i386.h (__amd64, __amd64__): Remove duplicates.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #ifdef TARGET_64BIT_DEFAULT
101 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102 #else
103 #define TARGET_CPU_DEFAULT 0
104 #endif
105 #endif
106
107 /* Masks for the -m switches */
108 #define MASK_80387 0x00000001 /* Hardware floating point */
109 #define MASK_RTD 0x00000002 /* Use ret that pops args */
110 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
111 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
112 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
113 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
114 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
115 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
116 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
117 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
118 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
119 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
120 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
121 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
122 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
123 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
124 #define MASK_PNI 0x00010000 /* Support PNI regs/builtins */
125 #define MASK_3DNOW 0x00020000 /* Support 3Dnow builtins */
126 #define MASK_3DNOW_A 0x00040000 /* Support Athlon 3Dnow builtins */
127 #define MASK_128BIT_LONG_DOUBLE 0x00080000 /* long double size is 128bit */
128 #define MASK_64BIT 0x00100000 /* Produce 64bit code */
129 #define MASK_MS_BITFIELD_LAYOUT 0x00200000 /* Use native (MS) bitfield layout */
130 #define MASK_TLS_DIRECT_SEG_REFS 0x00400000 /* Avoid adding %gs:0 */
131
132 /* Unused: 0x03e0000 */
133
134 /* ... overlap with subtarget options starts by 0x04000000. */
135 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
136
137 /* Use the floating point instructions */
138 #define TARGET_80387 (target_flags & MASK_80387)
139
140 /* Compile using ret insn that pops args.
141 This will not work unless you use prototypes at least
142 for all functions that can take varying numbers of args. */
143 #define TARGET_RTD (target_flags & MASK_RTD)
144
145 /* Align doubles to a two word boundary. This breaks compatibility with
146 the published ABI's for structures containing doubles, but produces
147 faster code on the pentium. */
148 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
149
150 /* Use push instructions to save outgoing args. */
151 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
152
153 /* Accumulate stack adjustments to prologue/epilogue. */
154 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
155 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
156
157 /* Put uninitialized locals into bss, not data.
158 Meaningful only on svr3. */
159 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
160
161 /* Use IEEE floating point comparisons. These handle correctly the cases
162 where the result of a comparison is unordered. Normally SIGFPE is
163 generated in such cases, in which case this isn't needed. */
164 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
165
166 /* Functions that return a floating point value may return that value
167 in the 387 FPU or in 386 integer registers. If set, this flag causes
168 the 387 to be used, which is compatible with most calling conventions. */
169 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
170
171 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
172 This mode wastes cache, but avoid misaligned data accesses and simplifies
173 address calculations. */
174 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
175
176 /* Disable generation of FP sin, cos and sqrt operations for 387.
177 This is because FreeBSD lacks these in the math-emulator-code */
178 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
179
180 /* Don't create frame pointers for leaf functions */
181 #define TARGET_OMIT_LEAF_FRAME_POINTER \
182 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
183
184 /* Debug GO_IF_LEGITIMATE_ADDRESS */
185 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
186
187 /* Debug FUNCTION_ARG macros */
188 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
189
190 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
191 compile-time constant. */
192 #ifdef IN_LIBGCC2
193 #ifdef __x86_64__
194 #define TARGET_64BIT 1
195 #else
196 #define TARGET_64BIT 0
197 #endif
198 #else
199 #ifdef TARGET_BI_ARCH
200 #define TARGET_64BIT (target_flags & MASK_64BIT)
201 #else
202 #if TARGET_64BIT_DEFAULT
203 #define TARGET_64BIT 1
204 #else
205 #define TARGET_64BIT 0
206 #endif
207 #endif
208 #endif
209
210 /* Avoid adding %gs:0 in TLS references; use %gs:address directly. */
211 #define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
212
213 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
214 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
215 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
216 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
217 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
218 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
219 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
220 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
221 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
222
223 #define TUNEMASK (1 << ix86_tune)
224 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
225 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
226 extern const int x86_branch_hints, x86_unroll_strlen;
227 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
228 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
229 extern const int x86_use_cltd, x86_read_modify_write;
230 extern const int x86_read_modify, x86_split_long_moves;
231 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
232 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
233 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
234 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
235 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
236 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
237 extern const int x86_epilogue_using_move, x86_decompose_lea;
238 extern const int x86_arch_always_fancy_math_387, x86_shift1;
239 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
240 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
241 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
242 extern const int x86_inter_unit_moves;
243 extern int x86_prefetch_sse;
244
245 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
246 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
247 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
248 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
249 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
250 /* For sane SSE instruction set generation we need fcomi instruction. It is
251 safe to enable all CMOVE instructions. */
252 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
253 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
254 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
255 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
256 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
257 #define TARGET_MOVX (x86_movx & TUNEMASK)
258 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
259 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
260 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
261 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
262 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
263 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
264 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
265 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
266 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
267 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
268 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
269 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
270 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
271 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
272 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
273 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
274 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
275 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
276 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
277 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
278 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
279 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
280 (x86_sse_partial_reg_dependency & TUNEMASK)
281 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
282 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
283 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
284 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
285 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
286 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
287 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
288 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
289 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
290 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
291 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
292 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
293 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
294 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
295 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
296
297 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
298
299 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
300 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
301
302 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
303
304 #define TARGET_SSE ((target_flags & MASK_SSE) != 0)
305 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
306 #define TARGET_PNI ((target_flags & MASK_PNI) != 0)
307 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
308 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
309 && (ix86_fpmath & FPMATH_387))
310 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
311 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
312 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
313
314 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
315
316 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
317
318 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
319 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
320
321 /* WARNING: Do not mark empty strings for translation, as calling
322 gettext on an empty string does NOT return an empty
323 string. */
324
325
326 #define TARGET_SWITCHES \
327 { { "80387", MASK_80387, N_("Use hardware fp") }, \
328 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
329 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
330 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
331 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
332 { "386", 0, "" /*Deprecated.*/}, \
333 { "486", 0, "" /*Deprecated.*/}, \
334 { "pentium", 0, "" /*Deprecated.*/}, \
335 { "pentiumpro", 0, "" /*Deprecated.*/}, \
336 { "intel-syntax", 0, "" /*Deprecated.*/}, \
337 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
338 { "rtd", MASK_RTD, \
339 N_("Alternate calling convention") }, \
340 { "no-rtd", -MASK_RTD, \
341 N_("Use normal calling convention") }, \
342 { "align-double", MASK_ALIGN_DOUBLE, \
343 N_("Align some doubles on dword boundary") }, \
344 { "no-align-double", -MASK_ALIGN_DOUBLE, \
345 N_("Align doubles on word boundary") }, \
346 { "svr3-shlib", MASK_SVR3_SHLIB, \
347 N_("Uninitialized locals in .bss") }, \
348 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
349 N_("Uninitialized locals in .data") }, \
350 { "ieee-fp", MASK_IEEE_FP, \
351 N_("Use IEEE math for fp comparisons") }, \
352 { "no-ieee-fp", -MASK_IEEE_FP, \
353 N_("Do not use IEEE math for fp comparisons") }, \
354 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
355 N_("Return values of functions in FPU registers") }, \
356 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
357 N_("Do not return values of functions in FPU registers")}, \
358 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
359 N_("Do not generate sin, cos, sqrt for FPU") }, \
360 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
361 N_("Generate sin, cos, sqrt for FPU")}, \
362 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
363 N_("Omit the frame pointer in leaf functions") }, \
364 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
365 { "stack-arg-probe", MASK_STACK_PROBE, \
366 N_("Enable stack probing") }, \
367 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
368 { "windows", 0, 0 /* undocumented */ }, \
369 { "dll", 0, 0 /* undocumented */ }, \
370 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
371 N_("Align destination of the string operations") }, \
372 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
373 N_("Do not align destination of the string operations") }, \
374 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
375 N_("Inline all known string operations") }, \
376 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
377 N_("Do not inline all known string operations") }, \
378 { "push-args", -MASK_NO_PUSH_ARGS, \
379 N_("Use push instructions to save outgoing arguments") }, \
380 { "no-push-args", MASK_NO_PUSH_ARGS, \
381 N_("Do not use push instructions to save outgoing arguments") }, \
382 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
383 N_("Use push instructions to save outgoing arguments") }, \
384 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
385 N_("Do not use push instructions to save outgoing arguments") }, \
386 { "mmx", MASK_MMX, \
387 N_("Support MMX built-in functions") }, \
388 { "no-mmx", -MASK_MMX, \
389 N_("Do not support MMX built-in functions") }, \
390 { "3dnow", MASK_3DNOW, \
391 N_("Support 3DNow! built-in functions") }, \
392 { "no-3dnow", -MASK_3DNOW, \
393 N_("Do not support 3DNow! built-in functions") }, \
394 { "sse", MASK_SSE, \
395 N_("Support MMX and SSE built-in functions and code generation") }, \
396 { "no-sse", -MASK_SSE, \
397 N_("Do not support MMX and SSE built-in functions and code generation") },\
398 { "sse2", MASK_SSE2, \
399 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
400 { "no-sse2", -MASK_SSE2, \
401 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
402 { "pni", MASK_PNI, \
403 N_("Support MMX, SSE, SSE2 and PNI built-in functions and code generation") },\
404 { "no-pni", -MASK_PNI, \
405 N_("Do not support MMX, SSE, SSE2 and PNI built-in functions and code generation") },\
406 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
407 N_("sizeof(long double) is 16") }, \
408 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
409 N_("sizeof(long double) is 12") }, \
410 { "64", MASK_64BIT, \
411 N_("Generate 64bit x86-64 code") }, \
412 { "32", -MASK_64BIT, \
413 N_("Generate 32bit i386 code") }, \
414 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
415 N_("Use native (MS) bitfield layout") }, \
416 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
417 N_("Use gcc default bitfield layout") }, \
418 { "red-zone", -MASK_NO_RED_ZONE, \
419 N_("Use red-zone in the x86-64 code") }, \
420 { "no-red-zone", MASK_NO_RED_ZONE, \
421 N_("Do not use red-zone in the x86-64 code") }, \
422 { "tls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS, \
423 N_("Use direct references against %gs when accessing tls data") }, \
424 { "no-tls-direct-seg-refs", -MASK_TLS_DIRECT_SEG_REFS, \
425 N_("Do not use direct references against %gs when accessing tls data") }, \
426 SUBTARGET_SWITCHES \
427 { "", \
428 TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT \
429 | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
430
431 #ifndef TARGET_64BIT_DEFAULT
432 #define TARGET_64BIT_DEFAULT 0
433 #endif
434 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
435 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
436 #endif
437
438 /* Once GDB has been enhanced to deal with functions without frame
439 pointers, we can change this to allow for elimination of
440 the frame pointer in leaf functions. */
441 #define TARGET_DEFAULT 0
442
443 /* This is not really a target flag, but is done this way so that
444 it's analogous to similar code for Mach-O on PowerPC. darwin.h
445 redefines this to 1. */
446 #define TARGET_MACHO 0
447
448 /* This macro is similar to `TARGET_SWITCHES' but defines names of
449 command options that have values. Its definition is an
450 initializer with a subgrouping for each command option.
451
452 Each subgrouping contains a string constant, that defines the
453 fixed part of the option name, and the address of a variable. The
454 variable, type `char *', is set to the variable part of the given
455 option if the fixed part matches. The actual option name is made
456 by appending `-m' to the specified name. */
457 #define TARGET_OPTIONS \
458 { { "tune=", &ix86_tune_string, \
459 N_("Schedule code for given CPU"), 0}, \
460 { "fpmath=", &ix86_fpmath_string, \
461 N_("Generate floating point mathematics using given instruction set"), 0},\
462 { "arch=", &ix86_arch_string, \
463 N_("Generate code for given CPU"), 0}, \
464 { "regparm=", &ix86_regparm_string, \
465 N_("Number of registers used to pass integer arguments"), 0},\
466 { "align-loops=", &ix86_align_loops_string, \
467 N_("Loop code aligned to this power of 2"), 0}, \
468 { "align-jumps=", &ix86_align_jumps_string, \
469 N_("Jump targets are aligned to this power of 2"), 0}, \
470 { "align-functions=", &ix86_align_funcs_string, \
471 N_("Function starts are aligned to this power of 2"), 0}, \
472 { "preferred-stack-boundary=", \
473 &ix86_preferred_stack_boundary_string, \
474 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
475 { "branch-cost=", &ix86_branch_cost_string, \
476 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
477 { "cmodel=", &ix86_cmodel_string, \
478 N_("Use given x86-64 code model"), 0}, \
479 { "debug-arg", &ix86_debug_arg_string, \
480 "" /* Undocumented. */, 0}, \
481 { "debug-addr", &ix86_debug_addr_string, \
482 "" /* Undocumented. */, 0}, \
483 { "asm=", &ix86_asm_string, \
484 N_("Use given assembler dialect"), 0}, \
485 { "tls-dialect=", &ix86_tls_dialect_string, \
486 N_("Use given thread-local storage dialect"), 0}, \
487 SUBTARGET_OPTIONS \
488 }
489
490 /* Sometimes certain combinations of command options do not make
491 sense on a particular target machine. You can define a macro
492 `OVERRIDE_OPTIONS' to take account of this. This macro, if
493 defined, is executed once just after all the command options have
494 been parsed.
495
496 Don't use this macro to turn on various extra optimizations for
497 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
498
499 #define OVERRIDE_OPTIONS override_options ()
500
501 /* These are meant to be redefined in the host dependent files */
502 #define SUBTARGET_SWITCHES
503 #define SUBTARGET_OPTIONS
504
505 /* Define this to change the optimizations performed by default. */
506 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
507 optimization_options ((LEVEL), (SIZE))
508
509 /* Support for configure-time defaults of some command line options. */
510 #define OPTION_DEFAULT_SPECS \
511 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
512 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
513 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
514
515 /* Specs for the compiler proper */
516
517 #ifndef CC1_CPU_SPEC
518 #define CC1_CPU_SPEC "\
519 %{!mtune*: \
520 %{m386:mtune=i386 \
521 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
522 %{m486:-mtune=i486 \
523 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
524 %{mpentium:-mtune=pentium \
525 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
526 %{mpentiumpro:-mtune=pentiumpro \
527 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
528 %{mcpu=*:-mtune=%* \
529 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
530 %<mcpu=* \
531 %{mintel-syntax:-masm=intel \
532 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
533 %{mno-intel-syntax:-masm=att \
534 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
535 #endif
536 \f
537 /* Target CPU builtins. */
538 #define TARGET_CPU_CPP_BUILTINS() \
539 do \
540 { \
541 size_t arch_len = strlen (ix86_arch_string); \
542 size_t tune_len = strlen (ix86_tune_string); \
543 int last_arch_char = ix86_arch_string[arch_len - 1]; \
544 int last_tune_char = ix86_tune_string[tune_len - 1]; \
545 \
546 if (TARGET_64BIT) \
547 { \
548 builtin_assert ("cpu=x86_64"); \
549 builtin_assert ("machine=x86_64"); \
550 builtin_define ("__amd64"); \
551 builtin_define ("__amd64__"); \
552 builtin_define ("__x86_64"); \
553 builtin_define ("__x86_64__"); \
554 } \
555 else \
556 { \
557 builtin_assert ("cpu=i386"); \
558 builtin_assert ("machine=i386"); \
559 builtin_define_std ("i386"); \
560 } \
561 \
562 /* Built-ins based on -mtune= (or -march= if no \
563 -mtune= given). */ \
564 if (TARGET_386) \
565 builtin_define ("__tune_i386__"); \
566 else if (TARGET_486) \
567 builtin_define ("__tune_i486__"); \
568 else if (TARGET_PENTIUM) \
569 { \
570 builtin_define ("__tune_i586__"); \
571 builtin_define ("__tune_pentium__"); \
572 if (last_tune_char == 'x') \
573 builtin_define ("__tune_pentium_mmx__"); \
574 } \
575 else if (TARGET_PENTIUMPRO) \
576 { \
577 builtin_define ("__tune_i686__"); \
578 builtin_define ("__tune_pentiumpro__"); \
579 switch (last_tune_char) \
580 { \
581 case '3': \
582 builtin_define ("__tune_pentium3__"); \
583 /* FALLTHRU */ \
584 case '2': \
585 builtin_define ("__tune_pentium2__"); \
586 break; \
587 } \
588 } \
589 else if (TARGET_K6) \
590 { \
591 builtin_define ("__tune_k6__"); \
592 if (last_tune_char == '2') \
593 builtin_define ("__tune_k6_2__"); \
594 else if (last_tune_char == '3') \
595 builtin_define ("__tune_k6_3__"); \
596 } \
597 else if (TARGET_ATHLON) \
598 { \
599 builtin_define ("__tune_athlon__"); \
600 /* Only plain "athlon" lacks SSE. */ \
601 if (last_tune_char != 'n') \
602 builtin_define ("__tune_athlon_sse__"); \
603 } \
604 else if (TARGET_K8) \
605 builtin_define ("__tune_k8__"); \
606 else if (TARGET_PENTIUM4) \
607 builtin_define ("__tune_pentium4__"); \
608 \
609 if (TARGET_MMX) \
610 builtin_define ("__MMX__"); \
611 if (TARGET_3DNOW) \
612 builtin_define ("__3dNOW__"); \
613 if (TARGET_3DNOW_A) \
614 builtin_define ("__3dNOW_A__"); \
615 if (TARGET_SSE) \
616 builtin_define ("__SSE__"); \
617 if (TARGET_SSE2) \
618 builtin_define ("__SSE2__"); \
619 if (TARGET_PNI) \
620 builtin_define ("__PNI__"); \
621 if (TARGET_SSE_MATH && TARGET_SSE) \
622 builtin_define ("__SSE_MATH__"); \
623 if (TARGET_SSE_MATH && TARGET_SSE2) \
624 builtin_define ("__SSE2_MATH__"); \
625 \
626 /* Built-ins based on -march=. */ \
627 if (ix86_arch == PROCESSOR_I486) \
628 { \
629 builtin_define ("__i486"); \
630 builtin_define ("__i486__"); \
631 } \
632 else if (ix86_arch == PROCESSOR_PENTIUM) \
633 { \
634 builtin_define ("__i586"); \
635 builtin_define ("__i586__"); \
636 builtin_define ("__pentium"); \
637 builtin_define ("__pentium__"); \
638 if (last_arch_char == 'x') \
639 builtin_define ("__pentium_mmx__"); \
640 } \
641 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
642 { \
643 builtin_define ("__i686"); \
644 builtin_define ("__i686__"); \
645 builtin_define ("__pentiumpro"); \
646 builtin_define ("__pentiumpro__"); \
647 } \
648 else if (ix86_arch == PROCESSOR_K6) \
649 { \
650 \
651 builtin_define ("__k6"); \
652 builtin_define ("__k6__"); \
653 if (last_arch_char == '2') \
654 builtin_define ("__k6_2__"); \
655 else if (last_arch_char == '3') \
656 builtin_define ("__k6_3__"); \
657 } \
658 else if (ix86_arch == PROCESSOR_ATHLON) \
659 { \
660 builtin_define ("__athlon"); \
661 builtin_define ("__athlon__"); \
662 /* Only plain "athlon" lacks SSE. */ \
663 if (last_arch_char != 'n') \
664 builtin_define ("__athlon_sse__"); \
665 } \
666 else if (ix86_arch == PROCESSOR_K8) \
667 { \
668 builtin_define ("__k8"); \
669 builtin_define ("__k8__"); \
670 } \
671 else if (ix86_arch == PROCESSOR_PENTIUM4) \
672 { \
673 builtin_define ("__pentium4"); \
674 builtin_define ("__pentium4__"); \
675 } \
676 } \
677 while (0)
678
679 #define TARGET_CPU_DEFAULT_i386 0
680 #define TARGET_CPU_DEFAULT_i486 1
681 #define TARGET_CPU_DEFAULT_pentium 2
682 #define TARGET_CPU_DEFAULT_pentium_mmx 3
683 #define TARGET_CPU_DEFAULT_pentiumpro 4
684 #define TARGET_CPU_DEFAULT_pentium2 5
685 #define TARGET_CPU_DEFAULT_pentium3 6
686 #define TARGET_CPU_DEFAULT_pentium4 7
687 #define TARGET_CPU_DEFAULT_k6 8
688 #define TARGET_CPU_DEFAULT_k6_2 9
689 #define TARGET_CPU_DEFAULT_k6_3 10
690 #define TARGET_CPU_DEFAULT_athlon 11
691 #define TARGET_CPU_DEFAULT_athlon_sse 12
692 #define TARGET_CPU_DEFAULT_k8 13
693
694 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
695 "pentiumpro", "pentium2", "pentium3", \
696 "pentium4", "k6", "k6-2", "k6-3",\
697 "athlon", "athlon-4", "k8"}
698
699 #ifndef CC1_SPEC
700 #define CC1_SPEC "%(cc1_cpu) "
701 #endif
702
703 /* This macro defines names of additional specifications to put in the
704 specs that can be used in various specifications like CC1_SPEC. Its
705 definition is an initializer with a subgrouping for each command option.
706
707 Each subgrouping contains a string constant, that defines the
708 specification name, and a string constant that used by the GCC driver
709 program.
710
711 Do not define this macro if it does not need to do anything. */
712
713 #ifndef SUBTARGET_EXTRA_SPECS
714 #define SUBTARGET_EXTRA_SPECS
715 #endif
716
717 #define EXTRA_SPECS \
718 { "cc1_cpu", CC1_CPU_SPEC }, \
719 SUBTARGET_EXTRA_SPECS
720 \f
721 /* target machine storage layout */
722
723 #define LONG_DOUBLE_TYPE_SIZE 96
724
725 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
726 FPU, assume that the fpcw is set to extended precision; when using
727 only SSE, rounding is correct; when using both SSE and the FPU,
728 the rounding precision is indeterminate, since either may be chosen
729 apparently at random. */
730 #define TARGET_FLT_EVAL_METHOD \
731 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
732
733 #define SHORT_TYPE_SIZE 16
734 #define INT_TYPE_SIZE 32
735 #define FLOAT_TYPE_SIZE 32
736 #define LONG_TYPE_SIZE BITS_PER_WORD
737 #define MAX_WCHAR_TYPE_SIZE 32
738 #define DOUBLE_TYPE_SIZE 64
739 #define LONG_LONG_TYPE_SIZE 64
740
741 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
742 #define MAX_BITS_PER_WORD 64
743 #define MAX_LONG_TYPE_SIZE 64
744 #else
745 #define MAX_BITS_PER_WORD 32
746 #define MAX_LONG_TYPE_SIZE 32
747 #endif
748
749 /* Define this if most significant byte of a word is the lowest numbered. */
750 /* That is true on the 80386. */
751
752 #define BITS_BIG_ENDIAN 0
753
754 /* Define this if most significant byte of a word is the lowest numbered. */
755 /* That is not true on the 80386. */
756 #define BYTES_BIG_ENDIAN 0
757
758 /* Define this if most significant word of a multiword number is the lowest
759 numbered. */
760 /* Not true for 80386 */
761 #define WORDS_BIG_ENDIAN 0
762
763 /* Width of a word, in units (bytes). */
764 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
765 #ifdef IN_LIBGCC2
766 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
767 #else
768 #define MIN_UNITS_PER_WORD 4
769 #endif
770
771 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
772 #define PARM_BOUNDARY BITS_PER_WORD
773
774 /* Boundary (in *bits*) on which stack pointer should be aligned. */
775 #define STACK_BOUNDARY BITS_PER_WORD
776
777 /* Boundary (in *bits*) on which the stack pointer prefers to be
778 aligned; the compiler cannot rely on having this alignment. */
779 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
780
781 /* As of July 2001, many runtimes to not align the stack properly when
782 entering main. This causes expand_main_function to forcibly align
783 the stack, which results in aligned frames for functions called from
784 main, though it does nothing for the alignment of main itself. */
785 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
786 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
787
788 /* Minimum allocation boundary for the code of a function. */
789 #define FUNCTION_BOUNDARY 8
790
791 /* C++ stores the virtual bit in the lowest bit of function pointers. */
792 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
793
794 /* Alignment of field after `int : 0' in a structure. */
795
796 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
797
798 /* Minimum size in bits of the largest boundary to which any
799 and all fundamental data types supported by the hardware
800 might need to be aligned. No data type wants to be aligned
801 rounder than this.
802
803 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
804 and Pentium Pro XFmode values at 128 bit boundaries. */
805
806 #define BIGGEST_ALIGNMENT 128
807
808 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
809 #define ALIGN_MODE_128(MODE) \
810 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
811
812 /* The published ABIs say that doubles should be aligned on word
813 boundaries, so lower the alignment for structure fields unless
814 -malign-double is set. */
815
816 /* ??? Blah -- this macro is used directly by libobjc. Since it
817 supports no vector modes, cut out the complexity and fall back
818 on BIGGEST_FIELD_ALIGNMENT. */
819 #ifdef IN_TARGET_LIBS
820 #ifdef __x86_64__
821 #define BIGGEST_FIELD_ALIGNMENT 128
822 #else
823 #define BIGGEST_FIELD_ALIGNMENT 32
824 #endif
825 #else
826 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
827 x86_field_alignment (FIELD, COMPUTED)
828 #endif
829
830 /* If defined, a C expression to compute the alignment given to a
831 constant that is being placed in memory. EXP is the constant
832 and ALIGN is the alignment that the object would ordinarily have.
833 The value of this macro is used instead of that alignment to align
834 the object.
835
836 If this macro is not defined, then ALIGN is used.
837
838 The typical use of this macro is to increase alignment for string
839 constants to be word aligned so that `strcpy' calls that copy
840 constants can be done inline. */
841
842 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
843
844 /* If defined, a C expression to compute the alignment for a static
845 variable. TYPE is the data type, and ALIGN is the alignment that
846 the object would ordinarily have. The value of this macro is used
847 instead of that alignment to align the object.
848
849 If this macro is not defined, then ALIGN is used.
850
851 One use of this macro is to increase alignment of medium-size
852 data to make it all fit in fewer cache lines. Another is to
853 cause character arrays to be word-aligned so that `strcpy' calls
854 that copy constants to character arrays can be done inline. */
855
856 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
857
858 /* If defined, a C expression to compute the alignment for a local
859 variable. TYPE is the data type, and ALIGN is the alignment that
860 the object would ordinarily have. The value of this macro is used
861 instead of that alignment to align the object.
862
863 If this macro is not defined, then ALIGN is used.
864
865 One use of this macro is to increase alignment of medium-size
866 data to make it all fit in fewer cache lines. */
867
868 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
869
870 /* If defined, a C expression that gives the alignment boundary, in
871 bits, of an argument with the specified mode and type. If it is
872 not defined, `PARM_BOUNDARY' is used for all arguments. */
873
874 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
875 ix86_function_arg_boundary ((MODE), (TYPE))
876
877 /* Set this nonzero if move instructions will actually fail to work
878 when given unaligned data. */
879 #define STRICT_ALIGNMENT 0
880
881 /* If bit field type is int, don't let it cross an int,
882 and give entire struct the alignment of an int. */
883 /* Required on the 386 since it doesn't have bit-field insns. */
884 #define PCC_BITFIELD_TYPE_MATTERS 1
885 \f
886 /* Standard register usage. */
887
888 /* This processor has special stack-like registers. See reg-stack.c
889 for details. */
890
891 #define STACK_REGS
892 #define IS_STACK_MODE(MODE) \
893 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
894
895 /* Number of actual hardware registers.
896 The hardware registers are assigned numbers for the compiler
897 from 0 to just below FIRST_PSEUDO_REGISTER.
898 All registers that the compiler knows about must be given numbers,
899 even those that are not normally considered general registers.
900
901 In the 80386 we give the 8 general purpose registers the numbers 0-7.
902 We number the floating point registers 8-15.
903 Note that registers 0-7 can be accessed as a short or int,
904 while only 0-3 may be used with byte `mov' instructions.
905
906 Reg 16 does not correspond to any hardware register, but instead
907 appears in the RTL as an argument pointer prior to reload, and is
908 eliminated during reloading in favor of either the stack or frame
909 pointer. */
910
911 #define FIRST_PSEUDO_REGISTER 53
912
913 /* Number of hardware registers that go into the DWARF-2 unwind info.
914 If not defined, equals FIRST_PSEUDO_REGISTER. */
915
916 #define DWARF_FRAME_REGISTERS 17
917
918 /* 1 for registers that have pervasive standard uses
919 and are not available for the register allocator.
920 On the 80386, the stack pointer is such, as is the arg pointer.
921
922 The value is a mask - bit 1 is set for fixed registers
923 for 32bit target, while 2 is set for fixed registers for 64bit.
924 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
925 */
926 #define FIXED_REGISTERS \
927 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
928 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
929 /*arg,flags,fpsr,dir,frame*/ \
930 3, 3, 3, 3, 3, \
931 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
932 0, 0, 0, 0, 0, 0, 0, 0, \
933 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
934 0, 0, 0, 0, 0, 0, 0, 0, \
935 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
936 1, 1, 1, 1, 1, 1, 1, 1, \
937 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
938 1, 1, 1, 1, 1, 1, 1, 1}
939
940
941 /* 1 for registers not available across function calls.
942 These must include the FIXED_REGISTERS and also any
943 registers that can be used without being saved.
944 The latter must include the registers where values are returned
945 and the register where structure-value addresses are passed.
946 Aside from that, you can include as many other registers as you like.
947
948 The value is a mask - bit 1 is set for call used
949 for 32bit target, while 2 is set for call used for 64bit.
950 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
951 */
952 #define CALL_USED_REGISTERS \
953 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
954 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
955 /*arg,flags,fpsr,dir,frame*/ \
956 3, 3, 3, 3, 3, \
957 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
958 3, 3, 3, 3, 3, 3, 3, 3, \
959 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
960 3, 3, 3, 3, 3, 3, 3, 3, \
961 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
962 3, 3, 3, 3, 1, 1, 1, 1, \
963 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
964 3, 3, 3, 3, 3, 3, 3, 3} \
965
966 /* Order in which to allocate registers. Each register must be
967 listed once, even those in FIXED_REGISTERS. List frame pointer
968 late and fixed registers last. Note that, in general, we prefer
969 registers listed in CALL_USED_REGISTERS, keeping the others
970 available for storage of persistent values.
971
972 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
973 so this is just empty initializer for array. */
974
975 #define REG_ALLOC_ORDER \
976 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
977 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
978 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
979 48, 49, 50, 51, 52 }
980
981 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
982 to be rearranged based on a particular function. When using sse math,
983 we want to allocate SSE before x87 registers and vice vera. */
984
985 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
986
987
988 /* Macro to conditionally modify fixed_regs/call_used_regs. */
989 #define CONDITIONAL_REGISTER_USAGE \
990 do { \
991 int i; \
992 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
993 { \
994 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
995 call_used_regs[i] = (call_used_regs[i] \
996 & (TARGET_64BIT ? 2 : 1)) != 0; \
997 } \
998 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
999 { \
1000 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1001 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1002 } \
1003 if (! TARGET_MMX) \
1004 { \
1005 int i; \
1006 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1007 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1008 fixed_regs[i] = call_used_regs[i] = 1; \
1009 } \
1010 if (! TARGET_SSE) \
1011 { \
1012 int i; \
1013 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1014 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1015 fixed_regs[i] = call_used_regs[i] = 1; \
1016 } \
1017 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1018 { \
1019 int i; \
1020 HARD_REG_SET x; \
1021 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1022 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1023 if (TEST_HARD_REG_BIT (x, i)) \
1024 fixed_regs[i] = call_used_regs[i] = 1; \
1025 } \
1026 } while (0)
1027
1028 /* Return number of consecutive hard regs needed starting at reg REGNO
1029 to hold something of mode MODE.
1030 This is ordinarily the length in words of a value of mode MODE
1031 but can be less for certain modes in special long registers.
1032
1033 Actually there are no two word move instructions for consecutive
1034 registers. And only registers 0-3 may have mov byte instructions
1035 applied to them.
1036 */
1037
1038 #define HARD_REGNO_NREGS(REGNO, MODE) \
1039 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1040 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1041 : ((MODE) == XFmode \
1042 ? (TARGET_64BIT ? 2 : 3) \
1043 : (MODE) == XCmode \
1044 ? (TARGET_64BIT ? 4 : 6) \
1045 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1046
1047 #define VALID_SSE2_REG_MODE(MODE) \
1048 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1049 || (MODE) == V2DImode)
1050
1051 #define VALID_SSE_REG_MODE(MODE) \
1052 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1053 || (MODE) == SFmode || (MODE) == TFmode \
1054 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1055 || VALID_SSE2_REG_MODE (MODE) \
1056 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1057
1058 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1059 ((MODE) == V2SFmode || (MODE) == SFmode)
1060
1061 #define VALID_MMX_REG_MODE(MODE) \
1062 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1063 || (MODE) == V2SImode || (MODE) == SImode)
1064
1065 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1066 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1067 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1068 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1069
1070 #define VALID_FP_MODE_P(MODE) \
1071 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1072 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1073
1074 #define VALID_INT_MODE_P(MODE) \
1075 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1076 || (MODE) == DImode \
1077 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1078 || (MODE) == CDImode \
1079 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1080 || (MODE) == TFmode || (MODE) == TCmode)))
1081
1082 /* Return true for modes passed in SSE registers. */
1083 #define SSE_REG_MODE_P(MODE) \
1084 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
1085 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1086 || (MODE) == V4SFmode || (MODE) == V4SImode)
1087
1088 /* Return true for modes passed in MMX registers. */
1089 #define MMX_REG_MODE_P(MODE) \
1090 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1091 || (MODE) == V2SFmode)
1092
1093 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1094
1095 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1096 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1097
1098 /* Value is 1 if it is a good idea to tie two pseudo registers
1099 when one has mode MODE1 and one has mode MODE2.
1100 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1101 for any hard reg, then this must be 0 for correct output. */
1102
1103 #define MODES_TIEABLE_P(MODE1, MODE2) \
1104 ((MODE1) == (MODE2) \
1105 || (((MODE1) == HImode || (MODE1) == SImode \
1106 || ((MODE1) == QImode \
1107 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1108 || ((MODE1) == DImode && TARGET_64BIT)) \
1109 && ((MODE2) == HImode || (MODE2) == SImode \
1110 || ((MODE2) == QImode \
1111 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1112 || ((MODE2) == DImode && TARGET_64BIT))))
1113
1114 /* It is possible to write patterns to move flags; but until someone
1115 does it, */
1116 #define AVOID_CCMODE_COPIES
1117
1118 /* Specify the modes required to caller save a given hard regno.
1119 We do this on i386 to prevent flags from being saved at all.
1120
1121 Kill any attempts to combine saving of modes. */
1122
1123 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1124 (CC_REGNO_P (REGNO) ? VOIDmode \
1125 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1126 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1127 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1128 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1129 : (MODE))
1130 /* Specify the registers used for certain standard purposes.
1131 The values of these macros are register numbers. */
1132
1133 /* on the 386 the pc register is %eip, and is not usable as a general
1134 register. The ordinary mov instructions won't work */
1135 /* #define PC_REGNUM */
1136
1137 /* Register to use for pushing function arguments. */
1138 #define STACK_POINTER_REGNUM 7
1139
1140 /* Base register for access to local variables of the function. */
1141 #define HARD_FRAME_POINTER_REGNUM 6
1142
1143 /* Base register for access to local variables of the function. */
1144 #define FRAME_POINTER_REGNUM 20
1145
1146 /* First floating point reg */
1147 #define FIRST_FLOAT_REG 8
1148
1149 /* First & last stack-like regs */
1150 #define FIRST_STACK_REG FIRST_FLOAT_REG
1151 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1152
1153 #define FLAGS_REG 17
1154 #define FPSR_REG 18
1155 #define DIRFLAG_REG 19
1156
1157 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1158 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1159
1160 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1161 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1162
1163 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1164 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1165
1166 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1167 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1168
1169 /* Value should be nonzero if functions must have frame pointers.
1170 Zero means the frame pointer need not be set up (and parms
1171 may be accessed via the stack pointer) in functions that seem suitable.
1172 This is computed in `reload', in reload1.c. */
1173 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1174
1175 /* Override this in other tm.h files to cope with various OS losage
1176 requiring a frame pointer. */
1177 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1178 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1179 #endif
1180
1181 /* Make sure we can access arbitrary call frames. */
1182 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1183
1184 /* Base register for access to arguments of the function. */
1185 #define ARG_POINTER_REGNUM 16
1186
1187 /* Register in which static-chain is passed to a function.
1188 We do use ECX as static chain register for 32 bit ABI. On the
1189 64bit ABI, ECX is an argument register, so we use R10 instead. */
1190 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1191
1192 /* Register to hold the addressing base for position independent
1193 code access to data items. We don't use PIC pointer for 64bit
1194 mode. Define the regnum to dummy value to prevent gcc from
1195 pessimizing code dealing with EBX.
1196
1197 To avoid clobbering a call-saved register unnecessarily, we renumber
1198 the pic register when possible. The change is visible after the
1199 prologue has been emitted. */
1200
1201 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1202
1203 #define PIC_OFFSET_TABLE_REGNUM \
1204 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1205 : reload_completed ? REGNO (pic_offset_table_rtx) \
1206 : REAL_PIC_OFFSET_TABLE_REGNUM)
1207
1208 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1209
1210 /* Register in which address to store a structure value
1211 arrives in the function. On the 386, the prologue
1212 copies this from the stack to register %eax. */
1213 #define STRUCT_VALUE_INCOMING 0
1214
1215 /* Place in which caller passes the structure value address.
1216 0 means push the value on the stack like an argument. */
1217 #define STRUCT_VALUE 0
1218
1219 /* A C expression which can inhibit the returning of certain function
1220 values in registers, based on the type of value. A nonzero value
1221 says to return the function value in memory, just as large
1222 structures are always returned. Here TYPE will be a C expression
1223 of type `tree', representing the data type of the value.
1224
1225 Note that values of mode `BLKmode' must be explicitly handled by
1226 this macro. Also, the option `-fpcc-struct-return' takes effect
1227 regardless of this macro. On most systems, it is possible to
1228 leave the macro undefined; this causes a default definition to be
1229 used, whose value is the constant 1 for `BLKmode' values, and 0
1230 otherwise.
1231
1232 Do not use this macro to indicate that structures and unions
1233 should always be returned in memory. You should instead use
1234 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1235
1236 #define RETURN_IN_MEMORY(TYPE) \
1237 ix86_return_in_memory (TYPE)
1238
1239 /* This is overridden by <cygwin.h>. */
1240 #define MS_AGGREGATE_RETURN 0
1241
1242 \f
1243 /* Define the classes of registers for register constraints in the
1244 machine description. Also define ranges of constants.
1245
1246 One of the classes must always be named ALL_REGS and include all hard regs.
1247 If there is more than one class, another class must be named NO_REGS
1248 and contain no registers.
1249
1250 The name GENERAL_REGS must be the name of a class (or an alias for
1251 another name such as ALL_REGS). This is the class of registers
1252 that is allowed by "g" or "r" in a register constraint.
1253 Also, registers outside this class are allocated only when
1254 instructions express preferences for them.
1255
1256 The classes must be numbered in nondecreasing order; that is,
1257 a larger-numbered class must never be contained completely
1258 in a smaller-numbered class.
1259
1260 For any two classes, it is very desirable that there be another
1261 class that represents their union.
1262
1263 It might seem that class BREG is unnecessary, since no useful 386
1264 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1265 and the "b" register constraint is useful in asms for syscalls.
1266
1267 The flags and fpsr registers are in no class. */
1268
1269 enum reg_class
1270 {
1271 NO_REGS,
1272 AREG, DREG, CREG, BREG, SIREG, DIREG,
1273 AD_REGS, /* %eax/%edx for DImode */
1274 Q_REGS, /* %eax %ebx %ecx %edx */
1275 NON_Q_REGS, /* %esi %edi %ebp %esp */
1276 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1277 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1278 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1279 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1280 FLOAT_REGS,
1281 SSE_REGS,
1282 MMX_REGS,
1283 FP_TOP_SSE_REGS,
1284 FP_SECOND_SSE_REGS,
1285 FLOAT_SSE_REGS,
1286 FLOAT_INT_REGS,
1287 INT_SSE_REGS,
1288 FLOAT_INT_SSE_REGS,
1289 ALL_REGS, LIM_REG_CLASSES
1290 };
1291
1292 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1293
1294 #define INTEGER_CLASS_P(CLASS) \
1295 reg_class_subset_p ((CLASS), GENERAL_REGS)
1296 #define FLOAT_CLASS_P(CLASS) \
1297 reg_class_subset_p ((CLASS), FLOAT_REGS)
1298 #define SSE_CLASS_P(CLASS) \
1299 reg_class_subset_p ((CLASS), SSE_REGS)
1300 #define MMX_CLASS_P(CLASS) \
1301 reg_class_subset_p ((CLASS), MMX_REGS)
1302 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1303 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1304 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1305 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1306 #define MAYBE_SSE_CLASS_P(CLASS) \
1307 reg_classes_intersect_p (SSE_REGS, (CLASS))
1308 #define MAYBE_MMX_CLASS_P(CLASS) \
1309 reg_classes_intersect_p (MMX_REGS, (CLASS))
1310
1311 #define Q_CLASS_P(CLASS) \
1312 reg_class_subset_p ((CLASS), Q_REGS)
1313
1314 /* Give names of register classes as strings for dump file. */
1315
1316 #define REG_CLASS_NAMES \
1317 { "NO_REGS", \
1318 "AREG", "DREG", "CREG", "BREG", \
1319 "SIREG", "DIREG", \
1320 "AD_REGS", \
1321 "Q_REGS", "NON_Q_REGS", \
1322 "INDEX_REGS", \
1323 "LEGACY_REGS", \
1324 "GENERAL_REGS", \
1325 "FP_TOP_REG", "FP_SECOND_REG", \
1326 "FLOAT_REGS", \
1327 "SSE_REGS", \
1328 "MMX_REGS", \
1329 "FP_TOP_SSE_REGS", \
1330 "FP_SECOND_SSE_REGS", \
1331 "FLOAT_SSE_REGS", \
1332 "FLOAT_INT_REGS", \
1333 "INT_SSE_REGS", \
1334 "FLOAT_INT_SSE_REGS", \
1335 "ALL_REGS" }
1336
1337 /* Define which registers fit in which classes.
1338 This is an initializer for a vector of HARD_REG_SET
1339 of length N_REG_CLASSES. */
1340
1341 #define REG_CLASS_CONTENTS \
1342 { { 0x00, 0x0 }, \
1343 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1344 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1345 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1346 { 0x03, 0x0 }, /* AD_REGS */ \
1347 { 0x0f, 0x0 }, /* Q_REGS */ \
1348 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1349 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1350 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1351 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1352 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1353 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1354 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1355 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1356 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1357 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1358 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1359 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1360 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1361 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1362 { 0xffffffff,0x1fffff } \
1363 }
1364
1365 /* The same information, inverted:
1366 Return the class number of the smallest class containing
1367 reg number REGNO. This could be a conditional expression
1368 or could index an array. */
1369
1370 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1371
1372 /* When defined, the compiler allows registers explicitly used in the
1373 rtl to be used as spill registers but prevents the compiler from
1374 extending the lifetime of these registers. */
1375
1376 #define SMALL_REGISTER_CLASSES 1
1377
1378 #define QI_REG_P(X) \
1379 (REG_P (X) && REGNO (X) < 4)
1380
1381 #define GENERAL_REGNO_P(N) \
1382 ((N) < 8 || REX_INT_REGNO_P (N))
1383
1384 #define GENERAL_REG_P(X) \
1385 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1386
1387 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1388
1389 #define NON_QI_REG_P(X) \
1390 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1391
1392 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1393 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1394
1395 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1396 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1397 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1398 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1399
1400 #define SSE_REGNO_P(N) \
1401 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1402 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1403
1404 #define REX_SSE_REGNO_P(N) \
1405 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1406
1407 #define SSE_REGNO(N) \
1408 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1409 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1410
1411 #define SSE_FLOAT_MODE_P(MODE) \
1412 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1413
1414 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1415 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1416
1417 #define STACK_REG_P(XOP) \
1418 (REG_P (XOP) && \
1419 REGNO (XOP) >= FIRST_STACK_REG && \
1420 REGNO (XOP) <= LAST_STACK_REG)
1421
1422 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1423
1424 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1425
1426 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1427 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1428
1429 /* Indicate whether hard register numbered REG_NO should be converted
1430 to SSA form. */
1431 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1432 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1433
1434 /* The class value for index registers, and the one for base regs. */
1435
1436 #define INDEX_REG_CLASS INDEX_REGS
1437 #define BASE_REG_CLASS GENERAL_REGS
1438
1439 /* Get reg_class from a letter such as appears in the machine description. */
1440
1441 #define REG_CLASS_FROM_LETTER(C) \
1442 ((C) == 'r' ? GENERAL_REGS : \
1443 (C) == 'R' ? LEGACY_REGS : \
1444 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1445 (C) == 'Q' ? Q_REGS : \
1446 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1447 ? FLOAT_REGS \
1448 : NO_REGS) : \
1449 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1450 ? FP_TOP_REG \
1451 : NO_REGS) : \
1452 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1453 ? FP_SECOND_REG \
1454 : NO_REGS) : \
1455 (C) == 'a' ? AREG : \
1456 (C) == 'b' ? BREG : \
1457 (C) == 'c' ? CREG : \
1458 (C) == 'd' ? DREG : \
1459 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1460 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1461 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1462 (C) == 'A' ? AD_REGS : \
1463 (C) == 'D' ? DIREG : \
1464 (C) == 'S' ? SIREG : NO_REGS)
1465
1466 /* The letters I, J, K, L and M in a register constraint string
1467 can be used to stand for particular ranges of immediate operands.
1468 This macro defines what the ranges are.
1469 C is the letter, and VALUE is a constant value.
1470 Return 1 if VALUE is in the range specified by C.
1471
1472 I is for non-DImode shifts.
1473 J is for DImode shifts.
1474 K is for signed imm8 operands.
1475 L is for andsi as zero-extending move.
1476 M is for shifts that can be executed by the "lea" opcode.
1477 N is for immediate operands for out/in instructions (0-255)
1478 */
1479
1480 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1481 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1482 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1483 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1484 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1485 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1486 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1487 : 0)
1488
1489 /* Similar, but for floating constants, and defining letters G and H.
1490 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1491 TARGET_387 isn't set, because the stack register converter may need to
1492 load 0.0 into the function value register. */
1493
1494 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1495 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1496 : 0)
1497
1498 /* A C expression that defines the optional machine-dependent
1499 constraint letters that can be used to segregate specific types of
1500 operands, usually memory references, for the target machine. Any
1501 letter that is not elsewhere defined and not matched by
1502 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1503 be defined.
1504
1505 If it is required for a particular target machine, it should
1506 return 1 if VALUE corresponds to the operand type represented by
1507 the constraint letter C. If C is not defined as an extra
1508 constraint, the value returned should be 0 regardless of VALUE. */
1509
1510 #define EXTRA_CONSTRAINT(VALUE, D) \
1511 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1512 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1513 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1514 : 0)
1515
1516 /* Place additional restrictions on the register class to use when it
1517 is necessary to be able to hold a value of mode MODE in a reload
1518 register for which class CLASS would ordinarily be used. */
1519
1520 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1521 ((MODE) == QImode && !TARGET_64BIT \
1522 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1523 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1524 ? Q_REGS : (CLASS))
1525
1526 /* Given an rtx X being reloaded into a reg required to be
1527 in class CLASS, return the class of reg to actually use.
1528 In general this is just CLASS; but on some machines
1529 in some cases it is preferable to use a more restrictive class.
1530 On the 80386 series, we prevent floating constants from being
1531 reloaded into floating registers (since no move-insn can do that)
1532 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1533
1534 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1535 QImode must go into class Q_REGS.
1536 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1537 movdf to do mem-to-mem moves through integer regs. */
1538
1539 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1540 ix86_preferred_reload_class ((X), (CLASS))
1541
1542 /* If we are copying between general and FP registers, we need a memory
1543 location. The same is true for SSE and MMX registers. */
1544 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1545 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1546
1547 /* QImode spills from non-QI registers need a scratch. This does not
1548 happen often -- the only example so far requires an uninitialized
1549 pseudo. */
1550
1551 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1552 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1553 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1554 ? Q_REGS : NO_REGS)
1555
1556 /* Return the maximum number of consecutive registers
1557 needed to represent mode MODE in a register of class CLASS. */
1558 /* On the 80386, this is the size of MODE in words,
1559 except in the FP regs, where a single reg is always enough. */
1560 #define CLASS_MAX_NREGS(CLASS, MODE) \
1561 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1562 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1563 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1564 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1565
1566 /* A C expression whose value is nonzero if pseudos that have been
1567 assigned to registers of class CLASS would likely be spilled
1568 because registers of CLASS are needed for spill registers.
1569
1570 The default value of this macro returns 1 if CLASS has exactly one
1571 register and zero otherwise. On most machines, this default
1572 should be used. Only define this macro to some other expression
1573 if pseudo allocated by `local-alloc.c' end up in memory because
1574 their hard registers were needed for spill registers. If this
1575 macro returns nonzero for those classes, those pseudos will only
1576 be allocated by `global.c', which knows how to reallocate the
1577 pseudo to another register. If there would not be another
1578 register available for reallocation, you should not change the
1579 definition of this macro since the only effect of such a
1580 definition would be to slow down register allocation. */
1581
1582 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1583 (((CLASS) == AREG) \
1584 || ((CLASS) == DREG) \
1585 || ((CLASS) == CREG) \
1586 || ((CLASS) == BREG) \
1587 || ((CLASS) == AD_REGS) \
1588 || ((CLASS) == SIREG) \
1589 || ((CLASS) == DIREG))
1590
1591 /* Return a class of registers that cannot change FROM mode to TO mode.
1592
1593 x87 registers can't do subreg as all values are reformated to extended
1594 precision. XMM registers does not support with nonzero offsets equal
1595 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1596 determine these, prohibit all nonparadoxical subregs changing size. */
1597
1598 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1599 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1600 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1601 || MAYBE_MMX_CLASS_P (CLASS) \
1602 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1603 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1604
1605 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1606 to automatically clobber for all asms.
1607
1608 We do this in the new i386 backend to maintain source compatibility
1609 with the old cc0-based compiler. */
1610
1611 #define MD_ASM_CLOBBERS(CLOBBERS) \
1612 do { \
1613 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1614 (CLOBBERS)); \
1615 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1616 (CLOBBERS)); \
1617 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1618 (CLOBBERS)); \
1619 } while (0)
1620 \f
1621 /* Stack layout; function entry, exit and calling. */
1622
1623 /* Define this if pushing a word on the stack
1624 makes the stack pointer a smaller address. */
1625 #define STACK_GROWS_DOWNWARD
1626
1627 /* Define this if the nominal address of the stack frame
1628 is at the high-address end of the local variables;
1629 that is, each additional local variable allocated
1630 goes at a more negative offset in the frame. */
1631 #define FRAME_GROWS_DOWNWARD
1632
1633 /* Offset within stack frame to start allocating local variables at.
1634 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1635 first local allocated. Otherwise, it is the offset to the BEGINNING
1636 of the first local allocated. */
1637 #define STARTING_FRAME_OFFSET 0
1638
1639 /* If we generate an insn to push BYTES bytes,
1640 this says how many the stack pointer really advances by.
1641 On 386 pushw decrements by exactly 2 no matter what the position was.
1642 On the 386 there is no pushb; we use pushw instead, and this
1643 has the effect of rounding up to 2.
1644
1645 For 64bit ABI we round up to 8 bytes.
1646 */
1647
1648 #define PUSH_ROUNDING(BYTES) \
1649 (TARGET_64BIT \
1650 ? (((BYTES) + 7) & (-8)) \
1651 : (((BYTES) + 1) & (-2)))
1652
1653 /* If defined, the maximum amount of space required for outgoing arguments will
1654 be computed and placed into the variable
1655 `current_function_outgoing_args_size'. No space will be pushed onto the
1656 stack for each call; instead, the function prologue should increase the stack
1657 frame size by this amount. */
1658
1659 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1660
1661 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1662 instructions to pass outgoing arguments. */
1663
1664 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1665
1666 /* We want the stack and args grow in opposite directions, even if
1667 PUSH_ARGS is 0. */
1668 #define PUSH_ARGS_REVERSED 1
1669
1670 /* Offset of first parameter from the argument pointer register value. */
1671 #define FIRST_PARM_OFFSET(FNDECL) 0
1672
1673 /* Define this macro if functions should assume that stack space has been
1674 allocated for arguments even when their values are passed in registers.
1675
1676 The value of this macro is the size, in bytes, of the area reserved for
1677 arguments passed in registers for the function represented by FNDECL.
1678
1679 This space can be allocated by the caller, or be a part of the
1680 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1681 which. */
1682 #define REG_PARM_STACK_SPACE(FNDECL) 0
1683
1684 /* Define as a C expression that evaluates to nonzero if we do not know how
1685 to pass TYPE solely in registers. The file expr.h defines a
1686 definition that is usually appropriate, refer to expr.h for additional
1687 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1688 computed in the stack and then loaded into a register. */
1689 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1690
1691 /* Value is the number of bytes of arguments automatically
1692 popped when returning from a subroutine call.
1693 FUNDECL is the declaration node of the function (as a tree),
1694 FUNTYPE is the data type of the function (as a tree),
1695 or for a library call it is an identifier node for the subroutine name.
1696 SIZE is the number of bytes of arguments passed on the stack.
1697
1698 On the 80386, the RTD insn may be used to pop them if the number
1699 of args is fixed, but if the number is variable then the caller
1700 must pop them all. RTD can't be used for library calls now
1701 because the library is compiled with the Unix compiler.
1702 Use of RTD is a selectable option, since it is incompatible with
1703 standard Unix calling sequences. If the option is not selected,
1704 the caller must always pop the args.
1705
1706 The attribute stdcall is equivalent to RTD on a per module basis. */
1707
1708 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1709 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1710
1711 /* Define how to find the value returned by a function.
1712 VALTYPE is the data type of the value (as a tree).
1713 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1714 otherwise, FUNC is 0. */
1715 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1716 ix86_function_value (VALTYPE)
1717
1718 #define FUNCTION_VALUE_REGNO_P(N) \
1719 ix86_function_value_regno_p (N)
1720
1721 /* Define how to find the value returned by a library function
1722 assuming the value has mode MODE. */
1723
1724 #define LIBCALL_VALUE(MODE) \
1725 ix86_libcall_value (MODE)
1726
1727 /* Define the size of the result block used for communication between
1728 untyped_call and untyped_return. The block contains a DImode value
1729 followed by the block used by fnsave and frstor. */
1730
1731 #define APPLY_RESULT_SIZE (8+108)
1732
1733 /* 1 if N is a possible register number for function argument passing. */
1734 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1735
1736 /* Define a data type for recording info about an argument list
1737 during the scan of that argument list. This data type should
1738 hold all necessary information about the function itself
1739 and about the args processed so far, enough to enable macros
1740 such as FUNCTION_ARG to determine where the next arg should go. */
1741
1742 typedef struct ix86_args {
1743 int words; /* # words passed so far */
1744 int nregs; /* # registers available for passing */
1745 int regno; /* next available register number */
1746 int fastcall; /* fastcall calling convention is used */
1747 int sse_words; /* # sse words passed so far */
1748 int sse_nregs; /* # sse registers available for passing */
1749 int sse_regno; /* next available sse register number */
1750 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1751 } CUMULATIVE_ARGS;
1752
1753 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1754 for a call to a function whose data type is FNTYPE.
1755 For a library call, FNTYPE is 0. */
1756
1757 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL) \
1758 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1759
1760 /* Update the data in CUM to advance over an argument
1761 of mode MODE and data type TYPE.
1762 (TYPE is null for libcalls where that information may not be available.) */
1763
1764 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1765 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1766
1767 /* Define where to put the arguments to a function.
1768 Value is zero to push the argument on the stack,
1769 or a hard register in which to store the argument.
1770
1771 MODE is the argument's machine mode.
1772 TYPE is the data type of the argument (as a tree).
1773 This is null for libcalls where that information may
1774 not be available.
1775 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1776 the preceding args and about the function being called.
1777 NAMED is nonzero if this argument is a named parameter
1778 (otherwise it is an extra parameter matching an ellipsis). */
1779
1780 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1781 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1782
1783 /* For an arg passed partly in registers and partly in memory,
1784 this is the number of registers used.
1785 For args passed entirely in registers or entirely in memory, zero. */
1786
1787 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1788
1789 /* A C expression that indicates when an argument must be passed by
1790 reference. If nonzero for an argument, a copy of that argument is
1791 made in memory and a pointer to the argument is passed instead of
1792 the argument itself. The pointer is passed in whatever way is
1793 appropriate for passing a pointer to that type. */
1794
1795 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1796 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1797
1798 /* Perform any needed actions needed for a function that is receiving a
1799 variable number of arguments.
1800
1801 CUM is as above.
1802
1803 MODE and TYPE are the mode and type of the current parameter.
1804
1805 PRETEND_SIZE is a variable that should be set to the amount of stack
1806 that must be pushed by the prolog to pretend that our caller pushed
1807 it.
1808
1809 Normally, this macro will push all remaining incoming registers on the
1810 stack and set PRETEND_SIZE to the length of the registers pushed. */
1811
1812 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1813 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1814 (NO_RTL))
1815
1816 /* Implement `va_start' for varargs and stdarg. */
1817 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1818 ix86_va_start (VALIST, NEXTARG)
1819
1820 /* Implement `va_arg'. */
1821 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1822 ix86_va_arg ((VALIST), (TYPE))
1823
1824 #define TARGET_ASM_FILE_END ix86_file_end
1825 #define NEED_INDICATE_EXEC_STACK 0
1826
1827 /* Output assembler code to FILE to increment profiler label # LABELNO
1828 for profiling a function entry. */
1829
1830 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1831
1832 #define MCOUNT_NAME "_mcount"
1833
1834 #define PROFILE_COUNT_REGISTER "edx"
1835
1836 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1837 the stack pointer does not matter. The value is tested only in
1838 functions that have frame pointers.
1839 No definition is equivalent to always zero. */
1840 /* Note on the 386 it might be more efficient not to define this since
1841 we have to restore it ourselves from the frame pointer, in order to
1842 use pop */
1843
1844 #define EXIT_IGNORE_STACK 1
1845
1846 /* Output assembler code for a block containing the constant parts
1847 of a trampoline, leaving space for the variable parts. */
1848
1849 /* On the 386, the trampoline contains two instructions:
1850 mov #STATIC,ecx
1851 jmp FUNCTION
1852 The trampoline is generated entirely at runtime. The operand of JMP
1853 is the address of FUNCTION relative to the instruction following the
1854 JMP (which is 5 bytes long). */
1855
1856 /* Length in units of the trampoline for entering a nested function. */
1857
1858 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1859
1860 /* Emit RTL insns to initialize the variable parts of a trampoline.
1861 FNADDR is an RTX for the address of the function's pure code.
1862 CXT is an RTX for the static chain value for the function. */
1863
1864 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1865 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1866 \f
1867 /* Definitions for register eliminations.
1868
1869 This is an array of structures. Each structure initializes one pair
1870 of eliminable registers. The "from" register number is given first,
1871 followed by "to". Eliminations of the same "from" register are listed
1872 in order of preference.
1873
1874 There are two registers that can always be eliminated on the i386.
1875 The frame pointer and the arg pointer can be replaced by either the
1876 hard frame pointer or to the stack pointer, depending upon the
1877 circumstances. The hard frame pointer is not used before reload and
1878 so it is not eligible for elimination. */
1879
1880 #define ELIMINABLE_REGS \
1881 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1882 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1883 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1884 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1885
1886 /* Given FROM and TO register numbers, say whether this elimination is
1887 allowed. Frame pointer elimination is automatically handled.
1888
1889 All other eliminations are valid. */
1890
1891 #define CAN_ELIMINATE(FROM, TO) \
1892 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1893
1894 /* Define the offset between two registers, one to be eliminated, and the other
1895 its replacement, at the start of a routine. */
1896
1897 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1898 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1899 \f
1900 /* Addressing modes, and classification of registers for them. */
1901
1902 /* Macros to check register numbers against specific register classes. */
1903
1904 /* These assume that REGNO is a hard or pseudo reg number.
1905 They give nonzero only if REGNO is a hard reg of the suitable class
1906 or a pseudo reg currently allocated to a suitable hard reg.
1907 Since they use reg_renumber, they are safe only once reg_renumber
1908 has been allocated, which happens in local-alloc.c. */
1909
1910 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1911 ((REGNO) < STACK_POINTER_REGNUM \
1912 || (REGNO >= FIRST_REX_INT_REG \
1913 && (REGNO) <= LAST_REX_INT_REG) \
1914 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1915 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1916 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1917
1918 #define REGNO_OK_FOR_BASE_P(REGNO) \
1919 ((REGNO) <= STACK_POINTER_REGNUM \
1920 || (REGNO) == ARG_POINTER_REGNUM \
1921 || (REGNO) == FRAME_POINTER_REGNUM \
1922 || (REGNO >= FIRST_REX_INT_REG \
1923 && (REGNO) <= LAST_REX_INT_REG) \
1924 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1925 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1926 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1927
1928 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1929 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1930 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1931 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1932
1933 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1934 and check its validity for a certain class.
1935 We have two alternate definitions for each of them.
1936 The usual definition accepts all pseudo regs; the other rejects
1937 them unless they have been allocated suitable hard regs.
1938 The symbol REG_OK_STRICT causes the latter definition to be used.
1939
1940 Most source files want to accept pseudo regs in the hope that
1941 they will get allocated to the class that the insn wants them to be in.
1942 Source files for reload pass need to be strict.
1943 After reload, it makes no difference, since pseudo regs have
1944 been eliminated by then. */
1945
1946
1947 /* Non strict versions, pseudos are ok */
1948 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1949 (REGNO (X) < STACK_POINTER_REGNUM \
1950 || (REGNO (X) >= FIRST_REX_INT_REG \
1951 && REGNO (X) <= LAST_REX_INT_REG) \
1952 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1953
1954 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1955 (REGNO (X) <= STACK_POINTER_REGNUM \
1956 || REGNO (X) == ARG_POINTER_REGNUM \
1957 || REGNO (X) == FRAME_POINTER_REGNUM \
1958 || (REGNO (X) >= FIRST_REX_INT_REG \
1959 && REGNO (X) <= LAST_REX_INT_REG) \
1960 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1961
1962 /* Strict versions, hard registers only */
1963 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1964 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1965
1966 #ifndef REG_OK_STRICT
1967 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1968 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1969
1970 #else
1971 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1972 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1973 #endif
1974
1975 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1976 that is a valid memory address for an instruction.
1977 The MODE argument is the machine mode for the MEM expression
1978 that wants to use this address.
1979
1980 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1981 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1982
1983 See legitimize_pic_address in i386.c for details as to what
1984 constitutes a legitimate address when -fpic is used. */
1985
1986 #define MAX_REGS_PER_ADDRESS 2
1987
1988 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1989
1990 /* Nonzero if the constant value X is a legitimate general operand.
1991 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1992
1993 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1994
1995 #ifdef REG_OK_STRICT
1996 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1997 do { \
1998 if (legitimate_address_p ((MODE), (X), 1)) \
1999 goto ADDR; \
2000 } while (0)
2001
2002 #else
2003 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2004 do { \
2005 if (legitimate_address_p ((MODE), (X), 0)) \
2006 goto ADDR; \
2007 } while (0)
2008
2009 #endif
2010
2011 /* If defined, a C expression to determine the base term of address X.
2012 This macro is used in only one place: `find_base_term' in alias.c.
2013
2014 It is always safe for this macro to not be defined. It exists so
2015 that alias analysis can understand machine-dependent addresses.
2016
2017 The typical use of this macro is to handle addresses containing
2018 a label_ref or symbol_ref within an UNSPEC. */
2019
2020 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
2021
2022 /* Try machine-dependent ways of modifying an illegitimate address
2023 to be legitimate. If we find one, return the new, valid address.
2024 This macro is used in only one place: `memory_address' in explow.c.
2025
2026 OLDX is the address as it was before break_out_memory_refs was called.
2027 In some cases it is useful to look at this to decide what needs to be done.
2028
2029 MODE and WIN are passed so that this macro can use
2030 GO_IF_LEGITIMATE_ADDRESS.
2031
2032 It is always safe for this macro to do nothing. It exists to recognize
2033 opportunities to optimize the output.
2034
2035 For the 80386, we handle X+REG by loading X into a register R and
2036 using R+REG. R will go in a general reg and indexing will be used.
2037 However, if REG is a broken-out memory address or multiplication,
2038 nothing needs to be done because REG can certainly go in a general reg.
2039
2040 When -fpic is used, special handling is needed for symbolic references.
2041 See comments by legitimize_pic_address in i386.c for details. */
2042
2043 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2044 do { \
2045 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2046 if (memory_address_p ((MODE), (X))) \
2047 goto WIN; \
2048 } while (0)
2049
2050 #define REWRITE_ADDRESS(X) rewrite_address (X)
2051
2052 /* Nonzero if the constant value X is a legitimate general operand
2053 when generating PIC code. It is given that flag_pic is on and
2054 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2055
2056 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2057
2058 #define SYMBOLIC_CONST(X) \
2059 (GET_CODE (X) == SYMBOL_REF \
2060 || GET_CODE (X) == LABEL_REF \
2061 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2062
2063 /* Go to LABEL if ADDR (a legitimate address expression)
2064 has an effect that depends on the machine mode it is used for.
2065 On the 80386, only postdecrement and postincrement address depend thus
2066 (the amount of decrement or increment being the length of the operand). */
2067 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2068 do { \
2069 if (GET_CODE (ADDR) == POST_INC \
2070 || GET_CODE (ADDR) == POST_DEC) \
2071 goto LABEL; \
2072 } while (0)
2073 \f
2074 /* Codes for all the SSE/MMX builtins. */
2075 enum ix86_builtins
2076 {
2077 IX86_BUILTIN_ADDPS,
2078 IX86_BUILTIN_ADDSS,
2079 IX86_BUILTIN_DIVPS,
2080 IX86_BUILTIN_DIVSS,
2081 IX86_BUILTIN_MULPS,
2082 IX86_BUILTIN_MULSS,
2083 IX86_BUILTIN_SUBPS,
2084 IX86_BUILTIN_SUBSS,
2085
2086 IX86_BUILTIN_CMPEQPS,
2087 IX86_BUILTIN_CMPLTPS,
2088 IX86_BUILTIN_CMPLEPS,
2089 IX86_BUILTIN_CMPGTPS,
2090 IX86_BUILTIN_CMPGEPS,
2091 IX86_BUILTIN_CMPNEQPS,
2092 IX86_BUILTIN_CMPNLTPS,
2093 IX86_BUILTIN_CMPNLEPS,
2094 IX86_BUILTIN_CMPNGTPS,
2095 IX86_BUILTIN_CMPNGEPS,
2096 IX86_BUILTIN_CMPORDPS,
2097 IX86_BUILTIN_CMPUNORDPS,
2098 IX86_BUILTIN_CMPNEPS,
2099 IX86_BUILTIN_CMPEQSS,
2100 IX86_BUILTIN_CMPLTSS,
2101 IX86_BUILTIN_CMPLESS,
2102 IX86_BUILTIN_CMPNEQSS,
2103 IX86_BUILTIN_CMPNLTSS,
2104 IX86_BUILTIN_CMPNLESS,
2105 IX86_BUILTIN_CMPORDSS,
2106 IX86_BUILTIN_CMPUNORDSS,
2107 IX86_BUILTIN_CMPNESS,
2108
2109 IX86_BUILTIN_COMIEQSS,
2110 IX86_BUILTIN_COMILTSS,
2111 IX86_BUILTIN_COMILESS,
2112 IX86_BUILTIN_COMIGTSS,
2113 IX86_BUILTIN_COMIGESS,
2114 IX86_BUILTIN_COMINEQSS,
2115 IX86_BUILTIN_UCOMIEQSS,
2116 IX86_BUILTIN_UCOMILTSS,
2117 IX86_BUILTIN_UCOMILESS,
2118 IX86_BUILTIN_UCOMIGTSS,
2119 IX86_BUILTIN_UCOMIGESS,
2120 IX86_BUILTIN_UCOMINEQSS,
2121
2122 IX86_BUILTIN_CVTPI2PS,
2123 IX86_BUILTIN_CVTPS2PI,
2124 IX86_BUILTIN_CVTSI2SS,
2125 IX86_BUILTIN_CVTSI642SS,
2126 IX86_BUILTIN_CVTSS2SI,
2127 IX86_BUILTIN_CVTSS2SI64,
2128 IX86_BUILTIN_CVTTPS2PI,
2129 IX86_BUILTIN_CVTTSS2SI,
2130 IX86_BUILTIN_CVTTSS2SI64,
2131
2132 IX86_BUILTIN_MAXPS,
2133 IX86_BUILTIN_MAXSS,
2134 IX86_BUILTIN_MINPS,
2135 IX86_BUILTIN_MINSS,
2136
2137 IX86_BUILTIN_LOADAPS,
2138 IX86_BUILTIN_LOADUPS,
2139 IX86_BUILTIN_STOREAPS,
2140 IX86_BUILTIN_STOREUPS,
2141 IX86_BUILTIN_LOADSS,
2142 IX86_BUILTIN_STORESS,
2143 IX86_BUILTIN_MOVSS,
2144
2145 IX86_BUILTIN_MOVHLPS,
2146 IX86_BUILTIN_MOVLHPS,
2147 IX86_BUILTIN_LOADHPS,
2148 IX86_BUILTIN_LOADLPS,
2149 IX86_BUILTIN_STOREHPS,
2150 IX86_BUILTIN_STORELPS,
2151
2152 IX86_BUILTIN_MASKMOVQ,
2153 IX86_BUILTIN_MOVMSKPS,
2154 IX86_BUILTIN_PMOVMSKB,
2155
2156 IX86_BUILTIN_MOVNTPS,
2157 IX86_BUILTIN_MOVNTQ,
2158
2159 IX86_BUILTIN_LOADDQA,
2160 IX86_BUILTIN_LOADDQU,
2161 IX86_BUILTIN_STOREDQA,
2162 IX86_BUILTIN_STOREDQU,
2163 IX86_BUILTIN_MOVQ,
2164 IX86_BUILTIN_LOADD,
2165 IX86_BUILTIN_STORED,
2166
2167 IX86_BUILTIN_CLRTI,
2168
2169 IX86_BUILTIN_PACKSSWB,
2170 IX86_BUILTIN_PACKSSDW,
2171 IX86_BUILTIN_PACKUSWB,
2172
2173 IX86_BUILTIN_PADDB,
2174 IX86_BUILTIN_PADDW,
2175 IX86_BUILTIN_PADDD,
2176 IX86_BUILTIN_PADDQ,
2177 IX86_BUILTIN_PADDSB,
2178 IX86_BUILTIN_PADDSW,
2179 IX86_BUILTIN_PADDUSB,
2180 IX86_BUILTIN_PADDUSW,
2181 IX86_BUILTIN_PSUBB,
2182 IX86_BUILTIN_PSUBW,
2183 IX86_BUILTIN_PSUBD,
2184 IX86_BUILTIN_PSUBQ,
2185 IX86_BUILTIN_PSUBSB,
2186 IX86_BUILTIN_PSUBSW,
2187 IX86_BUILTIN_PSUBUSB,
2188 IX86_BUILTIN_PSUBUSW,
2189
2190 IX86_BUILTIN_PAND,
2191 IX86_BUILTIN_PANDN,
2192 IX86_BUILTIN_POR,
2193 IX86_BUILTIN_PXOR,
2194
2195 IX86_BUILTIN_PAVGB,
2196 IX86_BUILTIN_PAVGW,
2197
2198 IX86_BUILTIN_PCMPEQB,
2199 IX86_BUILTIN_PCMPEQW,
2200 IX86_BUILTIN_PCMPEQD,
2201 IX86_BUILTIN_PCMPGTB,
2202 IX86_BUILTIN_PCMPGTW,
2203 IX86_BUILTIN_PCMPGTD,
2204
2205 IX86_BUILTIN_PEXTRW,
2206 IX86_BUILTIN_PINSRW,
2207
2208 IX86_BUILTIN_PMADDWD,
2209
2210 IX86_BUILTIN_PMAXSW,
2211 IX86_BUILTIN_PMAXUB,
2212 IX86_BUILTIN_PMINSW,
2213 IX86_BUILTIN_PMINUB,
2214
2215 IX86_BUILTIN_PMULHUW,
2216 IX86_BUILTIN_PMULHW,
2217 IX86_BUILTIN_PMULLW,
2218
2219 IX86_BUILTIN_PSADBW,
2220 IX86_BUILTIN_PSHUFW,
2221
2222 IX86_BUILTIN_PSLLW,
2223 IX86_BUILTIN_PSLLD,
2224 IX86_BUILTIN_PSLLQ,
2225 IX86_BUILTIN_PSRAW,
2226 IX86_BUILTIN_PSRAD,
2227 IX86_BUILTIN_PSRLW,
2228 IX86_BUILTIN_PSRLD,
2229 IX86_BUILTIN_PSRLQ,
2230 IX86_BUILTIN_PSLLWI,
2231 IX86_BUILTIN_PSLLDI,
2232 IX86_BUILTIN_PSLLQI,
2233 IX86_BUILTIN_PSRAWI,
2234 IX86_BUILTIN_PSRADI,
2235 IX86_BUILTIN_PSRLWI,
2236 IX86_BUILTIN_PSRLDI,
2237 IX86_BUILTIN_PSRLQI,
2238
2239 IX86_BUILTIN_PUNPCKHBW,
2240 IX86_BUILTIN_PUNPCKHWD,
2241 IX86_BUILTIN_PUNPCKHDQ,
2242 IX86_BUILTIN_PUNPCKLBW,
2243 IX86_BUILTIN_PUNPCKLWD,
2244 IX86_BUILTIN_PUNPCKLDQ,
2245
2246 IX86_BUILTIN_SHUFPS,
2247
2248 IX86_BUILTIN_RCPPS,
2249 IX86_BUILTIN_RCPSS,
2250 IX86_BUILTIN_RSQRTPS,
2251 IX86_BUILTIN_RSQRTSS,
2252 IX86_BUILTIN_SQRTPS,
2253 IX86_BUILTIN_SQRTSS,
2254
2255 IX86_BUILTIN_UNPCKHPS,
2256 IX86_BUILTIN_UNPCKLPS,
2257
2258 IX86_BUILTIN_ANDPS,
2259 IX86_BUILTIN_ANDNPS,
2260 IX86_BUILTIN_ORPS,
2261 IX86_BUILTIN_XORPS,
2262
2263 IX86_BUILTIN_EMMS,
2264 IX86_BUILTIN_LDMXCSR,
2265 IX86_BUILTIN_STMXCSR,
2266 IX86_BUILTIN_SFENCE,
2267
2268 /* 3DNow! Original */
2269 IX86_BUILTIN_FEMMS,
2270 IX86_BUILTIN_PAVGUSB,
2271 IX86_BUILTIN_PF2ID,
2272 IX86_BUILTIN_PFACC,
2273 IX86_BUILTIN_PFADD,
2274 IX86_BUILTIN_PFCMPEQ,
2275 IX86_BUILTIN_PFCMPGE,
2276 IX86_BUILTIN_PFCMPGT,
2277 IX86_BUILTIN_PFMAX,
2278 IX86_BUILTIN_PFMIN,
2279 IX86_BUILTIN_PFMUL,
2280 IX86_BUILTIN_PFRCP,
2281 IX86_BUILTIN_PFRCPIT1,
2282 IX86_BUILTIN_PFRCPIT2,
2283 IX86_BUILTIN_PFRSQIT1,
2284 IX86_BUILTIN_PFRSQRT,
2285 IX86_BUILTIN_PFSUB,
2286 IX86_BUILTIN_PFSUBR,
2287 IX86_BUILTIN_PI2FD,
2288 IX86_BUILTIN_PMULHRW,
2289
2290 /* 3DNow! Athlon Extensions */
2291 IX86_BUILTIN_PF2IW,
2292 IX86_BUILTIN_PFNACC,
2293 IX86_BUILTIN_PFPNACC,
2294 IX86_BUILTIN_PI2FW,
2295 IX86_BUILTIN_PSWAPDSI,
2296 IX86_BUILTIN_PSWAPDSF,
2297
2298 IX86_BUILTIN_SSE_ZERO,
2299 IX86_BUILTIN_MMX_ZERO,
2300
2301 /* SSE2 */
2302 IX86_BUILTIN_ADDPD,
2303 IX86_BUILTIN_ADDSD,
2304 IX86_BUILTIN_DIVPD,
2305 IX86_BUILTIN_DIVSD,
2306 IX86_BUILTIN_MULPD,
2307 IX86_BUILTIN_MULSD,
2308 IX86_BUILTIN_SUBPD,
2309 IX86_BUILTIN_SUBSD,
2310
2311 IX86_BUILTIN_CMPEQPD,
2312 IX86_BUILTIN_CMPLTPD,
2313 IX86_BUILTIN_CMPLEPD,
2314 IX86_BUILTIN_CMPGTPD,
2315 IX86_BUILTIN_CMPGEPD,
2316 IX86_BUILTIN_CMPNEQPD,
2317 IX86_BUILTIN_CMPNLTPD,
2318 IX86_BUILTIN_CMPNLEPD,
2319 IX86_BUILTIN_CMPNGTPD,
2320 IX86_BUILTIN_CMPNGEPD,
2321 IX86_BUILTIN_CMPORDPD,
2322 IX86_BUILTIN_CMPUNORDPD,
2323 IX86_BUILTIN_CMPNEPD,
2324 IX86_BUILTIN_CMPEQSD,
2325 IX86_BUILTIN_CMPLTSD,
2326 IX86_BUILTIN_CMPLESD,
2327 IX86_BUILTIN_CMPNEQSD,
2328 IX86_BUILTIN_CMPNLTSD,
2329 IX86_BUILTIN_CMPNLESD,
2330 IX86_BUILTIN_CMPORDSD,
2331 IX86_BUILTIN_CMPUNORDSD,
2332 IX86_BUILTIN_CMPNESD,
2333
2334 IX86_BUILTIN_COMIEQSD,
2335 IX86_BUILTIN_COMILTSD,
2336 IX86_BUILTIN_COMILESD,
2337 IX86_BUILTIN_COMIGTSD,
2338 IX86_BUILTIN_COMIGESD,
2339 IX86_BUILTIN_COMINEQSD,
2340 IX86_BUILTIN_UCOMIEQSD,
2341 IX86_BUILTIN_UCOMILTSD,
2342 IX86_BUILTIN_UCOMILESD,
2343 IX86_BUILTIN_UCOMIGTSD,
2344 IX86_BUILTIN_UCOMIGESD,
2345 IX86_BUILTIN_UCOMINEQSD,
2346
2347 IX86_BUILTIN_MAXPD,
2348 IX86_BUILTIN_MAXSD,
2349 IX86_BUILTIN_MINPD,
2350 IX86_BUILTIN_MINSD,
2351
2352 IX86_BUILTIN_ANDPD,
2353 IX86_BUILTIN_ANDNPD,
2354 IX86_BUILTIN_ORPD,
2355 IX86_BUILTIN_XORPD,
2356
2357 IX86_BUILTIN_SQRTPD,
2358 IX86_BUILTIN_SQRTSD,
2359
2360 IX86_BUILTIN_UNPCKHPD,
2361 IX86_BUILTIN_UNPCKLPD,
2362
2363 IX86_BUILTIN_SHUFPD,
2364
2365 IX86_BUILTIN_LOADAPD,
2366 IX86_BUILTIN_LOADUPD,
2367 IX86_BUILTIN_STOREAPD,
2368 IX86_BUILTIN_STOREUPD,
2369 IX86_BUILTIN_LOADSD,
2370 IX86_BUILTIN_STORESD,
2371 IX86_BUILTIN_MOVSD,
2372
2373 IX86_BUILTIN_LOADHPD,
2374 IX86_BUILTIN_LOADLPD,
2375 IX86_BUILTIN_STOREHPD,
2376 IX86_BUILTIN_STORELPD,
2377
2378 IX86_BUILTIN_CVTDQ2PD,
2379 IX86_BUILTIN_CVTDQ2PS,
2380
2381 IX86_BUILTIN_CVTPD2DQ,
2382 IX86_BUILTIN_CVTPD2PI,
2383 IX86_BUILTIN_CVTPD2PS,
2384 IX86_BUILTIN_CVTTPD2DQ,
2385 IX86_BUILTIN_CVTTPD2PI,
2386
2387 IX86_BUILTIN_CVTPI2PD,
2388 IX86_BUILTIN_CVTSI2SD,
2389 IX86_BUILTIN_CVTSI642SD,
2390
2391 IX86_BUILTIN_CVTSD2SI,
2392 IX86_BUILTIN_CVTSD2SI64,
2393 IX86_BUILTIN_CVTSD2SS,
2394 IX86_BUILTIN_CVTSS2SD,
2395 IX86_BUILTIN_CVTTSD2SI,
2396 IX86_BUILTIN_CVTTSD2SI64,
2397
2398 IX86_BUILTIN_CVTPS2DQ,
2399 IX86_BUILTIN_CVTPS2PD,
2400 IX86_BUILTIN_CVTTPS2DQ,
2401
2402 IX86_BUILTIN_MOVNTI,
2403 IX86_BUILTIN_MOVNTPD,
2404 IX86_BUILTIN_MOVNTDQ,
2405
2406 IX86_BUILTIN_SETPD1,
2407 IX86_BUILTIN_SETPD,
2408 IX86_BUILTIN_CLRPD,
2409 IX86_BUILTIN_SETRPD,
2410 IX86_BUILTIN_LOADPD1,
2411 IX86_BUILTIN_LOADRPD,
2412 IX86_BUILTIN_STOREPD1,
2413 IX86_BUILTIN_STORERPD,
2414
2415 /* SSE2 MMX */
2416 IX86_BUILTIN_MASKMOVDQU,
2417 IX86_BUILTIN_MOVMSKPD,
2418 IX86_BUILTIN_PMOVMSKB128,
2419 IX86_BUILTIN_MOVQ2DQ,
2420 IX86_BUILTIN_MOVDQ2Q,
2421
2422 IX86_BUILTIN_PACKSSWB128,
2423 IX86_BUILTIN_PACKSSDW128,
2424 IX86_BUILTIN_PACKUSWB128,
2425
2426 IX86_BUILTIN_PADDB128,
2427 IX86_BUILTIN_PADDW128,
2428 IX86_BUILTIN_PADDD128,
2429 IX86_BUILTIN_PADDQ128,
2430 IX86_BUILTIN_PADDSB128,
2431 IX86_BUILTIN_PADDSW128,
2432 IX86_BUILTIN_PADDUSB128,
2433 IX86_BUILTIN_PADDUSW128,
2434 IX86_BUILTIN_PSUBB128,
2435 IX86_BUILTIN_PSUBW128,
2436 IX86_BUILTIN_PSUBD128,
2437 IX86_BUILTIN_PSUBQ128,
2438 IX86_BUILTIN_PSUBSB128,
2439 IX86_BUILTIN_PSUBSW128,
2440 IX86_BUILTIN_PSUBUSB128,
2441 IX86_BUILTIN_PSUBUSW128,
2442
2443 IX86_BUILTIN_PAND128,
2444 IX86_BUILTIN_PANDN128,
2445 IX86_BUILTIN_POR128,
2446 IX86_BUILTIN_PXOR128,
2447
2448 IX86_BUILTIN_PAVGB128,
2449 IX86_BUILTIN_PAVGW128,
2450
2451 IX86_BUILTIN_PCMPEQB128,
2452 IX86_BUILTIN_PCMPEQW128,
2453 IX86_BUILTIN_PCMPEQD128,
2454 IX86_BUILTIN_PCMPGTB128,
2455 IX86_BUILTIN_PCMPGTW128,
2456 IX86_BUILTIN_PCMPGTD128,
2457
2458 IX86_BUILTIN_PEXTRW128,
2459 IX86_BUILTIN_PINSRW128,
2460
2461 IX86_BUILTIN_PMADDWD128,
2462
2463 IX86_BUILTIN_PMAXSW128,
2464 IX86_BUILTIN_PMAXUB128,
2465 IX86_BUILTIN_PMINSW128,
2466 IX86_BUILTIN_PMINUB128,
2467
2468 IX86_BUILTIN_PMULUDQ,
2469 IX86_BUILTIN_PMULUDQ128,
2470 IX86_BUILTIN_PMULHUW128,
2471 IX86_BUILTIN_PMULHW128,
2472 IX86_BUILTIN_PMULLW128,
2473
2474 IX86_BUILTIN_PSADBW128,
2475 IX86_BUILTIN_PSHUFHW,
2476 IX86_BUILTIN_PSHUFLW,
2477 IX86_BUILTIN_PSHUFD,
2478
2479 IX86_BUILTIN_PSLLW128,
2480 IX86_BUILTIN_PSLLD128,
2481 IX86_BUILTIN_PSLLQ128,
2482 IX86_BUILTIN_PSRAW128,
2483 IX86_BUILTIN_PSRAD128,
2484 IX86_BUILTIN_PSRLW128,
2485 IX86_BUILTIN_PSRLD128,
2486 IX86_BUILTIN_PSRLQ128,
2487 IX86_BUILTIN_PSLLDQI128,
2488 IX86_BUILTIN_PSLLWI128,
2489 IX86_BUILTIN_PSLLDI128,
2490 IX86_BUILTIN_PSLLQI128,
2491 IX86_BUILTIN_PSRAWI128,
2492 IX86_BUILTIN_PSRADI128,
2493 IX86_BUILTIN_PSRLDQI128,
2494 IX86_BUILTIN_PSRLWI128,
2495 IX86_BUILTIN_PSRLDI128,
2496 IX86_BUILTIN_PSRLQI128,
2497
2498 IX86_BUILTIN_PUNPCKHBW128,
2499 IX86_BUILTIN_PUNPCKHWD128,
2500 IX86_BUILTIN_PUNPCKHDQ128,
2501 IX86_BUILTIN_PUNPCKHQDQ128,
2502 IX86_BUILTIN_PUNPCKLBW128,
2503 IX86_BUILTIN_PUNPCKLWD128,
2504 IX86_BUILTIN_PUNPCKLDQ128,
2505 IX86_BUILTIN_PUNPCKLQDQ128,
2506
2507 IX86_BUILTIN_CLFLUSH,
2508 IX86_BUILTIN_MFENCE,
2509 IX86_BUILTIN_LFENCE,
2510
2511 /* Prescott New Instructions. */
2512 IX86_BUILTIN_ADDSUBPS,
2513 IX86_BUILTIN_HADDPS,
2514 IX86_BUILTIN_HSUBPS,
2515 IX86_BUILTIN_MOVSHDUP,
2516 IX86_BUILTIN_MOVSLDUP,
2517 IX86_BUILTIN_ADDSUBPD,
2518 IX86_BUILTIN_HADDPD,
2519 IX86_BUILTIN_HSUBPD,
2520 IX86_BUILTIN_LOADDDUP,
2521 IX86_BUILTIN_MOVDDUP,
2522 IX86_BUILTIN_LDDQU,
2523
2524 IX86_BUILTIN_MONITOR,
2525 IX86_BUILTIN_MWAIT,
2526
2527 IX86_BUILTIN_MAX
2528 };
2529 \f
2530 /* Max number of args passed in registers. If this is more than 3, we will
2531 have problems with ebx (register #4), since it is a caller save register and
2532 is also used as the pic register in ELF. So for now, don't allow more than
2533 3 registers to be passed in registers. */
2534
2535 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2536
2537 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2538
2539 \f
2540 /* Specify the machine mode that this machine uses
2541 for the index in the tablejump instruction. */
2542 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2543
2544 /* Define as C expression which evaluates to nonzero if the tablejump
2545 instruction expects the table to contain offsets from the address of the
2546 table.
2547 Do not define this if the table should contain absolute addresses. */
2548 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2549
2550 /* Define this as 1 if `char' should by default be signed; else as 0. */
2551 #define DEFAULT_SIGNED_CHAR 1
2552
2553 /* Number of bytes moved into a data cache for a single prefetch operation. */
2554 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2555
2556 /* Number of prefetch operations that can be done in parallel. */
2557 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2558
2559 /* Max number of bytes we can move from memory to memory
2560 in one reasonably fast instruction. */
2561 #define MOVE_MAX 16
2562
2563 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2564 move efficiently, as opposed to MOVE_MAX which is the maximum
2565 number of bytes we can move with a single instruction. */
2566 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2567
2568 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2569 move-instruction pairs, we will do a movstr or libcall instead.
2570 Increasing the value will always make code faster, but eventually
2571 incurs high cost in increased code size.
2572
2573 If you don't define this, a reasonable default is used. */
2574
2575 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2576
2577 /* Define if shifts truncate the shift count
2578 which implies one can omit a sign-extension or zero-extension
2579 of a shift count. */
2580 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2581
2582 /* #define SHIFT_COUNT_TRUNCATED */
2583
2584 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2585 is done just by pretending it is already truncated. */
2586 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2587
2588 /* When a prototype says `char' or `short', really pass an `int'.
2589 (The 386 can't easily push less than an int.) */
2590
2591 #define PROMOTE_PROTOTYPES 1
2592
2593 /* A macro to update M and UNSIGNEDP when an object whose type is
2594 TYPE and which has the specified mode and signedness is to be
2595 stored in a register. This macro is only called when TYPE is a
2596 scalar type.
2597
2598 On i386 it is sometimes useful to promote HImode and QImode
2599 quantities to SImode. The choice depends on target type. */
2600
2601 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2602 do { \
2603 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2604 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2605 (MODE) = SImode; \
2606 } while (0)
2607
2608 /* Specify the machine mode that pointers have.
2609 After generation of rtl, the compiler makes no further distinction
2610 between pointers and any other objects of this machine mode. */
2611 #define Pmode (TARGET_64BIT ? DImode : SImode)
2612
2613 /* A function address in a call instruction
2614 is a byte address (for indexing purposes)
2615 so give the MEM rtx a byte's mode. */
2616 #define FUNCTION_MODE QImode
2617 \f
2618 /* A C expression for the cost of moving data from a register in class FROM to
2619 one in class TO. The classes are expressed using the enumeration values
2620 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2621 interpreted relative to that.
2622
2623 It is not required that the cost always equal 2 when FROM is the same as TO;
2624 on some machines it is expensive to move between registers if they are not
2625 general registers. */
2626
2627 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2628 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2629
2630 /* A C expression for the cost of moving data of mode M between a
2631 register and memory. A value of 2 is the default; this cost is
2632 relative to those in `REGISTER_MOVE_COST'.
2633
2634 If moving between registers and memory is more expensive than
2635 between two registers, you should define this macro to express the
2636 relative cost. */
2637
2638 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2639 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2640
2641 /* A C expression for the cost of a branch instruction. A value of 1
2642 is the default; other values are interpreted relative to that. */
2643
2644 #define BRANCH_COST ix86_branch_cost
2645
2646 /* Define this macro as a C expression which is nonzero if accessing
2647 less than a word of memory (i.e. a `char' or a `short') is no
2648 faster than accessing a word of memory, i.e., if such access
2649 require more than one instruction or if there is no difference in
2650 cost between byte and (aligned) word loads.
2651
2652 When this macro is not defined, the compiler will access a field by
2653 finding the smallest containing object; when it is defined, a
2654 fullword load will be used if alignment permits. Unless bytes
2655 accesses are faster than word accesses, using word accesses is
2656 preferable since it may eliminate subsequent memory access if
2657 subsequent accesses occur to other fields in the same word of the
2658 structure, but to different bytes. */
2659
2660 #define SLOW_BYTE_ACCESS 0
2661
2662 /* Nonzero if access to memory by shorts is slow and undesirable. */
2663 #define SLOW_SHORT_ACCESS 0
2664
2665 /* Define this macro to be the value 1 if unaligned accesses have a
2666 cost many times greater than aligned accesses, for example if they
2667 are emulated in a trap handler.
2668
2669 When this macro is nonzero, the compiler will act as if
2670 `STRICT_ALIGNMENT' were nonzero when generating code for block
2671 moves. This can cause significantly more instructions to be
2672 produced. Therefore, do not set this macro nonzero if unaligned
2673 accesses only add a cycle or two to the time for a memory access.
2674
2675 If the value of this macro is always zero, it need not be defined. */
2676
2677 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2678
2679 /* Define this macro if it is as good or better to call a constant
2680 function address than to call an address kept in a register.
2681
2682 Desirable on the 386 because a CALL with a constant address is
2683 faster than one with a register address. */
2684
2685 #define NO_FUNCTION_CSE
2686
2687 /* Define this macro if it is as good or better for a function to call
2688 itself with an explicit address than to call an address kept in a
2689 register. */
2690
2691 #define NO_RECURSIVE_FUNCTION_CSE
2692 \f
2693 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2694 return the mode to be used for the comparison.
2695
2696 For floating-point equality comparisons, CCFPEQmode should be used.
2697 VOIDmode should be used in all other cases.
2698
2699 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2700 possible, to allow for more combinations. */
2701
2702 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2703
2704 /* Return nonzero if MODE implies a floating point inequality can be
2705 reversed. */
2706
2707 #define REVERSIBLE_CC_MODE(MODE) 1
2708
2709 /* A C expression whose value is reversed condition code of the CODE for
2710 comparison done in CC_MODE mode. */
2711 #define REVERSE_CONDITION(CODE, MODE) \
2712 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2713 : reverse_condition_maybe_unordered (CODE))
2714
2715 \f
2716 /* Control the assembler format that we output, to the extent
2717 this does not vary between assemblers. */
2718
2719 /* How to refer to registers in assembler output.
2720 This sequence is indexed by compiler's hard-register-number (see above). */
2721
2722 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2723 For non floating point regs, the following are the HImode names.
2724
2725 For float regs, the stack top is sometimes referred to as "%st(0)"
2726 instead of just "%st". PRINT_REG handles this with the "y" code. */
2727
2728 #undef HI_REGISTER_NAMES
2729 #define HI_REGISTER_NAMES \
2730 {"ax","dx","cx","bx","si","di","bp","sp", \
2731 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2732 "argp", "flags", "fpsr", "dirflag", "frame", \
2733 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2734 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2735 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2736 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2737
2738 #define REGISTER_NAMES HI_REGISTER_NAMES
2739
2740 /* Table of additional register names to use in user input. */
2741
2742 #define ADDITIONAL_REGISTER_NAMES \
2743 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2744 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2745 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2746 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2747 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2748 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2749 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2750 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2751
2752 /* Note we are omitting these since currently I don't know how
2753 to get gcc to use these, since they want the same but different
2754 number as al, and ax.
2755 */
2756
2757 #define QI_REGISTER_NAMES \
2758 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2759
2760 /* These parallel the array above, and can be used to access bits 8:15
2761 of regs 0 through 3. */
2762
2763 #define QI_HIGH_REGISTER_NAMES \
2764 {"ah", "dh", "ch", "bh", }
2765
2766 /* How to renumber registers for dbx and gdb. */
2767
2768 #define DBX_REGISTER_NUMBER(N) \
2769 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2770
2771 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2772 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2773 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2774
2775 /* Before the prologue, RA is at 0(%esp). */
2776 #define INCOMING_RETURN_ADDR_RTX \
2777 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2778
2779 /* After the prologue, RA is at -4(AP) in the current frame. */
2780 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2781 ((COUNT) == 0 \
2782 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2783 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2784
2785 /* PC is dbx register 8; let's use that column for RA. */
2786 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2787
2788 /* Before the prologue, the top of the frame is at 4(%esp). */
2789 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2790
2791 /* Describe how we implement __builtin_eh_return. */
2792 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2793 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2794
2795
2796 /* Select a format to encode pointers in exception handling data. CODE
2797 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2798 true if the symbol may be affected by dynamic relocations.
2799
2800 ??? All x86 object file formats are capable of representing this.
2801 After all, the relocation needed is the same as for the call insn.
2802 Whether or not a particular assembler allows us to enter such, I
2803 guess we'll have to see. */
2804 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2805 (flag_pic \
2806 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2807 : DW_EH_PE_absptr)
2808
2809 /* This is how to output an insn to push a register on the stack.
2810 It need not be very fast code. */
2811
2812 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2813 do { \
2814 if (TARGET_64BIT) \
2815 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2816 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2817 else \
2818 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2819 } while (0)
2820
2821 /* This is how to output an insn to pop a register from the stack.
2822 It need not be very fast code. */
2823
2824 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2825 do { \
2826 if (TARGET_64BIT) \
2827 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2828 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2829 else \
2830 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2831 } while (0)
2832
2833 /* This is how to output an element of a case-vector that is absolute. */
2834
2835 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2836 ix86_output_addr_vec_elt ((FILE), (VALUE))
2837
2838 /* This is how to output an element of a case-vector that is relative. */
2839
2840 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2841 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2842
2843 /* Under some conditions we need jump tables in the text section, because
2844 the assembler cannot handle label differences between sections. */
2845
2846 #define JUMP_TABLES_IN_TEXT_SECTION \
2847 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2848
2849 /* A C statement that outputs an address constant appropriate to
2850 for DWARF debugging. */
2851
2852 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2853 i386_dwarf_output_addr_const ((FILE), (X))
2854
2855 /* Emit a dtp-relative reference to a TLS variable. */
2856
2857 #ifdef HAVE_AS_TLS
2858 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2859 i386_output_dwarf_dtprel (FILE, SIZE, X)
2860 #endif
2861
2862 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2863 and switch back. For x86 we do this only to save a few bytes that
2864 would otherwise be unused in the text section. */
2865 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2866 asm (SECTION_OP "\n\t" \
2867 "call " USER_LABEL_PREFIX #FUNC "\n" \
2868 TEXT_SECTION_ASM_OP);
2869 \f
2870 /* Print operand X (an rtx) in assembler syntax to file FILE.
2871 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2872 Effect of various CODE letters is described in i386.c near
2873 print_operand function. */
2874
2875 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2876 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2877
2878 /* Print the name of a register based on its machine mode and number.
2879 If CODE is 'w', pretend the mode is HImode.
2880 If CODE is 'b', pretend the mode is QImode.
2881 If CODE is 'k', pretend the mode is SImode.
2882 If CODE is 'q', pretend the mode is DImode.
2883 If CODE is 'h', pretend the reg is the `high' byte register.
2884 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op.
2885 If CODE is -1, it is not an error for X to be a virtual register. */
2886
2887 #define PRINT_REG(X, CODE, FILE) \
2888 print_reg ((X), (CODE), (FILE))
2889
2890 #define PRINT_OPERAND(FILE, X, CODE) \
2891 print_operand ((FILE), (X), (CODE))
2892
2893 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2894 print_operand_address ((FILE), (ADDR))
2895
2896 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2897 do { \
2898 if (! output_addr_const_extra (FILE, (X))) \
2899 goto FAIL; \
2900 } while (0);
2901
2902 /* a letter which is not needed by the normal asm syntax, which
2903 we can use for operand syntax in the extended asm */
2904
2905 #define ASM_OPERAND_LETTER '#'
2906 #define RET return ""
2907 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2908 \f
2909 /* Define the codes that are matched by predicates in i386.c. */
2910
2911 #define PREDICATE_CODES \
2912 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2913 SYMBOL_REF, LABEL_REF, CONST}}, \
2914 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2915 SYMBOL_REF, LABEL_REF, CONST}}, \
2916 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
2917 SYMBOL_REF, LABEL_REF, CONST}}, \
2918 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2919 SYMBOL_REF, LABEL_REF, CONST}}, \
2920 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2921 SYMBOL_REF, LABEL_REF, CONST}}, \
2922 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2923 SYMBOL_REF, LABEL_REF, CONST}}, \
2924 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2925 SYMBOL_REF, LABEL_REF}}, \
2926 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
2927 {"const_int_1_operand", {CONST_INT}}, \
2928 {"const_int_1_31_operand", {CONST_INT}}, \
2929 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2930 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2931 LABEL_REF, SUBREG, REG, MEM}}, \
2932 {"pic_symbolic_operand", {CONST}}, \
2933 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
2934 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
2935 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
2936 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
2937 {"const1_operand", {CONST_INT}}, \
2938 {"const248_operand", {CONST_INT}}, \
2939 {"const_0_to_3_operand", {CONST_INT}}, \
2940 {"const_0_to_7_operand", {CONST_INT}}, \
2941 {"const_0_to_15_operand", {CONST_INT}}, \
2942 {"const_0_to_255_operand", {CONST_INT}}, \
2943 {"incdec_operand", {CONST_INT}}, \
2944 {"mmx_reg_operand", {REG}}, \
2945 {"reg_no_sp_operand", {SUBREG, REG}}, \
2946 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2947 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
2948 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
2949 {"index_register_operand", {SUBREG, REG}}, \
2950 {"flags_reg_operand", {REG}}, \
2951 {"q_regs_operand", {SUBREG, REG}}, \
2952 {"non_q_regs_operand", {SUBREG, REG}}, \
2953 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
2954 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
2955 GE, UNGE, LTGT, UNEQ}}, \
2956 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
2957 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
2958 }}, \
2959 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
2960 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
2961 UNGE, UNGT, LTGT, UNEQ }}, \
2962 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
2963 GE, UNGE, LTGT, UNEQ}}, \
2964 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
2965 {"ext_register_operand", {SUBREG, REG}}, \
2966 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
2967 {"mult_operator", {MULT}}, \
2968 {"div_operator", {DIV}}, \
2969 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
2970 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
2971 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
2972 LSHIFTRT, ROTATERT}}, \
2973 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
2974 {"memory_displacement_operand", {MEM}}, \
2975 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2976 LABEL_REF, SUBREG, REG, MEM, AND}}, \
2977 {"long_memory_operand", {MEM}}, \
2978 {"tls_symbolic_operand", {SYMBOL_REF}}, \
2979 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2980 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2981 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
2982 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
2983 {"any_fp_register_operand", {REG}}, \
2984 {"register_and_not_any_fp_reg_operand", {REG}}, \
2985 {"fp_register_operand", {REG}}, \
2986 {"register_and_not_fp_reg_operand", {REG}}, \
2987 {"zero_extended_scalar_load_operand", {MEM}}, \
2988 {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}}, \
2989 {"no_seg_address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2990 LABEL_REF, SUBREG, REG, MEM, PLUS, MULT}},
2991
2992 /* A list of predicates that do special things with modes, and so
2993 should not elicit warnings for VOIDmode match_operand. */
2994
2995 #define SPECIAL_MODE_PREDICATES \
2996 "ext_register_operand",
2997 \f
2998 /* Which processor to schedule for. The cpu attribute defines a list that
2999 mirrors this list, so changes to i386.md must be made at the same time. */
3000
3001 enum processor_type
3002 {
3003 PROCESSOR_I386, /* 80386 */
3004 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3005 PROCESSOR_PENTIUM,
3006 PROCESSOR_PENTIUMPRO,
3007 PROCESSOR_K6,
3008 PROCESSOR_ATHLON,
3009 PROCESSOR_PENTIUM4,
3010 PROCESSOR_K8,
3011 PROCESSOR_max
3012 };
3013
3014 extern enum processor_type ix86_tune;
3015 extern const char *ix86_tune_string;
3016
3017 extern enum processor_type ix86_arch;
3018 extern const char *ix86_arch_string;
3019
3020 enum fpmath_unit
3021 {
3022 FPMATH_387 = 1,
3023 FPMATH_SSE = 2
3024 };
3025
3026 extern enum fpmath_unit ix86_fpmath;
3027 extern const char *ix86_fpmath_string;
3028
3029 enum tls_dialect
3030 {
3031 TLS_DIALECT_GNU,
3032 TLS_DIALECT_SUN
3033 };
3034
3035 extern enum tls_dialect ix86_tls_dialect;
3036 extern const char *ix86_tls_dialect_string;
3037
3038 enum cmodel {
3039 CM_32, /* The traditional 32-bit ABI. */
3040 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3041 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3042 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3043 CM_LARGE, /* No assumptions. */
3044 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3045 };
3046
3047 extern enum cmodel ix86_cmodel;
3048 extern const char *ix86_cmodel_string;
3049
3050 /* Size of the RED_ZONE area. */
3051 #define RED_ZONE_SIZE 128
3052 /* Reserved area of the red zone for temporaries. */
3053 #define RED_ZONE_RESERVE 8
3054
3055 enum asm_dialect {
3056 ASM_ATT,
3057 ASM_INTEL
3058 };
3059
3060 extern const char *ix86_asm_string;
3061 extern enum asm_dialect ix86_asm_dialect;
3062
3063 extern int ix86_regparm;
3064 extern const char *ix86_regparm_string;
3065
3066 extern int ix86_preferred_stack_boundary;
3067 extern const char *ix86_preferred_stack_boundary_string;
3068
3069 extern int ix86_branch_cost;
3070 extern const char *ix86_branch_cost_string;
3071
3072 extern const char *ix86_debug_arg_string;
3073 extern const char *ix86_debug_addr_string;
3074
3075 /* Obsoleted by -f options. Remove before 3.2 ships. */
3076 extern const char *ix86_align_loops_string;
3077 extern const char *ix86_align_jumps_string;
3078 extern const char *ix86_align_funcs_string;
3079
3080 /* Smallest class containing REGNO. */
3081 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3082
3083 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3084 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3085 \f
3086 /* To properly truncate FP values into integers, we need to set i387 control
3087 word. We can't emit proper mode switching code before reload, as spills
3088 generated by reload may truncate values incorrectly, but we still can avoid
3089 redundant computation of new control word by the mode switching pass.
3090 The fldcw instructions are still emitted redundantly, but this is probably
3091 not going to be noticeable problem, as most CPUs do have fast path for
3092 the sequence.
3093
3094 The machinery is to emit simple truncation instructions and split them
3095 before reload to instructions having USEs of two memory locations that
3096 are filled by this code to old and new control word.
3097
3098 Post-reload pass may be later used to eliminate the redundant fildcw if
3099 needed. */
3100
3101 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3102
3103 /* Define this macro if the port needs extra instructions inserted
3104 for mode switching in an optimizing compilation. */
3105
3106 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3107
3108 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3109 initializer for an array of integers. Each initializer element N
3110 refers to an entity that needs mode switching, and specifies the
3111 number of different modes that might need to be set for this
3112 entity. The position of the initializer in the initializer -
3113 starting counting at zero - determines the integer that is used to
3114 refer to the mode-switched entity in question. */
3115
3116 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3117
3118 /* ENTITY is an integer specifying a mode-switched entity. If
3119 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3120 return an integer value not larger than the corresponding element
3121 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3122 must be switched into prior to the execution of INSN. */
3123
3124 #define MODE_NEEDED(ENTITY, I) \
3125 (GET_CODE (I) == CALL_INSN \
3126 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3127 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3128 ? FP_CW_UNINITIALIZED \
3129 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3130 ? FP_CW_ANY \
3131 : FP_CW_STORED)
3132
3133 /* This macro specifies the order in which modes for ENTITY are
3134 processed. 0 is the highest priority. */
3135
3136 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3137
3138 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3139 is the set of hard registers live at the point where the insn(s)
3140 are to be inserted. */
3141
3142 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3143 ((MODE) == FP_CW_STORED \
3144 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3145 assign_386_stack_local (HImode, 2)), 0\
3146 : 0)
3147 \f
3148 /* Avoid renaming of stack registers, as doing so in combination with
3149 scheduling just increases amount of live registers at time and in
3150 the turn amount of fxch instructions needed.
3151
3152 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3153
3154 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3155 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3156
3157 \f
3158 #define DLL_IMPORT_EXPORT_PREFIX '#'
3159
3160 #define FASTCALL_PREFIX '@'
3161 \f
3162 struct machine_function GTY(())
3163 {
3164 struct stack_local_entry *stack_locals;
3165 const char *some_ld_name;
3166 int save_varrargs_registers;
3167 int accesses_prev_frame;
3168 int optimize_mode_switching;
3169 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3170 determine the style used. */
3171 int use_fast_prologue_epilogue;
3172 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3173 for. */
3174 int use_fast_prologue_epilogue_nregs;
3175 };
3176
3177 #define ix86_stack_locals (cfun->machine->stack_locals)
3178 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3179 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3180
3181 /* Control behavior of x86_file_start. */
3182 #define X86_FILE_START_VERSION_DIRECTIVE false
3183 #define X86_FILE_START_FLTUSED false
3184
3185 /*
3186 Local variables:
3187 version-control: t
3188 End:
3189 */