for certain modes in special long registers.
1031
1032 Actually there are no two word move instructions for consecutive
1033 registers. And only registers 0-3 may have mov byte instructions
1034 applied to them.
1035 */
1036
1037 #define HARD_REGNO_NREGS(REGNO, MODE) \
1038 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1039 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1040 : ((MODE) == TFmode \
1041 ? (TARGET_64BIT ? 2 : 3) \
1042 : (MODE) == TCmode \
1043 ? (TARGET_64BIT ? 4 : 6) \
1044 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1045
1046 #define VALID_SSE2_REG_MODE(MODE) \
1047 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1048 || (MODE) == V2DImode)
1049
1050 #define VALID_SSE_REG_MODE(MODE) \
1051 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1052 || (MODE) == SFmode \
1053 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1054 || VALID_SSE2_REG_MODE (MODE) \
1055 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1056
1057 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1058 ((MODE) == V2SFmode || (MODE) == SFmode)
1059
1060 #define VALID_MMX_REG_MODE(MODE) \
1061 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1062 || (MODE) == V2SImode || (MODE) == SImode)
1063
1064 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1065 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1066 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1067 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1068
1069 #define VALID_FP_MODE_P(MODE) \
1070 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
1071 || (!TARGET_64BIT && (MODE) == XFmode) \
1072 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
1073 || (!TARGET_64BIT && (MODE) == XCmode))
1074
1075 #define VALID_INT_MODE_P(MODE) \
1076 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1077 || (MODE) == DImode \
1078 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1079 || (MODE) == CDImode \
1080 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1081
1082 /* Return true for modes passed in SSE registers. */
1083 #define SSE_REG_MODE_P(MODE) \
1084 ((MODE) == TImode || (MODE) == V16QImode \
1085 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1086 || (MODE) == V4SFmode || (MODE) == V4SImode)
1087
1088 /* Return true for modes passed in MMX registers. */
1089 #define MMX_REG_MODE_P(MODE) \
1090 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1091 || (MODE) == V2SFmode)
1092
1093 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1094
1095 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1096 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1097
1098 /* Value is 1 if it is a good idea to tie two pseudo registers
1099 when one has mode MODE1 and one has mode MODE2.
1100 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1101 for any hard reg, then this must be 0 for correct output. */
1102
1103 #define MODES_TIEABLE_P(MODE1, MODE2) \
1104 ((MODE1) == (MODE2) \
1105 || (((MODE1) == HImode || (MODE1) == SImode \
1106 || ((MODE1) == QImode \
1107 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1108 || ((MODE1) == DImode && TARGET_64BIT)) \
1109 && ((MODE2) == HImode || (MODE2) == SImode \
1110 || ((MODE2) == QImode \
1111 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1112 || ((MODE2) == DImode && TARGET_64BIT))))
1113
1114
1115 /* Specify the modes required to caller save a given hard regno.
1116 We do this on i386 to prevent flags from being saved at all.
1117
1118 Kill any attempts to combine saving of modes. */
1119
1120 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1121 (CC_REGNO_P (REGNO) ? VOIDmode \
1122 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1123 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1124 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1125 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1126 : (MODE))
1127 /* Specify the registers used for certain standard purposes.
1128 The values of these macros are register numbers. */
1129
1130 /* on the 386 the pc register is %eip, and is not usable as a general
1131 register. The ordinary mov instructions won't work */
1132 /* #define PC_REGNUM */
1133
1134 /* Register to use for pushing function arguments. */
1135 #define STACK_POINTER_REGNUM 7
1136
1137 /* Base register for access to local variables of the function. */
1138 #define HARD_FRAME_POINTER_REGNUM 6
1139
1140 /* Base register for access to local variables of the function. */
1141 #define FRAME_POINTER_REGNUM 20
1142
1143 /* First floating point reg */
1144 #define FIRST_FLOAT_REG 8
1145
1146 /* First & last stack-like regs */
1147 #define FIRST_STACK_REG FIRST_FLOAT_REG
1148 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1149
1150 #define FLAGS_REG 17
1151 #define FPSR_REG 18
1152 #define DIRFLAG_REG 19
1153
1154 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1155 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1156
1157 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1158 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1159
1160 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1161 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1162
1163 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1164 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1165
1166 /* Value should be nonzero if functions must have frame pointers.
1167 Zero means the frame pointer need not be set up (and parms
1168 may be accessed via the stack pointer) in functions that seem suitable.
1169 This is computed in `reload', in reload1.c. */
1170 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1171
1172 /* Override this in other tm.h files to cope with various OS losage
1173 requiring a frame pointer. */
1174 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1175 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1176 #endif
1177
1178 /* Make sure we can access arbitrary call frames. */
1179 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1180
1181 /* Base register for access to arguments of the function. */
1182 #define ARG_POINTER_REGNUM 16
1183
1184 /* Register in which static-chain is passed to a function.
1185 We do use ECX as static chain register for 32 bit ABI. On the
1186 64bit ABI, ECX is an argument register, so we use R10 instead. */
1187 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1188
1189 /* Register to hold the addressing base for position independent
1190 code access to data items. We don't use PIC pointer for 64bit
1191 mode. Define the regnum to dummy value to prevent gcc from
1192 pessimizing code dealing with EBX.
1193
1194 To avoid clobbering a call-saved register unnecessarily, we renumber
1195 the pic register when possible. The change is visible after the
1196 prologue has been emitted. */
1197
1198 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1199
1200 #define PIC_OFFSET_TABLE_REGNUM \
1201 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1202 : reload_completed ? REGNO (pic_offset_table_rtx) \
1203 : REAL_PIC_OFFSET_TABLE_REGNUM)
1204
1205 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1206
1207 /* Register in which address to store a structure value
1208 arrives in the function. On the 386, the prologue
1209 copies this from the stack to register %eax. */
1210 #define STRUCT_VALUE_INCOMING 0
1211
1212 /* Place in which caller passes the structure value address.
1213 0 means push the value on the stack like an argument. */
1214 #define STRUCT_VALUE 0
1215
1216 /* A C expression which can inhibit the returning of certain function
1217 values in registers, based on the type of value. A nonzero value
1218 says to return the function value in memory, just as large
1219 structures are always returned. Here TYPE will be a C expression
1220 of type `tree', representing the data type of the value.
1221
1222 Note that values of mode `BLKmode' must be explicitly handled by
1223 this macro. Also, the option `-fpcc-struct-return' takes effect
1224 regardless of this macro. On most systems, it is possible to
1225 leave the macro undefined; this causes a default definition to be
1226 used, whose value is the constant 1 for `BLKmode' values, and 0
1227 otherwise.
1228
1229 Do not use this macro to indicate that structures and unions
1230 should always be returned in memory. You should instead use
1231 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1232
1233 #define RETURN_IN_MEMORY(TYPE) \
1234 ix86_return_in_memory (TYPE)
1235
1236 /* This is overriden by <cygwin.h>. */
1237 #define MS_AGGREGATE_RETURN 0
1238
1239 \f
1240 /* Define the classes of registers for register constraints in the
1241 machine description. Also define ranges of constants.
1242
1243 One of the classes must always be named ALL_REGS and include all hard regs.
1244 If there is more than one class, another class must be named NO_REGS
1245 and contain no registers.
1246
1247 The name GENERAL_REGS must be the name of a class (or an alias for
1248 another name such as ALL_REGS). This is the class of registers
1249 that is allowed by "g" or "r" in a register constraint.
1250 Also, registers outside this class are allocated only when
1251 instructions express preferences for them.
1252
1253 The classes must be numbered in nondecreasing order; that is,
1254 a larger-numbered class must never be contained completely
1255 in a smaller-numbered class.
1256
1257 For any two classes, it is very desirable that there be another
1258 class that represents their union.
1259
1260 It might seem that class BREG is unnecessary, since no useful 386
1261 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1262 and the "b" register constraint is useful in asms for syscalls.
1263
1264 The flags and fpsr registers are in no class. */
1265
1266 enum reg_class
1267 {
1268 NO_REGS,
1269 AREG, DREG, CREG, BREG, SIREG, DIREG,
1270 AD_REGS, /* %eax/%edx for DImode */
1271 Q_REGS, /* %eax %ebx %ecx %edx */
1272 NON_Q_REGS, /* %esi %edi %ebp %esp */
1273 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1274 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1275 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1276 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1277 FLOAT_REGS,
1278 SSE_REGS,
1279 MMX_REGS,
1280 FP_TOP_SSE_REGS,
1281 FP_SECOND_SSE_REGS,
1282 FLOAT_SSE_REGS,
1283 FLOAT_INT_REGS,
1284 INT_SSE_REGS,
1285 FLOAT_INT_SSE_REGS,
1286 ALL_REGS, LIM_REG_CLASSES
1287 };
1288
1289 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1290
1291 #define INTEGER_CLASS_P(CLASS) \
1292 reg_class_subset_p ((CLASS), GENERAL_REGS)
1293 #define FLOAT_CLASS_P(CLASS) \
1294 reg_class_subset_p ((CLASS), FLOAT_REGS)
1295 #define SSE_CLASS_P(CLASS) \
1296 reg_class_subset_p ((CLASS), SSE_REGS)
1297 #define MMX_CLASS_P(CLASS) \
1298 reg_class_subset_p ((CLASS), MMX_REGS)
1299 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1300 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1301 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1302 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1303 #define MAYBE_SSE_CLASS_P(CLASS) \
1304 reg_classes_intersect_p (SSE_REGS, (CLASS))
1305 #define MAYBE_MMX_CLASS_P(CLASS) \
1306 reg_classes_intersect_p (MMX_REGS, (CLASS))
1307
1308 #define Q_CLASS_P(CLASS) \
1309 reg_class_subset_p ((CLASS), Q_REGS)
1310
1311 /* Give names of register classes as strings for dump file. */
1312
1313 #define REG_CLASS_NAMES \
1314 { "NO_REGS", \
1315 "AREG", "DREG", "CREG", "BREG", \
1316 "SIREG", "DIREG", \
1317 "AD_REGS", \
1318 "Q_REGS", "NON_Q_REGS", \
1319 "INDEX_REGS", \
1320 "LEGACY_REGS", \
1321 "GENERAL_REGS", \
1322 "FP_TOP_REG", "FP_SECOND_REG", \
1323 "FLOAT_REGS", \
1324 "SSE_REGS", \
1325 "MMX_REGS", \
1326 "FP_TOP_SSE_REGS", \
1327 "FP_SECOND_SSE_REGS", \
1328 "FLOAT_SSE_REGS", \
1329 "FLOAT_INT_REGS", \
1330 "INT_SSE_REGS", \
1331 "FLOAT_INT_SSE_REGS", \
1332 "ALL_REGS" }
1333
1334 /* Define which registers fit in which classes.
1335 This is an initializer for a vector of HARD_REG_SET
1336 of length N_REG_CLASSES. */
1337
1338 #define REG_CLASS_CONTENTS \
1339 { { 0x00, 0x0 }, \
1340 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1341 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1342 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1343 { 0x03, 0x0 }, /* AD_REGS */ \
1344 { 0x0f, 0x0 }, /* Q_REGS */ \
1345 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1346 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1347 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1348 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1349 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1350 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1351 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1352 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1353 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1354 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1355 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1356 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1357 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1358 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1359 { 0xffffffff,0x1fffff } \
1360 }
1361
1362 /* The same information, inverted:
1363 Return the class number of the smallest class containing
1364 reg number REGNO. This could be a conditional expression
1365 or could index an array. */
1366
1367 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1368
1369 /* When defined, the compiler allows registers explicitly used in the
1370 rtl to be used as spill registers but prevents the compiler from
1371 extending the lifetime of these registers. */
1372
1373 #define SMALL_REGISTER_CLASSES 1
1374
1375 #define QI_REG_P(X) \
1376 (REG_P (X) && REGNO (X) < 4)
1377
1378 #define GENERAL_REGNO_P(N) \
1379 ((N) < 8 || REX_INT_REGNO_P (N))
1380
1381 #define GENERAL_REG_P(X) \
1382 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1383
1384 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1385
1386 #define NON_QI_REG_P(X) \
1387 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1388
1389 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1390 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1391
1392 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1393 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1394 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1395 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1396
1397 #define SSE_REGNO_P(N) \
1398 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1399 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1400
1401 #define REX_SSE_REGNO_P(N) \
1402 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1403
1404 #define SSE_REGNO(N) \
1405 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1406 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1407
1408 #define SSE_FLOAT_MODE_P(MODE) \
1409 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1410
1411 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1412 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1413
1414 #define STACK_REG_P(XOP) \
1415 (REG_P (XOP) && \
1416 REGNO (XOP) >= FIRST_STACK_REG && \
1417 REGNO (XOP) <= LAST_STACK_REG)
1418
1419 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1420
1421 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1422
1423 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1424 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1425
1426 /* Indicate whether hard register numbered REG_NO should be converted
1427 to SSA form. */
1428 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1429 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1430
1431 /* The class value for index registers, and the one for base regs. */
1432
1433 #define INDEX_REG_CLASS INDEX_REGS
1434 #define BASE_REG_CLASS GENERAL_REGS
1435
1436 /* Get reg_class from a letter such as appears in the machine description. */
1437
1438 #define REG_CLASS_FROM_LETTER(C) \
1439 ((C) == 'r' ? GENERAL_REGS : \
1440 (C) == 'R' ? LEGACY_REGS : \
1441 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1442 (C) == 'Q' ? Q_REGS : \
1443 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1444 ? FLOAT_REGS \
1445 : NO_REGS) : \
1446 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1447 ? FP_TOP_REG \
1448 : NO_REGS) : \
1449 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1450 ? FP_SECOND_REG \
1451 : NO_REGS) : \
1452 (C) == 'a' ? AREG : \
1453 (C) == 'b' ? BREG : \
1454 (C) == 'c' ? CREG : \
1455 (C) == 'd' ? DREG : \
1456 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1457 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1458 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1459 (C) == 'A' ? AD_REGS : \
1460 (C) == 'D' ? DIREG : \
1461 (C) == 'S' ? SIREG : NO_REGS)
1462
1463 /* The letters I, J, K, L and M in a register constraint string
1464 can be used to stand for particular ranges of immediate operands.
1465 This macro defines what the ranges are.
1466 C is the letter, and VALUE is a constant value.
1467 Return 1 if VALUE is in the range specified by C.
1468
1469 I is for non-DImode shifts.
1470 J is for DImode shifts.
1471 K is for signed imm8 operands.
1472 L is for andsi as zero-extending move.
1473 M is for shifts that can be executed by the "lea" opcode.
1474 N is for immediate operands for out/in instructions (0-255)
1475 */
1476
1477 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1478 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1479 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1480 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1481 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1482 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1483 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1484 : 0)
1485
1486 /* Similar, but for floating constants, and defining letters G and H.
1487 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1488 TARGET_387 isn't set, because the stack register converter may need to
1489 load 0.0 into the function value register. */
1490
1491 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1492 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1493 : 0)
1494
1495 /* A C expression that defines the optional machine-dependent
1496 constraint letters that can be used to segregate specific types of
1497 operands, usually memory references, for the target machine. Any
1498 letter that is not elsewhere defined and not matched by
1499 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1500 be defined.
1501
1502 If it is required for a particular target machine, it should
1503 return 1 if VALUE corresponds to the operand type represented by
1504 the constraint letter C. If C is not defined as an extra
1505 constraint, the value returned should be 0 regardless of VALUE. */
1506
1507 #define EXTRA_CONSTRAINT(VALUE, D) \
1508 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1509 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1510 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1511 : 0)
1512
1513 /* Place additional restrictions on the register class to use when it
1514 is necessary to be able to hold a value of mode MODE in a reload
1515 register for which class CLASS would ordinarily be used. */
1516
1517 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1518 ((MODE) == QImode && !TARGET_64BIT \
1519 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1520 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1521 ? Q_REGS : (CLASS))
1522
1523 /* Given an rtx X being reloaded into a reg required to be
1524 in class CLASS, return the class of reg to actually use.
1525 In general this is just CLASS; but on some machines
1526 in some cases it is preferable to use a more restrictive class.
1527 On the 80386 series, we prevent floating constants from being
1528 reloaded into floating registers (since no move-insn can do that)
1529 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1530
1531 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1532 QImode must go into class Q_REGS.
1533 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1534 movdf to do mem-to-mem moves through integer regs. */
1535
1536 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1537 ix86_preferred_reload_class ((X), (CLASS))
1538
1539 /* If we are copying between general and FP registers, we need a memory
1540 location. The same is true for SSE and MMX registers. */
1541 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1542 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1543
1544 /* QImode spills from non-QI registers need a scratch. This does not
1545 happen often -- the only example so far requires an uninitialized
1546 pseudo. */
1547
1548 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1549 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1550 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1551 ? Q_REGS : NO_REGS)
1552
1553 /* Return the maximum number of consecutive registers
1554 needed to represent mode MODE in a register of class CLASS. */
1555 /* On the 80386, this is the size of MODE in words,
1556 except in the FP regs, where a single reg is always enough.
1557 The TFmodes are really just 80bit values, so we use only 3 registers
1558 to hold them, instead of 4, as the size would suggest.
1559 */
1560 #define CLASS_MAX_NREGS(CLASS, MODE) \
1561 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1562 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1563 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1564 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1565
1566 /* A C expression whose value is nonzero if pseudos that have been
1567 assigned to registers of class CLASS would likely be spilled
1568 because registers of CLASS are needed for spill registers.
1569
1570 The default value of this macro returns 1 if CLASS has exactly one
1571 register and zero otherwise. On most machines, this default
1572 should be used. Only define this macro to some other expression
1573 if pseudo allocated by `local-alloc.c' end up in memory because
1574 their hard registers were needed for spill registers. If this
1575 macro returns nonzero for those classes, those pseudos will only
1576 be allocated by `global.c', which knows how to reallocate the
1577 pseudo to another register. If there would not be another
1578 register available for reallocation, you should not change the
1579 definition of this macro since the only effect of such a
1580 definition would be to slow down register allocation. */
1581
1582 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1583 (((CLASS) == AREG) \
1584 || ((CLASS) == DREG) \
1585 || ((CLASS) == CREG) \
1586 || ((CLASS) == BREG) \
1587 || ((CLASS) == AD_REGS) \
1588 || ((CLASS) == SIREG) \
1589 || ((CLASS) == DIREG))
1590
1591 /* Return a class of registers that cannot change FROM mode to TO mode.
1592
1593 x87 registers can't do subreg as all values are reformated to extended
1594 precision. XMM registers does not support with nonzero offsets equal
1595 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1596 determine these, prohibit all nonparadoxical subregs changing size. */
1597
1598 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1599 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1600 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1601 || MAYBE_MMX_CLASS_P (CLASS) \
1602 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1603 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1604
1605 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1606 to automatically clobber for all asms.
1607
1608 We do this in the new i386 backend to maintain source compatibility
1609 with the old cc0-based compiler. */
1610
1611 #define MD_ASM_CLOBBERS(CLOBBERS) \
1612 do { \
1613 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1614 (CLOBBERS)); \
1615 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1616 (CLOBBERS)); \
1617 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1618 (CLOBBERS)); \
1619 } while (0)
1620 \f
1621 /* Stack layout; function entry, exit and calling. */
1622
1623 /* Define this if pushing a word on the stack
1624 makes the stack pointer a smaller address. */
1625 #define STACK_GROWS_DOWNWARD
1626
1627 /* Define this if the nominal address of the stack frame
1628 is at the high-address end of the local variables;
1629 that is, each additional local variable allocated
1630 goes at a more negative offset in the frame. */
1631 #define FRAME_GROWS_DOWNWARD
1632
1633 /* Offset within stack frame to start allocating local variables at.
1634 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1635 first local allocated. Otherwise, it is the offset to the BEGINNING
1636 of the first local allocated. */
1637 #define STARTING_FRAME_OFFSET 0
1638
1639 /* If we generate an insn to push BYTES bytes,
1640 this says how many the stack pointer really advances by.
1641 On 386 pushw decrements by exactly 2 no matter what the position was.
1642 On the 386 there is no pushb; we use pushw instead, and this
1643 has the effect of rounding up to 2.
1644
1645 For 64bit ABI we round up to 8 bytes.
1646 */
1647
1648 #define PUSH_ROUNDING(BYTES) \
1649 (TARGET_64BIT \
1650 ? (((BYTES) + 7) & (-8)) \
1651 : (((BYTES) + 1) & (-2)))
1652
1653 /* If defined, the maximum amount of space required for outgoing arguments will
1654 be computed and placed into the variable
1655 `current_function_outgoing_args_size'. No space will be pushed onto the
1656 stack for each call; instead, the function prologue should increase the stack
1657 frame size by this amount. */
1658
1659 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1660
1661 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1662 instructions to pass outgoing arguments. */
1663
1664 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1665
1666 /* We want the stack and args grow in opposite directions, even if
1667 PUSH_ARGS is 0. */
1668 #define PUSH_ARGS_REVERSED 1
1669
1670 /* Offset of first parameter from the argument pointer register value. */
1671 #define FIRST_PARM_OFFSET(FNDECL) 0
1672
1673 /* Define this macro if functions should assume that stack space has been
1674 allocated for arguments even when their values are passed in registers.
1675
1676 The value of this macro is the size, in bytes, of the area reserved for
1677 arguments passed in registers for the function represented by FNDECL.
1678
1679 This space can be allocated by the caller, or be a part of the
1680 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1681 which. */
1682 #define REG_PARM_STACK_SPACE(FNDECL) 0
1683
1684 /* Define as a C expression that evaluates to nonzero if we do not know how
1685 to pass TYPE solely in registers. The file expr.h defines a
1686 definition that is usually appropriate, refer to expr.h for additional
1687 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1688 computed in the stack and then loaded into a register. */
1689 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1690
1691 /* Value is the number of bytes of arguments automatically
1692 popped when returning from a subroutine call.
1693 FUNDECL is the declaration node of the function (as a tree),
1694 FUNTYPE is the data type of the function (as a tree),
1695 or for a library call it is an identifier node for the subroutine name.
1696 SIZE is the number of bytes of arguments passed on the stack.
1697
1698 On the 80386, the RTD insn may be used to pop them if the number
1699 of args is fixed, but if the number is variable then the caller
1700 must pop them all. RTD can't be used for library calls now
1701 because the library is compiled with the Unix compiler.
1702 Use of RTD is a selectable option, since it is incompatible with
1703 standard Unix calling sequences. If the option is not selected,
1704 the caller must always pop the args.
1705
1706 The attribute stdcall is equivalent to RTD on a per module basis. */
1707
1708 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1709 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1710
1711 /* Define how to find the value returned by a function.
1712 VALTYPE is the data type of the value (as a tree).
1713 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1714 otherwise, FUNC is 0. */
1715 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1716 ix86_function_value (VALTYPE)
1717
1718 #define FUNCTION_VALUE_REGNO_P(N) \
1719 ix86_function_value_regno_p (N)
1720
1721 /* Define how to find the value returned by a library function
1722 assuming the value has mode MODE. */
1723
1724 #define LIBCALL_VALUE(MODE) \
1725 ix86_libcall_value (MODE)
1726
1727 /* Define the size of the result block used for communication between
1728 untyped_call and untyped_return. The block contains a DImode value
1729 followed by the block used by fnsave and frstor. */
1730
1731 #define APPLY_RESULT_SIZE (8+108)
1732
1733 /* 1 if N is a possible register number for function argument passing. */
1734 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1735
1736 /* Define a data type for recording info about an argument list
1737 during the scan of that argument list. This data type should
1738 hold all necessary information about the function itself
1739 and about the args processed so far, enough to enable macros
1740 such as FUNCTION_ARG to determine where the next arg should go. */
1741
1742 typedef struct ix86_args {
1743 int words; /* # words passed so far */
1744 int nregs; /* # registers available for passing */
1745 int regno; /* next available register number */
1746 int fastcall; /* fastcall calling convention is used */
1747 int sse_words; /* # sse words passed so far */
1748 int sse_nregs; /* # sse registers available for passing */
1749 int sse_regno; /* next available sse register number */
1750 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1751 } CUMULATIVE_ARGS;
1752
1753 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1754 for a call to a function whose data type is FNTYPE.
1755 For a library call, FNTYPE is 0. */
1756
1757 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL) \
1758 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1759
1760 /* Update the data in CUM to advance over an argument
1761 of mode MODE and data type TYPE.
1762 (TYPE is null for libcalls where that information may not be available.) */
1763
1764 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1765 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1766
1767 /* Define where to put the arguments to a function.
1768 Value is zero to push the argument on the stack,
1769 or a hard register in which to store the argument.
1770
1771 MODE is the argument's machine mode.
1772 TYPE is the data type of the argument (as a tree).
1773 This is null for libcalls where that information may
1774 not be available.
1775 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1776 the preceding args and about the function being called.
1777 NAMED is nonzero if this argument is a named parameter
1778 (otherwise it is an extra parameter matching an ellipsis). */
1779
1780 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1781 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1782
1783 /* For an arg passed partly in registers and partly in memory,
1784 this is the number of registers used.
1785 For args passed entirely in registers or entirely in memory, zero. */
1786
1787 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1788
1789 /* A C expression that indicates when an argument must be passed by
1790 reference. If nonzero for an argument, a copy of that argument is
1791 made in memory and a pointer to the argument is passed instead of
1792 the argument itself. The pointer is passed in whatever way is
1793 appropriate for passing a pointer to that type. */
1794
1795 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1796 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1797
1798 /* Perform any needed actions needed for a function that is receiving a
1799 variable number of arguments.
1800
1801 CUM is as above.
1802
1803 MODE and TYPE are the mode and type of the current parameter.
1804
1805 PRETEND_SIZE is a variable that should be set to the amount of stack
1806 that must be pushed by the prolog to pretend that our caller pushed
1807 it.
1808
1809 Normally, this macro will push all remaining incoming registers on the
1810 stack and set PRETEND_SIZE to the length of the registers pushed. */
1811
1812 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1813 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1814 (NO_RTL))
1815
1816 /* Define the `__builtin_va_list' type for the ABI. */
1817 #define BUILD_VA_LIST_TYPE(VALIST) \
1818 ((VALIST) = ix86_build_va_list ())
1819
1820 /* Implement `va_start' for varargs and stdarg. */
1821 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1822 ix86_va_start (VALIST, NEXTARG)
1823
1824 /* Implement `va_arg'. */
1825 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1826 ix86_va_arg ((VALIST), (TYPE))
1827
1828 /* This macro is invoked at the end of compilation. It is used here to
1829 output code for -fpic that will load the return address into %ebx. */
1830
1831 #undef ASM_FILE_END
1832 #define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
1833
1834 /* Output assembler code to FILE to increment profiler label # LABELNO
1835 for profiling a function entry. */
1836
1837 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1838
1839 #define MCOUNT_NAME "_mcount"
1840
1841 #define PROFILE_COUNT_REGISTER "edx"
1842
1843 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1844 the stack pointer does not matter. The value is tested only in
1845 functions that have frame pointers.
1846 No definition is equivalent to always zero. */
1847 /* Note on the 386 it might be more efficient not to define this since
1848 we have to restore it ourselves from the frame pointer, in order to
1849 use pop */
1850
1851 #define EXIT_IGNORE_STACK 1
1852
1853 /* Output assembler code for a block containing the constant parts
1854 of a trampoline, leaving space for the variable parts. */
1855
1856 /* On the 386, the trampoline contains two instructions:
1857 mov #STATIC,ecx
1858 jmp FUNCTION
1859 The trampoline is generated entirely at runtime. The operand of JMP
1860 is the address of FUNCTION relative to the instruction following the
1861 JMP (which is 5 bytes long). */
1862
1863 /* Length in units of the trampoline for entering a nested function. */
1864
1865 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1866
1867 /* Emit RTL insns to initialize the variable parts of a trampoline.
1868 FNADDR is an RTX for the address of the function's pure code.
1869 CXT is an RTX for the static chain value for the function. */
1870
1871 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1872 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1873 \f
1874 /* Definitions for register eliminations.
1875
1876 This is an array of structures. Each structure initializes one pair
1877 of eliminable registers. The "from" register number is given first,
1878 followed by "to". Eliminations of the same "from" register are listed
1879 in order of preference.
1880
1881 There are two registers that can always be eliminated on the i386.
1882 The frame pointer and the arg pointer can be replaced by either the
1883 hard frame pointer or to the stack pointer, depending upon the
1884 circumstances. The hard frame pointer is not used before reload and
1885 so it is not eligible for elimination. */
1886
1887 #define ELIMINABLE_REGS \
1888 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1889 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1890 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1891 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1892
1893 /* Given FROM and TO register numbers, say whether this elimination is
1894 allowed. Frame pointer elimination is automatically handled.
1895
1896 All other eliminations are valid. */
1897
1898 #define CAN_ELIMINATE(FROM, TO) \
1899 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1900
1901 /* Define the offset between two registers, one to be eliminated, and the other
1902 its replacement, at the start of a routine. */
1903
1904 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1905 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1906 \f
1907 /* Addressing modes, and classification of registers for them. */
1908
1909 /* Macros to check register numbers against specific register classes. */
1910
1911 /* These assume that REGNO is a hard or pseudo reg number.
1912 They give nonzero only if REGNO is a hard reg of the suitable class
1913 or a pseudo reg currently allocated to a suitable hard reg.
1914 Since they use reg_renumber, they are safe only once reg_renumber
1915 has been allocated, which happens in local-alloc.c. */
1916
1917 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1918 ((REGNO) < STACK_POINTER_REGNUM \
1919 || (REGNO >= FIRST_REX_INT_REG \
1920 && (REGNO) <= LAST_REX_INT_REG) \
1921 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1922 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1923 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1924
1925 #define REGNO_OK_FOR_BASE_P(REGNO) \
1926 ((REGNO) <= STACK_POINTER_REGNUM \
1927 || (REGNO) == ARG_POINTER_REGNUM \
1928 || (REGNO) == FRAME_POINTER_REGNUM \
1929 || (REGNO >= FIRST_REX_INT_REG \
1930 && (REGNO) <= LAST_REX_INT_REG) \
1931 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1932 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1933 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1934
1935 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1936 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1937 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1938 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1939
1940 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1941 and check its validity for a certain class.
1942 We have two alternate definitions for each of them.
1943 The usual definition accepts all pseudo regs; the other rejects
1944 them unless they have been allocated suitable hard regs.
1945 The symbol REG_OK_STRICT causes the latter definition to be used.
1946
1947 Most source files want to accept pseudo regs in the hope that
1948 they will get allocated to the class that the insn wants them to be in.
1949 Source files for reload pass need to be strict.
1950 After reload, it makes no difference, since pseudo regs have
1951 been eliminated by then. */
1952
1953
1954 /* Non strict versions, pseudos are ok */
1955 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1956 (REGNO (X) < STACK_POINTER_REGNUM \
1957 || (REGNO (X) >= FIRST_REX_INT_REG \
1958 && REGNO (X) <= LAST_REX_INT_REG) \
1959 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1960
1961 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1962 (REGNO (X) <= STACK_POINTER_REGNUM \
1963 || REGNO (X) == ARG_POINTER_REGNUM \
1964 || REGNO (X) == FRAME_POINTER_REGNUM \
1965 || (REGNO (X) >= FIRST_REX_INT_REG \
1966 && REGNO (X) <= LAST_REX_INT_REG) \
1967 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1968
1969 /* Strict versions, hard registers only */
1970 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1971 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1972
1973 #ifndef REG_OK_STRICT
1974 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1975 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1976
1977 #else
1978 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1979 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1980 #endif
1981
1982 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1983 that is a valid memory address for an instruction.
1984 The MODE argument is the machine mode for the MEM expression
1985 that wants to use this address.
1986
1987 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1988 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1989
1990 See legitimize_pic_address in i386.c for details as to what
1991 constitutes a legitimate address when -fpic is used. */
1992
1993 #define MAX_REGS_PER_ADDRESS 2
1994
1995 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1996
1997 /* Nonzero if the constant value X is a legitimate general operand.
1998 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1999
2000 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
2001
2002 #ifdef REG_OK_STRICT
2003 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2004 do { \
2005 if (legitimate_address_p ((MODE), (X), 1)) \
2006 goto ADDR; \
2007 } while (0)
2008
2009 #else
2010 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2011 do { \
2012 if (legitimate_address_p ((MODE), (X), 0)) \
2013 goto ADDR; \
2014 } while (0)
2015
2016 #endif
2017
2018 /* If defined, a C expression to determine the base term of address X.
2019 This macro is used in only one place: `find_base_term' in alias.c.
2020
2021 It is always safe for this macro to not be defined. It exists so
2022 that alias analysis can understand machine-dependent addresses.
2023
2024 The typical use of this macro is to handle addresses containing
2025 a label_ref or symbol_ref within an UNSPEC. */
2026
2027 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
2028
2029 /* Try machine-dependent ways of modifying an illegitimate address
2030 to be legitimate. If we find one, return the new, valid address.
2031 This macro is used in only one place: `memory_address' in explow.c.
2032
2033 OLDX is the address as it was before break_out_memory_refs was called.
2034 In some cases it is useful to look at this to decide what needs to be done.
2035
2036 MODE and WIN are passed so that this macro can use
2037 GO_IF_LEGITIMATE_ADDRESS.
2038
2039 It is always safe for this macro to do nothing. It exists to recognize
2040 opportunities to optimize the output.
2041
2042 For the 80386, we handle X+REG by loading X into a register R and
2043 using R+REG. R will go in a general reg and indexing will be used.
2044 However, if REG is a broken-out memory address or multiplication,
2045 nothing needs to be done because REG can certainly go in a general reg.
2046
2047 When -fpic is used, special handling is needed for symbolic references.
2048 See comments by legitimize_pic_address in i386.c for details. */
2049
2050 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2051 do { \
2052 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2053 if (memory_address_p ((MODE), (X))) \
2054 goto WIN; \
2055 } while (0)
2056
2057 #define REWRITE_ADDRESS(X) rewrite_address (X)
2058
2059 /* Nonzero if the constant value X is a legitimate general operand
2060 when generating PIC code. It is given that flag_pic is on and
2061 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2062
2063 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2064
2065 #define SYMBOLIC_CONST(X) \
2066 (GET_CODE (X) == SYMBOL_REF \
2067 || GET_CODE (X) == LABEL_REF \
2068 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2069
2070 /* Go to LABEL if ADDR (a legitimate address expression)
2071 has an effect that depends on the machine mode it is used for.
2072 On the 80386, only postdecrement and postincrement address depend thus
2073 (the amount of decrement or increment being the length of the operand). */
2074 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2075 do { \
2076 if (GET_CODE (ADDR) == POST_INC \
2077 || GET_CODE (ADDR) == POST_DEC) \
2078 goto LABEL; \
2079 } while (0)
2080 \f
2081 /* Codes for all the SSE/MMX builtins. */
2082 enum ix86_builtins
2083 {
2084 IX86_BUILTIN_ADDPS,
2085 IX86_BUILTIN_ADDSS,
2086 IX86_BUILTIN_DIVPS,
2087 IX86_BUILTIN_DIVSS,
2088 IX86_BUILTIN_MULPS,
2089 IX86_BUILTIN_MULSS,
2090 IX86_BUILTIN_SUBPS,
2091 IX86_BUILTIN_SUBSS,
2092
2093 IX86_BUILTIN_CMPEQPS,
2094 IX86_BUILTIN_CMPLTPS,
2095 IX86_BUILTIN_CMPLEPS,
2096 IX86_BUILTIN_CMPGTPS,
2097 IX86_BUILTIN_CMPGEPS,
2098 IX86_BUILTIN_CMPNEQPS,
2099 IX86_BUILTIN_CMPNLTPS,
2100 IX86_BUILTIN_CMPNLEPS,
2101 IX86_BUILTIN_CMPNGTPS,
2102 IX86_BUILTIN_CMPNGEPS,
2103 IX86_BUILTIN_CMPORDPS,
2104 IX86_BUILTIN_CMPUNORDPS,
2105 IX86_BUILTIN_CMPNEPS,
2106 IX86_BUILTIN_CMPEQSS,
2107 IX86_BUILTIN_CMPLTSS,
2108 IX86_BUILTIN_CMPLESS,
2109 IX86_BUILTIN_CMPNEQSS,
2110 IX86_BUILTIN_CMPNLTSS,
2111 IX86_BUILTIN_CMPNLESS,
2112 IX86_BUILTIN_CMPORDSS,
2113 IX86_BUILTIN_CMPUNORDSS,
2114 IX86_BUILTIN_CMPNESS,
2115
2116 IX86_BUILTIN_COMIEQSS,
2117 IX86_BUILTIN_COMILTSS,
2118 IX86_BUILTIN_COMILESS,
2119 IX86_BUILTIN_COMIGTSS,
2120 IX86_BUILTIN_COMIGESS,
2121 IX86_BUILTIN_COMINEQSS,
2122 IX86_BUILTIN_UCOMIEQSS,
2123 IX86_BUILTIN_UCOMILTSS,
2124 IX86_BUILTIN_UCOMILESS,
2125 IX86_BUILTIN_UCOMIGTSS,
2126 IX86_BUILTIN_UCOMIGESS,
2127 IX86_BUILTIN_UCOMINEQSS,
2128
2129 IX86_BUILTIN_CVTPI2PS,
2130 IX86_BUILTIN_CVTPS2PI,
2131 IX86_BUILTIN_CVTSI2SS,
2132 IX86_BUILTIN_CVTSI642SS,
2133 IX86_BUILTIN_CVTSS2SI,
2134 IX86_BUILTIN_CVTSS2SI64,
2135 IX86_BUILTIN_CVTTPS2PI,
2136 IX86_BUILTIN_CVTTSS2SI,
2137 IX86_BUILTIN_CVTTSS2SI64,
2138
2139 IX86_BUILTIN_MAXPS,
2140 IX86_BUILTIN_MAXSS,
2141 IX86_BUILTIN_MINPS,
2142 IX86_BUILTIN_MINSS,
2143
2144 IX86_BUILTIN_LOADAPS,
2145 IX86_BUILTIN_LOADUPS,
2146 IX86_BUILTIN_STOREAPS,
2147 IX86_BUILTIN_STOREUPS,
2148 IX86_BUILTIN_LOADSS,
2149 IX86_BUILTIN_STORESS,
2150 IX86_BUILTIN_MOVSS,
2151
2152 IX86_BUILTIN_MOVHLPS,
2153 IX86_BUILTIN_MOVLHPS,
2154 IX86_BUILTIN_LOADHPS,
2155 IX86_BUILTIN_LOADLPS,
2156 IX86_BUILTIN_STOREHPS,
2157 IX86_BUILTIN_STORELPS,
2158
2159 IX86_BUILTIN_MASKMOVQ,
2160 IX86_BUILTIN_MOVMSKPS,
2161 IX86_BUILTIN_PMOVMSKB,
2162
2163 IX86_BUILTIN_MOVNTPS,
2164 IX86_BUILTIN_MOVNTQ,
2165
2166 IX86_BUILTIN_LOADDQA,
2167 IX86_BUILTIN_LOADDQU,
2168 IX86_BUILTIN_STOREDQA,
2169 IX86_BUILTIN_STOREDQU,
2170 IX86_BUILTIN_MOVQ,
2171 IX86_BUILTIN_LOADD,
2172 IX86_BUILTIN_STORED,
2173
2174 IX86_BUILTIN_CLRTI,
2175
2176 IX86_BUILTIN_PACKSSWB,
2177 IX86_BUILTIN_PACKSSDW,
2178 IX86_BUILTIN_PACKUSWB,
2179
2180 IX86_BUILTIN_PADDB,
2181 IX86_BUILTIN_PADDW,
2182 IX86_BUILTIN_PADDD,
2183 IX86_BUILTIN_PADDQ,
2184 IX86_BUILTIN_PADDSB,
2185 IX86_BUILTIN_PADDSW,
2186 IX86_BUILTIN_PADDUSB,
2187 IX86_BUILTIN_PADDUSW,
2188 IX86_BUILTIN_PSUBB,
2189 IX86_BUILTIN_PSUBW,
2190 IX86_BUILTIN_PSUBD,
2191 IX86_BUILTIN_PSUBQ,
2192 IX86_BUILTIN_PSUBSB,
2193 IX86_BUILTIN_PSUBSW,
2194 IX86_BUILTIN_PSUBUSB,
2195 IX86_BUILTIN_PSUBUSW,
2196
2197 IX86_BUILTIN_PAND,
2198 IX86_BUILTIN_PANDN,
2199 IX86_BUILTIN_POR,
2200 IX86_BUILTIN_PXOR,
2201
2202 IX86_BUILTIN_PAVGB,
2203 IX86_BUILTIN_PAVGW,
2204
2205 IX86_BUILTIN_PCMPEQB,
2206 IX86_BUILTIN_PCMPEQW,
2207 IX86_BUILTIN_PCMPEQD,
2208 IX86_BUILTIN_PCMPGTB,
2209 IX86_BUILTIN_PCMPGTW,
2210 IX86_BUILTIN_PCMPGTD,
2211
2212 IX86_BUILTIN_PEXTRW,
2213 IX86_BUILTIN_PINSRW,
2214
2215 IX86_BUILTIN_PMADDWD,
2216
2217 IX86_BUILTIN_PMAXSW,
2218 IX86_BUILTIN_PMAXUB,
2219 IX86_BUILTIN_PMINSW,
2220 IX86_BUILTIN_PMINUB,
2221
2222 IX86_BUILTIN_PMULHUW,
2223 IX86_BUILTIN_PMULHW,
2224 IX86_BUILTIN_PMULLW,
2225
2226 IX86_BUILTIN_PSADBW,
2227 IX86_BUILTIN_PSHUFW,
2228
2229 IX86_BUILTIN_PSLLW,
2230 IX86_BUILTIN_PSLLD,
2231 IX86_BUILTIN_PSLLQ,
2232 IX86_BUILTIN_PSRAW,
2233 IX86_BUILTIN_PSRAD,
2234 IX86_BUILTIN_PSRLW,
2235 IX86_BUILTIN_PSRLD,
2236 IX86_BUILTIN_PSRLQ,
2237 IX86_BUILTIN_PSLLWI,
2238 IX86_BUILTIN_PSLLDI,
2239 IX86_BUILTIN_PSLLQI,
2240 IX86_BUILTIN_PSRAWI,
2241 IX86_BUILTIN_PSRADI,
2242 IX86_BUILTIN_PSRLWI,
2243 IX86_BUILTIN_PSRLDI,
2244 IX86_BUILTIN_PSRLQI,
2245
2246 IX86_BUILTIN_PUNPCKHBW,
2247 IX86_BUILTIN_PUNPCKHWD,
2248 IX86_BUILTIN_PUNPCKHDQ,
2249 IX86_BUILTIN_PUNPCKLBW,
2250 IX86_BUILTIN_PUNPCKLWD,
2251 IX86_BUILTIN_PUNPCKLDQ,
2252
2253 IX86_BUILTIN_SHUFPS,
2254
2255 IX86_BUILTIN_RCPPS,
2256 IX86_BUILTIN_RCPSS,
2257 IX86_BUILTIN_RSQRTPS,
2258 IX86_BUILTIN_RSQRTSS,
2259 IX86_BUILTIN_SQRTPS,
2260 IX86_BUILTIN_SQRTSS,
2261
2262 IX86_BUILTIN_UNPCKHPS,
2263 IX86_BUILTIN_UNPCKLPS,
2264
2265 IX86_BUILTIN_ANDPS,
2266 IX86_BUILTIN_ANDNPS,
2267 IX86_BUILTIN_ORPS,
2268 IX86_BUILTIN_XORPS,
2269
2270 IX86_BUILTIN_EMMS,
2271 IX86_BUILTIN_LDMXCSR,
2272 IX86_BUILTIN_STMXCSR,
2273 IX86_BUILTIN_SFENCE,
2274
2275 /* 3DNow! Original */
2276 IX86_BUILTIN_FEMMS,
2277 IX86_BUILTIN_PAVGUSB,
2278 IX86_BUILTIN_PF2ID,
2279 IX86_BUILTIN_PFACC,
2280 IX86_BUILTIN_PFADD,
2281 IX86_BUILTIN_PFCMPEQ,
2282 IX86_BUILTIN_PFCMPGE,
2283 IX86_BUILTIN_PFCMPGT,
2284 IX86_BUILTIN_PFMAX,
2285 IX86_BUILTIN_PFMIN,
2286 IX86_BUILTIN_PFMUL,
2287 IX86_BUILTIN_PFRCP,
2288 IX86_BUILTIN_PFRCPIT1,
2289 IX86_BUILTIN_PFRCPIT2,
2290 IX86_BUILTIN_PFRSQIT1,
2291 IX86_BUILTIN_PFRSQRT,
2292 IX86_BUILTIN_PFSUB,
2293 IX86_BUILTIN_PFSUBR,
2294 IX86_BUILTIN_PI2FD,
2295 IX86_BUILTIN_PMULHRW,
2296
2297 /* 3DNow! Athlon Extensions */
2298 IX86_BUILTIN_PF2IW,
2299 IX86_BUILTIN_PFNACC,
2300 IX86_BUILTIN_PFPNACC,
2301 IX86_BUILTIN_PI2FW,
2302 IX86_BUILTIN_PSWAPDSI,
2303 IX86_BUILTIN_PSWAPDSF,
2304
2305 IX86_BUILTIN_SSE_ZERO,
2306 IX86_BUILTIN_MMX_ZERO,
2307
2308 /* SSE2 */
2309 IX86_BUILTIN_ADDPD,
2310 IX86_BUILTIN_ADDSD,
2311 IX86_BUILTIN_DIVPD,
2312 IX86_BUILTIN_DIVSD,
2313 IX86_BUILTIN_MULPD,
2314 IX86_BUILTIN_MULSD,
2315 IX86_BUILTIN_SUBPD,
2316 IX86_BUILTIN_SUBSD,
2317
2318 IX86_BUILTIN_CMPEQPD,
2319 IX86_BUILTIN_CMPLTPD,
2320 IX86_BUILTIN_CMPLEPD,
2321 IX86_BUILTIN_CMPGTPD,
2322 IX86_BUILTIN_CMPGEPD,
2323 IX86_BUILTIN_CMPNEQPD,
2324 IX86_BUILTIN_CMPNLTPD,
2325 IX86_BUILTIN_CMPNLEPD,
2326 IX86_BUILTIN_CMPNGTPD,
2327 IX86_BUILTIN_CMPNGEPD,
2328 IX86_BUILTIN_CMPORDPD,
2329 IX86_BUILTIN_CMPUNORDPD,
2330 IX86_BUILTIN_CMPNEPD,
2331 IX86_BUILTIN_CMPEQSD,
2332 IX86_BUILTIN_CMPLTSD,
2333 IX86_BUILTIN_CMPLESD,
2334 IX86_BUILTIN_CMPNEQSD,
2335 IX86_BUILTIN_CMPNLTSD,
2336 IX86_BUILTIN_CMPNLESD,
2337 IX86_BUILTIN_CMPORDSD,
2338 IX86_BUILTIN_CMPUNORDSD,
2339 IX86_BUILTIN_CMPNESD,
2340
2341 IX86_BUILTIN_COMIEQSD,
2342 IX86_BUILTIN_COMILTSD,
2343 IX86_BUILTIN_COMILESD,
2344 IX86_BUILTIN_COMIGTSD,
2345 IX86_BUILTIN_COMIGESD,
2346 IX86_BUILTIN_COMINEQSD,
2347 IX86_BUILTIN_UCOMIEQSD,
2348 IX86_BUILTIN_UCOMILTSD,
2349 IX86_BUILTIN_UCOMILESD,
2350 IX86_BUILTIN_UCOMIGTSD,
2351 IX86_BUILTIN_UCOMIGESD,
2352 IX86_BUILTIN_UCOMINEQSD,
2353
2354 IX86_BUILTIN_MAXPD,
2355 IX86_BUILTIN_MAXSD,
2356 IX86_BUILTIN_MINPD,
2357 IX86_BUILTIN_MINSD,
2358
2359 IX86_BUILTIN_ANDPD,
2360 IX86_BUILTIN_ANDNPD,
2361 IX86_BUILTIN_ORPD,
2362 IX86_BUILTIN_XORPD,
2363
2364 IX86_BUILTIN_SQRTPD,
2365 IX86_BUILTIN_SQRTSD,
2366
2367 IX86_BUILTIN_UNPCKHPD,
2368 IX86_BUILTIN_UNPCKLPD,
2369
2370 IX86_BUILTIN_SHUFPD,
2371
2372 IX86_BUILTIN_LOADAPD,
2373 IX86_BUILTIN_LOADUPD,
2374 IX86_BUILTIN_STOREAPD,
2375 IX86_BUILTIN_STOREUPD,
2376 IX86_BUILTIN_LOADSD,
2377 IX86_BUILTIN_STORESD,
2378 IX86_BUILTIN_MOVSD,
2379
2380 IX86_BUILTIN_LOADHPD,
2381 IX86_BUILTIN_LOADLPD,
2382 IX86_BUILTIN_STOREHPD,
2383 IX86_BUILTIN_STORELPD,
2384
2385 IX86_BUILTIN_CVTDQ2PD,
2386 IX86_BUILTIN_CVTDQ2PS,
2387
2388 IX86_BUILTIN_CVTPD2DQ,
2389 IX86_BUILTIN_CVTPD2PI,
2390 IX86_BUILTIN_CVTPD2PS,
2391 IX86_BUILTIN_CVTTPD2DQ,
2392 IX86_BUILTIN_CVTTPD2PI,
2393
2394 IX86_BUILTIN_CVTPI2PD,
2395 IX86_BUILTIN_CVTSI2SD,
2396 IX86_BUILTIN_CVTSI642SD,
2397
2398 IX86_BUILTIN_CVTSD2SI,
2399 IX86_BUILTIN_CVTSD2SI64,
2400 IX86_BUILTIN_CVTSD2SS,
2401 IX86_BUILTIN_CVTSS2SD,
2402 IX86_BUILTIN_CVTTSD2SI,
2403 IX86_BUILTIN_CVTTSD2SI64,
2404
2405 IX86_BUILTIN_CVTPS2DQ,
2406 IX86_BUILTIN_CVTPS2PD,
2407 IX86_BUILTIN_CVTTPS2DQ,
2408
2409 IX86_BUILTIN_MOVNTI,
2410 IX86_BUILTIN_MOVNTPD,
2411 IX86_BUILTIN_MOVNTDQ,
2412
2413 IX86_BUILTIN_SETPD1,
2414 IX86_BUILTIN_SETPD,
2415 IX86_BUILTIN_CLRPD,
2416 IX86_BUILTIN_SETRPD,
2417 IX86_BUILTIN_LOADPD1,
2418 IX86_BUILTIN_LOADRPD,
2419 IX86_BUILTIN_STOREPD1,
2420 IX86_BUILTIN_STORERPD,
2421
2422 /* SSE2 MMX */
2423 IX86_BUILTIN_MASKMOVDQU,
2424 IX86_BUILTIN_MOVMSKPD,
2425 IX86_BUILTIN_PMOVMSKB128,
2426 IX86_BUILTIN_MOVQ2DQ,
2427 IX86_BUILTIN_MOVDQ2Q,
2428
2429 IX86_BUILTIN_PACKSSWB128,
2430 IX86_BUILTIN_PACKSSDW128,
2431 IX86_BUILTIN_PACKUSWB128,
2432
2433 IX86_BUILTIN_PADDB128,
2434 IX86_BUILTIN_PADDW128,
2435 IX86_BUILTIN_PADDD128,
2436 IX86_BUILTIN_PADDQ128,
2437 IX86_BUILTIN_PADDSB128,
2438 IX86_BUILTIN_PADDSW128,
2439 IX86_BUILTIN_PADDUSB128,
2440 IX86_BUILTIN_PADDUSW128,
2441 IX86_BUILTIN_PSUBB128,
2442 IX86_BUILTIN_PSUBW128,
2443 IX86_BUILTIN_PSUBD128,
2444 IX86_BUILTIN_PSUBQ128,
2445 IX86_BUILTIN_PSUBSB128,
2446 IX86_BUILTIN_PSUBSW128,
2447 IX86_BUILTIN_PSUBUSB128,
2448 IX86_BUILTIN_PSUBUSW128,
2449
2450 IX86_BUILTIN_PAND128,
2451 IX86_BUILTIN_PANDN128,
2452 IX86_BUILTIN_POR128,
2453 IX86_BUILTIN_PXOR128,
2454
2455 IX86_BUILTIN_PAVGB128,
2456 IX86_BUILTIN_PAVGW128,
2457
2458 IX86_BUILTIN_PCMPEQB128,
2459 IX86_BUILTIN_PCMPEQW128,
2460 IX86_BUILTIN_PCMPEQD128,
2461 IX86_BUILTIN_PCMPGTB128,
2462 IX86_BUILTIN_PCMPGTW128,
2463 IX86_BUILTIN_PCMPGTD128,
2464
2465 IX86_BUILTIN_PEXTRW128,
2466 IX86_BUILTIN_PINSRW128,
2467
2468 IX86_BUILTIN_PMADDWD128,
2469
2470 IX86_BUILTIN_PMAXSW128,
2471 IX86_BUILTIN_PMAXUB128,
2472 IX86_BUILTIN_PMINSW128,
2473 IX86_BUILTIN_PMINUB128,
2474
2475 IX86_BUILTIN_PMULUDQ,
2476 IX86_BUILTIN_PMULUDQ128,
2477 IX86_BUILTIN_PMULHUW128,
2478 IX86_BUILTIN_PMULHW128,
2479 IX86_BUILTIN_PMULLW128,
2480
2481 IX86_BUILTIN_PSADBW128,
2482 IX86_BUILTIN_PSHUFHW,
2483 IX86_BUILTIN_PSHUFLW,
2484 IX86_BUILTIN_PSHUFD,
2485
2486 IX86_BUILTIN_PSLLW128,
2487 IX86_BUILTIN_PSLLD128,
2488 IX86_BUILTIN_PSLLQ128,
2489 IX86_BUILTIN_PSRAW128,
2490 IX86_BUILTIN_PSRAD128,
2491 IX86_BUILTIN_PSRLW128,
2492 IX86_BUILTIN_PSRLD128,
2493 IX86_BUILTIN_PSRLQ128,
2494 IX86_BUILTIN_PSLLDQI128,
2495 IX86_BUILTIN_PSLLWI128,
2496 IX86_BUILTIN_PSLLDI128,
2497 IX86_BUILTIN_PSLLQI128,
2498 IX86_BUILTIN_PSRAWI128,
2499 IX86_BUILTIN_PSRADI128,
2500 IX86_BUILTIN_PSRLDQI128,
2501 IX86_BUILTIN_PSRLWI128,
2502 IX86_BUILTIN_PSRLDI128,
2503 IX86_BUILTIN_PSRLQI128,
2504
2505 IX86_BUILTIN_PUNPCKHBW128,
2506 IX86_BUILTIN_PUNPCKHWD128,
2507 IX86_BUILTIN_PUNPCKHDQ128,
2508 IX86_BUILTIN_PUNPCKHQDQ128,
2509 IX86_BUILTIN_PUNPCKLBW128,
2510 IX86_BUILTIN_PUNPCKLWD128,
2511 IX86_BUILTIN_PUNPCKLDQ128,
2512 IX86_BUILTIN_PUNPCKLQDQ128,
2513
2514 IX86_BUILTIN_CLFLUSH,
2515 IX86_BUILTIN_MFENCE,
2516 IX86_BUILTIN_LFENCE,
2517
2518 IX86_BUILTIN_MAX
2519 };
2520 \f
2521 /* Max number of args passed in registers. If this is more than 3, we will
2522 have problems with ebx (register #4), since it is a caller save register and
2523 is also used as the pic register in ELF. So for now, don't allow more than
2524 3 registers to be passed in registers. */
2525
2526 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2527
2528 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2529
2530 \f
2531 /* Specify the machine mode that this machine uses
2532 for the index in the tablejump instruction. */
2533 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2534
2535 /* Define as C expression which evaluates to nonzero if the tablejump
2536 instruction expects the table to contain offsets from the address of the
2537 table.
2538 Do not define this if the table should contain absolute addresses. */
2539 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2540
2541 /* Define this as 1 if `char' should by default be signed; else as 0. */
2542 #define DEFAULT_SIGNED_CHAR 1
2543
2544 /* Number of bytes moved into a data cache for a single prefetch operation. */
2545 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2546
2547 /* Number of prefetch operations that can be done in parallel. */
2548 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2549
2550 /* Max number of bytes we can move from memory to memory
2551 in one reasonably fast instruction. */
2552 #define MOVE_MAX 16
2553
2554 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2555 move efficiently, as opposed to MOVE_MAX which is the maximum
2556 number of bytes we can move with a single instruction. */
2557 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2558
2559 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2560 move-instruction pairs, we will do a movstr or libcall instead.
2561 Increasing the value will always make code faster, but eventually
2562 incurs high cost in increased code size.
2563
2564 If you don't define this, a reasonable default is used. */
2565
2566 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2567
2568 /* Define if shifts truncate the shift count
2569 which implies one can omit a sign-extension or zero-extension
2570 of a shift count. */
2571 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2572
2573 /* #define SHIFT_COUNT_TRUNCATED */
2574
2575 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2576 is done just by pretending it is already truncated. */
2577 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2578
2579 /* We assume that the store-condition-codes instructions store 0 for false
2580 and some other value for true. This is the value stored for true. */
2581
2582 #define STORE_FLAG_VALUE 1
2583
2584 /* When a prototype says `char' or `short', really pass an `int'.
2585 (The 386 can't easily push less than an int.) */
2586
2587 #define PROMOTE_PROTOTYPES 1
2588
2589 /* A macro to update M and UNSIGNEDP when an object whose type is
2590 TYPE and which has the specified mode and signedness is to be
2591 stored in a register. This macro is only called when TYPE is a
2592 scalar type.
2593
2594 On i386 it is sometimes useful to promote HImode and QImode
2595 quantities to SImode. The choice depends on target type. */
2596
2597 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2598 do { \
2599 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2600 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2601 (MODE) = SImode; \
2602 } while (0)
2603
2604 /* Specify the machine mode that pointers have.
2605 After generation of rtl, the compiler makes no further distinction
2606 between pointers and any other objects of this machine mode. */
2607 #define Pmode (TARGET_64BIT ? DImode : SImode)
2608
2609 /* A function address in a call instruction
2610 is a byte address (for indexing purposes)
2611 so give the MEM rtx a byte's mode. */
2612 #define FUNCTION_MODE QImode
2613 \f
2614 /* A C expression for the cost of moving data from a register in class FROM to
2615 one in class TO. The classes are expressed using the enumeration values
2616 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2617 interpreted relative to that.
2618
2619 It is not required that the cost always equal 2 when FROM is the same as TO;
2620 on some machines it is expensive to move between registers if they are not
2621 general registers. */
2622
2623 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2624 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2625
2626 /* A C expression for the cost of moving data of mode M between a
2627 register and memory. A value of 2 is the default; this cost is
2628 relative to those in `REGISTER_MOVE_COST'.
2629
2630 If moving between registers and memory is more expensive than
2631 between two registers, you should define this macro to express the
2632 relative cost. */
2633
2634 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2635 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2636
2637 /* A C expression for the cost of a branch instruction. A value of 1
2638 is the default; other values are interpreted relative to that. */
2639
2640 #define BRANCH_COST ix86_branch_cost
2641
2642 /* Define this macro as a C expression which is nonzero if accessing
2643 less than a word of memory (i.e. a `char' or a `short') is no
2644 faster than accessing a word of memory, i.e., if such access
2645 require more than one instruction or if there is no difference in
2646 cost between byte and (aligned) word loads.
2647
2648 When this macro is not defined, the compiler will access a field by
2649 finding the smallest containing object; when it is defined, a
2650 fullword load will be used if alignment permits. Unless bytes
2651 accesses are faster than word accesses, using word accesses is
2652 preferable since it may eliminate subsequent memory access if
2653 subsequent accesses occur to other fields in the same word of the
2654 structure, but to different bytes. */
2655
2656 #define SLOW_BYTE_ACCESS 0
2657
2658 /* Nonzero if access to memory by shorts is slow and undesirable. */
2659 #define SLOW_SHORT_ACCESS 0
2660
2661 /* Define this macro to be the value 1 if unaligned accesses have a
2662 cost many times greater than aligned accesses, for example if they
2663 are emulated in a trap handler.
2664
2665 When this macro is nonzero, the compiler will act as if
2666 `STRICT_ALIGNMENT' were nonzero when generating code for block
2667 moves. This can cause significantly more instructions to be
2668 produced. Therefore, do not set this macro nonzero if unaligned
2669 accesses only add a cycle or two to the time for a memory access.
2670
2671 If the value of this macro is always zero, it need not be defined. */
2672
2673 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2674
2675 /* Define this macro to inhibit strength reduction of memory
2676 addresses. (On some machines, such strength reduction seems to do
2677 harm rather than good.) */
2678
2679 /* #define DONT_REDUCE_ADDR */
2680
2681 /* Define this macro if it is as good or better to call a constant
2682 function address than to call an address kept in a register.
2683
2684 Desirable on the 386 because a CALL with a constant address is
2685 faster than one with a register address. */
2686
2687 #define NO_FUNCTION_CSE
2688
2689 /* Define this macro if it is as good or better for a function to call
2690 itself with an explicit address than to call an address kept in a
2691 register. */
2692
2693 #define NO_RECURSIVE_FUNCTION_CSE
2694 \f
2695 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2696 return the mode to be used for the comparison.
2697
2698 For floating-point equality comparisons, CCFPEQmode should be used.
2699 VOIDmode should be used in all other cases.
2700
2701 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2702 possible, to allow for more combinations. */
2703
2704 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2705
2706 /* Return nonzero if MODE implies a floating point inequality can be
2707 reversed. */
2708
2709 #define REVERSIBLE_CC_MODE(MODE) 1
2710
2711 /* A C expression whose value is reversed condition code of the CODE for
2712 comparison done in CC_MODE mode. */
2713 #define REVERSE_CONDITION(CODE, MODE) \
2714 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2715 : reverse_condition_maybe_unordered (CODE))
2716
2717 \f
2718 /* Control the assembler format that we output, to the extent
2719 this does not vary between assemblers. */
2720
2721 /* How to refer to registers in assembler output.
2722 This sequence is indexed by compiler's hard-register-number (see above). */
2723
2724 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2725 For non floating point regs, the following are the HImode names.
2726
2727 For float regs, the stack top is sometimes referred to as "%st(0)"
2728 instead of just "%st". PRINT_REG handles this with the "y" code. */
2729
2730 #undef HI_REGISTER_NAMES
2731 #define HI_REGISTER_NAMES \
2732 {"ax","dx","cx","bx","si","di","bp","sp", \
2733 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2734 "flags","fpsr", "dirflag", "frame", \
2735 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2736 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2737 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2738 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2739
2740 #define REGISTER_NAMES HI_REGISTER_NAMES
2741
2742 /* Table of additional register names to use in user input. */
2743
2744 #define ADDITIONAL_REGISTER_NAMES \
2745 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2746 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2747 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2748 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2749 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2750 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2751 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2752 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2753
2754 /* Note we are omitting these since currently I don't know how
2755 to get gcc to use these, since they want the same but different
2756 number as al, and ax.
2757 */
2758
2759 #define QI_REGISTER_NAMES \
2760 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2761
2762 /* These parallel the array above, and can be used to access bits 8:15
2763 of regs 0 through 3. */
2764
2765 #define QI_HIGH_REGISTER_NAMES \
2766 {"ah", "dh", "ch", "bh", }
2767
2768 /* How to renumber registers for dbx and gdb. */
2769
2770 #define DBX_REGISTER_NUMBER(N) \
2771 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2772
2773 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2774 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2775 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2776
2777 /* Before the prologue, RA is at 0(%esp). */
2778 #define INCOMING_RETURN_ADDR_RTX \
2779 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2780
2781 /* After the prologue, RA is at -4(AP) in the current frame. */
2782 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2783 ((COUNT) == 0 \
2784 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2785 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2786
2787 /* PC is dbx register 8; let's use that column for RA. */
2788 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2789
2790 /* Before the prologue, the top of the frame is at 4(%esp). */
2791 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2792
2793 /* Describe how we implement __builtin_eh_return. */
2794 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2795 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2796
2797
2798 /* Select a format to encode pointers in exception handling data. CODE
2799 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2800 true if the symbol may be affected by dynamic relocations.
2801
2802 ??? All x86 object file formats are capable of representing this.
2803 After all, the relocation needed is the same as for the call insn.
2804 Whether or not a particular assembler allows us to enter such, I
2805 guess we'll have to see. */
2806 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2807 (flag_pic \
2808 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2809 : DW_EH_PE_absptr)
2810
2811 /* This is how to output an insn to push a register on the stack.
2812 It need not be very fast code. */
2813
2814 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2815 do { \
2816 if (TARGET_64BIT) \
2817 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2818 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2819 else \
2820 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2821 } while (0)
2822
2823 /* This is how to output an insn to pop a register from the stack.
2824 It need not be very fast code. */
2825
2826 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2827 do { \
2828 if (TARGET_64BIT) \
2829 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2830 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2831 else \
2832 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2833 } while (0)
2834
2835 /* This is how to output an element of a case-vector that is absolute. */
2836
2837 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2838 ix86_output_addr_vec_elt ((FILE), (VALUE))
2839
2840 /* This is how to output an element of a case-vector that is relative. */
2841
2842 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2843 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2844
2845 /* Under some conditions we need jump tables in the text section, because
2846 the assembler cannot handle label differences between sections. */
2847
2848 #define JUMP_TABLES_IN_TEXT_SECTION \
2849 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2850
2851 /* A C statement that outputs an address constant appropriate to
2852 for DWARF debugging. */
2853
2854 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2855 i386_dwarf_output_addr_const ((FILE), (X))
2856
2857 /* Emit a dtp-relative reference to a TLS variable. */
2858
2859 #ifdef HAVE_AS_TLS
2860 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2861 i386_output_dwarf_dtprel (FILE, SIZE, X)
2862 #endif
2863
2864 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2865 and switch back. For x86 we do this only to save a few bytes that
2866 would otherwise be unused in the text section. */
2867 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2868 asm (SECTION_OP "\n\t" \
2869 "call " USER_LABEL_PREFIX #FUNC "\n" \
2870 TEXT_SECTION_ASM_OP);
2871 \f
2872 /* Print operand X (an rtx) in assembler syntax to file FILE.
2873 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2874 Effect of various CODE letters is described in i386.c near
2875 print_operand function. */
2876
2877 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2878 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2879
2880 /* Print the name of a register based on its machine mode and number.
2881 If CODE is 'w', pretend the mode is HImode.
2882 If CODE is 'b', pretend the mode is QImode.
2883 If CODE is 'k', pretend the mode is SImode.
2884 If CODE is 'q', pretend the mode is DImode.
2885 If CODE is 'h', pretend the reg is the `high' byte register.
2886 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2887
2888 #define PRINT_REG(X, CODE, FILE) \
2889 print_reg ((X), (CODE), (FILE))
2890
2891 #define PRINT_OPERAND(FILE, X, CODE) \
2892 print_operand ((FILE), (X), (CODE))
2893
2894 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2895 print_operand_address ((FILE), (ADDR))
2896
2897 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2898 do { \
2899 if (! output_addr_const_extra (FILE, (X))) \
2900 goto FAIL; \
2901 } while (0);
2902
2903 /* Print the name of a register for based on its machine mode and number.
2904 This macro is used to print debugging output.
2905 This macro is different from PRINT_REG in that it may be used in
2906 programs that are not linked with aux-output.o. */
2907
2908 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2909 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
2910 static const char * const qi_name[] = QI_REGISTER_NAMES; \
2911 fprintf ((FILE), "%d ", REGNO (X)); \
2912 if (REGNO (X) == FLAGS_REG) \
2913 { fputs ("flags", (FILE)); break; } \
2914 if (REGNO (X) == DIRFLAG_REG) \
2915 { fputs ("dirflag", (FILE)); break; } \
2916 if (REGNO (X) == FPSR_REG) \
2917 { fputs ("fpsr", (FILE)); break; } \
2918 if (REGNO (X) == ARG_POINTER_REGNUM) \
2919 { fputs ("argp", (FILE)); break; } \
2920 if (REGNO (X) == FRAME_POINTER_REGNUM) \
2921 { fputs ("frame", (FILE)); break; } \
2922 if (STACK_TOP_P (X)) \
2923 { fputs ("st(0)", (FILE)); break; } \
2924 if (FP_REG_P (X)) \
2925 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
2926 if (REX_INT_REG_P (X)) \
2927 { \
2928 switch (GET_MODE_SIZE (GET_MODE (X))) \
2929 { \
2930 default: \
2931 case 8: \
2932 fprintf ((FILE), "r%i", REGNO (X) \
2933 - FIRST_REX_INT_REG + 8); \
2934 break; \
2935 case 4: \
2936 fprintf ((FILE), "r%id", REGNO (X) \
2937 - FIRST_REX_INT_REG + 8); \
2938 break; \
2939 case 2: \
2940 fprintf ((FILE), "r%iw", REGNO (X) \
2941 - FIRST_REX_INT_REG + 8); \
2942 break; \
2943 case 1: \
2944 fprintf ((FILE), "r%ib", REGNO (X) \
2945 - FIRST_REX_INT_REG + 8); \
2946 break; \
2947 } \
2948 break; \
2949 } \
2950 switch (GET_MODE_SIZE (GET_MODE (X))) \
2951 { \
2952 case 8: \
2953 fputs ("r", (FILE)); \
2954 fputs (hi_name[REGNO (X)], (FILE)); \
2955 break; \
2956 default: \
2957 fputs ("e", (FILE)); \
2958 case 2: \
2959 fputs (hi_name[REGNO (X)], (FILE)); \
2960 break; \
2961 case 1: \
2962 fputs (qi_name[REGNO (X)], (FILE)); \
2963 break; \
2964 } \
2965 } while (0)
2966
2967 /* a letter which is not needed by the normal asm syntax, which
2968 we can use for operand syntax in the extended asm */
2969
2970 #define ASM_OPERAND_LETTER '#'
2971 #define RET return ""
2972 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2973 \f
2974 /* Define the codes that are matched by predicates in i386.c. */
2975
2976 #define PREDICATE_CODES \
2977 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2978 SYMBOL_REF, LABEL_REF, CONST}}, \
2979 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2980 SYMBOL_REF, LABEL_REF, CONST}}, \
2981 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
2982 SYMBOL_REF, LABEL_REF, CONST}}, \
2983 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2984 SYMBOL_REF, LABEL_REF, CONST}}, \
2985 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2986 SYMBOL_REF, LABEL_REF, CONST}}, \
2987 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2988 SYMBOL_REF, LABEL_REF, CONST}}, \
2989 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2990 SYMBOL_REF, LABEL_REF}}, \
2991 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
2992 {"const_int_1_operand", {CONST_INT}}, \
2993 {"const_int_1_31_operand", {CONST_INT}}, \
2994 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2995 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2996 LABEL_REF, SUBREG, REG, MEM}}, \
2997 {"pic_symbolic_operand", {CONST}}, \
2998 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
2999 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
3000 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
3001 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3002 {"const1_operand", {CONST_INT}}, \
3003 {"const248_operand", {CONST_INT}}, \
3004 {"incdec_operand", {CONST_INT}}, \
3005 {"mmx_reg_operand", {REG}}, \
3006 {"reg_no_sp_operand", {SUBREG, REG}}, \
3007 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3008 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3009 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
3010 {"index_register_operand", {SUBREG, REG}}, \
3011 {"flags_reg_operand", {REG}}, \
3012 {"q_regs_operand", {SUBREG, REG}}, \
3013 {"non_q_regs_operand", {SUBREG, REG}}, \
3014 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3015 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3016 GE, UNGE, LTGT, UNEQ}}, \
3017 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3018 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3019 }}, \
3020 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
3021 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3022 UNGE, UNGT, LTGT, UNEQ }}, \
3023 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
3024 GE, UNGE, LTGT, UNEQ}}, \
3025 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3026 {"ext_register_operand", {SUBREG, REG}}, \
3027 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3028 {"mult_operator", {MULT}}, \
3029 {"div_operator", {DIV}}, \
3030 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3031 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3032 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3033 LSHIFTRT, ROTATERT}}, \
3034 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
3035 {"memory_displacement_operand", {MEM}}, \
3036 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3037 LABEL_REF, SUBREG, REG, MEM, AND}}, \
3038 {"long_memory_operand", {MEM}}, \
3039 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3040 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3041 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3042 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
3043 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
3044 {"any_fp_register_operand", {REG}}, \
3045 {"register_and_not_any_fp_reg_operand", {REG}}, \
3046 {"fp_register_operand", {REG}}, \
3047 {"register_and_not_fp_reg_operand", {REG}}, \
3048 {"zero_extended_scalar_load_operand", {MEM}}, \
3049 {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}}, \
3050 {"no_seg_address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3051 LABEL_REF, SUBREG, REG, MEM, PLUS, MULT}},
3052
3053 /* A list of predicates that do special things with modes, and so
3054 should not elicit warnings for VOIDmode match_operand. */
3055
3056 #define SPECIAL_MODE_PREDICATES \
3057 "ext_register_operand",
3058 \f
3059 /* Which processor to schedule for. The cpu attribute defines a list that
3060 mirrors this list, so changes to i386.md must be made at the same time. */
3061
3062 enum processor_type
3063 {
3064 PROCESSOR_I386, /* 80386 */
3065 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3066 PROCESSOR_PENTIUM,
3067 PROCESSOR_PENTIUMPRO,
3068 PROCESSOR_K6,
3069 PROCESSOR_ATHLON,
3070 PROCESSOR_PENTIUM4,
3071 PROCESSOR_K8,
3072 PROCESSOR_max
3073 };
3074
3075 extern enum processor_type ix86_tune;
3076 extern const char *ix86_tune_string;
3077
3078 extern enum processor_type ix86_arch;
3079 extern const char *ix86_arch_string;
3080
3081 enum fpmath_unit
3082 {
3083 FPMATH_387 = 1,
3084 FPMATH_SSE = 2
3085 };
3086
3087 extern enum fpmath_unit ix86_fpmath;
3088 extern const char *ix86_fpmath_string;
3089
3090 enum tls_dialect
3091 {
3092 TLS_DIALECT_GNU,
3093 TLS_DIALECT_SUN
3094 };
3095
3096 extern enum tls_dialect ix86_tls_dialect;
3097 extern const char *ix86_tls_dialect_string;
3098
3099 enum cmodel {
3100 CM_32, /* The traditional 32-bit ABI. */
3101 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3102 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3103 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3104 CM_LARGE, /* No assumptions. */
3105 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3106 };
3107
3108 extern enum cmodel ix86_cmodel;
3109 extern const char *ix86_cmodel_string;
3110
3111 /* Size of the RED_ZONE area. */
3112 #define RED_ZONE_SIZE 128
3113 /* Reserved area of the red zone for temporaries. */
3114 #define RED_ZONE_RESERVE 8
3115
3116 enum asm_dialect {
3117 ASM_ATT,
3118 ASM_INTEL
3119 };
3120
3121 extern const char *ix86_asm_string;
3122 extern enum asm_dialect ix86_asm_dialect;
3123
3124 extern int ix86_regparm;
3125 extern const char *ix86_regparm_string;
3126
3127 extern int ix86_preferred_stack_boundary;
3128 extern const char *ix86_preferred_stack_boundary_string;
3129
3130 extern int ix86_branch_cost;
3131 extern const char *ix86_branch_cost_string;
3132
3133 extern const char *ix86_debug_arg_string;
3134 extern const char *ix86_debug_addr_string;
3135
3136 /* Obsoleted by -f options. Remove before 3.2 ships. */
3137 extern const char *ix86_align_loops_string;
3138 extern const char *ix86_align_jumps_string;
3139 extern const char *ix86_align_funcs_string;
3140
3141 /* Smallest class containing REGNO. */
3142 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3143
3144 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3145 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3146 \f
3147 /* To properly truncate FP values into integers, we need to set i387 control
3148 word. We can't emit proper mode switching code before reload, as spills
3149 generated by reload may truncate values incorrectly, but we still can avoid
3150 redundant computation of new control word by the mode switching pass.
3151 The fldcw instructions are still emitted redundantly, but this is probably
3152 not going to be noticeable problem, as most CPUs do have fast path for
3153 the sequence.
3154
3155 The machinery is to emit simple truncation instructions and split them
3156 before reload to instructions having USEs of two memory locations that
3157 are filled by this code to old and new control word.
3158
3159 Post-reload pass may be later used to eliminate the redundant fildcw if
3160 needed. */
3161
3162 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3163
3164 /* Define this macro if the port needs extra instructions inserted
3165 for mode switching in an optimizing compilation. */
3166
3167 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3168
3169 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3170 initializer for an array of integers. Each initializer element N
3171 refers to an entity that needs mode switching, and specifies the
3172 number of different modes that might need to be set for this
3173 entity. The position of the initializer in the initializer -
3174 starting counting at zero - determines the integer that is used to
3175 refer to the mode-switched entity in question. */
3176
3177 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3178
3179 /* ENTITY is an integer specifying a mode-switched entity. If
3180 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3181 return an integer value not larger than the corresponding element
3182 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3183 must be switched into prior to the execution of INSN. */
3184
3185 #define MODE_NEEDED(ENTITY, I) \
3186 (GET_CODE (I) == CALL_INSN \
3187 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3188 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3189 ? FP_CW_UNINITIALIZED \
3190 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3191 ? FP_CW_ANY \
3192 : FP_CW_STORED)
3193
3194 /* This macro specifies the order in which modes for ENTITY are
3195 processed. 0 is the highest priority. */
3196
3197 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3198
3199 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3200 is the set of hard registers live at the point where the insn(s)
3201 are to be inserted. */
3202
3203 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3204 ((MODE) == FP_CW_STORED \
3205 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3206 assign_386_stack_local (HImode, 2)), 0\
3207 : 0)
3208 \f
3209 /* Avoid renaming of stack registers, as doing so in combination with
3210 scheduling just increases amount of live registers at time and in
3211 the turn amount of fxch instructions needed.
3212
3213 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3214
3215 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3216 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3217
3218 \f
3219 #define DLL_IMPORT_EXPORT_PREFIX '#'
3220
3221 #define FASTCALL_PREFIX '@'
3222 \f
3223 struct machine_function GTY(())
3224 {
3225 struct stack_local_entry *stack_locals;
3226 const char *some_ld_name;
3227 int save_varrargs_registers;
3228 int accesses_prev_frame;
3229 int optimize_mode_switching;
3230 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3231 determine the style used. */
3232 int use_fast_prologue_epilogue;
3233 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3234 for. */
3235 int use_fast_prologue_epilogue_nregs;
3236 };
3237
3238 #define ix86_stack_locals (cfun->machine->stack_locals)
3239 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3240 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3241
3242 /*
3243 Local variables:
3244 version-control: t
3245 End:
3246 */