i386.c (TARGET_PROMOTE_PROTOTYPES): New.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #ifdef TARGET_64BIT_DEFAULT
101 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102 #else
103 #define TARGET_CPU_DEFAULT 0
104 #endif
105 #endif
106
107 /* Masks for the -m switches */
108 #define MASK_80387 0x00000001 /* Hardware floating point */
109 #define MASK_RTD 0x00000002 /* Use ret that pops args */
110 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
111 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
112 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
113 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
114 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
115 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
116 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
117 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
118 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
119 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
120 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
121 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
122 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
123 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
124 #define MASK_PNI 0x00010000 /* Support PNI regs/builtins */
125 #define MASK_3DNOW 0x00020000 /* Support 3Dnow builtins */
126 #define MASK_3DNOW_A 0x00040000 /* Support Athlon 3Dnow builtins */
127 #define MASK_128BIT_LONG_DOUBLE 0x00080000 /* long double size is 128bit */
128 #define MASK_64BIT 0x00100000 /* Produce 64bit code */
129 #define MASK_MS_BITFIELD_LAYOUT 0x00200000 /* Use native (MS) bitfield layout */
130 #define MASK_TLS_DIRECT_SEG_REFS 0x00400000 /* Avoid adding %gs:0 */
131
132 /* Unused: 0x03e0000 */
133
134 /* ... overlap with subtarget options starts by 0x04000000. */
135 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
136
137 /* Use the floating point instructions */
138 #define TARGET_80387 (target_flags & MASK_80387)
139
140 /* Compile using ret insn that pops args.
141 This will not work unless you use prototypes at least
142 for all functions that can take varying numbers of args. */
143 #define TARGET_RTD (target_flags & MASK_RTD)
144
145 /* Align doubles to a two word boundary. This breaks compatibility with
146 the published ABI's for structures containing doubles, but produces
147 faster code on the pentium. */
148 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
149
150 /* Use push instructions to save outgoing args. */
151 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
152
153 /* Accumulate stack adjustments to prologue/epilogue. */
154 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
155 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
156
157 /* Put uninitialized locals into bss, not data.
158 Meaningful only on svr3. */
159 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
160
161 /* Use IEEE floating point comparisons. These handle correctly the cases
162 where the result of a comparison is unordered. Normally SIGFPE is
163 generated in such cases, in which case this isn't needed. */
164 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
165
166 /* Functions that return a floating point value may return that value
167 in the 387 FPU or in 386 integer registers. If set, this flag causes
168 the 387 to be used, which is compatible with most calling conventions. */
169 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
170
171 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
172 This mode wastes cache, but avoid misaligned data accesses and simplifies
173 address calculations. */
174 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
175
176 /* Disable generation of FP sin, cos and sqrt operations for 387.
177 This is because FreeBSD lacks these in the math-emulator-code */
178 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
179
180 /* Don't create frame pointers for leaf functions */
181 #define TARGET_OMIT_LEAF_FRAME_POINTER \
182 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
183
184 /* Debug GO_IF_LEGITIMATE_ADDRESS */
185 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
186
187 /* Debug FUNCTION_ARG macros */
188 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
189
190 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
191 compile-time constant. */
192 #ifdef IN_LIBGCC2
193 #ifdef __x86_64__
194 #define TARGET_64BIT 1
195 #else
196 #define TARGET_64BIT 0
197 #endif
198 #else
199 #ifdef TARGET_BI_ARCH
200 #define TARGET_64BIT (target_flags & MASK_64BIT)
201 #else
202 #if TARGET_64BIT_DEFAULT
203 #define TARGET_64BIT 1
204 #else
205 #define TARGET_64BIT 0
206 #endif
207 #endif
208 #endif
209
210 /* Avoid adding %gs:0 in TLS references; use %gs:address directly. */
211 #define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
212
213 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
214 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
215 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
216 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
217 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
218 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
219 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
220 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
221 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
222
223 #define TUNEMASK (1 << ix86_tune)
224 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
225 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
226 extern const int x86_branch_hints, x86_unroll_strlen;
227 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
228 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
229 extern const int x86_use_cltd, x86_read_modify_write;
230 extern const int x86_read_modify, x86_split_long_moves;
231 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
232 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
233 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
234 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
235 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
236 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
237 extern const int x86_epilogue_using_move, x86_decompose_lea;
238 extern const int x86_arch_always_fancy_math_387, x86_shift1;
239 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
240 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
241 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
242 extern const int x86_inter_unit_moves;
243 extern int x86_prefetch_sse;
244
245 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
246 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
247 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
248 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
249 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
250 /* For sane SSE instruction set generation we need fcomi instruction. It is
251 safe to enable all CMOVE instructions. */
252 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
253 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
254 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
255 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
256 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
257 #define TARGET_MOVX (x86_movx & TUNEMASK)
258 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
259 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
260 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
261 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
262 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
263 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
264 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
265 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
266 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
267 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
268 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
269 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
270 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
271 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
272 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
273 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
274 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
275 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
276 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
277 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
278 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
279 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
280 (x86_sse_partial_reg_dependency & TUNEMASK)
281 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
282 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
283 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
284 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
285 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
286 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
287 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
288 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
289 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
290 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
291 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
292 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
293 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
294 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
295 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
296
297 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
298
299 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
300 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
301
302 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
303
304 #define TARGET_SSE ((target_flags & MASK_SSE) != 0)
305 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
306 #define TARGET_PNI ((target_flags & MASK_PNI) != 0)
307 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
308 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
309 && (ix86_fpmath & FPMATH_387))
310 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
311 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
312 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
313
314 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
315
316 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
317
318 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
319 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
320
321 /* WARNING: Do not mark empty strings for translation, as calling
322 gettext on an empty string does NOT return an empty
323 string. */
324
325
326 #define TARGET_SWITCHES \
327 { { "80387", MASK_80387, N_("Use hardware fp") }, \
328 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
329 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
330 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
331 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
332 { "386", 0, "" /*Deprecated.*/}, \
333 { "486", 0, "" /*Deprecated.*/}, \
334 { "pentium", 0, "" /*Deprecated.*/}, \
335 { "pentiumpro", 0, "" /*Deprecated.*/}, \
336 { "intel-syntax", 0, "" /*Deprecated.*/}, \
337 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
338 { "rtd", MASK_RTD, \
339 N_("Alternate calling convention") }, \
340 { "no-rtd", -MASK_RTD, \
341 N_("Use normal calling convention") }, \
342 { "align-double", MASK_ALIGN_DOUBLE, \
343 N_("Align some doubles on dword boundary") }, \
344 { "no-align-double", -MASK_ALIGN_DOUBLE, \
345 N_("Align doubles on word boundary") }, \
346 { "svr3-shlib", MASK_SVR3_SHLIB, \
347 N_("Uninitialized locals in .bss") }, \
348 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
349 N_("Uninitialized locals in .data") }, \
350 { "ieee-fp", MASK_IEEE_FP, \
351 N_("Use IEEE math for fp comparisons") }, \
352 { "no-ieee-fp", -MASK_IEEE_FP, \
353 N_("Do not use IEEE math for fp comparisons") }, \
354 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
355 N_("Return values of functions in FPU registers") }, \
356 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
357 N_("Do not return values of functions in FPU registers")}, \
358 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
359 N_("Do not generate sin, cos, sqrt for FPU") }, \
360 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
361 N_("Generate sin, cos, sqrt for FPU")}, \
362 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
363 N_("Omit the frame pointer in leaf functions") }, \
364 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
365 { "stack-arg-probe", MASK_STACK_PROBE, \
366 N_("Enable stack probing") }, \
367 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
368 { "windows", 0, 0 /* undocumented */ }, \
369 { "dll", 0, 0 /* undocumented */ }, \
370 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
371 N_("Align destination of the string operations") }, \
372 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
373 N_("Do not align destination of the string operations") }, \
374 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
375 N_("Inline all known string operations") }, \
376 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
377 N_("Do not inline all known string operations") }, \
378 { "push-args", -MASK_NO_PUSH_ARGS, \
379 N_("Use push instructions to save outgoing arguments") }, \
380 { "no-push-args", MASK_NO_PUSH_ARGS, \
381 N_("Do not use push instructions to save outgoing arguments") }, \
382 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
383 N_("Use push instructions to save outgoing arguments") }, \
384 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
385 N_("Do not use push instructions to save outgoing arguments") }, \
386 { "mmx", MASK_MMX, \
387 N_("Support MMX built-in functions") }, \
388 { "no-mmx", -MASK_MMX, \
389 N_("Do not support MMX built-in functions") }, \
390 { "3dnow", MASK_3DNOW, \
391 N_("Support 3DNow! built-in functions") }, \
392 { "no-3dnow", -MASK_3DNOW, \
393 N_("Do not support 3DNow! built-in functions") }, \
394 { "sse", MASK_SSE, \
395 N_("Support MMX and SSE built-in functions and code generation") }, \
396 { "no-sse", -MASK_SSE, \
397 N_("Do not support MMX and SSE built-in functions and code generation") },\
398 { "sse2", MASK_SSE2, \
399 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
400 { "no-sse2", -MASK_SSE2, \
401 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
402 { "pni", MASK_PNI, \
403 N_("Support MMX, SSE, SSE2 and PNI built-in functions and code generation") },\
404 { "no-pni", -MASK_PNI, \
405 N_("Do not support MMX, SSE, SSE2 and PNI built-in functions and code generation") },\
406 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
407 N_("sizeof(long double) is 16") }, \
408 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
409 N_("sizeof(long double) is 12") }, \
410 { "64", MASK_64BIT, \
411 N_("Generate 64bit x86-64 code") }, \
412 { "32", -MASK_64BIT, \
413 N_("Generate 32bit i386 code") }, \
414 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
415 N_("Use native (MS) bitfield layout") }, \
416 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
417 N_("Use gcc default bitfield layout") }, \
418 { "red-zone", -MASK_NO_RED_ZONE, \
419 N_("Use red-zone in the x86-64 code") }, \
420 { "no-red-zone", MASK_NO_RED_ZONE, \
421 N_("Do not use red-zone in the x86-64 code") }, \
422 { "tls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS, \
423 N_("Use direct references against %gs when accessing tls data") }, \
424 { "no-tls-direct-seg-refs", -MASK_TLS_DIRECT_SEG_REFS, \
425 N_("Do not use direct references against %gs when accessing tls data") }, \
426 SUBTARGET_SWITCHES \
427 { "", \
428 TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT \
429 | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
430
431 #ifndef TARGET_64BIT_DEFAULT
432 #define TARGET_64BIT_DEFAULT 0
433 #endif
434 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
435 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
436 #endif
437
438 /* Once GDB has been enhanced to deal with functions without frame
439 pointers, we can change this to allow for elimination of
440 the frame pointer in leaf functions. */
441 #define TARGET_DEFAULT 0
442
443 /* This is not really a target flag, but is done this way so that
444 it's analogous to similar code for Mach-O on PowerPC. darwin.h
445 redefines this to 1. */
446 #define TARGET_MACHO 0
447
448 /* This macro is similar to `TARGET_SWITCHES' but defines names of
449 command options that have values. Its definition is an
450 initializer with a subgrouping for each command option.
451
452 Each subgrouping contains a string constant, that defines the
453 fixed part of the option name, and the address of a variable. The
454 variable, type `char *', is set to the variable part of the given
455 option if the fixed part matches. The actual option name is made
456 by appending `-m' to the specified name. */
457 #define TARGET_OPTIONS \
458 { { "tune=", &ix86_tune_string, \
459 N_("Schedule code for given CPU"), 0}, \
460 { "fpmath=", &ix86_fpmath_string, \
461 N_("Generate floating point mathematics using given instruction set"), 0},\
462 { "arch=", &ix86_arch_string, \
463 N_("Generate code for given CPU"), 0}, \
464 { "regparm=", &ix86_regparm_string, \
465 N_("Number of registers used to pass integer arguments"), 0},\
466 { "align-loops=", &ix86_align_loops_string, \
467 N_("Loop code aligned to this power of 2"), 0}, \
468 { "align-jumps=", &ix86_align_jumps_string, \
469 N_("Jump targets are aligned to this power of 2"), 0}, \
470 { "align-functions=", &ix86_align_funcs_string, \
471 N_("Function starts are aligned to this power of 2"), 0}, \
472 { "preferred-stack-boundary=", \
473 &ix86_preferred_stack_boundary_string, \
474 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
475 { "branch-cost=", &ix86_branch_cost_string, \
476 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
477 { "cmodel=", &ix86_cmodel_string, \
478 N_("Use given x86-64 code model"), 0}, \
479 { "debug-arg", &ix86_debug_arg_string, \
480 "" /* Undocumented. */, 0}, \
481 { "debug-addr", &ix86_debug_addr_string, \
482 "" /* Undocumented. */, 0}, \
483 { "asm=", &ix86_asm_string, \
484 N_("Use given assembler dialect"), 0}, \
485 { "tls-dialect=", &ix86_tls_dialect_string, \
486 N_("Use given thread-local storage dialect"), 0}, \
487 SUBTARGET_OPTIONS \
488 }
489
490 /* Sometimes certain combinations of command options do not make
491 sense on a particular target machine. You can define a macro
492 `OVERRIDE_OPTIONS' to take account of this. This macro, if
493 defined, is executed once just after all the command options have
494 been parsed.
495
496 Don't use this macro to turn on various extra optimizations for
497 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
498
499 #define OVERRIDE_OPTIONS override_options ()
500
501 /* These are meant to be redefined in the host dependent files */
502 #define SUBTARGET_SWITCHES
503 #define SUBTARGET_OPTIONS
504
505 /* Define this to change the optimizations performed by default. */
506 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
507 optimization_options ((LEVEL), (SIZE))
508
509 /* Support for configure-time defaults of some command line options. */
510 #define OPTION_DEFAULT_SPECS \
511 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
512 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
513 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
514
515 /* Specs for the compiler proper */
516
517 #ifndef CC1_CPU_SPEC
518 #define CC1_CPU_SPEC "\
519 %{!mtune*: \
520 %{m386:mtune=i386 \
521 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
522 %{m486:-mtune=i486 \
523 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
524 %{mpentium:-mtune=pentium \
525 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
526 %{mpentiumpro:-mtune=pentiumpro \
527 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
528 %{mcpu=*:-mtune=%* \
529 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
530 %<mcpu=* \
531 %{mintel-syntax:-masm=intel \
532 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
533 %{mno-intel-syntax:-masm=att \
534 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
535 #endif
536 \f
537 /* Target CPU builtins. */
538 #define TARGET_CPU_CPP_BUILTINS() \
539 do \
540 { \
541 size_t arch_len = strlen (ix86_arch_string); \
542 size_t tune_len = strlen (ix86_tune_string); \
543 int last_arch_char = ix86_arch_string[arch_len - 1]; \
544 int last_tune_char = ix86_tune_string[tune_len - 1]; \
545 \
546 if (TARGET_64BIT) \
547 { \
548 builtin_assert ("cpu=x86_64"); \
549 builtin_assert ("machine=x86_64"); \
550 builtin_define ("__amd64"); \
551 builtin_define ("__amd64__"); \
552 builtin_define ("__x86_64"); \
553 builtin_define ("__x86_64__"); \
554 } \
555 else \
556 { \
557 builtin_assert ("cpu=i386"); \
558 builtin_assert ("machine=i386"); \
559 builtin_define_std ("i386"); \
560 } \
561 \
562 /* Built-ins based on -mtune= (or -march= if no \
563 -mtune= given). */ \
564 if (TARGET_386) \
565 builtin_define ("__tune_i386__"); \
566 else if (TARGET_486) \
567 builtin_define ("__tune_i486__"); \
568 else if (TARGET_PENTIUM) \
569 { \
570 builtin_define ("__tune_i586__"); \
571 builtin_define ("__tune_pentium__"); \
572 if (last_tune_char == 'x') \
573 builtin_define ("__tune_pentium_mmx__"); \
574 } \
575 else if (TARGET_PENTIUMPRO) \
576 { \
577 builtin_define ("__tune_i686__"); \
578 builtin_define ("__tune_pentiumpro__"); \
579 switch (last_tune_char) \
580 { \
581 case '3': \
582 builtin_define ("__tune_pentium3__"); \
583 /* FALLTHRU */ \
584 case '2': \
585 builtin_define ("__tune_pentium2__"); \
586 break; \
587 } \
588 } \
589 else if (TARGET_K6) \
590 { \
591 builtin_define ("__tune_k6__"); \
592 if (last_tune_char == '2') \
593 builtin_define ("__tune_k6_2__"); \
594 else if (last_tune_char == '3') \
595 builtin_define ("__tune_k6_3__"); \
596 } \
597 else if (TARGET_ATHLON) \
598 { \
599 builtin_define ("__tune_athlon__"); \
600 /* Only plain "athlon" lacks SSE. */ \
601 if (last_tune_char != 'n') \
602 builtin_define ("__tune_athlon_sse__"); \
603 } \
604 else if (TARGET_K8) \
605 builtin_define ("__tune_k8__"); \
606 else if (TARGET_PENTIUM4) \
607 builtin_define ("__tune_pentium4__"); \
608 \
609 if (TARGET_MMX) \
610 builtin_define ("__MMX__"); \
611 if (TARGET_3DNOW) \
612 builtin_define ("__3dNOW__"); \
613 if (TARGET_3DNOW_A) \
614 builtin_define ("__3dNOW_A__"); \
615 if (TARGET_SSE) \
616 builtin_define ("__SSE__"); \
617 if (TARGET_SSE2) \
618 builtin_define ("__SSE2__"); \
619 if (TARGET_PNI) \
620 builtin_define ("__PNI__"); \
621 if (TARGET_SSE_MATH && TARGET_SSE) \
622 builtin_define ("__SSE_MATH__"); \
623 if (TARGET_SSE_MATH && TARGET_SSE2) \
624 builtin_define ("__SSE2_MATH__"); \
625 \
626 /* Built-ins based on -march=. */ \
627 if (ix86_arch == PROCESSOR_I486) \
628 { \
629 builtin_define ("__i486"); \
630 builtin_define ("__i486__"); \
631 } \
632 else if (ix86_arch == PROCESSOR_PENTIUM) \
633 { \
634 builtin_define ("__i586"); \
635 builtin_define ("__i586__"); \
636 builtin_define ("__pentium"); \
637 builtin_define ("__pentium__"); \
638 if (last_arch_char == 'x') \
639 builtin_define ("__pentium_mmx__"); \
640 } \
641 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
642 { \
643 builtin_define ("__i686"); \
644 builtin_define ("__i686__"); \
645 builtin_define ("__pentiumpro"); \
646 builtin_define ("__pentiumpro__"); \
647 } \
648 else if (ix86_arch == PROCESSOR_K6) \
649 { \
650 \
651 builtin_define ("__k6"); \
652 builtin_define ("__k6__"); \
653 if (last_arch_char == '2') \
654 builtin_define ("__k6_2__"); \
655 else if (last_arch_char == '3') \
656 builtin_define ("__k6_3__"); \
657 } \
658 else if (ix86_arch == PROCESSOR_ATHLON) \
659 { \
660 builtin_define ("__athlon"); \
661 builtin_define ("__athlon__"); \
662 /* Only plain "athlon" lacks SSE. */ \
663 if (last_arch_char != 'n') \
664 builtin_define ("__athlon_sse__"); \
665 } \
666 else if (ix86_arch == PROCESSOR_K8) \
667 { \
668 builtin_define ("__k8"); \
669 builtin_define ("__k8__"); \
670 } \
671 else if (ix86_arch == PROCESSOR_PENTIUM4) \
672 { \
673 builtin_define ("__pentium4"); \
674 builtin_define ("__pentium4__"); \
675 } \
676 } \
677 while (0)
678
679 #define TARGET_CPU_DEFAULT_i386 0
680 #define TARGET_CPU_DEFAULT_i486 1
681 #define TARGET_CPU_DEFAULT_pentium 2
682 #define TARGET_CPU_DEFAULT_pentium_mmx 3
683 #define TARGET_CPU_DEFAULT_pentiumpro 4
684 #define TARGET_CPU_DEFAULT_pentium2 5
685 #define TARGET_CPU_DEFAULT_pentium3 6
686 #define TARGET_CPU_DEFAULT_pentium4 7
687 #define TARGET_CPU_DEFAULT_k6 8
688 #define TARGET_CPU_DEFAULT_k6_2 9
689 #define TARGET_CPU_DEFAULT_k6_3 10
690 #define TARGET_CPU_DEFAULT_athlon 11
691 #define TARGET_CPU_DEFAULT_athlon_sse 12
692 #define TARGET_CPU_DEFAULT_k8 13
693
694 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
695 "pentiumpro", "pentium2", "pentium3", \
696 "pentium4", "k6", "k6-2", "k6-3",\
697 "athlon", "athlon-4", "k8"}
698
699 #ifndef CC1_SPEC
700 #define CC1_SPEC "%(cc1_cpu) "
701 #endif
702
703 /* This macro defines names of additional specifications to put in the
704 specs that can be used in various specifications like CC1_SPEC. Its
705 definition is an initializer with a subgrouping for each command option.
706
707 Each subgrouping contains a string constant, that defines the
708 specification name, and a string constant that used by the GCC driver
709 program.
710
711 Do not define this macro if it does not need to do anything. */
712
713 #ifndef SUBTARGET_EXTRA_SPECS
714 #define SUBTARGET_EXTRA_SPECS
715 #endif
716
717 #define EXTRA_SPECS \
718 { "cc1_cpu", CC1_CPU_SPEC }, \
719 SUBTARGET_EXTRA_SPECS
720 \f
721 /* target machine storage layout */
722
723 #define LONG_DOUBLE_TYPE_SIZE 96
724
725 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
726 FPU, assume that the fpcw is set to extended precision; when using
727 only SSE, rounding is correct; when using both SSE and the FPU,
728 the rounding precision is indeterminate, since either may be chosen
729 apparently at random. */
730 #define TARGET_FLT_EVAL_METHOD \
731 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
732
733 #define SHORT_TYPE_SIZE 16
734 #define INT_TYPE_SIZE 32
735 #define FLOAT_TYPE_SIZE 32
736 #define LONG_TYPE_SIZE BITS_PER_WORD
737 #define MAX_WCHAR_TYPE_SIZE 32
738 #define DOUBLE_TYPE_SIZE 64
739 #define LONG_LONG_TYPE_SIZE 64
740
741 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
742 #define MAX_BITS_PER_WORD 64
743 #define MAX_LONG_TYPE_SIZE 64
744 #else
745 #define MAX_BITS_PER_WORD 32
746 #define MAX_LONG_TYPE_SIZE 32
747 #endif
748
749 /* Define this if most significant byte of a word is the lowest numbered. */
750 /* That is true on the 80386. */
751
752 #define BITS_BIG_ENDIAN 0
753
754 /* Define this if most significant byte of a word is the lowest numbered. */
755 /* That is not true on the 80386. */
756 #define BYTES_BIG_ENDIAN 0
757
758 /* Define this if most significant word of a multiword number is the lowest
759 numbered. */
760 /* Not true for 80386 */
761 #define WORDS_BIG_ENDIAN 0
762
763 /* Width of a word, in units (bytes). */
764 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
765 #ifdef IN_LIBGCC2
766 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
767 #else
768 #define MIN_UNITS_PER_WORD 4
769 #endif
770
771 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
772 #define PARM_BOUNDARY BITS_PER_WORD
773
774 /* Boundary (in *bits*) on which stack pointer should be aligned. */
775 #define STACK_BOUNDARY BITS_PER_WORD
776
777 /* Boundary (in *bits*) on which the stack pointer prefers to be
778 aligned; the compiler cannot rely on having this alignment. */
779 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
780
781 /* As of July 2001, many runtimes to not align the stack properly when
782 entering main. This causes expand_main_function to forcibly align
783 the stack, which results in aligned frames for functions called from
784 main, though it does nothing for the alignment of main itself. */
785 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
786 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
787
788 /* Minimum allocation boundary for the code of a function. */
789 #define FUNCTION_BOUNDARY 8
790
791 /* C++ stores the virtual bit in the lowest bit of function pointers. */
792 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
793
794 /* Alignment of field after `int : 0' in a structure. */
795
796 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
797
798 /* Minimum size in bits of the largest boundary to which any
799 and all fundamental data types supported by the hardware
800 might need to be aligned. No data type wants to be aligned
801 rounder than this.
802
803 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
804 and Pentium Pro XFmode values at 128 bit boundaries. */
805
806 #define BIGGEST_ALIGNMENT 128
807
808 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
809 #define ALIGN_MODE_128(MODE) \
810 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
811
812 /* The published ABIs say that doubles should be aligned on word
813 boundaries, so lower the alignment for structure fields unless
814 -malign-double is set. */
815
816 /* ??? Blah -- this macro is used directly by libobjc. Since it
817 supports no vector modes, cut out the complexity and fall back
818 on BIGGEST_FIELD_ALIGNMENT. */
819 #ifdef IN_TARGET_LIBS
820 #ifdef __x86_64__
821 #define BIGGEST_FIELD_ALIGNMENT 128
822 #else
823 #define BIGGEST_FIELD_ALIGNMENT 32
824 #endif
825 #else
826 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
827 x86_field_alignment (FIELD, COMPUTED)
828 #endif
829
830 /* If defined, a C expression to compute the alignment given to a
831 constant that is being placed in memory. EXP is the constant
832 and ALIGN is the alignment that the object would ordinarily have.
833 The value of this macro is used instead of that alignment to align
834 the object.
835
836 If this macro is not defined, then ALIGN is used.
837
838 The typical use of this macro is to increase alignment for string
839 constants to be word aligned so that `strcpy' calls that copy
840 constants can be done inline. */
841
842 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
843
844 /* If defined, a C expression to compute the alignment for a static
845 variable. TYPE is the data type, and ALIGN is the alignment that
846 the object would ordinarily have. The value of this macro is used
847 instead of that alignment to align the object.
848
849 If this macro is not defined, then ALIGN is used.
850
851 One use of this macro is to increase alignment of medium-size
852 data to make it all fit in fewer cache lines. Another is to
853 cause character arrays to be word-aligned so that `strcpy' calls
854 that copy constants to character arrays can be done inline. */
855
856 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
857
858 /* If defined, a C expression to compute the alignment for a local
859 variable. TYPE is the data type, and ALIGN is the alignment that
860 the object would ordinarily have. The value of this macro is used
861 instead of that alignment to align the object.
862
863 If this macro is not defined, then ALIGN is used.
864
865 One use of this macro is to increase alignment of medium-size
866 data to make it all fit in fewer cache lines. */
867
868 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
869
870 /* If defined, a C expression that gives the alignment boundary, in
871 bits, of an argument with the specified mode and type. If it is
872 not defined, `PARM_BOUNDARY' is used for all arguments. */
873
874 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
875 ix86_function_arg_boundary ((MODE), (TYPE))
876
877 /* Set this nonzero if move instructions will actually fail to work
878 when given unaligned data. */
879 #define STRICT_ALIGNMENT 0
880
881 /* If bit field type is int, don't let it cross an int,
882 and give entire struct the alignment of an int. */
883 /* Required on the 386 since it doesn't have bit-field insns. */
884 #define PCC_BITFIELD_TYPE_MATTERS 1
885 \f
886 /* Standard register usage. */
887
888 /* This processor has special stack-like registers. See reg-stack.c
889 for details. */
890
891 #define STACK_REGS
892 #define IS_STACK_MODE(MODE) \
893 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
894
895 /* Number of actual hardware registers.
896 The hardware registers are assigned numbers for the compiler
897 from 0 to just below FIRST_PSEUDO_REGISTER.
898 All registers that the compiler knows about must be given numbers,
899 even those that are not normally considered general registers.
900
901 In the 80386 we give the 8 general purpose registers the numbers 0-7.
902 We number the floating point registers 8-15.
903 Note that registers 0-7 can be accessed as a short or int,
904 while only 0-3 may be used with byte `mov' instructions.
905
906 Reg 16 does not correspond to any hardware register, but instead
907 appears in the RTL as an argument pointer prior to reload, and is
908 eliminated during reloading in favor of either the stack or frame
909 pointer. */
910
911 #define FIRST_PSEUDO_REGISTER 53
912
913 /* Number of hardware registers that go into the DWARF-2 unwind info.
914 If not defined, equals FIRST_PSEUDO_REGISTER. */
915
916 #define DWARF_FRAME_REGISTERS 17
917
918 /* 1 for registers that have pervasive standard uses
919 and are not available for the register allocator.
920 On the 80386, the stack pointer is such, as is the arg pointer.
921
922 The value is a mask - bit 1 is set for fixed registers
923 for 32bit target, while 2 is set for fixed registers for 64bit.
924 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
925 */
926 #define FIXED_REGISTERS \
927 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
928 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
929 /*arg,flags,fpsr,dir,frame*/ \
930 3, 3, 3, 3, 3, \
931 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
932 0, 0, 0, 0, 0, 0, 0, 0, \
933 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
934 0, 0, 0, 0, 0, 0, 0, 0, \
935 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
936 1, 1, 1, 1, 1, 1, 1, 1, \
937 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
938 1, 1, 1, 1, 1, 1, 1, 1}
939
940
941 /* 1 for registers not available across function calls.
942 These must include the FIXED_REGISTERS and also any
943 registers that can be used without being saved.
944 The latter must include the registers where values are returned
945 and the register where structure-value addresses are passed.
946 Aside from that, you can include as many other registers as you like.
947
948 The value is a mask - bit 1 is set for call used
949 for 32bit target, while 2 is set for call used for 64bit.
950 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
951 */
952 #define CALL_USED_REGISTERS \
953 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
954 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
955 /*arg,flags,fpsr,dir,frame*/ \
956 3, 3, 3, 3, 3, \
957 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
958 3, 3, 3, 3, 3, 3, 3, 3, \
959 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
960 3, 3, 3, 3, 3, 3, 3, 3, \
961 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
962 3, 3, 3, 3, 1, 1, 1, 1, \
963 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
964 3, 3, 3, 3, 3, 3, 3, 3} \
965
966 /* Order in which to allocate registers. Each register must be
967 listed once, even those in FIXED_REGISTERS. List frame pointer
968 late and fixed registers last. Note that, in general, we prefer
969 registers listed in CALL_USED_REGISTERS, keeping the others
970 available for storage of persistent values.
971
972 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
973 so this is just empty initializer for array. */
974
975 #define REG_ALLOC_ORDER \
976 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
977 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
978 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
979 48, 49, 50, 51, 52 }
980
981 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
982 to be rearranged based on a particular function. When using sse math,
983 we want to allocate SSE before x87 registers and vice vera. */
984
985 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
986
987
988 /* Macro to conditionally modify fixed_regs/call_used_regs. */
989 #define CONDITIONAL_REGISTER_USAGE \
990 do { \
991 int i; \
992 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
993 { \
994 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
995 call_used_regs[i] = (call_used_regs[i] \
996 & (TARGET_64BIT ? 2 : 1)) != 0; \
997 } \
998 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
999 { \
1000 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1001 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1002 } \
1003 if (! TARGET_MMX) \
1004 { \
1005 int i; \
1006 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1007 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1008 fixed_regs[i] = call_used_regs[i] = 1; \
1009 } \
1010 if (! TARGET_SSE) \
1011 { \
1012 int i; \
1013 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1014 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1015 fixed_regs[i] = call_used_regs[i] = 1; \
1016 } \
1017 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1018 { \
1019 int i; \
1020 HARD_REG_SET x; \
1021 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1022 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1023 if (TEST_HARD_REG_BIT (x, i)) \
1024 fixed_regs[i] = call_used_regs[i] = 1; \
1025 } \
1026 } while (0)
1027
1028 /* Return number of consecutive hard regs needed starting at reg REGNO
1029 to hold something of mode MODE.
1030 This is ordinarily the length in words of a value of mode MODE
1031 but can be less for certain modes in special long registers.
1032
1033 Actually there are no two word move instructions for consecutive
1034 registers. And only registers 0-3 may have mov byte instructions
1035 applied to them.
1036 */
1037
1038 #define HARD_REGNO_NREGS(REGNO, MODE) \
1039 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1040 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1041 : ((MODE) == XFmode \
1042 ? (TARGET_64BIT ? 2 : 3) \
1043 : (MODE) == XCmode \
1044 ? (TARGET_64BIT ? 4 : 6) \
1045 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1046
1047 #define VALID_SSE2_REG_MODE(MODE) \
1048 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1049 || (MODE) == V2DImode)
1050
1051 #define VALID_SSE_REG_MODE(MODE) \
1052 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1053 || (MODE) == SFmode || (MODE) == TFmode \
1054 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1055 || VALID_SSE2_REG_MODE (MODE) \
1056 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1057
1058 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1059 ((MODE) == V2SFmode || (MODE) == SFmode)
1060
1061 #define VALID_MMX_REG_MODE(MODE) \
1062 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1063 || (MODE) == V2SImode || (MODE) == SImode)
1064
1065 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1066 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1067 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1068 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1069
1070 #define VALID_FP_MODE_P(MODE) \
1071 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1072 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1073
1074 #define VALID_INT_MODE_P(MODE) \
1075 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1076 || (MODE) == DImode \
1077 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1078 || (MODE) == CDImode \
1079 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1080 || (MODE) == TFmode || (MODE) == TCmode)))
1081
1082 /* Return true for modes passed in SSE registers. */
1083 #define SSE_REG_MODE_P(MODE) \
1084 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
1085 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1086 || (MODE) == V4SFmode || (MODE) == V4SImode)
1087
1088 /* Return true for modes passed in MMX registers. */
1089 #define MMX_REG_MODE_P(MODE) \
1090 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1091 || (MODE) == V2SFmode)
1092
1093 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1094
1095 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1096 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1097
1098 /* Value is 1 if it is a good idea to tie two pseudo registers
1099 when one has mode MODE1 and one has mode MODE2.
1100 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1101 for any hard reg, then this must be 0 for correct output. */
1102
1103 #define MODES_TIEABLE_P(MODE1, MODE2) \
1104 ((MODE1) == (MODE2) \
1105 || (((MODE1) == HImode || (MODE1) == SImode \
1106 || ((MODE1) == QImode \
1107 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1108 || ((MODE1) == DImode && TARGET_64BIT)) \
1109 && ((MODE2) == HImode || (MODE2) == SImode \
1110 || ((MODE2) == QImode \
1111 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1112 || ((MODE2) == DImode && TARGET_64BIT))))
1113
1114 /* It is possible to write patterns to move flags; but until someone
1115 does it, */
1116 #define AVOID_CCMODE_COPIES
1117
1118 /* Specify the modes required to caller save a given hard regno.
1119 We do this on i386 to prevent flags from being saved at all.
1120
1121 Kill any attempts to combine saving of modes. */
1122
1123 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1124 (CC_REGNO_P (REGNO) ? VOIDmode \
1125 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1126 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1127 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1128 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1129 : (MODE))
1130 /* Specify the registers used for certain standard purposes.
1131 The values of these macros are register numbers. */
1132
1133 /* on the 386 the pc register is %eip, and is not usable as a general
1134 register. The ordinary mov instructions won't work */
1135 /* #define PC_REGNUM */
1136
1137 /* Register to use for pushing function arguments. */
1138 #define STACK_POINTER_REGNUM 7
1139
1140 /* Base register for access to local variables of the function. */
1141 #define HARD_FRAME_POINTER_REGNUM 6
1142
1143 /* Base register for access to local variables of the function. */
1144 #define FRAME_POINTER_REGNUM 20
1145
1146 /* First floating point reg */
1147 #define FIRST_FLOAT_REG 8
1148
1149 /* First & last stack-like regs */
1150 #define FIRST_STACK_REG FIRST_FLOAT_REG
1151 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1152
1153 #define FLAGS_REG 17
1154 #define FPSR_REG 18
1155 #define DIRFLAG_REG 19
1156
1157 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1158 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1159
1160 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1161 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1162
1163 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1164 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1165
1166 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1167 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1168
1169 /* Value should be nonzero if functions must have frame pointers.
1170 Zero means the frame pointer need not be set up (and parms
1171 may be accessed via the stack pointer) in functions that seem suitable.
1172 This is computed in `reload', in reload1.c. */
1173 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1174
1175 /* Override this in other tm.h files to cope with various OS losage
1176 requiring a frame pointer. */
1177 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1178 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1179 #endif
1180
1181 /* Make sure we can access arbitrary call frames. */
1182 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1183
1184 /* Base register for access to arguments of the function. */
1185 #define ARG_POINTER_REGNUM 16
1186
1187 /* Register in which static-chain is passed to a function.
1188 We do use ECX as static chain register for 32 bit ABI. On the
1189 64bit ABI, ECX is an argument register, so we use R10 instead. */
1190 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1191
1192 /* Register to hold the addressing base for position independent
1193 code access to data items. We don't use PIC pointer for 64bit
1194 mode. Define the regnum to dummy value to prevent gcc from
1195 pessimizing code dealing with EBX.
1196
1197 To avoid clobbering a call-saved register unnecessarily, we renumber
1198 the pic register when possible. The change is visible after the
1199 prologue has been emitted. */
1200
1201 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1202
1203 #define PIC_OFFSET_TABLE_REGNUM \
1204 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1205 : reload_completed ? REGNO (pic_offset_table_rtx) \
1206 : REAL_PIC_OFFSET_TABLE_REGNUM)
1207
1208 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1209
1210 /* A C expression which can inhibit the returning of certain function
1211 values in registers, based on the type of value. A nonzero value
1212 says to return the function value in memory, just as large
1213 structures are always returned. Here TYPE will be a C expression
1214 of type `tree', representing the data type of the value.
1215
1216 Note that values of mode `BLKmode' must be explicitly handled by
1217 this macro. Also, the option `-fpcc-struct-return' takes effect
1218 regardless of this macro. On most systems, it is possible to
1219 leave the macro undefined; this causes a default definition to be
1220 used, whose value is the constant 1 for `BLKmode' values, and 0
1221 otherwise.
1222
1223 Do not use this macro to indicate that structures and unions
1224 should always be returned in memory. You should instead use
1225 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1226
1227 #define RETURN_IN_MEMORY(TYPE) \
1228 ix86_return_in_memory (TYPE)
1229
1230 /* This is overridden by <cygwin.h>. */
1231 #define MS_AGGREGATE_RETURN 0
1232
1233 \f
1234 /* Define the classes of registers for register constraints in the
1235 machine description. Also define ranges of constants.
1236
1237 One of the classes must always be named ALL_REGS and include all hard regs.
1238 If there is more than one class, another class must be named NO_REGS
1239 and contain no registers.
1240
1241 The name GENERAL_REGS must be the name of a class (or an alias for
1242 another name such as ALL_REGS). This is the class of registers
1243 that is allowed by "g" or "r" in a register constraint.
1244 Also, registers outside this class are allocated only when
1245 instructions express preferences for them.
1246
1247 The classes must be numbered in nondecreasing order; that is,
1248 a larger-numbered class must never be contained completely
1249 in a smaller-numbered class.
1250
1251 For any two classes, it is very desirable that there be another
1252 class that represents their union.
1253
1254 It might seem that class BREG is unnecessary, since no useful 386
1255 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1256 and the "b" register constraint is useful in asms for syscalls.
1257
1258 The flags and fpsr registers are in no class. */
1259
1260 enum reg_class
1261 {
1262 NO_REGS,
1263 AREG, DREG, CREG, BREG, SIREG, DIREG,
1264 AD_REGS, /* %eax/%edx for DImode */
1265 Q_REGS, /* %eax %ebx %ecx %edx */
1266 NON_Q_REGS, /* %esi %edi %ebp %esp */
1267 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1268 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1269 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1270 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1271 FLOAT_REGS,
1272 SSE_REGS,
1273 MMX_REGS,
1274 FP_TOP_SSE_REGS,
1275 FP_SECOND_SSE_REGS,
1276 FLOAT_SSE_REGS,
1277 FLOAT_INT_REGS,
1278 INT_SSE_REGS,
1279 FLOAT_INT_SSE_REGS,
1280 ALL_REGS, LIM_REG_CLASSES
1281 };
1282
1283 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1284
1285 #define INTEGER_CLASS_P(CLASS) \
1286 reg_class_subset_p ((CLASS), GENERAL_REGS)
1287 #define FLOAT_CLASS_P(CLASS) \
1288 reg_class_subset_p ((CLASS), FLOAT_REGS)
1289 #define SSE_CLASS_P(CLASS) \
1290 reg_class_subset_p ((CLASS), SSE_REGS)
1291 #define MMX_CLASS_P(CLASS) \
1292 reg_class_subset_p ((CLASS), MMX_REGS)
1293 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1294 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1295 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1296 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1297 #define MAYBE_SSE_CLASS_P(CLASS) \
1298 reg_classes_intersect_p (SSE_REGS, (CLASS))
1299 #define MAYBE_MMX_CLASS_P(CLASS) \
1300 reg_classes_intersect_p (MMX_REGS, (CLASS))
1301
1302 #define Q_CLASS_P(CLASS) \
1303 reg_class_subset_p ((CLASS), Q_REGS)
1304
1305 /* Give names of register classes as strings for dump file. */
1306
1307 #define REG_CLASS_NAMES \
1308 { "NO_REGS", \
1309 "AREG", "DREG", "CREG", "BREG", \
1310 "SIREG", "DIREG", \
1311 "AD_REGS", \
1312 "Q_REGS", "NON_Q_REGS", \
1313 "INDEX_REGS", \
1314 "LEGACY_REGS", \
1315 "GENERAL_REGS", \
1316 "FP_TOP_REG", "FP_SECOND_REG", \
1317 "FLOAT_REGS", \
1318 "SSE_REGS", \
1319 "MMX_REGS", \
1320 "FP_TOP_SSE_REGS", \
1321 "FP_SECOND_SSE_REGS", \
1322 "FLOAT_SSE_REGS", \
1323 "FLOAT_INT_REGS", \
1324 "INT_SSE_REGS", \
1325 "FLOAT_INT_SSE_REGS", \
1326 "ALL_REGS" }
1327
1328 /* Define which registers fit in which classes.
1329 This is an initializer for a vector of HARD_REG_SET
1330 of length N_REG_CLASSES. */
1331
1332 #define REG_CLASS_CONTENTS \
1333 { { 0x00, 0x0 }, \
1334 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1335 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1336 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1337 { 0x03, 0x0 }, /* AD_REGS */ \
1338 { 0x0f, 0x0 }, /* Q_REGS */ \
1339 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1340 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1341 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1342 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1343 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1344 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1345 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1346 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1347 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1348 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1349 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1350 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1351 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1352 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1353 { 0xffffffff,0x1fffff } \
1354 }
1355
1356 /* The same information, inverted:
1357 Return the class number of the smallest class containing
1358 reg number REGNO. This could be a conditional expression
1359 or could index an array. */
1360
1361 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1362
1363 /* When defined, the compiler allows registers explicitly used in the
1364 rtl to be used as spill registers but prevents the compiler from
1365 extending the lifetime of these registers. */
1366
1367 #define SMALL_REGISTER_CLASSES 1
1368
1369 #define QI_REG_P(X) \
1370 (REG_P (X) && REGNO (X) < 4)
1371
1372 #define GENERAL_REGNO_P(N) \
1373 ((N) < 8 || REX_INT_REGNO_P (N))
1374
1375 #define GENERAL_REG_P(X) \
1376 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1377
1378 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1379
1380 #define NON_QI_REG_P(X) \
1381 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1382
1383 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1384 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1385
1386 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1387 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1388 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1389 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1390
1391 #define SSE_REGNO_P(N) \
1392 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1393 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1394
1395 #define REX_SSE_REGNO_P(N) \
1396 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1397
1398 #define SSE_REGNO(N) \
1399 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1400 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1401
1402 #define SSE_FLOAT_MODE_P(MODE) \
1403 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1404
1405 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1406 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1407
1408 #define STACK_REG_P(XOP) \
1409 (REG_P (XOP) && \
1410 REGNO (XOP) >= FIRST_STACK_REG && \
1411 REGNO (XOP) <= LAST_STACK_REG)
1412
1413 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1414
1415 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1416
1417 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1418 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1419
1420 /* The class value for index registers, and the one for base regs. */
1421
1422 #define INDEX_REG_CLASS INDEX_REGS
1423 #define BASE_REG_CLASS GENERAL_REGS
1424
1425 /* Get reg_class from a letter such as appears in the machine description. */
1426
1427 #define REG_CLASS_FROM_LETTER(C) \
1428 ((C) == 'r' ? GENERAL_REGS : \
1429 (C) == 'R' ? LEGACY_REGS : \
1430 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1431 (C) == 'Q' ? Q_REGS : \
1432 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1433 ? FLOAT_REGS \
1434 : NO_REGS) : \
1435 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1436 ? FP_TOP_REG \
1437 : NO_REGS) : \
1438 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1439 ? FP_SECOND_REG \
1440 : NO_REGS) : \
1441 (C) == 'a' ? AREG : \
1442 (C) == 'b' ? BREG : \
1443 (C) == 'c' ? CREG : \
1444 (C) == 'd' ? DREG : \
1445 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1446 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1447 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1448 (C) == 'A' ? AD_REGS : \
1449 (C) == 'D' ? DIREG : \
1450 (C) == 'S' ? SIREG : NO_REGS)
1451
1452 /* The letters I, J, K, L and M in a register constraint string
1453 can be used to stand for particular ranges of immediate operands.
1454 This macro defines what the ranges are.
1455 C is the letter, and VALUE is a constant value.
1456 Return 1 if VALUE is in the range specified by C.
1457
1458 I is for non-DImode shifts.
1459 J is for DImode shifts.
1460 K is for signed imm8 operands.
1461 L is for andsi as zero-extending move.
1462 M is for shifts that can be executed by the "lea" opcode.
1463 N is for immediate operands for out/in instructions (0-255)
1464 */
1465
1466 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1467 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1468 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1469 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1470 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1471 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1472 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1473 : 0)
1474
1475 /* Similar, but for floating constants, and defining letters G and H.
1476 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1477 TARGET_387 isn't set, because the stack register converter may need to
1478 load 0.0 into the function value register. */
1479
1480 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1481 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1482 : 0)
1483
1484 /* A C expression that defines the optional machine-dependent
1485 constraint letters that can be used to segregate specific types of
1486 operands, usually memory references, for the target machine. Any
1487 letter that is not elsewhere defined and not matched by
1488 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1489 be defined.
1490
1491 If it is required for a particular target machine, it should
1492 return 1 if VALUE corresponds to the operand type represented by
1493 the constraint letter C. If C is not defined as an extra
1494 constraint, the value returned should be 0 regardless of VALUE. */
1495
1496 #define EXTRA_CONSTRAINT(VALUE, D) \
1497 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1498 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1499 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1500 : 0)
1501
1502 /* Place additional restrictions on the register class to use when it
1503 is necessary to be able to hold a value of mode MODE in a reload
1504 register for which class CLASS would ordinarily be used. */
1505
1506 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1507 ((MODE) == QImode && !TARGET_64BIT \
1508 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1509 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1510 ? Q_REGS : (CLASS))
1511
1512 /* Given an rtx X being reloaded into a reg required to be
1513 in class CLASS, return the class of reg to actually use.
1514 In general this is just CLASS; but on some machines
1515 in some cases it is preferable to use a more restrictive class.
1516 On the 80386 series, we prevent floating constants from being
1517 reloaded into floating registers (since no move-insn can do that)
1518 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1519
1520 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1521 QImode must go into class Q_REGS.
1522 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1523 movdf to do mem-to-mem moves through integer regs. */
1524
1525 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1526 ix86_preferred_reload_class ((X), (CLASS))
1527
1528 /* If we are copying between general and FP registers, we need a memory
1529 location. The same is true for SSE and MMX registers. */
1530 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1531 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1532
1533 /* QImode spills from non-QI registers need a scratch. This does not
1534 happen often -- the only example so far requires an uninitialized
1535 pseudo. */
1536
1537 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1538 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1539 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1540 ? Q_REGS : NO_REGS)
1541
1542 /* Return the maximum number of consecutive registers
1543 needed to represent mode MODE in a register of class CLASS. */
1544 /* On the 80386, this is the size of MODE in words,
1545 except in the FP regs, where a single reg is always enough. */
1546 #define CLASS_MAX_NREGS(CLASS, MODE) \
1547 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1548 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1549 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1550 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1551
1552 /* A C expression whose value is nonzero if pseudos that have been
1553 assigned to registers of class CLASS would likely be spilled
1554 because registers of CLASS are needed for spill registers.
1555
1556 The default value of this macro returns 1 if CLASS has exactly one
1557 register and zero otherwise. On most machines, this default
1558 should be used. Only define this macro to some other expression
1559 if pseudo allocated by `local-alloc.c' end up in memory because
1560 their hard registers were needed for spill registers. If this
1561 macro returns nonzero for those classes, those pseudos will only
1562 be allocated by `global.c', which knows how to reallocate the
1563 pseudo to another register. If there would not be another
1564 register available for reallocation, you should not change the
1565 definition of this macro since the only effect of such a
1566 definition would be to slow down register allocation. */
1567
1568 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1569 (((CLASS) == AREG) \
1570 || ((CLASS) == DREG) \
1571 || ((CLASS) == CREG) \
1572 || ((CLASS) == BREG) \
1573 || ((CLASS) == AD_REGS) \
1574 || ((CLASS) == SIREG) \
1575 || ((CLASS) == DIREG) \
1576 || ((CLASS) == FP_TOP_REG) \
1577 || ((CLASS) == FP_SECOND_REG))
1578
1579 /* Return a class of registers that cannot change FROM mode to TO mode.
1580
1581 x87 registers can't do subreg as all values are reformated to extended
1582 precision. XMM registers does not support with nonzero offsets equal
1583 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1584 determine these, prohibit all nonparadoxical subregs changing size. */
1585
1586 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1587 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1588 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1589 || MAYBE_MMX_CLASS_P (CLASS) \
1590 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1591 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1592
1593 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1594 to automatically clobber for all asms.
1595
1596 We do this in the new i386 backend to maintain source compatibility
1597 with the old cc0-based compiler. */
1598
1599 #define MD_ASM_CLOBBERS(CLOBBERS) \
1600 do { \
1601 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1602 (CLOBBERS)); \
1603 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1604 (CLOBBERS)); \
1605 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1606 (CLOBBERS)); \
1607 } while (0)
1608 \f
1609 /* Stack layout; function entry, exit and calling. */
1610
1611 /* Define this if pushing a word on the stack
1612 makes the stack pointer a smaller address. */
1613 #define STACK_GROWS_DOWNWARD
1614
1615 /* Define this if the nominal address of the stack frame
1616 is at the high-address end of the local variables;
1617 that is, each additional local variable allocated
1618 goes at a more negative offset in the frame. */
1619 #define FRAME_GROWS_DOWNWARD
1620
1621 /* Offset within stack frame to start allocating local variables at.
1622 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1623 first local allocated. Otherwise, it is the offset to the BEGINNING
1624 of the first local allocated. */
1625 #define STARTING_FRAME_OFFSET 0
1626
1627 /* If we generate an insn to push BYTES bytes,
1628 this says how many the stack pointer really advances by.
1629 On 386 pushw decrements by exactly 2 no matter what the position was.
1630 On the 386 there is no pushb; we use pushw instead, and this
1631 has the effect of rounding up to 2.
1632
1633 For 64bit ABI we round up to 8 bytes.
1634 */
1635
1636 #define PUSH_ROUNDING(BYTES) \
1637 (TARGET_64BIT \
1638 ? (((BYTES) + 7) & (-8)) \
1639 : (((BYTES) + 1) & (-2)))
1640
1641 /* If defined, the maximum amount of space required for outgoing arguments will
1642 be computed and placed into the variable
1643 `current_function_outgoing_args_size'. No space will be pushed onto the
1644 stack for each call; instead, the function prologue should increase the stack
1645 frame size by this amount. */
1646
1647 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1648
1649 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1650 instructions to pass outgoing arguments. */
1651
1652 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1653
1654 /* We want the stack and args grow in opposite directions, even if
1655 PUSH_ARGS is 0. */
1656 #define PUSH_ARGS_REVERSED 1
1657
1658 /* Offset of first parameter from the argument pointer register value. */
1659 #define FIRST_PARM_OFFSET(FNDECL) 0
1660
1661 /* Define this macro if functions should assume that stack space has been
1662 allocated for arguments even when their values are passed in registers.
1663
1664 The value of this macro is the size, in bytes, of the area reserved for
1665 arguments passed in registers for the function represented by FNDECL.
1666
1667 This space can be allocated by the caller, or be a part of the
1668 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1669 which. */
1670 #define REG_PARM_STACK_SPACE(FNDECL) 0
1671
1672 /* Define as a C expression that evaluates to nonzero if we do not know how
1673 to pass TYPE solely in registers. The file expr.h defines a
1674 definition that is usually appropriate, refer to expr.h for additional
1675 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1676 computed in the stack and then loaded into a register. */
1677 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1678
1679 /* Value is the number of bytes of arguments automatically
1680 popped when returning from a subroutine call.
1681 FUNDECL is the declaration node of the function (as a tree),
1682 FUNTYPE is the data type of the function (as a tree),
1683 or for a library call it is an identifier node for the subroutine name.
1684 SIZE is the number of bytes of arguments passed on the stack.
1685
1686 On the 80386, the RTD insn may be used to pop them if the number
1687 of args is fixed, but if the number is variable then the caller
1688 must pop them all. RTD can't be used for library calls now
1689 because the library is compiled with the Unix compiler.
1690 Use of RTD is a selectable option, since it is incompatible with
1691 standard Unix calling sequences. If the option is not selected,
1692 the caller must always pop the args.
1693
1694 The attribute stdcall is equivalent to RTD on a per module basis. */
1695
1696 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1697 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1698
1699 /* Define how to find the value returned by a function.
1700 VALTYPE is the data type of the value (as a tree).
1701 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1702 otherwise, FUNC is 0. */
1703 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1704 ix86_function_value (VALTYPE)
1705
1706 #define FUNCTION_VALUE_REGNO_P(N) \
1707 ix86_function_value_regno_p (N)
1708
1709 /* Define how to find the value returned by a library function
1710 assuming the value has mode MODE. */
1711
1712 #define LIBCALL_VALUE(MODE) \
1713 ix86_libcall_value (MODE)
1714
1715 /* Define the size of the result block used for communication between
1716 untyped_call and untyped_return. The block contains a DImode value
1717 followed by the block used by fnsave and frstor. */
1718
1719 #define APPLY_RESULT_SIZE (8+108)
1720
1721 /* 1 if N is a possible register number for function argument passing. */
1722 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1723
1724 /* Define a data type for recording info about an argument list
1725 during the scan of that argument list. This data type should
1726 hold all necessary information about the function itself
1727 and about the args processed so far, enough to enable macros
1728 such as FUNCTION_ARG to determine where the next arg should go. */
1729
1730 typedef struct ix86_args {
1731 int words; /* # words passed so far */
1732 int nregs; /* # registers available for passing */
1733 int regno; /* next available register number */
1734 int fastcall; /* fastcall calling convention is used */
1735 int sse_words; /* # sse words passed so far */
1736 int sse_nregs; /* # sse registers available for passing */
1737 int warn_sse; /* True when we want to warn about SSE ABI. */
1738 int warn_mmx; /* True when we want to warn about MMX ABI. */
1739 int sse_regno; /* next available sse register number */
1740 int mmx_words; /* # mmx words passed so far */
1741 int mmx_nregs; /* # mmx registers available for passing */
1742 int mmx_regno; /* next available mmx register number */
1743 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1744 } CUMULATIVE_ARGS;
1745
1746 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1747 for a call to a function whose data type is FNTYPE.
1748 For a library call, FNTYPE is 0. */
1749
1750 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL) \
1751 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1752
1753 /* Update the data in CUM to advance over an argument
1754 of mode MODE and data type TYPE.
1755 (TYPE is null for libcalls where that information may not be available.) */
1756
1757 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1758 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1759
1760 /* Define where to put the arguments to a function.
1761 Value is zero to push the argument on the stack,
1762 or a hard register in which to store the argument.
1763
1764 MODE is the argument's machine mode.
1765 TYPE is the data type of the argument (as a tree).
1766 This is null for libcalls where that information may
1767 not be available.
1768 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1769 the preceding args and about the function being called.
1770 NAMED is nonzero if this argument is a named parameter
1771 (otherwise it is an extra parameter matching an ellipsis). */
1772
1773 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1774 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1775
1776 /* For an arg passed partly in registers and partly in memory,
1777 this is the number of registers used.
1778 For args passed entirely in registers or entirely in memory, zero. */
1779
1780 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1781
1782 /* A C expression that indicates when an argument must be passed by
1783 reference. If nonzero for an argument, a copy of that argument is
1784 made in memory and a pointer to the argument is passed instead of
1785 the argument itself. The pointer is passed in whatever way is
1786 appropriate for passing a pointer to that type. */
1787
1788 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1789 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1790
1791 /* Perform any needed actions needed for a function that is receiving a
1792 variable number of arguments.
1793
1794 CUM is as above.
1795
1796 MODE and TYPE are the mode and type of the current parameter.
1797
1798 PRETEND_SIZE is a variable that should be set to the amount of stack
1799 that must be pushed by the prolog to pretend that our caller pushed
1800 it.
1801
1802 Normally, this macro will push all remaining incoming registers on the
1803 stack and set PRETEND_SIZE to the length of the registers pushed. */
1804
1805 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1806 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1807 (NO_RTL))
1808
1809 /* Implement `va_start' for varargs and stdarg. */
1810 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1811 ix86_va_start (VALIST, NEXTARG)
1812
1813 /* Implement `va_arg'. */
1814 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1815 ix86_va_arg ((VALIST), (TYPE))
1816
1817 #define TARGET_ASM_FILE_END ix86_file_end
1818 #define NEED_INDICATE_EXEC_STACK 0
1819
1820 /* Output assembler code to FILE to increment profiler label # LABELNO
1821 for profiling a function entry. */
1822
1823 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1824
1825 #define MCOUNT_NAME "_mcount"
1826
1827 #define PROFILE_COUNT_REGISTER "edx"
1828
1829 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1830 the stack pointer does not matter. The value is tested only in
1831 functions that have frame pointers.
1832 No definition is equivalent to always zero. */
1833 /* Note on the 386 it might be more efficient not to define this since
1834 we have to restore it ourselves from the frame pointer, in order to
1835 use pop */
1836
1837 #define EXIT_IGNORE_STACK 1
1838
1839 /* Output assembler code for a block containing the constant parts
1840 of a trampoline, leaving space for the variable parts. */
1841
1842 /* On the 386, the trampoline contains two instructions:
1843 mov #STATIC,ecx
1844 jmp FUNCTION
1845 The trampoline is generated entirely at runtime. The operand of JMP
1846 is the address of FUNCTION relative to the instruction following the
1847 JMP (which is 5 bytes long). */
1848
1849 /* Length in units of the trampoline for entering a nested function. */
1850
1851 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1852
1853 /* Emit RTL insns to initialize the variable parts of a trampoline.
1854 FNADDR is an RTX for the address of the function's pure code.
1855 CXT is an RTX for the static chain value for the function. */
1856
1857 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1858 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1859 \f
1860 /* Definitions for register eliminations.
1861
1862 This is an array of structures. Each structure initializes one pair
1863 of eliminable registers. The "from" register number is given first,
1864 followed by "to". Eliminations of the same "from" register are listed
1865 in order of preference.
1866
1867 There are two registers that can always be eliminated on the i386.
1868 The frame pointer and the arg pointer can be replaced by either the
1869 hard frame pointer or to the stack pointer, depending upon the
1870 circumstances. The hard frame pointer is not used before reload and
1871 so it is not eligible for elimination. */
1872
1873 #define ELIMINABLE_REGS \
1874 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1875 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1876 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1877 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1878
1879 /* Given FROM and TO register numbers, say whether this elimination is
1880 allowed. Frame pointer elimination is automatically handled.
1881
1882 All other eliminations are valid. */
1883
1884 #define CAN_ELIMINATE(FROM, TO) \
1885 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1886
1887 /* Define the offset between two registers, one to be eliminated, and the other
1888 its replacement, at the start of a routine. */
1889
1890 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1891 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1892 \f
1893 /* Addressing modes, and classification of registers for them. */
1894
1895 /* Macros to check register numbers against specific register classes. */
1896
1897 /* These assume that REGNO is a hard or pseudo reg number.
1898 They give nonzero only if REGNO is a hard reg of the suitable class
1899 or a pseudo reg currently allocated to a suitable hard reg.
1900 Since they use reg_renumber, they are safe only once reg_renumber
1901 has been allocated, which happens in local-alloc.c. */
1902
1903 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1904 ((REGNO) < STACK_POINTER_REGNUM \
1905 || (REGNO >= FIRST_REX_INT_REG \
1906 && (REGNO) <= LAST_REX_INT_REG) \
1907 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1908 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1909 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1910
1911 #define REGNO_OK_FOR_BASE_P(REGNO) \
1912 ((REGNO) <= STACK_POINTER_REGNUM \
1913 || (REGNO) == ARG_POINTER_REGNUM \
1914 || (REGNO) == FRAME_POINTER_REGNUM \
1915 || (REGNO >= FIRST_REX_INT_REG \
1916 && (REGNO) <= LAST_REX_INT_REG) \
1917 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1918 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1919 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1920
1921 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1922 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1923 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1924 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1925
1926 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1927 and check its validity for a certain class.
1928 We have two alternate definitions for each of them.
1929 The usual definition accepts all pseudo regs; the other rejects
1930 them unless they have been allocated suitable hard regs.
1931 The symbol REG_OK_STRICT causes the latter definition to be used.
1932
1933 Most source files want to accept pseudo regs in the hope that
1934 they will get allocated to the class that the insn wants them to be in.
1935 Source files for reload pass need to be strict.
1936 After reload, it makes no difference, since pseudo regs have
1937 been eliminated by then. */
1938
1939
1940 /* Non strict versions, pseudos are ok */
1941 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1942 (REGNO (X) < STACK_POINTER_REGNUM \
1943 || (REGNO (X) >= FIRST_REX_INT_REG \
1944 && REGNO (X) <= LAST_REX_INT_REG) \
1945 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1946
1947 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1948 (REGNO (X) <= STACK_POINTER_REGNUM \
1949 || REGNO (X) == ARG_POINTER_REGNUM \
1950 || REGNO (X) == FRAME_POINTER_REGNUM \
1951 || (REGNO (X) >= FIRST_REX_INT_REG \
1952 && REGNO (X) <= LAST_REX_INT_REG) \
1953 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1954
1955 /* Strict versions, hard registers only */
1956 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1957 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1958
1959 #ifndef REG_OK_STRICT
1960 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1961 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1962
1963 #else
1964 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1965 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1966 #endif
1967
1968 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1969 that is a valid memory address for an instruction.
1970 The MODE argument is the machine mode for the MEM expression
1971 that wants to use this address.
1972
1973 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1974 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1975
1976 See legitimize_pic_address in i386.c for details as to what
1977 constitutes a legitimate address when -fpic is used. */
1978
1979 #define MAX_REGS_PER_ADDRESS 2
1980
1981 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1982
1983 /* Nonzero if the constant value X is a legitimate general operand.
1984 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1985
1986 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1987
1988 #ifdef REG_OK_STRICT
1989 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1990 do { \
1991 if (legitimate_address_p ((MODE), (X), 1)) \
1992 goto ADDR; \
1993 } while (0)
1994
1995 #else
1996 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1997 do { \
1998 if (legitimate_address_p ((MODE), (X), 0)) \
1999 goto ADDR; \
2000 } while (0)
2001
2002 #endif
2003
2004 /* If defined, a C expression to determine the base term of address X.
2005 This macro is used in only one place: `find_base_term' in alias.c.
2006
2007 It is always safe for this macro to not be defined. It exists so
2008 that alias analysis can understand machine-dependent addresses.
2009
2010 The typical use of this macro is to handle addresses containing
2011 a label_ref or symbol_ref within an UNSPEC. */
2012
2013 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
2014
2015 /* Try machine-dependent ways of modifying an illegitimate address
2016 to be legitimate. If we find one, return the new, valid address.
2017 This macro is used in only one place: `memory_address' in explow.c.
2018
2019 OLDX is the address as it was before break_out_memory_refs was called.
2020 In some cases it is useful to look at this to decide what needs to be done.
2021
2022 MODE and WIN are passed so that this macro can use
2023 GO_IF_LEGITIMATE_ADDRESS.
2024
2025 It is always safe for this macro to do nothing. It exists to recognize
2026 opportunities to optimize the output.
2027
2028 For the 80386, we handle X+REG by loading X into a register R and
2029 using R+REG. R will go in a general reg and indexing will be used.
2030 However, if REG is a broken-out memory address or multiplication,
2031 nothing needs to be done because REG can certainly go in a general reg.
2032
2033 When -fpic is used, special handling is needed for symbolic references.
2034 See comments by legitimize_pic_address in i386.c for details. */
2035
2036 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2037 do { \
2038 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2039 if (memory_address_p ((MODE), (X))) \
2040 goto WIN; \
2041 } while (0)
2042
2043 #define REWRITE_ADDRESS(X) rewrite_address (X)
2044
2045 /* Nonzero if the constant value X is a legitimate general operand
2046 when generating PIC code. It is given that flag_pic is on and
2047 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2048
2049 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2050
2051 #define SYMBOLIC_CONST(X) \
2052 (GET_CODE (X) == SYMBOL_REF \
2053 || GET_CODE (X) == LABEL_REF \
2054 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2055
2056 /* Go to LABEL if ADDR (a legitimate address expression)
2057 has an effect that depends on the machine mode it is used for.
2058 On the 80386, only postdecrement and postincrement address depend thus
2059 (the amount of decrement or increment being the length of the operand). */
2060 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2061 do { \
2062 if (GET_CODE (ADDR) == POST_INC \
2063 || GET_CODE (ADDR) == POST_DEC) \
2064 goto LABEL; \
2065 } while (0)
2066 \f
2067 /* Codes for all the SSE/MMX builtins. */
2068 enum ix86_builtins
2069 {
2070 IX86_BUILTIN_ADDPS,
2071 IX86_BUILTIN_ADDSS,
2072 IX86_BUILTIN_DIVPS,
2073 IX86_BUILTIN_DIVSS,
2074 IX86_BUILTIN_MULPS,
2075 IX86_BUILTIN_MULSS,
2076 IX86_BUILTIN_SUBPS,
2077 IX86_BUILTIN_SUBSS,
2078
2079 IX86_BUILTIN_CMPEQPS,
2080 IX86_BUILTIN_CMPLTPS,
2081 IX86_BUILTIN_CMPLEPS,
2082 IX86_BUILTIN_CMPGTPS,
2083 IX86_BUILTIN_CMPGEPS,
2084 IX86_BUILTIN_CMPNEQPS,
2085 IX86_BUILTIN_CMPNLTPS,
2086 IX86_BUILTIN_CMPNLEPS,
2087 IX86_BUILTIN_CMPNGTPS,
2088 IX86_BUILTIN_CMPNGEPS,
2089 IX86_BUILTIN_CMPORDPS,
2090 IX86_BUILTIN_CMPUNORDPS,
2091 IX86_BUILTIN_CMPNEPS,
2092 IX86_BUILTIN_CMPEQSS,
2093 IX86_BUILTIN_CMPLTSS,
2094 IX86_BUILTIN_CMPLESS,
2095 IX86_BUILTIN_CMPNEQSS,
2096 IX86_BUILTIN_CMPNLTSS,
2097 IX86_BUILTIN_CMPNLESS,
2098 IX86_BUILTIN_CMPORDSS,
2099 IX86_BUILTIN_CMPUNORDSS,
2100 IX86_BUILTIN_CMPNESS,
2101
2102 IX86_BUILTIN_COMIEQSS,
2103 IX86_BUILTIN_COMILTSS,
2104 IX86_BUILTIN_COMILESS,
2105 IX86_BUILTIN_COMIGTSS,
2106 IX86_BUILTIN_COMIGESS,
2107 IX86_BUILTIN_COMINEQSS,
2108 IX86_BUILTIN_UCOMIEQSS,
2109 IX86_BUILTIN_UCOMILTSS,
2110 IX86_BUILTIN_UCOMILESS,
2111 IX86_BUILTIN_UCOMIGTSS,
2112 IX86_BUILTIN_UCOMIGESS,
2113 IX86_BUILTIN_UCOMINEQSS,
2114
2115 IX86_BUILTIN_CVTPI2PS,
2116 IX86_BUILTIN_CVTPS2PI,
2117 IX86_BUILTIN_CVTSI2SS,
2118 IX86_BUILTIN_CVTSI642SS,
2119 IX86_BUILTIN_CVTSS2SI,
2120 IX86_BUILTIN_CVTSS2SI64,
2121 IX86_BUILTIN_CVTTPS2PI,
2122 IX86_BUILTIN_CVTTSS2SI,
2123 IX86_BUILTIN_CVTTSS2SI64,
2124
2125 IX86_BUILTIN_MAXPS,
2126 IX86_BUILTIN_MAXSS,
2127 IX86_BUILTIN_MINPS,
2128 IX86_BUILTIN_MINSS,
2129
2130 IX86_BUILTIN_LOADAPS,
2131 IX86_BUILTIN_LOADUPS,
2132 IX86_BUILTIN_STOREAPS,
2133 IX86_BUILTIN_STOREUPS,
2134 IX86_BUILTIN_LOADSS,
2135 IX86_BUILTIN_STORESS,
2136 IX86_BUILTIN_MOVSS,
2137
2138 IX86_BUILTIN_MOVHLPS,
2139 IX86_BUILTIN_MOVLHPS,
2140 IX86_BUILTIN_LOADHPS,
2141 IX86_BUILTIN_LOADLPS,
2142 IX86_BUILTIN_STOREHPS,
2143 IX86_BUILTIN_STORELPS,
2144
2145 IX86_BUILTIN_MASKMOVQ,
2146 IX86_BUILTIN_MOVMSKPS,
2147 IX86_BUILTIN_PMOVMSKB,
2148
2149 IX86_BUILTIN_MOVNTPS,
2150 IX86_BUILTIN_MOVNTQ,
2151
2152 IX86_BUILTIN_LOADDQA,
2153 IX86_BUILTIN_LOADDQU,
2154 IX86_BUILTIN_STOREDQA,
2155 IX86_BUILTIN_STOREDQU,
2156 IX86_BUILTIN_MOVQ,
2157 IX86_BUILTIN_LOADD,
2158 IX86_BUILTIN_STORED,
2159
2160 IX86_BUILTIN_CLRTI,
2161
2162 IX86_BUILTIN_PACKSSWB,
2163 IX86_BUILTIN_PACKSSDW,
2164 IX86_BUILTIN_PACKUSWB,
2165
2166 IX86_BUILTIN_PADDB,
2167 IX86_BUILTIN_PADDW,
2168 IX86_BUILTIN_PADDD,
2169 IX86_BUILTIN_PADDQ,
2170 IX86_BUILTIN_PADDSB,
2171 IX86_BUILTIN_PADDSW,
2172 IX86_BUILTIN_PADDUSB,
2173 IX86_BUILTIN_PADDUSW,
2174 IX86_BUILTIN_PSUBB,
2175 IX86_BUILTIN_PSUBW,
2176 IX86_BUILTIN_PSUBD,
2177 IX86_BUILTIN_PSUBQ,
2178 IX86_BUILTIN_PSUBSB,
2179 IX86_BUILTIN_PSUBSW,
2180 IX86_BUILTIN_PSUBUSB,
2181 IX86_BUILTIN_PSUBUSW,
2182
2183 IX86_BUILTIN_PAND,
2184 IX86_BUILTIN_PANDN,
2185 IX86_BUILTIN_POR,
2186 IX86_BUILTIN_PXOR,
2187
2188 IX86_BUILTIN_PAVGB,
2189 IX86_BUILTIN_PAVGW,
2190
2191 IX86_BUILTIN_PCMPEQB,
2192 IX86_BUILTIN_PCMPEQW,
2193 IX86_BUILTIN_PCMPEQD,
2194 IX86_BUILTIN_PCMPGTB,
2195 IX86_BUILTIN_PCMPGTW,
2196 IX86_BUILTIN_PCMPGTD,
2197
2198 IX86_BUILTIN_PEXTRW,
2199 IX86_BUILTIN_PINSRW,
2200
2201 IX86_BUILTIN_PMADDWD,
2202
2203 IX86_BUILTIN_PMAXSW,
2204 IX86_BUILTIN_PMAXUB,
2205 IX86_BUILTIN_PMINSW,
2206 IX86_BUILTIN_PMINUB,
2207
2208 IX86_BUILTIN_PMULHUW,
2209 IX86_BUILTIN_PMULHW,
2210 IX86_BUILTIN_PMULLW,
2211
2212 IX86_BUILTIN_PSADBW,
2213 IX86_BUILTIN_PSHUFW,
2214
2215 IX86_BUILTIN_PSLLW,
2216 IX86_BUILTIN_PSLLD,
2217 IX86_BUILTIN_PSLLQ,
2218 IX86_BUILTIN_PSRAW,
2219 IX86_BUILTIN_PSRAD,
2220 IX86_BUILTIN_PSRLW,
2221 IX86_BUILTIN_PSRLD,
2222 IX86_BUILTIN_PSRLQ,
2223 IX86_BUILTIN_PSLLWI,
2224 IX86_BUILTIN_PSLLDI,
2225 IX86_BUILTIN_PSLLQI,
2226 IX86_BUILTIN_PSRAWI,
2227 IX86_BUILTIN_PSRADI,
2228 IX86_BUILTIN_PSRLWI,
2229 IX86_BUILTIN_PSRLDI,
2230 IX86_BUILTIN_PSRLQI,
2231
2232 IX86_BUILTIN_PUNPCKHBW,
2233 IX86_BUILTIN_PUNPCKHWD,
2234 IX86_BUILTIN_PUNPCKHDQ,
2235 IX86_BUILTIN_PUNPCKLBW,
2236 IX86_BUILTIN_PUNPCKLWD,
2237 IX86_BUILTIN_PUNPCKLDQ,
2238
2239 IX86_BUILTIN_SHUFPS,
2240
2241 IX86_BUILTIN_RCPPS,
2242 IX86_BUILTIN_RCPSS,
2243 IX86_BUILTIN_RSQRTPS,
2244 IX86_BUILTIN_RSQRTSS,
2245 IX86_BUILTIN_SQRTPS,
2246 IX86_BUILTIN_SQRTSS,
2247
2248 IX86_BUILTIN_UNPCKHPS,
2249 IX86_BUILTIN_UNPCKLPS,
2250
2251 IX86_BUILTIN_ANDPS,
2252 IX86_BUILTIN_ANDNPS,
2253 IX86_BUILTIN_ORPS,
2254 IX86_BUILTIN_XORPS,
2255
2256 IX86_BUILTIN_EMMS,
2257 IX86_BUILTIN_LDMXCSR,
2258 IX86_BUILTIN_STMXCSR,
2259 IX86_BUILTIN_SFENCE,
2260
2261 /* 3DNow! Original */
2262 IX86_BUILTIN_FEMMS,
2263 IX86_BUILTIN_PAVGUSB,
2264 IX86_BUILTIN_PF2ID,
2265 IX86_BUILTIN_PFACC,
2266 IX86_BUILTIN_PFADD,
2267 IX86_BUILTIN_PFCMPEQ,
2268 IX86_BUILTIN_PFCMPGE,
2269 IX86_BUILTIN_PFCMPGT,
2270 IX86_BUILTIN_PFMAX,
2271 IX86_BUILTIN_PFMIN,
2272 IX86_BUILTIN_PFMUL,
2273 IX86_BUILTIN_PFRCP,
2274 IX86_BUILTIN_PFRCPIT1,
2275 IX86_BUILTIN_PFRCPIT2,
2276 IX86_BUILTIN_PFRSQIT1,
2277 IX86_BUILTIN_PFRSQRT,
2278 IX86_BUILTIN_PFSUB,
2279 IX86_BUILTIN_PFSUBR,
2280 IX86_BUILTIN_PI2FD,
2281 IX86_BUILTIN_PMULHRW,
2282
2283 /* 3DNow! Athlon Extensions */
2284 IX86_BUILTIN_PF2IW,
2285 IX86_BUILTIN_PFNACC,
2286 IX86_BUILTIN_PFPNACC,
2287 IX86_BUILTIN_PI2FW,
2288 IX86_BUILTIN_PSWAPDSI,
2289 IX86_BUILTIN_PSWAPDSF,
2290
2291 IX86_BUILTIN_SSE_ZERO,
2292 IX86_BUILTIN_MMX_ZERO,
2293
2294 /* SSE2 */
2295 IX86_BUILTIN_ADDPD,
2296 IX86_BUILTIN_ADDSD,
2297 IX86_BUILTIN_DIVPD,
2298 IX86_BUILTIN_DIVSD,
2299 IX86_BUILTIN_MULPD,
2300 IX86_BUILTIN_MULSD,
2301 IX86_BUILTIN_SUBPD,
2302 IX86_BUILTIN_SUBSD,
2303
2304 IX86_BUILTIN_CMPEQPD,
2305 IX86_BUILTIN_CMPLTPD,
2306 IX86_BUILTIN_CMPLEPD,
2307 IX86_BUILTIN_CMPGTPD,
2308 IX86_BUILTIN_CMPGEPD,
2309 IX86_BUILTIN_CMPNEQPD,
2310 IX86_BUILTIN_CMPNLTPD,
2311 IX86_BUILTIN_CMPNLEPD,
2312 IX86_BUILTIN_CMPNGTPD,
2313 IX86_BUILTIN_CMPNGEPD,
2314 IX86_BUILTIN_CMPORDPD,
2315 IX86_BUILTIN_CMPUNORDPD,
2316 IX86_BUILTIN_CMPNEPD,
2317 IX86_BUILTIN_CMPEQSD,
2318 IX86_BUILTIN_CMPLTSD,
2319 IX86_BUILTIN_CMPLESD,
2320 IX86_BUILTIN_CMPNEQSD,
2321 IX86_BUILTIN_CMPNLTSD,
2322 IX86_BUILTIN_CMPNLESD,
2323 IX86_BUILTIN_CMPORDSD,
2324 IX86_BUILTIN_CMPUNORDSD,
2325 IX86_BUILTIN_CMPNESD,
2326
2327 IX86_BUILTIN_COMIEQSD,
2328 IX86_BUILTIN_COMILTSD,
2329 IX86_BUILTIN_COMILESD,
2330 IX86_BUILTIN_COMIGTSD,
2331 IX86_BUILTIN_COMIGESD,
2332 IX86_BUILTIN_COMINEQSD,
2333 IX86_BUILTIN_UCOMIEQSD,
2334 IX86_BUILTIN_UCOMILTSD,
2335 IX86_BUILTIN_UCOMILESD,
2336 IX86_BUILTIN_UCOMIGTSD,
2337 IX86_BUILTIN_UCOMIGESD,
2338 IX86_BUILTIN_UCOMINEQSD,
2339
2340 IX86_BUILTIN_MAXPD,
2341 IX86_BUILTIN_MAXSD,
2342 IX86_BUILTIN_MINPD,
2343 IX86_BUILTIN_MINSD,
2344
2345 IX86_BUILTIN_ANDPD,
2346 IX86_BUILTIN_ANDNPD,
2347 IX86_BUILTIN_ORPD,
2348 IX86_BUILTIN_XORPD,
2349
2350 IX86_BUILTIN_SQRTPD,
2351 IX86_BUILTIN_SQRTSD,
2352
2353 IX86_BUILTIN_UNPCKHPD,
2354 IX86_BUILTIN_UNPCKLPD,
2355
2356 IX86_BUILTIN_SHUFPD,
2357
2358 IX86_BUILTIN_LOADAPD,
2359 IX86_BUILTIN_LOADUPD,
2360 IX86_BUILTIN_STOREAPD,
2361 IX86_BUILTIN_STOREUPD,
2362 IX86_BUILTIN_LOADSD,
2363 IX86_BUILTIN_STORESD,
2364 IX86_BUILTIN_MOVSD,
2365
2366 IX86_BUILTIN_LOADHPD,
2367 IX86_BUILTIN_LOADLPD,
2368 IX86_BUILTIN_STOREHPD,
2369 IX86_BUILTIN_STORELPD,
2370
2371 IX86_BUILTIN_CVTDQ2PD,
2372 IX86_BUILTIN_CVTDQ2PS,
2373
2374 IX86_BUILTIN_CVTPD2DQ,
2375 IX86_BUILTIN_CVTPD2PI,
2376 IX86_BUILTIN_CVTPD2PS,
2377 IX86_BUILTIN_CVTTPD2DQ,
2378 IX86_BUILTIN_CVTTPD2PI,
2379
2380 IX86_BUILTIN_CVTPI2PD,
2381 IX86_BUILTIN_CVTSI2SD,
2382 IX86_BUILTIN_CVTSI642SD,
2383
2384 IX86_BUILTIN_CVTSD2SI,
2385 IX86_BUILTIN_CVTSD2SI64,
2386 IX86_BUILTIN_CVTSD2SS,
2387 IX86_BUILTIN_CVTSS2SD,
2388 IX86_BUILTIN_CVTTSD2SI,
2389 IX86_BUILTIN_CVTTSD2SI64,
2390
2391 IX86_BUILTIN_CVTPS2DQ,
2392 IX86_BUILTIN_CVTPS2PD,
2393 IX86_BUILTIN_CVTTPS2DQ,
2394
2395 IX86_BUILTIN_MOVNTI,
2396 IX86_BUILTIN_MOVNTPD,
2397 IX86_BUILTIN_MOVNTDQ,
2398
2399 IX86_BUILTIN_SETPD1,
2400 IX86_BUILTIN_SETPD,
2401 IX86_BUILTIN_CLRPD,
2402 IX86_BUILTIN_SETRPD,
2403 IX86_BUILTIN_LOADPD1,
2404 IX86_BUILTIN_LOADRPD,
2405 IX86_BUILTIN_STOREPD1,
2406 IX86_BUILTIN_STORERPD,
2407
2408 /* SSE2 MMX */
2409 IX86_BUILTIN_MASKMOVDQU,
2410 IX86_BUILTIN_MOVMSKPD,
2411 IX86_BUILTIN_PMOVMSKB128,
2412 IX86_BUILTIN_MOVQ2DQ,
2413 IX86_BUILTIN_MOVDQ2Q,
2414
2415 IX86_BUILTIN_PACKSSWB128,
2416 IX86_BUILTIN_PACKSSDW128,
2417 IX86_BUILTIN_PACKUSWB128,
2418
2419 IX86_BUILTIN_PADDB128,
2420 IX86_BUILTIN_PADDW128,
2421 IX86_BUILTIN_PADDD128,
2422 IX86_BUILTIN_PADDQ128,
2423 IX86_BUILTIN_PADDSB128,
2424 IX86_BUILTIN_PADDSW128,
2425 IX86_BUILTIN_PADDUSB128,
2426 IX86_BUILTIN_PADDUSW128,
2427 IX86_BUILTIN_PSUBB128,
2428 IX86_BUILTIN_PSUBW128,
2429 IX86_BUILTIN_PSUBD128,
2430 IX86_BUILTIN_PSUBQ128,
2431 IX86_BUILTIN_PSUBSB128,
2432 IX86_BUILTIN_PSUBSW128,
2433 IX86_BUILTIN_PSUBUSB128,
2434 IX86_BUILTIN_PSUBUSW128,
2435
2436 IX86_BUILTIN_PAND128,
2437 IX86_BUILTIN_PANDN128,
2438 IX86_BUILTIN_POR128,
2439 IX86_BUILTIN_PXOR128,
2440
2441 IX86_BUILTIN_PAVGB128,
2442 IX86_BUILTIN_PAVGW128,
2443
2444 IX86_BUILTIN_PCMPEQB128,
2445 IX86_BUILTIN_PCMPEQW128,
2446 IX86_BUILTIN_PCMPEQD128,
2447 IX86_BUILTIN_PCMPGTB128,
2448 IX86_BUILTIN_PCMPGTW128,
2449 IX86_BUILTIN_PCMPGTD128,
2450
2451 IX86_BUILTIN_PEXTRW128,
2452 IX86_BUILTIN_PINSRW128,
2453
2454 IX86_BUILTIN_PMADDWD128,
2455
2456 IX86_BUILTIN_PMAXSW128,
2457 IX86_BUILTIN_PMAXUB128,
2458 IX86_BUILTIN_PMINSW128,
2459 IX86_BUILTIN_PMINUB128,
2460
2461 IX86_BUILTIN_PMULUDQ,
2462 IX86_BUILTIN_PMULUDQ128,
2463 IX86_BUILTIN_PMULHUW128,
2464 IX86_BUILTIN_PMULHW128,
2465 IX86_BUILTIN_PMULLW128,
2466
2467 IX86_BUILTIN_PSADBW128,
2468 IX86_BUILTIN_PSHUFHW,
2469 IX86_BUILTIN_PSHUFLW,
2470 IX86_BUILTIN_PSHUFD,
2471
2472 IX86_BUILTIN_PSLLW128,
2473 IX86_BUILTIN_PSLLD128,
2474 IX86_BUILTIN_PSLLQ128,
2475 IX86_BUILTIN_PSRAW128,
2476 IX86_BUILTIN_PSRAD128,
2477 IX86_BUILTIN_PSRLW128,
2478 IX86_BUILTIN_PSRLD128,
2479 IX86_BUILTIN_PSRLQ128,
2480 IX86_BUILTIN_PSLLDQI128,
2481 IX86_BUILTIN_PSLLWI128,
2482 IX86_BUILTIN_PSLLDI128,
2483 IX86_BUILTIN_PSLLQI128,
2484 IX86_BUILTIN_PSRAWI128,
2485 IX86_BUILTIN_PSRADI128,
2486 IX86_BUILTIN_PSRLDQI128,
2487 IX86_BUILTIN_PSRLWI128,
2488 IX86_BUILTIN_PSRLDI128,
2489 IX86_BUILTIN_PSRLQI128,
2490
2491 IX86_BUILTIN_PUNPCKHBW128,
2492 IX86_BUILTIN_PUNPCKHWD128,
2493 IX86_BUILTIN_PUNPCKHDQ128,
2494 IX86_BUILTIN_PUNPCKHQDQ128,
2495 IX86_BUILTIN_PUNPCKLBW128,
2496 IX86_BUILTIN_PUNPCKLWD128,
2497 IX86_BUILTIN_PUNPCKLDQ128,
2498 IX86_BUILTIN_PUNPCKLQDQ128,
2499
2500 IX86_BUILTIN_CLFLUSH,
2501 IX86_BUILTIN_MFENCE,
2502 IX86_BUILTIN_LFENCE,
2503
2504 /* Prescott New Instructions. */
2505 IX86_BUILTIN_ADDSUBPS,
2506 IX86_BUILTIN_HADDPS,
2507 IX86_BUILTIN_HSUBPS,
2508 IX86_BUILTIN_MOVSHDUP,
2509 IX86_BUILTIN_MOVSLDUP,
2510 IX86_BUILTIN_ADDSUBPD,
2511 IX86_BUILTIN_HADDPD,
2512 IX86_BUILTIN_HSUBPD,
2513 IX86_BUILTIN_LOADDDUP,
2514 IX86_BUILTIN_MOVDDUP,
2515 IX86_BUILTIN_LDDQU,
2516
2517 IX86_BUILTIN_MONITOR,
2518 IX86_BUILTIN_MWAIT,
2519
2520 IX86_BUILTIN_MAX
2521 };
2522 \f
2523 /* Max number of args passed in registers. If this is more than 3, we will
2524 have problems with ebx (register #4), since it is a caller save register and
2525 is also used as the pic register in ELF. So for now, don't allow more than
2526 3 registers to be passed in registers. */
2527
2528 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2529
2530 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
2531
2532 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
2533
2534 \f
2535 /* Specify the machine mode that this machine uses
2536 for the index in the tablejump instruction. */
2537 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2538
2539 /* Define as C expression which evaluates to nonzero if the tablejump
2540 instruction expects the table to contain offsets from the address of the
2541 table.
2542 Do not define this if the table should contain absolute addresses. */
2543 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2544
2545 /* Define this as 1 if `char' should by default be signed; else as 0. */
2546 #define DEFAULT_SIGNED_CHAR 1
2547
2548 /* Number of bytes moved into a data cache for a single prefetch operation. */
2549 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2550
2551 /* Number of prefetch operations that can be done in parallel. */
2552 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2553
2554 /* Max number of bytes we can move from memory to memory
2555 in one reasonably fast instruction. */
2556 #define MOVE_MAX 16
2557
2558 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2559 move efficiently, as opposed to MOVE_MAX which is the maximum
2560 number of bytes we can move with a single instruction. */
2561 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2562
2563 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2564 move-instruction pairs, we will do a movstr or libcall instead.
2565 Increasing the value will always make code faster, but eventually
2566 incurs high cost in increased code size.
2567
2568 If you don't define this, a reasonable default is used. */
2569
2570 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2571
2572 /* Define if shifts truncate the shift count
2573 which implies one can omit a sign-extension or zero-extension
2574 of a shift count. */
2575 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2576
2577 /* #define SHIFT_COUNT_TRUNCATED */
2578
2579 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2580 is done just by pretending it is already truncated. */
2581 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2582
2583 /* A macro to update M and UNSIGNEDP when an object whose type is
2584 TYPE and which has the specified mode and signedness is to be
2585 stored in a register. This macro is only called when TYPE is a
2586 scalar type.
2587
2588 On i386 it is sometimes useful to promote HImode and QImode
2589 quantities to SImode. The choice depends on target type. */
2590
2591 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2592 do { \
2593 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2594 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2595 (MODE) = SImode; \
2596 } while (0)
2597
2598 /* Specify the machine mode that pointers have.
2599 After generation of rtl, the compiler makes no further distinction
2600 between pointers and any other objects of this machine mode. */
2601 #define Pmode (TARGET_64BIT ? DImode : SImode)
2602
2603 /* A function address in a call instruction
2604 is a byte address (for indexing purposes)
2605 so give the MEM rtx a byte's mode. */
2606 #define FUNCTION_MODE QImode
2607 \f
2608 /* A C expression for the cost of moving data from a register in class FROM to
2609 one in class TO. The classes are expressed using the enumeration values
2610 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2611 interpreted relative to that.
2612
2613 It is not required that the cost always equal 2 when FROM is the same as TO;
2614 on some machines it is expensive to move between registers if they are not
2615 general registers. */
2616
2617 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2618 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2619
2620 /* A C expression for the cost of moving data of mode M between a
2621 register and memory. A value of 2 is the default; this cost is
2622 relative to those in `REGISTER_MOVE_COST'.
2623
2624 If moving between registers and memory is more expensive than
2625 between two registers, you should define this macro to express the
2626 relative cost. */
2627
2628 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2629 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2630
2631 /* A C expression for the cost of a branch instruction. A value of 1
2632 is the default; other values are interpreted relative to that. */
2633
2634 #define BRANCH_COST ix86_branch_cost
2635
2636 /* Define this macro as a C expression which is nonzero if accessing
2637 less than a word of memory (i.e. a `char' or a `short') is no
2638 faster than accessing a word of memory, i.e., if such access
2639 require more than one instruction or if there is no difference in
2640 cost between byte and (aligned) word loads.
2641
2642 When this macro is not defined, the compiler will access a field by
2643 finding the smallest containing object; when it is defined, a
2644 fullword load will be used if alignment permits. Unless bytes
2645 accesses are faster than word accesses, using word accesses is
2646 preferable since it may eliminate subsequent memory access if
2647 subsequent accesses occur to other fields in the same word of the
2648 structure, but to different bytes. */
2649
2650 #define SLOW_BYTE_ACCESS 0
2651
2652 /* Nonzero if access to memory by shorts is slow and undesirable. */
2653 #define SLOW_SHORT_ACCESS 0
2654
2655 /* Define this macro to be the value 1 if unaligned accesses have a
2656 cost many times greater than aligned accesses, for example if they
2657 are emulated in a trap handler.
2658
2659 When this macro is nonzero, the compiler will act as if
2660 `STRICT_ALIGNMENT' were nonzero when generating code for block
2661 moves. This can cause significantly more instructions to be
2662 produced. Therefore, do not set this macro nonzero if unaligned
2663 accesses only add a cycle or two to the time for a memory access.
2664
2665 If the value of this macro is always zero, it need not be defined. */
2666
2667 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2668
2669 /* Define this macro if it is as good or better to call a constant
2670 function address than to call an address kept in a register.
2671
2672 Desirable on the 386 because a CALL with a constant address is
2673 faster than one with a register address. */
2674
2675 #define NO_FUNCTION_CSE
2676
2677 /* Define this macro if it is as good or better for a function to call
2678 itself with an explicit address than to call an address kept in a
2679 register. */
2680
2681 #define NO_RECURSIVE_FUNCTION_CSE
2682 \f
2683 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2684 return the mode to be used for the comparison.
2685
2686 For floating-point equality comparisons, CCFPEQmode should be used.
2687 VOIDmode should be used in all other cases.
2688
2689 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2690 possible, to allow for more combinations. */
2691
2692 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2693
2694 /* Return nonzero if MODE implies a floating point inequality can be
2695 reversed. */
2696
2697 #define REVERSIBLE_CC_MODE(MODE) 1
2698
2699 /* A C expression whose value is reversed condition code of the CODE for
2700 comparison done in CC_MODE mode. */
2701 #define REVERSE_CONDITION(CODE, MODE) \
2702 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2703 : reverse_condition_maybe_unordered (CODE))
2704
2705 \f
2706 /* Control the assembler format that we output, to the extent
2707 this does not vary between assemblers. */
2708
2709 /* How to refer to registers in assembler output.
2710 This sequence is indexed by compiler's hard-register-number (see above). */
2711
2712 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2713 For non floating point regs, the following are the HImode names.
2714
2715 For float regs, the stack top is sometimes referred to as "%st(0)"
2716 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
2717
2718 #define HI_REGISTER_NAMES \
2719 {"ax","dx","cx","bx","si","di","bp","sp", \
2720 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2721 "argp", "flags", "fpsr", "dirflag", "frame", \
2722 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2723 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2724 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2725 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2726
2727 #define REGISTER_NAMES HI_REGISTER_NAMES
2728
2729 /* Table of additional register names to use in user input. */
2730
2731 #define ADDITIONAL_REGISTER_NAMES \
2732 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2733 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2734 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2735 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2736 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2737 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2738 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2739 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2740
2741 /* Note we are omitting these since currently I don't know how
2742 to get gcc to use these, since they want the same but different
2743 number as al, and ax.
2744 */
2745
2746 #define QI_REGISTER_NAMES \
2747 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2748
2749 /* These parallel the array above, and can be used to access bits 8:15
2750 of regs 0 through 3. */
2751
2752 #define QI_HIGH_REGISTER_NAMES \
2753 {"ah", "dh", "ch", "bh", }
2754
2755 /* How to renumber registers for dbx and gdb. */
2756
2757 #define DBX_REGISTER_NUMBER(N) \
2758 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2759
2760 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2761 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2762 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2763
2764 /* Before the prologue, RA is at 0(%esp). */
2765 #define INCOMING_RETURN_ADDR_RTX \
2766 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2767
2768 /* After the prologue, RA is at -4(AP) in the current frame. */
2769 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2770 ((COUNT) == 0 \
2771 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2772 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2773
2774 /* PC is dbx register 8; let's use that column for RA. */
2775 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2776
2777 /* Before the prologue, the top of the frame is at 4(%esp). */
2778 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2779
2780 /* Describe how we implement __builtin_eh_return. */
2781 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2782 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2783
2784
2785 /* Select a format to encode pointers in exception handling data. CODE
2786 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2787 true if the symbol may be affected by dynamic relocations.
2788
2789 ??? All x86 object file formats are capable of representing this.
2790 After all, the relocation needed is the same as for the call insn.
2791 Whether or not a particular assembler allows us to enter such, I
2792 guess we'll have to see. */
2793 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2794 (flag_pic \
2795 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2796 : DW_EH_PE_absptr)
2797
2798 /* This is how to output an insn to push a register on the stack.
2799 It need not be very fast code. */
2800
2801 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2802 do { \
2803 if (TARGET_64BIT) \
2804 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2805 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2806 else \
2807 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2808 } while (0)
2809
2810 /* This is how to output an insn to pop a register from the stack.
2811 It need not be very fast code. */
2812
2813 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2814 do { \
2815 if (TARGET_64BIT) \
2816 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2817 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2818 else \
2819 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2820 } while (0)
2821
2822 /* This is how to output an element of a case-vector that is absolute. */
2823
2824 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2825 ix86_output_addr_vec_elt ((FILE), (VALUE))
2826
2827 /* This is how to output an element of a case-vector that is relative. */
2828
2829 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2830 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2831
2832 /* Under some conditions we need jump tables in the text section, because
2833 the assembler cannot handle label differences between sections. */
2834
2835 #define JUMP_TABLES_IN_TEXT_SECTION \
2836 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2837
2838 /* A C statement that outputs an address constant appropriate to
2839 for DWARF debugging. */
2840
2841 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2842 i386_dwarf_output_addr_const ((FILE), (X))
2843
2844 /* Emit a dtp-relative reference to a TLS variable. */
2845
2846 #ifdef HAVE_AS_TLS
2847 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2848 i386_output_dwarf_dtprel (FILE, SIZE, X)
2849 #endif
2850
2851 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2852 and switch back. For x86 we do this only to save a few bytes that
2853 would otherwise be unused in the text section. */
2854 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2855 asm (SECTION_OP "\n\t" \
2856 "call " USER_LABEL_PREFIX #FUNC "\n" \
2857 TEXT_SECTION_ASM_OP);
2858 \f
2859 /* Print operand X (an rtx) in assembler syntax to file FILE.
2860 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2861 Effect of various CODE letters is described in i386.c near
2862 print_operand function. */
2863
2864 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2865 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2866
2867 #define PRINT_OPERAND(FILE, X, CODE) \
2868 print_operand ((FILE), (X), (CODE))
2869
2870 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2871 print_operand_address ((FILE), (ADDR))
2872
2873 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2874 do { \
2875 if (! output_addr_const_extra (FILE, (X))) \
2876 goto FAIL; \
2877 } while (0);
2878
2879 /* a letter which is not needed by the normal asm syntax, which
2880 we can use for operand syntax in the extended asm */
2881
2882 #define ASM_OPERAND_LETTER '#'
2883 #define RET return ""
2884 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2885 \f
2886 /* Define the codes that are matched by predicates in i386.c. */
2887
2888 #define PREDICATE_CODES \
2889 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2890 SYMBOL_REF, LABEL_REF, CONST}}, \
2891 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2892 SYMBOL_REF, LABEL_REF, CONST}}, \
2893 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
2894 SYMBOL_REF, LABEL_REF, CONST}}, \
2895 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2896 SYMBOL_REF, LABEL_REF, CONST}}, \
2897 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2898 SYMBOL_REF, LABEL_REF, CONST}}, \
2899 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2900 SYMBOL_REF, LABEL_REF, CONST}}, \
2901 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2902 SYMBOL_REF, LABEL_REF}}, \
2903 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
2904 {"const_int_1_31_operand", {CONST_INT}}, \
2905 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2906 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2907 LABEL_REF, SUBREG, REG, MEM}}, \
2908 {"pic_symbolic_operand", {CONST}}, \
2909 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
2910 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
2911 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
2912 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
2913 {"const1_operand", {CONST_INT}}, \
2914 {"const248_operand", {CONST_INT}}, \
2915 {"const_0_to_3_operand", {CONST_INT}}, \
2916 {"const_0_to_7_operand", {CONST_INT}}, \
2917 {"const_0_to_15_operand", {CONST_INT}}, \
2918 {"const_0_to_255_operand", {CONST_INT}}, \
2919 {"incdec_operand", {CONST_INT}}, \
2920 {"mmx_reg_operand", {REG}}, \
2921 {"reg_no_sp_operand", {SUBREG, REG}}, \
2922 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2923 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
2924 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
2925 {"index_register_operand", {SUBREG, REG}}, \
2926 {"flags_reg_operand", {REG}}, \
2927 {"q_regs_operand", {SUBREG, REG}}, \
2928 {"non_q_regs_operand", {SUBREG, REG}}, \
2929 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
2930 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
2931 GE, UNGE, LTGT, UNEQ}}, \
2932 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
2933 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
2934 }}, \
2935 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
2936 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
2937 UNGE, UNGT, LTGT, UNEQ }}, \
2938 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
2939 GE, UNGE, LTGT, UNEQ}}, \
2940 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
2941 {"ext_register_operand", {SUBREG, REG}}, \
2942 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
2943 {"mult_operator", {MULT}}, \
2944 {"div_operator", {DIV}}, \
2945 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
2946 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
2947 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
2948 LSHIFTRT, ROTATERT}}, \
2949 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
2950 {"memory_displacement_operand", {MEM}}, \
2951 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2952 LABEL_REF, SUBREG, REG, MEM, AND}}, \
2953 {"long_memory_operand", {MEM}}, \
2954 {"tls_symbolic_operand", {SYMBOL_REF}}, \
2955 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2956 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2957 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
2958 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
2959 {"any_fp_register_operand", {REG}}, \
2960 {"register_and_not_any_fp_reg_operand", {REG}}, \
2961 {"fp_register_operand", {REG}}, \
2962 {"register_and_not_fp_reg_operand", {REG}}, \
2963 {"zero_extended_scalar_load_operand", {MEM}}, \
2964 {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}}, \
2965 {"no_seg_address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2966 LABEL_REF, SUBREG, REG, MEM, PLUS, MULT}},
2967
2968 /* A list of predicates that do special things with modes, and so
2969 should not elicit warnings for VOIDmode match_operand. */
2970
2971 #define SPECIAL_MODE_PREDICATES \
2972 "ext_register_operand",
2973 \f
2974 /* Which processor to schedule for. The cpu attribute defines a list that
2975 mirrors this list, so changes to i386.md must be made at the same time. */
2976
2977 enum processor_type
2978 {
2979 PROCESSOR_I386, /* 80386 */
2980 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2981 PROCESSOR_PENTIUM,
2982 PROCESSOR_PENTIUMPRO,
2983 PROCESSOR_K6,
2984 PROCESSOR_ATHLON,
2985 PROCESSOR_PENTIUM4,
2986 PROCESSOR_K8,
2987 PROCESSOR_max
2988 };
2989
2990 extern enum processor_type ix86_tune;
2991 extern const char *ix86_tune_string;
2992
2993 extern enum processor_type ix86_arch;
2994 extern const char *ix86_arch_string;
2995
2996 enum fpmath_unit
2997 {
2998 FPMATH_387 = 1,
2999 FPMATH_SSE = 2
3000 };
3001
3002 extern enum fpmath_unit ix86_fpmath;
3003 extern const char *ix86_fpmath_string;
3004
3005 enum tls_dialect
3006 {
3007 TLS_DIALECT_GNU,
3008 TLS_DIALECT_SUN
3009 };
3010
3011 extern enum tls_dialect ix86_tls_dialect;
3012 extern const char *ix86_tls_dialect_string;
3013
3014 enum cmodel {
3015 CM_32, /* The traditional 32-bit ABI. */
3016 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3017 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3018 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3019 CM_LARGE, /* No assumptions. */
3020 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3021 };
3022
3023 extern enum cmodel ix86_cmodel;
3024 extern const char *ix86_cmodel_string;
3025
3026 /* Size of the RED_ZONE area. */
3027 #define RED_ZONE_SIZE 128
3028 /* Reserved area of the red zone for temporaries. */
3029 #define RED_ZONE_RESERVE 8
3030
3031 enum asm_dialect {
3032 ASM_ATT,
3033 ASM_INTEL
3034 };
3035
3036 extern const char *ix86_asm_string;
3037 extern enum asm_dialect ix86_asm_dialect;
3038
3039 extern int ix86_regparm;
3040 extern const char *ix86_regparm_string;
3041
3042 extern int ix86_preferred_stack_boundary;
3043 extern const char *ix86_preferred_stack_boundary_string;
3044
3045 extern int ix86_branch_cost;
3046 extern const char *ix86_branch_cost_string;
3047
3048 extern const char *ix86_debug_arg_string;
3049 extern const char *ix86_debug_addr_string;
3050
3051 /* Obsoleted by -f options. Remove before 3.2 ships. */
3052 extern const char *ix86_align_loops_string;
3053 extern const char *ix86_align_jumps_string;
3054 extern const char *ix86_align_funcs_string;
3055
3056 /* Smallest class containing REGNO. */
3057 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3058
3059 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3060 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3061 \f
3062 /* To properly truncate FP values into integers, we need to set i387 control
3063 word. We can't emit proper mode switching code before reload, as spills
3064 generated by reload may truncate values incorrectly, but we still can avoid
3065 redundant computation of new control word by the mode switching pass.
3066 The fldcw instructions are still emitted redundantly, but this is probably
3067 not going to be noticeable problem, as most CPUs do have fast path for
3068 the sequence.
3069
3070 The machinery is to emit simple truncation instructions and split them
3071 before reload to instructions having USEs of two memory locations that
3072 are filled by this code to old and new control word.
3073
3074 Post-reload pass may be later used to eliminate the redundant fildcw if
3075 needed. */
3076
3077 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3078
3079 /* Define this macro if the port needs extra instructions inserted
3080 for mode switching in an optimizing compilation. */
3081
3082 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3083
3084 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3085 initializer for an array of integers. Each initializer element N
3086 refers to an entity that needs mode switching, and specifies the
3087 number of different modes that might need to be set for this
3088 entity. The position of the initializer in the initializer -
3089 starting counting at zero - determines the integer that is used to
3090 refer to the mode-switched entity in question. */
3091
3092 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3093
3094 /* ENTITY is an integer specifying a mode-switched entity. If
3095 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3096 return an integer value not larger than the corresponding element
3097 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3098 must be switched into prior to the execution of INSN. */
3099
3100 #define MODE_NEEDED(ENTITY, I) \
3101 (GET_CODE (I) == CALL_INSN \
3102 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3103 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3104 ? FP_CW_UNINITIALIZED \
3105 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3106 ? FP_CW_ANY \
3107 : FP_CW_STORED)
3108
3109 /* This macro specifies the order in which modes for ENTITY are
3110 processed. 0 is the highest priority. */
3111
3112 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3113
3114 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3115 is the set of hard registers live at the point where the insn(s)
3116 are to be inserted. */
3117
3118 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3119 ((MODE) == FP_CW_STORED \
3120 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3121 assign_386_stack_local (HImode, 2)), 0\
3122 : 0)
3123 \f
3124 /* Avoid renaming of stack registers, as doing so in combination with
3125 scheduling just increases amount of live registers at time and in
3126 the turn amount of fxch instructions needed.
3127
3128 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
3129
3130 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3131 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3132
3133 \f
3134 #define DLL_IMPORT_EXPORT_PREFIX '#'
3135
3136 #define FASTCALL_PREFIX '@'
3137 \f
3138 struct machine_function GTY(())
3139 {
3140 struct stack_local_entry *stack_locals;
3141 const char *some_ld_name;
3142 int save_varrargs_registers;
3143 int accesses_prev_frame;
3144 int optimize_mode_switching;
3145 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3146 determine the style used. */
3147 int use_fast_prologue_epilogue;
3148 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3149 for. */
3150 int use_fast_prologue_epilogue_nregs;
3151 };
3152
3153 #define ix86_stack_locals (cfun->machine->stack_locals)
3154 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3155 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3156
3157 /* Control behavior of x86_file_start. */
3158 #define X86_FILE_START_VERSION_DIRECTIVE false
3159 #define X86_FILE_START_FLTUSED false
3160
3161 /*
3162 Local variables:
3163 version-control: t
3164 End:
3165 */