i386.h (TARGET_CPU_CPP_BUILTINS): Define __amd64 and __amd64__; do not use assertion.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #define TARGET_CPU_DEFAULT 0
101 #endif
102
103 /* Masks for the -m switches */
104 #define MASK_80387 0x00000001 /* Hardware floating point */
105 #define MASK_RTD 0x00000002 /* Use ret that pops args */
106 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
107 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
108 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
109 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
110 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
111 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
112 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
113 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
114 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
115 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
116 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
117 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
118 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
119 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
120 #define MASK_3DNOW 0x00010000 /* Support 3Dnow builtins */
121 #define MASK_3DNOW_A 0x00020000 /* Support Athlon 3Dnow builtins */
122 #define MASK_128BIT_LONG_DOUBLE 0x00040000 /* long double size is 128bit */
123 #define MASK_64BIT 0x00080000 /* Produce 64bit code */
124 #define MASK_MS_BITFIELD_LAYOUT 0x00100000 /* Use native (MS) bitfield layout */
125
126 /* Unused: 0x03e0000 */
127
128 /* ... overlap with subtarget options starts by 0x04000000. */
129 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
130
131 /* Use the floating point instructions */
132 #define TARGET_80387 (target_flags & MASK_80387)
133
134 /* Compile using ret insn that pops args.
135 This will not work unless you use prototypes at least
136 for all functions that can take varying numbers of args. */
137 #define TARGET_RTD (target_flags & MASK_RTD)
138
139 /* Align doubles to a two word boundary. This breaks compatibility with
140 the published ABI's for structures containing doubles, but produces
141 faster code on the pentium. */
142 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
143
144 /* Use push instructions to save outgoing args. */
145 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
146
147 /* Accumulate stack adjustments to prologue/epilogue. */
148 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
149 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
150
151 /* Put uninitialized locals into bss, not data.
152 Meaningful only on svr3. */
153 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
154
155 /* Use IEEE floating point comparisons. These handle correctly the cases
156 where the result of a comparison is unordered. Normally SIGFPE is
157 generated in such cases, in which case this isn't needed. */
158 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
159
160 /* Functions that return a floating point value may return that value
161 in the 387 FPU or in 386 integer registers. If set, this flag causes
162 the 387 to be used, which is compatible with most calling conventions. */
163 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
164
165 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
166 This mode wastes cache, but avoid misaligned data accesses and simplifies
167 address calculations. */
168 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
169
170 /* Disable generation of FP sin, cos and sqrt operations for 387.
171 This is because FreeBSD lacks these in the math-emulator-code */
172 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
173
174 /* Don't create frame pointers for leaf functions */
175 #define TARGET_OMIT_LEAF_FRAME_POINTER \
176 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
177
178 /* Debug GO_IF_LEGITIMATE_ADDRESS */
179 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
180
181 /* Debug FUNCTION_ARG macros */
182 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
183
184 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
185 compile-time constant. */
186 #ifdef IN_LIBGCC2
187 #ifdef __x86_64__
188 #define TARGET_64BIT 1
189 #else
190 #define TARGET_64BIT 0
191 #endif
192 #else
193 #ifdef TARGET_BI_ARCH
194 #define TARGET_64BIT (target_flags & MASK_64BIT)
195 #else
196 #if TARGET_64BIT_DEFAULT
197 #define TARGET_64BIT 1
198 #else
199 #define TARGET_64BIT 0
200 #endif
201 #endif
202 #endif
203
204 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
205 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
206 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
207 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
208 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
209 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
210 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
211 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
212 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
213
214 #define TUNEMASK (1 << ix86_tune)
215 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
216 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
217 extern const int x86_branch_hints, x86_unroll_strlen;
218 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
219 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
220 extern const int x86_use_cltd, x86_read_modify_write;
221 extern const int x86_read_modify, x86_split_long_moves;
222 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
223 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
224 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
225 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
226 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
227 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
228 extern const int x86_epilogue_using_move, x86_decompose_lea;
229 extern const int x86_arch_always_fancy_math_387, x86_shift1;
230 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
231 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
232 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
233 extern const int x86_inter_unit_moves;
234 extern int x86_prefetch_sse;
235
236 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
237 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
238 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
239 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
240 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
241 /* For sane SSE instruction set generation we need fcomi instruction. It is
242 safe to enable all CMOVE instructions. */
243 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
244 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
245 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
246 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
247 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
248 #define TARGET_MOVX (x86_movx & TUNEMASK)
249 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
250 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
251 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
252 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
253 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
254 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
255 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
256 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
257 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
258 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
259 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
260 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
261 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
262 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
263 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
264 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
265 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
266 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
267 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
268 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
269 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
270 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
271 (x86_sse_partial_reg_dependency & TUNEMASK)
272 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
273 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
274 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
275 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
276 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
277 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
278 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
279 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
280 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
281 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
282 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
283 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
284 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
285 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
286 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
287
288 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
289
290 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
291 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
292
293 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
294
295 #define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
296 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
297 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
298 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
299 && (ix86_fpmath & FPMATH_387))
300 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
301 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
302 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
303
304 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
305
306 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
307
308 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
309 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
310
311 /* WARNING: Do not mark empty strings for translation, as calling
312 gettext on an empty string does NOT return an empty
313 string. */
314
315
316 #define TARGET_SWITCHES \
317 { { "80387", MASK_80387, N_("Use hardware fp") }, \
318 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
319 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
320 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
321 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
322 { "386", 0, "" /*Deprecated.*/}, \
323 { "486", 0, "" /*Deprecated.*/}, \
324 { "pentium", 0, "" /*Deprecated.*/}, \
325 { "pentiumpro", 0, "" /*Deprecated.*/}, \
326 { "intel-syntax", 0, "" /*Deprecated.*/}, \
327 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
328 { "rtd", MASK_RTD, \
329 N_("Alternate calling convention") }, \
330 { "no-rtd", -MASK_RTD, \
331 N_("Use normal calling convention") }, \
332 { "align-double", MASK_ALIGN_DOUBLE, \
333 N_("Align some doubles on dword boundary") }, \
334 { "no-align-double", -MASK_ALIGN_DOUBLE, \
335 N_("Align doubles on word boundary") }, \
336 { "svr3-shlib", MASK_SVR3_SHLIB, \
337 N_("Uninitialized locals in .bss") }, \
338 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
339 N_("Uninitialized locals in .data") }, \
340 { "ieee-fp", MASK_IEEE_FP, \
341 N_("Use IEEE math for fp comparisons") }, \
342 { "no-ieee-fp", -MASK_IEEE_FP, \
343 N_("Do not use IEEE math for fp comparisons") }, \
344 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
345 N_("Return values of functions in FPU registers") }, \
346 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
347 N_("Do not return values of functions in FPU registers")}, \
348 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
349 N_("Do not generate sin, cos, sqrt for FPU") }, \
350 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
351 N_("Generate sin, cos, sqrt for FPU")}, \
352 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
353 N_("Omit the frame pointer in leaf functions") }, \
354 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
355 { "stack-arg-probe", MASK_STACK_PROBE, \
356 N_("Enable stack probing") }, \
357 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
358 { "windows", 0, 0 /* undocumented */ }, \
359 { "dll", 0, 0 /* undocumented */ }, \
360 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
361 N_("Align destination of the string operations") }, \
362 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
363 N_("Do not align destination of the string operations") }, \
364 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
365 N_("Inline all known string operations") }, \
366 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
367 N_("Do not inline all known string operations") }, \
368 { "push-args", -MASK_NO_PUSH_ARGS, \
369 N_("Use push instructions to save outgoing arguments") }, \
370 { "no-push-args", MASK_NO_PUSH_ARGS, \
371 N_("Do not use push instructions to save outgoing arguments") }, \
372 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
373 N_("Use push instructions to save outgoing arguments") }, \
374 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
375 N_("Do not use push instructions to save outgoing arguments") }, \
376 { "mmx", MASK_MMX, \
377 N_("Support MMX built-in functions") }, \
378 { "no-mmx", -MASK_MMX, \
379 N_("Do not support MMX built-in functions") }, \
380 { "3dnow", MASK_3DNOW, \
381 N_("Support 3DNow! built-in functions") }, \
382 { "no-3dnow", -MASK_3DNOW, \
383 N_("Do not support 3DNow! built-in functions") }, \
384 { "sse", MASK_SSE, \
385 N_("Support MMX and SSE built-in functions and code generation") }, \
386 { "no-sse", -MASK_SSE, \
387 N_("Do not support MMX and SSE built-in functions and code generation") },\
388 { "sse2", MASK_SSE2, \
389 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
390 { "no-sse2", -MASK_SSE2, \
391 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
392 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
393 N_("sizeof(long double) is 16") }, \
394 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
395 N_("sizeof(long double) is 12") }, \
396 { "64", MASK_64BIT, \
397 N_("Generate 64bit x86-64 code") }, \
398 { "32", -MASK_64BIT, \
399 N_("Generate 32bit i386 code") }, \
400 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
401 N_("Use native (MS) bitfield layout") }, \
402 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
403 N_("Use gcc default bitfield layout") }, \
404 { "red-zone", -MASK_NO_RED_ZONE, \
405 N_("Use red-zone in the x86-64 code") }, \
406 { "no-red-zone", MASK_NO_RED_ZONE, \
407 N_("Do not use red-zone in the x86-64 code") }, \
408 SUBTARGET_SWITCHES \
409 { "", TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT, 0 }}
410
411 #ifndef TARGET_64BIT_DEFAULT
412 #define TARGET_64BIT_DEFAULT 0
413 #endif
414
415 /* Once GDB has been enhanced to deal with functions without frame
416 pointers, we can change this to allow for elimination of
417 the frame pointer in leaf functions. */
418 #define TARGET_DEFAULT 0
419
420 /* This is not really a target flag, but is done this way so that
421 it's analogous to similar code for Mach-O on PowerPC. darwin.h
422 redefines this to 1. */
423 #define TARGET_MACHO 0
424
425 /* This macro is similar to `TARGET_SWITCHES' but defines names of
426 command options that have values. Its definition is an
427 initializer with a subgrouping for each command option.
428
429 Each subgrouping contains a string constant, that defines the
430 fixed part of the option name, and the address of a variable. The
431 variable, type `char *', is set to the variable part of the given
432 option if the fixed part matches. The actual option name is made
433 by appending `-m' to the specified name. */
434 #define TARGET_OPTIONS \
435 { { "tune=", &ix86_tune_string, \
436 N_("Schedule code for given CPU"), 0}, \
437 { "fpmath=", &ix86_fpmath_string, \
438 N_("Generate floating point mathematics using given instruction set"), 0},\
439 { "arch=", &ix86_arch_string, \
440 N_("Generate code for given CPU"), 0}, \
441 { "regparm=", &ix86_regparm_string, \
442 N_("Number of registers used to pass integer arguments"), 0},\
443 { "align-loops=", &ix86_align_loops_string, \
444 N_("Loop code aligned to this power of 2"), 0}, \
445 { "align-jumps=", &ix86_align_jumps_string, \
446 N_("Jump targets are aligned to this power of 2"), 0}, \
447 { "align-functions=", &ix86_align_funcs_string, \
448 N_("Function starts are aligned to this power of 2"), 0}, \
449 { "preferred-stack-boundary=", \
450 &ix86_preferred_stack_boundary_string, \
451 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
452 { "branch-cost=", &ix86_branch_cost_string, \
453 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
454 { "cmodel=", &ix86_cmodel_string, \
455 N_("Use given x86-64 code model"), 0}, \
456 { "debug-arg", &ix86_debug_arg_string, \
457 "" /* Undocumented. */, 0}, \
458 { "debug-addr", &ix86_debug_addr_string, \
459 "" /* Undocumented. */, 0}, \
460 { "asm=", &ix86_asm_string, \
461 N_("Use given assembler dialect"), 0}, \
462 { "tls-dialect=", &ix86_tls_dialect_string, \
463 N_("Use given thread-local storage dialect"), 0}, \
464 SUBTARGET_OPTIONS \
465 }
466
467 /* Sometimes certain combinations of command options do not make
468 sense on a particular target machine. You can define a macro
469 `OVERRIDE_OPTIONS' to take account of this. This macro, if
470 defined, is executed once just after all the command options have
471 been parsed.
472
473 Don't use this macro to turn on various extra optimizations for
474 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
475
476 #define OVERRIDE_OPTIONS override_options ()
477
478 /* These are meant to be redefined in the host dependent files */
479 #define SUBTARGET_SWITCHES
480 #define SUBTARGET_OPTIONS
481
482 /* Define this to change the optimizations performed by default. */
483 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
484 optimization_options ((LEVEL), (SIZE))
485
486 /* Specs for the compiler proper */
487
488 #ifndef CC1_CPU_SPEC
489 #define CC1_CPU_SPEC "\
490 %{!mtune*: \
491 %{m386:mtune=i386 \
492 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
493 %{m486:-mtune=i486 \
494 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
495 %{mpentium:-mtune=pentium \
496 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
497 %{mpentiumpro:-mtune=pentiumpro \
498 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
499 %{mcpu=*:-mtune=%* \
500 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
501 %<mcpu=* \
502 %{mintel-syntax:-masm=intel \
503 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
504 %{mno-intel-syntax:-masm=att \
505 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
506 #endif
507 \f
508 /* Target CPU builtins. */
509 #define TARGET_CPU_CPP_BUILTINS() \
510 do \
511 { \
512 size_t arch_len = strlen (ix86_arch_string); \
513 size_t tune_len = strlen (ix86_tune_string); \
514 int last_arch_char = ix86_arch_string[arch_len - 1]; \
515 int last_tune_char = ix86_tune_string[tune_len - 1]; \
516 \
517 if (TARGET_64BIT) \
518 { \
519 builtin_assert ("cpu=x86_64"); \
520 builtin_define ("__amd64"); \
521 builtin_define ("__amd64__"); \
522 builtin_define ("__x86_64"); \
523 builtin_define ("__x86_64__"); \
524 builtin_define ("__amd64"); \
525 builtin_define ("__amd64__"); \
526 } \
527 else \
528 { \
529 builtin_assert ("cpu=i386"); \
530 builtin_assert ("machine=i386"); \
531 builtin_define_std ("i386"); \
532 } \
533 \
534 /* Built-ins based on -mtune= (or -march= if no \
535 -mtune= given). */ \
536 if (TARGET_386) \
537 builtin_define ("__tune_i386__"); \
538 else if (TARGET_486) \
539 builtin_define ("__tune_i486__"); \
540 else if (TARGET_PENTIUM) \
541 { \
542 builtin_define ("__tune_i586__"); \
543 builtin_define ("__tune_pentium__"); \
544 if (last_tune_char == 'x') \
545 builtin_define ("__tune_pentium_mmx__"); \
546 } \
547 else if (TARGET_PENTIUMPRO) \
548 { \
549 builtin_define ("__tune_i686__"); \
550 builtin_define ("__tune_pentiumpro__"); \
551 switch (last_tune_char) \
552 { \
553 case '3': \
554 builtin_define ("__tune_pentium3__"); \
555 /* FALLTHRU */ \
556 case '2': \
557 builtin_define ("__tune_pentium2__"); \
558 break; \
559 } \
560 } \
561 else if (TARGET_K6) \
562 { \
563 builtin_define ("__tune_k6__"); \
564 if (last_tune_char == '2') \
565 builtin_define ("__tune_k6_2__"); \
566 else if (last_tune_char == '3') \
567 builtin_define ("__tune_k6_3__"); \
568 } \
569 else if (TARGET_ATHLON) \
570 { \
571 builtin_define ("__tune_athlon__"); \
572 /* Only plain "athlon" lacks SSE. */ \
573 if (last_tune_char != 'n') \
574 builtin_define ("__tune_athlon_sse__"); \
575 } \
576 else if (TARGET_K8) \
577 builtin_define ("__tune_k8__"); \
578 else if (TARGET_PENTIUM4) \
579 builtin_define ("__tune_pentium4__"); \
580 \
581 if (TARGET_MMX) \
582 builtin_define ("__MMX__"); \
583 if (TARGET_3DNOW) \
584 builtin_define ("__3dNOW__"); \
585 if (TARGET_3DNOW_A) \
586 builtin_define ("__3dNOW_A__"); \
587 if (TARGET_SSE) \
588 builtin_define ("__SSE__"); \
589 if (TARGET_SSE2) \
590 builtin_define ("__SSE2__"); \
591 if (TARGET_SSE_MATH && TARGET_SSE) \
592 builtin_define ("__SSE_MATH__"); \
593 if (TARGET_SSE_MATH && TARGET_SSE2) \
594 builtin_define ("__SSE2_MATH__"); \
595 \
596 /* Built-ins based on -march=. */ \
597 if (ix86_arch == PROCESSOR_I486) \
598 { \
599 builtin_define ("__i486"); \
600 builtin_define ("__i486__"); \
601 } \
602 else if (ix86_arch == PROCESSOR_PENTIUM) \
603 { \
604 builtin_define ("__i586"); \
605 builtin_define ("__i586__"); \
606 builtin_define ("__pentium"); \
607 builtin_define ("__pentium__"); \
608 if (last_arch_char == 'x') \
609 builtin_define ("__pentium_mmx__"); \
610 } \
611 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
612 { \
613 builtin_define ("__i686"); \
614 builtin_define ("__i686__"); \
615 builtin_define ("__pentiumpro"); \
616 builtin_define ("__pentiumpro__"); \
617 } \
618 else if (ix86_arch == PROCESSOR_K6) \
619 { \
620 \
621 builtin_define ("__k6"); \
622 builtin_define ("__k6__"); \
623 if (last_arch_char == '2') \
624 builtin_define ("__k6_2__"); \
625 else if (last_arch_char == '3') \
626 builtin_define ("__k6_3__"); \
627 } \
628 else if (ix86_arch == PROCESSOR_ATHLON) \
629 { \
630 builtin_define ("__athlon"); \
631 builtin_define ("__athlon__"); \
632 /* Only plain "athlon" lacks SSE. */ \
633 if (last_arch_char != 'n') \
634 builtin_define ("__athlon_sse__"); \
635 } \
636 else if (ix86_arch == PROCESSOR_K8) \
637 { \
638 builtin_define ("__k8"); \
639 builtin_define ("__k8__"); \
640 } \
641 else if (ix86_arch == PROCESSOR_PENTIUM4) \
642 { \
643 builtin_define ("__pentium4"); \
644 builtin_define ("__pentium4__"); \
645 } \
646 } \
647 while (0)
648
649 #define TARGET_CPU_DEFAULT_i386 0
650 #define TARGET_CPU_DEFAULT_i486 1
651 #define TARGET_CPU_DEFAULT_pentium 2
652 #define TARGET_CPU_DEFAULT_pentium_mmx 3
653 #define TARGET_CPU_DEFAULT_pentiumpro 4
654 #define TARGET_CPU_DEFAULT_pentium2 5
655 #define TARGET_CPU_DEFAULT_pentium3 6
656 #define TARGET_CPU_DEFAULT_pentium4 7
657 #define TARGET_CPU_DEFAULT_k6 8
658 #define TARGET_CPU_DEFAULT_k6_2 9
659 #define TARGET_CPU_DEFAULT_k6_3 10
660 #define TARGET_CPU_DEFAULT_athlon 11
661 #define TARGET_CPU_DEFAULT_athlon_sse 12
662 #define TARGET_CPU_DEFAULT_k8 13
663
664 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
665 "pentiumpro", "pentium2", "pentium3", \
666 "pentium4", "k6", "k6-2", "k6-3",\
667 "athlon", "athlon-4", "k8"}
668
669 #ifndef CC1_SPEC
670 #define CC1_SPEC "%(cc1_cpu) "
671 #endif
672
673 /* This macro defines names of additional specifications to put in the
674 specs that can be used in various specifications like CC1_SPEC. Its
675 definition is an initializer with a subgrouping for each command option.
676
677 Each subgrouping contains a string constant, that defines the
678 specification name, and a string constant that used by the GNU CC driver
679 program.
680
681 Do not define this macro if it does not need to do anything. */
682
683 #ifndef SUBTARGET_EXTRA_SPECS
684 #define SUBTARGET_EXTRA_SPECS
685 #endif
686
687 #define EXTRA_SPECS \
688 { "cc1_cpu", CC1_CPU_SPEC }, \
689 SUBTARGET_EXTRA_SPECS
690 \f
691 /* target machine storage layout */
692
693 /* Define for XFmode or TFmode extended real floating point support.
694 The XFmode is specified by i386 ABI, while TFmode may be faster
695 due to alignment and simplifications in the address calculations. */
696 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
697 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
698 #ifdef __x86_64__
699 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
700 #else
701 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
702 #endif
703
704 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
705 FPU, assume that the fpcw is set to extended precision; when using
706 only SSE, rounding is correct; when using both SSE and the FPU,
707 the rounding precision is indeterminate, since either may be chosen
708 apparently at random. */
709 #define TARGET_FLT_EVAL_METHOD \
710 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
711
712 #define SHORT_TYPE_SIZE 16
713 #define INT_TYPE_SIZE 32
714 #define FLOAT_TYPE_SIZE 32
715 #define LONG_TYPE_SIZE BITS_PER_WORD
716 #define MAX_WCHAR_TYPE_SIZE 32
717 #define DOUBLE_TYPE_SIZE 64
718 #define LONG_LONG_TYPE_SIZE 64
719
720 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
721 #define MAX_BITS_PER_WORD 64
722 #define MAX_LONG_TYPE_SIZE 64
723 #else
724 #define MAX_BITS_PER_WORD 32
725 #define MAX_LONG_TYPE_SIZE 32
726 #endif
727
728 /* Define this if most significant byte of a word is the lowest numbered. */
729 /* That is true on the 80386. */
730
731 #define BITS_BIG_ENDIAN 0
732
733 /* Define this if most significant byte of a word is the lowest numbered. */
734 /* That is not true on the 80386. */
735 #define BYTES_BIG_ENDIAN 0
736
737 /* Define this if most significant word of a multiword number is the lowest
738 numbered. */
739 /* Not true for 80386 */
740 #define WORDS_BIG_ENDIAN 0
741
742 /* Width of a word, in units (bytes). */
743 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
744 #ifdef IN_LIBGCC2
745 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
746 #else
747 #define MIN_UNITS_PER_WORD 4
748 #endif
749
750 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
751 #define PARM_BOUNDARY BITS_PER_WORD
752
753 /* Boundary (in *bits*) on which stack pointer should be aligned. */
754 #define STACK_BOUNDARY BITS_PER_WORD
755
756 /* Boundary (in *bits*) on which the stack pointer prefers to be
757 aligned; the compiler cannot rely on having this alignment. */
758 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
759
760 /* As of July 2001, many runtimes to not align the stack properly when
761 entering main. This causes expand_main_function to forcibly align
762 the stack, which results in aligned frames for functions called from
763 main, though it does nothing for the alignment of main itself. */
764 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
765 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
766
767 /* Minimum allocation boundary for the code of a function. */
768 #define FUNCTION_BOUNDARY 8
769
770 /* C++ stores the virtual bit in the lowest bit of function pointers. */
771 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
772
773 /* Alignment of field after `int : 0' in a structure. */
774
775 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
776
777 /* Minimum size in bits of the largest boundary to which any
778 and all fundamental data types supported by the hardware
779 might need to be aligned. No data type wants to be aligned
780 rounder than this.
781
782 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
783 and Pentium Pro XFmode values at 128 bit boundaries. */
784
785 #define BIGGEST_ALIGNMENT 128
786
787 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
788 #define ALIGN_MODE_128(MODE) \
789 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
790
791 /* The published ABIs say that doubles should be aligned on word
792 boundaries, so lower the alignment for structure fields unless
793 -malign-double is set. */
794
795 /* ??? Blah -- this macro is used directly by libobjc. Since it
796 supports no vector modes, cut out the complexity and fall back
797 on BIGGEST_FIELD_ALIGNMENT. */
798 #ifdef IN_TARGET_LIBS
799 #ifdef __x86_64__
800 #define BIGGEST_FIELD_ALIGNMENT 128
801 #else
802 #define BIGGEST_FIELD_ALIGNMENT 32
803 #endif
804 #else
805 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
806 x86_field_alignment (FIELD, COMPUTED)
807 #endif
808
809 /* If defined, a C expression to compute the alignment given to a
810 constant that is being placed in memory. EXP is the constant
811 and ALIGN is the alignment that the object would ordinarily have.
812 The value of this macro is used instead of that alignment to align
813 the object.
814
815 If this macro is not defined, then ALIGN is used.
816
817 The typical use of this macro is to increase alignment for string
818 constants to be word aligned so that `strcpy' calls that copy
819 constants can be done inline. */
820
821 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
822
823 /* If defined, a C expression to compute the alignment for a static
824 variable. TYPE is the data type, and ALIGN is the alignment that
825 the object would ordinarily have. The value of this macro is used
826 instead of that alignment to align the object.
827
828 If this macro is not defined, then ALIGN is used.
829
830 One use of this macro is to increase alignment of medium-size
831 data to make it all fit in fewer cache lines. Another is to
832 cause character arrays to be word-aligned so that `strcpy' calls
833 that copy constants to character arrays can be done inline. */
834
835 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
836
837 /* If defined, a C expression to compute the alignment for a local
838 variable. TYPE is the data type, and ALIGN is the alignment that
839 the object would ordinarily have. The value of this macro is used
840 instead of that alignment to align the object.
841
842 If this macro is not defined, then ALIGN is used.
843
844 One use of this macro is to increase alignment of medium-size
845 data to make it all fit in fewer cache lines. */
846
847 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
848
849 /* If defined, a C expression that gives the alignment boundary, in
850 bits, of an argument with the specified mode and type. If it is
851 not defined, `PARM_BOUNDARY' is used for all arguments. */
852
853 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
854 ix86_function_arg_boundary ((MODE), (TYPE))
855
856 /* Set this nonzero if move instructions will actually fail to work
857 when given unaligned data. */
858 #define STRICT_ALIGNMENT 0
859
860 /* If bit field type is int, don't let it cross an int,
861 and give entire struct the alignment of an int. */
862 /* Required on the 386 since it doesn't have bit-field insns. */
863 #define PCC_BITFIELD_TYPE_MATTERS 1
864 \f
865 /* Standard register usage. */
866
867 /* This processor has special stack-like registers. See reg-stack.c
868 for details. */
869
870 #define STACK_REGS
871 #define IS_STACK_MODE(MODE) \
872 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
873 || (MODE) == TFmode)
874
875 /* Number of actual hardware registers.
876 The hardware registers are assigned numbers for the compiler
877 from 0 to just below FIRST_PSEUDO_REGISTER.
878 All registers that the compiler knows about must be given numbers,
879 even those that are not normally considered general registers.
880
881 In the 80386 we give the 8 general purpose registers the numbers 0-7.
882 We number the floating point registers 8-15.
883 Note that registers 0-7 can be accessed as a short or int,
884 while only 0-3 may be used with byte `mov' instructions.
885
886 Reg 16 does not correspond to any hardware register, but instead
887 appears in the RTL as an argument pointer prior to reload, and is
888 eliminated during reloading in favor of either the stack or frame
889 pointer. */
890
891 #define FIRST_PSEUDO_REGISTER 53
892
893 /* Number of hardware registers that go into the DWARF-2 unwind info.
894 If not defined, equals FIRST_PSEUDO_REGISTER. */
895
896 #define DWARF_FRAME_REGISTERS 17
897
898 /* 1 for registers that have pervasive standard uses
899 and are not available for the register allocator.
900 On the 80386, the stack pointer is such, as is the arg pointer.
901
902 The value is a mask - bit 1 is set for fixed registers
903 for 32bit target, while 2 is set for fixed registers for 64bit.
904 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
905 */
906 #define FIXED_REGISTERS \
907 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
908 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
909 /*arg,flags,fpsr,dir,frame*/ \
910 3, 3, 3, 3, 3, \
911 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
912 0, 0, 0, 0, 0, 0, 0, 0, \
913 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
914 0, 0, 0, 0, 0, 0, 0, 0, \
915 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
916 1, 1, 1, 1, 1, 1, 1, 1, \
917 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
918 1, 1, 1, 1, 1, 1, 1, 1}
919
920
921 /* 1 for registers not available across function calls.
922 These must include the FIXED_REGISTERS and also any
923 registers that can be used without being saved.
924 The latter must include the registers where values are returned
925 and the register where structure-value addresses are passed.
926 Aside from that, you can include as many other registers as you like.
927
928 The value is a mask - bit 1 is set for call used
929 for 32bit target, while 2 is set for call used for 64bit.
930 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
931 */
932 #define CALL_USED_REGISTERS \
933 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
934 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
935 /*arg,flags,fpsr,dir,frame*/ \
936 3, 3, 3, 3, 3, \
937 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
938 3, 3, 3, 3, 3, 3, 3, 3, \
939 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
940 3, 3, 3, 3, 3, 3, 3, 3, \
941 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
942 3, 3, 3, 3, 1, 1, 1, 1, \
943 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
944 3, 3, 3, 3, 3, 3, 3, 3} \
945
946 /* Order in which to allocate registers. Each register must be
947 listed once, even those in FIXED_REGISTERS. List frame pointer
948 late and fixed registers last. Note that, in general, we prefer
949 registers listed in CALL_USED_REGISTERS, keeping the others
950 available for storage of persistent values.
951
952 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
953 so this is just empty initializer for array. */
954
955 #define REG_ALLOC_ORDER \
956 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
957 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
958 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
959 48, 49, 50, 51, 52 }
960
961 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
962 to be rearranged based on a particular function. When using sse math,
963 we want to allocate SSE before x87 registers and vice vera. */
964
965 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
966
967
968 /* Macro to conditionally modify fixed_regs/call_used_regs. */
969 #define CONDITIONAL_REGISTER_USAGE \
970 do { \
971 int i; \
972 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
973 { \
974 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
975 call_used_regs[i] = (call_used_regs[i] \
976 & (TARGET_64BIT ? 2 : 1)) != 0; \
977 } \
978 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
979 { \
980 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
981 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
982 } \
983 if (! TARGET_MMX) \
984 { \
985 int i; \
986 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
987 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
988 fixed_regs[i] = call_used_regs[i] = 1; \
989 } \
990 if (! TARGET_SSE) \
991 { \
992 int i; \
993 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
994 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
995 fixed_regs[i] = call_used_regs[i] = 1; \
996 } \
997 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
998 { \
999 int i; \
1000 HARD_REG_SET x; \
1001 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1002 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1003 if (TEST_HARD_REG_BIT (x, i)) \
1004 fixed_regs[i] = call_used_regs[i] = 1; \
1005 } \
1006 } while (0)
1007
1008 /* Return number of consecutive hard regs needed starting at reg REGNO
1009 to hold something of mode MODE.
1010 This is ordinarily the length in words of a value of mode MODE
1011 but can be less for certain modes in special long registers.
1012
1013 Actually there are no two word move instructions for consecutive
1014 registers. And only registers 0-3 may have mov byte instructions
1015 applied to them.
1016 */
1017
1018 #define HARD_REGNO_NREGS(REGNO, MODE) \
1019 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1020 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1021 : ((MODE) == TFmode \
1022 ? (TARGET_64BIT ? 2 : 3) \
1023 : (MODE) == TCmode \
1024 ? (TARGET_64BIT ? 4 : 6) \
1025 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1026
1027 #define VALID_SSE2_REG_MODE(MODE) \
1028 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1029 || (MODE) == V2DImode)
1030
1031 #define VALID_SSE_REG_MODE(MODE) \
1032 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1033 || (MODE) == SFmode \
1034 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1035 || VALID_SSE2_REG_MODE (MODE) \
1036 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1037
1038 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1039 ((MODE) == V2SFmode || (MODE) == SFmode)
1040
1041 #define VALID_MMX_REG_MODE(MODE) \
1042 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1043 || (MODE) == V2SImode || (MODE) == SImode)
1044
1045 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1046 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1047 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1048 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1049
1050 #define VALID_FP_MODE_P(MODE) \
1051 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
1052 || (!TARGET_64BIT && (MODE) == XFmode) \
1053 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
1054 || (!TARGET_64BIT && (MODE) == XCmode))
1055
1056 #define VALID_INT_MODE_P(MODE) \
1057 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1058 || (MODE) == DImode \
1059 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1060 || (MODE) == CDImode \
1061 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1062
1063 /* Return true for modes passed in SSE registers. */
1064 #define SSE_REG_MODE_P(MODE) \
1065 ((MODE) == TImode || (MODE) == V16QImode \
1066 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1067 || (MODE) == V4SFmode || (MODE) == V4SImode)
1068
1069 /* Return true for modes passed in MMX registers. */
1070 #define MMX_REG_MODE_P(MODE) \
1071 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1072 || (MODE) == V2SFmode)
1073
1074 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1075
1076 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1077 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1078
1079 /* Value is 1 if it is a good idea to tie two pseudo registers
1080 when one has mode MODE1 and one has mode MODE2.
1081 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1082 for any hard reg, then this must be 0 for correct output. */
1083
1084 #define MODES_TIEABLE_P(MODE1, MODE2) \
1085 ((MODE1) == (MODE2) \
1086 || (((MODE1) == HImode || (MODE1) == SImode \
1087 || ((MODE1) == QImode \
1088 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1089 || ((MODE1) == DImode && TARGET_64BIT)) \
1090 && ((MODE2) == HImode || (MODE2) == SImode \
1091 || ((MODE2) == QImode \
1092 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1093 || ((MODE2) == DImode && TARGET_64BIT))))
1094
1095
1096 /* Specify the modes required to caller save a given hard regno.
1097 We do this on i386 to prevent flags from being saved at all.
1098
1099 Kill any attempts to combine saving of modes. */
1100
1101 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1102 (CC_REGNO_P (REGNO) ? VOIDmode \
1103 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1104 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1105 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1106 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1107 : (MODE))
1108 /* Specify the registers used for certain standard purposes.
1109 The values of these macros are register numbers. */
1110
1111 /* on the 386 the pc register is %eip, and is not usable as a general
1112 register. The ordinary mov instructions won't work */
1113 /* #define PC_REGNUM */
1114
1115 /* Register to use for pushing function arguments. */
1116 #define STACK_POINTER_REGNUM 7
1117
1118 /* Base register for access to local variables of the function. */
1119 #define HARD_FRAME_POINTER_REGNUM 6
1120
1121 /* Base register for access to local variables of the function. */
1122 #define FRAME_POINTER_REGNUM 20
1123
1124 /* First floating point reg */
1125 #define FIRST_FLOAT_REG 8
1126
1127 /* First & last stack-like regs */
1128 #define FIRST_STACK_REG FIRST_FLOAT_REG
1129 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1130
1131 #define FLAGS_REG 17
1132 #define FPSR_REG 18
1133 #define DIRFLAG_REG 19
1134
1135 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1136 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1137
1138 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1139 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1140
1141 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1142 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1143
1144 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1145 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1146
1147 /* Value should be nonzero if functions must have frame pointers.
1148 Zero means the frame pointer need not be set up (and parms
1149 may be accessed via the stack pointer) in functions that seem suitable.
1150 This is computed in `reload', in reload1.c. */
1151 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1152
1153 /* Override this in other tm.h files to cope with various OS losage
1154 requiring a frame pointer. */
1155 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1156 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1157 #endif
1158
1159 /* Make sure we can access arbitrary call frames. */
1160 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1161
1162 /* Base register for access to arguments of the function. */
1163 #define ARG_POINTER_REGNUM 16
1164
1165 /* Register in which static-chain is passed to a function.
1166 We do use ECX as static chain register for 32 bit ABI. On the
1167 64bit ABI, ECX is an argument register, so we use R10 instead. */
1168 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1169
1170 /* Register to hold the addressing base for position independent
1171 code access to data items. We don't use PIC pointer for 64bit
1172 mode. Define the regnum to dummy value to prevent gcc from
1173 pessimizing code dealing with EBX.
1174
1175 To avoid clobbering a call-saved register unnecessarily, we renumber
1176 the pic register when possible. The change is visible after the
1177 prologue has been emitted. */
1178
1179 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1180
1181 #define PIC_OFFSET_TABLE_REGNUM \
1182 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1183 : reload_completed ? REGNO (pic_offset_table_rtx) \
1184 : REAL_PIC_OFFSET_TABLE_REGNUM)
1185
1186 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1187
1188 /* Register in which address to store a structure value
1189 arrives in the function. On the 386, the prologue
1190 copies this from the stack to register %eax. */
1191 #define STRUCT_VALUE_INCOMING 0
1192
1193 /* Place in which caller passes the structure value address.
1194 0 means push the value on the stack like an argument. */
1195 #define STRUCT_VALUE 0
1196
1197 /* A C expression which can inhibit the returning of certain function
1198 values in registers, based on the type of value. A nonzero value
1199 says to return the function value in memory, just as large
1200 structures are always returned. Here TYPE will be a C expression
1201 of type `tree', representing the data type of the value.
1202
1203 Note that values of mode `BLKmode' must be explicitly handled by
1204 this macro. Also, the option `-fpcc-struct-return' takes effect
1205 regardless of this macro. On most systems, it is possible to
1206 leave the macro undefined; this causes a default definition to be
1207 used, whose value is the constant 1 for `BLKmode' values, and 0
1208 otherwise.
1209
1210 Do not use this macro to indicate that structures and unions
1211 should always be returned in memory. You should instead use
1212 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1213
1214 #define RETURN_IN_MEMORY(TYPE) \
1215 ix86_return_in_memory (TYPE)
1216
1217 /* This is overriden by <cygwin.h>. */
1218 #define MS_AGGREGATE_RETURN 0
1219
1220 \f
1221 /* Define the classes of registers for register constraints in the
1222 machine description. Also define ranges of constants.
1223
1224 One of the classes must always be named ALL_REGS and include all hard regs.
1225 If there is more than one class, another class must be named NO_REGS
1226 and contain no registers.
1227
1228 The name GENERAL_REGS must be the name of a class (or an alias for
1229 another name such as ALL_REGS). This is the class of registers
1230 that is allowed by "g" or "r" in a register constraint.
1231 Also, registers outside this class are allocated only when
1232 instructions express preferences for them.
1233
1234 The classes must be numbered in nondecreasing order; that is,
1235 a larger-numbered class must never be contained completely
1236 in a smaller-numbered class.
1237
1238 For any two classes, it is very desirable that there be another
1239 class that represents their union.
1240
1241 It might seem that class BREG is unnecessary, since no useful 386
1242 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1243 and the "b" register constraint is useful in asms for syscalls.
1244
1245 The flags and fpsr registers are in no class. */
1246
1247 enum reg_class
1248 {
1249 NO_REGS,
1250 AREG, DREG, CREG, BREG, SIREG, DIREG,
1251 AD_REGS, /* %eax/%edx for DImode */
1252 Q_REGS, /* %eax %ebx %ecx %edx */
1253 NON_Q_REGS, /* %esi %edi %ebp %esp */
1254 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1255 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1256 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1257 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1258 FLOAT_REGS,
1259 SSE_REGS,
1260 MMX_REGS,
1261 FP_TOP_SSE_REGS,
1262 FP_SECOND_SSE_REGS,
1263 FLOAT_SSE_REGS,
1264 FLOAT_INT_REGS,
1265 INT_SSE_REGS,
1266 FLOAT_INT_SSE_REGS,
1267 ALL_REGS, LIM_REG_CLASSES
1268 };
1269
1270 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1271
1272 #define INTEGER_CLASS_P(CLASS) \
1273 reg_class_subset_p ((CLASS), GENERAL_REGS)
1274 #define FLOAT_CLASS_P(CLASS) \
1275 reg_class_subset_p ((CLASS), FLOAT_REGS)
1276 #define SSE_CLASS_P(CLASS) \
1277 reg_class_subset_p ((CLASS), SSE_REGS)
1278 #define MMX_CLASS_P(CLASS) \
1279 reg_class_subset_p ((CLASS), MMX_REGS)
1280 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1281 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1282 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1283 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1284 #define MAYBE_SSE_CLASS_P(CLASS) \
1285 reg_classes_intersect_p (SSE_REGS, (CLASS))
1286 #define MAYBE_MMX_CLASS_P(CLASS) \
1287 reg_classes_intersect_p (MMX_REGS, (CLASS))
1288
1289 #define Q_CLASS_P(CLASS) \
1290 reg_class_subset_p ((CLASS), Q_REGS)
1291
1292 /* Give names of register classes as strings for dump file. */
1293
1294 #define REG_CLASS_NAMES \
1295 { "NO_REGS", \
1296 "AREG", "DREG", "CREG", "BREG", \
1297 "SIREG", "DIREG", \
1298 "AD_REGS", \
1299 "Q_REGS", "NON_Q_REGS", \
1300 "INDEX_REGS", \
1301 "LEGACY_REGS", \
1302 "GENERAL_REGS", \
1303 "FP_TOP_REG", "FP_SECOND_REG", \
1304 "FLOAT_REGS", \
1305 "SSE_REGS", \
1306 "MMX_REGS", \
1307 "FP_TOP_SSE_REGS", \
1308 "FP_SECOND_SSE_REGS", \
1309 "FLOAT_SSE_REGS", \
1310 "FLOAT_INT_REGS", \
1311 "INT_SSE_REGS", \
1312 "FLOAT_INT_SSE_REGS", \
1313 "ALL_REGS" }
1314
1315 /* Define which registers fit in which classes.
1316 This is an initializer for a vector of HARD_REG_SET
1317 of length N_REG_CLASSES. */
1318
1319 #define REG_CLASS_CONTENTS \
1320 { { 0x00, 0x0 }, \
1321 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1322 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1323 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1324 { 0x03, 0x0 }, /* AD_REGS */ \
1325 { 0x0f, 0x0 }, /* Q_REGS */ \
1326 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1327 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1328 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1329 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1330 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1331 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1332 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1333 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1334 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1335 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1336 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1337 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1338 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1339 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1340 { 0xffffffff,0x1fffff } \
1341 }
1342
1343 /* The same information, inverted:
1344 Return the class number of the smallest class containing
1345 reg number REGNO. This could be a conditional expression
1346 or could index an array. */
1347
1348 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1349
1350 /* When defined, the compiler allows registers explicitly used in the
1351 rtl to be used as spill registers but prevents the compiler from
1352 extending the lifetime of these registers. */
1353
1354 #define SMALL_REGISTER_CLASSES 1
1355
1356 #define QI_REG_P(X) \
1357 (REG_P (X) && REGNO (X) < 4)
1358
1359 #define GENERAL_REGNO_P(N) \
1360 ((N) < 8 || REX_INT_REGNO_P (N))
1361
1362 #define GENERAL_REG_P(X) \
1363 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1364
1365 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1366
1367 #define NON_QI_REG_P(X) \
1368 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1369
1370 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1371 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1372
1373 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1374 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1375 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1376 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1377
1378 #define SSE_REGNO_P(N) \
1379 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1380 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1381
1382 #define REX_SSE_REGNO_P(N) \
1383 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1384
1385 #define SSE_REGNO(N) \
1386 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1387 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1388
1389 #define SSE_FLOAT_MODE_P(MODE) \
1390 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1391
1392 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1393 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1394
1395 #define STACK_REG_P(XOP) \
1396 (REG_P (XOP) && \
1397 REGNO (XOP) >= FIRST_STACK_REG && \
1398 REGNO (XOP) <= LAST_STACK_REG)
1399
1400 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1401
1402 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1403
1404 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1405 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1406
1407 /* Indicate whether hard register numbered REG_NO should be converted
1408 to SSA form. */
1409 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1410 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1411
1412 /* The class value for index registers, and the one for base regs. */
1413
1414 #define INDEX_REG_CLASS INDEX_REGS
1415 #define BASE_REG_CLASS GENERAL_REGS
1416
1417 /* Get reg_class from a letter such as appears in the machine description. */
1418
1419 #define REG_CLASS_FROM_LETTER(C) \
1420 ((C) == 'r' ? GENERAL_REGS : \
1421 (C) == 'R' ? LEGACY_REGS : \
1422 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1423 (C) == 'Q' ? Q_REGS : \
1424 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1425 ? FLOAT_REGS \
1426 : NO_REGS) : \
1427 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1428 ? FP_TOP_REG \
1429 : NO_REGS) : \
1430 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1431 ? FP_SECOND_REG \
1432 : NO_REGS) : \
1433 (C) == 'a' ? AREG : \
1434 (C) == 'b' ? BREG : \
1435 (C) == 'c' ? CREG : \
1436 (C) == 'd' ? DREG : \
1437 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1438 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1439 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1440 (C) == 'A' ? AD_REGS : \
1441 (C) == 'D' ? DIREG : \
1442 (C) == 'S' ? SIREG : NO_REGS)
1443
1444 /* The letters I, J, K, L and M in a register constraint string
1445 can be used to stand for particular ranges of immediate operands.
1446 This macro defines what the ranges are.
1447 C is the letter, and VALUE is a constant value.
1448 Return 1 if VALUE is in the range specified by C.
1449
1450 I is for non-DImode shifts.
1451 J is for DImode shifts.
1452 K is for signed imm8 operands.
1453 L is for andsi as zero-extending move.
1454 M is for shifts that can be executed by the "lea" opcode.
1455 N is for immediate operands for out/in instructions (0-255)
1456 */
1457
1458 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1459 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1460 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1461 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1462 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1463 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1464 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1465 : 0)
1466
1467 /* Similar, but for floating constants, and defining letters G and H.
1468 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1469 TARGET_387 isn't set, because the stack register converter may need to
1470 load 0.0 into the function value register. */
1471
1472 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1473 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1474 : 0)
1475
1476 /* A C expression that defines the optional machine-dependent
1477 constraint letters that can be used to segregate specific types of
1478 operands, usually memory references, for the target machine. Any
1479 letter that is not elsewhere defined and not matched by
1480 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1481 be defined.
1482
1483 If it is required for a particular target machine, it should
1484 return 1 if VALUE corresponds to the operand type represented by
1485 the constraint letter C. If C is not defined as an extra
1486 constraint, the value returned should be 0 regardless of VALUE. */
1487
1488 #define EXTRA_CONSTRAINT(VALUE, D) \
1489 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1490 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1491 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1492 : 0)
1493
1494 /* Place additional restrictions on the register class to use when it
1495 is necessary to be able to hold a value of mode MODE in a reload
1496 register for which class CLASS would ordinarily be used. */
1497
1498 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1499 ((MODE) == QImode && !TARGET_64BIT \
1500 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1501 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1502 ? Q_REGS : (CLASS))
1503
1504 /* Given an rtx X being reloaded into a reg required to be
1505 in class CLASS, return the class of reg to actually use.
1506 In general this is just CLASS; but on some machines
1507 in some cases it is preferable to use a more restrictive class.
1508 On the 80386 series, we prevent floating constants from being
1509 reloaded into floating registers (since no move-insn can do that)
1510 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1511
1512 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1513 QImode must go into class Q_REGS.
1514 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1515 movdf to do mem-to-mem moves through integer regs. */
1516
1517 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1518 ix86_preferred_reload_class ((X), (CLASS))
1519
1520 /* If we are copying between general and FP registers, we need a memory
1521 location. The same is true for SSE and MMX registers. */
1522 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1523 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1524
1525 /* QImode spills from non-QI registers need a scratch. This does not
1526 happen often -- the only example so far requires an uninitialized
1527 pseudo. */
1528
1529 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1530 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1531 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1532 ? Q_REGS : NO_REGS)
1533
1534 /* Return the maximum number of consecutive registers
1535 needed to represent mode MODE in a register of class CLASS. */
1536 /* On the 80386, this is the size of MODE in words,
1537 except in the FP regs, where a single reg is always enough.
1538 The TFmodes are really just 80bit values, so we use only 3 registers
1539 to hold them, instead of 4, as the size would suggest.
1540 */
1541 #define CLASS_MAX_NREGS(CLASS, MODE) \
1542 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1543 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1544 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1545 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1546
1547 /* A C expression whose value is nonzero if pseudos that have been
1548 assigned to registers of class CLASS would likely be spilled
1549 because registers of CLASS are needed for spill registers.
1550
1551 The default value of this macro returns 1 if CLASS has exactly one
1552 register and zero otherwise. On most machines, this default
1553 should be used. Only define this macro to some other expression
1554 if pseudo allocated by `local-alloc.c' end up in memory because
1555 their hard registers were needed for spill registers. If this
1556 macro returns nonzero for those classes, those pseudos will only
1557 be allocated by `global.c', which knows how to reallocate the
1558 pseudo to another register. If there would not be another
1559 register available for reallocation, you should not change the
1560 definition of this macro since the only effect of such a
1561 definition would be to slow down register allocation. */
1562
1563 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1564 (((CLASS) == AREG) \
1565 || ((CLASS) == DREG) \
1566 || ((CLASS) == CREG) \
1567 || ((CLASS) == BREG) \
1568 || ((CLASS) == AD_REGS) \
1569 || ((CLASS) == SIREG) \
1570 || ((CLASS) == DIREG))
1571
1572 /* Return a class of registers that cannot change FROM mode to TO mode.
1573
1574 x87 registers can't do subreg as all values are reformated to extended
1575 precision. XMM registers does not support with nonzero offsets equal
1576 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1577 determine these, prohibit all nonparadoxical subregs changing size. */
1578
1579 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1580 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1581 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1582 || MAYBE_MMX_CLASS_P (CLASS) \
1583 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1584 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1585
1586 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1587 to automatically clobber for all asms.
1588
1589 We do this in the new i386 backend to maintain source compatibility
1590 with the old cc0-based compiler. */
1591
1592 #define MD_ASM_CLOBBERS(CLOBBERS) \
1593 do { \
1594 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1595 (CLOBBERS)); \
1596 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1597 (CLOBBERS)); \
1598 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1599 (CLOBBERS)); \
1600 } while (0)
1601 \f
1602 /* Stack layout; function entry, exit and calling. */
1603
1604 /* Define this if pushing a word on the stack
1605 makes the stack pointer a smaller address. */
1606 #define STACK_GROWS_DOWNWARD
1607
1608 /* Define this if the nominal address of the stack frame
1609 is at the high-address end of the local variables;
1610 that is, each additional local variable allocated
1611 goes at a more negative offset in the frame. */
1612 #define FRAME_GROWS_DOWNWARD
1613
1614 /* Offset within stack frame to start allocating local variables at.
1615 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1616 first local allocated. Otherwise, it is the offset to the BEGINNING
1617 of the first local allocated. */
1618 #define STARTING_FRAME_OFFSET 0
1619
1620 /* If we generate an insn to push BYTES bytes,
1621 this says how many the stack pointer really advances by.
1622 On 386 pushw decrements by exactly 2 no matter what the position was.
1623 On the 386 there is no pushb; we use pushw instead, and this
1624 has the effect of rounding up to 2.
1625
1626 For 64bit ABI we round up to 8 bytes.
1627 */
1628
1629 #define PUSH_ROUNDING(BYTES) \
1630 (TARGET_64BIT \
1631 ? (((BYTES) + 7) & (-8)) \
1632 : (((BYTES) + 1) & (-2)))
1633
1634 /* If defined, the maximum amount of space required for outgoing arguments will
1635 be computed and placed into the variable
1636 `current_function_outgoing_args_size'. No space will be pushed onto the
1637 stack for each call; instead, the function prologue should increase the stack
1638 frame size by this amount. */
1639
1640 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1641
1642 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1643 instructions to pass outgoing arguments. */
1644
1645 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1646
1647 /* We want the stack and args grow in opposite directions, even if
1648 PUSH_ARGS is 0. */
1649 #define PUSH_ARGS_REVERSED 1
1650
1651 /* Offset of first parameter from the argument pointer register value. */
1652 #define FIRST_PARM_OFFSET(FNDECL) 0
1653
1654 /* Define this macro if functions should assume that stack space has been
1655 allocated for arguments even when their values are passed in registers.
1656
1657 The value of this macro is the size, in bytes, of the area reserved for
1658 arguments passed in registers for the function represented by FNDECL.
1659
1660 This space can be allocated by the caller, or be a part of the
1661 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1662 which. */
1663 #define REG_PARM_STACK_SPACE(FNDECL) 0
1664
1665 /* Define as a C expression that evaluates to nonzero if we do not know how
1666 to pass TYPE solely in registers. The file expr.h defines a
1667 definition that is usually appropriate, refer to expr.h for additional
1668 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1669 computed in the stack and then loaded into a register. */
1670 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1671
1672 /* Value is the number of bytes of arguments automatically
1673 popped when returning from a subroutine call.
1674 FUNDECL is the declaration node of the function (as a tree),
1675 FUNTYPE is the data type of the function (as a tree),
1676 or for a library call it is an identifier node for the subroutine name.
1677 SIZE is the number of bytes of arguments passed on the stack.
1678
1679 On the 80386, the RTD insn may be used to pop them if the number
1680 of args is fixed, but if the number is variable then the caller
1681 must pop them all. RTD can't be used for library calls now
1682 because the library is compiled with the Unix compiler.
1683 Use of RTD is a selectable option, since it is incompatible with
1684 standard Unix calling sequences. If the option is not selected,
1685 the caller must always pop the args.
1686
1687 The attribute stdcall is equivalent to RTD on a per module basis. */
1688
1689 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1690 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1691
1692 /* Define how to find the value returned by a function.
1693 VALTYPE is the data type of the value (as a tree).
1694 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1695 otherwise, FUNC is 0. */
1696 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1697 ix86_function_value (VALTYPE)
1698
1699 #define FUNCTION_VALUE_REGNO_P(N) \
1700 ix86_function_value_regno_p (N)
1701
1702 /* Define how to find the value returned by a library function
1703 assuming the value has mode MODE. */
1704
1705 #define LIBCALL_VALUE(MODE) \
1706 ix86_libcall_value (MODE)
1707
1708 /* Define the size of the result block used for communication between
1709 untyped_call and untyped_return. The block contains a DImode value
1710 followed by the block used by fnsave and frstor. */
1711
1712 #define APPLY_RESULT_SIZE (8+108)
1713
1714 /* 1 if N is a possible register number for function argument passing. */
1715 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1716
1717 /* Define a data type for recording info about an argument list
1718 during the scan of that argument list. This data type should
1719 hold all necessary information about the function itself
1720 and about the args processed so far, enough to enable macros
1721 such as FUNCTION_ARG to determine where the next arg should go. */
1722
1723 typedef struct ix86_args {
1724 int words; /* # words passed so far */
1725 int nregs; /* # registers available for passing */
1726 int regno; /* next available register number */
1727 int fastcall; /* fastcall calling convention is used */
1728 int sse_words; /* # sse words passed so far */
1729 int sse_nregs; /* # sse registers available for passing */
1730 int sse_regno; /* next available sse register number */
1731 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1732 } CUMULATIVE_ARGS;
1733
1734 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1735 for a call to a function whose data type is FNTYPE.
1736 For a library call, FNTYPE is 0. */
1737
1738 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL) \
1739 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1740
1741 /* Update the data in CUM to advance over an argument
1742 of mode MODE and data type TYPE.
1743 (TYPE is null for libcalls where that information may not be available.) */
1744
1745 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1746 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1747
1748 /* Define where to put the arguments to a function.
1749 Value is zero to push the argument on the stack,
1750 or a hard register in which to store the argument.
1751
1752 MODE is the argument's machine mode.
1753 TYPE is the data type of the argument (as a tree).
1754 This is null for libcalls where that information may
1755 not be available.
1756 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1757 the preceding args and about the function being called.
1758 NAMED is nonzero if this argument is a named parameter
1759 (otherwise it is an extra parameter matching an ellipsis). */
1760
1761 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1762 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1763
1764 /* For an arg passed partly in registers and partly in memory,
1765 this is the number of registers used.
1766 For args passed entirely in registers or entirely in memory, zero. */
1767
1768 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1769
1770 /* A C expression that indicates when an argument must be passed by
1771 reference. If nonzero for an argument, a copy of that argument is
1772 made in memory and a pointer to the argument is passed instead of
1773 the argument itself. The pointer is passed in whatever way is
1774 appropriate for passing a pointer to that type. */
1775
1776 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1777 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1778
1779 /* Perform any needed actions needed for a function that is receiving a
1780 variable number of arguments.
1781
1782 CUM is as above.
1783
1784 MODE and TYPE are the mode and type of the current parameter.
1785
1786 PRETEND_SIZE is a variable that should be set to the amount of stack
1787 that must be pushed by the prolog to pretend that our caller pushed
1788 it.
1789
1790 Normally, this macro will push all remaining incoming registers on the
1791 stack and set PRETEND_SIZE to the length of the registers pushed. */
1792
1793 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1794 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1795 (NO_RTL))
1796
1797 /* Define the `__builtin_va_list' type for the ABI. */
1798 #define BUILD_VA_LIST_TYPE(VALIST) \
1799 ((VALIST) = ix86_build_va_list ())
1800
1801 /* Implement `va_start' for varargs and stdarg. */
1802 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1803 ix86_va_start (VALIST, NEXTARG)
1804
1805 /* Implement `va_arg'. */
1806 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1807 ix86_va_arg ((VALIST), (TYPE))
1808
1809 /* This macro is invoked at the end of compilation. It is used here to
1810 output code for -fpic that will load the return address into %ebx. */
1811
1812 #undef ASM_FILE_END
1813 #define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
1814
1815 /* Output assembler code to FILE to increment profiler label # LABELNO
1816 for profiling a function entry. */
1817
1818 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1819
1820 #define MCOUNT_NAME "_mcount"
1821
1822 #define PROFILE_COUNT_REGISTER "edx"
1823
1824 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1825 the stack pointer does not matter. The value is tested only in
1826 functions that have frame pointers.
1827 No definition is equivalent to always zero. */
1828 /* Note on the 386 it might be more efficient not to define this since
1829 we have to restore it ourselves from the frame pointer, in order to
1830 use pop */
1831
1832 #define EXIT_IGNORE_STACK 1
1833
1834 /* Output assembler code for a block containing the constant parts
1835 of a trampoline, leaving space for the variable parts. */
1836
1837 /* On the 386, the trampoline contains two instructions:
1838 mov #STATIC,ecx
1839 jmp FUNCTION
1840 The trampoline is generated entirely at runtime. The operand of JMP
1841 is the address of FUNCTION relative to the instruction following the
1842 JMP (which is 5 bytes long). */
1843
1844 /* Length in units of the trampoline for entering a nested function. */
1845
1846 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1847
1848 /* Emit RTL insns to initialize the variable parts of a trampoline.
1849 FNADDR is an RTX for the address of the function's pure code.
1850 CXT is an RTX for the static chain value for the function. */
1851
1852 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1853 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1854 \f
1855 /* Definitions for register eliminations.
1856
1857 This is an array of structures. Each structure initializes one pair
1858 of eliminable registers. The "from" register number is given first,
1859 followed by "to". Eliminations of the same "from" register are listed
1860 in order of preference.
1861
1862 There are two registers that can always be eliminated on the i386.
1863 The frame pointer and the arg pointer can be replaced by either the
1864 hard frame pointer or to the stack pointer, depending upon the
1865 circumstances. The hard frame pointer is not used before reload and
1866 so it is not eligible for elimination. */
1867
1868 #define ELIMINABLE_REGS \
1869 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1870 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1871 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1872 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1873
1874 /* Given FROM and TO register numbers, say whether this elimination is
1875 allowed. Frame pointer elimination is automatically handled.
1876
1877 All other eliminations are valid. */
1878
1879 #define CAN_ELIMINATE(FROM, TO) \
1880 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1881
1882 /* Define the offset between two registers, one to be eliminated, and the other
1883 its replacement, at the start of a routine. */
1884
1885 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1886 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1887 \f
1888 /* Addressing modes, and classification of registers for them. */
1889
1890 /* Macros to check register numbers against specific register classes. */
1891
1892 /* These assume that REGNO is a hard or pseudo reg number.
1893 They give nonzero only if REGNO is a hard reg of the suitable class
1894 or a pseudo reg currently allocated to a suitable hard reg.
1895 Since they use reg_renumber, they are safe only once reg_renumber
1896 has been allocated, which happens in local-alloc.c. */
1897
1898 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1899 ((REGNO) < STACK_POINTER_REGNUM \
1900 || (REGNO >= FIRST_REX_INT_REG \
1901 && (REGNO) <= LAST_REX_INT_REG) \
1902 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1903 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1904 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1905
1906 #define REGNO_OK_FOR_BASE_P(REGNO) \
1907 ((REGNO) <= STACK_POINTER_REGNUM \
1908 || (REGNO) == ARG_POINTER_REGNUM \
1909 || (REGNO) == FRAME_POINTER_REGNUM \
1910 || (REGNO >= FIRST_REX_INT_REG \
1911 && (REGNO) <= LAST_REX_INT_REG) \
1912 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1913 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1914 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1915
1916 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1917 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1918 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1919 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1920
1921 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1922 and check its validity for a certain class.
1923 We have two alternate definitions for each of them.
1924 The usual definition accepts all pseudo regs; the other rejects
1925 them unless they have been allocated suitable hard regs.
1926 The symbol REG_OK_STRICT causes the latter definition to be used.
1927
1928 Most source files want to accept pseudo regs in the hope that
1929 they will get allocated to the class that the insn wants them to be in.
1930 Source files for reload pass need to be strict.
1931 After reload, it makes no difference, since pseudo regs have
1932 been eliminated by then. */
1933
1934
1935 /* Non strict versions, pseudos are ok */
1936 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1937 (REGNO (X) < STACK_POINTER_REGNUM \
1938 || (REGNO (X) >= FIRST_REX_INT_REG \
1939 && REGNO (X) <= LAST_REX_INT_REG) \
1940 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1941
1942 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1943 (REGNO (X) <= STACK_POINTER_REGNUM \
1944 || REGNO (X) == ARG_POINTER_REGNUM \
1945 || REGNO (X) == FRAME_POINTER_REGNUM \
1946 || (REGNO (X) >= FIRST_REX_INT_REG \
1947 && REGNO (X) <= LAST_REX_INT_REG) \
1948 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1949
1950 /* Strict versions, hard registers only */
1951 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1952 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1953
1954 #ifndef REG_OK_STRICT
1955 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1956 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1957
1958 #else
1959 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1960 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1961 #endif
1962
1963 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1964 that is a valid memory address for an instruction.
1965 The MODE argument is the machine mode for the MEM expression
1966 that wants to use this address.
1967
1968 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1969 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1970
1971 See legitimize_pic_address in i386.c for details as to what
1972 constitutes a legitimate address when -fpic is used. */
1973
1974 #define MAX_REGS_PER_ADDRESS 2
1975
1976 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1977
1978 /* Nonzero if the constant value X is a legitimate general operand.
1979 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1980
1981 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1982
1983 #ifdef REG_OK_STRICT
1984 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1985 do { \
1986 if (legitimate_address_p ((MODE), (X), 1)) \
1987 goto ADDR; \
1988 } while (0)
1989
1990 #else
1991 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1992 do { \
1993 if (legitimate_address_p ((MODE), (X), 0)) \
1994 goto ADDR; \
1995 } while (0)
1996
1997 #endif
1998
1999 /* If defined, a C expression to determine the base term of address X.
2000 This macro is used in only one place: `find_base_term' in alias.c.
2001
2002 It is always safe for this macro to not be defined. It exists so
2003 that alias analysis can understand machine-dependent addresses.
2004
2005 The typical use of this macro is to handle addresses containing
2006 a label_ref or symbol_ref within an UNSPEC. */
2007
2008 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
2009
2010 /* Try machine-dependent ways of modifying an illegitimate address
2011 to be legitimate. If we find one, return the new, valid address.
2012 This macro is used in only one place: `memory_address' in explow.c.
2013
2014 OLDX is the address as it was before break_out_memory_refs was called.
2015 In some cases it is useful to look at this to decide what needs to be done.
2016
2017 MODE and WIN are passed so that this macro can use
2018 GO_IF_LEGITIMATE_ADDRESS.
2019
2020 It is always safe for this macro to do nothing. It exists to recognize
2021 opportunities to optimize the output.
2022
2023 For the 80386, we handle X+REG by loading X into a register R and
2024 using R+REG. R will go in a general reg and indexing will be used.
2025 However, if REG is a broken-out memory address or multiplication,
2026 nothing needs to be done because REG can certainly go in a general reg.
2027
2028 When -fpic is used, special handling is needed for symbolic references.
2029 See comments by legitimize_pic_address in i386.c for details. */
2030
2031 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2032 do { \
2033 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2034 if (memory_address_p ((MODE), (X))) \
2035 goto WIN; \
2036 } while (0)
2037
2038 #define REWRITE_ADDRESS(X) rewrite_address (X)
2039
2040 /* Nonzero if the constant value X is a legitimate general operand
2041 when generating PIC code. It is given that flag_pic is on and
2042 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2043
2044 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2045
2046 #define SYMBOLIC_CONST(X) \
2047 (GET_CODE (X) == SYMBOL_REF \
2048 || GET_CODE (X) == LABEL_REF \
2049 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2050
2051 /* Go to LABEL if ADDR (a legitimate address expression)
2052 has an effect that depends on the machine mode it is used for.
2053 On the 80386, only postdecrement and postincrement address depend thus
2054 (the amount of decrement or increment being the length of the operand). */
2055 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2056 do { \
2057 if (GET_CODE (ADDR) == POST_INC \
2058 || GET_CODE (ADDR) == POST_DEC) \
2059 goto LABEL; \
2060 } while (0)
2061 \f
2062 /* Codes for all the SSE/MMX builtins. */
2063 enum ix86_builtins
2064 {
2065 IX86_BUILTIN_ADDPS,
2066 IX86_BUILTIN_ADDSS,
2067 IX86_BUILTIN_DIVPS,
2068 IX86_BUILTIN_DIVSS,
2069 IX86_BUILTIN_MULPS,
2070 IX86_BUILTIN_MULSS,
2071 IX86_BUILTIN_SUBPS,
2072 IX86_BUILTIN_SUBSS,
2073
2074 IX86_BUILTIN_CMPEQPS,
2075 IX86_BUILTIN_CMPLTPS,
2076 IX86_BUILTIN_CMPLEPS,
2077 IX86_BUILTIN_CMPGTPS,
2078 IX86_BUILTIN_CMPGEPS,
2079 IX86_BUILTIN_CMPNEQPS,
2080 IX86_BUILTIN_CMPNLTPS,
2081 IX86_BUILTIN_CMPNLEPS,
2082 IX86_BUILTIN_CMPNGTPS,
2083 IX86_BUILTIN_CMPNGEPS,
2084 IX86_BUILTIN_CMPORDPS,
2085 IX86_BUILTIN_CMPUNORDPS,
2086 IX86_BUILTIN_CMPNEPS,
2087 IX86_BUILTIN_CMPEQSS,
2088 IX86_BUILTIN_CMPLTSS,
2089 IX86_BUILTIN_CMPLESS,
2090 IX86_BUILTIN_CMPNEQSS,
2091 IX86_BUILTIN_CMPNLTSS,
2092 IX86_BUILTIN_CMPNLESS,
2093 IX86_BUILTIN_CMPORDSS,
2094 IX86_BUILTIN_CMPUNORDSS,
2095 IX86_BUILTIN_CMPNESS,
2096
2097 IX86_BUILTIN_COMIEQSS,
2098 IX86_BUILTIN_COMILTSS,
2099 IX86_BUILTIN_COMILESS,
2100 IX86_BUILTIN_COMIGTSS,
2101 IX86_BUILTIN_COMIGESS,
2102 IX86_BUILTIN_COMINEQSS,
2103 IX86_BUILTIN_UCOMIEQSS,
2104 IX86_BUILTIN_UCOMILTSS,
2105 IX86_BUILTIN_UCOMILESS,
2106 IX86_BUILTIN_UCOMIGTSS,
2107 IX86_BUILTIN_UCOMIGESS,
2108 IX86_BUILTIN_UCOMINEQSS,
2109
2110 IX86_BUILTIN_CVTPI2PS,
2111 IX86_BUILTIN_CVTPS2PI,
2112 IX86_BUILTIN_CVTSI2SS,
2113 IX86_BUILTIN_CVTSI642SS,
2114 IX86_BUILTIN_CVTSS2SI,
2115 IX86_BUILTIN_CVTSS2SI64,
2116 IX86_BUILTIN_CVTTPS2PI,
2117 IX86_BUILTIN_CVTTSS2SI,
2118 IX86_BUILTIN_CVTTSS2SI64,
2119
2120 IX86_BUILTIN_MAXPS,
2121 IX86_BUILTIN_MAXSS,
2122 IX86_BUILTIN_MINPS,
2123 IX86_BUILTIN_MINSS,
2124
2125 IX86_BUILTIN_LOADAPS,
2126 IX86_BUILTIN_LOADUPS,
2127 IX86_BUILTIN_STOREAPS,
2128 IX86_BUILTIN_STOREUPS,
2129 IX86_BUILTIN_LOADSS,
2130 IX86_BUILTIN_STORESS,
2131 IX86_BUILTIN_MOVSS,
2132
2133 IX86_BUILTIN_MOVHLPS,
2134 IX86_BUILTIN_MOVLHPS,
2135 IX86_BUILTIN_LOADHPS,
2136 IX86_BUILTIN_LOADLPS,
2137 IX86_BUILTIN_STOREHPS,
2138 IX86_BUILTIN_STORELPS,
2139
2140 IX86_BUILTIN_MASKMOVQ,
2141 IX86_BUILTIN_MOVMSKPS,
2142 IX86_BUILTIN_PMOVMSKB,
2143
2144 IX86_BUILTIN_MOVNTPS,
2145 IX86_BUILTIN_MOVNTQ,
2146
2147 IX86_BUILTIN_LOADDQA,
2148 IX86_BUILTIN_LOADDQU,
2149 IX86_BUILTIN_STOREDQA,
2150 IX86_BUILTIN_STOREDQU,
2151 IX86_BUILTIN_MOVQ,
2152 IX86_BUILTIN_LOADD,
2153 IX86_BUILTIN_STORED,
2154
2155 IX86_BUILTIN_CLRTI,
2156
2157 IX86_BUILTIN_PACKSSWB,
2158 IX86_BUILTIN_PACKSSDW,
2159 IX86_BUILTIN_PACKUSWB,
2160
2161 IX86_BUILTIN_PADDB,
2162 IX86_BUILTIN_PADDW,
2163 IX86_BUILTIN_PADDD,
2164 IX86_BUILTIN_PADDQ,
2165 IX86_BUILTIN_PADDSB,
2166 IX86_BUILTIN_PADDSW,
2167 IX86_BUILTIN_PADDUSB,
2168 IX86_BUILTIN_PADDUSW,
2169 IX86_BUILTIN_PSUBB,
2170 IX86_BUILTIN_PSUBW,
2171 IX86_BUILTIN_PSUBD,
2172 IX86_BUILTIN_PSUBQ,
2173 IX86_BUILTIN_PSUBSB,
2174 IX86_BUILTIN_PSUBSW,
2175 IX86_BUILTIN_PSUBUSB,
2176 IX86_BUILTIN_PSUBUSW,
2177
2178 IX86_BUILTIN_PAND,
2179 IX86_BUILTIN_PANDN,
2180 IX86_BUILTIN_POR,
2181 IX86_BUILTIN_PXOR,
2182
2183 IX86_BUILTIN_PAVGB,
2184 IX86_BUILTIN_PAVGW,
2185
2186 IX86_BUILTIN_PCMPEQB,
2187 IX86_BUILTIN_PCMPEQW,
2188 IX86_BUILTIN_PCMPEQD,
2189 IX86_BUILTIN_PCMPGTB,
2190 IX86_BUILTIN_PCMPGTW,
2191 IX86_BUILTIN_PCMPGTD,
2192
2193 IX86_BUILTIN_PEXTRW,
2194 IX86_BUILTIN_PINSRW,
2195
2196 IX86_BUILTIN_PMADDWD,
2197
2198 IX86_BUILTIN_PMAXSW,
2199 IX86_BUILTIN_PMAXUB,
2200 IX86_BUILTIN_PMINSW,
2201 IX86_BUILTIN_PMINUB,
2202
2203 IX86_BUILTIN_PMULHUW,
2204 IX86_BUILTIN_PMULHW,
2205 IX86_BUILTIN_PMULLW,
2206
2207 IX86_BUILTIN_PSADBW,
2208 IX86_BUILTIN_PSHUFW,
2209
2210 IX86_BUILTIN_PSLLW,
2211 IX86_BUILTIN_PSLLD,
2212 IX86_BUILTIN_PSLLQ,
2213 IX86_BUILTIN_PSRAW,
2214 IX86_BUILTIN_PSRAD,
2215 IX86_BUILTIN_PSRLW,
2216 IX86_BUILTIN_PSRLD,
2217 IX86_BUILTIN_PSRLQ,
2218 IX86_BUILTIN_PSLLWI,
2219 IX86_BUILTIN_PSLLDI,
2220 IX86_BUILTIN_PSLLQI,
2221 IX86_BUILTIN_PSRAWI,
2222 IX86_BUILTIN_PSRADI,
2223 IX86_BUILTIN_PSRLWI,
2224 IX86_BUILTIN_PSRLDI,
2225 IX86_BUILTIN_PSRLQI,
2226
2227 IX86_BUILTIN_PUNPCKHBW,
2228 IX86_BUILTIN_PUNPCKHWD,
2229 IX86_BUILTIN_PUNPCKHDQ,
2230 IX86_BUILTIN_PUNPCKLBW,
2231 IX86_BUILTIN_PUNPCKLWD,
2232 IX86_BUILTIN_PUNPCKLDQ,
2233
2234 IX86_BUILTIN_SHUFPS,
2235
2236 IX86_BUILTIN_RCPPS,
2237 IX86_BUILTIN_RCPSS,
2238 IX86_BUILTIN_RSQRTPS,
2239 IX86_BUILTIN_RSQRTSS,
2240 IX86_BUILTIN_SQRTPS,
2241 IX86_BUILTIN_SQRTSS,
2242
2243 IX86_BUILTIN_UNPCKHPS,
2244 IX86_BUILTIN_UNPCKLPS,
2245
2246 IX86_BUILTIN_ANDPS,
2247 IX86_BUILTIN_ANDNPS,
2248 IX86_BUILTIN_ORPS,
2249 IX86_BUILTIN_XORPS,
2250
2251 IX86_BUILTIN_EMMS,
2252 IX86_BUILTIN_LDMXCSR,
2253 IX86_BUILTIN_STMXCSR,
2254 IX86_BUILTIN_SFENCE,
2255
2256 /* 3DNow! Original */
2257 IX86_BUILTIN_FEMMS,
2258 IX86_BUILTIN_PAVGUSB,
2259 IX86_BUILTIN_PF2ID,
2260 IX86_BUILTIN_PFACC,
2261 IX86_BUILTIN_PFADD,
2262 IX86_BUILTIN_PFCMPEQ,
2263 IX86_BUILTIN_PFCMPGE,
2264 IX86_BUILTIN_PFCMPGT,
2265 IX86_BUILTIN_PFMAX,
2266 IX86_BUILTIN_PFMIN,
2267 IX86_BUILTIN_PFMUL,
2268 IX86_BUILTIN_PFRCP,
2269 IX86_BUILTIN_PFRCPIT1,
2270 IX86_BUILTIN_PFRCPIT2,
2271 IX86_BUILTIN_PFRSQIT1,
2272 IX86_BUILTIN_PFRSQRT,
2273 IX86_BUILTIN_PFSUB,
2274 IX86_BUILTIN_PFSUBR,
2275 IX86_BUILTIN_PI2FD,
2276 IX86_BUILTIN_PMULHRW,
2277
2278 /* 3DNow! Athlon Extensions */
2279 IX86_BUILTIN_PF2IW,
2280 IX86_BUILTIN_PFNACC,
2281 IX86_BUILTIN_PFPNACC,
2282 IX86_BUILTIN_PI2FW,
2283 IX86_BUILTIN_PSWAPDSI,
2284 IX86_BUILTIN_PSWAPDSF,
2285
2286 IX86_BUILTIN_SSE_ZERO,
2287 IX86_BUILTIN_MMX_ZERO,
2288
2289 /* SSE2 */
2290 IX86_BUILTIN_ADDPD,
2291 IX86_BUILTIN_ADDSD,
2292 IX86_BUILTIN_DIVPD,
2293 IX86_BUILTIN_DIVSD,
2294 IX86_BUILTIN_MULPD,
2295 IX86_BUILTIN_MULSD,
2296 IX86_BUILTIN_SUBPD,
2297 IX86_BUILTIN_SUBSD,
2298
2299 IX86_BUILTIN_CMPEQPD,
2300 IX86_BUILTIN_CMPLTPD,
2301 IX86_BUILTIN_CMPLEPD,
2302 IX86_BUILTIN_CMPGTPD,
2303 IX86_BUILTIN_CMPGEPD,
2304 IX86_BUILTIN_CMPNEQPD,
2305 IX86_BUILTIN_CMPNLTPD,
2306 IX86_BUILTIN_CMPNLEPD,
2307 IX86_BUILTIN_CMPNGTPD,
2308 IX86_BUILTIN_CMPNGEPD,
2309 IX86_BUILTIN_CMPORDPD,
2310 IX86_BUILTIN_CMPUNORDPD,
2311 IX86_BUILTIN_CMPNEPD,
2312 IX86_BUILTIN_CMPEQSD,
2313 IX86_BUILTIN_CMPLTSD,
2314 IX86_BUILTIN_CMPLESD,
2315 IX86_BUILTIN_CMPNEQSD,
2316 IX86_BUILTIN_CMPNLTSD,
2317 IX86_BUILTIN_CMPNLESD,
2318 IX86_BUILTIN_CMPORDSD,
2319 IX86_BUILTIN_CMPUNORDSD,
2320 IX86_BUILTIN_CMPNESD,
2321
2322 IX86_BUILTIN_COMIEQSD,
2323 IX86_BUILTIN_COMILTSD,
2324 IX86_BUILTIN_COMILESD,
2325 IX86_BUILTIN_COMIGTSD,
2326 IX86_BUILTIN_COMIGESD,
2327 IX86_BUILTIN_COMINEQSD,
2328 IX86_BUILTIN_UCOMIEQSD,
2329 IX86_BUILTIN_UCOMILTSD,
2330 IX86_BUILTIN_UCOMILESD,
2331 IX86_BUILTIN_UCOMIGTSD,
2332 IX86_BUILTIN_UCOMIGESD,
2333 IX86_BUILTIN_UCOMINEQSD,
2334
2335 IX86_BUILTIN_MAXPD,
2336 IX86_BUILTIN_MAXSD,
2337 IX86_BUILTIN_MINPD,
2338 IX86_BUILTIN_MINSD,
2339
2340 IX86_BUILTIN_ANDPD,
2341 IX86_BUILTIN_ANDNPD,
2342 IX86_BUILTIN_ORPD,
2343 IX86_BUILTIN_XORPD,
2344
2345 IX86_BUILTIN_SQRTPD,
2346 IX86_BUILTIN_SQRTSD,
2347
2348 IX86_BUILTIN_UNPCKHPD,
2349 IX86_BUILTIN_UNPCKLPD,
2350
2351 IX86_BUILTIN_SHUFPD,
2352
2353 IX86_BUILTIN_LOADAPD,
2354 IX86_BUILTIN_LOADUPD,
2355 IX86_BUILTIN_STOREAPD,
2356 IX86_BUILTIN_STOREUPD,
2357 IX86_BUILTIN_LOADSD,
2358 IX86_BUILTIN_STORESD,
2359 IX86_BUILTIN_MOVSD,
2360
2361 IX86_BUILTIN_LOADHPD,
2362 IX86_BUILTIN_LOADLPD,
2363 IX86_BUILTIN_STOREHPD,
2364 IX86_BUILTIN_STORELPD,
2365
2366 IX86_BUILTIN_CVTDQ2PD,
2367 IX86_BUILTIN_CVTDQ2PS,
2368
2369 IX86_BUILTIN_CVTPD2DQ,
2370 IX86_BUILTIN_CVTPD2PI,
2371 IX86_BUILTIN_CVTPD2PS,
2372 IX86_BUILTIN_CVTTPD2DQ,
2373 IX86_BUILTIN_CVTTPD2PI,
2374
2375 IX86_BUILTIN_CVTPI2PD,
2376 IX86_BUILTIN_CVTSI2SD,
2377 IX86_BUILTIN_CVTSI642SD,
2378
2379 IX86_BUILTIN_CVTSD2SI,
2380 IX86_BUILTIN_CVTSD2SI64,
2381 IX86_BUILTIN_CVTSD2SS,
2382 IX86_BUILTIN_CVTSS2SD,
2383 IX86_BUILTIN_CVTTSD2SI,
2384 IX86_BUILTIN_CVTTSD2SI64,
2385
2386 IX86_BUILTIN_CVTPS2DQ,
2387 IX86_BUILTIN_CVTPS2PD,
2388 IX86_BUILTIN_CVTTPS2DQ,
2389
2390 IX86_BUILTIN_MOVNTI,
2391 IX86_BUILTIN_MOVNTPD,
2392 IX86_BUILTIN_MOVNTDQ,
2393
2394 IX86_BUILTIN_SETPD1,
2395 IX86_BUILTIN_SETPD,
2396 IX86_BUILTIN_CLRPD,
2397 IX86_BUILTIN_SETRPD,
2398 IX86_BUILTIN_LOADPD1,
2399 IX86_BUILTIN_LOADRPD,
2400 IX86_BUILTIN_STOREPD1,
2401 IX86_BUILTIN_STORERPD,
2402
2403 /* SSE2 MMX */
2404 IX86_BUILTIN_MASKMOVDQU,
2405 IX86_BUILTIN_MOVMSKPD,
2406 IX86_BUILTIN_PMOVMSKB128,
2407 IX86_BUILTIN_MOVQ2DQ,
2408 IX86_BUILTIN_MOVDQ2Q,
2409
2410 IX86_BUILTIN_PACKSSWB128,
2411 IX86_BUILTIN_PACKSSDW128,
2412 IX86_BUILTIN_PACKUSWB128,
2413
2414 IX86_BUILTIN_PADDB128,
2415 IX86_BUILTIN_PADDW128,
2416 IX86_BUILTIN_PADDD128,
2417 IX86_BUILTIN_PADDQ128,
2418 IX86_BUILTIN_PADDSB128,
2419 IX86_BUILTIN_PADDSW128,
2420 IX86_BUILTIN_PADDUSB128,
2421 IX86_BUILTIN_PADDUSW128,
2422 IX86_BUILTIN_PSUBB128,
2423 IX86_BUILTIN_PSUBW128,
2424 IX86_BUILTIN_PSUBD128,
2425 IX86_BUILTIN_PSUBQ128,
2426 IX86_BUILTIN_PSUBSB128,
2427 IX86_BUILTIN_PSUBSW128,
2428 IX86_BUILTIN_PSUBUSB128,
2429 IX86_BUILTIN_PSUBUSW128,
2430
2431 IX86_BUILTIN_PAND128,
2432 IX86_BUILTIN_PANDN128,
2433 IX86_BUILTIN_POR128,
2434 IX86_BUILTIN_PXOR128,
2435
2436 IX86_BUILTIN_PAVGB128,
2437 IX86_BUILTIN_PAVGW128,
2438
2439 IX86_BUILTIN_PCMPEQB128,
2440 IX86_BUILTIN_PCMPEQW128,
2441 IX86_BUILTIN_PCMPEQD128,
2442 IX86_BUILTIN_PCMPGTB128,
2443 IX86_BUILTIN_PCMPGTW128,
2444 IX86_BUILTIN_PCMPGTD128,
2445
2446 IX86_BUILTIN_PEXTRW128,
2447 IX86_BUILTIN_PINSRW128,
2448
2449 IX86_BUILTIN_PMADDWD128,
2450
2451 IX86_BUILTIN_PMAXSW128,
2452 IX86_BUILTIN_PMAXUB128,
2453 IX86_BUILTIN_PMINSW128,
2454 IX86_BUILTIN_PMINUB128,
2455
2456 IX86_BUILTIN_PMULUDQ,
2457 IX86_BUILTIN_PMULUDQ128,
2458 IX86_BUILTIN_PMULHUW128,
2459 IX86_BUILTIN_PMULHW128,
2460 IX86_BUILTIN_PMULLW128,
2461
2462 IX86_BUILTIN_PSADBW128,
2463 IX86_BUILTIN_PSHUFHW,
2464 IX86_BUILTIN_PSHUFLW,
2465 IX86_BUILTIN_PSHUFD,
2466
2467 IX86_BUILTIN_PSLLW128,
2468 IX86_BUILTIN_PSLLD128,
2469 IX86_BUILTIN_PSLLQ128,
2470 IX86_BUILTIN_PSRAW128,
2471 IX86_BUILTIN_PSRAD128,
2472 IX86_BUILTIN_PSRLW128,
2473 IX86_BUILTIN_PSRLD128,
2474 IX86_BUILTIN_PSRLQ128,
2475 IX86_BUILTIN_PSLLDQI128,
2476 IX86_BUILTIN_PSLLWI128,
2477 IX86_BUILTIN_PSLLDI128,
2478 IX86_BUILTIN_PSLLQI128,
2479 IX86_BUILTIN_PSRAWI128,
2480 IX86_BUILTIN_PSRADI128,
2481 IX86_BUILTIN_PSRLDQI128,
2482 IX86_BUILTIN_PSRLWI128,
2483 IX86_BUILTIN_PSRLDI128,
2484 IX86_BUILTIN_PSRLQI128,
2485
2486 IX86_BUILTIN_PUNPCKHBW128,
2487 IX86_BUILTIN_PUNPCKHWD128,
2488 IX86_BUILTIN_PUNPCKHDQ128,
2489 IX86_BUILTIN_PUNPCKHQDQ128,
2490 IX86_BUILTIN_PUNPCKLBW128,
2491 IX86_BUILTIN_PUNPCKLWD128,
2492 IX86_BUILTIN_PUNPCKLDQ128,
2493 IX86_BUILTIN_PUNPCKLQDQ128,
2494
2495 IX86_BUILTIN_CLFLUSH,
2496 IX86_BUILTIN_MFENCE,
2497 IX86_BUILTIN_LFENCE,
2498
2499 IX86_BUILTIN_MAX
2500 };
2501 \f
2502 /* Max number of args passed in registers. If this is more than 3, we will
2503 have problems with ebx (register #4), since it is a caller save register and
2504 is also used as the pic register in ELF. So for now, don't allow more than
2505 3 registers to be passed in registers. */
2506
2507 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2508
2509 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2510
2511 \f
2512 /* Specify the machine mode that this machine uses
2513 for the index in the tablejump instruction. */
2514 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2515
2516 /* Define as C expression which evaluates to nonzero if the tablejump
2517 instruction expects the table to contain offsets from the address of the
2518 table.
2519 Do not define this if the table should contain absolute addresses. */
2520 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2521
2522 /* Define this as 1 if `char' should by default be signed; else as 0. */
2523 #define DEFAULT_SIGNED_CHAR 1
2524
2525 /* Number of bytes moved into a data cache for a single prefetch operation. */
2526 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2527
2528 /* Number of prefetch operations that can be done in parallel. */
2529 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2530
2531 /* Max number of bytes we can move from memory to memory
2532 in one reasonably fast instruction. */
2533 #define MOVE_MAX 16
2534
2535 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2536 move efficiently, as opposed to MOVE_MAX which is the maximum
2537 number of bytes we can move with a single instruction. */
2538 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2539
2540 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2541 move-instruction pairs, we will do a movstr or libcall instead.
2542 Increasing the value will always make code faster, but eventually
2543 incurs high cost in increased code size.
2544
2545 If you don't define this, a reasonable default is used. */
2546
2547 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2548
2549 /* Define if shifts truncate the shift count
2550 which implies one can omit a sign-extension or zero-extension
2551 of a shift count. */
2552 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2553
2554 /* #define SHIFT_COUNT_TRUNCATED */
2555
2556 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2557 is done just by pretending it is already truncated. */
2558 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2559
2560 /* We assume that the store-condition-codes instructions store 0 for false
2561 and some other value for true. This is the value stored for true. */
2562
2563 #define STORE_FLAG_VALUE 1
2564
2565 /* When a prototype says `char' or `short', really pass an `int'.
2566 (The 386 can't easily push less than an int.) */
2567
2568 #define PROMOTE_PROTOTYPES 1
2569
2570 /* A macro to update M and UNSIGNEDP when an object whose type is
2571 TYPE and which has the specified mode and signedness is to be
2572 stored in a register. This macro is only called when TYPE is a
2573 scalar type.
2574
2575 On i386 it is sometimes useful to promote HImode and QImode
2576 quantities to SImode. The choice depends on target type. */
2577
2578 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2579 do { \
2580 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2581 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2582 (MODE) = SImode; \
2583 } while (0)
2584
2585 /* Specify the machine mode that pointers have.
2586 After generation of rtl, the compiler makes no further distinction
2587 between pointers and any other objects of this machine mode. */
2588 #define Pmode (TARGET_64BIT ? DImode : SImode)
2589
2590 /* A function address in a call instruction
2591 is a byte address (for indexing purposes)
2592 so give the MEM rtx a byte's mode. */
2593 #define FUNCTION_MODE QImode
2594 \f
2595 /* A C expression for the cost of moving data from a register in class FROM to
2596 one in class TO. The classes are expressed using the enumeration values
2597 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2598 interpreted relative to that.
2599
2600 It is not required that the cost always equal 2 when FROM is the same as TO;
2601 on some machines it is expensive to move between registers if they are not
2602 general registers. */
2603
2604 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2605 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2606
2607 /* A C expression for the cost of moving data of mode M between a
2608 register and memory. A value of 2 is the default; this cost is
2609 relative to those in `REGISTER_MOVE_COST'.
2610
2611 If moving between registers and memory is more expensive than
2612 between two registers, you should define this macro to express the
2613 relative cost. */
2614
2615 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2616 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2617
2618 /* A C expression for the cost of a branch instruction. A value of 1
2619 is the default; other values are interpreted relative to that. */
2620
2621 #define BRANCH_COST ix86_branch_cost
2622
2623 /* Define this macro as a C expression which is nonzero if accessing
2624 less than a word of memory (i.e. a `char' or a `short') is no
2625 faster than accessing a word of memory, i.e., if such access
2626 require more than one instruction or if there is no difference in
2627 cost between byte and (aligned) word loads.
2628
2629 When this macro is not defined, the compiler will access a field by
2630 finding the smallest containing object; when it is defined, a
2631 fullword load will be used if alignment permits. Unless bytes
2632 accesses are faster than word accesses, using word accesses is
2633 preferable since it may eliminate subsequent memory access if
2634 subsequent accesses occur to other fields in the same word of the
2635 structure, but to different bytes. */
2636
2637 #define SLOW_BYTE_ACCESS 0
2638
2639 /* Nonzero if access to memory by shorts is slow and undesirable. */
2640 #define SLOW_SHORT_ACCESS 0
2641
2642 /* Define this macro to be the value 1 if unaligned accesses have a
2643 cost many times greater than aligned accesses, for example if they
2644 are emulated in a trap handler.
2645
2646 When this macro is nonzero, the compiler will act as if
2647 `STRICT_ALIGNMENT' were nonzero when generating code for block
2648 moves. This can cause significantly more instructions to be
2649 produced. Therefore, do not set this macro nonzero if unaligned
2650 accesses only add a cycle or two to the time for a memory access.
2651
2652 If the value of this macro is always zero, it need not be defined. */
2653
2654 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2655
2656 /* Define this macro to inhibit strength reduction of memory
2657 addresses. (On some machines, such strength reduction seems to do
2658 harm rather than good.) */
2659
2660 /* #define DONT_REDUCE_ADDR */
2661
2662 /* Define this macro if it is as good or better to call a constant
2663 function address than to call an address kept in a register.
2664
2665 Desirable on the 386 because a CALL with a constant address is
2666 faster than one with a register address. */
2667
2668 #define NO_FUNCTION_CSE
2669
2670 /* Define this macro if it is as good or better for a function to call
2671 itself with an explicit address than to call an address kept in a
2672 register. */
2673
2674 #define NO_RECURSIVE_FUNCTION_CSE
2675 \f
2676 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2677 return the mode to be used for the comparison.
2678
2679 For floating-point equality comparisons, CCFPEQmode should be used.
2680 VOIDmode should be used in all other cases.
2681
2682 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2683 possible, to allow for more combinations. */
2684
2685 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2686
2687 /* Return nonzero if MODE implies a floating point inequality can be
2688 reversed. */
2689
2690 #define REVERSIBLE_CC_MODE(MODE) 1
2691
2692 /* A C expression whose value is reversed condition code of the CODE for
2693 comparison done in CC_MODE mode. */
2694 #define REVERSE_CONDITION(CODE, MODE) \
2695 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2696 : reverse_condition_maybe_unordered (CODE))
2697
2698 \f
2699 /* Control the assembler format that we output, to the extent
2700 this does not vary between assemblers. */
2701
2702 /* How to refer to registers in assembler output.
2703 This sequence is indexed by compiler's hard-register-number (see above). */
2704
2705 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2706 For non floating point regs, the following are the HImode names.
2707
2708 For float regs, the stack top is sometimes referred to as "%st(0)"
2709 instead of just "%st". PRINT_REG handles this with the "y" code. */
2710
2711 #undef HI_REGISTER_NAMES
2712 #define HI_REGISTER_NAMES \
2713 {"ax","dx","cx","bx","si","di","bp","sp", \
2714 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2715 "flags","fpsr", "dirflag", "frame", \
2716 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2717 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2718 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2719 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2720
2721 #define REGISTER_NAMES HI_REGISTER_NAMES
2722
2723 /* Table of additional register names to use in user input. */
2724
2725 #define ADDITIONAL_REGISTER_NAMES \
2726 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2727 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2728 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2729 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2730 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2731 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2732 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2733 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2734
2735 /* Note we are omitting these since currently I don't know how
2736 to get gcc to use these, since they want the same but different
2737 number as al, and ax.
2738 */
2739
2740 #define QI_REGISTER_NAMES \
2741 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2742
2743 /* These parallel the array above, and can be used to access bits 8:15
2744 of regs 0 through 3. */
2745
2746 #define QI_HIGH_REGISTER_NAMES \
2747 {"ah", "dh", "ch", "bh", }
2748
2749 /* How to renumber registers for dbx and gdb. */
2750
2751 #define DBX_REGISTER_NUMBER(N) \
2752 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2753
2754 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2755 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2756 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2757
2758 /* Before the prologue, RA is at 0(%esp). */
2759 #define INCOMING_RETURN_ADDR_RTX \
2760 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2761
2762 /* After the prologue, RA is at -4(AP) in the current frame. */
2763 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2764 ((COUNT) == 0 \
2765 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2766 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2767
2768 /* PC is dbx register 8; let's use that column for RA. */
2769 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2770
2771 /* Before the prologue, the top of the frame is at 4(%esp). */
2772 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2773
2774 /* Describe how we implement __builtin_eh_return. */
2775 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2776 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2777
2778
2779 /* Select a format to encode pointers in exception handling data. CODE
2780 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2781 true if the symbol may be affected by dynamic relocations.
2782
2783 ??? All x86 object file formats are capable of representing this.
2784 After all, the relocation needed is the same as for the call insn.
2785 Whether or not a particular assembler allows us to enter such, I
2786 guess we'll have to see. */
2787 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2788 (flag_pic \
2789 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2790 : DW_EH_PE_absptr)
2791
2792 /* This is how to output an insn to push a register on the stack.
2793 It need not be very fast code. */
2794
2795 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2796 do { \
2797 if (TARGET_64BIT) \
2798 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2799 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2800 else \
2801 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2802 } while (0)
2803
2804 /* This is how to output an insn to pop a register from the stack.
2805 It need not be very fast code. */
2806
2807 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2808 do { \
2809 if (TARGET_64BIT) \
2810 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2811 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2812 else \
2813 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2814 } while (0)
2815
2816 /* This is how to output an element of a case-vector that is absolute. */
2817
2818 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2819 ix86_output_addr_vec_elt ((FILE), (VALUE))
2820
2821 /* This is how to output an element of a case-vector that is relative. */
2822
2823 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2824 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2825
2826 /* Under some conditions we need jump tables in the text section, because
2827 the assembler cannot handle label differences between sections. */
2828
2829 #define JUMP_TABLES_IN_TEXT_SECTION \
2830 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2831
2832 /* A C statement that outputs an address constant appropriate to
2833 for DWARF debugging. */
2834
2835 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2836 i386_dwarf_output_addr_const ((FILE), (X))
2837
2838 /* Emit a dtp-relative reference to a TLS variable. */
2839
2840 #ifdef HAVE_AS_TLS
2841 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2842 i386_output_dwarf_dtprel (FILE, SIZE, X)
2843 #endif
2844
2845 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2846 and switch back. For x86 we do this only to save a few bytes that
2847 would otherwise be unused in the text section. */
2848 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2849 asm (SECTION_OP "\n\t" \
2850 "call " USER_LABEL_PREFIX #FUNC "\n" \
2851 TEXT_SECTION_ASM_OP);
2852 \f
2853 /* Print operand X (an rtx) in assembler syntax to file FILE.
2854 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2855 Effect of various CODE letters is described in i386.c near
2856 print_operand function. */
2857
2858 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2859 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2860
2861 /* Print the name of a register based on its machine mode and number.
2862 If CODE is 'w', pretend the mode is HImode.
2863 If CODE is 'b', pretend the mode is QImode.
2864 If CODE is 'k', pretend the mode is SImode.
2865 If CODE is 'q', pretend the mode is DImode.
2866 If CODE is 'h', pretend the reg is the `high' byte register.
2867 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2868
2869 #define PRINT_REG(X, CODE, FILE) \
2870 print_reg ((X), (CODE), (FILE))
2871
2872 #define PRINT_OPERAND(FILE, X, CODE) \
2873 print_operand ((FILE), (X), (CODE))
2874
2875 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2876 print_operand_address ((FILE), (ADDR))
2877
2878 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2879 do { \
2880 if (! output_addr_const_extra (FILE, (X))) \
2881 goto FAIL; \
2882 } while (0);
2883
2884 /* Print the name of a register for based on its machine mode and number.
2885 This macro is used to print debugging output.
2886 This macro is different from PRINT_REG in that it may be used in
2887 programs that are not linked with aux-output.o. */
2888
2889 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2890 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
2891 static const char * const qi_name[] = QI_REGISTER_NAMES; \
2892 fprintf ((FILE), "%d ", REGNO (X)); \
2893 if (REGNO (X) == FLAGS_REG) \
2894 { fputs ("flags", (FILE)); break; } \
2895 if (REGNO (X) == DIRFLAG_REG) \
2896 { fputs ("dirflag", (FILE)); break; } \
2897 if (REGNO (X) == FPSR_REG) \
2898 { fputs ("fpsr", (FILE)); break; } \
2899 if (REGNO (X) == ARG_POINTER_REGNUM) \
2900 { fputs ("argp", (FILE)); break; } \
2901 if (REGNO (X) == FRAME_POINTER_REGNUM) \
2902 { fputs ("frame", (FILE)); break; } \
2903 if (STACK_TOP_P (X)) \
2904 { fputs ("st(0)", (FILE)); break; } \
2905 if (FP_REG_P (X)) \
2906 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
2907 if (REX_INT_REG_P (X)) \
2908 { \
2909 switch (GET_MODE_SIZE (GET_MODE (X))) \
2910 { \
2911 default: \
2912 case 8: \
2913 fprintf ((FILE), "r%i", REGNO (X) \
2914 - FIRST_REX_INT_REG + 8); \
2915 break; \
2916 case 4: \
2917 fprintf ((FILE), "r%id", REGNO (X) \
2918 - FIRST_REX_INT_REG + 8); \
2919 break; \
2920 case 2: \
2921 fprintf ((FILE), "r%iw", REGNO (X) \
2922 - FIRST_REX_INT_REG + 8); \
2923 break; \
2924 case 1: \
2925 fprintf ((FILE), "r%ib", REGNO (X) \
2926 - FIRST_REX_INT_REG + 8); \
2927 break; \
2928 } \
2929 break; \
2930 } \
2931 switch (GET_MODE_SIZE (GET_MODE (X))) \
2932 { \
2933 case 8: \
2934 fputs ("r", (FILE)); \
2935 fputs (hi_name[REGNO (X)], (FILE)); \
2936 break; \
2937 default: \
2938 fputs ("e", (FILE)); \
2939 case 2: \
2940 fputs (hi_name[REGNO (X)], (FILE)); \
2941 break; \
2942 case 1: \
2943 fputs (qi_name[REGNO (X)], (FILE)); \
2944 break; \
2945 } \
2946 } while (0)
2947
2948 /* a letter which is not needed by the normal asm syntax, which
2949 we can use for operand syntax in the extended asm */
2950
2951 #define ASM_OPERAND_LETTER '#'
2952 #define RET return ""
2953 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2954 \f
2955 /* Define the codes that are matched by predicates in i386.c. */
2956
2957 #define PREDICATE_CODES \
2958 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2959 SYMBOL_REF, LABEL_REF, CONST}}, \
2960 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2961 SYMBOL_REF, LABEL_REF, CONST}}, \
2962 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
2963 SYMBOL_REF, LABEL_REF, CONST}}, \
2964 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2965 SYMBOL_REF, LABEL_REF, CONST}}, \
2966 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2967 SYMBOL_REF, LABEL_REF, CONST}}, \
2968 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2969 SYMBOL_REF, LABEL_REF, CONST}}, \
2970 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2971 SYMBOL_REF, LABEL_REF}}, \
2972 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
2973 {"const_int_1_operand", {CONST_INT}}, \
2974 {"const_int_1_31_operand", {CONST_INT}}, \
2975 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2976 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2977 LABEL_REF, SUBREG, REG, MEM}}, \
2978 {"pic_symbolic_operand", {CONST}}, \
2979 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
2980 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
2981 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
2982 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
2983 {"const1_operand", {CONST_INT}}, \
2984 {"const248_operand", {CONST_INT}}, \
2985 {"incdec_operand", {CONST_INT}}, \
2986 {"mmx_reg_operand", {REG}}, \
2987 {"reg_no_sp_operand", {SUBREG, REG}}, \
2988 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2989 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
2990 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
2991 {"index_register_operand", {SUBREG, REG}}, \
2992 {"flags_reg_operand", {REG}}, \
2993 {"q_regs_operand", {SUBREG, REG}}, \
2994 {"non_q_regs_operand", {SUBREG, REG}}, \
2995 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
2996 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
2997 GE, UNGE, LTGT, UNEQ}}, \
2998 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
2999 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3000 }}, \
3001 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
3002 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3003 UNGE, UNGT, LTGT, UNEQ }}, \
3004 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
3005 GE, UNGE, LTGT, UNEQ}}, \
3006 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3007 {"ext_register_operand", {SUBREG, REG}}, \
3008 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3009 {"mult_operator", {MULT}}, \
3010 {"div_operator", {DIV}}, \
3011 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3012 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3013 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3014 LSHIFTRT, ROTATERT}}, \
3015 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
3016 {"memory_displacement_operand", {MEM}}, \
3017 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3018 LABEL_REF, SUBREG, REG, MEM, AND}}, \
3019 {"long_memory_operand", {MEM}}, \
3020 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3021 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3022 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3023 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
3024 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
3025 {"any_fp_register_operand", {REG}}, \
3026 {"register_and_not_any_fp_reg_operand", {REG}}, \
3027 {"fp_register_operand", {REG}}, \
3028 {"register_and_not_fp_reg_operand", {REG}}, \
3029 {"zero_extended_scalar_load_operand", {MEM}}, \
3030 {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}}, \
3031
3032 /* A list of predicates that do special things with modes, and so
3033 should not elicit warnings for VOIDmode match_operand. */
3034
3035 #define SPECIAL_MODE_PREDICATES \
3036 "ext_register_operand",
3037 \f
3038 /* Which processor to schedule for. The cpu attribute defines a list that
3039 mirrors this list, so changes to i386.md must be made at the same time. */
3040
3041 enum processor_type
3042 {
3043 PROCESSOR_I386, /* 80386 */
3044 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3045 PROCESSOR_PENTIUM,
3046 PROCESSOR_PENTIUMPRO,
3047 PROCESSOR_K6,
3048 PROCESSOR_ATHLON,
3049 PROCESSOR_PENTIUM4,
3050 PROCESSOR_K8,
3051 PROCESSOR_max
3052 };
3053
3054 extern enum processor_type ix86_tune;
3055 extern const char *ix86_tune_string;
3056
3057 extern enum processor_type ix86_arch;
3058 extern const char *ix86_arch_string;
3059
3060 enum fpmath_unit
3061 {
3062 FPMATH_387 = 1,
3063 FPMATH_SSE = 2
3064 };
3065
3066 extern enum fpmath_unit ix86_fpmath;
3067 extern const char *ix86_fpmath_string;
3068
3069 enum tls_dialect
3070 {
3071 TLS_DIALECT_GNU,
3072 TLS_DIALECT_SUN
3073 };
3074
3075 extern enum tls_dialect ix86_tls_dialect;
3076 extern const char *ix86_tls_dialect_string;
3077
3078 enum cmodel {
3079 CM_32, /* The traditional 32-bit ABI. */
3080 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3081 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3082 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3083 CM_LARGE, /* No assumptions. */
3084 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3085 };
3086
3087 extern enum cmodel ix86_cmodel;
3088 extern const char *ix86_cmodel_string;
3089
3090 /* Size of the RED_ZONE area. */
3091 #define RED_ZONE_SIZE 128
3092 /* Reserved area of the red zone for temporaries. */
3093 #define RED_ZONE_RESERVE 8
3094
3095 enum asm_dialect {
3096 ASM_ATT,
3097 ASM_INTEL
3098 };
3099
3100 extern const char *ix86_asm_string;
3101 extern enum asm_dialect ix86_asm_dialect;
3102
3103 extern int ix86_regparm;
3104 extern const char *ix86_regparm_string;
3105
3106 extern int ix86_preferred_stack_boundary;
3107 extern const char *ix86_preferred_stack_boundary_string;
3108
3109 extern int ix86_branch_cost;
3110 extern const char *ix86_branch_cost_string;
3111
3112 extern const char *ix86_debug_arg_string;
3113 extern const char *ix86_debug_addr_string;
3114
3115 /* Obsoleted by -f options. Remove before 3.2 ships. */
3116 extern const char *ix86_align_loops_string;
3117 extern const char *ix86_align_jumps_string;
3118 extern const char *ix86_align_funcs_string;
3119
3120 /* Smallest class containing REGNO. */
3121 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3122
3123 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3124 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3125 \f
3126 /* To properly truncate FP values into integers, we need to set i387 control
3127 word. We can't emit proper mode switching code before reload, as spills
3128 generated by reload may truncate values incorrectly, but we still can avoid
3129 redundant computation of new control word by the mode switching pass.
3130 The fldcw instructions are still emitted redundantly, but this is probably
3131 not going to be noticeable problem, as most CPUs do have fast path for
3132 the sequence.
3133
3134 The machinery is to emit simple truncation instructions and split them
3135 before reload to instructions having USEs of two memory locations that
3136 are filled by this code to old and new control word.
3137
3138 Post-reload pass may be later used to eliminate the redundant fildcw if
3139 needed. */
3140
3141 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3142
3143 /* Define this macro if the port needs extra instructions inserted
3144 for mode switching in an optimizing compilation. */
3145
3146 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3147
3148 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3149 initializer for an array of integers. Each initializer element N
3150 refers to an entity that needs mode switching, and specifies the
3151 number of different modes that might need to be set for this
3152 entity. The position of the initializer in the initializer -
3153 starting counting at zero - determines the integer that is used to
3154 refer to the mode-switched entity in question. */
3155
3156 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3157
3158 /* ENTITY is an integer specifying a mode-switched entity. If
3159 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3160 return an integer value not larger than the corresponding element
3161 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3162 must be switched into prior to the execution of INSN. */
3163
3164 #define MODE_NEEDED(ENTITY, I) \
3165 (GET_CODE (I) == CALL_INSN \
3166 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3167 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3168 ? FP_CW_UNINITIALIZED \
3169 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3170 ? FP_CW_ANY \
3171 : FP_CW_STORED)
3172
3173 /* This macro specifies the order in which modes for ENTITY are
3174 processed. 0 is the highest priority. */
3175
3176 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3177
3178 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3179 is the set of hard registers live at the point where the insn(s)
3180 are to be inserted. */
3181
3182 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3183 ((MODE) == FP_CW_STORED \
3184 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3185 assign_386_stack_local (HImode, 2)), 0\
3186 : 0)
3187 \f
3188 /* Avoid renaming of stack registers, as doing so in combination with
3189 scheduling just increases amount of live registers at time and in
3190 the turn amount of fxch instructions needed.
3191
3192 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3193
3194 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3195 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3196
3197 \f
3198 #define DLL_IMPORT_EXPORT_PREFIX '#'
3199
3200 #define FASTCALL_PREFIX '@'
3201 \f
3202 struct machine_function GTY(())
3203 {
3204 struct stack_local_entry *stack_locals;
3205 const char *some_ld_name;
3206 int save_varrargs_registers;
3207 int accesses_prev_frame;
3208 int optimize_mode_switching;
3209 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3210 determine the style used. */
3211 int use_fast_prologue_epilogue;
3212 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3213 for. */
3214 int use_fast_prologue_epilogue_nregs;
3215 };
3216
3217 #define ix86_stack_locals (cfun->machine->stack_locals)
3218 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3219 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3220
3221 /*
3222 Local variables:
3223 version-control: t
3224 End:
3225 */