re PR target/47989 (-mrecip causes 482.sphinx3, 464.h264ref and 481.wrf to miscompare)
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27 /* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
42 /* Redefines for option macros. */
43
44 #define TARGET_64BIT OPTION_ISA_64BIT
45 #define TARGET_X32 OPTION_ISA_X32
46 #define TARGET_MMX OPTION_ISA_MMX
47 #define TARGET_3DNOW OPTION_ISA_3DNOW
48 #define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
49 #define TARGET_SSE OPTION_ISA_SSE
50 #define TARGET_SSE2 OPTION_ISA_SSE2
51 #define TARGET_SSE3 OPTION_ISA_SSE3
52 #define TARGET_SSSE3 OPTION_ISA_SSSE3
53 #define TARGET_SSE4_1 OPTION_ISA_SSE4_1
54 #define TARGET_SSE4_2 OPTION_ISA_SSE4_2
55 #define TARGET_AVX OPTION_ISA_AVX
56 #define TARGET_AVX2 OPTION_ISA_AVX2
57 #define TARGET_FMA OPTION_ISA_FMA
58 #define TARGET_SSE4A OPTION_ISA_SSE4A
59 #define TARGET_FMA4 OPTION_ISA_FMA4
60 #define TARGET_XOP OPTION_ISA_XOP
61 #define TARGET_LWP OPTION_ISA_LWP
62 #define TARGET_ROUND OPTION_ISA_ROUND
63 #define TARGET_ABM OPTION_ISA_ABM
64 #define TARGET_BMI OPTION_ISA_BMI
65 #define TARGET_BMI2 OPTION_ISA_BMI2
66 #define TARGET_LZCNT OPTION_ISA_LZCNT
67 #define TARGET_TBM OPTION_ISA_TBM
68 #define TARGET_POPCNT OPTION_ISA_POPCNT
69 #define TARGET_SAHF OPTION_ISA_SAHF
70 #define TARGET_MOVBE OPTION_ISA_MOVBE
71 #define TARGET_CRC32 OPTION_ISA_CRC32
72 #define TARGET_AES OPTION_ISA_AES
73 #define TARGET_PCLMUL OPTION_ISA_PCLMUL
74 #define TARGET_CMPXCHG16B OPTION_ISA_CX16
75 #define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
76 #define TARGET_RDRND OPTION_ISA_RDRND
77 #define TARGET_F16C OPTION_ISA_F16C
78
79 #define TARGET_LP64 (TARGET_64BIT && !TARGET_X32)
80
81 /* SSE4.1 defines round instructions */
82 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
83 #define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
84
85 #include "config/vxworks-dummy.h"
86
87 #include "config/i386/i386-opts.h"
88
89 #define MAX_STRINGOP_ALGS 4
90
91 /* Specify what algorithm to use for stringops on known size.
92 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
93 known at compile time or estimated via feedback, the SIZE array
94 is walked in order until MAX is greater then the estimate (or -1
95 means infinity). Corresponding ALG is used then.
96 For example initializer:
97 {{256, loop}, {-1, rep_prefix_4_byte}}
98 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
99 be used otherwise. */
100 struct stringop_algs
101 {
102 const enum stringop_alg unknown_size;
103 const struct stringop_strategy {
104 const int max;
105 const enum stringop_alg alg;
106 } size [MAX_STRINGOP_ALGS];
107 };
108
109 /* Define the specific costs for a given cpu */
110
111 struct processor_costs {
112 const int add; /* cost of an add instruction */
113 const int lea; /* cost of a lea instruction */
114 const int shift_var; /* variable shift costs */
115 const int shift_const; /* constant shift costs */
116 const int mult_init[5]; /* cost of starting a multiply
117 in QImode, HImode, SImode, DImode, TImode*/
118 const int mult_bit; /* cost of multiply per each bit set */
119 const int divide[5]; /* cost of a divide/mod
120 in QImode, HImode, SImode, DImode, TImode*/
121 int movsx; /* The cost of movsx operation. */
122 int movzx; /* The cost of movzx operation. */
123 const int large_insn; /* insns larger than this cost more */
124 const int move_ratio; /* The threshold of number of scalar
125 memory-to-memory move insns. */
126 const int movzbl_load; /* cost of loading using movzbl */
127 const int int_load[3]; /* cost of loading integer registers
128 in QImode, HImode and SImode relative
129 to reg-reg move (2). */
130 const int int_store[3]; /* cost of storing integer register
131 in QImode, HImode and SImode */
132 const int fp_move; /* cost of reg,reg fld/fst */
133 const int fp_load[3]; /* cost of loading FP register
134 in SFmode, DFmode and XFmode */
135 const int fp_store[3]; /* cost of storing FP register
136 in SFmode, DFmode and XFmode */
137 const int mmx_move; /* cost of moving MMX register. */
138 const int mmx_load[2]; /* cost of loading MMX register
139 in SImode and DImode */
140 const int mmx_store[2]; /* cost of storing MMX register
141 in SImode and DImode */
142 const int sse_move; /* cost of moving SSE register. */
143 const int sse_load[3]; /* cost of loading SSE register
144 in SImode, DImode and TImode*/
145 const int sse_store[3]; /* cost of storing SSE register
146 in SImode, DImode and TImode*/
147 const int mmxsse_to_integer; /* cost of moving mmxsse register to
148 integer and vice versa. */
149 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
150 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
151 const int prefetch_block; /* bytes moved to cache for prefetch. */
152 const int simultaneous_prefetches; /* number of parallel prefetch
153 operations. */
154 const int branch_cost; /* Default value for BRANCH_COST. */
155 const int fadd; /* cost of FADD and FSUB instructions. */
156 const int fmul; /* cost of FMUL instruction. */
157 const int fdiv; /* cost of FDIV instruction. */
158 const int fabs; /* cost of FABS instruction. */
159 const int fchs; /* cost of FCHS instruction. */
160 const int fsqrt; /* cost of FSQRT instruction. */
161 /* Specify what algorithm
162 to use for stringops on unknown size. */
163 struct stringop_algs memcpy[2], memset[2];
164 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
165 load and store. */
166 const int scalar_load_cost; /* Cost of scalar load. */
167 const int scalar_store_cost; /* Cost of scalar store. */
168 const int vec_stmt_cost; /* Cost of any vector operation, excluding
169 load, store, vector-to-scalar and
170 scalar-to-vector operation. */
171 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
172 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
173 const int vec_align_load_cost; /* Cost of aligned vector load. */
174 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
175 const int vec_store_cost; /* Cost of vector store. */
176 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
177 cost model. */
178 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
179 vectorizer cost model. */
180 };
181
182 extern const struct processor_costs *ix86_cost;
183 extern const struct processor_costs ix86_size_cost;
184
185 #define ix86_cur_cost() \
186 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
187
188 /* Macros used in the machine description to test the flags. */
189
190 /* configure can arrange to make this 2, to force a 486. */
191
192 #ifndef TARGET_CPU_DEFAULT
193 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
194 #endif
195
196 #ifndef TARGET_FPMATH_DEFAULT
197 #define TARGET_FPMATH_DEFAULT \
198 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
199 #endif
200
201 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
202
203 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
204 compile-time constant. */
205 #ifdef IN_LIBGCC2
206 #undef TARGET_64BIT
207 #ifdef __x86_64__
208 #define TARGET_64BIT 1
209 #else
210 #define TARGET_64BIT 0
211 #endif
212 #else
213 #ifndef TARGET_BI_ARCH
214 #undef TARGET_64BIT
215 #if TARGET_64BIT_DEFAULT
216 #define TARGET_64BIT 1
217 #else
218 #define TARGET_64BIT 0
219 #endif
220 #endif
221 #endif
222
223 #define HAS_LONG_COND_BRANCH 1
224 #define HAS_LONG_UNCOND_BRANCH 1
225
226 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
227 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
228 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
229 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
230 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
231 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
232 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
233 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
234 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
235 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
236 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
237 #define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
238 #define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
239 #define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
240 #define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
241 #define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
242 #define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
243 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
244 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
245 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
246 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
247 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
248 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
249 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
250 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
251
252 /* Feature tests against the various tunings. */
253 enum ix86_tune_indices {
254 X86_TUNE_USE_LEAVE,
255 X86_TUNE_PUSH_MEMORY,
256 X86_TUNE_ZERO_EXTEND_WITH_AND,
257 X86_TUNE_UNROLL_STRLEN,
258 X86_TUNE_BRANCH_PREDICTION_HINTS,
259 X86_TUNE_DOUBLE_WITH_ADD,
260 X86_TUNE_USE_SAHF,
261 X86_TUNE_MOVX,
262 X86_TUNE_PARTIAL_REG_STALL,
263 X86_TUNE_PARTIAL_FLAG_REG_STALL,
264 X86_TUNE_USE_HIMODE_FIOP,
265 X86_TUNE_USE_SIMODE_FIOP,
266 X86_TUNE_USE_MOV0,
267 X86_TUNE_USE_CLTD,
268 X86_TUNE_USE_XCHGB,
269 X86_TUNE_SPLIT_LONG_MOVES,
270 X86_TUNE_READ_MODIFY_WRITE,
271 X86_TUNE_READ_MODIFY,
272 X86_TUNE_PROMOTE_QIMODE,
273 X86_TUNE_FAST_PREFIX,
274 X86_TUNE_SINGLE_STRINGOP,
275 X86_TUNE_QIMODE_MATH,
276 X86_TUNE_HIMODE_MATH,
277 X86_TUNE_PROMOTE_QI_REGS,
278 X86_TUNE_PROMOTE_HI_REGS,
279 X86_TUNE_SINGLE_POP,
280 X86_TUNE_DOUBLE_POP,
281 X86_TUNE_SINGLE_PUSH,
282 X86_TUNE_DOUBLE_PUSH,
283 X86_TUNE_INTEGER_DFMODE_MOVES,
284 X86_TUNE_PARTIAL_REG_DEPENDENCY,
285 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
286 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
287 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
288 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
289 X86_TUNE_SSE_SPLIT_REGS,
290 X86_TUNE_SSE_TYPELESS_STORES,
291 X86_TUNE_SSE_LOAD0_BY_PXOR,
292 X86_TUNE_MEMORY_MISMATCH_STALL,
293 X86_TUNE_PROLOGUE_USING_MOVE,
294 X86_TUNE_EPILOGUE_USING_MOVE,
295 X86_TUNE_SHIFT1,
296 X86_TUNE_USE_FFREEP,
297 X86_TUNE_INTER_UNIT_MOVES,
298 X86_TUNE_INTER_UNIT_CONVERSIONS,
299 X86_TUNE_FOUR_JUMP_LIMIT,
300 X86_TUNE_SCHEDULE,
301 X86_TUNE_USE_BT,
302 X86_TUNE_USE_INCDEC,
303 X86_TUNE_PAD_RETURNS,
304 X86_TUNE_PAD_SHORT_FUNCTION,
305 X86_TUNE_EXT_80387_CONSTANTS,
306 X86_TUNE_SHORTEN_X87_SSE,
307 X86_TUNE_AVOID_VECTOR_DECODE,
308 X86_TUNE_PROMOTE_HIMODE_IMUL,
309 X86_TUNE_SLOW_IMUL_IMM32_MEM,
310 X86_TUNE_SLOW_IMUL_IMM8,
311 X86_TUNE_MOVE_M1_VIA_OR,
312 X86_TUNE_NOT_UNPAIRABLE,
313 X86_TUNE_NOT_VECTORMODE,
314 X86_TUNE_USE_VECTOR_FP_CONVERTS,
315 X86_TUNE_USE_VECTOR_CONVERTS,
316 X86_TUNE_FUSE_CMP_AND_BRANCH,
317 X86_TUNE_OPT_AGU,
318 X86_TUNE_VECTORIZE_DOUBLE,
319 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
320 X86_TUNE_AVX128_OPTIMAL,
321 X86_TUNE_REASSOC_INT_TO_PARALLEL,
322 X86_TUNE_REASSOC_FP_TO_PARALLEL,
323
324 X86_TUNE_LAST
325 };
326
327 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
328
329 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
330 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
331 #define TARGET_ZERO_EXTEND_WITH_AND \
332 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
333 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
334 #define TARGET_BRANCH_PREDICTION_HINTS \
335 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
336 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
337 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
338 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
339 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
340 #define TARGET_PARTIAL_FLAG_REG_STALL \
341 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
342 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
343 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
344 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
345 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
346 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
347 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
348 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
349 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
350 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
351 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
352 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
353 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
354 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
355 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
356 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
357 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
358 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
359 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
360 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
361 #define TARGET_INTEGER_DFMODE_MOVES \
362 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
363 #define TARGET_PARTIAL_REG_DEPENDENCY \
364 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
365 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
366 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
367 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
368 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
369 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
370 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
371 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
372 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
373 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
374 #define TARGET_SSE_TYPELESS_STORES \
375 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
376 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
377 #define TARGET_MEMORY_MISMATCH_STALL \
378 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
379 #define TARGET_PROLOGUE_USING_MOVE \
380 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
381 #define TARGET_EPILOGUE_USING_MOVE \
382 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
383 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
384 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
385 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
386 #define TARGET_INTER_UNIT_CONVERSIONS\
387 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
388 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
389 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
390 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
391 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
392 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
393 #define TARGET_PAD_SHORT_FUNCTION \
394 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
395 #define TARGET_EXT_80387_CONSTANTS \
396 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
397 #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
398 #define TARGET_AVOID_VECTOR_DECODE \
399 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
400 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
401 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
402 #define TARGET_SLOW_IMUL_IMM32_MEM \
403 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
404 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
405 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
406 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
407 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
408 #define TARGET_USE_VECTOR_FP_CONVERTS \
409 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
410 #define TARGET_USE_VECTOR_CONVERTS \
411 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
412 #define TARGET_FUSE_CMP_AND_BRANCH \
413 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
414 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
415 #define TARGET_VECTORIZE_DOUBLE \
416 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
417 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
418 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
419 #define TARGET_AVX128_OPTIMAL \
420 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
421 #define TARGET_REASSOC_INT_TO_PARALLEL \
422 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
423 #define TARGET_REASSOC_FP_TO_PARALLEL \
424 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
425
426 /* Feature tests against the various architecture variations. */
427 enum ix86_arch_indices {
428 X86_ARCH_CMOVE, /* || TARGET_SSE */
429 X86_ARCH_CMPXCHG,
430 X86_ARCH_CMPXCHG8B,
431 X86_ARCH_XADD,
432 X86_ARCH_BSWAP,
433
434 X86_ARCH_LAST
435 };
436
437 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
438
439 #define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
440 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
441 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
442 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
443 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
444
445 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
446
447 extern int x86_prefetch_sse;
448
449 #define TARGET_PREFETCH_SSE x86_prefetch_sse
450
451 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
452
453 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
454 #define TARGET_MIX_SSE_I387 \
455 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
456
457 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
458 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
459 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
460 #define TARGET_SUN_TLS 0
461
462 #ifndef TARGET_64BIT_DEFAULT
463 #define TARGET_64BIT_DEFAULT 0
464 #endif
465 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
466 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
467 #endif
468
469 /* Fence to use after loop using storent. */
470
471 extern tree x86_mfence;
472 #define FENCE_FOLLOWING_MOVNT x86_mfence
473
474 /* Once GDB has been enhanced to deal with functions without frame
475 pointers, we can change this to allow for elimination of
476 the frame pointer in leaf functions. */
477 #define TARGET_DEFAULT 0
478
479 /* Extra bits to force. */
480 #define TARGET_SUBTARGET_DEFAULT 0
481 #define TARGET_SUBTARGET_ISA_DEFAULT 0
482
483 /* Extra bits to force on w/ 32-bit mode. */
484 #define TARGET_SUBTARGET32_DEFAULT 0
485 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
486
487 /* Extra bits to force on w/ 64-bit mode. */
488 #define TARGET_SUBTARGET64_DEFAULT 0
489 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
490
491 /* Replace MACH-O, ifdefs by in-line tests, where possible.
492 (a) Macros defined in config/i386/darwin.h */
493 #define TARGET_MACHO 0
494 #define TARGET_MACHO_BRANCH_ISLANDS 0
495 #define MACHOPIC_ATT_STUB 0
496 /* (b) Macros defined in config/darwin.h */
497 #define MACHO_DYNAMIC_NO_PIC_P 0
498 #define MACHOPIC_INDIRECT 0
499 #define MACHOPIC_PURE 0
500
501 /* For the Windows 64-bit ABI. */
502 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
503
504 /* For the Windows 32-bit ABI. */
505 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
506
507 /* This is re-defined by cygming.h. */
508 #define TARGET_SEH 0
509
510 /* The default abi used by target. */
511 #define DEFAULT_ABI SYSV_ABI
512
513 /* Subtargets may reset this to 1 in order to enable 96-bit long double
514 with the rounding mode forced to 53 bits. */
515 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
516
517 /* -march=native handling only makes sense with compiler running on
518 an x86 or x86_64 chip. If changing this condition, also change
519 the condition in driver-i386.c. */
520 #if defined(__i386__) || defined(__x86_64__)
521 /* In driver-i386.c. */
522 extern const char *host_detect_local_cpu (int argc, const char **argv);
523 #define EXTRA_SPEC_FUNCTIONS \
524 { "local_cpu_detect", host_detect_local_cpu },
525 #define HAVE_LOCAL_CPU_DETECT
526 #endif
527
528 #if TARGET_64BIT_DEFAULT
529 #define OPT_ARCH64 "!m32"
530 #define OPT_ARCH32 "m32"
531 #else
532 #define OPT_ARCH64 "m64|mx32"
533 #define OPT_ARCH32 "m64|mx32:;"
534 #endif
535
536 /* Support for configure-time defaults of some command line options.
537 The order here is important so that -march doesn't squash the
538 tune or cpu values. */
539 #define OPTION_DEFAULT_SPECS \
540 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
541 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
542 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
543 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
544 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
545 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
546 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
547 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
548 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
549
550 /* Specs for the compiler proper */
551
552 #ifndef CC1_CPU_SPEC
553 #define CC1_CPU_SPEC_1 ""
554
555 #ifndef HAVE_LOCAL_CPU_DETECT
556 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
557 #else
558 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
559 "%{march=native:%>march=native %:local_cpu_detect(arch) \
560 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
561 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
562 #endif
563 #endif
564 \f
565 /* Target CPU builtins. */
566 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
567
568 /* Target Pragmas. */
569 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
570
571 enum target_cpu_default
572 {
573 TARGET_CPU_DEFAULT_generic = 0,
574
575 TARGET_CPU_DEFAULT_i386,
576 TARGET_CPU_DEFAULT_i486,
577 TARGET_CPU_DEFAULT_pentium,
578 TARGET_CPU_DEFAULT_pentium_mmx,
579 TARGET_CPU_DEFAULT_pentiumpro,
580 TARGET_CPU_DEFAULT_pentium2,
581 TARGET_CPU_DEFAULT_pentium3,
582 TARGET_CPU_DEFAULT_pentium4,
583 TARGET_CPU_DEFAULT_pentium_m,
584 TARGET_CPU_DEFAULT_prescott,
585 TARGET_CPU_DEFAULT_nocona,
586 TARGET_CPU_DEFAULT_core2,
587 TARGET_CPU_DEFAULT_corei7,
588 TARGET_CPU_DEFAULT_atom,
589
590 TARGET_CPU_DEFAULT_geode,
591 TARGET_CPU_DEFAULT_k6,
592 TARGET_CPU_DEFAULT_k6_2,
593 TARGET_CPU_DEFAULT_k6_3,
594 TARGET_CPU_DEFAULT_athlon,
595 TARGET_CPU_DEFAULT_athlon_sse,
596 TARGET_CPU_DEFAULT_k8,
597 TARGET_CPU_DEFAULT_amdfam10,
598 TARGET_CPU_DEFAULT_bdver1,
599 TARGET_CPU_DEFAULT_bdver2,
600 TARGET_CPU_DEFAULT_btver1,
601
602 TARGET_CPU_DEFAULT_max
603 };
604
605 #ifndef CC1_SPEC
606 #define CC1_SPEC "%(cc1_cpu) "
607 #endif
608
609 /* This macro defines names of additional specifications to put in the
610 specs that can be used in various specifications like CC1_SPEC. Its
611 definition is an initializer with a subgrouping for each command option.
612
613 Each subgrouping contains a string constant, that defines the
614 specification name, and a string constant that used by the GCC driver
615 program.
616
617 Do not define this macro if it does not need to do anything. */
618
619 #ifndef SUBTARGET_EXTRA_SPECS
620 #define SUBTARGET_EXTRA_SPECS
621 #endif
622
623 #define EXTRA_SPECS \
624 { "cc1_cpu", CC1_CPU_SPEC }, \
625 SUBTARGET_EXTRA_SPECS
626 \f
627
628 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
629 FPU, assume that the fpcw is set to extended precision; when using
630 only SSE, rounding is correct; when using both SSE and the FPU,
631 the rounding precision is indeterminate, since either may be chosen
632 apparently at random. */
633 #define TARGET_FLT_EVAL_METHOD \
634 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
635
636 /* Whether to allow x87 floating-point arithmetic on MODE (one of
637 SFmode, DFmode and XFmode) in the current excess precision
638 configuration. */
639 #define X87_ENABLE_ARITH(MODE) \
640 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
641
642 /* Likewise, whether to allow direct conversions from integer mode
643 IMODE (HImode, SImode or DImode) to MODE. */
644 #define X87_ENABLE_FLOAT(MODE, IMODE) \
645 (flag_excess_precision == EXCESS_PRECISION_FAST \
646 || (MODE) == XFmode \
647 || ((MODE) == DFmode && (IMODE) == SImode) \
648 || (IMODE) == HImode)
649
650 /* target machine storage layout */
651
652 #define SHORT_TYPE_SIZE 16
653 #define INT_TYPE_SIZE 32
654 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
655 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
656 #define LONG_LONG_TYPE_SIZE 64
657 #define FLOAT_TYPE_SIZE 32
658 #define DOUBLE_TYPE_SIZE 64
659 #define LONG_DOUBLE_TYPE_SIZE 80
660
661 #define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
662
663 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
664 #define MAX_BITS_PER_WORD 64
665 #else
666 #define MAX_BITS_PER_WORD 32
667 #endif
668
669 /* Define this if most significant byte of a word is the lowest numbered. */
670 /* That is true on the 80386. */
671
672 #define BITS_BIG_ENDIAN 0
673
674 /* Define this if most significant byte of a word is the lowest numbered. */
675 /* That is not true on the 80386. */
676 #define BYTES_BIG_ENDIAN 0
677
678 /* Define this if most significant word of a multiword number is the lowest
679 numbered. */
680 /* Not true for 80386 */
681 #define WORDS_BIG_ENDIAN 0
682
683 /* Width of a word, in units (bytes). */
684 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
685
686 #ifndef IN_LIBGCC2
687 #define MIN_UNITS_PER_WORD 4
688 #endif
689
690 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
691 #define PARM_BOUNDARY BITS_PER_WORD
692
693 /* Boundary (in *bits*) on which stack pointer should be aligned. */
694 #define STACK_BOUNDARY \
695 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
696
697 /* Stack boundary of the main function guaranteed by OS. */
698 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
699
700 /* Minimum stack boundary. */
701 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
702
703 /* Boundary (in *bits*) on which the stack pointer prefers to be
704 aligned; the compiler cannot rely on having this alignment. */
705 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
706
707 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
708 both 32bit and 64bit, to support codes that need 128 bit stack
709 alignment for SSE instructions, but can't realign the stack. */
710 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
711
712 /* 1 if -mstackrealign should be turned on by default. It will
713 generate an alternate prologue and epilogue that realigns the
714 runtime stack if nessary. This supports mixing codes that keep a
715 4-byte aligned stack, as specified by i386 psABI, with codes that
716 need a 16-byte aligned stack, as required by SSE instructions. */
717 #define STACK_REALIGN_DEFAULT 0
718
719 /* Boundary (in *bits*) on which the incoming stack is aligned. */
720 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
721
722 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
723 mandatory for the 64-bit ABI, and may or may not be true for other
724 operating systems. */
725 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
726
727 /* Minimum allocation boundary for the code of a function. */
728 #define FUNCTION_BOUNDARY 8
729
730 /* C++ stores the virtual bit in the lowest bit of function pointers. */
731 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
732
733 /* Minimum size in bits of the largest boundary to which any
734 and all fundamental data types supported by the hardware
735 might need to be aligned. No data type wants to be aligned
736 rounder than this.
737
738 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
739 and Pentium Pro XFmode values at 128 bit boundaries. */
740
741 #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
742
743 /* Maximum stack alignment. */
744 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
745
746 /* Alignment value for attribute ((aligned)). It is a constant since
747 it is the part of the ABI. We shouldn't change it with -mavx. */
748 #define ATTRIBUTE_ALIGNED_VALUE 128
749
750 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
751 #define ALIGN_MODE_128(MODE) \
752 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
753
754 /* The published ABIs say that doubles should be aligned on word
755 boundaries, so lower the alignment for structure fields unless
756 -malign-double is set. */
757
758 /* ??? Blah -- this macro is used directly by libobjc. Since it
759 supports no vector modes, cut out the complexity and fall back
760 on BIGGEST_FIELD_ALIGNMENT. */
761 #ifdef IN_TARGET_LIBS
762 #ifdef __x86_64__
763 #define BIGGEST_FIELD_ALIGNMENT 128
764 #else
765 #define BIGGEST_FIELD_ALIGNMENT 32
766 #endif
767 #else
768 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
769 x86_field_alignment (FIELD, COMPUTED)
770 #endif
771
772 /* If defined, a C expression to compute the alignment given to a
773 constant that is being placed in memory. EXP is the constant
774 and ALIGN is the alignment that the object would ordinarily have.
775 The value of this macro is used instead of that alignment to align
776 the object.
777
778 If this macro is not defined, then ALIGN is used.
779
780 The typical use of this macro is to increase alignment for string
781 constants to be word aligned so that `strcpy' calls that copy
782 constants can be done inline. */
783
784 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
785
786 /* If defined, a C expression to compute the alignment for a static
787 variable. TYPE is the data type, and ALIGN is the alignment that
788 the object would ordinarily have. The value of this macro is used
789 instead of that alignment to align the object.
790
791 If this macro is not defined, then ALIGN is used.
792
793 One use of this macro is to increase alignment of medium-size
794 data to make it all fit in fewer cache lines. Another is to
795 cause character arrays to be word-aligned so that `strcpy' calls
796 that copy constants to character arrays can be done inline. */
797
798 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
799
800 /* If defined, a C expression to compute the alignment for a local
801 variable. TYPE is the data type, and ALIGN is the alignment that
802 the object would ordinarily have. The value of this macro is used
803 instead of that alignment to align the object.
804
805 If this macro is not defined, then ALIGN is used.
806
807 One use of this macro is to increase alignment of medium-size
808 data to make it all fit in fewer cache lines. */
809
810 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
811 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
812
813 /* If defined, a C expression to compute the alignment for stack slot.
814 TYPE is the data type, MODE is the widest mode available, and ALIGN
815 is the alignment that the slot would ordinarily have. The value of
816 this macro is used instead of that alignment to align the slot.
817
818 If this macro is not defined, then ALIGN is used when TYPE is NULL,
819 Otherwise, LOCAL_ALIGNMENT will be used.
820
821 One use of this macro is to set alignment of stack slot to the
822 maximum alignment of all possible modes which the slot may have. */
823
824 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
825 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
826
827 /* If defined, a C expression to compute the alignment for a local
828 variable DECL.
829
830 If this macro is not defined, then
831 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
832
833 One use of this macro is to increase alignment of medium-size
834 data to make it all fit in fewer cache lines. */
835
836 #define LOCAL_DECL_ALIGNMENT(DECL) \
837 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
838
839 /* If defined, a C expression to compute the minimum required alignment
840 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
841 MODE, assuming normal alignment ALIGN.
842
843 If this macro is not defined, then (ALIGN) will be used. */
844
845 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
846 ix86_minimum_alignment (EXP, MODE, ALIGN)
847
848
849 /* Set this nonzero if move instructions will actually fail to work
850 when given unaligned data. */
851 #define STRICT_ALIGNMENT 0
852
853 /* If bit field type is int, don't let it cross an int,
854 and give entire struct the alignment of an int. */
855 /* Required on the 386 since it doesn't have bit-field insns. */
856 #define PCC_BITFIELD_TYPE_MATTERS 1
857 \f
858 /* Standard register usage. */
859
860 /* This processor has special stack-like registers. See reg-stack.c
861 for details. */
862
863 #define STACK_REGS
864
865 #define IS_STACK_MODE(MODE) \
866 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
867 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
868 || (MODE) == XFmode)
869
870 /* Number of actual hardware registers.
871 The hardware registers are assigned numbers for the compiler
872 from 0 to just below FIRST_PSEUDO_REGISTER.
873 All registers that the compiler knows about must be given numbers,
874 even those that are not normally considered general registers.
875
876 In the 80386 we give the 8 general purpose registers the numbers 0-7.
877 We number the floating point registers 8-15.
878 Note that registers 0-7 can be accessed as a short or int,
879 while only 0-3 may be used with byte `mov' instructions.
880
881 Reg 16 does not correspond to any hardware register, but instead
882 appears in the RTL as an argument pointer prior to reload, and is
883 eliminated during reloading in favor of either the stack or frame
884 pointer. */
885
886 #define FIRST_PSEUDO_REGISTER 53
887
888 /* Number of hardware registers that go into the DWARF-2 unwind info.
889 If not defined, equals FIRST_PSEUDO_REGISTER. */
890
891 #define DWARF_FRAME_REGISTERS 17
892
893 /* 1 for registers that have pervasive standard uses
894 and are not available for the register allocator.
895 On the 80386, the stack pointer is such, as is the arg pointer.
896
897 The value is zero if the register is not fixed on either 32 or
898 64 bit targets, one if the register if fixed on both 32 and 64
899 bit targets, two if it is only fixed on 32bit targets and three
900 if its only fixed on 64bit targets.
901 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
902 */
903 #define FIXED_REGISTERS \
904 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
905 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
906 /*arg,flags,fpsr,fpcr,frame*/ \
907 1, 1, 1, 1, 1, \
908 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
909 0, 0, 0, 0, 0, 0, 0, 0, \
910 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
911 0, 0, 0, 0, 0, 0, 0, 0, \
912 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
913 2, 2, 2, 2, 2, 2, 2, 2, \
914 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
915 2, 2, 2, 2, 2, 2, 2, 2 }
916
917
918 /* 1 for registers not available across function calls.
919 These must include the FIXED_REGISTERS and also any
920 registers that can be used without being saved.
921 The latter must include the registers where values are returned
922 and the register where structure-value addresses are passed.
923 Aside from that, you can include as many other registers as you like.
924
925 The value is zero if the register is not call used on either 32 or
926 64 bit targets, one if the register if call used on both 32 and 64
927 bit targets, two if it is only call used on 32bit targets and three
928 if its only call used on 64bit targets.
929 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
930 */
931 #define CALL_USED_REGISTERS \
932 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
933 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
934 /*arg,flags,fpsr,fpcr,frame*/ \
935 1, 1, 1, 1, 1, \
936 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
937 1, 1, 1, 1, 1, 1, 1, 1, \
938 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
939 1, 1, 1, 1, 1, 1, 1, 1, \
940 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
941 1, 1, 1, 1, 2, 2, 2, 2, \
942 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
943 1, 1, 1, 1, 1, 1, 1, 1 }
944
945 /* Order in which to allocate registers. Each register must be
946 listed once, even those in FIXED_REGISTERS. List frame pointer
947 late and fixed registers last. Note that, in general, we prefer
948 registers listed in CALL_USED_REGISTERS, keeping the others
949 available for storage of persistent values.
950
951 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
952 so this is just empty initializer for array. */
953
954 #define REG_ALLOC_ORDER \
955 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
956 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
957 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
958 48, 49, 50, 51, 52 }
959
960 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
961 to be rearranged based on a particular function. When using sse math,
962 we want to allocate SSE before x87 registers and vice versa. */
963
964 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
965
966
967 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
968
969 /* Return number of consecutive hard regs needed starting at reg REGNO
970 to hold something of mode MODE.
971 This is ordinarily the length in words of a value of mode MODE
972 but can be less for certain modes in special long registers.
973
974 Actually there are no two word move instructions for consecutive
975 registers. And only registers 0-3 may have mov byte instructions
976 applied to them. */
977
978 #define HARD_REGNO_NREGS(REGNO, MODE) \
979 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
980 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
981 : ((MODE) == XFmode \
982 ? (TARGET_64BIT ? 2 : 3) \
983 : (MODE) == XCmode \
984 ? (TARGET_64BIT ? 4 : 6) \
985 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
986
987 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
988 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
989 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
990 ? 0 \
991 : ((MODE) == XFmode || (MODE) == XCmode)) \
992 : 0)
993
994 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
995
996 #define VALID_AVX256_REG_MODE(MODE) \
997 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
998 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
999 || (MODE) == V4DFmode)
1000
1001 #define VALID_SSE2_REG_MODE(MODE) \
1002 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1003 || (MODE) == V2DImode || (MODE) == DFmode)
1004
1005 #define VALID_SSE_REG_MODE(MODE) \
1006 ((MODE) == V1TImode || (MODE) == TImode \
1007 || (MODE) == V4SFmode || (MODE) == V4SImode \
1008 || (MODE) == SFmode || (MODE) == TFmode)
1009
1010 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1011 ((MODE) == V2SFmode || (MODE) == SFmode)
1012
1013 #define VALID_MMX_REG_MODE(MODE) \
1014 ((MODE == V1DImode) || (MODE) == DImode \
1015 || (MODE) == V2SImode || (MODE) == SImode \
1016 || (MODE) == V4HImode || (MODE) == V8QImode)
1017
1018 #define VALID_DFP_MODE_P(MODE) \
1019 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1020
1021 #define VALID_FP_MODE_P(MODE) \
1022 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1023 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1024
1025 #define VALID_INT_MODE_P(MODE) \
1026 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1027 || (MODE) == DImode \
1028 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1029 || (MODE) == CDImode \
1030 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1031 || (MODE) == TFmode || (MODE) == TCmode)))
1032
1033 /* Return true for modes passed in SSE registers. */
1034 #define SSE_REG_MODE_P(MODE) \
1035 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1036 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1037 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1038 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1039 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1040 || (MODE) == V2TImode)
1041
1042 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1043
1044 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1045 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1046
1047 /* Value is 1 if it is a good idea to tie two pseudo registers
1048 when one has mode MODE1 and one has mode MODE2.
1049 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1050 for any hard reg, then this must be 0 for correct output. */
1051
1052 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1053
1054 /* It is possible to write patterns to move flags; but until someone
1055 does it, */
1056 #define AVOID_CCMODE_COPIES
1057
1058 /* Specify the modes required to caller save a given hard regno.
1059 We do this on i386 to prevent flags from being saved at all.
1060
1061 Kill any attempts to combine saving of modes. */
1062
1063 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1064 (CC_REGNO_P (REGNO) ? VOIDmode \
1065 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1066 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1067 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1068 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
1069 : (MODE))
1070
1071 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1072 need to check the current ABI here), and with AVX enabled Win64 only
1073 guarantees that the low 16 bytes are saved. */
1074 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1075 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1076
1077 /* Specify the registers used for certain standard purposes.
1078 The values of these macros are register numbers. */
1079
1080 /* on the 386 the pc register is %eip, and is not usable as a general
1081 register. The ordinary mov instructions won't work */
1082 /* #define PC_REGNUM */
1083
1084 /* Register to use for pushing function arguments. */
1085 #define STACK_POINTER_REGNUM 7
1086
1087 /* Base register for access to local variables of the function. */
1088 #define HARD_FRAME_POINTER_REGNUM 6
1089
1090 /* Base register for access to local variables of the function. */
1091 #define FRAME_POINTER_REGNUM 20
1092
1093 /* First floating point reg */
1094 #define FIRST_FLOAT_REG 8
1095
1096 /* First & last stack-like regs */
1097 #define FIRST_STACK_REG FIRST_FLOAT_REG
1098 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1099
1100 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1101 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1102
1103 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1104 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1105
1106 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1107 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1108
1109 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1110 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1111
1112 /* Override this in other tm.h files to cope with various OS lossage
1113 requiring a frame pointer. */
1114 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1115 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1116 #endif
1117
1118 /* Make sure we can access arbitrary call frames. */
1119 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1120
1121 /* Base register for access to arguments of the function. */
1122 #define ARG_POINTER_REGNUM 16
1123
1124 /* Register to hold the addressing base for position independent
1125 code access to data items. We don't use PIC pointer for 64bit
1126 mode. Define the regnum to dummy value to prevent gcc from
1127 pessimizing code dealing with EBX.
1128
1129 To avoid clobbering a call-saved register unnecessarily, we renumber
1130 the pic register when possible. The change is visible after the
1131 prologue has been emitted. */
1132
1133 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1134
1135 #define PIC_OFFSET_TABLE_REGNUM \
1136 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1137 || !flag_pic ? INVALID_REGNUM \
1138 : reload_completed ? REGNO (pic_offset_table_rtx) \
1139 : REAL_PIC_OFFSET_TABLE_REGNUM)
1140
1141 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1142
1143 /* This is overridden by <cygwin.h>. */
1144 #define MS_AGGREGATE_RETURN 0
1145
1146 #define KEEP_AGGREGATE_RETURN_POINTER 0
1147 \f
1148 /* Define the classes of registers for register constraints in the
1149 machine description. Also define ranges of constants.
1150
1151 One of the classes must always be named ALL_REGS and include all hard regs.
1152 If there is more than one class, another class must be named NO_REGS
1153 and contain no registers.
1154
1155 The name GENERAL_REGS must be the name of a class (or an alias for
1156 another name such as ALL_REGS). This is the class of registers
1157 that is allowed by "g" or "r" in a register constraint.
1158 Also, registers outside this class are allocated only when
1159 instructions express preferences for them.
1160
1161 The classes must be numbered in nondecreasing order; that is,
1162 a larger-numbered class must never be contained completely
1163 in a smaller-numbered class.
1164
1165 For any two classes, it is very desirable that there be another
1166 class that represents their union.
1167
1168 It might seem that class BREG is unnecessary, since no useful 386
1169 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1170 and the "b" register constraint is useful in asms for syscalls.
1171
1172 The flags, fpsr and fpcr registers are in no class. */
1173
1174 enum reg_class
1175 {
1176 NO_REGS,
1177 AREG, DREG, CREG, BREG, SIREG, DIREG,
1178 AD_REGS, /* %eax/%edx for DImode */
1179 CLOBBERED_REGS, /* call-clobbered integers */
1180 Q_REGS, /* %eax %ebx %ecx %edx */
1181 NON_Q_REGS, /* %esi %edi %ebp %esp */
1182 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1183 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1184 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1185 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1186 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1187 FLOAT_REGS,
1188 SSE_FIRST_REG,
1189 SSE_REGS,
1190 MMX_REGS,
1191 FP_TOP_SSE_REGS,
1192 FP_SECOND_SSE_REGS,
1193 FLOAT_SSE_REGS,
1194 FLOAT_INT_REGS,
1195 INT_SSE_REGS,
1196 FLOAT_INT_SSE_REGS,
1197 ALL_REGS, LIM_REG_CLASSES
1198 };
1199
1200 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1201
1202 #define INTEGER_CLASS_P(CLASS) \
1203 reg_class_subset_p ((CLASS), GENERAL_REGS)
1204 #define FLOAT_CLASS_P(CLASS) \
1205 reg_class_subset_p ((CLASS), FLOAT_REGS)
1206 #define SSE_CLASS_P(CLASS) \
1207 reg_class_subset_p ((CLASS), SSE_REGS)
1208 #define MMX_CLASS_P(CLASS) \
1209 ((CLASS) == MMX_REGS)
1210 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1211 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1212 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1213 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1214 #define MAYBE_SSE_CLASS_P(CLASS) \
1215 reg_classes_intersect_p (SSE_REGS, (CLASS))
1216 #define MAYBE_MMX_CLASS_P(CLASS) \
1217 reg_classes_intersect_p (MMX_REGS, (CLASS))
1218
1219 #define Q_CLASS_P(CLASS) \
1220 reg_class_subset_p ((CLASS), Q_REGS)
1221
1222 /* Give names of register classes as strings for dump file. */
1223
1224 #define REG_CLASS_NAMES \
1225 { "NO_REGS", \
1226 "AREG", "DREG", "CREG", "BREG", \
1227 "SIREG", "DIREG", \
1228 "AD_REGS", \
1229 "CLOBBERED_REGS", \
1230 "Q_REGS", "NON_Q_REGS", \
1231 "INDEX_REGS", \
1232 "LEGACY_REGS", \
1233 "GENERAL_REGS", \
1234 "FP_TOP_REG", "FP_SECOND_REG", \
1235 "FLOAT_REGS", \
1236 "SSE_FIRST_REG", \
1237 "SSE_REGS", \
1238 "MMX_REGS", \
1239 "FP_TOP_SSE_REGS", \
1240 "FP_SECOND_SSE_REGS", \
1241 "FLOAT_SSE_REGS", \
1242 "FLOAT_INT_REGS", \
1243 "INT_SSE_REGS", \
1244 "FLOAT_INT_SSE_REGS", \
1245 "ALL_REGS" }
1246
1247 /* Define which registers fit in which classes. This is an initializer
1248 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1249
1250 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1251 is adjusted by TARGET_CONDITIONAL_REGISTER_USAGE for the 64-bit ABI
1252 in effect. */
1253
1254 #define REG_CLASS_CONTENTS \
1255 { { 0x00, 0x0 }, \
1256 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1257 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1258 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1259 { 0x03, 0x0 }, /* AD_REGS */ \
1260 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
1261 { 0x0f, 0x0 }, /* Q_REGS */ \
1262 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1263 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1264 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1265 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1266 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1267 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1268 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1269 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1270 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1271 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1272 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1273 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1274 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1275 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1276 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1277 { 0xffffffff,0x1fffff } \
1278 }
1279
1280 /* The same information, inverted:
1281 Return the class number of the smallest class containing
1282 reg number REGNO. This could be a conditional expression
1283 or could index an array. */
1284
1285 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1286
1287 /* When this hook returns true for MODE, the compiler allows
1288 registers explicitly used in the rtl to be used as spill registers
1289 but prevents the compiler from extending the lifetime of these
1290 registers. */
1291 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1292
1293 #define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
1294
1295 #define GENERAL_REGNO_P(N) \
1296 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1297
1298 #define GENERAL_REG_P(X) \
1299 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1300
1301 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1302
1303 #define REX_INT_REGNO_P(N) \
1304 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1305 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1306
1307 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1308 #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1309 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1310 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1311
1312 #define X87_FLOAT_MODE_P(MODE) \
1313 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1314
1315 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1316 #define SSE_REGNO_P(N) \
1317 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1318 || REX_SSE_REGNO_P (N))
1319
1320 #define REX_SSE_REGNO_P(N) \
1321 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1322
1323 #define SSE_REGNO(N) \
1324 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1325
1326 #define SSE_FLOAT_MODE_P(MODE) \
1327 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1328
1329 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1330 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1331 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1332
1333 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1334 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1335
1336 #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1337 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1338
1339 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1340
1341 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1342 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1343
1344 /* The class value for index registers, and the one for base regs. */
1345
1346 #define INDEX_REG_CLASS INDEX_REGS
1347 #define BASE_REG_CLASS GENERAL_REGS
1348
1349 /* Place additional restrictions on the register class to use when it
1350 is necessary to be able to hold a value of mode MODE in a reload
1351 register for which class CLASS would ordinarily be used. */
1352
1353 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1354 ((MODE) == QImode && !TARGET_64BIT \
1355 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1356 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1357 ? Q_REGS : (CLASS))
1358
1359 /* If we are copying between general and FP registers, we need a memory
1360 location. The same is true for SSE and MMX registers. */
1361 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1362 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1363
1364 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1365 There is no need to emit full 64 bit move on 64 bit targets
1366 for integral modes that can be moved using 32 bit move. */
1367 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1368 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1369 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1370 : MODE)
1371
1372 /* Return a class of registers that cannot change FROM mode to TO mode. */
1373
1374 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1375 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1376 \f
1377 /* Stack layout; function entry, exit and calling. */
1378
1379 /* Define this if pushing a word on the stack
1380 makes the stack pointer a smaller address. */
1381 #define STACK_GROWS_DOWNWARD
1382
1383 /* Define this to nonzero if the nominal address of the stack frame
1384 is at the high-address end of the local variables;
1385 that is, each additional local variable allocated
1386 goes at a more negative offset in the frame. */
1387 #define FRAME_GROWS_DOWNWARD 1
1388
1389 /* Offset within stack frame to start allocating local variables at.
1390 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1391 first local allocated. Otherwise, it is the offset to the BEGINNING
1392 of the first local allocated. */
1393 #define STARTING_FRAME_OFFSET 0
1394
1395 /* If we generate an insn to push BYTES bytes, this says how many the stack
1396 pointer really advances by. On 386, we have pushw instruction that
1397 decrements by exactly 2 no matter what the position was, there is no pushb.
1398
1399 But as CIE data alignment factor on this arch is -4 for 32bit targets
1400 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1401 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1402
1403 #define PUSH_ROUNDING(BYTES) \
1404 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1405
1406 /* If defined, the maximum amount of space required for outgoing arguments
1407 will be computed and placed into the variable `crtl->outgoing_args_size'.
1408 No space will be pushed onto the stack for each call; instead, the
1409 function prologue should increase the stack frame size by this amount.
1410
1411 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1412 function prologue and apilogue. This is not possible without
1413 ACCUMULATE_OUTGOING_ARGS. */
1414
1415 #define ACCUMULATE_OUTGOING_ARGS \
1416 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
1417
1418 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1419 instructions to pass outgoing arguments. */
1420
1421 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1422
1423 /* We want the stack and args grow in opposite directions, even if
1424 PUSH_ARGS is 0. */
1425 #define PUSH_ARGS_REVERSED 1
1426
1427 /* Offset of first parameter from the argument pointer register value. */
1428 #define FIRST_PARM_OFFSET(FNDECL) 0
1429
1430 /* Define this macro if functions should assume that stack space has been
1431 allocated for arguments even when their values are passed in registers.
1432
1433 The value of this macro is the size, in bytes, of the area reserved for
1434 arguments passed in registers for the function represented by FNDECL.
1435
1436 This space can be allocated by the caller, or be a part of the
1437 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1438 which. */
1439 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1440
1441 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1442 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1443
1444 /* Define how to find the value returned by a library function
1445 assuming the value has mode MODE. */
1446
1447 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1448
1449 /* Define the size of the result block used for communication between
1450 untyped_call and untyped_return. The block contains a DImode value
1451 followed by the block used by fnsave and frstor. */
1452
1453 #define APPLY_RESULT_SIZE (8+108)
1454
1455 /* 1 if N is a possible register number for function argument passing. */
1456 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1457
1458 /* Define a data type for recording info about an argument list
1459 during the scan of that argument list. This data type should
1460 hold all necessary information about the function itself
1461 and about the args processed so far, enough to enable macros
1462 such as FUNCTION_ARG to determine where the next arg should go. */
1463
1464 typedef struct ix86_args {
1465 int words; /* # words passed so far */
1466 int nregs; /* # registers available for passing */
1467 int regno; /* next available register number */
1468 int fastcall; /* fastcall or thiscall calling convention
1469 is used */
1470 int sse_words; /* # sse words passed so far */
1471 int sse_nregs; /* # sse registers available for passing */
1472 int warn_avx; /* True when we want to warn about AVX ABI. */
1473 int warn_sse; /* True when we want to warn about SSE ABI. */
1474 int warn_mmx; /* True when we want to warn about MMX ABI. */
1475 int sse_regno; /* next available sse register number */
1476 int mmx_words; /* # mmx words passed so far */
1477 int mmx_nregs; /* # mmx registers available for passing */
1478 int mmx_regno; /* next available mmx register number */
1479 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1480 int caller; /* true if it is caller. */
1481 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1482 SFmode/DFmode arguments should be passed
1483 in SSE registers. Otherwise 0. */
1484 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1485 MS_ABI for ms abi. */
1486 } CUMULATIVE_ARGS;
1487
1488 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1489 for a call to a function whose data type is FNTYPE.
1490 For a library call, FNTYPE is 0. */
1491
1492 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1493 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1494 (N_NAMED_ARGS) != -1)
1495
1496 /* Output assembler code to FILE to increment profiler label # LABELNO
1497 for profiling a function entry. */
1498
1499 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1500
1501 #define MCOUNT_NAME "_mcount"
1502
1503 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1504
1505 #define PROFILE_COUNT_REGISTER "edx"
1506
1507 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1508 the stack pointer does not matter. The value is tested only in
1509 functions that have frame pointers.
1510 No definition is equivalent to always zero. */
1511 /* Note on the 386 it might be more efficient not to define this since
1512 we have to restore it ourselves from the frame pointer, in order to
1513 use pop */
1514
1515 #define EXIT_IGNORE_STACK 1
1516
1517 /* Output assembler code for a block containing the constant parts
1518 of a trampoline, leaving space for the variable parts. */
1519
1520 /* On the 386, the trampoline contains two instructions:
1521 mov #STATIC,ecx
1522 jmp FUNCTION
1523 The trampoline is generated entirely at runtime. The operand of JMP
1524 is the address of FUNCTION relative to the instruction following the
1525 JMP (which is 5 bytes long). */
1526
1527 /* Length in units of the trampoline for entering a nested function. */
1528
1529 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1530 \f
1531 /* Definitions for register eliminations.
1532
1533 This is an array of structures. Each structure initializes one pair
1534 of eliminable registers. The "from" register number is given first,
1535 followed by "to". Eliminations of the same "from" register are listed
1536 in order of preference.
1537
1538 There are two registers that can always be eliminated on the i386.
1539 The frame pointer and the arg pointer can be replaced by either the
1540 hard frame pointer or to the stack pointer, depending upon the
1541 circumstances. The hard frame pointer is not used before reload and
1542 so it is not eligible for elimination. */
1543
1544 #define ELIMINABLE_REGS \
1545 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1546 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1547 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1548 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1549
1550 /* Define the offset between two registers, one to be eliminated, and the other
1551 its replacement, at the start of a routine. */
1552
1553 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1554 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1555 \f
1556 /* Addressing modes, and classification of registers for them. */
1557
1558 /* Macros to check register numbers against specific register classes. */
1559
1560 /* These assume that REGNO is a hard or pseudo reg number.
1561 They give nonzero only if REGNO is a hard reg of the suitable class
1562 or a pseudo reg currently allocated to a suitable hard reg.
1563 Since they use reg_renumber, they are safe only once reg_renumber
1564 has been allocated, which happens in local-alloc.c. */
1565
1566 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1567 ((REGNO) < STACK_POINTER_REGNUM \
1568 || REX_INT_REGNO_P (REGNO) \
1569 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1570 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1571
1572 #define REGNO_OK_FOR_BASE_P(REGNO) \
1573 (GENERAL_REGNO_P (REGNO) \
1574 || (REGNO) == ARG_POINTER_REGNUM \
1575 || (REGNO) == FRAME_POINTER_REGNUM \
1576 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1577
1578 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1579 and check its validity for a certain class.
1580 We have two alternate definitions for each of them.
1581 The usual definition accepts all pseudo regs; the other rejects
1582 them unless they have been allocated suitable hard regs.
1583 The symbol REG_OK_STRICT causes the latter definition to be used.
1584
1585 Most source files want to accept pseudo regs in the hope that
1586 they will get allocated to the class that the insn wants them to be in.
1587 Source files for reload pass need to be strict.
1588 After reload, it makes no difference, since pseudo regs have
1589 been eliminated by then. */
1590
1591
1592 /* Non strict versions, pseudos are ok. */
1593 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1594 (REGNO (X) < STACK_POINTER_REGNUM \
1595 || REX_INT_REGNO_P (REGNO (X)) \
1596 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1597
1598 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1599 (GENERAL_REGNO_P (REGNO (X)) \
1600 || REGNO (X) == ARG_POINTER_REGNUM \
1601 || REGNO (X) == FRAME_POINTER_REGNUM \
1602 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1603
1604 /* Strict versions, hard registers only */
1605 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1606 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1607
1608 #ifndef REG_OK_STRICT
1609 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1610 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1611
1612 #else
1613 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1614 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1615 #endif
1616
1617 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1618 that is a valid memory address for an instruction.
1619 The MODE argument is the machine mode for the MEM expression
1620 that wants to use this address.
1621
1622 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1623 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1624
1625 See legitimize_pic_address in i386.c for details as to what
1626 constitutes a legitimate address when -fpic is used. */
1627
1628 #define MAX_REGS_PER_ADDRESS 2
1629
1630 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1631
1632 /* If defined, a C expression to determine the base term of address X.
1633 This macro is used in only one place: `find_base_term' in alias.c.
1634
1635 It is always safe for this macro to not be defined. It exists so
1636 that alias analysis can understand machine-dependent addresses.
1637
1638 The typical use of this macro is to handle addresses containing
1639 a label_ref or symbol_ref within an UNSPEC. */
1640
1641 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1642
1643 /* Nonzero if the constant value X is a legitimate general operand
1644 when generating PIC code. It is given that flag_pic is on and
1645 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1646
1647 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1648
1649 #define SYMBOLIC_CONST(X) \
1650 (GET_CODE (X) == SYMBOL_REF \
1651 || GET_CODE (X) == LABEL_REF \
1652 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1653 \f
1654 /* Max number of args passed in registers. If this is more than 3, we will
1655 have problems with ebx (register #4), since it is a caller save register and
1656 is also used as the pic register in ELF. So for now, don't allow more than
1657 3 registers to be passed in registers. */
1658
1659 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1660 #define X86_64_REGPARM_MAX 6
1661 #define X86_64_MS_REGPARM_MAX 4
1662
1663 #define X86_32_REGPARM_MAX 3
1664
1665 #define REGPARM_MAX \
1666 (TARGET_64BIT \
1667 ? (TARGET_64BIT_MS_ABI \
1668 ? X86_64_MS_REGPARM_MAX \
1669 : X86_64_REGPARM_MAX) \
1670 : X86_32_REGPARM_MAX)
1671
1672 #define X86_64_SSE_REGPARM_MAX 8
1673 #define X86_64_MS_SSE_REGPARM_MAX 4
1674
1675 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1676
1677 #define SSE_REGPARM_MAX \
1678 (TARGET_64BIT \
1679 ? (TARGET_64BIT_MS_ABI \
1680 ? X86_64_MS_SSE_REGPARM_MAX \
1681 : X86_64_SSE_REGPARM_MAX) \
1682 : X86_32_SSE_REGPARM_MAX)
1683
1684 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1685 \f
1686 /* Specify the machine mode that this machine uses
1687 for the index in the tablejump instruction. */
1688 #define CASE_VECTOR_MODE \
1689 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1690
1691 /* Define this as 1 if `char' should by default be signed; else as 0. */
1692 #define DEFAULT_SIGNED_CHAR 1
1693
1694 /* Max number of bytes we can move from memory to memory
1695 in one reasonably fast instruction. */
1696 #define MOVE_MAX 16
1697
1698 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1699 move efficiently, as opposed to MOVE_MAX which is the maximum
1700 number of bytes we can move with a single instruction. */
1701 #define MOVE_MAX_PIECES UNITS_PER_WORD
1702
1703 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1704 move-instruction pairs, we will do a movmem or libcall instead.
1705 Increasing the value will always make code faster, but eventually
1706 incurs high cost in increased code size.
1707
1708 If you don't define this, a reasonable default is used. */
1709
1710 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1711
1712 /* If a clear memory operation would take CLEAR_RATIO or more simple
1713 move-instruction sequences, we will do a clrmem or libcall instead. */
1714
1715 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1716
1717 /* Define if shifts truncate the shift count which implies one can
1718 omit a sign-extension or zero-extension of a shift count.
1719
1720 On i386, shifts do truncate the count. But bit test instructions
1721 take the modulo of the bit offset operand. */
1722
1723 /* #define SHIFT_COUNT_TRUNCATED */
1724
1725 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1726 is done just by pretending it is already truncated. */
1727 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1728
1729 /* A macro to update M and UNSIGNEDP when an object whose type is
1730 TYPE and which has the specified mode and signedness is to be
1731 stored in a register. This macro is only called when TYPE is a
1732 scalar type.
1733
1734 On i386 it is sometimes useful to promote HImode and QImode
1735 quantities to SImode. The choice depends on target type. */
1736
1737 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1738 do { \
1739 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1740 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1741 (MODE) = SImode; \
1742 } while (0)
1743
1744 /* Specify the machine mode that pointers have.
1745 After generation of rtl, the compiler makes no further distinction
1746 between pointers and any other objects of this machine mode. */
1747 #define Pmode (TARGET_64BIT ? DImode : SImode)
1748
1749 /* A C expression whose value is zero if pointers that need to be extended
1750 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1751 greater then zero if they are zero-extended and less then zero if the
1752 ptr_extend instruction should be used. */
1753
1754 #define POINTERS_EXTEND_UNSIGNED 1
1755
1756 /* A function address in a call instruction
1757 is a byte address (for indexing purposes)
1758 so give the MEM rtx a byte's mode. */
1759 #define FUNCTION_MODE QImode
1760 \f
1761
1762 /* A C expression for the cost of a branch instruction. A value of 1
1763 is the default; other values are interpreted relative to that. */
1764
1765 #define BRANCH_COST(speed_p, predictable_p) \
1766 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1767
1768 /* Define this macro as a C expression which is nonzero if accessing
1769 less than a word of memory (i.e. a `char' or a `short') is no
1770 faster than accessing a word of memory, i.e., if such access
1771 require more than one instruction or if there is no difference in
1772 cost between byte and (aligned) word loads.
1773
1774 When this macro is not defined, the compiler will access a field by
1775 finding the smallest containing object; when it is defined, a
1776 fullword load will be used if alignment permits. Unless bytes
1777 accesses are faster than word accesses, using word accesses is
1778 preferable since it may eliminate subsequent memory access if
1779 subsequent accesses occur to other fields in the same word of the
1780 structure, but to different bytes. */
1781
1782 #define SLOW_BYTE_ACCESS 0
1783
1784 /* Nonzero if access to memory by shorts is slow and undesirable. */
1785 #define SLOW_SHORT_ACCESS 0
1786
1787 /* Define this macro to be the value 1 if unaligned accesses have a
1788 cost many times greater than aligned accesses, for example if they
1789 are emulated in a trap handler.
1790
1791 When this macro is nonzero, the compiler will act as if
1792 `STRICT_ALIGNMENT' were nonzero when generating code for block
1793 moves. This can cause significantly more instructions to be
1794 produced. Therefore, do not set this macro nonzero if unaligned
1795 accesses only add a cycle or two to the time for a memory access.
1796
1797 If the value of this macro is always zero, it need not be defined. */
1798
1799 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1800
1801 /* Define this macro if it is as good or better to call a constant
1802 function address than to call an address kept in a register.
1803
1804 Desirable on the 386 because a CALL with a constant address is
1805 faster than one with a register address. */
1806
1807 #define NO_FUNCTION_CSE
1808 \f
1809 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1810 return the mode to be used for the comparison.
1811
1812 For floating-point equality comparisons, CCFPEQmode should be used.
1813 VOIDmode should be used in all other cases.
1814
1815 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1816 possible, to allow for more combinations. */
1817
1818 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1819
1820 /* Return nonzero if MODE implies a floating point inequality can be
1821 reversed. */
1822
1823 #define REVERSIBLE_CC_MODE(MODE) 1
1824
1825 /* A C expression whose value is reversed condition code of the CODE for
1826 comparison done in CC_MODE mode. */
1827 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1828
1829 \f
1830 /* Control the assembler format that we output, to the extent
1831 this does not vary between assemblers. */
1832
1833 /* How to refer to registers in assembler output.
1834 This sequence is indexed by compiler's hard-register-number (see above). */
1835
1836 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1837 For non floating point regs, the following are the HImode names.
1838
1839 For float regs, the stack top is sometimes referred to as "%st(0)"
1840 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1841 "y" code. */
1842
1843 #define HI_REGISTER_NAMES \
1844 {"ax","dx","cx","bx","si","di","bp","sp", \
1845 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1846 "argp", "flags", "fpsr", "fpcr", "frame", \
1847 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1848 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1849 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1850 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1851
1852 #define REGISTER_NAMES HI_REGISTER_NAMES
1853
1854 /* Table of additional register names to use in user input. */
1855
1856 #define ADDITIONAL_REGISTER_NAMES \
1857 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1858 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1859 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1860 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1861 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1862 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1863
1864 /* Note we are omitting these since currently I don't know how
1865 to get gcc to use these, since they want the same but different
1866 number as al, and ax.
1867 */
1868
1869 #define QI_REGISTER_NAMES \
1870 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1871
1872 /* These parallel the array above, and can be used to access bits 8:15
1873 of regs 0 through 3. */
1874
1875 #define QI_HIGH_REGISTER_NAMES \
1876 {"ah", "dh", "ch", "bh", }
1877
1878 /* How to renumber registers for dbx and gdb. */
1879
1880 #define DBX_REGISTER_NUMBER(N) \
1881 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1882
1883 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1884 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1885 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1886
1887 /* Before the prologue, RA is at 0(%esp). */
1888 #define INCOMING_RETURN_ADDR_RTX \
1889 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1890
1891 /* After the prologue, RA is at -4(AP) in the current frame. */
1892 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1893 ((COUNT) == 0 \
1894 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1895 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
1896
1897 /* PC is dbx register 8; let's use that column for RA. */
1898 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
1899
1900 /* Before the prologue, the top of the frame is at 4(%esp). */
1901 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1902
1903 /* Describe how we implement __builtin_eh_return. */
1904 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1905 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1906
1907
1908 /* Select a format to encode pointers in exception handling data. CODE
1909 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1910 true if the symbol may be affected by dynamic relocations.
1911
1912 ??? All x86 object file formats are capable of representing this.
1913 After all, the relocation needed is the same as for the call insn.
1914 Whether or not a particular assembler allows us to enter such, I
1915 guess we'll have to see. */
1916 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1917 asm_preferred_eh_data_format ((CODE), (GLOBAL))
1918
1919 /* This is how to output an insn to push a register on the stack.
1920 It need not be very fast code. */
1921
1922 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1923 do { \
1924 if (TARGET_64BIT) \
1925 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1926 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1927 else \
1928 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1929 } while (0)
1930
1931 /* This is how to output an insn to pop a register from the stack.
1932 It need not be very fast code. */
1933
1934 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
1935 do { \
1936 if (TARGET_64BIT) \
1937 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
1938 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1939 else \
1940 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
1941 } while (0)
1942
1943 /* This is how to output an element of a case-vector that is absolute. */
1944
1945 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1946 ix86_output_addr_vec_elt ((FILE), (VALUE))
1947
1948 /* This is how to output an element of a case-vector that is relative. */
1949
1950 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1951 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
1952
1953 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
1954
1955 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
1956 { \
1957 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
1958 (PTR) += TARGET_AVX ? 1 : 2; \
1959 }
1960
1961 /* A C statement or statements which output an assembler instruction
1962 opcode to the stdio stream STREAM. The macro-operand PTR is a
1963 variable of type `char *' which points to the opcode name in
1964 its "internal" form--the form that is written in the machine
1965 description. */
1966
1967 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1968 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
1969
1970 /* A C statement to output to the stdio stream FILE an assembler
1971 command to pad the location counter to a multiple of 1<<LOG
1972 bytes if it is within MAX_SKIP bytes. */
1973
1974 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
1975 #undef ASM_OUTPUT_MAX_SKIP_PAD
1976 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
1977 if ((LOG) != 0) \
1978 { \
1979 if ((MAX_SKIP) == 0) \
1980 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
1981 else \
1982 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
1983 }
1984 #endif
1985
1986 /* Write the extra assembler code needed to declare a function
1987 properly. */
1988
1989 #undef ASM_OUTPUT_FUNCTION_LABEL
1990 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1991 ix86_asm_output_function_label (FILE, NAME, DECL)
1992
1993 /* Under some conditions we need jump tables in the text section,
1994 because the assembler cannot handle label differences between
1995 sections. This is the case for x86_64 on Mach-O for example. */
1996
1997 #define JUMP_TABLES_IN_TEXT_SECTION \
1998 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
1999 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2000
2001 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2002 and switch back. For x86 we do this only to save a few bytes that
2003 would otherwise be unused in the text section. */
2004 #define CRT_MKSTR2(VAL) #VAL
2005 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2006
2007 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2008 asm (SECTION_OP "\n\t" \
2009 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2010 TEXT_SECTION_ASM_OP);
2011 \f
2012 /* Which processor to tune code generation for. */
2013
2014 enum processor_type
2015 {
2016 PROCESSOR_I386 = 0, /* 80386 */
2017 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2018 PROCESSOR_PENTIUM,
2019 PROCESSOR_PENTIUMPRO,
2020 PROCESSOR_GEODE,
2021 PROCESSOR_K6,
2022 PROCESSOR_ATHLON,
2023 PROCESSOR_PENTIUM4,
2024 PROCESSOR_K8,
2025 PROCESSOR_NOCONA,
2026 PROCESSOR_CORE2_32,
2027 PROCESSOR_CORE2_64,
2028 PROCESSOR_COREI7_32,
2029 PROCESSOR_COREI7_64,
2030 PROCESSOR_GENERIC32,
2031 PROCESSOR_GENERIC64,
2032 PROCESSOR_AMDFAM10,
2033 PROCESSOR_BDVER1,
2034 PROCESSOR_BDVER2,
2035 PROCESSOR_BTVER1,
2036 PROCESSOR_ATOM,
2037 PROCESSOR_max
2038 };
2039
2040 extern enum processor_type ix86_tune;
2041 extern enum processor_type ix86_arch;
2042
2043 /* Size of the RED_ZONE area. */
2044 #define RED_ZONE_SIZE 128
2045 /* Reserved area of the red zone for temporaries. */
2046 #define RED_ZONE_RESERVE 8
2047
2048 extern unsigned int ix86_preferred_stack_boundary;
2049 extern unsigned int ix86_incoming_stack_boundary;
2050
2051 /* Smallest class containing REGNO. */
2052 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2053
2054 enum ix86_fpcmp_strategy {
2055 IX86_FPCMP_SAHF,
2056 IX86_FPCMP_COMI,
2057 IX86_FPCMP_ARITH
2058 };
2059 \f
2060 /* To properly truncate FP values into integers, we need to set i387 control
2061 word. We can't emit proper mode switching code before reload, as spills
2062 generated by reload may truncate values incorrectly, but we still can avoid
2063 redundant computation of new control word by the mode switching pass.
2064 The fldcw instructions are still emitted redundantly, but this is probably
2065 not going to be noticeable problem, as most CPUs do have fast path for
2066 the sequence.
2067
2068 The machinery is to emit simple truncation instructions and split them
2069 before reload to instructions having USEs of two memory locations that
2070 are filled by this code to old and new control word.
2071
2072 Post-reload pass may be later used to eliminate the redundant fildcw if
2073 needed. */
2074
2075 enum ix86_entity
2076 {
2077 I387_TRUNC = 0,
2078 I387_FLOOR,
2079 I387_CEIL,
2080 I387_MASK_PM,
2081 MAX_386_ENTITIES
2082 };
2083
2084 enum ix86_stack_slot
2085 {
2086 SLOT_VIRTUAL = 0,
2087 SLOT_TEMP,
2088 SLOT_CW_STORED,
2089 SLOT_CW_TRUNC,
2090 SLOT_CW_FLOOR,
2091 SLOT_CW_CEIL,
2092 SLOT_CW_MASK_PM,
2093 MAX_386_STACK_LOCALS
2094 };
2095
2096 /* Define this macro if the port needs extra instructions inserted
2097 for mode switching in an optimizing compilation. */
2098
2099 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2100 ix86_optimize_mode_switching[(ENTITY)]
2101
2102 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2103 initializer for an array of integers. Each initializer element N
2104 refers to an entity that needs mode switching, and specifies the
2105 number of different modes that might need to be set for this
2106 entity. The position of the initializer in the initializer -
2107 starting counting at zero - determines the integer that is used to
2108 refer to the mode-switched entity in question. */
2109
2110 #define NUM_MODES_FOR_MODE_SWITCHING \
2111 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2112
2113 /* ENTITY is an integer specifying a mode-switched entity. If
2114 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2115 return an integer value not larger than the corresponding element
2116 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2117 must be switched into prior to the execution of INSN. */
2118
2119 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2120
2121 /* This macro specifies the order in which modes for ENTITY are
2122 processed. 0 is the highest priority. */
2123
2124 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2125
2126 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2127 is the set of hard registers live at the point where the insn(s)
2128 are to be inserted. */
2129
2130 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2131 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2132 ? emit_i387_cw_initialization (MODE), 0 \
2133 : 0)
2134
2135 \f
2136 /* Avoid renaming of stack registers, as doing so in combination with
2137 scheduling just increases amount of live registers at time and in
2138 the turn amount of fxch instructions needed.
2139
2140 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2141
2142 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2143 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2144
2145 \f
2146 #define FASTCALL_PREFIX '@'
2147 \f
2148 /* Machine specific frame tracking during prologue/epilogue generation. */
2149
2150 #ifndef USED_FOR_TARGET
2151 struct GTY(()) machine_frame_state
2152 {
2153 /* This pair tracks the currently active CFA as reg+offset. When reg
2154 is drap_reg, we don't bother trying to record here the real CFA when
2155 it might really be a DW_CFA_def_cfa_expression. */
2156 rtx cfa_reg;
2157 HOST_WIDE_INT cfa_offset;
2158
2159 /* The current offset (canonically from the CFA) of ESP and EBP.
2160 When stack frame re-alignment is active, these may not be relative
2161 to the CFA. However, in all cases they are relative to the offsets
2162 of the saved registers stored in ix86_frame. */
2163 HOST_WIDE_INT sp_offset;
2164 HOST_WIDE_INT fp_offset;
2165
2166 /* The size of the red-zone that may be assumed for the purposes of
2167 eliding register restore notes in the epilogue. This may be zero
2168 if no red-zone is in effect, or may be reduced from the real
2169 red-zone value by a maximum runtime stack re-alignment value. */
2170 int red_zone_offset;
2171
2172 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2173 value within the frame. If false then the offset above should be
2174 ignored. Note that DRAP, if valid, *always* points to the CFA and
2175 thus has an offset of zero. */
2176 BOOL_BITFIELD sp_valid : 1;
2177 BOOL_BITFIELD fp_valid : 1;
2178 BOOL_BITFIELD drap_valid : 1;
2179
2180 /* Indicate whether the local stack frame has been re-aligned. When
2181 set, the SP/FP offsets above are relative to the aligned frame
2182 and not the CFA. */
2183 BOOL_BITFIELD realigned : 1;
2184 };
2185
2186 /* Private to winnt.c. */
2187 struct seh_frame_state;
2188
2189 struct GTY(()) machine_function {
2190 struct stack_local_entry *stack_locals;
2191 const char *some_ld_name;
2192 int varargs_gpr_size;
2193 int varargs_fpr_size;
2194 int optimize_mode_switching[MAX_386_ENTITIES];
2195
2196 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2197 has been computed for. */
2198 int use_fast_prologue_epilogue_nregs;
2199
2200 /* For -fsplit-stack support: A stack local which holds a pointer to
2201 the stack arguments for a function with a variable number of
2202 arguments. This is set at the start of the function and is used
2203 to initialize the overflow_arg_area field of the va_list
2204 structure. */
2205 rtx split_stack_varargs_pointer;
2206
2207 /* This value is used for amd64 targets and specifies the current abi
2208 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2209 ENUM_BITFIELD(calling_abi) call_abi : 8;
2210
2211 /* Nonzero if the function accesses a previous frame. */
2212 BOOL_BITFIELD accesses_prev_frame : 1;
2213
2214 /* Nonzero if the function requires a CLD in the prologue. */
2215 BOOL_BITFIELD needs_cld : 1;
2216
2217 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2218 expander to determine the style used. */
2219 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2220
2221 /* If true, the current function needs the default PIC register, not
2222 an alternate register (on x86) and must not use the red zone (on
2223 x86_64), even if it's a leaf function. We don't want the
2224 function to be regarded as non-leaf because TLS calls need not
2225 affect register allocation. This flag is set when a TLS call
2226 instruction is expanded within a function, and never reset, even
2227 if all such instructions are optimized away. Use the
2228 ix86_current_function_calls_tls_descriptor macro for a better
2229 approximation. */
2230 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2231
2232 /* If true, the current function has a STATIC_CHAIN is placed on the
2233 stack below the return address. */
2234 BOOL_BITFIELD static_chain_on_stack : 1;
2235
2236 /* Nonzero if caller passes 256bit AVX modes. */
2237 BOOL_BITFIELD caller_pass_avx256_p : 1;
2238
2239 /* Nonzero if caller returns 256bit AVX modes. */
2240 BOOL_BITFIELD caller_return_avx256_p : 1;
2241
2242 /* Nonzero if the current callee passes 256bit AVX modes. */
2243 BOOL_BITFIELD callee_pass_avx256_p : 1;
2244
2245 /* Nonzero if the current callee returns 256bit AVX modes. */
2246 BOOL_BITFIELD callee_return_avx256_p : 1;
2247
2248 /* Nonzero if rescan vzerouppers in the current function is needed. */
2249 BOOL_BITFIELD rescan_vzeroupper_p : 1;
2250
2251 /* During prologue/epilogue generation, the current frame state.
2252 Otherwise, the frame state at the end of the prologue. */
2253 struct machine_frame_state fs;
2254
2255 /* During SEH output, this is non-null. */
2256 struct seh_frame_state * GTY((skip(""))) seh;
2257 };
2258 #endif
2259
2260 #define ix86_stack_locals (cfun->machine->stack_locals)
2261 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2262 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2263 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2264 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2265 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2266 (cfun->machine->tls_descriptor_call_expanded_p)
2267 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2268 calls are optimized away, we try to detect cases in which it was
2269 optimized away. Since such instructions (use (reg REG_SP)), we can
2270 verify whether there's any such instruction live by testing that
2271 REG_SP is live. */
2272 #define ix86_current_function_calls_tls_descriptor \
2273 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2274 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2275
2276 /* Control behavior of x86_file_start. */
2277 #define X86_FILE_START_VERSION_DIRECTIVE false
2278 #define X86_FILE_START_FLTUSED false
2279
2280 /* Flag to mark data that is in the large address area. */
2281 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2282 #define SYMBOL_REF_FAR_ADDR_P(X) \
2283 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2284
2285 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2286 have defined always, to avoid ifdefing. */
2287 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2288 #define SYMBOL_REF_DLLIMPORT_P(X) \
2289 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2290
2291 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2292 #define SYMBOL_REF_DLLEXPORT_P(X) \
2293 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2294
2295 extern void debug_ready_dispatch (void);
2296 extern void debug_dispatch_window (int);
2297
2298 /* The value at zero is only defined for the BMI instructions
2299 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2300 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2301 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2302 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2303 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
2304
2305
2306 /* Flags returned by ix86_get_callcvt (). */
2307 #define IX86_CALLCVT_CDECL 0x1
2308 #define IX86_CALLCVT_STDCALL 0x2
2309 #define IX86_CALLCVT_FASTCALL 0x4
2310 #define IX86_CALLCVT_THISCALL 0x8
2311 #define IX86_CALLCVT_REGPARM 0x10
2312 #define IX86_CALLCVT_SSEREGPARM 0x20
2313
2314 #define IX86_BASE_CALLCVT(FLAGS) \
2315 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2316 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2317
2318 #define RECIP_MASK_NONE 0x00
2319 #define RECIP_MASK_DIV 0x01
2320 #define RECIP_MASK_SQRT 0x02
2321 #define RECIP_MASK_VEC_DIV 0x04
2322 #define RECIP_MASK_VEC_SQRT 0x08
2323 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2324 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2325 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2326
2327 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2328 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2329 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2330 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2331
2332 /*
2333 Local variables:
2334 version-control: t
2335 End:
2336 */