i386.c (x86_inter_unit_moves): New variable.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #define TARGET_CPU_DEFAULT 0
101 #endif
102
103 /* Masks for the -m switches */
104 #define MASK_80387 0x00000001 /* Hardware floating point */
105 #define MASK_RTD 0x00000002 /* Use ret that pops args */
106 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
107 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
108 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
109 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
110 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
111 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
112 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
113 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
114 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
115 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
116 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
117 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
118 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
119 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
120 #define MASK_3DNOW 0x00010000 /* Support 3Dnow builtins */
121 #define MASK_3DNOW_A 0x00020000 /* Support Athlon 3Dnow builtins */
122 #define MASK_128BIT_LONG_DOUBLE 0x00040000 /* long double size is 128bit */
123 #define MASK_64BIT 0x00080000 /* Produce 64bit code */
124 #define MASK_MS_BITFIELD_LAYOUT 0x00100000 /* Use native (MS) bitfield layout */
125
126 /* Unused: 0x03e0000 */
127
128 /* ... overlap with subtarget options starts by 0x04000000. */
129 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
130
131 /* Use the floating point instructions */
132 #define TARGET_80387 (target_flags & MASK_80387)
133
134 /* Compile using ret insn that pops args.
135 This will not work unless you use prototypes at least
136 for all functions that can take varying numbers of args. */
137 #define TARGET_RTD (target_flags & MASK_RTD)
138
139 /* Align doubles to a two word boundary. This breaks compatibility with
140 the published ABI's for structures containing doubles, but produces
141 faster code on the pentium. */
142 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
143
144 /* Use push instructions to save outgoing args. */
145 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
146
147 /* Accumulate stack adjustments to prologue/epilogue. */
148 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
149 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
150
151 /* Put uninitialized locals into bss, not data.
152 Meaningful only on svr3. */
153 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
154
155 /* Use IEEE floating point comparisons. These handle correctly the cases
156 where the result of a comparison is unordered. Normally SIGFPE is
157 generated in such cases, in which case this isn't needed. */
158 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
159
160 /* Functions that return a floating point value may return that value
161 in the 387 FPU or in 386 integer registers. If set, this flag causes
162 the 387 to be used, which is compatible with most calling conventions. */
163 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
164
165 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
166 This mode wastes cache, but avoid misaligned data accesses and simplifies
167 address calculations. */
168 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
169
170 /* Disable generation of FP sin, cos and sqrt operations for 387.
171 This is because FreeBSD lacks these in the math-emulator-code */
172 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
173
174 /* Don't create frame pointers for leaf functions */
175 #define TARGET_OMIT_LEAF_FRAME_POINTER \
176 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
177
178 /* Debug GO_IF_LEGITIMATE_ADDRESS */
179 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
180
181 /* Debug FUNCTION_ARG macros */
182 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
183
184 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
185 compile-time constant. */
186 #ifdef IN_LIBGCC2
187 #ifdef __x86_64__
188 #define TARGET_64BIT 1
189 #else
190 #define TARGET_64BIT 0
191 #endif
192 #else
193 #ifdef TARGET_BI_ARCH
194 #define TARGET_64BIT (target_flags & MASK_64BIT)
195 #else
196 #if TARGET_64BIT_DEFAULT
197 #define TARGET_64BIT 1
198 #else
199 #define TARGET_64BIT 0
200 #endif
201 #endif
202 #endif
203
204 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
205 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
206 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
207 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
208 #define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
209 #define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
210 #define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
211 #define TARGET_K8 (ix86_cpu == PROCESSOR_K8)
212 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
213
214 #define CPUMASK (1 << ix86_cpu)
215 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
216 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
217 extern const int x86_branch_hints, x86_unroll_strlen;
218 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
219 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
220 extern const int x86_use_cltd, x86_read_modify_write;
221 extern const int x86_read_modify, x86_split_long_moves;
222 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
223 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
224 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
225 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
226 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
227 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
228 extern const int x86_epilogue_using_move, x86_decompose_lea;
229 extern const int x86_arch_always_fancy_math_387, x86_shift1;
230 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
231 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
232 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
233 extern const int x86_inter_unit_moves;
234 extern int x86_prefetch_sse;
235
236 #define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
237 #define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
238 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
239 #define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
240 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
241 /* For sane SSE instruction set generation we need fcomi instruction. It is
242 safe to enable all CMOVE instructions. */
243 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
244 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
245 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
246 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
247 #define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
248 #define TARGET_MOVX (x86_movx & CPUMASK)
249 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
250 #define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
251 #define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
252 #define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
253 #define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
254 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
255 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
256 #define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
257 #define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
258 #define TARGET_FAST_PREFIX (x86_fast_prefix & CPUMASK)
259 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
260 #define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
261 #define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
262 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
263 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
264 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
265 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
266 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
267 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
268 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
269 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
270 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
271 (x86_sse_partial_reg_dependency & CPUMASK)
272 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & CPUMASK)
273 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
274 (x86_sse_partial_regs_for_cvtsd2ss & CPUMASK)
275 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & CPUMASK)
276 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & CPUMASK)
277 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & CPUMASK)
278 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
279 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
280 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
281 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
282 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
283 #define TARGET_SHIFT1 (x86_shift1 & CPUMASK)
284 #define TARGET_USE_FFREEP (x86_use_ffreep & CPUMASK)
285 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & CPUMASK)
286 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & CPUMASK)
287
288 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
289
290 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
291 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
292
293 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
294
295 #define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
296 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
297 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
298 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
299 && (ix86_fpmath & FPMATH_387))
300 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
301 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
302 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
303
304 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
305
306 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
307
308 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
309 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
310
311 /* WARNING: Do not mark empty strings for translation, as calling
312 gettext on an empty string does NOT return an empty
313 string. */
314
315
316 #define TARGET_SWITCHES \
317 { { "80387", MASK_80387, N_("Use hardware fp") }, \
318 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
319 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
320 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
321 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
322 { "386", 0, "" /*Deprecated.*/}, \
323 { "486", 0, "" /*Deprecated.*/}, \
324 { "pentium", 0, "" /*Deprecated.*/}, \
325 { "pentiumpro", 0, "" /*Deprecated.*/}, \
326 { "intel-syntax", 0, "" /*Deprecated.*/}, \
327 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
328 { "rtd", MASK_RTD, \
329 N_("Alternate calling convention") }, \
330 { "no-rtd", -MASK_RTD, \
331 N_("Use normal calling convention") }, \
332 { "align-double", MASK_ALIGN_DOUBLE, \
333 N_("Align some doubles on dword boundary") }, \
334 { "no-align-double", -MASK_ALIGN_DOUBLE, \
335 N_("Align doubles on word boundary") }, \
336 { "svr3-shlib", MASK_SVR3_SHLIB, \
337 N_("Uninitialized locals in .bss") }, \
338 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
339 N_("Uninitialized locals in .data") }, \
340 { "ieee-fp", MASK_IEEE_FP, \
341 N_("Use IEEE math for fp comparisons") }, \
342 { "no-ieee-fp", -MASK_IEEE_FP, \
343 N_("Do not use IEEE math for fp comparisons") }, \
344 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
345 N_("Return values of functions in FPU registers") }, \
346 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
347 N_("Do not return values of functions in FPU registers")}, \
348 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
349 N_("Do not generate sin, cos, sqrt for FPU") }, \
350 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
351 N_("Generate sin, cos, sqrt for FPU")}, \
352 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
353 N_("Omit the frame pointer in leaf functions") }, \
354 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
355 { "stack-arg-probe", MASK_STACK_PROBE, \
356 N_("Enable stack probing") }, \
357 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
358 { "windows", 0, 0 /* undocumented */ }, \
359 { "dll", 0, 0 /* undocumented */ }, \
360 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
361 N_("Align destination of the string operations") }, \
362 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
363 N_("Do not align destination of the string operations") }, \
364 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
365 N_("Inline all known string operations") }, \
366 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
367 N_("Do not inline all known string operations") }, \
368 { "push-args", -MASK_NO_PUSH_ARGS, \
369 N_("Use push instructions to save outgoing arguments") }, \
370 { "no-push-args", MASK_NO_PUSH_ARGS, \
371 N_("Do not use push instructions to save outgoing arguments") }, \
372 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
373 N_("Use push instructions to save outgoing arguments") }, \
374 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
375 N_("Do not use push instructions to save outgoing arguments") }, \
376 { "mmx", MASK_MMX, \
377 N_("Support MMX built-in functions") }, \
378 { "no-mmx", -MASK_MMX, \
379 N_("Do not support MMX built-in functions") }, \
380 { "3dnow", MASK_3DNOW, \
381 N_("Support 3DNow! built-in functions") }, \
382 { "no-3dnow", -MASK_3DNOW, \
383 N_("Do not support 3DNow! built-in functions") }, \
384 { "sse", MASK_SSE, \
385 N_("Support MMX and SSE built-in functions and code generation") }, \
386 { "no-sse", -MASK_SSE, \
387 N_("Do not support MMX and SSE built-in functions and code generation") },\
388 { "sse2", MASK_SSE2, \
389 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
390 { "no-sse2", -MASK_SSE2, \
391 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
392 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
393 N_("sizeof(long double) is 16") }, \
394 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
395 N_("sizeof(long double) is 12") }, \
396 { "64", MASK_64BIT, \
397 N_("Generate 64bit x86-64 code") }, \
398 { "32", -MASK_64BIT, \
399 N_("Generate 32bit i386 code") }, \
400 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
401 N_("Use native (MS) bitfield layout") }, \
402 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
403 N_("Use gcc default bitfield layout") }, \
404 { "red-zone", -MASK_NO_RED_ZONE, \
405 N_("Use red-zone in the x86-64 code") }, \
406 { "no-red-zone", MASK_NO_RED_ZONE, \
407 N_("Do not use red-zone in the x86-64 code") }, \
408 SUBTARGET_SWITCHES \
409 { "", TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT, 0 }}
410
411 #ifndef TARGET_64BIT_DEFAULT
412 #define TARGET_64BIT_DEFAULT 0
413 #endif
414
415 /* Once GDB has been enhanced to deal with functions without frame
416 pointers, we can change this to allow for elimination of
417 the frame pointer in leaf functions. */
418 #define TARGET_DEFAULT 0
419
420 /* This is not really a target flag, but is done this way so that
421 it's analogous to similar code for Mach-O on PowerPC. darwin.h
422 redefines this to 1. */
423 #define TARGET_MACHO 0
424
425 /* This macro is similar to `TARGET_SWITCHES' but defines names of
426 command options that have values. Its definition is an
427 initializer with a subgrouping for each command option.
428
429 Each subgrouping contains a string constant, that defines the
430 fixed part of the option name, and the address of a variable. The
431 variable, type `char *', is set to the variable part of the given
432 option if the fixed part matches. The actual option name is made
433 by appending `-m' to the specified name. */
434 #define TARGET_OPTIONS \
435 { { "cpu=", &ix86_cpu_string, \
436 N_("Schedule code for given CPU")}, \
437 { "fpmath=", &ix86_fpmath_string, \
438 N_("Generate floating point mathematics using given instruction set")},\
439 { "arch=", &ix86_arch_string, \
440 N_("Generate code for given CPU")}, \
441 { "regparm=", &ix86_regparm_string, \
442 N_("Number of registers used to pass integer arguments") }, \
443 { "align-loops=", &ix86_align_loops_string, \
444 N_("Loop code aligned to this power of 2") }, \
445 { "align-jumps=", &ix86_align_jumps_string, \
446 N_("Jump targets are aligned to this power of 2") }, \
447 { "align-functions=", &ix86_align_funcs_string, \
448 N_("Function starts are aligned to this power of 2") }, \
449 { "preferred-stack-boundary=", \
450 &ix86_preferred_stack_boundary_string, \
451 N_("Attempt to keep stack aligned to this power of 2") }, \
452 { "branch-cost=", &ix86_branch_cost_string, \
453 N_("Branches are this expensive (1-5, arbitrary units)") }, \
454 { "cmodel=", &ix86_cmodel_string, \
455 N_("Use given x86-64 code model") }, \
456 { "debug-arg", &ix86_debug_arg_string, \
457 "" /* Undocumented. */ }, \
458 { "debug-addr", &ix86_debug_addr_string, \
459 "" /* Undocumented. */ }, \
460 { "asm=", &ix86_asm_string, \
461 N_("Use given assembler dialect") }, \
462 { "tls-dialect=", &ix86_tls_dialect_string, \
463 N_("Use given thread-local storage dialect") }, \
464 SUBTARGET_OPTIONS \
465 }
466
467 /* Sometimes certain combinations of command options do not make
468 sense on a particular target machine. You can define a macro
469 `OVERRIDE_OPTIONS' to take account of this. This macro, if
470 defined, is executed once just after all the command options have
471 been parsed.
472
473 Don't use this macro to turn on various extra optimizations for
474 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
475
476 #define OVERRIDE_OPTIONS override_options ()
477
478 /* These are meant to be redefined in the host dependent files */
479 #define SUBTARGET_SWITCHES
480 #define SUBTARGET_OPTIONS
481
482 /* Define this to change the optimizations performed by default. */
483 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
484 optimization_options ((LEVEL), (SIZE))
485
486 /* Specs for the compiler proper */
487
488 #ifndef CC1_CPU_SPEC
489 #define CC1_CPU_SPEC "\
490 %{!mcpu*: \
491 %{m386:-mcpu=i386 \
492 %n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
493 %{m486:-mcpu=i486 \
494 %n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
495 %{mpentium:-mcpu=pentium \
496 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
497 %{mpentiumpro:-mcpu=pentiumpro \
498 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
499 %{mintel-syntax:-masm=intel \
500 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
501 %{mno-intel-syntax:-masm=att \
502 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
503 #endif
504 \f
505 /* Target CPU builtins. */
506 #define TARGET_CPU_CPP_BUILTINS() \
507 do \
508 { \
509 size_t arch_len = strlen (ix86_arch_string); \
510 size_t cpu_len = strlen (ix86_cpu_string); \
511 int last_arch_char = ix86_arch_string[arch_len - 1]; \
512 int last_cpu_char = ix86_cpu_string[cpu_len - 1]; \
513 \
514 if (TARGET_64BIT) \
515 { \
516 builtin_assert ("cpu=x86_64"); \
517 builtin_assert ("machine=x86_64"); \
518 builtin_define ("__x86_64"); \
519 builtin_define ("__x86_64__"); \
520 } \
521 else \
522 { \
523 builtin_assert ("cpu=i386"); \
524 builtin_assert ("machine=i386"); \
525 builtin_define_std ("i386"); \
526 } \
527 \
528 /* Built-ins based on -mcpu= (or -march= if no \
529 CPU given). */ \
530 if (TARGET_386) \
531 builtin_define ("__tune_i386__"); \
532 else if (TARGET_486) \
533 builtin_define ("__tune_i486__"); \
534 else if (TARGET_PENTIUM) \
535 { \
536 builtin_define ("__tune_i586__"); \
537 builtin_define ("__tune_pentium__"); \
538 if (last_cpu_char == 'x') \
539 builtin_define ("__tune_pentium_mmx__"); \
540 } \
541 else if (TARGET_PENTIUMPRO) \
542 { \
543 builtin_define ("__tune_i686__"); \
544 builtin_define ("__tune_pentiumpro__"); \
545 switch (last_cpu_char) \
546 { \
547 case '3': \
548 builtin_define ("__tune_pentium3__"); \
549 /* FALLTHRU */ \
550 case '2': \
551 builtin_define ("__tune_pentium2__"); \
552 break; \
553 } \
554 } \
555 else if (TARGET_K6) \
556 { \
557 builtin_define ("__tune_k6__"); \
558 if (last_cpu_char == '2') \
559 builtin_define ("__tune_k6_2__"); \
560 else if (last_cpu_char == '3') \
561 builtin_define ("__tune_k6_3__"); \
562 } \
563 else if (TARGET_ATHLON) \
564 { \
565 builtin_define ("__tune_athlon__"); \
566 /* Only plain "athlon" lacks SSE. */ \
567 if (last_cpu_char != 'n') \
568 builtin_define ("__tune_athlon_sse__"); \
569 } \
570 else if (TARGET_K8) \
571 builtin_define ("__tune_k8__"); \
572 else if (TARGET_PENTIUM4) \
573 builtin_define ("__tune_pentium4__"); \
574 \
575 if (TARGET_MMX) \
576 builtin_define ("__MMX__"); \
577 if (TARGET_3DNOW) \
578 builtin_define ("__3dNOW__"); \
579 if (TARGET_3DNOW_A) \
580 builtin_define ("__3dNOW_A__"); \
581 if (TARGET_SSE) \
582 builtin_define ("__SSE__"); \
583 if (TARGET_SSE2) \
584 builtin_define ("__SSE2__"); \
585 if (TARGET_SSE_MATH && TARGET_SSE) \
586 builtin_define ("__SSE_MATH__"); \
587 if (TARGET_SSE_MATH && TARGET_SSE2) \
588 builtin_define ("__SSE2_MATH__"); \
589 \
590 /* Built-ins based on -march=. */ \
591 if (ix86_arch == PROCESSOR_I486) \
592 { \
593 builtin_define ("__i486"); \
594 builtin_define ("__i486__"); \
595 } \
596 else if (ix86_arch == PROCESSOR_PENTIUM) \
597 { \
598 builtin_define ("__i586"); \
599 builtin_define ("__i586__"); \
600 builtin_define ("__pentium"); \
601 builtin_define ("__pentium__"); \
602 if (last_arch_char == 'x') \
603 builtin_define ("__pentium_mmx__"); \
604 } \
605 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
606 { \
607 builtin_define ("__i686"); \
608 builtin_define ("__i686__"); \
609 builtin_define ("__pentiumpro"); \
610 builtin_define ("__pentiumpro__"); \
611 } \
612 else if (ix86_arch == PROCESSOR_K6) \
613 { \
614 \
615 builtin_define ("__k6"); \
616 builtin_define ("__k6__"); \
617 if (last_arch_char == '2') \
618 builtin_define ("__k6_2__"); \
619 else if (last_arch_char == '3') \
620 builtin_define ("__k6_3__"); \
621 } \
622 else if (ix86_arch == PROCESSOR_ATHLON) \
623 { \
624 builtin_define ("__athlon"); \
625 builtin_define ("__athlon__"); \
626 /* Only plain "athlon" lacks SSE. */ \
627 if (last_arch_char != 'n') \
628 builtin_define ("__athlon_sse__"); \
629 } \
630 else if (ix86_arch == PROCESSOR_K8) \
631 { \
632 builtin_define ("__k8"); \
633 builtin_define ("__k8__"); \
634 } \
635 else if (ix86_arch == PROCESSOR_PENTIUM4) \
636 { \
637 builtin_define ("__pentium4"); \
638 builtin_define ("__pentium4__"); \
639 } \
640 } \
641 while (0)
642
643 #define TARGET_CPU_DEFAULT_i386 0
644 #define TARGET_CPU_DEFAULT_i486 1
645 #define TARGET_CPU_DEFAULT_pentium 2
646 #define TARGET_CPU_DEFAULT_pentium_mmx 3
647 #define TARGET_CPU_DEFAULT_pentiumpro 4
648 #define TARGET_CPU_DEFAULT_pentium2 5
649 #define TARGET_CPU_DEFAULT_pentium3 6
650 #define TARGET_CPU_DEFAULT_pentium4 7
651 #define TARGET_CPU_DEFAULT_k6 8
652 #define TARGET_CPU_DEFAULT_k6_2 9
653 #define TARGET_CPU_DEFAULT_k6_3 10
654 #define TARGET_CPU_DEFAULT_athlon 11
655 #define TARGET_CPU_DEFAULT_athlon_sse 12
656 #define TARGET_CPU_DEFAULT_k8 13
657
658 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
659 "pentiumpro", "pentium2", "pentium3", \
660 "pentium4", "k6", "k6-2", "k6-3",\
661 "athlon", "athlon-4", "k8"}
662
663 #ifndef CC1_SPEC
664 #define CC1_SPEC "%(cc1_cpu) "
665 #endif
666
667 /* This macro defines names of additional specifications to put in the
668 specs that can be used in various specifications like CC1_SPEC. Its
669 definition is an initializer with a subgrouping for each command option.
670
671 Each subgrouping contains a string constant, that defines the
672 specification name, and a string constant that used by the GNU CC driver
673 program.
674
675 Do not define this macro if it does not need to do anything. */
676
677 #ifndef SUBTARGET_EXTRA_SPECS
678 #define SUBTARGET_EXTRA_SPECS
679 #endif
680
681 #define EXTRA_SPECS \
682 { "cc1_cpu", CC1_CPU_SPEC }, \
683 SUBTARGET_EXTRA_SPECS
684 \f
685 /* target machine storage layout */
686
687 /* Define for XFmode or TFmode extended real floating point support.
688 The XFmode is specified by i386 ABI, while TFmode may be faster
689 due to alignment and simplifications in the address calculations. */
690 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
691 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
692 #ifdef __x86_64__
693 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
694 #else
695 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
696 #endif
697
698 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
699 FPU, assume that the fpcw is set to extended precision; when using
700 only SSE, rounding is correct; when using both SSE and the FPU,
701 the rounding precision is indeterminate, since either may be chosen
702 apparently at random. */
703 #define TARGET_FLT_EVAL_METHOD \
704 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 1 : 2)
705
706 #define SHORT_TYPE_SIZE 16
707 #define INT_TYPE_SIZE 32
708 #define FLOAT_TYPE_SIZE 32
709 #define LONG_TYPE_SIZE BITS_PER_WORD
710 #define MAX_WCHAR_TYPE_SIZE 32
711 #define DOUBLE_TYPE_SIZE 64
712 #define LONG_LONG_TYPE_SIZE 64
713
714 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
715 #define MAX_BITS_PER_WORD 64
716 #define MAX_LONG_TYPE_SIZE 64
717 #else
718 #define MAX_BITS_PER_WORD 32
719 #define MAX_LONG_TYPE_SIZE 32
720 #endif
721
722 /* Define this if most significant byte of a word is the lowest numbered. */
723 /* That is true on the 80386. */
724
725 #define BITS_BIG_ENDIAN 0
726
727 /* Define this if most significant byte of a word is the lowest numbered. */
728 /* That is not true on the 80386. */
729 #define BYTES_BIG_ENDIAN 0
730
731 /* Define this if most significant word of a multiword number is the lowest
732 numbered. */
733 /* Not true for 80386 */
734 #define WORDS_BIG_ENDIAN 0
735
736 /* Width of a word, in units (bytes). */
737 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
738 #ifdef IN_LIBGCC2
739 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
740 #else
741 #define MIN_UNITS_PER_WORD 4
742 #endif
743
744 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
745 #define PARM_BOUNDARY BITS_PER_WORD
746
747 /* Boundary (in *bits*) on which stack pointer should be aligned. */
748 #define STACK_BOUNDARY BITS_PER_WORD
749
750 /* Boundary (in *bits*) on which the stack pointer prefers to be
751 aligned; the compiler cannot rely on having this alignment. */
752 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
753
754 /* As of July 2001, many runtimes to not align the stack properly when
755 entering main. This causes expand_main_function to forcibly align
756 the stack, which results in aligned frames for functions called from
757 main, though it does nothing for the alignment of main itself. */
758 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
759 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
760
761 /* Minimum allocation boundary for the code of a function. */
762 #define FUNCTION_BOUNDARY 8
763
764 /* C++ stores the virtual bit in the lowest bit of function pointers. */
765 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
766
767 /* Alignment of field after `int : 0' in a structure. */
768
769 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
770
771 /* Minimum size in bits of the largest boundary to which any
772 and all fundamental data types supported by the hardware
773 might need to be aligned. No data type wants to be aligned
774 rounder than this.
775
776 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
777 and Pentium Pro XFmode values at 128 bit boundaries. */
778
779 #define BIGGEST_ALIGNMENT 128
780
781 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
782 #define ALIGN_MODE_128(MODE) \
783 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
784
785 /* The published ABIs say that doubles should be aligned on word
786 boundaries, so lower the alignment for structure fields unless
787 -malign-double is set. */
788
789 /* ??? Blah -- this macro is used directly by libobjc. Since it
790 supports no vector modes, cut out the complexity and fall back
791 on BIGGEST_FIELD_ALIGNMENT. */
792 #ifdef IN_TARGET_LIBS
793 #ifdef __x86_64__
794 #define BIGGEST_FIELD_ALIGNMENT 128
795 #else
796 #define BIGGEST_FIELD_ALIGNMENT 32
797 #endif
798 #else
799 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
800 x86_field_alignment (FIELD, COMPUTED)
801 #endif
802
803 /* If defined, a C expression to compute the alignment given to a
804 constant that is being placed in memory. EXP is the constant
805 and ALIGN is the alignment that the object would ordinarily have.
806 The value of this macro is used instead of that alignment to align
807 the object.
808
809 If this macro is not defined, then ALIGN is used.
810
811 The typical use of this macro is to increase alignment for string
812 constants to be word aligned so that `strcpy' calls that copy
813 constants can be done inline. */
814
815 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
816
817 /* If defined, a C expression to compute the alignment for a static
818 variable. TYPE is the data type, and ALIGN is the alignment that
819 the object would ordinarily have. The value of this macro is used
820 instead of that alignment to align the object.
821
822 If this macro is not defined, then ALIGN is used.
823
824 One use of this macro is to increase alignment of medium-size
825 data to make it all fit in fewer cache lines. Another is to
826 cause character arrays to be word-aligned so that `strcpy' calls
827 that copy constants to character arrays can be done inline. */
828
829 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
830
831 /* If defined, a C expression to compute the alignment for a local
832 variable. TYPE is the data type, and ALIGN is the alignment that
833 the object would ordinarily have. The value of this macro is used
834 instead of that alignment to align the object.
835
836 If this macro is not defined, then ALIGN is used.
837
838 One use of this macro is to increase alignment of medium-size
839 data to make it all fit in fewer cache lines. */
840
841 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
842
843 /* If defined, a C expression that gives the alignment boundary, in
844 bits, of an argument with the specified mode and type. If it is
845 not defined, `PARM_BOUNDARY' is used for all arguments. */
846
847 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
848 ix86_function_arg_boundary ((MODE), (TYPE))
849
850 /* Set this nonzero if move instructions will actually fail to work
851 when given unaligned data. */
852 #define STRICT_ALIGNMENT 0
853
854 /* If bit field type is int, don't let it cross an int,
855 and give entire struct the alignment of an int. */
856 /* Required on the 386 since it doesn't have bit-field insns. */
857 #define PCC_BITFIELD_TYPE_MATTERS 1
858 \f
859 /* Standard register usage. */
860
861 /* This processor has special stack-like registers. See reg-stack.c
862 for details. */
863
864 #define STACK_REGS
865 #define IS_STACK_MODE(MODE) \
866 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
867 || (MODE) == TFmode)
868
869 /* Number of actual hardware registers.
870 The hardware registers are assigned numbers for the compiler
871 from 0 to just below FIRST_PSEUDO_REGISTER.
872 All registers that the compiler knows about must be given numbers,
873 even those that are not normally considered general registers.
874
875 In the 80386 we give the 8 general purpose registers the numbers 0-7.
876 We number the floating point registers 8-15.
877 Note that registers 0-7 can be accessed as a short or int,
878 while only 0-3 may be used with byte `mov' instructions.
879
880 Reg 16 does not correspond to any hardware register, but instead
881 appears in the RTL as an argument pointer prior to reload, and is
882 eliminated during reloading in favor of either the stack or frame
883 pointer. */
884
885 #define FIRST_PSEUDO_REGISTER 53
886
887 /* Number of hardware registers that go into the DWARF-2 unwind info.
888 If not defined, equals FIRST_PSEUDO_REGISTER. */
889
890 #define DWARF_FRAME_REGISTERS 17
891
892 /* 1 for registers that have pervasive standard uses
893 and are not available for the register allocator.
894 On the 80386, the stack pointer is such, as is the arg pointer.
895
896 The value is a mask - bit 1 is set for fixed registers
897 for 32bit target, while 2 is set for fixed registers for 64bit.
898 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
899 */
900 #define FIXED_REGISTERS \
901 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
902 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
903 /*arg,flags,fpsr,dir,frame*/ \
904 3, 3, 3, 3, 3, \
905 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
906 0, 0, 0, 0, 0, 0, 0, 0, \
907 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
908 0, 0, 0, 0, 0, 0, 0, 0, \
909 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
910 1, 1, 1, 1, 1, 1, 1, 1, \
911 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
912 1, 1, 1, 1, 1, 1, 1, 1}
913
914
915 /* 1 for registers not available across function calls.
916 These must include the FIXED_REGISTERS and also any
917 registers that can be used without being saved.
918 The latter must include the registers where values are returned
919 and the register where structure-value addresses are passed.
920 Aside from that, you can include as many other registers as you like.
921
922 The value is a mask - bit 1 is set for call used
923 for 32bit target, while 2 is set for call used for 64bit.
924 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
925 */
926 #define CALL_USED_REGISTERS \
927 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
928 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
929 /*arg,flags,fpsr,dir,frame*/ \
930 3, 3, 3, 3, 3, \
931 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
932 3, 3, 3, 3, 3, 3, 3, 3, \
933 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
934 3, 3, 3, 3, 3, 3, 3, 3, \
935 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
936 3, 3, 3, 3, 1, 1, 1, 1, \
937 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
938 3, 3, 3, 3, 3, 3, 3, 3} \
939
940 /* Order in which to allocate registers. Each register must be
941 listed once, even those in FIXED_REGISTERS. List frame pointer
942 late and fixed registers last. Note that, in general, we prefer
943 registers listed in CALL_USED_REGISTERS, keeping the others
944 available for storage of persistent values.
945
946 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
947 so this is just empty initializer for array. */
948
949 #define REG_ALLOC_ORDER \
950 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
951 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
952 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
953 48, 49, 50, 51, 52 }
954
955 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
956 to be rearranged based on a particular function. When using sse math,
957 we want to allocate SSE before x87 registers and vice vera. */
958
959 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
960
961
962 /* Macro to conditionally modify fixed_regs/call_used_regs. */
963 #define CONDITIONAL_REGISTER_USAGE \
964 do { \
965 int i; \
966 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
967 { \
968 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
969 call_used_regs[i] = (call_used_regs[i] \
970 & (TARGET_64BIT ? 2 : 1)) != 0; \
971 } \
972 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
973 { \
974 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
975 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
976 } \
977 if (! TARGET_MMX) \
978 { \
979 int i; \
980 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
981 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
982 fixed_regs[i] = call_used_regs[i] = 1; \
983 } \
984 if (! TARGET_SSE) \
985 { \
986 int i; \
987 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
988 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
989 fixed_regs[i] = call_used_regs[i] = 1; \
990 } \
991 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
992 { \
993 int i; \
994 HARD_REG_SET x; \
995 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
996 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
997 if (TEST_HARD_REG_BIT (x, i)) \
998 fixed_regs[i] = call_used_regs[i] = 1; \
999 } \
1000 } while (0)
1001
1002 /* Return number of consecutive hard regs needed starting at reg REGNO
1003 to hold something of mode MODE.
1004 This is ordinarily the length in words of a value of mode MODE
1005 but can be less for certain modes in special long registers.
1006
1007 Actually there are no two word move instructions for consecutive
1008 registers. And only registers 0-3 may have mov byte instructions
1009 applied to them.
1010 */
1011
1012 #define HARD_REGNO_NREGS(REGNO, MODE) \
1013 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1014 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1015 : ((MODE) == TFmode \
1016 ? (TARGET_64BIT ? 2 : 3) \
1017 : (MODE) == TCmode \
1018 ? (TARGET_64BIT ? 4 : 6) \
1019 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1020
1021 #define VALID_SSE2_REG_MODE(MODE) \
1022 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1023 || (MODE) == V2DImode)
1024
1025 #define VALID_SSE_REG_MODE(MODE) \
1026 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1027 || (MODE) == SFmode \
1028 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1029 || VALID_SSE2_REG_MODE (MODE) \
1030 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1031
1032 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1033 ((MODE) == V2SFmode || (MODE) == SFmode)
1034
1035 #define VALID_MMX_REG_MODE(MODE) \
1036 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1037 || (MODE) == V2SImode || (MODE) == SImode)
1038
1039 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1040 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1041 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1042 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1043
1044 #define VALID_FP_MODE_P(MODE) \
1045 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
1046 || (!TARGET_64BIT && (MODE) == XFmode) \
1047 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
1048 || (!TARGET_64BIT && (MODE) == XCmode))
1049
1050 #define VALID_INT_MODE_P(MODE) \
1051 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1052 || (MODE) == DImode \
1053 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1054 || (MODE) == CDImode \
1055 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1056
1057 /* Return true for modes passed in SSE registers. */
1058 #define SSE_REG_MODE_P(MODE) \
1059 ((MODE) == TImode || (MODE) == V16QImode \
1060 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1061 || (MODE) == V4SFmode || (MODE) == V4SImode)
1062
1063 /* Return true for modes passed in MMX registers. */
1064 #define MMX_REG_MODE_P(MODE) \
1065 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1066 || (MODE) == V2SFmode)
1067
1068 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1069
1070 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1071 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1072
1073 /* Value is 1 if it is a good idea to tie two pseudo registers
1074 when one has mode MODE1 and one has mode MODE2.
1075 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1076 for any hard reg, then this must be 0 for correct output. */
1077
1078 #define MODES_TIEABLE_P(MODE1, MODE2) \
1079 ((MODE1) == (MODE2) \
1080 || (((MODE1) == HImode || (MODE1) == SImode \
1081 || ((MODE1) == QImode \
1082 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1083 || ((MODE1) == DImode && TARGET_64BIT)) \
1084 && ((MODE2) == HImode || (MODE2) == SImode \
1085 || ((MODE1) == QImode \
1086 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1087 || ((MODE2) == DImode && TARGET_64BIT))))
1088
1089
1090 /* Specify the modes required to caller save a given hard regno.
1091 We do this on i386 to prevent flags from being saved at all.
1092
1093 Kill any attempts to combine saving of modes. */
1094
1095 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1096 (CC_REGNO_P (REGNO) ? VOIDmode \
1097 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1098 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1099 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1100 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1101 : (MODE))
1102 /* Specify the registers used for certain standard purposes.
1103 The values of these macros are register numbers. */
1104
1105 /* on the 386 the pc register is %eip, and is not usable as a general
1106 register. The ordinary mov instructions won't work */
1107 /* #define PC_REGNUM */
1108
1109 /* Register to use for pushing function arguments. */
1110 #define STACK_POINTER_REGNUM 7
1111
1112 /* Base register for access to local variables of the function. */
1113 #define HARD_FRAME_POINTER_REGNUM 6
1114
1115 /* Base register for access to local variables of the function. */
1116 #define FRAME_POINTER_REGNUM 20
1117
1118 /* First floating point reg */
1119 #define FIRST_FLOAT_REG 8
1120
1121 /* First & last stack-like regs */
1122 #define FIRST_STACK_REG FIRST_FLOAT_REG
1123 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1124
1125 #define FLAGS_REG 17
1126 #define FPSR_REG 18
1127 #define DIRFLAG_REG 19
1128
1129 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1130 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1131
1132 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1133 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1134
1135 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1136 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1137
1138 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1139 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1140
1141 /* Value should be nonzero if functions must have frame pointers.
1142 Zero means the frame pointer need not be set up (and parms
1143 may be accessed via the stack pointer) in functions that seem suitable.
1144 This is computed in `reload', in reload1.c. */
1145 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1146
1147 /* Override this in other tm.h files to cope with various OS losage
1148 requiring a frame pointer. */
1149 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1150 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1151 #endif
1152
1153 /* Make sure we can access arbitrary call frames. */
1154 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1155
1156 /* Base register for access to arguments of the function. */
1157 #define ARG_POINTER_REGNUM 16
1158
1159 /* Register in which static-chain is passed to a function.
1160 We do use ECX as static chain register for 32 bit ABI. On the
1161 64bit ABI, ECX is an argument register, so we use R10 instead. */
1162 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1163
1164 /* Register to hold the addressing base for position independent
1165 code access to data items. We don't use PIC pointer for 64bit
1166 mode. Define the regnum to dummy value to prevent gcc from
1167 pessimizing code dealing with EBX.
1168
1169 To avoid clobbering a call-saved register unnecessarily, we renumber
1170 the pic register when possible. The change is visible after the
1171 prologue has been emitted. */
1172
1173 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1174
1175 #define PIC_OFFSET_TABLE_REGNUM \
1176 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1177 : reload_completed ? REGNO (pic_offset_table_rtx) \
1178 : REAL_PIC_OFFSET_TABLE_REGNUM)
1179
1180 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1181
1182 /* Register in which address to store a structure value
1183 arrives in the function. On the 386, the prologue
1184 copies this from the stack to register %eax. */
1185 #define STRUCT_VALUE_INCOMING 0
1186
1187 /* Place in which caller passes the structure value address.
1188 0 means push the value on the stack like an argument. */
1189 #define STRUCT_VALUE 0
1190
1191 /* A C expression which can inhibit the returning of certain function
1192 values in registers, based on the type of value. A nonzero value
1193 says to return the function value in memory, just as large
1194 structures are always returned. Here TYPE will be a C expression
1195 of type `tree', representing the data type of the value.
1196
1197 Note that values of mode `BLKmode' must be explicitly handled by
1198 this macro. Also, the option `-fpcc-struct-return' takes effect
1199 regardless of this macro. On most systems, it is possible to
1200 leave the macro undefined; this causes a default definition to be
1201 used, whose value is the constant 1 for `BLKmode' values, and 0
1202 otherwise.
1203
1204 Do not use this macro to indicate that structures and unions
1205 should always be returned in memory. You should instead use
1206 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1207
1208 #define RETURN_IN_MEMORY(TYPE) \
1209 ix86_return_in_memory (TYPE)
1210
1211 \f
1212 /* Define the classes of registers for register constraints in the
1213 machine description. Also define ranges of constants.
1214
1215 One of the classes must always be named ALL_REGS and include all hard regs.
1216 If there is more than one class, another class must be named NO_REGS
1217 and contain no registers.
1218
1219 The name GENERAL_REGS must be the name of a class (or an alias for
1220 another name such as ALL_REGS). This is the class of registers
1221 that is allowed by "g" or "r" in a register constraint.
1222 Also, registers outside this class are allocated only when
1223 instructions express preferences for them.
1224
1225 The classes must be numbered in nondecreasing order; that is,
1226 a larger-numbered class must never be contained completely
1227 in a smaller-numbered class.
1228
1229 For any two classes, it is very desirable that there be another
1230 class that represents their union.
1231
1232 It might seem that class BREG is unnecessary, since no useful 386
1233 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1234 and the "b" register constraint is useful in asms for syscalls.
1235
1236 The flags and fpsr registers are in no class. */
1237
1238 enum reg_class
1239 {
1240 NO_REGS,
1241 AREG, DREG, CREG, BREG, SIREG, DIREG,
1242 AD_REGS, /* %eax/%edx for DImode */
1243 Q_REGS, /* %eax %ebx %ecx %edx */
1244 NON_Q_REGS, /* %esi %edi %ebp %esp */
1245 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1246 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1247 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1248 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1249 FLOAT_REGS,
1250 SSE_REGS,
1251 MMX_REGS,
1252 FP_TOP_SSE_REGS,
1253 FP_SECOND_SSE_REGS,
1254 FLOAT_SSE_REGS,
1255 FLOAT_INT_REGS,
1256 INT_SSE_REGS,
1257 FLOAT_INT_SSE_REGS,
1258 ALL_REGS, LIM_REG_CLASSES
1259 };
1260
1261 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1262
1263 #define INTEGER_CLASS_P(CLASS) \
1264 reg_class_subset_p ((CLASS), GENERAL_REGS)
1265 #define FLOAT_CLASS_P(CLASS) \
1266 reg_class_subset_p ((CLASS), FLOAT_REGS)
1267 #define SSE_CLASS_P(CLASS) \
1268 reg_class_subset_p ((CLASS), SSE_REGS)
1269 #define MMX_CLASS_P(CLASS) \
1270 reg_class_subset_p ((CLASS), MMX_REGS)
1271 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1272 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1273 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1274 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1275 #define MAYBE_SSE_CLASS_P(CLASS) \
1276 reg_classes_intersect_p (SSE_REGS, (CLASS))
1277 #define MAYBE_MMX_CLASS_P(CLASS) \
1278 reg_classes_intersect_p (MMX_REGS, (CLASS))
1279
1280 #define Q_CLASS_P(CLASS) \
1281 reg_class_subset_p ((CLASS), Q_REGS)
1282
1283 /* Give names of register classes as strings for dump file. */
1284
1285 #define REG_CLASS_NAMES \
1286 { "NO_REGS", \
1287 "AREG", "DREG", "CREG", "BREG", \
1288 "SIREG", "DIREG", \
1289 "AD_REGS", \
1290 "Q_REGS", "NON_Q_REGS", \
1291 "INDEX_REGS", \
1292 "LEGACY_REGS", \
1293 "GENERAL_REGS", \
1294 "FP_TOP_REG", "FP_SECOND_REG", \
1295 "FLOAT_REGS", \
1296 "SSE_REGS", \
1297 "MMX_REGS", \
1298 "FP_TOP_SSE_REGS", \
1299 "FP_SECOND_SSE_REGS", \
1300 "FLOAT_SSE_REGS", \
1301 "FLOAT_INT_REGS", \
1302 "INT_SSE_REGS", \
1303 "FLOAT_INT_SSE_REGS", \
1304 "ALL_REGS" }
1305
1306 /* Define which registers fit in which classes.
1307 This is an initializer for a vector of HARD_REG_SET
1308 of length N_REG_CLASSES. */
1309
1310 #define REG_CLASS_CONTENTS \
1311 { { 0x00, 0x0 }, \
1312 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1313 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1314 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1315 { 0x03, 0x0 }, /* AD_REGS */ \
1316 { 0x0f, 0x0 }, /* Q_REGS */ \
1317 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1318 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1319 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1320 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1321 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1322 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1323 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1324 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1325 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1326 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1327 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1328 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1329 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1330 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1331 { 0xffffffff,0x1fffff } \
1332 }
1333
1334 /* The same information, inverted:
1335 Return the class number of the smallest class containing
1336 reg number REGNO. This could be a conditional expression
1337 or could index an array. */
1338
1339 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1340
1341 /* When defined, the compiler allows registers explicitly used in the
1342 rtl to be used as spill registers but prevents the compiler from
1343 extending the lifetime of these registers. */
1344
1345 #define SMALL_REGISTER_CLASSES 1
1346
1347 #define QI_REG_P(X) \
1348 (REG_P (X) && REGNO (X) < 4)
1349
1350 #define GENERAL_REGNO_P(N) \
1351 ((N) < 8 || REX_INT_REGNO_P (N))
1352
1353 #define GENERAL_REG_P(X) \
1354 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1355
1356 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1357
1358 #define NON_QI_REG_P(X) \
1359 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1360
1361 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1362 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1363
1364 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1365 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1366 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1367 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1368
1369 #define SSE_REGNO_P(N) \
1370 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1371 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1372
1373 #define REX_SSE_REGNO_P(N) \
1374 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1375
1376 #define SSE_REGNO(N) \
1377 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1378 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1379
1380 #define SSE_FLOAT_MODE_P(MODE) \
1381 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1382
1383 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1384 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1385
1386 #define STACK_REG_P(XOP) \
1387 (REG_P (XOP) && \
1388 REGNO (XOP) >= FIRST_STACK_REG && \
1389 REGNO (XOP) <= LAST_STACK_REG)
1390
1391 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1392
1393 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1394
1395 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1396 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1397
1398 /* Indicate whether hard register numbered REG_NO should be converted
1399 to SSA form. */
1400 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1401 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1402
1403 /* The class value for index registers, and the one for base regs. */
1404
1405 #define INDEX_REG_CLASS INDEX_REGS
1406 #define BASE_REG_CLASS GENERAL_REGS
1407
1408 /* Get reg_class from a letter such as appears in the machine description. */
1409
1410 #define REG_CLASS_FROM_LETTER(C) \
1411 ((C) == 'r' ? GENERAL_REGS : \
1412 (C) == 'R' ? LEGACY_REGS : \
1413 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1414 (C) == 'Q' ? Q_REGS : \
1415 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1416 ? FLOAT_REGS \
1417 : NO_REGS) : \
1418 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1419 ? FP_TOP_REG \
1420 : NO_REGS) : \
1421 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1422 ? FP_SECOND_REG \
1423 : NO_REGS) : \
1424 (C) == 'a' ? AREG : \
1425 (C) == 'b' ? BREG : \
1426 (C) == 'c' ? CREG : \
1427 (C) == 'd' ? DREG : \
1428 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1429 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1430 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1431 (C) == 'A' ? AD_REGS : \
1432 (C) == 'D' ? DIREG : \
1433 (C) == 'S' ? SIREG : NO_REGS)
1434
1435 /* The letters I, J, K, L and M in a register constraint string
1436 can be used to stand for particular ranges of immediate operands.
1437 This macro defines what the ranges are.
1438 C is the letter, and VALUE is a constant value.
1439 Return 1 if VALUE is in the range specified by C.
1440
1441 I is for non-DImode shifts.
1442 J is for DImode shifts.
1443 K is for signed imm8 operands.
1444 L is for andsi as zero-extending move.
1445 M is for shifts that can be executed by the "lea" opcode.
1446 N is for immediate operands for out/in instructions (0-255)
1447 */
1448
1449 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1450 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1451 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1452 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1453 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1454 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1455 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1456 : 0)
1457
1458 /* Similar, but for floating constants, and defining letters G and H.
1459 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1460 TARGET_387 isn't set, because the stack register converter may need to
1461 load 0.0 into the function value register. */
1462
1463 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1464 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1465 : 0)
1466
1467 /* A C expression that defines the optional machine-dependent
1468 constraint letters that can be used to segregate specific types of
1469 operands, usually memory references, for the target machine. Any
1470 letter that is not elsewhere defined and not matched by
1471 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1472 be defined.
1473
1474 If it is required for a particular target machine, it should
1475 return 1 if VALUE corresponds to the operand type represented by
1476 the constraint letter C. If C is not defined as an extra
1477 constraint, the value returned should be 0 regardless of VALUE. */
1478
1479 #define EXTRA_CONSTRAINT(VALUE, D) \
1480 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1481 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1482 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1483 : 0)
1484
1485 /* Place additional restrictions on the register class to use when it
1486 is necessary to be able to hold a value of mode MODE in a reload
1487 register for which class CLASS would ordinarily be used. */
1488
1489 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1490 ((MODE) == QImode && !TARGET_64BIT \
1491 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1492 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1493 ? Q_REGS : (CLASS))
1494
1495 /* Given an rtx X being reloaded into a reg required to be
1496 in class CLASS, return the class of reg to actually use.
1497 In general this is just CLASS; but on some machines
1498 in some cases it is preferable to use a more restrictive class.
1499 On the 80386 series, we prevent floating constants from being
1500 reloaded into floating registers (since no move-insn can do that)
1501 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1502
1503 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1504 QImode must go into class Q_REGS.
1505 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1506 movdf to do mem-to-mem moves through integer regs. */
1507
1508 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1509 ix86_preferred_reload_class ((X), (CLASS))
1510
1511 /* If we are copying between general and FP registers, we need a memory
1512 location. The same is true for SSE and MMX registers. */
1513 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1514 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1515
1516 /* QImode spills from non-QI registers need a scratch. This does not
1517 happen often -- the only example so far requires an uninitialized
1518 pseudo. */
1519
1520 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1521 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1522 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1523 ? Q_REGS : NO_REGS)
1524
1525 /* Return the maximum number of consecutive registers
1526 needed to represent mode MODE in a register of class CLASS. */
1527 /* On the 80386, this is the size of MODE in words,
1528 except in the FP regs, where a single reg is always enough.
1529 The TFmodes are really just 80bit values, so we use only 3 registers
1530 to hold them, instead of 4, as the size would suggest.
1531 */
1532 #define CLASS_MAX_NREGS(CLASS, MODE) \
1533 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1534 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1535 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1536 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1537
1538 /* A C expression whose value is nonzero if pseudos that have been
1539 assigned to registers of class CLASS would likely be spilled
1540 because registers of CLASS are needed for spill registers.
1541
1542 The default value of this macro returns 1 if CLASS has exactly one
1543 register and zero otherwise. On most machines, this default
1544 should be used. Only define this macro to some other expression
1545 if pseudo allocated by `local-alloc.c' end up in memory because
1546 their hard registers were needed for spill registers. If this
1547 macro returns nonzero for those classes, those pseudos will only
1548 be allocated by `global.c', which knows how to reallocate the
1549 pseudo to another register. If there would not be another
1550 register available for reallocation, you should not change the
1551 definition of this macro since the only effect of such a
1552 definition would be to slow down register allocation. */
1553
1554 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1555 (((CLASS) == AREG) \
1556 || ((CLASS) == DREG) \
1557 || ((CLASS) == CREG) \
1558 || ((CLASS) == BREG) \
1559 || ((CLASS) == AD_REGS) \
1560 || ((CLASS) == SIREG) \
1561 || ((CLASS) == DIREG))
1562
1563 /* Return a class of registers that cannot change FROM mode to TO mode.
1564
1565 x87 registers can't do subreg as all values are reformated to extended
1566 precision. XMM registers does not support with nonzero offsets equal
1567 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1568 determine these, prohibit all nonparadoxical subregs changing size. */
1569
1570 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1571 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1572 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1573 || MAYBE_MMX_CLASS_P (CLASS) \
1574 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1575 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1576
1577 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1578 to automatically clobber for all asms.
1579
1580 We do this in the new i386 backend to maintain source compatibility
1581 with the old cc0-based compiler. */
1582
1583 #define MD_ASM_CLOBBERS(CLOBBERS) \
1584 do { \
1585 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1586 (CLOBBERS)); \
1587 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1588 (CLOBBERS)); \
1589 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1590 (CLOBBERS)); \
1591 } while (0)
1592 \f
1593 /* Stack layout; function entry, exit and calling. */
1594
1595 /* Define this if pushing a word on the stack
1596 makes the stack pointer a smaller address. */
1597 #define STACK_GROWS_DOWNWARD
1598
1599 /* Define this if the nominal address of the stack frame
1600 is at the high-address end of the local variables;
1601 that is, each additional local variable allocated
1602 goes at a more negative offset in the frame. */
1603 #define FRAME_GROWS_DOWNWARD
1604
1605 /* Offset within stack frame to start allocating local variables at.
1606 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1607 first local allocated. Otherwise, it is the offset to the BEGINNING
1608 of the first local allocated. */
1609 #define STARTING_FRAME_OFFSET 0
1610
1611 /* If we generate an insn to push BYTES bytes,
1612 this says how many the stack pointer really advances by.
1613 On 386 pushw decrements by exactly 2 no matter what the position was.
1614 On the 386 there is no pushb; we use pushw instead, and this
1615 has the effect of rounding up to 2.
1616
1617 For 64bit ABI we round up to 8 bytes.
1618 */
1619
1620 #define PUSH_ROUNDING(BYTES) \
1621 (TARGET_64BIT \
1622 ? (((BYTES) + 7) & (-8)) \
1623 : (((BYTES) + 1) & (-2)))
1624
1625 /* If defined, the maximum amount of space required for outgoing arguments will
1626 be computed and placed into the variable
1627 `current_function_outgoing_args_size'. No space will be pushed onto the
1628 stack for each call; instead, the function prologue should increase the stack
1629 frame size by this amount. */
1630
1631 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1632
1633 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1634 instructions to pass outgoing arguments. */
1635
1636 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1637
1638 /* We want the stack and args grow in opposite directions, even if
1639 PUSH_ARGS is 0. */
1640 #define PUSH_ARGS_REVERSED 1
1641
1642 /* Offset of first parameter from the argument pointer register value. */
1643 #define FIRST_PARM_OFFSET(FNDECL) 0
1644
1645 /* Define this macro if functions should assume that stack space has been
1646 allocated for arguments even when their values are passed in registers.
1647
1648 The value of this macro is the size, in bytes, of the area reserved for
1649 arguments passed in registers for the function represented by FNDECL.
1650
1651 This space can be allocated by the caller, or be a part of the
1652 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1653 which. */
1654 #define REG_PARM_STACK_SPACE(FNDECL) 0
1655
1656 /* Define as a C expression that evaluates to nonzero if we do not know how
1657 to pass TYPE solely in registers. The file expr.h defines a
1658 definition that is usually appropriate, refer to expr.h for additional
1659 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1660 computed in the stack and then loaded into a register. */
1661 #define MUST_PASS_IN_STACK(MODE, TYPE) \
1662 ((TYPE) != 0 \
1663 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1664 || TREE_ADDRESSABLE (TYPE) \
1665 || ((MODE) == TImode) \
1666 || ((MODE) == BLKmode \
1667 && ! ((TYPE) != 0 \
1668 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1669 && 0 == (int_size_in_bytes (TYPE) \
1670 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
1671 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
1672 == (BYTES_BIG_ENDIAN ? upward : downward)))))
1673
1674 /* Value is the number of bytes of arguments automatically
1675 popped when returning from a subroutine call.
1676 FUNDECL is the declaration node of the function (as a tree),
1677 FUNTYPE is the data type of the function (as a tree),
1678 or for a library call it is an identifier node for the subroutine name.
1679 SIZE is the number of bytes of arguments passed on the stack.
1680
1681 On the 80386, the RTD insn may be used to pop them if the number
1682 of args is fixed, but if the number is variable then the caller
1683 must pop them all. RTD can't be used for library calls now
1684 because the library is compiled with the Unix compiler.
1685 Use of RTD is a selectable option, since it is incompatible with
1686 standard Unix calling sequences. If the option is not selected,
1687 the caller must always pop the args.
1688
1689 The attribute stdcall is equivalent to RTD on a per module basis. */
1690
1691 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1692 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1693
1694 /* Define how to find the value returned by a function.
1695 VALTYPE is the data type of the value (as a tree).
1696 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1697 otherwise, FUNC is 0. */
1698 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1699 ix86_function_value (VALTYPE)
1700
1701 #define FUNCTION_VALUE_REGNO_P(N) \
1702 ix86_function_value_regno_p (N)
1703
1704 /* Define how to find the value returned by a library function
1705 assuming the value has mode MODE. */
1706
1707 #define LIBCALL_VALUE(MODE) \
1708 ix86_libcall_value (MODE)
1709
1710 /* Define the size of the result block used for communication between
1711 untyped_call and untyped_return. The block contains a DImode value
1712 followed by the block used by fnsave and frstor. */
1713
1714 #define APPLY_RESULT_SIZE (8+108)
1715
1716 /* 1 if N is a possible register number for function argument passing. */
1717 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1718
1719 /* Define a data type for recording info about an argument list
1720 during the scan of that argument list. This data type should
1721 hold all necessary information about the function itself
1722 and about the args processed so far, enough to enable macros
1723 such as FUNCTION_ARG to determine where the next arg should go. */
1724
1725 typedef struct ix86_args {
1726 int words; /* # words passed so far */
1727 int nregs; /* # registers available for passing */
1728 int regno; /* next available register number */
1729 int fastcall; /* fastcall calling convention is used */
1730 int sse_words; /* # sse words passed so far */
1731 int sse_nregs; /* # sse registers available for passing */
1732 int sse_regno; /* next available sse register number */
1733 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1734 } CUMULATIVE_ARGS;
1735
1736 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1737 for a call to a function whose data type is FNTYPE.
1738 For a library call, FNTYPE is 0. */
1739
1740 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1741 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
1742
1743 /* Update the data in CUM to advance over an argument
1744 of mode MODE and data type TYPE.
1745 (TYPE is null for libcalls where that information may not be available.) */
1746
1747 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1748 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1749
1750 /* Define where to put the arguments to a function.
1751 Value is zero to push the argument on the stack,
1752 or a hard register in which to store the argument.
1753
1754 MODE is the argument's machine mode.
1755 TYPE is the data type of the argument (as a tree).
1756 This is null for libcalls where that information may
1757 not be available.
1758 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1759 the preceding args and about the function being called.
1760 NAMED is nonzero if this argument is a named parameter
1761 (otherwise it is an extra parameter matching an ellipsis). */
1762
1763 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1764 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1765
1766 /* For an arg passed partly in registers and partly in memory,
1767 this is the number of registers used.
1768 For args passed entirely in registers or entirely in memory, zero. */
1769
1770 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1771
1772 /* A C expression that indicates when an argument must be passed by
1773 reference. If nonzero for an argument, a copy of that argument is
1774 made in memory and a pointer to the argument is passed instead of
1775 the argument itself. The pointer is passed in whatever way is
1776 appropriate for passing a pointer to that type. */
1777
1778 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1779 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1780
1781 /* Perform any needed actions needed for a function that is receiving a
1782 variable number of arguments.
1783
1784 CUM is as above.
1785
1786 MODE and TYPE are the mode and type of the current parameter.
1787
1788 PRETEND_SIZE is a variable that should be set to the amount of stack
1789 that must be pushed by the prolog to pretend that our caller pushed
1790 it.
1791
1792 Normally, this macro will push all remaining incoming registers on the
1793 stack and set PRETEND_SIZE to the length of the registers pushed. */
1794
1795 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1796 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1797 (NO_RTL))
1798
1799 /* Define the `__builtin_va_list' type for the ABI. */
1800 #define BUILD_VA_LIST_TYPE(VALIST) \
1801 ((VALIST) = ix86_build_va_list ())
1802
1803 /* Implement `va_start' for varargs and stdarg. */
1804 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1805 ix86_va_start (VALIST, NEXTARG)
1806
1807 /* Implement `va_arg'. */
1808 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1809 ix86_va_arg ((VALIST), (TYPE))
1810
1811 /* This macro is invoked at the end of compilation. It is used here to
1812 output code for -fpic that will load the return address into %ebx. */
1813
1814 #undef ASM_FILE_END
1815 #define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
1816
1817 /* Output assembler code to FILE to increment profiler label # LABELNO
1818 for profiling a function entry. */
1819
1820 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1821
1822 #define MCOUNT_NAME "_mcount"
1823
1824 #define PROFILE_COUNT_REGISTER "edx"
1825
1826 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1827 the stack pointer does not matter. The value is tested only in
1828 functions that have frame pointers.
1829 No definition is equivalent to always zero. */
1830 /* Note on the 386 it might be more efficient not to define this since
1831 we have to restore it ourselves from the frame pointer, in order to
1832 use pop */
1833
1834 #define EXIT_IGNORE_STACK 1
1835
1836 /* Output assembler code for a block containing the constant parts
1837 of a trampoline, leaving space for the variable parts. */
1838
1839 /* On the 386, the trampoline contains two instructions:
1840 mov #STATIC,ecx
1841 jmp FUNCTION
1842 The trampoline is generated entirely at runtime. The operand of JMP
1843 is the address of FUNCTION relative to the instruction following the
1844 JMP (which is 5 bytes long). */
1845
1846 /* Length in units of the trampoline for entering a nested function. */
1847
1848 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1849
1850 /* Emit RTL insns to initialize the variable parts of a trampoline.
1851 FNADDR is an RTX for the address of the function's pure code.
1852 CXT is an RTX for the static chain value for the function. */
1853
1854 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1855 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1856 \f
1857 /* Definitions for register eliminations.
1858
1859 This is an array of structures. Each structure initializes one pair
1860 of eliminable registers. The "from" register number is given first,
1861 followed by "to". Eliminations of the same "from" register are listed
1862 in order of preference.
1863
1864 There are two registers that can always be eliminated on the i386.
1865 The frame pointer and the arg pointer can be replaced by either the
1866 hard frame pointer or to the stack pointer, depending upon the
1867 circumstances. The hard frame pointer is not used before reload and
1868 so it is not eligible for elimination. */
1869
1870 #define ELIMINABLE_REGS \
1871 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1872 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1873 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1874 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1875
1876 /* Given FROM and TO register numbers, say whether this elimination is
1877 allowed. Frame pointer elimination is automatically handled.
1878
1879 All other eliminations are valid. */
1880
1881 #define CAN_ELIMINATE(FROM, TO) \
1882 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1883
1884 /* Define the offset between two registers, one to be eliminated, and the other
1885 its replacement, at the start of a routine. */
1886
1887 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1888 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1889 \f
1890 /* Addressing modes, and classification of registers for them. */
1891
1892 /* Macros to check register numbers against specific register classes. */
1893
1894 /* These assume that REGNO is a hard or pseudo reg number.
1895 They give nonzero only if REGNO is a hard reg of the suitable class
1896 or a pseudo reg currently allocated to a suitable hard reg.
1897 Since they use reg_renumber, they are safe only once reg_renumber
1898 has been allocated, which happens in local-alloc.c. */
1899
1900 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1901 ((REGNO) < STACK_POINTER_REGNUM \
1902 || (REGNO >= FIRST_REX_INT_REG \
1903 && (REGNO) <= LAST_REX_INT_REG) \
1904 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1905 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1906 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1907
1908 #define REGNO_OK_FOR_BASE_P(REGNO) \
1909 ((REGNO) <= STACK_POINTER_REGNUM \
1910 || (REGNO) == ARG_POINTER_REGNUM \
1911 || (REGNO) == FRAME_POINTER_REGNUM \
1912 || (REGNO >= FIRST_REX_INT_REG \
1913 && (REGNO) <= LAST_REX_INT_REG) \
1914 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1915 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1916 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1917
1918 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1919 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1920 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1921 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1922
1923 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1924 and check its validity for a certain class.
1925 We have two alternate definitions for each of them.
1926 The usual definition accepts all pseudo regs; the other rejects
1927 them unless they have been allocated suitable hard regs.
1928 The symbol REG_OK_STRICT causes the latter definition to be used.
1929
1930 Most source files want to accept pseudo regs in the hope that
1931 they will get allocated to the class that the insn wants them to be in.
1932 Source files for reload pass need to be strict.
1933 After reload, it makes no difference, since pseudo regs have
1934 been eliminated by then. */
1935
1936
1937 /* Non strict versions, pseudos are ok */
1938 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1939 (REGNO (X) < STACK_POINTER_REGNUM \
1940 || (REGNO (X) >= FIRST_REX_INT_REG \
1941 && REGNO (X) <= LAST_REX_INT_REG) \
1942 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1943
1944 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1945 (REGNO (X) <= STACK_POINTER_REGNUM \
1946 || REGNO (X) == ARG_POINTER_REGNUM \
1947 || REGNO (X) == FRAME_POINTER_REGNUM \
1948 || (REGNO (X) >= FIRST_REX_INT_REG \
1949 && REGNO (X) <= LAST_REX_INT_REG) \
1950 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1951
1952 /* Strict versions, hard registers only */
1953 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1954 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1955
1956 #ifndef REG_OK_STRICT
1957 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1958 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1959
1960 #else
1961 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1962 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1963 #endif
1964
1965 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1966 that is a valid memory address for an instruction.
1967 The MODE argument is the machine mode for the MEM expression
1968 that wants to use this address.
1969
1970 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1971 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1972
1973 See legitimize_pic_address in i386.c for details as to what
1974 constitutes a legitimate address when -fpic is used. */
1975
1976 #define MAX_REGS_PER_ADDRESS 2
1977
1978 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1979
1980 /* Nonzero if the constant value X is a legitimate general operand.
1981 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1982
1983 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1984
1985 #ifdef REG_OK_STRICT
1986 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1987 do { \
1988 if (legitimate_address_p ((MODE), (X), 1)) \
1989 goto ADDR; \
1990 } while (0)
1991
1992 #else
1993 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1994 do { \
1995 if (legitimate_address_p ((MODE), (X), 0)) \
1996 goto ADDR; \
1997 } while (0)
1998
1999 #endif
2000
2001 /* If defined, a C expression to determine the base term of address X.
2002 This macro is used in only one place: `find_base_term' in alias.c.
2003
2004 It is always safe for this macro to not be defined. It exists so
2005 that alias analysis can understand machine-dependent addresses.
2006
2007 The typical use of this macro is to handle addresses containing
2008 a label_ref or symbol_ref within an UNSPEC. */
2009
2010 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
2011
2012 /* Try machine-dependent ways of modifying an illegitimate address
2013 to be legitimate. If we find one, return the new, valid address.
2014 This macro is used in only one place: `memory_address' in explow.c.
2015
2016 OLDX is the address as it was before break_out_memory_refs was called.
2017 In some cases it is useful to look at this to decide what needs to be done.
2018
2019 MODE and WIN are passed so that this macro can use
2020 GO_IF_LEGITIMATE_ADDRESS.
2021
2022 It is always safe for this macro to do nothing. It exists to recognize
2023 opportunities to optimize the output.
2024
2025 For the 80386, we handle X+REG by loading X into a register R and
2026 using R+REG. R will go in a general reg and indexing will be used.
2027 However, if REG is a broken-out memory address or multiplication,
2028 nothing needs to be done because REG can certainly go in a general reg.
2029
2030 When -fpic is used, special handling is needed for symbolic references.
2031 See comments by legitimize_pic_address in i386.c for details. */
2032
2033 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2034 do { \
2035 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2036 if (memory_address_p ((MODE), (X))) \
2037 goto WIN; \
2038 } while (0)
2039
2040 #define REWRITE_ADDRESS(X) rewrite_address (X)
2041
2042 /* Nonzero if the constant value X is a legitimate general operand
2043 when generating PIC code. It is given that flag_pic is on and
2044 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2045
2046 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2047
2048 #define SYMBOLIC_CONST(X) \
2049 (GET_CODE (X) == SYMBOL_REF \
2050 || GET_CODE (X) == LABEL_REF \
2051 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2052
2053 /* Go to LABEL if ADDR (a legitimate address expression)
2054 has an effect that depends on the machine mode it is used for.
2055 On the 80386, only postdecrement and postincrement address depend thus
2056 (the amount of decrement or increment being the length of the operand). */
2057 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2058 do { \
2059 if (GET_CODE (ADDR) == POST_INC \
2060 || GET_CODE (ADDR) == POST_DEC) \
2061 goto LABEL; \
2062 } while (0)
2063 \f
2064 /* Codes for all the SSE/MMX builtins. */
2065 enum ix86_builtins
2066 {
2067 IX86_BUILTIN_ADDPS,
2068 IX86_BUILTIN_ADDSS,
2069 IX86_BUILTIN_DIVPS,
2070 IX86_BUILTIN_DIVSS,
2071 IX86_BUILTIN_MULPS,
2072 IX86_BUILTIN_MULSS,
2073 IX86_BUILTIN_SUBPS,
2074 IX86_BUILTIN_SUBSS,
2075
2076 IX86_BUILTIN_CMPEQPS,
2077 IX86_BUILTIN_CMPLTPS,
2078 IX86_BUILTIN_CMPLEPS,
2079 IX86_BUILTIN_CMPGTPS,
2080 IX86_BUILTIN_CMPGEPS,
2081 IX86_BUILTIN_CMPNEQPS,
2082 IX86_BUILTIN_CMPNLTPS,
2083 IX86_BUILTIN_CMPNLEPS,
2084 IX86_BUILTIN_CMPNGTPS,
2085 IX86_BUILTIN_CMPNGEPS,
2086 IX86_BUILTIN_CMPORDPS,
2087 IX86_BUILTIN_CMPUNORDPS,
2088 IX86_BUILTIN_CMPNEPS,
2089 IX86_BUILTIN_CMPEQSS,
2090 IX86_BUILTIN_CMPLTSS,
2091 IX86_BUILTIN_CMPLESS,
2092 IX86_BUILTIN_CMPNEQSS,
2093 IX86_BUILTIN_CMPNLTSS,
2094 IX86_BUILTIN_CMPNLESS,
2095 IX86_BUILTIN_CMPORDSS,
2096 IX86_BUILTIN_CMPUNORDSS,
2097 IX86_BUILTIN_CMPNESS,
2098
2099 IX86_BUILTIN_COMIEQSS,
2100 IX86_BUILTIN_COMILTSS,
2101 IX86_BUILTIN_COMILESS,
2102 IX86_BUILTIN_COMIGTSS,
2103 IX86_BUILTIN_COMIGESS,
2104 IX86_BUILTIN_COMINEQSS,
2105 IX86_BUILTIN_UCOMIEQSS,
2106 IX86_BUILTIN_UCOMILTSS,
2107 IX86_BUILTIN_UCOMILESS,
2108 IX86_BUILTIN_UCOMIGTSS,
2109 IX86_BUILTIN_UCOMIGESS,
2110 IX86_BUILTIN_UCOMINEQSS,
2111
2112 IX86_BUILTIN_CVTPI2PS,
2113 IX86_BUILTIN_CVTPS2PI,
2114 IX86_BUILTIN_CVTSI2SS,
2115 IX86_BUILTIN_CVTSS2SI,
2116 IX86_BUILTIN_CVTTPS2PI,
2117 IX86_BUILTIN_CVTTSS2SI,
2118
2119 IX86_BUILTIN_MAXPS,
2120 IX86_BUILTIN_MAXSS,
2121 IX86_BUILTIN_MINPS,
2122 IX86_BUILTIN_MINSS,
2123
2124 IX86_BUILTIN_LOADAPS,
2125 IX86_BUILTIN_LOADUPS,
2126 IX86_BUILTIN_STOREAPS,
2127 IX86_BUILTIN_STOREUPS,
2128 IX86_BUILTIN_LOADSS,
2129 IX86_BUILTIN_STORESS,
2130 IX86_BUILTIN_MOVSS,
2131
2132 IX86_BUILTIN_MOVHLPS,
2133 IX86_BUILTIN_MOVLHPS,
2134 IX86_BUILTIN_LOADHPS,
2135 IX86_BUILTIN_LOADLPS,
2136 IX86_BUILTIN_STOREHPS,
2137 IX86_BUILTIN_STORELPS,
2138
2139 IX86_BUILTIN_MASKMOVQ,
2140 IX86_BUILTIN_MOVMSKPS,
2141 IX86_BUILTIN_PMOVMSKB,
2142
2143 IX86_BUILTIN_MOVNTPS,
2144 IX86_BUILTIN_MOVNTQ,
2145
2146 IX86_BUILTIN_LOADDQA,
2147 IX86_BUILTIN_LOADDQU,
2148 IX86_BUILTIN_STOREDQA,
2149 IX86_BUILTIN_STOREDQU,
2150 IX86_BUILTIN_MOVQ,
2151 IX86_BUILTIN_LOADD,
2152 IX86_BUILTIN_STORED,
2153
2154 IX86_BUILTIN_CLRTI,
2155
2156 IX86_BUILTIN_PACKSSWB,
2157 IX86_BUILTIN_PACKSSDW,
2158 IX86_BUILTIN_PACKUSWB,
2159
2160 IX86_BUILTIN_PADDB,
2161 IX86_BUILTIN_PADDW,
2162 IX86_BUILTIN_PADDD,
2163 IX86_BUILTIN_PADDSB,
2164 IX86_BUILTIN_PADDSW,
2165 IX86_BUILTIN_PADDUSB,
2166 IX86_BUILTIN_PADDUSW,
2167 IX86_BUILTIN_PSUBB,
2168 IX86_BUILTIN_PSUBW,
2169 IX86_BUILTIN_PSUBD,
2170 IX86_BUILTIN_PSUBSB,
2171 IX86_BUILTIN_PSUBSW,
2172 IX86_BUILTIN_PSUBUSB,
2173 IX86_BUILTIN_PSUBUSW,
2174
2175 IX86_BUILTIN_PAND,
2176 IX86_BUILTIN_PANDN,
2177 IX86_BUILTIN_POR,
2178 IX86_BUILTIN_PXOR,
2179
2180 IX86_BUILTIN_PAVGB,
2181 IX86_BUILTIN_PAVGW,
2182
2183 IX86_BUILTIN_PCMPEQB,
2184 IX86_BUILTIN_PCMPEQW,
2185 IX86_BUILTIN_PCMPEQD,
2186 IX86_BUILTIN_PCMPGTB,
2187 IX86_BUILTIN_PCMPGTW,
2188 IX86_BUILTIN_PCMPGTD,
2189
2190 IX86_BUILTIN_PEXTRW,
2191 IX86_BUILTIN_PINSRW,
2192
2193 IX86_BUILTIN_PMADDWD,
2194
2195 IX86_BUILTIN_PMAXSW,
2196 IX86_BUILTIN_PMAXUB,
2197 IX86_BUILTIN_PMINSW,
2198 IX86_BUILTIN_PMINUB,
2199
2200 IX86_BUILTIN_PMULHUW,
2201 IX86_BUILTIN_PMULHW,
2202 IX86_BUILTIN_PMULLW,
2203
2204 IX86_BUILTIN_PSADBW,
2205 IX86_BUILTIN_PSHUFW,
2206
2207 IX86_BUILTIN_PSLLW,
2208 IX86_BUILTIN_PSLLD,
2209 IX86_BUILTIN_PSLLQ,
2210 IX86_BUILTIN_PSRAW,
2211 IX86_BUILTIN_PSRAD,
2212 IX86_BUILTIN_PSRLW,
2213 IX86_BUILTIN_PSRLD,
2214 IX86_BUILTIN_PSRLQ,
2215 IX86_BUILTIN_PSLLWI,
2216 IX86_BUILTIN_PSLLDI,
2217 IX86_BUILTIN_PSLLQI,
2218 IX86_BUILTIN_PSRAWI,
2219 IX86_BUILTIN_PSRADI,
2220 IX86_BUILTIN_PSRLWI,
2221 IX86_BUILTIN_PSRLDI,
2222 IX86_BUILTIN_PSRLQI,
2223
2224 IX86_BUILTIN_PUNPCKHBW,
2225 IX86_BUILTIN_PUNPCKHWD,
2226 IX86_BUILTIN_PUNPCKHDQ,
2227 IX86_BUILTIN_PUNPCKLBW,
2228 IX86_BUILTIN_PUNPCKLWD,
2229 IX86_BUILTIN_PUNPCKLDQ,
2230
2231 IX86_BUILTIN_SHUFPS,
2232
2233 IX86_BUILTIN_RCPPS,
2234 IX86_BUILTIN_RCPSS,
2235 IX86_BUILTIN_RSQRTPS,
2236 IX86_BUILTIN_RSQRTSS,
2237 IX86_BUILTIN_SQRTPS,
2238 IX86_BUILTIN_SQRTSS,
2239
2240 IX86_BUILTIN_UNPCKHPS,
2241 IX86_BUILTIN_UNPCKLPS,
2242
2243 IX86_BUILTIN_ANDPS,
2244 IX86_BUILTIN_ANDNPS,
2245 IX86_BUILTIN_ORPS,
2246 IX86_BUILTIN_XORPS,
2247
2248 IX86_BUILTIN_EMMS,
2249 IX86_BUILTIN_LDMXCSR,
2250 IX86_BUILTIN_STMXCSR,
2251 IX86_BUILTIN_SFENCE,
2252
2253 /* 3DNow! Original */
2254 IX86_BUILTIN_FEMMS,
2255 IX86_BUILTIN_PAVGUSB,
2256 IX86_BUILTIN_PF2ID,
2257 IX86_BUILTIN_PFACC,
2258 IX86_BUILTIN_PFADD,
2259 IX86_BUILTIN_PFCMPEQ,
2260 IX86_BUILTIN_PFCMPGE,
2261 IX86_BUILTIN_PFCMPGT,
2262 IX86_BUILTIN_PFMAX,
2263 IX86_BUILTIN_PFMIN,
2264 IX86_BUILTIN_PFMUL,
2265 IX86_BUILTIN_PFRCP,
2266 IX86_BUILTIN_PFRCPIT1,
2267 IX86_BUILTIN_PFRCPIT2,
2268 IX86_BUILTIN_PFRSQIT1,
2269 IX86_BUILTIN_PFRSQRT,
2270 IX86_BUILTIN_PFSUB,
2271 IX86_BUILTIN_PFSUBR,
2272 IX86_BUILTIN_PI2FD,
2273 IX86_BUILTIN_PMULHRW,
2274
2275 /* 3DNow! Athlon Extensions */
2276 IX86_BUILTIN_PF2IW,
2277 IX86_BUILTIN_PFNACC,
2278 IX86_BUILTIN_PFPNACC,
2279 IX86_BUILTIN_PI2FW,
2280 IX86_BUILTIN_PSWAPDSI,
2281 IX86_BUILTIN_PSWAPDSF,
2282
2283 IX86_BUILTIN_SSE_ZERO,
2284 IX86_BUILTIN_MMX_ZERO,
2285
2286 /* SSE2 */
2287 IX86_BUILTIN_ADDPD,
2288 IX86_BUILTIN_ADDSD,
2289 IX86_BUILTIN_DIVPD,
2290 IX86_BUILTIN_DIVSD,
2291 IX86_BUILTIN_MULPD,
2292 IX86_BUILTIN_MULSD,
2293 IX86_BUILTIN_SUBPD,
2294 IX86_BUILTIN_SUBSD,
2295
2296 IX86_BUILTIN_CMPEQPD,
2297 IX86_BUILTIN_CMPLTPD,
2298 IX86_BUILTIN_CMPLEPD,
2299 IX86_BUILTIN_CMPGTPD,
2300 IX86_BUILTIN_CMPGEPD,
2301 IX86_BUILTIN_CMPNEQPD,
2302 IX86_BUILTIN_CMPNLTPD,
2303 IX86_BUILTIN_CMPNLEPD,
2304 IX86_BUILTIN_CMPNGTPD,
2305 IX86_BUILTIN_CMPNGEPD,
2306 IX86_BUILTIN_CMPORDPD,
2307 IX86_BUILTIN_CMPUNORDPD,
2308 IX86_BUILTIN_CMPNEPD,
2309 IX86_BUILTIN_CMPEQSD,
2310 IX86_BUILTIN_CMPLTSD,
2311 IX86_BUILTIN_CMPLESD,
2312 IX86_BUILTIN_CMPNEQSD,
2313 IX86_BUILTIN_CMPNLTSD,
2314 IX86_BUILTIN_CMPNLESD,
2315 IX86_BUILTIN_CMPORDSD,
2316 IX86_BUILTIN_CMPUNORDSD,
2317 IX86_BUILTIN_CMPNESD,
2318
2319 IX86_BUILTIN_COMIEQSD,
2320 IX86_BUILTIN_COMILTSD,
2321 IX86_BUILTIN_COMILESD,
2322 IX86_BUILTIN_COMIGTSD,
2323 IX86_BUILTIN_COMIGESD,
2324 IX86_BUILTIN_COMINEQSD,
2325 IX86_BUILTIN_UCOMIEQSD,
2326 IX86_BUILTIN_UCOMILTSD,
2327 IX86_BUILTIN_UCOMILESD,
2328 IX86_BUILTIN_UCOMIGTSD,
2329 IX86_BUILTIN_UCOMIGESD,
2330 IX86_BUILTIN_UCOMINEQSD,
2331
2332 IX86_BUILTIN_MAXPD,
2333 IX86_BUILTIN_MAXSD,
2334 IX86_BUILTIN_MINPD,
2335 IX86_BUILTIN_MINSD,
2336
2337 IX86_BUILTIN_ANDPD,
2338 IX86_BUILTIN_ANDNPD,
2339 IX86_BUILTIN_ORPD,
2340 IX86_BUILTIN_XORPD,
2341
2342 IX86_BUILTIN_SQRTPD,
2343 IX86_BUILTIN_SQRTSD,
2344
2345 IX86_BUILTIN_UNPCKHPD,
2346 IX86_BUILTIN_UNPCKLPD,
2347
2348 IX86_BUILTIN_SHUFPD,
2349
2350 IX86_BUILTIN_LOADAPD,
2351 IX86_BUILTIN_LOADUPD,
2352 IX86_BUILTIN_STOREAPD,
2353 IX86_BUILTIN_STOREUPD,
2354 IX86_BUILTIN_LOADSD,
2355 IX86_BUILTIN_STORESD,
2356 IX86_BUILTIN_MOVSD,
2357
2358 IX86_BUILTIN_LOADHPD,
2359 IX86_BUILTIN_LOADLPD,
2360 IX86_BUILTIN_STOREHPD,
2361 IX86_BUILTIN_STORELPD,
2362
2363 IX86_BUILTIN_CVTDQ2PD,
2364 IX86_BUILTIN_CVTDQ2PS,
2365
2366 IX86_BUILTIN_CVTPD2DQ,
2367 IX86_BUILTIN_CVTPD2PI,
2368 IX86_BUILTIN_CVTPD2PS,
2369 IX86_BUILTIN_CVTTPD2DQ,
2370 IX86_BUILTIN_CVTTPD2PI,
2371
2372 IX86_BUILTIN_CVTPI2PD,
2373 IX86_BUILTIN_CVTSI2SD,
2374
2375 IX86_BUILTIN_CVTSD2SI,
2376 IX86_BUILTIN_CVTSD2SS,
2377 IX86_BUILTIN_CVTSS2SD,
2378 IX86_BUILTIN_CVTTSD2SI,
2379
2380 IX86_BUILTIN_CVTPS2DQ,
2381 IX86_BUILTIN_CVTPS2PD,
2382 IX86_BUILTIN_CVTTPS2DQ,
2383
2384 IX86_BUILTIN_MOVNTI,
2385 IX86_BUILTIN_MOVNTPD,
2386 IX86_BUILTIN_MOVNTDQ,
2387
2388 IX86_BUILTIN_SETPD1,
2389 IX86_BUILTIN_SETPD,
2390 IX86_BUILTIN_CLRPD,
2391 IX86_BUILTIN_SETRPD,
2392 IX86_BUILTIN_LOADPD1,
2393 IX86_BUILTIN_LOADRPD,
2394 IX86_BUILTIN_STOREPD1,
2395 IX86_BUILTIN_STORERPD,
2396
2397 /* SSE2 MMX */
2398 IX86_BUILTIN_MASKMOVDQU,
2399 IX86_BUILTIN_MOVMSKPD,
2400 IX86_BUILTIN_PMOVMSKB128,
2401 IX86_BUILTIN_MOVQ2DQ,
2402 IX86_BUILTIN_MOVDQ2Q,
2403
2404 IX86_BUILTIN_PACKSSWB128,
2405 IX86_BUILTIN_PACKSSDW128,
2406 IX86_BUILTIN_PACKUSWB128,
2407
2408 IX86_BUILTIN_PADDB128,
2409 IX86_BUILTIN_PADDW128,
2410 IX86_BUILTIN_PADDD128,
2411 IX86_BUILTIN_PADDQ128,
2412 IX86_BUILTIN_PADDSB128,
2413 IX86_BUILTIN_PADDSW128,
2414 IX86_BUILTIN_PADDUSB128,
2415 IX86_BUILTIN_PADDUSW128,
2416 IX86_BUILTIN_PSUBB128,
2417 IX86_BUILTIN_PSUBW128,
2418 IX86_BUILTIN_PSUBD128,
2419 IX86_BUILTIN_PSUBQ128,
2420 IX86_BUILTIN_PSUBSB128,
2421 IX86_BUILTIN_PSUBSW128,
2422 IX86_BUILTIN_PSUBUSB128,
2423 IX86_BUILTIN_PSUBUSW128,
2424
2425 IX86_BUILTIN_PAND128,
2426 IX86_BUILTIN_PANDN128,
2427 IX86_BUILTIN_POR128,
2428 IX86_BUILTIN_PXOR128,
2429
2430 IX86_BUILTIN_PAVGB128,
2431 IX86_BUILTIN_PAVGW128,
2432
2433 IX86_BUILTIN_PCMPEQB128,
2434 IX86_BUILTIN_PCMPEQW128,
2435 IX86_BUILTIN_PCMPEQD128,
2436 IX86_BUILTIN_PCMPGTB128,
2437 IX86_BUILTIN_PCMPGTW128,
2438 IX86_BUILTIN_PCMPGTD128,
2439
2440 IX86_BUILTIN_PEXTRW128,
2441 IX86_BUILTIN_PINSRW128,
2442
2443 IX86_BUILTIN_PMADDWD128,
2444
2445 IX86_BUILTIN_PMAXSW128,
2446 IX86_BUILTIN_PMAXUB128,
2447 IX86_BUILTIN_PMINSW128,
2448 IX86_BUILTIN_PMINUB128,
2449
2450 IX86_BUILTIN_PMULUDQ,
2451 IX86_BUILTIN_PMULUDQ128,
2452 IX86_BUILTIN_PMULHUW128,
2453 IX86_BUILTIN_PMULHW128,
2454 IX86_BUILTIN_PMULLW128,
2455
2456 IX86_BUILTIN_PSADBW128,
2457 IX86_BUILTIN_PSHUFHW,
2458 IX86_BUILTIN_PSHUFLW,
2459 IX86_BUILTIN_PSHUFD,
2460
2461 IX86_BUILTIN_PSLLW128,
2462 IX86_BUILTIN_PSLLD128,
2463 IX86_BUILTIN_PSLLQ128,
2464 IX86_BUILTIN_PSRAW128,
2465 IX86_BUILTIN_PSRAD128,
2466 IX86_BUILTIN_PSRLW128,
2467 IX86_BUILTIN_PSRLD128,
2468 IX86_BUILTIN_PSRLQ128,
2469 IX86_BUILTIN_PSLLDQI128,
2470 IX86_BUILTIN_PSLLWI128,
2471 IX86_BUILTIN_PSLLDI128,
2472 IX86_BUILTIN_PSLLQI128,
2473 IX86_BUILTIN_PSRAWI128,
2474 IX86_BUILTIN_PSRADI128,
2475 IX86_BUILTIN_PSRLDQI128,
2476 IX86_BUILTIN_PSRLWI128,
2477 IX86_BUILTIN_PSRLDI128,
2478 IX86_BUILTIN_PSRLQI128,
2479
2480 IX86_BUILTIN_PUNPCKHBW128,
2481 IX86_BUILTIN_PUNPCKHWD128,
2482 IX86_BUILTIN_PUNPCKHDQ128,
2483 IX86_BUILTIN_PUNPCKHQDQ128,
2484 IX86_BUILTIN_PUNPCKLBW128,
2485 IX86_BUILTIN_PUNPCKLWD128,
2486 IX86_BUILTIN_PUNPCKLDQ128,
2487 IX86_BUILTIN_PUNPCKLQDQ128,
2488
2489 IX86_BUILTIN_CLFLUSH,
2490 IX86_BUILTIN_MFENCE,
2491 IX86_BUILTIN_LFENCE,
2492
2493 IX86_BUILTIN_MAX
2494 };
2495 \f
2496 #define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
2497 #define TARGET_STRIP_NAME_ENCODING ix86_strip_name_encoding
2498
2499 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2500 do { \
2501 const char *xname = (NAME); \
2502 if (xname[0] == '%') \
2503 xname += 2; \
2504 if (xname[0] == '*') \
2505 xname += 1; \
2506 else \
2507 fputs (user_label_prefix, FILE); \
2508 fputs (xname, FILE); \
2509 } while (0)
2510 \f
2511 /* Max number of args passed in registers. If this is more than 3, we will
2512 have problems with ebx (register #4), since it is a caller save register and
2513 is also used as the pic register in ELF. So for now, don't allow more than
2514 3 registers to be passed in registers. */
2515
2516 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2517
2518 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2519
2520 \f
2521 /* Specify the machine mode that this machine uses
2522 for the index in the tablejump instruction. */
2523 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2524
2525 /* Define as C expression which evaluates to nonzero if the tablejump
2526 instruction expects the table to contain offsets from the address of the
2527 table.
2528 Do not define this if the table should contain absolute addresses. */
2529 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2530
2531 /* Define this as 1 if `char' should by default be signed; else as 0. */
2532 #define DEFAULT_SIGNED_CHAR 1
2533
2534 /* Number of bytes moved into a data cache for a single prefetch operation. */
2535 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2536
2537 /* Number of prefetch operations that can be done in parallel. */
2538 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2539
2540 /* Max number of bytes we can move from memory to memory
2541 in one reasonably fast instruction. */
2542 #define MOVE_MAX 16
2543
2544 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2545 move efficiently, as opposed to MOVE_MAX which is the maximum
2546 number of bytes we can move with a single instruction. */
2547 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2548
2549 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2550 move-instruction pairs, we will do a movstr or libcall instead.
2551 Increasing the value will always make code faster, but eventually
2552 incurs high cost in increased code size.
2553
2554 If you don't define this, a reasonable default is used. */
2555
2556 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2557
2558 /* Define if shifts truncate the shift count
2559 which implies one can omit a sign-extension or zero-extension
2560 of a shift count. */
2561 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2562
2563 /* #define SHIFT_COUNT_TRUNCATED */
2564
2565 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2566 is done just by pretending it is already truncated. */
2567 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2568
2569 /* We assume that the store-condition-codes instructions store 0 for false
2570 and some other value for true. This is the value stored for true. */
2571
2572 #define STORE_FLAG_VALUE 1
2573
2574 /* When a prototype says `char' or `short', really pass an `int'.
2575 (The 386 can't easily push less than an int.) */
2576
2577 #define PROMOTE_PROTOTYPES 1
2578
2579 /* A macro to update M and UNSIGNEDP when an object whose type is
2580 TYPE and which has the specified mode and signedness is to be
2581 stored in a register. This macro is only called when TYPE is a
2582 scalar type.
2583
2584 On i386 it is sometimes useful to promote HImode and QImode
2585 quantities to SImode. The choice depends on target type. */
2586
2587 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2588 do { \
2589 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2590 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2591 (MODE) = SImode; \
2592 } while (0)
2593
2594 /* Specify the machine mode that pointers have.
2595 After generation of rtl, the compiler makes no further distinction
2596 between pointers and any other objects of this machine mode. */
2597 #define Pmode (TARGET_64BIT ? DImode : SImode)
2598
2599 /* A function address in a call instruction
2600 is a byte address (for indexing purposes)
2601 so give the MEM rtx a byte's mode. */
2602 #define FUNCTION_MODE QImode
2603 \f
2604 /* A C expression for the cost of moving data from a register in class FROM to
2605 one in class TO. The classes are expressed using the enumeration values
2606 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2607 interpreted relative to that.
2608
2609 It is not required that the cost always equal 2 when FROM is the same as TO;
2610 on some machines it is expensive to move between registers if they are not
2611 general registers. */
2612
2613 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2614 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2615
2616 /* A C expression for the cost of moving data of mode M between a
2617 register and memory. A value of 2 is the default; this cost is
2618 relative to those in `REGISTER_MOVE_COST'.
2619
2620 If moving between registers and memory is more expensive than
2621 between two registers, you should define this macro to express the
2622 relative cost. */
2623
2624 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2625 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2626
2627 /* A C expression for the cost of a branch instruction. A value of 1
2628 is the default; other values are interpreted relative to that. */
2629
2630 #define BRANCH_COST ix86_branch_cost
2631
2632 /* Define this macro as a C expression which is nonzero if accessing
2633 less than a word of memory (i.e. a `char' or a `short') is no
2634 faster than accessing a word of memory, i.e., if such access
2635 require more than one instruction or if there is no difference in
2636 cost between byte and (aligned) word loads.
2637
2638 When this macro is not defined, the compiler will access a field by
2639 finding the smallest containing object; when it is defined, a
2640 fullword load will be used if alignment permits. Unless bytes
2641 accesses are faster than word accesses, using word accesses is
2642 preferable since it may eliminate subsequent memory access if
2643 subsequent accesses occur to other fields in the same word of the
2644 structure, but to different bytes. */
2645
2646 #define SLOW_BYTE_ACCESS 0
2647
2648 /* Nonzero if access to memory by shorts is slow and undesirable. */
2649 #define SLOW_SHORT_ACCESS 0
2650
2651 /* Define this macro to be the value 1 if unaligned accesses have a
2652 cost many times greater than aligned accesses, for example if they
2653 are emulated in a trap handler.
2654
2655 When this macro is nonzero, the compiler will act as if
2656 `STRICT_ALIGNMENT' were nonzero when generating code for block
2657 moves. This can cause significantly more instructions to be
2658 produced. Therefore, do not set this macro nonzero if unaligned
2659 accesses only add a cycle or two to the time for a memory access.
2660
2661 If the value of this macro is always zero, it need not be defined. */
2662
2663 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2664
2665 /* Define this macro to inhibit strength reduction of memory
2666 addresses. (On some machines, such strength reduction seems to do
2667 harm rather than good.) */
2668
2669 /* #define DONT_REDUCE_ADDR */
2670
2671 /* Define this macro if it is as good or better to call a constant
2672 function address than to call an address kept in a register.
2673
2674 Desirable on the 386 because a CALL with a constant address is
2675 faster than one with a register address. */
2676
2677 #define NO_FUNCTION_CSE
2678
2679 /* Define this macro if it is as good or better for a function to call
2680 itself with an explicit address than to call an address kept in a
2681 register. */
2682
2683 #define NO_RECURSIVE_FUNCTION_CSE
2684 \f
2685 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2686 return the mode to be used for the comparison.
2687
2688 For floating-point equality comparisons, CCFPEQmode should be used.
2689 VOIDmode should be used in all other cases.
2690
2691 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2692 possible, to allow for more combinations. */
2693
2694 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2695
2696 /* Return nonzero if MODE implies a floating point inequality can be
2697 reversed. */
2698
2699 #define REVERSIBLE_CC_MODE(MODE) 1
2700
2701 /* A C expression whose value is reversed condition code of the CODE for
2702 comparison done in CC_MODE mode. */
2703 #define REVERSE_CONDITION(CODE, MODE) \
2704 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2705 : reverse_condition_maybe_unordered (CODE))
2706
2707 \f
2708 /* Control the assembler format that we output, to the extent
2709 this does not vary between assemblers. */
2710
2711 /* How to refer to registers in assembler output.
2712 This sequence is indexed by compiler's hard-register-number (see above). */
2713
2714 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2715 For non floating point regs, the following are the HImode names.
2716
2717 For float regs, the stack top is sometimes referred to as "%st(0)"
2718 instead of just "%st". PRINT_REG handles this with the "y" code. */
2719
2720 #undef HI_REGISTER_NAMES
2721 #define HI_REGISTER_NAMES \
2722 {"ax","dx","cx","bx","si","di","bp","sp", \
2723 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2724 "flags","fpsr", "dirflag", "frame", \
2725 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2726 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2727 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2728 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2729
2730 #define REGISTER_NAMES HI_REGISTER_NAMES
2731
2732 /* Table of additional register names to use in user input. */
2733
2734 #define ADDITIONAL_REGISTER_NAMES \
2735 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2736 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2737 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2738 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2739 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2740 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2741 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2742 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2743
2744 /* Note we are omitting these since currently I don't know how
2745 to get gcc to use these, since they want the same but different
2746 number as al, and ax.
2747 */
2748
2749 #define QI_REGISTER_NAMES \
2750 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2751
2752 /* These parallel the array above, and can be used to access bits 8:15
2753 of regs 0 through 3. */
2754
2755 #define QI_HIGH_REGISTER_NAMES \
2756 {"ah", "dh", "ch", "bh", }
2757
2758 /* How to renumber registers for dbx and gdb. */
2759
2760 #define DBX_REGISTER_NUMBER(N) \
2761 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2762
2763 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2764 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2765 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2766
2767 /* Before the prologue, RA is at 0(%esp). */
2768 #define INCOMING_RETURN_ADDR_RTX \
2769 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2770
2771 /* After the prologue, RA is at -4(AP) in the current frame. */
2772 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2773 ((COUNT) == 0 \
2774 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2775 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2776
2777 /* PC is dbx register 8; let's use that column for RA. */
2778 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2779
2780 /* Before the prologue, the top of the frame is at 4(%esp). */
2781 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2782
2783 /* Describe how we implement __builtin_eh_return. */
2784 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2785 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2786
2787
2788 /* Select a format to encode pointers in exception handling data. CODE
2789 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2790 true if the symbol may be affected by dynamic relocations.
2791
2792 ??? All x86 object file formats are capable of representing this.
2793 After all, the relocation needed is the same as for the call insn.
2794 Whether or not a particular assembler allows us to enter such, I
2795 guess we'll have to see. */
2796 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2797 (flag_pic \
2798 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2799 : DW_EH_PE_absptr)
2800
2801 /* This is how to output an insn to push a register on the stack.
2802 It need not be very fast code. */
2803
2804 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2805 do { \
2806 if (TARGET_64BIT) \
2807 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2808 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2809 else \
2810 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2811 } while (0)
2812
2813 /* This is how to output an insn to pop a register from the stack.
2814 It need not be very fast code. */
2815
2816 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2817 do { \
2818 if (TARGET_64BIT) \
2819 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2820 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2821 else \
2822 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2823 } while (0)
2824
2825 /* This is how to output an element of a case-vector that is absolute. */
2826
2827 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2828 ix86_output_addr_vec_elt ((FILE), (VALUE))
2829
2830 /* This is how to output an element of a case-vector that is relative. */
2831
2832 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2833 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2834
2835 /* Under some conditions we need jump tables in the text section, because
2836 the assembler cannot handle label differences between sections. */
2837
2838 #define JUMP_TABLES_IN_TEXT_SECTION \
2839 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2840
2841 /* A C statement that outputs an address constant appropriate to
2842 for DWARF debugging. */
2843
2844 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2845 i386_dwarf_output_addr_const ((FILE), (X))
2846
2847 /* Emit a dtp-relative reference to a TLS variable. */
2848
2849 #ifdef HAVE_AS_TLS
2850 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2851 i386_output_dwarf_dtprel (FILE, SIZE, X)
2852 #endif
2853
2854 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2855 and switch back. For x86 we do this only to save a few bytes that
2856 would otherwise be unused in the text section. */
2857 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2858 asm (SECTION_OP "\n\t" \
2859 "call " USER_LABEL_PREFIX #FUNC "\n" \
2860 TEXT_SECTION_ASM_OP);
2861 \f
2862 /* Print operand X (an rtx) in assembler syntax to file FILE.
2863 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2864 Effect of various CODE letters is described in i386.c near
2865 print_operand function. */
2866
2867 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2868 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2869
2870 /* Print the name of a register based on its machine mode and number.
2871 If CODE is 'w', pretend the mode is HImode.
2872 If CODE is 'b', pretend the mode is QImode.
2873 If CODE is 'k', pretend the mode is SImode.
2874 If CODE is 'q', pretend the mode is DImode.
2875 If CODE is 'h', pretend the reg is the `high' byte register.
2876 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2877
2878 #define PRINT_REG(X, CODE, FILE) \
2879 print_reg ((X), (CODE), (FILE))
2880
2881 #define PRINT_OPERAND(FILE, X, CODE) \
2882 print_operand ((FILE), (X), (CODE))
2883
2884 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2885 print_operand_address ((FILE), (ADDR))
2886
2887 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2888 do { \
2889 if (! output_addr_const_extra (FILE, (X))) \
2890 goto FAIL; \
2891 } while (0);
2892
2893 /* Print the name of a register for based on its machine mode and number.
2894 This macro is used to print debugging output.
2895 This macro is different from PRINT_REG in that it may be used in
2896 programs that are not linked with aux-output.o. */
2897
2898 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2899 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
2900 static const char * const qi_name[] = QI_REGISTER_NAMES; \
2901 fprintf ((FILE), "%d ", REGNO (X)); \
2902 if (REGNO (X) == FLAGS_REG) \
2903 { fputs ("flags", (FILE)); break; } \
2904 if (REGNO (X) == DIRFLAG_REG) \
2905 { fputs ("dirflag", (FILE)); break; } \
2906 if (REGNO (X) == FPSR_REG) \
2907 { fputs ("fpsr", (FILE)); break; } \
2908 if (REGNO (X) == ARG_POINTER_REGNUM) \
2909 { fputs ("argp", (FILE)); break; } \
2910 if (REGNO (X) == FRAME_POINTER_REGNUM) \
2911 { fputs ("frame", (FILE)); break; } \
2912 if (STACK_TOP_P (X)) \
2913 { fputs ("st(0)", (FILE)); break; } \
2914 if (FP_REG_P (X)) \
2915 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
2916 if (REX_INT_REG_P (X)) \
2917 { \
2918 switch (GET_MODE_SIZE (GET_MODE (X))) \
2919 { \
2920 default: \
2921 case 8: \
2922 fprintf ((FILE), "r%i", REGNO (X) \
2923 - FIRST_REX_INT_REG + 8); \
2924 break; \
2925 case 4: \
2926 fprintf ((FILE), "r%id", REGNO (X) \
2927 - FIRST_REX_INT_REG + 8); \
2928 break; \
2929 case 2: \
2930 fprintf ((FILE), "r%iw", REGNO (X) \
2931 - FIRST_REX_INT_REG + 8); \
2932 break; \
2933 case 1: \
2934 fprintf ((FILE), "r%ib", REGNO (X) \
2935 - FIRST_REX_INT_REG + 8); \
2936 break; \
2937 } \
2938 break; \
2939 } \
2940 switch (GET_MODE_SIZE (GET_MODE (X))) \
2941 { \
2942 case 8: \
2943 fputs ("r", (FILE)); \
2944 fputs (hi_name[REGNO (X)], (FILE)); \
2945 break; \
2946 default: \
2947 fputs ("e", (FILE)); \
2948 case 2: \
2949 fputs (hi_name[REGNO (X)], (FILE)); \
2950 break; \
2951 case 1: \
2952 fputs (qi_name[REGNO (X)], (FILE)); \
2953 break; \
2954 } \
2955 } while (0)
2956
2957 /* a letter which is not needed by the normal asm syntax, which
2958 we can use for operand syntax in the extended asm */
2959
2960 #define ASM_OPERAND_LETTER '#'
2961 #define RET return ""
2962 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2963 \f
2964 /* Define the codes that are matched by predicates in i386.c. */
2965
2966 #define PREDICATE_CODES \
2967 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2968 SYMBOL_REF, LABEL_REF, CONST}}, \
2969 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2970 SYMBOL_REF, LABEL_REF, CONST}}, \
2971 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
2972 SYMBOL_REF, LABEL_REF, CONST}}, \
2973 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2974 SYMBOL_REF, LABEL_REF, CONST}}, \
2975 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2976 SYMBOL_REF, LABEL_REF, CONST}}, \
2977 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2978 SYMBOL_REF, LABEL_REF, CONST}}, \
2979 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2980 SYMBOL_REF, LABEL_REF}}, \
2981 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
2982 {"const_int_1_operand", {CONST_INT}}, \
2983 {"const_int_1_31_operand", {CONST_INT}}, \
2984 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2985 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2986 LABEL_REF, SUBREG, REG, MEM}}, \
2987 {"pic_symbolic_operand", {CONST}}, \
2988 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
2989 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
2990 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
2991 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
2992 {"const1_operand", {CONST_INT}}, \
2993 {"const248_operand", {CONST_INT}}, \
2994 {"incdec_operand", {CONST_INT}}, \
2995 {"mmx_reg_operand", {REG}}, \
2996 {"reg_no_sp_operand", {SUBREG, REG}}, \
2997 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2998 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
2999 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
3000 {"index_register_operand", {SUBREG, REG}}, \
3001 {"flags_reg_operand", {REG}}, \
3002 {"q_regs_operand", {SUBREG, REG}}, \
3003 {"non_q_regs_operand", {SUBREG, REG}}, \
3004 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3005 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3006 GE, UNGE, LTGT, UNEQ}}, \
3007 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3008 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3009 }}, \
3010 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
3011 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3012 UNGE, UNGT, LTGT, UNEQ }}, \
3013 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
3014 GE, UNGE, LTGT, UNEQ}}, \
3015 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3016 {"ext_register_operand", {SUBREG, REG}}, \
3017 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3018 {"mult_operator", {MULT}}, \
3019 {"div_operator", {DIV}}, \
3020 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3021 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3022 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3023 LSHIFTRT, ROTATERT}}, \
3024 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
3025 {"memory_displacement_operand", {MEM}}, \
3026 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3027 LABEL_REF, SUBREG, REG, MEM, AND}}, \
3028 {"long_memory_operand", {MEM}}, \
3029 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3030 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3031 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3032 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
3033 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
3034 {"any_fp_register_operand", {REG}}, \
3035 {"register_and_not_any_fp_reg_operand", {REG}}, \
3036 {"fp_register_operand", {REG}}, \
3037 {"register_and_not_fp_reg_operand", {REG}}, \
3038 {"zero_extended_scalar_load_operand", {MEM}}, \
3039
3040 /* A list of predicates that do special things with modes, and so
3041 should not elicit warnings for VOIDmode match_operand. */
3042
3043 #define SPECIAL_MODE_PREDICATES \
3044 "ext_register_operand",
3045 \f
3046 /* Which processor to schedule for. The cpu attribute defines a list that
3047 mirrors this list, so changes to i386.md must be made at the same time. */
3048
3049 enum processor_type
3050 {
3051 PROCESSOR_I386, /* 80386 */
3052 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3053 PROCESSOR_PENTIUM,
3054 PROCESSOR_PENTIUMPRO,
3055 PROCESSOR_K6,
3056 PROCESSOR_ATHLON,
3057 PROCESSOR_PENTIUM4,
3058 PROCESSOR_K8,
3059 PROCESSOR_max
3060 };
3061
3062 extern enum processor_type ix86_cpu;
3063 extern const char *ix86_cpu_string;
3064
3065 extern enum processor_type ix86_arch;
3066 extern const char *ix86_arch_string;
3067
3068 enum fpmath_unit
3069 {
3070 FPMATH_387 = 1,
3071 FPMATH_SSE = 2
3072 };
3073
3074 extern enum fpmath_unit ix86_fpmath;
3075 extern const char *ix86_fpmath_string;
3076
3077 enum tls_dialect
3078 {
3079 TLS_DIALECT_GNU,
3080 TLS_DIALECT_SUN
3081 };
3082
3083 extern enum tls_dialect ix86_tls_dialect;
3084 extern const char *ix86_tls_dialect_string;
3085
3086 enum cmodel {
3087 CM_32, /* The traditional 32-bit ABI. */
3088 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3089 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3090 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3091 CM_LARGE, /* No assumptions. */
3092 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3093 };
3094
3095 extern enum cmodel ix86_cmodel;
3096 extern const char *ix86_cmodel_string;
3097
3098 /* Size of the RED_ZONE area. */
3099 #define RED_ZONE_SIZE 128
3100 /* Reserved area of the red zone for temporaries. */
3101 #define RED_ZONE_RESERVE 8
3102
3103 enum asm_dialect {
3104 ASM_ATT,
3105 ASM_INTEL
3106 };
3107
3108 extern const char *ix86_asm_string;
3109 extern enum asm_dialect ix86_asm_dialect;
3110
3111 extern int ix86_regparm;
3112 extern const char *ix86_regparm_string;
3113
3114 extern int ix86_preferred_stack_boundary;
3115 extern const char *ix86_preferred_stack_boundary_string;
3116
3117 extern int ix86_branch_cost;
3118 extern const char *ix86_branch_cost_string;
3119
3120 extern const char *ix86_debug_arg_string;
3121 extern const char *ix86_debug_addr_string;
3122
3123 /* Obsoleted by -f options. Remove before 3.2 ships. */
3124 extern const char *ix86_align_loops_string;
3125 extern const char *ix86_align_jumps_string;
3126 extern const char *ix86_align_funcs_string;
3127
3128 /* Smallest class containing REGNO. */
3129 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3130
3131 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3132 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3133 \f
3134 /* To properly truncate FP values into integers, we need to set i387 control
3135 word. We can't emit proper mode switching code before reload, as spills
3136 generated by reload may truncate values incorrectly, but we still can avoid
3137 redundant computation of new control word by the mode switching pass.
3138 The fldcw instructions are still emitted redundantly, but this is probably
3139 not going to be noticeable problem, as most CPUs do have fast path for
3140 the sequence.
3141
3142 The machinery is to emit simple truncation instructions and split them
3143 before reload to instructions having USEs of two memory locations that
3144 are filled by this code to old and new control word.
3145
3146 Post-reload pass may be later used to eliminate the redundant fildcw if
3147 needed. */
3148
3149 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3150
3151 /* Define this macro if the port needs extra instructions inserted
3152 for mode switching in an optimizing compilation. */
3153
3154 #define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3155
3156 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3157 initializer for an array of integers. Each initializer element N
3158 refers to an entity that needs mode switching, and specifies the
3159 number of different modes that might need to be set for this
3160 entity. The position of the initializer in the initializer -
3161 starting counting at zero - determines the integer that is used to
3162 refer to the mode-switched entity in question. */
3163
3164 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3165
3166 /* ENTITY is an integer specifying a mode-switched entity. If
3167 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3168 return an integer value not larger than the corresponding element
3169 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3170 must be switched into prior to the execution of INSN. */
3171
3172 #define MODE_NEEDED(ENTITY, I) \
3173 (GET_CODE (I) == CALL_INSN \
3174 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3175 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3176 ? FP_CW_UNINITIALIZED \
3177 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3178 ? FP_CW_ANY \
3179 : FP_CW_STORED)
3180
3181 /* This macro specifies the order in which modes for ENTITY are
3182 processed. 0 is the highest priority. */
3183
3184 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3185
3186 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3187 is the set of hard registers live at the point where the insn(s)
3188 are to be inserted. */
3189
3190 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3191 ((MODE) == FP_CW_STORED \
3192 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3193 assign_386_stack_local (HImode, 2)), 0\
3194 : 0)
3195 \f
3196 /* Avoid renaming of stack registers, as doing so in combination with
3197 scheduling just increases amount of live registers at time and in
3198 the turn amount of fxch instructions needed.
3199
3200 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3201
3202 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3203 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3204
3205 \f
3206 #define MACHINE_DEPENDENT_REORG(X) x86_machine_dependent_reorg(X)
3207
3208 #define DLL_IMPORT_EXPORT_PREFIX '#'
3209
3210 #define FASTCALL_PREFIX '@'
3211
3212 /*
3213 Local variables:
3214 version-control: t
3215 End:
3216 */