config.gcc: Reorganize --with-cpu logic.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #define TARGET_CPU_DEFAULT 0
101 #endif
102
103 /* Masks for the -m switches */
104 #define MASK_80387 0x00000001 /* Hardware floating point */
105 #define MASK_RTD 0x00000002 /* Use ret that pops args */
106 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
107 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
108 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
109 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
110 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
111 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
112 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
113 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
114 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
115 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
116 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
117 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
118 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
119 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
120 #define MASK_3DNOW 0x00010000 /* Support 3Dnow builtins */
121 #define MASK_3DNOW_A 0x00020000 /* Support Athlon 3Dnow builtins */
122 #define MASK_128BIT_LONG_DOUBLE 0x00040000 /* long double size is 128bit */
123 #define MASK_64BIT 0x00080000 /* Produce 64bit code */
124 #define MASK_MS_BITFIELD_LAYOUT 0x00100000 /* Use native (MS) bitfield layout */
125
126 /* Unused: 0x03e0000 */
127
128 /* ... overlap with subtarget options starts by 0x04000000. */
129 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
130
131 /* Use the floating point instructions */
132 #define TARGET_80387 (target_flags & MASK_80387)
133
134 /* Compile using ret insn that pops args.
135 This will not work unless you use prototypes at least
136 for all functions that can take varying numbers of args. */
137 #define TARGET_RTD (target_flags & MASK_RTD)
138
139 /* Align doubles to a two word boundary. This breaks compatibility with
140 the published ABI's for structures containing doubles, but produces
141 faster code on the pentium. */
142 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
143
144 /* Use push instructions to save outgoing args. */
145 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
146
147 /* Accumulate stack adjustments to prologue/epilogue. */
148 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
149 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
150
151 /* Put uninitialized locals into bss, not data.
152 Meaningful only on svr3. */
153 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
154
155 /* Use IEEE floating point comparisons. These handle correctly the cases
156 where the result of a comparison is unordered. Normally SIGFPE is
157 generated in such cases, in which case this isn't needed. */
158 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
159
160 /* Functions that return a floating point value may return that value
161 in the 387 FPU or in 386 integer registers. If set, this flag causes
162 the 387 to be used, which is compatible with most calling conventions. */
163 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
164
165 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
166 This mode wastes cache, but avoid misaligned data accesses and simplifies
167 address calculations. */
168 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
169
170 /* Disable generation of FP sin, cos and sqrt operations for 387.
171 This is because FreeBSD lacks these in the math-emulator-code */
172 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
173
174 /* Don't create frame pointers for leaf functions */
175 #define TARGET_OMIT_LEAF_FRAME_POINTER \
176 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
177
178 /* Debug GO_IF_LEGITIMATE_ADDRESS */
179 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
180
181 /* Debug FUNCTION_ARG macros */
182 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
183
184 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
185 compile-time constant. */
186 #ifdef IN_LIBGCC2
187 #ifdef __x86_64__
188 #define TARGET_64BIT 1
189 #else
190 #define TARGET_64BIT 0
191 #endif
192 #else
193 #ifdef TARGET_BI_ARCH
194 #define TARGET_64BIT (target_flags & MASK_64BIT)
195 #else
196 #if TARGET_64BIT_DEFAULT
197 #define TARGET_64BIT 1
198 #else
199 #define TARGET_64BIT 0
200 #endif
201 #endif
202 #endif
203
204 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
205 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
206 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
207 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
208 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
209 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
210 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
211 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
212 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
213
214 #define TUNEMASK (1 << ix86_tune)
215 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
216 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
217 extern const int x86_branch_hints, x86_unroll_strlen;
218 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
219 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
220 extern const int x86_use_cltd, x86_read_modify_write;
221 extern const int x86_read_modify, x86_split_long_moves;
222 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
223 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
224 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
225 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
226 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
227 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
228 extern const int x86_epilogue_using_move, x86_decompose_lea;
229 extern const int x86_arch_always_fancy_math_387, x86_shift1;
230 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
231 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
232 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
233 extern const int x86_inter_unit_moves;
234 extern int x86_prefetch_sse;
235
236 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
237 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
238 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
239 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
240 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
241 /* For sane SSE instruction set generation we need fcomi instruction. It is
242 safe to enable all CMOVE instructions. */
243 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
244 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
245 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
246 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
247 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
248 #define TARGET_MOVX (x86_movx & TUNEMASK)
249 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
250 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
251 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
252 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
253 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
254 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
255 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
256 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
257 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
258 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
259 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
260 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
261 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
262 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
263 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
264 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
265 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
266 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
267 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
268 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
269 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
270 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
271 (x86_sse_partial_reg_dependency & TUNEMASK)
272 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
273 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
274 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
275 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
276 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
277 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
278 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
279 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
280 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
281 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
282 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
283 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
284 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
285 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
286 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
287
288 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
289
290 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
291 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
292
293 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
294
295 #define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
296 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
297 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
298 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
299 && (ix86_fpmath & FPMATH_387))
300 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
301 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
302 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
303
304 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
305
306 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
307
308 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
309 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
310
311 /* WARNING: Do not mark empty strings for translation, as calling
312 gettext on an empty string does NOT return an empty
313 string. */
314
315
316 #define TARGET_SWITCHES \
317 { { "80387", MASK_80387, N_("Use hardware fp") }, \
318 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
319 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
320 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
321 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
322 { "386", 0, "" /*Deprecated.*/}, \
323 { "486", 0, "" /*Deprecated.*/}, \
324 { "pentium", 0, "" /*Deprecated.*/}, \
325 { "pentiumpro", 0, "" /*Deprecated.*/}, \
326 { "intel-syntax", 0, "" /*Deprecated.*/}, \
327 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
328 { "rtd", MASK_RTD, \
329 N_("Alternate calling convention") }, \
330 { "no-rtd", -MASK_RTD, \
331 N_("Use normal calling convention") }, \
332 { "align-double", MASK_ALIGN_DOUBLE, \
333 N_("Align some doubles on dword boundary") }, \
334 { "no-align-double", -MASK_ALIGN_DOUBLE, \
335 N_("Align doubles on word boundary") }, \
336 { "svr3-shlib", MASK_SVR3_SHLIB, \
337 N_("Uninitialized locals in .bss") }, \
338 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
339 N_("Uninitialized locals in .data") }, \
340 { "ieee-fp", MASK_IEEE_FP, \
341 N_("Use IEEE math for fp comparisons") }, \
342 { "no-ieee-fp", -MASK_IEEE_FP, \
343 N_("Do not use IEEE math for fp comparisons") }, \
344 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
345 N_("Return values of functions in FPU registers") }, \
346 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
347 N_("Do not return values of functions in FPU registers")}, \
348 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
349 N_("Do not generate sin, cos, sqrt for FPU") }, \
350 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
351 N_("Generate sin, cos, sqrt for FPU")}, \
352 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
353 N_("Omit the frame pointer in leaf functions") }, \
354 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
355 { "stack-arg-probe", MASK_STACK_PROBE, \
356 N_("Enable stack probing") }, \
357 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
358 { "windows", 0, 0 /* undocumented */ }, \
359 { "dll", 0, 0 /* undocumented */ }, \
360 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
361 N_("Align destination of the string operations") }, \
362 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
363 N_("Do not align destination of the string operations") }, \
364 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
365 N_("Inline all known string operations") }, \
366 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
367 N_("Do not inline all known string operations") }, \
368 { "push-args", -MASK_NO_PUSH_ARGS, \
369 N_("Use push instructions to save outgoing arguments") }, \
370 { "no-push-args", MASK_NO_PUSH_ARGS, \
371 N_("Do not use push instructions to save outgoing arguments") }, \
372 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
373 N_("Use push instructions to save outgoing arguments") }, \
374 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
375 N_("Do not use push instructions to save outgoing arguments") }, \
376 { "mmx", MASK_MMX, \
377 N_("Support MMX built-in functions") }, \
378 { "no-mmx", -MASK_MMX, \
379 N_("Do not support MMX built-in functions") }, \
380 { "3dnow", MASK_3DNOW, \
381 N_("Support 3DNow! built-in functions") }, \
382 { "no-3dnow", -MASK_3DNOW, \
383 N_("Do not support 3DNow! built-in functions") }, \
384 { "sse", MASK_SSE, \
385 N_("Support MMX and SSE built-in functions and code generation") }, \
386 { "no-sse", -MASK_SSE, \
387 N_("Do not support MMX and SSE built-in functions and code generation") },\
388 { "sse2", MASK_SSE2, \
389 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
390 { "no-sse2", -MASK_SSE2, \
391 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
392 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
393 N_("sizeof(long double) is 16") }, \
394 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
395 N_("sizeof(long double) is 12") }, \
396 { "64", MASK_64BIT, \
397 N_("Generate 64bit x86-64 code") }, \
398 { "32", -MASK_64BIT, \
399 N_("Generate 32bit i386 code") }, \
400 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
401 N_("Use native (MS) bitfield layout") }, \
402 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
403 N_("Use gcc default bitfield layout") }, \
404 { "red-zone", -MASK_NO_RED_ZONE, \
405 N_("Use red-zone in the x86-64 code") }, \
406 { "no-red-zone", MASK_NO_RED_ZONE, \
407 N_("Do not use red-zone in the x86-64 code") }, \
408 SUBTARGET_SWITCHES \
409 { "", TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT, 0 }}
410
411 #ifndef TARGET_64BIT_DEFAULT
412 #define TARGET_64BIT_DEFAULT 0
413 #endif
414
415 /* Once GDB has been enhanced to deal with functions without frame
416 pointers, we can change this to allow for elimination of
417 the frame pointer in leaf functions. */
418 #define TARGET_DEFAULT 0
419
420 /* This is not really a target flag, but is done this way so that
421 it's analogous to similar code for Mach-O on PowerPC. darwin.h
422 redefines this to 1. */
423 #define TARGET_MACHO 0
424
425 /* This macro is similar to `TARGET_SWITCHES' but defines names of
426 command options that have values. Its definition is an
427 initializer with a subgrouping for each command option.
428
429 Each subgrouping contains a string constant, that defines the
430 fixed part of the option name, and the address of a variable. The
431 variable, type `char *', is set to the variable part of the given
432 option if the fixed part matches. The actual option name is made
433 by appending `-m' to the specified name. */
434 #define TARGET_OPTIONS \
435 { { "tune=", &ix86_tune_string, \
436 N_("Schedule code for given CPU"), 0}, \
437 { "fpmath=", &ix86_fpmath_string, \
438 N_("Generate floating point mathematics using given instruction set"), 0},\
439 { "arch=", &ix86_arch_string, \
440 N_("Generate code for given CPU"), 0}, \
441 { "regparm=", &ix86_regparm_string, \
442 N_("Number of registers used to pass integer arguments"), 0},\
443 { "align-loops=", &ix86_align_loops_string, \
444 N_("Loop code aligned to this power of 2"), 0}, \
445 { "align-jumps=", &ix86_align_jumps_string, \
446 N_("Jump targets are aligned to this power of 2"), 0}, \
447 { "align-functions=", &ix86_align_funcs_string, \
448 N_("Function starts are aligned to this power of 2"), 0}, \
449 { "preferred-stack-boundary=", \
450 &ix86_preferred_stack_boundary_string, \
451 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
452 { "branch-cost=", &ix86_branch_cost_string, \
453 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
454 { "cmodel=", &ix86_cmodel_string, \
455 N_("Use given x86-64 code model"), 0}, \
456 { "debug-arg", &ix86_debug_arg_string, \
457 "" /* Undocumented. */, 0}, \
458 { "debug-addr", &ix86_debug_addr_string, \
459 "" /* Undocumented. */, 0}, \
460 { "asm=", &ix86_asm_string, \
461 N_("Use given assembler dialect"), 0}, \
462 { "tls-dialect=", &ix86_tls_dialect_string, \
463 N_("Use given thread-local storage dialect"), 0}, \
464 SUBTARGET_OPTIONS \
465 }
466
467 /* Sometimes certain combinations of command options do not make
468 sense on a particular target machine. You can define a macro
469 `OVERRIDE_OPTIONS' to take account of this. This macro, if
470 defined, is executed once just after all the command options have
471 been parsed.
472
473 Don't use this macro to turn on various extra optimizations for
474 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
475
476 #define OVERRIDE_OPTIONS override_options ()
477
478 /* These are meant to be redefined in the host dependent files */
479 #define SUBTARGET_SWITCHES
480 #define SUBTARGET_OPTIONS
481
482 /* Define this to change the optimizations performed by default. */
483 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
484 optimization_options ((LEVEL), (SIZE))
485
486 /* Support for configure-time defaults of some command line options. */
487 #define OPTION_DEFAULT_SPECS \
488 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
489 {"tune", "%{!mtune=*:%{!mcpu=*:-mtune=%(VALUE)}}" }, \
490 {"cpu", "%{!mtune=*:%{!mcpu=*:-mtune=%(VALUE)}}" }
491
492 /* Specs for the compiler proper */
493
494 #ifndef CC1_CPU_SPEC
495 #define CC1_CPU_SPEC "\
496 %{!mtune*: \
497 %{m386:mtune=i386 \
498 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
499 %{m486:-mtune=i486 \
500 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
501 %{mpentium:-mtune=pentium \
502 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
503 %{mpentiumpro:-mtune=pentiumpro \
504 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
505 %{mcpu=*:-mtune=%* \
506 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
507 %<mcpu=* \
508 %{mintel-syntax:-masm=intel \
509 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
510 %{mno-intel-syntax:-masm=att \
511 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
512 #endif
513 \f
514 /* Target CPU builtins. */
515 #define TARGET_CPU_CPP_BUILTINS() \
516 do \
517 { \
518 size_t arch_len = strlen (ix86_arch_string); \
519 size_t tune_len = strlen (ix86_tune_string); \
520 int last_arch_char = ix86_arch_string[arch_len - 1]; \
521 int last_tune_char = ix86_tune_string[tune_len - 1]; \
522 \
523 if (TARGET_64BIT) \
524 { \
525 builtin_assert ("cpu=x86_64"); \
526 builtin_define ("__amd64"); \
527 builtin_define ("__amd64__"); \
528 builtin_define ("__x86_64"); \
529 builtin_define ("__x86_64__"); \
530 builtin_define ("__amd64"); \
531 builtin_define ("__amd64__"); \
532 } \
533 else \
534 { \
535 builtin_assert ("cpu=i386"); \
536 builtin_assert ("machine=i386"); \
537 builtin_define_std ("i386"); \
538 } \
539 \
540 /* Built-ins based on -mtune= (or -march= if no \
541 -mtune= given). */ \
542 if (TARGET_386) \
543 builtin_define ("__tune_i386__"); \
544 else if (TARGET_486) \
545 builtin_define ("__tune_i486__"); \
546 else if (TARGET_PENTIUM) \
547 { \
548 builtin_define ("__tune_i586__"); \
549 builtin_define ("__tune_pentium__"); \
550 if (last_tune_char == 'x') \
551 builtin_define ("__tune_pentium_mmx__"); \
552 } \
553 else if (TARGET_PENTIUMPRO) \
554 { \
555 builtin_define ("__tune_i686__"); \
556 builtin_define ("__tune_pentiumpro__"); \
557 switch (last_tune_char) \
558 { \
559 case '3': \
560 builtin_define ("__tune_pentium3__"); \
561 /* FALLTHRU */ \
562 case '2': \
563 builtin_define ("__tune_pentium2__"); \
564 break; \
565 } \
566 } \
567 else if (TARGET_K6) \
568 { \
569 builtin_define ("__tune_k6__"); \
570 if (last_tune_char == '2') \
571 builtin_define ("__tune_k6_2__"); \
572 else if (last_tune_char == '3') \
573 builtin_define ("__tune_k6_3__"); \
574 } \
575 else if (TARGET_ATHLON) \
576 { \
577 builtin_define ("__tune_athlon__"); \
578 /* Only plain "athlon" lacks SSE. */ \
579 if (last_tune_char != 'n') \
580 builtin_define ("__tune_athlon_sse__"); \
581 } \
582 else if (TARGET_K8) \
583 builtin_define ("__tune_k8__"); \
584 else if (TARGET_PENTIUM4) \
585 builtin_define ("__tune_pentium4__"); \
586 \
587 if (TARGET_MMX) \
588 builtin_define ("__MMX__"); \
589 if (TARGET_3DNOW) \
590 builtin_define ("__3dNOW__"); \
591 if (TARGET_3DNOW_A) \
592 builtin_define ("__3dNOW_A__"); \
593 if (TARGET_SSE) \
594 builtin_define ("__SSE__"); \
595 if (TARGET_SSE2) \
596 builtin_define ("__SSE2__"); \
597 if (TARGET_SSE_MATH && TARGET_SSE) \
598 builtin_define ("__SSE_MATH__"); \
599 if (TARGET_SSE_MATH && TARGET_SSE2) \
600 builtin_define ("__SSE2_MATH__"); \
601 \
602 /* Built-ins based on -march=. */ \
603 if (ix86_arch == PROCESSOR_I486) \
604 { \
605 builtin_define ("__i486"); \
606 builtin_define ("__i486__"); \
607 } \
608 else if (ix86_arch == PROCESSOR_PENTIUM) \
609 { \
610 builtin_define ("__i586"); \
611 builtin_define ("__i586__"); \
612 builtin_define ("__pentium"); \
613 builtin_define ("__pentium__"); \
614 if (last_arch_char == 'x') \
615 builtin_define ("__pentium_mmx__"); \
616 } \
617 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
618 { \
619 builtin_define ("__i686"); \
620 builtin_define ("__i686__"); \
621 builtin_define ("__pentiumpro"); \
622 builtin_define ("__pentiumpro__"); \
623 } \
624 else if (ix86_arch == PROCESSOR_K6) \
625 { \
626 \
627 builtin_define ("__k6"); \
628 builtin_define ("__k6__"); \
629 if (last_arch_char == '2') \
630 builtin_define ("__k6_2__"); \
631 else if (last_arch_char == '3') \
632 builtin_define ("__k6_3__"); \
633 } \
634 else if (ix86_arch == PROCESSOR_ATHLON) \
635 { \
636 builtin_define ("__athlon"); \
637 builtin_define ("__athlon__"); \
638 /* Only plain "athlon" lacks SSE. */ \
639 if (last_arch_char != 'n') \
640 builtin_define ("__athlon_sse__"); \
641 } \
642 else if (ix86_arch == PROCESSOR_K8) \
643 { \
644 builtin_define ("__k8"); \
645 builtin_define ("__k8__"); \
646 } \
647 else if (ix86_arch == PROCESSOR_PENTIUM4) \
648 { \
649 builtin_define ("__pentium4"); \
650 builtin_define ("__pentium4__"); \
651 } \
652 } \
653 while (0)
654
655 #define TARGET_CPU_DEFAULT_i386 0
656 #define TARGET_CPU_DEFAULT_i486 1
657 #define TARGET_CPU_DEFAULT_pentium 2
658 #define TARGET_CPU_DEFAULT_pentium_mmx 3
659 #define TARGET_CPU_DEFAULT_pentiumpro 4
660 #define TARGET_CPU_DEFAULT_pentium2 5
661 #define TARGET_CPU_DEFAULT_pentium3 6
662 #define TARGET_CPU_DEFAULT_pentium4 7
663 #define TARGET_CPU_DEFAULT_k6 8
664 #define TARGET_CPU_DEFAULT_k6_2 9
665 #define TARGET_CPU_DEFAULT_k6_3 10
666 #define TARGET_CPU_DEFAULT_athlon 11
667 #define TARGET_CPU_DEFAULT_athlon_sse 12
668 #define TARGET_CPU_DEFAULT_k8 13
669
670 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
671 "pentiumpro", "pentium2", "pentium3", \
672 "pentium4", "k6", "k6-2", "k6-3",\
673 "athlon", "athlon-4", "k8"}
674
675 #ifndef CC1_SPEC
676 #define CC1_SPEC "%(cc1_cpu) "
677 #endif
678
679 /* This macro defines names of additional specifications to put in the
680 specs that can be used in various specifications like CC1_SPEC. Its
681 definition is an initializer with a subgrouping for each command option.
682
683 Each subgrouping contains a string constant, that defines the
684 specification name, and a string constant that used by the GNU CC driver
685 program.
686
687 Do not define this macro if it does not need to do anything. */
688
689 #ifndef SUBTARGET_EXTRA_SPECS
690 #define SUBTARGET_EXTRA_SPECS
691 #endif
692
693 #define EXTRA_SPECS \
694 { "cc1_cpu", CC1_CPU_SPEC }, \
695 SUBTARGET_EXTRA_SPECS
696 \f
697 /* target machine storage layout */
698
699 /* Define for XFmode or TFmode extended real floating point support.
700 The XFmode is specified by i386 ABI, while TFmode may be faster
701 due to alignment and simplifications in the address calculations. */
702 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
703 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
704 #ifdef __x86_64__
705 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
706 #else
707 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
708 #endif
709
710 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
711 FPU, assume that the fpcw is set to extended precision; when using
712 only SSE, rounding is correct; when using both SSE and the FPU,
713 the rounding precision is indeterminate, since either may be chosen
714 apparently at random. */
715 #define TARGET_FLT_EVAL_METHOD \
716 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
717
718 #define SHORT_TYPE_SIZE 16
719 #define INT_TYPE_SIZE 32
720 #define FLOAT_TYPE_SIZE 32
721 #define LONG_TYPE_SIZE BITS_PER_WORD
722 #define MAX_WCHAR_TYPE_SIZE 32
723 #define DOUBLE_TYPE_SIZE 64
724 #define LONG_LONG_TYPE_SIZE 64
725
726 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
727 #define MAX_BITS_PER_WORD 64
728 #define MAX_LONG_TYPE_SIZE 64
729 #else
730 #define MAX_BITS_PER_WORD 32
731 #define MAX_LONG_TYPE_SIZE 32
732 #endif
733
734 /* Define this if most significant byte of a word is the lowest numbered. */
735 /* That is true on the 80386. */
736
737 #define BITS_BIG_ENDIAN 0
738
739 /* Define this if most significant byte of a word is the lowest numbered. */
740 /* That is not true on the 80386. */
741 #define BYTES_BIG_ENDIAN 0
742
743 /* Define this if most significant word of a multiword number is the lowest
744 numbered. */
745 /* Not true for 80386 */
746 #define WORDS_BIG_ENDIAN 0
747
748 /* Width of a word, in units (bytes). */
749 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
750 #ifdef IN_LIBGCC2
751 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
752 #else
753 #define MIN_UNITS_PER_WORD 4
754 #endif
755
756 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
757 #define PARM_BOUNDARY BITS_PER_WORD
758
759 /* Boundary (in *bits*) on which stack pointer should be aligned. */
760 #define STACK_BOUNDARY BITS_PER_WORD
761
762 /* Boundary (in *bits*) on which the stack pointer prefers to be
763 aligned; the compiler cannot rely on having this alignment. */
764 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
765
766 /* As of July 2001, many runtimes to not align the stack properly when
767 entering main. This causes expand_main_function to forcibly align
768 the stack, which results in aligned frames for functions called from
769 main, though it does nothing for the alignment of main itself. */
770 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
771 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
772
773 /* Minimum allocation boundary for the code of a function. */
774 #define FUNCTION_BOUNDARY 8
775
776 /* C++ stores the virtual bit in the lowest bit of function pointers. */
777 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
778
779 /* Alignment of field after `int : 0' in a structure. */
780
781 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
782
783 /* Minimum size in bits of the largest boundary to which any
784 and all fundamental data types supported by the hardware
785 might need to be aligned. No data type wants to be aligned
786 rounder than this.
787
788 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
789 and Pentium Pro XFmode values at 128 bit boundaries. */
790
791 #define BIGGEST_ALIGNMENT 128
792
793 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
794 #define ALIGN_MODE_128(MODE) \
795 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
796
797 /* The published ABIs say that doubles should be aligned on word
798 boundaries, so lower the alignment for structure fields unless
799 -malign-double is set. */
800
801 /* ??? Blah -- this macro is used directly by libobjc. Since it
802 supports no vector modes, cut out the complexity and fall back
803 on BIGGEST_FIELD_ALIGNMENT. */
804 #ifdef IN_TARGET_LIBS
805 #ifdef __x86_64__
806 #define BIGGEST_FIELD_ALIGNMENT 128
807 #else
808 #define BIGGEST_FIELD_ALIGNMENT 32
809 #endif
810 #else
811 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
812 x86_field_alignment (FIELD, COMPUTED)
813 #endif
814
815 /* If defined, a C expression to compute the alignment given to a
816 constant that is being placed in memory. EXP is the constant
817 and ALIGN is the alignment that the object would ordinarily have.
818 The value of this macro is used instead of that alignment to align
819 the object.
820
821 If this macro is not defined, then ALIGN is used.
822
823 The typical use of this macro is to increase alignment for string
824 constants to be word aligned so that `strcpy' calls that copy
825 constants can be done inline. */
826
827 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
828
829 /* If defined, a C expression to compute the alignment for a static
830 variable. TYPE is the data type, and ALIGN is the alignment that
831 the object would ordinarily have. The value of this macro is used
832 instead of that alignment to align the object.
833
834 If this macro is not defined, then ALIGN is used.
835
836 One use of this macro is to increase alignment of medium-size
837 data to make it all fit in fewer cache lines. Another is to
838 cause character arrays to be word-aligned so that `strcpy' calls
839 that copy constants to character arrays can be done inline. */
840
841 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
842
843 /* If defined, a C expression to compute the alignment for a local
844 variable. TYPE is the data type, and ALIGN is the alignment that
845 the object would ordinarily have. The value of this macro is used
846 instead of that alignment to align the object.
847
848 If this macro is not defined, then ALIGN is used.
849
850 One use of this macro is to increase alignment of medium-size
851 data to make it all fit in fewer cache lines. */
852
853 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
854
855 /* If defined, a C expression that gives the alignment boundary, in
856 bits, of an argument with the specified mode and type. If it is
857 not defined, `PARM_BOUNDARY' is used for all arguments. */
858
859 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
860 ix86_function_arg_boundary ((MODE), (TYPE))
861
862 /* Set this nonzero if move instructions will actually fail to work
863 when given unaligned data. */
864 #define STRICT_ALIGNMENT 0
865
866 /* If bit field type is int, don't let it cross an int,
867 and give entire struct the alignment of an int. */
868 /* Required on the 386 since it doesn't have bit-field insns. */
869 #define PCC_BITFIELD_TYPE_MATTERS 1
870 \f
871 /* Standard register usage. */
872
873 /* This processor has special stack-like registers. See reg-stack.c
874 for details. */
875
876 #define STACK_REGS
877 #define IS_STACK_MODE(MODE) \
878 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
879 || (MODE) == TFmode)
880
881 /* Number of actual hardware registers.
882 The hardware registers are assigned numbers for the compiler
883 from 0 to just below FIRST_PSEUDO_REGISTER.
884 All registers that the compiler knows about must be given numbers,
885 even those that are not normally considered general registers.
886
887 In the 80386 we give the 8 general purpose registers the numbers 0-7.
888 We number the floating point registers 8-15.
889 Note that registers 0-7 can be accessed as a short or int,
890 while only 0-3 may be used with byte `mov' instructions.
891
892 Reg 16 does not correspond to any hardware register, but instead
893 appears in the RTL as an argument pointer prior to reload, and is
894 eliminated during reloading in favor of either the stack or frame
895 pointer. */
896
897 #define FIRST_PSEUDO_REGISTER 53
898
899 /* Number of hardware registers that go into the DWARF-2 unwind info.
900 If not defined, equals FIRST_PSEUDO_REGISTER. */
901
902 #define DWARF_FRAME_REGISTERS 17
903
904 /* 1 for registers that have pervasive standard uses
905 and are not available for the register allocator.
906 On the 80386, the stack pointer is such, as is the arg pointer.
907
908 The value is a mask - bit 1 is set for fixed registers
909 for 32bit target, while 2 is set for fixed registers for 64bit.
910 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
911 */
912 #define FIXED_REGISTERS \
913 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
914 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
915 /*arg,flags,fpsr,dir,frame*/ \
916 3, 3, 3, 3, 3, \
917 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
918 0, 0, 0, 0, 0, 0, 0, 0, \
919 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
920 0, 0, 0, 0, 0, 0, 0, 0, \
921 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
922 1, 1, 1, 1, 1, 1, 1, 1, \
923 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
924 1, 1, 1, 1, 1, 1, 1, 1}
925
926
927 /* 1 for registers not available across function calls.
928 These must include the FIXED_REGISTERS and also any
929 registers that can be used without being saved.
930 The latter must include the registers where values are returned
931 and the register where structure-value addresses are passed.
932 Aside from that, you can include as many other registers as you like.
933
934 The value is a mask - bit 1 is set for call used
935 for 32bit target, while 2 is set for call used for 64bit.
936 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
937 */
938 #define CALL_USED_REGISTERS \
939 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
940 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
941 /*arg,flags,fpsr,dir,frame*/ \
942 3, 3, 3, 3, 3, \
943 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
944 3, 3, 3, 3, 3, 3, 3, 3, \
945 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
946 3, 3, 3, 3, 3, 3, 3, 3, \
947 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
948 3, 3, 3, 3, 1, 1, 1, 1, \
949 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
950 3, 3, 3, 3, 3, 3, 3, 3} \
951
952 /* Order in which to allocate registers. Each register must be
953 listed once, even those in FIXED_REGISTERS. List frame pointer
954 late and fixed registers last. Note that, in general, we prefer
955 registers listed in CALL_USED_REGISTERS, keeping the others
956 available for storage of persistent values.
957
958 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
959 so this is just empty initializer for array. */
960
961 #define REG_ALLOC_ORDER \
962 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
963 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
964 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
965 48, 49, 50, 51, 52 }
966
967 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
968 to be rearranged based on a particular function. When using sse math,
969 we want to allocate SSE before x87 registers and vice vera. */
970
971 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
972
973
974 /* Macro to conditionally modify fixed_regs/call_used_regs. */
975 #define CONDITIONAL_REGISTER_USAGE \
976 do { \
977 int i; \
978 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
979 { \
980 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
981 call_used_regs[i] = (call_used_regs[i] \
982 & (TARGET_64BIT ? 2 : 1)) != 0; \
983 } \
984 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
985 { \
986 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
987 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
988 } \
989 if (! TARGET_MMX) \
990 { \
991 int i; \
992 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
993 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
994 fixed_regs[i] = call_used_regs[i] = 1; \
995 } \
996 if (! TARGET_SSE) \
997 { \
998 int i; \
999 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1000 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1001 fixed_regs[i] = call_used_regs[i] = 1; \
1002 } \
1003 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1004 { \
1005 int i; \
1006 HARD_REG_SET x; \
1007 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1008 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1009 if (TEST_HARD_REG_BIT (x, i)) \
1010 fixed_regs[i] = call_used_regs[i] = 1; \
1011 } \
1012 } while (0)
1013
1014 /* Return number of consecutive hard regs needed starting at reg REGNO
1015 to hold something of mode MODE.
1016 This is ordinarily the length in words of a value of mode MODE
1017 but can be less for certain modes in special long registers.
1018
1019 Actually there are no two word move instructions for consecutive
1020 registers. And only registers 0-3 may have mov byte instructions
1021 applied to them.
1022 */
1023
1024 #define HARD_REGNO_NREGS(REGNO, MODE) \
1025 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1026 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1027 : ((MODE) == TFmode \
1028 ? (TARGET_64BIT ? 2 : 3) \
1029 : (MODE) == TCmode \
1030 ? (TARGET_64BIT ? 4 : 6) \
1031 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1032
1033 #define VALID_SSE2_REG_MODE(MODE) \
1034 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1035 || (MODE) == V2DImode)
1036
1037 #define VALID_SSE_REG_MODE(MODE) \
1038 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1039 || (MODE) == SFmode \
1040 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1041 || VALID_SSE2_REG_MODE (MODE) \
1042 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1043
1044 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1045 ((MODE) == V2SFmode || (MODE) == SFmode)
1046
1047 #define VALID_MMX_REG_MODE(MODE) \
1048 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1049 || (MODE) == V2SImode || (MODE) == SImode)
1050
1051 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1052 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1053 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1054 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1055
1056 #define VALID_FP_MODE_P(MODE) \
1057 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
1058 || (!TARGET_64BIT && (MODE) == XFmode) \
1059 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
1060 || (!TARGET_64BIT && (MODE) == XCmode))
1061
1062 #define VALID_INT_MODE_P(MODE) \
1063 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1064 || (MODE) == DImode \
1065 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1066 || (MODE) == CDImode \
1067 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1068
1069 /* Return true for modes passed in SSE registers. */
1070 #define SSE_REG_MODE_P(MODE) \
1071 ((MODE) == TImode || (MODE) == V16QImode \
1072 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1073 || (MODE) == V4SFmode || (MODE) == V4SImode)
1074
1075 /* Return true for modes passed in MMX registers. */
1076 #define MMX_REG_MODE_P(MODE) \
1077 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1078 || (MODE) == V2SFmode)
1079
1080 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1081
1082 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1083 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1084
1085 /* Value is 1 if it is a good idea to tie two pseudo registers
1086 when one has mode MODE1 and one has mode MODE2.
1087 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1088 for any hard reg, then this must be 0 for correct output. */
1089
1090 #define MODES_TIEABLE_P(MODE1, MODE2) \
1091 ((MODE1) == (MODE2) \
1092 || (((MODE1) == HImode || (MODE1) == SImode \
1093 || ((MODE1) == QImode \
1094 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1095 || ((MODE1) == DImode && TARGET_64BIT)) \
1096 && ((MODE2) == HImode || (MODE2) == SImode \
1097 || ((MODE2) == QImode \
1098 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1099 || ((MODE2) == DImode && TARGET_64BIT))))
1100
1101
1102 /* Specify the modes required to caller save a given hard regno.
1103 We do this on i386 to prevent flags from being saved at all.
1104
1105 Kill any attempts to combine saving of modes. */
1106
1107 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1108 (CC_REGNO_P (REGNO) ? VOIDmode \
1109 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1110 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1111 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1112 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1113 : (MODE))
1114 /* Specify the registers used for certain standard purposes.
1115 The values of these macros are register numbers. */
1116
1117 /* on the 386 the pc register is %eip, and is not usable as a general
1118 register. The ordinary mov instructions won't work */
1119 /* #define PC_REGNUM */
1120
1121 /* Register to use for pushing function arguments. */
1122 #define STACK_POINTER_REGNUM 7
1123
1124 /* Base register for access to local variables of the function. */
1125 #define HARD_FRAME_POINTER_REGNUM 6
1126
1127 /* Base register for access to local variables of the function. */
1128 #define FRAME_POINTER_REGNUM 20
1129
1130 /* First floating point reg */
1131 #define FIRST_FLOAT_REG 8
1132
1133 /* First & last stack-like regs */
1134 #define FIRST_STACK_REG FIRST_FLOAT_REG
1135 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1136
1137 #define FLAGS_REG 17
1138 #define FPSR_REG 18
1139 #define DIRFLAG_REG 19
1140
1141 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1142 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1143
1144 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1145 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1146
1147 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1148 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1149
1150 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1151 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1152
1153 /* Value should be nonzero if functions must have frame pointers.
1154 Zero means the frame pointer need not be set up (and parms
1155 may be accessed via the stack pointer) in functions that seem suitable.
1156 This is computed in `reload', in reload1.c. */
1157 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1158
1159 /* Override this in other tm.h files to cope with various OS losage
1160 requiring a frame pointer. */
1161 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1162 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1163 #endif
1164
1165 /* Make sure we can access arbitrary call frames. */
1166 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1167
1168 /* Base register for access to arguments of the function. */
1169 #define ARG_POINTER_REGNUM 16
1170
1171 /* Register in which static-chain is passed to a function.
1172 We do use ECX as static chain register for 32 bit ABI. On the
1173 64bit ABI, ECX is an argument register, so we use R10 instead. */
1174 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1175
1176 /* Register to hold the addressing base for position independent
1177 code access to data items. We don't use PIC pointer for 64bit
1178 mode. Define the regnum to dummy value to prevent gcc from
1179 pessimizing code dealing with EBX.
1180
1181 To avoid clobbering a call-saved register unnecessarily, we renumber
1182 the pic register when possible. The change is visible after the
1183 prologue has been emitted. */
1184
1185 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1186
1187 #define PIC_OFFSET_TABLE_REGNUM \
1188 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1189 : reload_completed ? REGNO (pic_offset_table_rtx) \
1190 : REAL_PIC_OFFSET_TABLE_REGNUM)
1191
1192 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1193
1194 /* Register in which address to store a structure value
1195 arrives in the function. On the 386, the prologue
1196 copies this from the stack to register %eax. */
1197 #define STRUCT_VALUE_INCOMING 0
1198
1199 /* Place in which caller passes the structure value address.
1200 0 means push the value on the stack like an argument. */
1201 #define STRUCT_VALUE 0
1202
1203 /* A C expression which can inhibit the returning of certain function
1204 values in registers, based on the type of value. A nonzero value
1205 says to return the function value in memory, just as large
1206 structures are always returned. Here TYPE will be a C expression
1207 of type `tree', representing the data type of the value.
1208
1209 Note that values of mode `BLKmode' must be explicitly handled by
1210 this macro. Also, the option `-fpcc-struct-return' takes effect
1211 regardless of this macro. On most systems, it is possible to
1212 leave the macro undefined; this causes a default definition to be
1213 used, whose value is the constant 1 for `BLKmode' values, and 0
1214 otherwise.
1215
1216 Do not use this macro to indicate that structures and unions
1217 should always be returned in memory. You should instead use
1218 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1219
1220 #define RETURN_IN_MEMORY(TYPE) \
1221 ix86_return_in_memory (TYPE)
1222
1223 /* This is overriden by <cygwin.h>. */
1224 #define MS_AGGREGATE_RETURN 0
1225
1226 \f
1227 /* Define the classes of registers for register constraints in the
1228 machine description. Also define ranges of constants.
1229
1230 One of the classes must always be named ALL_REGS and include all hard regs.
1231 If there is more than one class, another class must be named NO_REGS
1232 and contain no registers.
1233
1234 The name GENERAL_REGS must be the name of a class (or an alias for
1235 another name such as ALL_REGS). This is the class of registers
1236 that is allowed by "g" or "r" in a register constraint.
1237 Also, registers outside this class are allocated only when
1238 instructions express preferences for them.
1239
1240 The classes must be numbered in nondecreasing order; that is,
1241 a larger-numbered class must never be contained completely
1242 in a smaller-numbered class.
1243
1244 For any two classes, it is very desirable that there be another
1245 class that represents their union.
1246
1247 It might seem that class BREG is unnecessary, since no useful 386
1248 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1249 and the "b" register constraint is useful in asms for syscalls.
1250
1251 The flags and fpsr registers are in no class. */
1252
1253 enum reg_class
1254 {
1255 NO_REGS,
1256 AREG, DREG, CREG, BREG, SIREG, DIREG,
1257 AD_REGS, /* %eax/%edx for DImode */
1258 Q_REGS, /* %eax %ebx %ecx %edx */
1259 NON_Q_REGS, /* %esi %edi %ebp %esp */
1260 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1261 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1262 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1263 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1264 FLOAT_REGS,
1265 SSE_REGS,
1266 MMX_REGS,
1267 FP_TOP_SSE_REGS,
1268 FP_SECOND_SSE_REGS,
1269 FLOAT_SSE_REGS,
1270 FLOAT_INT_REGS,
1271 INT_SSE_REGS,
1272 FLOAT_INT_SSE_REGS,
1273 ALL_REGS, LIM_REG_CLASSES
1274 };
1275
1276 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1277
1278 #define INTEGER_CLASS_P(CLASS) \
1279 reg_class_subset_p ((CLASS), GENERAL_REGS)
1280 #define FLOAT_CLASS_P(CLASS) \
1281 reg_class_subset_p ((CLASS), FLOAT_REGS)
1282 #define SSE_CLASS_P(CLASS) \
1283 reg_class_subset_p ((CLASS), SSE_REGS)
1284 #define MMX_CLASS_P(CLASS) \
1285 reg_class_subset_p ((CLASS), MMX_REGS)
1286 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1287 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1288 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1289 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1290 #define MAYBE_SSE_CLASS_P(CLASS) \
1291 reg_classes_intersect_p (SSE_REGS, (CLASS))
1292 #define MAYBE_MMX_CLASS_P(CLASS) \
1293 reg_classes_intersect_p (MMX_REGS, (CLASS))
1294
1295 #define Q_CLASS_P(CLASS) \
1296 reg_class_subset_p ((CLASS), Q_REGS)
1297
1298 /* Give names of register classes as strings for dump file. */
1299
1300 #define REG_CLASS_NAMES \
1301 { "NO_REGS", \
1302 "AREG", "DREG", "CREG", "BREG", \
1303 "SIREG", "DIREG", \
1304 "AD_REGS", \
1305 "Q_REGS", "NON_Q_REGS", \
1306 "INDEX_REGS", \
1307 "LEGACY_REGS", \
1308 "GENERAL_REGS", \
1309 "FP_TOP_REG", "FP_SECOND_REG", \
1310 "FLOAT_REGS", \
1311 "SSE_REGS", \
1312 "MMX_REGS", \
1313 "FP_TOP_SSE_REGS", \
1314 "FP_SECOND_SSE_REGS", \
1315 "FLOAT_SSE_REGS", \
1316 "FLOAT_INT_REGS", \
1317 "INT_SSE_REGS", \
1318 "FLOAT_INT_SSE_REGS", \
1319 "ALL_REGS" }
1320
1321 /* Define which registers fit in which classes.
1322 This is an initializer for a vector of HARD_REG_SET
1323 of length N_REG_CLASSES. */
1324
1325 #define REG_CLASS_CONTENTS \
1326 { { 0x00, 0x0 }, \
1327 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1328 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1329 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1330 { 0x03, 0x0 }, /* AD_REGS */ \
1331 { 0x0f, 0x0 }, /* Q_REGS */ \
1332 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1333 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1334 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1335 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1336 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1337 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1338 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1339 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1340 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1341 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1342 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1343 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1344 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1345 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1346 { 0xffffffff,0x1fffff } \
1347 }
1348
1349 /* The same information, inverted:
1350 Return the class number of the smallest class containing
1351 reg number REGNO. This could be a conditional expression
1352 or could index an array. */
1353
1354 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1355
1356 /* When defined, the compiler allows registers explicitly used in the
1357 rtl to be used as spill registers but prevents the compiler from
1358 extending the lifetime of these registers. */
1359
1360 #define SMALL_REGISTER_CLASSES 1
1361
1362 #define QI_REG_P(X) \
1363 (REG_P (X) && REGNO (X) < 4)
1364
1365 #define GENERAL_REGNO_P(N) \
1366 ((N) < 8 || REX_INT_REGNO_P (N))
1367
1368 #define GENERAL_REG_P(X) \
1369 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1370
1371 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1372
1373 #define NON_QI_REG_P(X) \
1374 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1375
1376 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1377 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1378
1379 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1380 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1381 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1382 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1383
1384 #define SSE_REGNO_P(N) \
1385 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1386 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1387
1388 #define REX_SSE_REGNO_P(N) \
1389 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1390
1391 #define SSE_REGNO(N) \
1392 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1393 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1394
1395 #define SSE_FLOAT_MODE_P(MODE) \
1396 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1397
1398 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1399 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1400
1401 #define STACK_REG_P(XOP) \
1402 (REG_P (XOP) && \
1403 REGNO (XOP) >= FIRST_STACK_REG && \
1404 REGNO (XOP) <= LAST_STACK_REG)
1405
1406 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1407
1408 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1409
1410 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1411 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1412
1413 /* Indicate whether hard register numbered REG_NO should be converted
1414 to SSA form. */
1415 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1416 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1417
1418 /* The class value for index registers, and the one for base regs. */
1419
1420 #define INDEX_REG_CLASS INDEX_REGS
1421 #define BASE_REG_CLASS GENERAL_REGS
1422
1423 /* Get reg_class from a letter such as appears in the machine description. */
1424
1425 #define REG_CLASS_FROM_LETTER(C) \
1426 ((C) == 'r' ? GENERAL_REGS : \
1427 (C) == 'R' ? LEGACY_REGS : \
1428 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1429 (C) == 'Q' ? Q_REGS : \
1430 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1431 ? FLOAT_REGS \
1432 : NO_REGS) : \
1433 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1434 ? FP_TOP_REG \
1435 : NO_REGS) : \
1436 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1437 ? FP_SECOND_REG \
1438 : NO_REGS) : \
1439 (C) == 'a' ? AREG : \
1440 (C) == 'b' ? BREG : \
1441 (C) == 'c' ? CREG : \
1442 (C) == 'd' ? DREG : \
1443 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1444 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1445 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1446 (C) == 'A' ? AD_REGS : \
1447 (C) == 'D' ? DIREG : \
1448 (C) == 'S' ? SIREG : NO_REGS)
1449
1450 /* The letters I, J, K, L and M in a register constraint string
1451 can be used to stand for particular ranges of immediate operands.
1452 This macro defines what the ranges are.
1453 C is the letter, and VALUE is a constant value.
1454 Return 1 if VALUE is in the range specified by C.
1455
1456 I is for non-DImode shifts.
1457 J is for DImode shifts.
1458 K is for signed imm8 operands.
1459 L is for andsi as zero-extending move.
1460 M is for shifts that can be executed by the "lea" opcode.
1461 N is for immediate operands for out/in instructions (0-255)
1462 */
1463
1464 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1465 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1466 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1467 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1468 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1469 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1470 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1471 : 0)
1472
1473 /* Similar, but for floating constants, and defining letters G and H.
1474 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1475 TARGET_387 isn't set, because the stack register converter may need to
1476 load 0.0 into the function value register. */
1477
1478 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1479 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1480 : 0)
1481
1482 /* A C expression that defines the optional machine-dependent
1483 constraint letters that can be used to segregate specific types of
1484 operands, usually memory references, for the target machine. Any
1485 letter that is not elsewhere defined and not matched by
1486 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1487 be defined.
1488
1489 If it is required for a particular target machine, it should
1490 return 1 if VALUE corresponds to the operand type represented by
1491 the constraint letter C. If C is not defined as an extra
1492 constraint, the value returned should be 0 regardless of VALUE. */
1493
1494 #define EXTRA_CONSTRAINT(VALUE, D) \
1495 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1496 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1497 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1498 : 0)
1499
1500 /* Place additional restrictions on the register class to use when it
1501 is necessary to be able to hold a value of mode MODE in a reload
1502 register for which class CLASS would ordinarily be used. */
1503
1504 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1505 ((MODE) == QImode && !TARGET_64BIT \
1506 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1507 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1508 ? Q_REGS : (CLASS))
1509
1510 /* Given an rtx X being reloaded into a reg required to be
1511 in class CLASS, return the class of reg to actually use.
1512 In general this is just CLASS; but on some machines
1513 in some cases it is preferable to use a more restrictive class.
1514 On the 80386 series, we prevent floating constants from being
1515 reloaded into floating registers (since no move-insn can do that)
1516 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1517
1518 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1519 QImode must go into class Q_REGS.
1520 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1521 movdf to do mem-to-mem moves through integer regs. */
1522
1523 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1524 ix86_preferred_reload_class ((X), (CLASS))
1525
1526 /* If we are copying between general and FP registers, we need a memory
1527 location. The same is true for SSE and MMX registers. */
1528 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1529 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1530
1531 /* QImode spills from non-QI registers need a scratch. This does not
1532 happen often -- the only example so far requires an uninitialized
1533 pseudo. */
1534
1535 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1536 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1537 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1538 ? Q_REGS : NO_REGS)
1539
1540 /* Return the maximum number of consecutive registers
1541 needed to represent mode MODE in a register of class CLASS. */
1542 /* On the 80386, this is the size of MODE in words,
1543 except in the FP regs, where a single reg is always enough.
1544 The TFmodes are really just 80bit values, so we use only 3 registers
1545 to hold them, instead of 4, as the size would suggest.
1546 */
1547 #define CLASS_MAX_NREGS(CLASS, MODE) \
1548 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1549 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1550 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1551 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1552
1553 /* A C expression whose value is nonzero if pseudos that have been
1554 assigned to registers of class CLASS would likely be spilled
1555 because registers of CLASS are needed for spill registers.
1556
1557 The default value of this macro returns 1 if CLASS has exactly one
1558 register and zero otherwise. On most machines, this default
1559 should be used. Only define this macro to some other expression
1560 if pseudo allocated by `local-alloc.c' end up in memory because
1561 their hard registers were needed for spill registers. If this
1562 macro returns nonzero for those classes, those pseudos will only
1563 be allocated by `global.c', which knows how to reallocate the
1564 pseudo to another register. If there would not be another
1565 register available for reallocation, you should not change the
1566 definition of this macro since the only effect of such a
1567 definition would be to slow down register allocation. */
1568
1569 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1570 (((CLASS) == AREG) \
1571 || ((CLASS) == DREG) \
1572 || ((CLASS) == CREG) \
1573 || ((CLASS) == BREG) \
1574 || ((CLASS) == AD_REGS) \
1575 || ((CLASS) == SIREG) \
1576 || ((CLASS) == DIREG))
1577
1578 /* Return a class of registers that cannot change FROM mode to TO mode.
1579
1580 x87 registers can't do subreg as all values are reformated to extended
1581 precision. XMM registers does not support with nonzero offsets equal
1582 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1583 determine these, prohibit all nonparadoxical subregs changing size. */
1584
1585 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1586 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1587 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1588 || MAYBE_MMX_CLASS_P (CLASS) \
1589 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1590 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1591
1592 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1593 to automatically clobber for all asms.
1594
1595 We do this in the new i386 backend to maintain source compatibility
1596 with the old cc0-based compiler. */
1597
1598 #define MD_ASM_CLOBBERS(CLOBBERS) \
1599 do { \
1600 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1601 (CLOBBERS)); \
1602 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1603 (CLOBBERS)); \
1604 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1605 (CLOBBERS)); \
1606 } while (0)
1607 \f
1608 /* Stack layout; function entry, exit and calling. */
1609
1610 /* Define this if pushing a word on the stack
1611 makes the stack pointer a smaller address. */
1612 #define STACK_GROWS_DOWNWARD
1613
1614 /* Define this if the nominal address of the stack frame
1615 is at the high-address end of the local variables;
1616 that is, each additional local variable allocated
1617 goes at a more negative offset in the frame. */
1618 #define FRAME_GROWS_DOWNWARD
1619
1620 /* Offset within stack frame to start allocating local variables at.
1621 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1622 first local allocated. Otherwise, it is the offset to the BEGINNING
1623 of the first local allocated. */
1624 #define STARTING_FRAME_OFFSET 0
1625
1626 /* If we generate an insn to push BYTES bytes,
1627 this says how many the stack pointer really advances by.
1628 On 386 pushw decrements by exactly 2 no matter what the position was.
1629 On the 386 there is no pushb; we use pushw instead, and this
1630 has the effect of rounding up to 2.
1631
1632 For 64bit ABI we round up to 8 bytes.
1633 */
1634
1635 #define PUSH_ROUNDING(BYTES) \
1636 (TARGET_64BIT \
1637 ? (((BYTES) + 7) & (-8)) \
1638 : (((BYTES) + 1) & (-2)))
1639
1640 /* If defined, the maximum amount of space required for outgoing arguments will
1641 be computed and placed into the variable
1642 `current_function_outgoing_args_size'. No space will be pushed onto the
1643 stack for each call; instead, the function prologue should increase the stack
1644 frame size by this amount. */
1645
1646 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1647
1648 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1649 instructions to pass outgoing arguments. */
1650
1651 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1652
1653 /* We want the stack and args grow in opposite directions, even if
1654 PUSH_ARGS is 0. */
1655 #define PUSH_ARGS_REVERSED 1
1656
1657 /* Offset of first parameter from the argument pointer register value. */
1658 #define FIRST_PARM_OFFSET(FNDECL) 0
1659
1660 /* Define this macro if functions should assume that stack space has been
1661 allocated for arguments even when their values are passed in registers.
1662
1663 The value of this macro is the size, in bytes, of the area reserved for
1664 arguments passed in registers for the function represented by FNDECL.
1665
1666 This space can be allocated by the caller, or be a part of the
1667 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1668 which. */
1669 #define REG_PARM_STACK_SPACE(FNDECL) 0
1670
1671 /* Define as a C expression that evaluates to nonzero if we do not know how
1672 to pass TYPE solely in registers. The file expr.h defines a
1673 definition that is usually appropriate, refer to expr.h for additional
1674 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1675 computed in the stack and then loaded into a register. */
1676 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1677
1678 /* Value is the number of bytes of arguments automatically
1679 popped when returning from a subroutine call.
1680 FUNDECL is the declaration node of the function (as a tree),
1681 FUNTYPE is the data type of the function (as a tree),
1682 or for a library call it is an identifier node for the subroutine name.
1683 SIZE is the number of bytes of arguments passed on the stack.
1684
1685 On the 80386, the RTD insn may be used to pop them if the number
1686 of args is fixed, but if the number is variable then the caller
1687 must pop them all. RTD can't be used for library calls now
1688 because the library is compiled with the Unix compiler.
1689 Use of RTD is a selectable option, since it is incompatible with
1690 standard Unix calling sequences. If the option is not selected,
1691 the caller must always pop the args.
1692
1693 The attribute stdcall is equivalent to RTD on a per module basis. */
1694
1695 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1696 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1697
1698 /* Define how to find the value returned by a function.
1699 VALTYPE is the data type of the value (as a tree).
1700 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1701 otherwise, FUNC is 0. */
1702 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1703 ix86_function_value (VALTYPE)
1704
1705 #define FUNCTION_VALUE_REGNO_P(N) \
1706 ix86_function_value_regno_p (N)
1707
1708 /* Define how to find the value returned by a library function
1709 assuming the value has mode MODE. */
1710
1711 #define LIBCALL_VALUE(MODE) \
1712 ix86_libcall_value (MODE)
1713
1714 /* Define the size of the result block used for communication between
1715 untyped_call and untyped_return. The block contains a DImode value
1716 followed by the block used by fnsave and frstor. */
1717
1718 #define APPLY_RESULT_SIZE (8+108)
1719
1720 /* 1 if N is a possible register number for function argument passing. */
1721 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1722
1723 /* Define a data type for recording info about an argument list
1724 during the scan of that argument list. This data type should
1725 hold all necessary information about the function itself
1726 and about the args processed so far, enough to enable macros
1727 such as FUNCTION_ARG to determine where the next arg should go. */
1728
1729 typedef struct ix86_args {
1730 int words; /* # words passed so far */
1731 int nregs; /* # registers available for passing */
1732 int regno; /* next available register number */
1733 int fastcall; /* fastcall calling convention is used */
1734 int sse_words; /* # sse words passed so far */
1735 int sse_nregs; /* # sse registers available for passing */
1736 int sse_regno; /* next available sse register number */
1737 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1738 } CUMULATIVE_ARGS;
1739
1740 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1741 for a call to a function whose data type is FNTYPE.
1742 For a library call, FNTYPE is 0. */
1743
1744 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL) \
1745 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1746
1747 /* Update the data in CUM to advance over an argument
1748 of mode MODE and data type TYPE.
1749 (TYPE is null for libcalls where that information may not be available.) */
1750
1751 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1752 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1753
1754 /* Define where to put the arguments to a function.
1755 Value is zero to push the argument on the stack,
1756 or a hard register in which to store the argument.
1757
1758 MODE is the argument's machine mode.
1759 TYPE is the data type of the argument (as a tree).
1760 This is null for libcalls where that information may
1761 not be available.
1762 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1763 the preceding args and about the function being called.
1764 NAMED is nonzero if this argument is a named parameter
1765 (otherwise it is an extra parameter matching an ellipsis). */
1766
1767 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1768 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1769
1770 /* For an arg passed partly in registers and partly in memory,
1771 this is the number of registers used.
1772 For args passed entirely in registers or entirely in memory, zero. */
1773
1774 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1775
1776 /* A C expression that indicates when an argument must be passed by
1777 reference. If nonzero for an argument, a copy of that argument is
1778 made in memory and a pointer to the argument is passed instead of
1779 the argument itself. The pointer is passed in whatever way is
1780 appropriate for passing a pointer to that type. */
1781
1782 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1783 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1784
1785 /* Perform any needed actions needed for a function that is receiving a
1786 variable number of arguments.
1787
1788 CUM is as above.
1789
1790 MODE and TYPE are the mode and type of the current parameter.
1791
1792 PRETEND_SIZE is a variable that should be set to the amount of stack
1793 that must be pushed by the prolog to pretend that our caller pushed
1794 it.
1795
1796 Normally, this macro will push all remaining incoming registers on the
1797 stack and set PRETEND_SIZE to the length of the registers pushed. */
1798
1799 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1800 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1801 (NO_RTL))
1802
1803 /* Define the `__builtin_va_list' type for the ABI. */
1804 #define BUILD_VA_LIST_TYPE(VALIST) \
1805 ((VALIST) = ix86_build_va_list ())
1806
1807 /* Implement `va_start' for varargs and stdarg. */
1808 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1809 ix86_va_start (VALIST, NEXTARG)
1810
1811 /* Implement `va_arg'. */
1812 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1813 ix86_va_arg ((VALIST), (TYPE))
1814
1815 /* This macro is invoked at the end of compilation. It is used here to
1816 output code for -fpic that will load the return address into %ebx. */
1817
1818 #undef ASM_FILE_END
1819 #define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
1820
1821 /* Output assembler code to FILE to increment profiler label # LABELNO
1822 for profiling a function entry. */
1823
1824 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1825
1826 #define MCOUNT_NAME "_mcount"
1827
1828 #define PROFILE_COUNT_REGISTER "edx"
1829
1830 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1831 the stack pointer does not matter. The value is tested only in
1832 functions that have frame pointers.
1833 No definition is equivalent to always zero. */
1834 /* Note on the 386 it might be more efficient not to define this since
1835 we have to restore it ourselves from the frame pointer, in order to
1836 use pop */
1837
1838 #define EXIT_IGNORE_STACK 1
1839
1840 /* Output assembler code for a block containing the constant parts
1841 of a trampoline, leaving space for the variable parts. */
1842
1843 /* On the 386, the trampoline contains two instructions:
1844 mov #STATIC,ecx
1845 jmp FUNCTION
1846 The trampoline is generated entirely at runtime. The operand of JMP
1847 is the address of FUNCTION relative to the instruction following the
1848 JMP (which is 5 bytes long). */
1849
1850 /* Length in units of the trampoline for entering a nested function. */
1851
1852 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1853
1854 /* Emit RTL insns to initialize the variable parts of a trampoline.
1855 FNADDR is an RTX for the address of the function's pure code.
1856 CXT is an RTX for the static chain value for the function. */
1857
1858 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1859 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1860 \f
1861 /* Definitions for register eliminations.
1862
1863 This is an array of structures. Each structure initializes one pair
1864 of eliminable registers. The "from" register number is given first,
1865 followed by "to". Eliminations of the same "from" register are listed
1866 in order of preference.
1867
1868 There are two registers that can always be eliminated on the i386.
1869 The frame pointer and the arg pointer can be replaced by either the
1870 hard frame pointer or to the stack pointer, depending upon the
1871 circumstances. The hard frame pointer is not used before reload and
1872 so it is not eligible for elimination. */
1873
1874 #define ELIMINABLE_REGS \
1875 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1876 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1877 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1878 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1879
1880 /* Given FROM and TO register numbers, say whether this elimination is
1881 allowed. Frame pointer elimination is automatically handled.
1882
1883 All other eliminations are valid. */
1884
1885 #define CAN_ELIMINATE(FROM, TO) \
1886 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1887
1888 /* Define the offset between two registers, one to be eliminated, and the other
1889 its replacement, at the start of a routine. */
1890
1891 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1892 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1893 \f
1894 /* Addressing modes, and classification of registers for them. */
1895
1896 /* Macros to check register numbers against specific register classes. */
1897
1898 /* These assume that REGNO is a hard or pseudo reg number.
1899 They give nonzero only if REGNO is a hard reg of the suitable class
1900 or a pseudo reg currently allocated to a suitable hard reg.
1901 Since they use reg_renumber, they are safe only once reg_renumber
1902 has been allocated, which happens in local-alloc.c. */
1903
1904 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1905 ((REGNO) < STACK_POINTER_REGNUM \
1906 || (REGNO >= FIRST_REX_INT_REG \
1907 && (REGNO) <= LAST_REX_INT_REG) \
1908 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1909 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1910 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1911
1912 #define REGNO_OK_FOR_BASE_P(REGNO) \
1913 ((REGNO) <= STACK_POINTER_REGNUM \
1914 || (REGNO) == ARG_POINTER_REGNUM \
1915 || (REGNO) == FRAME_POINTER_REGNUM \
1916 || (REGNO >= FIRST_REX_INT_REG \
1917 && (REGNO) <= LAST_REX_INT_REG) \
1918 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1919 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1920 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1921
1922 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1923 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1924 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1925 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1926
1927 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1928 and check its validity for a certain class.
1929 We have two alternate definitions for each of them.
1930 The usual definition accepts all pseudo regs; the other rejects
1931 them unless they have been allocated suitable hard regs.
1932 The symbol REG_OK_STRICT causes the latter definition to be used.
1933
1934 Most source files want to accept pseudo regs in the hope that
1935 they will get allocated to the class that the insn wants them to be in.
1936 Source files for reload pass need to be strict.
1937 After reload, it makes no difference, since pseudo regs have
1938 been eliminated by then. */
1939
1940
1941 /* Non strict versions, pseudos are ok */
1942 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1943 (REGNO (X) < STACK_POINTER_REGNUM \
1944 || (REGNO (X) >= FIRST_REX_INT_REG \
1945 && REGNO (X) <= LAST_REX_INT_REG) \
1946 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1947
1948 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1949 (REGNO (X) <= STACK_POINTER_REGNUM \
1950 || REGNO (X) == ARG_POINTER_REGNUM \
1951 || REGNO (X) == FRAME_POINTER_REGNUM \
1952 || (REGNO (X) >= FIRST_REX_INT_REG \
1953 && REGNO (X) <= LAST_REX_INT_REG) \
1954 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1955
1956 /* Strict versions, hard registers only */
1957 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1958 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1959
1960 #ifndef REG_OK_STRICT
1961 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1962 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1963
1964 #else
1965 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1966 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1967 #endif
1968
1969 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1970 that is a valid memory address for an instruction.
1971 The MODE argument is the machine mode for the MEM expression
1972 that wants to use this address.
1973
1974 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1975 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1976
1977 See legitimize_pic_address in i386.c for details as to what
1978 constitutes a legitimate address when -fpic is used. */
1979
1980 #define MAX_REGS_PER_ADDRESS 2
1981
1982 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1983
1984 /* Nonzero if the constant value X is a legitimate general operand.
1985 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1986
1987 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1988
1989 #ifdef REG_OK_STRICT
1990 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1991 do { \
1992 if (legitimate_address_p ((MODE), (X), 1)) \
1993 goto ADDR; \
1994 } while (0)
1995
1996 #else
1997 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1998 do { \
1999 if (legitimate_address_p ((MODE), (X), 0)) \
2000 goto ADDR; \
2001 } while (0)
2002
2003 #endif
2004
2005 /* If defined, a C expression to determine the base term of address X.
2006 This macro is used in only one place: `find_base_term' in alias.c.
2007
2008 It is always safe for this macro to not be defined. It exists so
2009 that alias analysis can understand machine-dependent addresses.
2010
2011 The typical use of this macro is to handle addresses containing
2012 a label_ref or symbol_ref within an UNSPEC. */
2013
2014 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
2015
2016 /* Try machine-dependent ways of modifying an illegitimate address
2017 to be legitimate. If we find one, return the new, valid address.
2018 This macro is used in only one place: `memory_address' in explow.c.
2019
2020 OLDX is the address as it was before break_out_memory_refs was called.
2021 In some cases it is useful to look at this to decide what needs to be done.
2022
2023 MODE and WIN are passed so that this macro can use
2024 GO_IF_LEGITIMATE_ADDRESS.
2025
2026 It is always safe for this macro to do nothing. It exists to recognize
2027 opportunities to optimize the output.
2028
2029 For the 80386, we handle X+REG by loading X into a register R and
2030 using R+REG. R will go in a general reg and indexing will be used.
2031 However, if REG is a broken-out memory address or multiplication,
2032 nothing needs to be done because REG can certainly go in a general reg.
2033
2034 When -fpic is used, special handling is needed for symbolic references.
2035 See comments by legitimize_pic_address in i386.c for details. */
2036
2037 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2038 do { \
2039 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2040 if (memory_address_p ((MODE), (X))) \
2041 goto WIN; \
2042 } while (0)
2043
2044 #define REWRITE_ADDRESS(X) rewrite_address (X)
2045
2046 /* Nonzero if the constant value X is a legitimate general operand
2047 when generating PIC code. It is given that flag_pic is on and
2048 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2049
2050 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2051
2052 #define SYMBOLIC_CONST(X) \
2053 (GET_CODE (X) == SYMBOL_REF \
2054 || GET_CODE (X) == LABEL_REF \
2055 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2056
2057 /* Go to LABEL if ADDR (a legitimate address expression)
2058 has an effect that depends on the machine mode it is used for.
2059 On the 80386, only postdecrement and postincrement address depend thus
2060 (the amount of decrement or increment being the length of the operand). */
2061 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2062 do { \
2063 if (GET_CODE (ADDR) == POST_INC \
2064 || GET_CODE (ADDR) == POST_DEC) \
2065 goto LABEL; \
2066 } while (0)
2067 \f
2068 /* Codes for all the SSE/MMX builtins. */
2069 enum ix86_builtins
2070 {
2071 IX86_BUILTIN_ADDPS,
2072 IX86_BUILTIN_ADDSS,
2073 IX86_BUILTIN_DIVPS,
2074 IX86_BUILTIN_DIVSS,
2075 IX86_BUILTIN_MULPS,
2076 IX86_BUILTIN_MULSS,
2077 IX86_BUILTIN_SUBPS,
2078 IX86_BUILTIN_SUBSS,
2079
2080 IX86_BUILTIN_CMPEQPS,
2081 IX86_BUILTIN_CMPLTPS,
2082 IX86_BUILTIN_CMPLEPS,
2083 IX86_BUILTIN_CMPGTPS,
2084 IX86_BUILTIN_CMPGEPS,
2085 IX86_BUILTIN_CMPNEQPS,
2086 IX86_BUILTIN_CMPNLTPS,
2087 IX86_BUILTIN_CMPNLEPS,
2088 IX86_BUILTIN_CMPNGTPS,
2089 IX86_BUILTIN_CMPNGEPS,
2090 IX86_BUILTIN_CMPORDPS,
2091 IX86_BUILTIN_CMPUNORDPS,
2092 IX86_BUILTIN_CMPNEPS,
2093 IX86_BUILTIN_CMPEQSS,
2094 IX86_BUILTIN_CMPLTSS,
2095 IX86_BUILTIN_CMPLESS,
2096 IX86_BUILTIN_CMPNEQSS,
2097 IX86_BUILTIN_CMPNLTSS,
2098 IX86_BUILTIN_CMPNLESS,
2099 IX86_BUILTIN_CMPORDSS,
2100 IX86_BUILTIN_CMPUNORDSS,
2101 IX86_BUILTIN_CMPNESS,
2102
2103 IX86_BUILTIN_COMIEQSS,
2104 IX86_BUILTIN_COMILTSS,
2105 IX86_BUILTIN_COMILESS,
2106 IX86_BUILTIN_COMIGTSS,
2107 IX86_BUILTIN_COMIGESS,
2108 IX86_BUILTIN_COMINEQSS,
2109 IX86_BUILTIN_UCOMIEQSS,
2110 IX86_BUILTIN_UCOMILTSS,
2111 IX86_BUILTIN_UCOMILESS,
2112 IX86_BUILTIN_UCOMIGTSS,
2113 IX86_BUILTIN_UCOMIGESS,
2114 IX86_BUILTIN_UCOMINEQSS,
2115
2116 IX86_BUILTIN_CVTPI2PS,
2117 IX86_BUILTIN_CVTPS2PI,
2118 IX86_BUILTIN_CVTSI2SS,
2119 IX86_BUILTIN_CVTSI642SS,
2120 IX86_BUILTIN_CVTSS2SI,
2121 IX86_BUILTIN_CVTSS2SI64,
2122 IX86_BUILTIN_CVTTPS2PI,
2123 IX86_BUILTIN_CVTTSS2SI,
2124 IX86_BUILTIN_CVTTSS2SI64,
2125
2126 IX86_BUILTIN_MAXPS,
2127 IX86_BUILTIN_MAXSS,
2128 IX86_BUILTIN_MINPS,
2129 IX86_BUILTIN_MINSS,
2130
2131 IX86_BUILTIN_LOADAPS,
2132 IX86_BUILTIN_LOADUPS,
2133 IX86_BUILTIN_STOREAPS,
2134 IX86_BUILTIN_STOREUPS,
2135 IX86_BUILTIN_LOADSS,
2136 IX86_BUILTIN_STORESS,
2137 IX86_BUILTIN_MOVSS,
2138
2139 IX86_BUILTIN_MOVHLPS,
2140 IX86_BUILTIN_MOVLHPS,
2141 IX86_BUILTIN_LOADHPS,
2142 IX86_BUILTIN_LOADLPS,
2143 IX86_BUILTIN_STOREHPS,
2144 IX86_BUILTIN_STORELPS,
2145
2146 IX86_BUILTIN_MASKMOVQ,
2147 IX86_BUILTIN_MOVMSKPS,
2148 IX86_BUILTIN_PMOVMSKB,
2149
2150 IX86_BUILTIN_MOVNTPS,
2151 IX86_BUILTIN_MOVNTQ,
2152
2153 IX86_BUILTIN_LOADDQA,
2154 IX86_BUILTIN_LOADDQU,
2155 IX86_BUILTIN_STOREDQA,
2156 IX86_BUILTIN_STOREDQU,
2157 IX86_BUILTIN_MOVQ,
2158 IX86_BUILTIN_LOADD,
2159 IX86_BUILTIN_STORED,
2160
2161 IX86_BUILTIN_CLRTI,
2162
2163 IX86_BUILTIN_PACKSSWB,
2164 IX86_BUILTIN_PACKSSDW,
2165 IX86_BUILTIN_PACKUSWB,
2166
2167 IX86_BUILTIN_PADDB,
2168 IX86_BUILTIN_PADDW,
2169 IX86_BUILTIN_PADDD,
2170 IX86_BUILTIN_PADDQ,
2171 IX86_BUILTIN_PADDSB,
2172 IX86_BUILTIN_PADDSW,
2173 IX86_BUILTIN_PADDUSB,
2174 IX86_BUILTIN_PADDUSW,
2175 IX86_BUILTIN_PSUBB,
2176 IX86_BUILTIN_PSUBW,
2177 IX86_BUILTIN_PSUBD,
2178 IX86_BUILTIN_PSUBQ,
2179 IX86_BUILTIN_PSUBSB,
2180 IX86_BUILTIN_PSUBSW,
2181 IX86_BUILTIN_PSUBUSB,
2182 IX86_BUILTIN_PSUBUSW,
2183
2184 IX86_BUILTIN_PAND,
2185 IX86_BUILTIN_PANDN,
2186 IX86_BUILTIN_POR,
2187 IX86_BUILTIN_PXOR,
2188
2189 IX86_BUILTIN_PAVGB,
2190 IX86_BUILTIN_PAVGW,
2191
2192 IX86_BUILTIN_PCMPEQB,
2193 IX86_BUILTIN_PCMPEQW,
2194 IX86_BUILTIN_PCMPEQD,
2195 IX86_BUILTIN_PCMPGTB,
2196 IX86_BUILTIN_PCMPGTW,
2197 IX86_BUILTIN_PCMPGTD,
2198
2199 IX86_BUILTIN_PEXTRW,
2200 IX86_BUILTIN_PINSRW,
2201
2202 IX86_BUILTIN_PMADDWD,
2203
2204 IX86_BUILTIN_PMAXSW,
2205 IX86_BUILTIN_PMAXUB,
2206 IX86_BUILTIN_PMINSW,
2207 IX86_BUILTIN_PMINUB,
2208
2209 IX86_BUILTIN_PMULHUW,
2210 IX86_BUILTIN_PMULHW,
2211 IX86_BUILTIN_PMULLW,
2212
2213 IX86_BUILTIN_PSADBW,
2214 IX86_BUILTIN_PSHUFW,
2215
2216 IX86_BUILTIN_PSLLW,
2217 IX86_BUILTIN_PSLLD,
2218 IX86_BUILTIN_PSLLQ,
2219 IX86_BUILTIN_PSRAW,
2220 IX86_BUILTIN_PSRAD,
2221 IX86_BUILTIN_PSRLW,
2222 IX86_BUILTIN_PSRLD,
2223 IX86_BUILTIN_PSRLQ,
2224 IX86_BUILTIN_PSLLWI,
2225 IX86_BUILTIN_PSLLDI,
2226 IX86_BUILTIN_PSLLQI,
2227 IX86_BUILTIN_PSRAWI,
2228 IX86_BUILTIN_PSRADI,
2229 IX86_BUILTIN_PSRLWI,
2230 IX86_BUILTIN_PSRLDI,
2231 IX86_BUILTIN_PSRLQI,
2232
2233 IX86_BUILTIN_PUNPCKHBW,
2234 IX86_BUILTIN_PUNPCKHWD,
2235 IX86_BUILTIN_PUNPCKHDQ,
2236 IX86_BUILTIN_PUNPCKLBW,
2237 IX86_BUILTIN_PUNPCKLWD,
2238 IX86_BUILTIN_PUNPCKLDQ,
2239
2240 IX86_BUILTIN_SHUFPS,
2241
2242 IX86_BUILTIN_RCPPS,
2243 IX86_BUILTIN_RCPSS,
2244 IX86_BUILTIN_RSQRTPS,
2245 IX86_BUILTIN_RSQRTSS,
2246 IX86_BUILTIN_SQRTPS,
2247 IX86_BUILTIN_SQRTSS,
2248
2249 IX86_BUILTIN_UNPCKHPS,
2250 IX86_BUILTIN_UNPCKLPS,
2251
2252 IX86_BUILTIN_ANDPS,
2253 IX86_BUILTIN_ANDNPS,
2254 IX86_BUILTIN_ORPS,
2255 IX86_BUILTIN_XORPS,
2256
2257 IX86_BUILTIN_EMMS,
2258 IX86_BUILTIN_LDMXCSR,
2259 IX86_BUILTIN_STMXCSR,
2260 IX86_BUILTIN_SFENCE,
2261
2262 /* 3DNow! Original */
2263 IX86_BUILTIN_FEMMS,
2264 IX86_BUILTIN_PAVGUSB,
2265 IX86_BUILTIN_PF2ID,
2266 IX86_BUILTIN_PFACC,
2267 IX86_BUILTIN_PFADD,
2268 IX86_BUILTIN_PFCMPEQ,
2269 IX86_BUILTIN_PFCMPGE,
2270 IX86_BUILTIN_PFCMPGT,
2271 IX86_BUILTIN_PFMAX,
2272 IX86_BUILTIN_PFMIN,
2273 IX86_BUILTIN_PFMUL,
2274 IX86_BUILTIN_PFRCP,
2275 IX86_BUILTIN_PFRCPIT1,
2276 IX86_BUILTIN_PFRCPIT2,
2277 IX86_BUILTIN_PFRSQIT1,
2278 IX86_BUILTIN_PFRSQRT,
2279 IX86_BUILTIN_PFSUB,
2280 IX86_BUILTIN_PFSUBR,
2281 IX86_BUILTIN_PI2FD,
2282 IX86_BUILTIN_PMULHRW,
2283
2284 /* 3DNow! Athlon Extensions */
2285 IX86_BUILTIN_PF2IW,
2286 IX86_BUILTIN_PFNACC,
2287 IX86_BUILTIN_PFPNACC,
2288 IX86_BUILTIN_PI2FW,
2289 IX86_BUILTIN_PSWAPDSI,
2290 IX86_BUILTIN_PSWAPDSF,
2291
2292 IX86_BUILTIN_SSE_ZERO,
2293 IX86_BUILTIN_MMX_ZERO,
2294
2295 /* SSE2 */
2296 IX86_BUILTIN_ADDPD,
2297 IX86_BUILTIN_ADDSD,
2298 IX86_BUILTIN_DIVPD,
2299 IX86_BUILTIN_DIVSD,
2300 IX86_BUILTIN_MULPD,
2301 IX86_BUILTIN_MULSD,
2302 IX86_BUILTIN_SUBPD,
2303 IX86_BUILTIN_SUBSD,
2304
2305 IX86_BUILTIN_CMPEQPD,
2306 IX86_BUILTIN_CMPLTPD,
2307 IX86_BUILTIN_CMPLEPD,
2308 IX86_BUILTIN_CMPGTPD,
2309 IX86_BUILTIN_CMPGEPD,
2310 IX86_BUILTIN_CMPNEQPD,
2311 IX86_BUILTIN_CMPNLTPD,
2312 IX86_BUILTIN_CMPNLEPD,
2313 IX86_BUILTIN_CMPNGTPD,
2314 IX86_BUILTIN_CMPNGEPD,
2315 IX86_BUILTIN_CMPORDPD,
2316 IX86_BUILTIN_CMPUNORDPD,
2317 IX86_BUILTIN_CMPNEPD,
2318 IX86_BUILTIN_CMPEQSD,
2319 IX86_BUILTIN_CMPLTSD,
2320 IX86_BUILTIN_CMPLESD,
2321 IX86_BUILTIN_CMPNEQSD,
2322 IX86_BUILTIN_CMPNLTSD,
2323 IX86_BUILTIN_CMPNLESD,
2324 IX86_BUILTIN_CMPORDSD,
2325 IX86_BUILTIN_CMPUNORDSD,
2326 IX86_BUILTIN_CMPNESD,
2327
2328 IX86_BUILTIN_COMIEQSD,
2329 IX86_BUILTIN_COMILTSD,
2330 IX86_BUILTIN_COMILESD,
2331 IX86_BUILTIN_COMIGTSD,
2332 IX86_BUILTIN_COMIGESD,
2333 IX86_BUILTIN_COMINEQSD,
2334 IX86_BUILTIN_UCOMIEQSD,
2335 IX86_BUILTIN_UCOMILTSD,
2336 IX86_BUILTIN_UCOMILESD,
2337 IX86_BUILTIN_UCOMIGTSD,
2338 IX86_BUILTIN_UCOMIGESD,
2339 IX86_BUILTIN_UCOMINEQSD,
2340
2341 IX86_BUILTIN_MAXPD,
2342 IX86_BUILTIN_MAXSD,
2343 IX86_BUILTIN_MINPD,
2344 IX86_BUILTIN_MINSD,
2345
2346 IX86_BUILTIN_ANDPD,
2347 IX86_BUILTIN_ANDNPD,
2348 IX86_BUILTIN_ORPD,
2349 IX86_BUILTIN_XORPD,
2350
2351 IX86_BUILTIN_SQRTPD,
2352 IX86_BUILTIN_SQRTSD,
2353
2354 IX86_BUILTIN_UNPCKHPD,
2355 IX86_BUILTIN_UNPCKLPD,
2356
2357 IX86_BUILTIN_SHUFPD,
2358
2359 IX86_BUILTIN_LOADAPD,
2360 IX86_BUILTIN_LOADUPD,
2361 IX86_BUILTIN_STOREAPD,
2362 IX86_BUILTIN_STOREUPD,
2363 IX86_BUILTIN_LOADSD,
2364 IX86_BUILTIN_STORESD,
2365 IX86_BUILTIN_MOVSD,
2366
2367 IX86_BUILTIN_LOADHPD,
2368 IX86_BUILTIN_LOADLPD,
2369 IX86_BUILTIN_STOREHPD,
2370 IX86_BUILTIN_STORELPD,
2371
2372 IX86_BUILTIN_CVTDQ2PD,
2373 IX86_BUILTIN_CVTDQ2PS,
2374
2375 IX86_BUILTIN_CVTPD2DQ,
2376 IX86_BUILTIN_CVTPD2PI,
2377 IX86_BUILTIN_CVTPD2PS,
2378 IX86_BUILTIN_CVTTPD2DQ,
2379 IX86_BUILTIN_CVTTPD2PI,
2380
2381 IX86_BUILTIN_CVTPI2PD,
2382 IX86_BUILTIN_CVTSI2SD,
2383 IX86_BUILTIN_CVTSI642SD,
2384
2385 IX86_BUILTIN_CVTSD2SI,
2386 IX86_BUILTIN_CVTSD2SI64,
2387 IX86_BUILTIN_CVTSD2SS,
2388 IX86_BUILTIN_CVTSS2SD,
2389 IX86_BUILTIN_CVTTSD2SI,
2390 IX86_BUILTIN_CVTTSD2SI64,
2391
2392 IX86_BUILTIN_CVTPS2DQ,
2393 IX86_BUILTIN_CVTPS2PD,
2394 IX86_BUILTIN_CVTTPS2DQ,
2395
2396 IX86_BUILTIN_MOVNTI,
2397 IX86_BUILTIN_MOVNTPD,
2398 IX86_BUILTIN_MOVNTDQ,
2399
2400 IX86_BUILTIN_SETPD1,
2401 IX86_BUILTIN_SETPD,
2402 IX86_BUILTIN_CLRPD,
2403 IX86_BUILTIN_SETRPD,
2404 IX86_BUILTIN_LOADPD1,
2405 IX86_BUILTIN_LOADRPD,
2406 IX86_BUILTIN_STOREPD1,
2407 IX86_BUILTIN_STORERPD,
2408
2409 /* SSE2 MMX */
2410 IX86_BUILTIN_MASKMOVDQU,
2411 IX86_BUILTIN_MOVMSKPD,
2412 IX86_BUILTIN_PMOVMSKB128,
2413 IX86_BUILTIN_MOVQ2DQ,
2414 IX86_BUILTIN_MOVDQ2Q,
2415
2416 IX86_BUILTIN_PACKSSWB128,
2417 IX86_BUILTIN_PACKSSDW128,
2418 IX86_BUILTIN_PACKUSWB128,
2419
2420 IX86_BUILTIN_PADDB128,
2421 IX86_BUILTIN_PADDW128,
2422 IX86_BUILTIN_PADDD128,
2423 IX86_BUILTIN_PADDQ128,
2424 IX86_BUILTIN_PADDSB128,
2425 IX86_BUILTIN_PADDSW128,
2426 IX86_BUILTIN_PADDUSB128,
2427 IX86_BUILTIN_PADDUSW128,
2428 IX86_BUILTIN_PSUBB128,
2429 IX86_BUILTIN_PSUBW128,
2430 IX86_BUILTIN_PSUBD128,
2431 IX86_BUILTIN_PSUBQ128,
2432 IX86_BUILTIN_PSUBSB128,
2433 IX86_BUILTIN_PSUBSW128,
2434 IX86_BUILTIN_PSUBUSB128,
2435 IX86_BUILTIN_PSUBUSW128,
2436
2437 IX86_BUILTIN_PAND128,
2438 IX86_BUILTIN_PANDN128,
2439 IX86_BUILTIN_POR128,
2440 IX86_BUILTIN_PXOR128,
2441
2442 IX86_BUILTIN_PAVGB128,
2443 IX86_BUILTIN_PAVGW128,
2444
2445 IX86_BUILTIN_PCMPEQB128,
2446 IX86_BUILTIN_PCMPEQW128,
2447 IX86_BUILTIN_PCMPEQD128,
2448 IX86_BUILTIN_PCMPGTB128,
2449 IX86_BUILTIN_PCMPGTW128,
2450 IX86_BUILTIN_PCMPGTD128,
2451
2452 IX86_BUILTIN_PEXTRW128,
2453 IX86_BUILTIN_PINSRW128,
2454
2455 IX86_BUILTIN_PMADDWD128,
2456
2457 IX86_BUILTIN_PMAXSW128,
2458 IX86_BUILTIN_PMAXUB128,
2459 IX86_BUILTIN_PMINSW128,
2460 IX86_BUILTIN_PMINUB128,
2461
2462 IX86_BUILTIN_PMULUDQ,
2463 IX86_BUILTIN_PMULUDQ128,
2464 IX86_BUILTIN_PMULHUW128,
2465 IX86_BUILTIN_PMULHW128,
2466 IX86_BUILTIN_PMULLW128,
2467
2468 IX86_BUILTIN_PSADBW128,
2469 IX86_BUILTIN_PSHUFHW,
2470 IX86_BUILTIN_PSHUFLW,
2471 IX86_BUILTIN_PSHUFD,
2472
2473 IX86_BUILTIN_PSLLW128,
2474 IX86_BUILTIN_PSLLD128,
2475 IX86_BUILTIN_PSLLQ128,
2476 IX86_BUILTIN_PSRAW128,
2477 IX86_BUILTIN_PSRAD128,
2478 IX86_BUILTIN_PSRLW128,
2479 IX86_BUILTIN_PSRLD128,
2480 IX86_BUILTIN_PSRLQ128,
2481 IX86_BUILTIN_PSLLDQI128,
2482 IX86_BUILTIN_PSLLWI128,
2483 IX86_BUILTIN_PSLLDI128,
2484 IX86_BUILTIN_PSLLQI128,
2485 IX86_BUILTIN_PSRAWI128,
2486 IX86_BUILTIN_PSRADI128,
2487 IX86_BUILTIN_PSRLDQI128,
2488 IX86_BUILTIN_PSRLWI128,
2489 IX86_BUILTIN_PSRLDI128,
2490 IX86_BUILTIN_PSRLQI128,
2491
2492 IX86_BUILTIN_PUNPCKHBW128,
2493 IX86_BUILTIN_PUNPCKHWD128,
2494 IX86_BUILTIN_PUNPCKHDQ128,
2495 IX86_BUILTIN_PUNPCKHQDQ128,
2496 IX86_BUILTIN_PUNPCKLBW128,
2497 IX86_BUILTIN_PUNPCKLWD128,
2498 IX86_BUILTIN_PUNPCKLDQ128,
2499 IX86_BUILTIN_PUNPCKLQDQ128,
2500
2501 IX86_BUILTIN_CLFLUSH,
2502 IX86_BUILTIN_MFENCE,
2503 IX86_BUILTIN_LFENCE,
2504
2505 IX86_BUILTIN_MAX
2506 };
2507 \f
2508 /* Max number of args passed in registers. If this is more than 3, we will
2509 have problems with ebx (register #4), since it is a caller save register and
2510 is also used as the pic register in ELF. So for now, don't allow more than
2511 3 registers to be passed in registers. */
2512
2513 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2514
2515 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2516
2517 \f
2518 /* Specify the machine mode that this machine uses
2519 for the index in the tablejump instruction. */
2520 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2521
2522 /* Define as C expression which evaluates to nonzero if the tablejump
2523 instruction expects the table to contain offsets from the address of the
2524 table.
2525 Do not define this if the table should contain absolute addresses. */
2526 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2527
2528 /* Define this as 1 if `char' should by default be signed; else as 0. */
2529 #define DEFAULT_SIGNED_CHAR 1
2530
2531 /* Number of bytes moved into a data cache for a single prefetch operation. */
2532 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2533
2534 /* Number of prefetch operations that can be done in parallel. */
2535 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2536
2537 /* Max number of bytes we can move from memory to memory
2538 in one reasonably fast instruction. */
2539 #define MOVE_MAX 16
2540
2541 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2542 move efficiently, as opposed to MOVE_MAX which is the maximum
2543 number of bytes we can move with a single instruction. */
2544 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2545
2546 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2547 move-instruction pairs, we will do a movstr or libcall instead.
2548 Increasing the value will always make code faster, but eventually
2549 incurs high cost in increased code size.
2550
2551 If you don't define this, a reasonable default is used. */
2552
2553 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2554
2555 /* Define if shifts truncate the shift count
2556 which implies one can omit a sign-extension or zero-extension
2557 of a shift count. */
2558 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2559
2560 /* #define SHIFT_COUNT_TRUNCATED */
2561
2562 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2563 is done just by pretending it is already truncated. */
2564 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2565
2566 /* We assume that the store-condition-codes instructions store 0 for false
2567 and some other value for true. This is the value stored for true. */
2568
2569 #define STORE_FLAG_VALUE 1
2570
2571 /* When a prototype says `char' or `short', really pass an `int'.
2572 (The 386 can't easily push less than an int.) */
2573
2574 #define PROMOTE_PROTOTYPES 1
2575
2576 /* A macro to update M and UNSIGNEDP when an object whose type is
2577 TYPE and which has the specified mode and signedness is to be
2578 stored in a register. This macro is only called when TYPE is a
2579 scalar type.
2580
2581 On i386 it is sometimes useful to promote HImode and QImode
2582 quantities to SImode. The choice depends on target type. */
2583
2584 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2585 do { \
2586 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2587 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2588 (MODE) = SImode; \
2589 } while (0)
2590
2591 /* Specify the machine mode that pointers have.
2592 After generation of rtl, the compiler makes no further distinction
2593 between pointers and any other objects of this machine mode. */
2594 #define Pmode (TARGET_64BIT ? DImode : SImode)
2595
2596 /* A function address in a call instruction
2597 is a byte address (for indexing purposes)
2598 so give the MEM rtx a byte's mode. */
2599 #define FUNCTION_MODE QImode
2600 \f
2601 /* A C expression for the cost of moving data from a register in class FROM to
2602 one in class TO. The classes are expressed using the enumeration values
2603 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2604 interpreted relative to that.
2605
2606 It is not required that the cost always equal 2 when FROM is the same as TO;
2607 on some machines it is expensive to move between registers if they are not
2608 general registers. */
2609
2610 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2611 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2612
2613 /* A C expression for the cost of moving data of mode M between a
2614 register and memory. A value of 2 is the default; this cost is
2615 relative to those in `REGISTER_MOVE_COST'.
2616
2617 If moving between registers and memory is more expensive than
2618 between two registers, you should define this macro to express the
2619 relative cost. */
2620
2621 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2622 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2623
2624 /* A C expression for the cost of a branch instruction. A value of 1
2625 is the default; other values are interpreted relative to that. */
2626
2627 #define BRANCH_COST ix86_branch_cost
2628
2629 /* Define this macro as a C expression which is nonzero if accessing
2630 less than a word of memory (i.e. a `char' or a `short') is no
2631 faster than accessing a word of memory, i.e., if such access
2632 require more than one instruction or if there is no difference in
2633 cost between byte and (aligned) word loads.
2634
2635 When this macro is not defined, the compiler will access a field by
2636 finding the smallest containing object; when it is defined, a
2637 fullword load will be used if alignment permits. Unless bytes
2638 accesses are faster than word accesses, using word accesses is
2639 preferable since it may eliminate subsequent memory access if
2640 subsequent accesses occur to other fields in the same word of the
2641 structure, but to different bytes. */
2642
2643 #define SLOW_BYTE_ACCESS 0
2644
2645 /* Nonzero if access to memory by shorts is slow and undesirable. */
2646 #define SLOW_SHORT_ACCESS 0
2647
2648 /* Define this macro to be the value 1 if unaligned accesses have a
2649 cost many times greater than aligned accesses, for example if they
2650 are emulated in a trap handler.
2651
2652 When this macro is nonzero, the compiler will act as if
2653 `STRICT_ALIGNMENT' were nonzero when generating code for block
2654 moves. This can cause significantly more instructions to be
2655 produced. Therefore, do not set this macro nonzero if unaligned
2656 accesses only add a cycle or two to the time for a memory access.
2657
2658 If the value of this macro is always zero, it need not be defined. */
2659
2660 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2661
2662 /* Define this macro to inhibit strength reduction of memory
2663 addresses. (On some machines, such strength reduction seems to do
2664 harm rather than good.) */
2665
2666 /* #define DONT_REDUCE_ADDR */
2667
2668 /* Define this macro if it is as good or better to call a constant
2669 function address than to call an address kept in a register.
2670
2671 Desirable on the 386 because a CALL with a constant address is
2672 faster than one with a register address. */
2673
2674 #define NO_FUNCTION_CSE
2675
2676 /* Define this macro if it is as good or better for a function to call
2677 itself with an explicit address than to call an address kept in a
2678 register. */
2679
2680 #define NO_RECURSIVE_FUNCTION_CSE
2681 \f
2682 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2683 return the mode to be used for the comparison.
2684
2685 For floating-point equality comparisons, CCFPEQmode should be used.
2686 VOIDmode should be used in all other cases.
2687
2688 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2689 possible, to allow for more combinations. */
2690
2691 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2692
2693 /* Return nonzero if MODE implies a floating point inequality can be
2694 reversed. */
2695
2696 #define REVERSIBLE_CC_MODE(MODE) 1
2697
2698 /* A C expression whose value is reversed condition code of the CODE for
2699 comparison done in CC_MODE mode. */
2700 #define REVERSE_CONDITION(CODE, MODE) \
2701 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2702 : reverse_condition_maybe_unordered (CODE))
2703
2704 \f
2705 /* Control the assembler format that we output, to the extent
2706 this does not vary between assemblers. */
2707
2708 /* How to refer to registers in assembler output.
2709 This sequence is indexed by compiler's hard-register-number (see above). */
2710
2711 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2712 For non floating point regs, the following are the HImode names.
2713
2714 For float regs, the stack top is sometimes referred to as "%st(0)"
2715 instead of just "%st". PRINT_REG handles this with the "y" code. */
2716
2717 #undef HI_REGISTER_NAMES
2718 #define HI_REGISTER_NAMES \
2719 {"ax","dx","cx","bx","si","di","bp","sp", \
2720 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2721 "flags","fpsr", "dirflag", "frame", \
2722 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2723 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2724 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2725 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2726
2727 #define REGISTER_NAMES HI_REGISTER_NAMES
2728
2729 /* Table of additional register names to use in user input. */
2730
2731 #define ADDITIONAL_REGISTER_NAMES \
2732 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2733 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2734 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2735 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2736 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2737 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2738 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2739 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2740
2741 /* Note we are omitting these since currently I don't know how
2742 to get gcc to use these, since they want the same but different
2743 number as al, and ax.
2744 */
2745
2746 #define QI_REGISTER_NAMES \
2747 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2748
2749 /* These parallel the array above, and can be used to access bits 8:15
2750 of regs 0 through 3. */
2751
2752 #define QI_HIGH_REGISTER_NAMES \
2753 {"ah", "dh", "ch", "bh", }
2754
2755 /* How to renumber registers for dbx and gdb. */
2756
2757 #define DBX_REGISTER_NUMBER(N) \
2758 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2759
2760 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2761 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2762 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2763
2764 /* Before the prologue, RA is at 0(%esp). */
2765 #define INCOMING_RETURN_ADDR_RTX \
2766 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2767
2768 /* After the prologue, RA is at -4(AP) in the current frame. */
2769 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2770 ((COUNT) == 0 \
2771 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2772 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2773
2774 /* PC is dbx register 8; let's use that column for RA. */
2775 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2776
2777 /* Before the prologue, the top of the frame is at 4(%esp). */
2778 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2779
2780 /* Describe how we implement __builtin_eh_return. */
2781 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2782 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2783
2784
2785 /* Select a format to encode pointers in exception handling data. CODE
2786 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2787 true if the symbol may be affected by dynamic relocations.
2788
2789 ??? All x86 object file formats are capable of representing this.
2790 After all, the relocation needed is the same as for the call insn.
2791 Whether or not a particular assembler allows us to enter such, I
2792 guess we'll have to see. */
2793 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2794 (flag_pic \
2795 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2796 : DW_EH_PE_absptr)
2797
2798 /* This is how to output an insn to push a register on the stack.
2799 It need not be very fast code. */
2800
2801 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2802 do { \
2803 if (TARGET_64BIT) \
2804 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2805 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2806 else \
2807 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2808 } while (0)
2809
2810 /* This is how to output an insn to pop a register from the stack.
2811 It need not be very fast code. */
2812
2813 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2814 do { \
2815 if (TARGET_64BIT) \
2816 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2817 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2818 else \
2819 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2820 } while (0)
2821
2822 /* This is how to output an element of a case-vector that is absolute. */
2823
2824 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2825 ix86_output_addr_vec_elt ((FILE), (VALUE))
2826
2827 /* This is how to output an element of a case-vector that is relative. */
2828
2829 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2830 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2831
2832 /* Under some conditions we need jump tables in the text section, because
2833 the assembler cannot handle label differences between sections. */
2834
2835 #define JUMP_TABLES_IN_TEXT_SECTION \
2836 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2837
2838 /* A C statement that outputs an address constant appropriate to
2839 for DWARF debugging. */
2840
2841 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2842 i386_dwarf_output_addr_const ((FILE), (X))
2843
2844 /* Emit a dtp-relative reference to a TLS variable. */
2845
2846 #ifdef HAVE_AS_TLS
2847 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2848 i386_output_dwarf_dtprel (FILE, SIZE, X)
2849 #endif
2850
2851 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2852 and switch back. For x86 we do this only to save a few bytes that
2853 would otherwise be unused in the text section. */
2854 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2855 asm (SECTION_OP "\n\t" \
2856 "call " USER_LABEL_PREFIX #FUNC "\n" \
2857 TEXT_SECTION_ASM_OP);
2858 \f
2859 /* Print operand X (an rtx) in assembler syntax to file FILE.
2860 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2861 Effect of various CODE letters is described in i386.c near
2862 print_operand function. */
2863
2864 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2865 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2866
2867 /* Print the name of a register based on its machine mode and number.
2868 If CODE is 'w', pretend the mode is HImode.
2869 If CODE is 'b', pretend the mode is QImode.
2870 If CODE is 'k', pretend the mode is SImode.
2871 If CODE is 'q', pretend the mode is DImode.
2872 If CODE is 'h', pretend the reg is the `high' byte register.
2873 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2874
2875 #define PRINT_REG(X, CODE, FILE) \
2876 print_reg ((X), (CODE), (FILE))
2877
2878 #define PRINT_OPERAND(FILE, X, CODE) \
2879 print_operand ((FILE), (X), (CODE))
2880
2881 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2882 print_operand_address ((FILE), (ADDR))
2883
2884 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2885 do { \
2886 if (! output_addr_const_extra (FILE, (X))) \
2887 goto FAIL; \
2888 } while (0);
2889
2890 /* Print the name of a register for based on its machine mode and number.
2891 This macro is used to print debugging output.
2892 This macro is different from PRINT_REG in that it may be used in
2893 programs that are not linked with aux-output.o. */
2894
2895 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2896 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
2897 static const char * const qi_name[] = QI_REGISTER_NAMES; \
2898 fprintf ((FILE), "%d ", REGNO (X)); \
2899 if (REGNO (X) == FLAGS_REG) \
2900 { fputs ("flags", (FILE)); break; } \
2901 if (REGNO (X) == DIRFLAG_REG) \
2902 { fputs ("dirflag", (FILE)); break; } \
2903 if (REGNO (X) == FPSR_REG) \
2904 { fputs ("fpsr", (FILE)); break; } \
2905 if (REGNO (X) == ARG_POINTER_REGNUM) \
2906 { fputs ("argp", (FILE)); break; } \
2907 if (REGNO (X) == FRAME_POINTER_REGNUM) \
2908 { fputs ("frame", (FILE)); break; } \
2909 if (STACK_TOP_P (X)) \
2910 { fputs ("st(0)", (FILE)); break; } \
2911 if (FP_REG_P (X)) \
2912 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
2913 if (REX_INT_REG_P (X)) \
2914 { \
2915 switch (GET_MODE_SIZE (GET_MODE (X))) \
2916 { \
2917 default: \
2918 case 8: \
2919 fprintf ((FILE), "r%i", REGNO (X) \
2920 - FIRST_REX_INT_REG + 8); \
2921 break; \
2922 case 4: \
2923 fprintf ((FILE), "r%id", REGNO (X) \
2924 - FIRST_REX_INT_REG + 8); \
2925 break; \
2926 case 2: \
2927 fprintf ((FILE), "r%iw", REGNO (X) \
2928 - FIRST_REX_INT_REG + 8); \
2929 break; \
2930 case 1: \
2931 fprintf ((FILE), "r%ib", REGNO (X) \
2932 - FIRST_REX_INT_REG + 8); \
2933 break; \
2934 } \
2935 break; \
2936 } \
2937 switch (GET_MODE_SIZE (GET_MODE (X))) \
2938 { \
2939 case 8: \
2940 fputs ("r", (FILE)); \
2941 fputs (hi_name[REGNO (X)], (FILE)); \
2942 break; \
2943 default: \
2944 fputs ("e", (FILE)); \
2945 case 2: \
2946 fputs (hi_name[REGNO (X)], (FILE)); \
2947 break; \
2948 case 1: \
2949 fputs (qi_name[REGNO (X)], (FILE)); \
2950 break; \
2951 } \
2952 } while (0)
2953
2954 /* a letter which is not needed by the normal asm syntax, which
2955 we can use for operand syntax in the extended asm */
2956
2957 #define ASM_OPERAND_LETTER '#'
2958 #define RET return ""
2959 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2960 \f
2961 /* Define the codes that are matched by predicates in i386.c. */
2962
2963 #define PREDICATE_CODES \
2964 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2965 SYMBOL_REF, LABEL_REF, CONST}}, \
2966 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2967 SYMBOL_REF, LABEL_REF, CONST}}, \
2968 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
2969 SYMBOL_REF, LABEL_REF, CONST}}, \
2970 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2971 SYMBOL_REF, LABEL_REF, CONST}}, \
2972 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2973 SYMBOL_REF, LABEL_REF, CONST}}, \
2974 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2975 SYMBOL_REF, LABEL_REF, CONST}}, \
2976 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2977 SYMBOL_REF, LABEL_REF}}, \
2978 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
2979 {"const_int_1_operand", {CONST_INT}}, \
2980 {"const_int_1_31_operand", {CONST_INT}}, \
2981 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2982 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2983 LABEL_REF, SUBREG, REG, MEM}}, \
2984 {"pic_symbolic_operand", {CONST}}, \
2985 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
2986 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
2987 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
2988 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
2989 {"const1_operand", {CONST_INT}}, \
2990 {"const248_operand", {CONST_INT}}, \
2991 {"incdec_operand", {CONST_INT}}, \
2992 {"mmx_reg_operand", {REG}}, \
2993 {"reg_no_sp_operand", {SUBREG, REG}}, \
2994 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2995 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
2996 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
2997 {"index_register_operand", {SUBREG, REG}}, \
2998 {"flags_reg_operand", {REG}}, \
2999 {"q_regs_operand", {SUBREG, REG}}, \
3000 {"non_q_regs_operand", {SUBREG, REG}}, \
3001 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3002 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3003 GE, UNGE, LTGT, UNEQ}}, \
3004 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3005 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3006 }}, \
3007 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
3008 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3009 UNGE, UNGT, LTGT, UNEQ }}, \
3010 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
3011 GE, UNGE, LTGT, UNEQ}}, \
3012 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3013 {"ext_register_operand", {SUBREG, REG}}, \
3014 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3015 {"mult_operator", {MULT}}, \
3016 {"div_operator", {DIV}}, \
3017 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3018 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3019 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3020 LSHIFTRT, ROTATERT}}, \
3021 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
3022 {"memory_displacement_operand", {MEM}}, \
3023 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3024 LABEL_REF, SUBREG, REG, MEM, AND}}, \
3025 {"long_memory_operand", {MEM}}, \
3026 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3027 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3028 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3029 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
3030 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
3031 {"any_fp_register_operand", {REG}}, \
3032 {"register_and_not_any_fp_reg_operand", {REG}}, \
3033 {"fp_register_operand", {REG}}, \
3034 {"register_and_not_fp_reg_operand", {REG}}, \
3035 {"zero_extended_scalar_load_operand", {MEM}}, \
3036 {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}}, \
3037
3038 /* A list of predicates that do special things with modes, and so
3039 should not elicit warnings for VOIDmode match_operand. */
3040
3041 #define SPECIAL_MODE_PREDICATES \
3042 "ext_register_operand",
3043 \f
3044 /* Which processor to schedule for. The cpu attribute defines a list that
3045 mirrors this list, so changes to i386.md must be made at the same time. */
3046
3047 enum processor_type
3048 {
3049 PROCESSOR_I386, /* 80386 */
3050 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3051 PROCESSOR_PENTIUM,
3052 PROCESSOR_PENTIUMPRO,
3053 PROCESSOR_K6,
3054 PROCESSOR_ATHLON,
3055 PROCESSOR_PENTIUM4,
3056 PROCESSOR_K8,
3057 PROCESSOR_max
3058 };
3059
3060 extern enum processor_type ix86_tune;
3061 extern const char *ix86_tune_string;
3062
3063 extern enum processor_type ix86_arch;
3064 extern const char *ix86_arch_string;
3065
3066 enum fpmath_unit
3067 {
3068 FPMATH_387 = 1,
3069 FPMATH_SSE = 2
3070 };
3071
3072 extern enum fpmath_unit ix86_fpmath;
3073 extern const char *ix86_fpmath_string;
3074
3075 enum tls_dialect
3076 {
3077 TLS_DIALECT_GNU,
3078 TLS_DIALECT_SUN
3079 };
3080
3081 extern enum tls_dialect ix86_tls_dialect;
3082 extern const char *ix86_tls_dialect_string;
3083
3084 enum cmodel {
3085 CM_32, /* The traditional 32-bit ABI. */
3086 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3087 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3088 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3089 CM_LARGE, /* No assumptions. */
3090 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3091 };
3092
3093 extern enum cmodel ix86_cmodel;
3094 extern const char *ix86_cmodel_string;
3095
3096 /* Size of the RED_ZONE area. */
3097 #define RED_ZONE_SIZE 128
3098 /* Reserved area of the red zone for temporaries. */
3099 #define RED_ZONE_RESERVE 8
3100
3101 enum asm_dialect {
3102 ASM_ATT,
3103 ASM_INTEL
3104 };
3105
3106 extern const char *ix86_asm_string;
3107 extern enum asm_dialect ix86_asm_dialect;
3108
3109 extern int ix86_regparm;
3110 extern const char *ix86_regparm_string;
3111
3112 extern int ix86_preferred_stack_boundary;
3113 extern const char *ix86_preferred_stack_boundary_string;
3114
3115 extern int ix86_branch_cost;
3116 extern const char *ix86_branch_cost_string;
3117
3118 extern const char *ix86_debug_arg_string;
3119 extern const char *ix86_debug_addr_string;
3120
3121 /* Obsoleted by -f options. Remove before 3.2 ships. */
3122 extern const char *ix86_align_loops_string;
3123 extern const char *ix86_align_jumps_string;
3124 extern const char *ix86_align_funcs_string;
3125
3126 /* Smallest class containing REGNO. */
3127 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3128
3129 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3130 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3131 \f
3132 /* To properly truncate FP values into integers, we need to set i387 control
3133 word. We can't emit proper mode switching code before reload, as spills
3134 generated by reload may truncate values incorrectly, but we still can avoid
3135 redundant computation of new control word by the mode switching pass.
3136 The fldcw instructions are still emitted redundantly, but this is probably
3137 not going to be noticeable problem, as most CPUs do have fast path for
3138 the sequence.
3139
3140 The machinery is to emit simple truncation instructions and split them
3141 before reload to instructions having USEs of two memory locations that
3142 are filled by this code to old and new control word.
3143
3144 Post-reload pass may be later used to eliminate the redundant fildcw if
3145 needed. */
3146
3147 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3148
3149 /* Define this macro if the port needs extra instructions inserted
3150 for mode switching in an optimizing compilation. */
3151
3152 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3153
3154 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3155 initializer for an array of integers. Each initializer element N
3156 refers to an entity that needs mode switching, and specifies the
3157 number of different modes that might need to be set for this
3158 entity. The position of the initializer in the initializer -
3159 starting counting at zero - determines the integer that is used to
3160 refer to the mode-switched entity in question. */
3161
3162 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3163
3164 /* ENTITY is an integer specifying a mode-switched entity. If
3165 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3166 return an integer value not larger than the corresponding element
3167 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3168 must be switched into prior to the execution of INSN. */
3169
3170 #define MODE_NEEDED(ENTITY, I) \
3171 (GET_CODE (I) == CALL_INSN \
3172 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3173 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3174 ? FP_CW_UNINITIALIZED \
3175 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3176 ? FP_CW_ANY \
3177 : FP_CW_STORED)
3178
3179 /* This macro specifies the order in which modes for ENTITY are
3180 processed. 0 is the highest priority. */
3181
3182 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3183
3184 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3185 is the set of hard registers live at the point where the insn(s)
3186 are to be inserted. */
3187
3188 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3189 ((MODE) == FP_CW_STORED \
3190 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3191 assign_386_stack_local (HImode, 2)), 0\
3192 : 0)
3193 \f
3194 /* Avoid renaming of stack registers, as doing so in combination with
3195 scheduling just increases amount of live registers at time and in
3196 the turn amount of fxch instructions needed.
3197
3198 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3199
3200 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3201 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3202
3203 \f
3204 #define DLL_IMPORT_EXPORT_PREFIX '#'
3205
3206 #define FASTCALL_PREFIX '@'
3207 \f
3208 struct machine_function GTY(())
3209 {
3210 struct stack_local_entry *stack_locals;
3211 const char *some_ld_name;
3212 int save_varrargs_registers;
3213 int accesses_prev_frame;
3214 int optimize_mode_switching;
3215 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3216 determine the style used. */
3217 int use_fast_prologue_epilogue;
3218 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3219 for. */
3220 int use_fast_prologue_epilogue_nregs;
3221 };
3222
3223 #define ix86_stack_locals (cfun->machine->stack_locals)
3224 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3225 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3226
3227 /*
3228 Local variables:
3229 version-control: t
3230 End:
3231 */