* config/i386/i386.h (ix86_return_in_memory): Add prototype.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #ifdef TARGET_64BIT_DEFAULT
101 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102 #else
103 #define TARGET_CPU_DEFAULT 0
104 #endif
105 #endif
106
107 /* Masks for the -m switches */
108 #define MASK_80387 0x00000001 /* Hardware floating point */
109 #define MASK_RTD 0x00000002 /* Use ret that pops args */
110 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
111 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
112 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
113 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
114 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
115 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
116 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
117 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
118 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
119 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
120 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
121 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
122 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
123 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
124 #define MASK_PNI 0x00010000 /* Support PNI regs/builtins */
125 #define MASK_3DNOW 0x00020000 /* Support 3Dnow builtins */
126 #define MASK_3DNOW_A 0x00040000 /* Support Athlon 3Dnow builtins */
127 #define MASK_128BIT_LONG_DOUBLE 0x00080000 /* long double size is 128bit */
128 #define MASK_64BIT 0x00100000 /* Produce 64bit code */
129 #define MASK_MS_BITFIELD_LAYOUT 0x00200000 /* Use native (MS) bitfield layout */
130 #define MASK_TLS_DIRECT_SEG_REFS 0x00400000 /* Avoid adding %gs:0 */
131
132 /* Unused: 0x03e0000 */
133
134 /* ... overlap with subtarget options starts by 0x04000000. */
135 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
136
137 /* Use the floating point instructions */
138 #define TARGET_80387 (target_flags & MASK_80387)
139
140 /* Compile using ret insn that pops args.
141 This will not work unless you use prototypes at least
142 for all functions that can take varying numbers of args. */
143 #define TARGET_RTD (target_flags & MASK_RTD)
144
145 /* Align doubles to a two word boundary. This breaks compatibility with
146 the published ABI's for structures containing doubles, but produces
147 faster code on the pentium. */
148 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
149
150 /* Use push instructions to save outgoing args. */
151 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
152
153 /* Accumulate stack adjustments to prologue/epilogue. */
154 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
155 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
156
157 /* Put uninitialized locals into bss, not data.
158 Meaningful only on svr3. */
159 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
160
161 /* Use IEEE floating point comparisons. These handle correctly the cases
162 where the result of a comparison is unordered. Normally SIGFPE is
163 generated in such cases, in which case this isn't needed. */
164 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
165
166 /* Functions that return a floating point value may return that value
167 in the 387 FPU or in 386 integer registers. If set, this flag causes
168 the 387 to be used, which is compatible with most calling conventions. */
169 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
170
171 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
172 This mode wastes cache, but avoid misaligned data accesses and simplifies
173 address calculations. */
174 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
175
176 /* Disable generation of FP sin, cos and sqrt operations for 387.
177 This is because FreeBSD lacks these in the math-emulator-code */
178 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
179
180 /* Don't create frame pointers for leaf functions */
181 #define TARGET_OMIT_LEAF_FRAME_POINTER \
182 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
183
184 /* Debug GO_IF_LEGITIMATE_ADDRESS */
185 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
186
187 /* Debug FUNCTION_ARG macros */
188 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
189
190 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
191 compile-time constant. */
192 #ifdef IN_LIBGCC2
193 #ifdef __x86_64__
194 #define TARGET_64BIT 1
195 #else
196 #define TARGET_64BIT 0
197 #endif
198 #else
199 #ifdef TARGET_BI_ARCH
200 #define TARGET_64BIT (target_flags & MASK_64BIT)
201 #else
202 #if TARGET_64BIT_DEFAULT
203 #define TARGET_64BIT 1
204 #else
205 #define TARGET_64BIT 0
206 #endif
207 #endif
208 #endif
209
210 /* Avoid adding %gs:0 in TLS references; use %gs:address directly. */
211 #define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
212
213 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
214 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
215 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
216 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
217 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
218 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
219 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
220 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
221 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
222
223 #define TUNEMASK (1 << ix86_tune)
224 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
225 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
226 extern const int x86_branch_hints, x86_unroll_strlen;
227 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
228 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
229 extern const int x86_use_cltd, x86_read_modify_write;
230 extern const int x86_read_modify, x86_split_long_moves;
231 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
232 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
233 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
234 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
235 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
236 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
237 extern const int x86_epilogue_using_move, x86_decompose_lea;
238 extern const int x86_arch_always_fancy_math_387, x86_shift1;
239 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
240 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
241 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
242 extern const int x86_inter_unit_moves;
243 extern int x86_prefetch_sse;
244
245 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
246 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
247 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
248 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
249 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
250 /* For sane SSE instruction set generation we need fcomi instruction. It is
251 safe to enable all CMOVE instructions. */
252 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
253 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
254 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
255 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
256 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
257 #define TARGET_MOVX (x86_movx & TUNEMASK)
258 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
259 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
260 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
261 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
262 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
263 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
264 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
265 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
266 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
267 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
268 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
269 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
270 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
271 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
272 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
273 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
274 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
275 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
276 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
277 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
278 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
279 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
280 (x86_sse_partial_reg_dependency & TUNEMASK)
281 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
282 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
283 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
284 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
285 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
286 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
287 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
288 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
289 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
290 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
291 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
292 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
293 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
294 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
295 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
296
297 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
298
299 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
300 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
301
302 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
303
304 #define TARGET_SSE ((target_flags & MASK_SSE) != 0)
305 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
306 #define TARGET_PNI ((target_flags & MASK_PNI) != 0)
307 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
308 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
309 && (ix86_fpmath & FPMATH_387))
310 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
311 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
312 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
313
314 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
315
316 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
317
318 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
319 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
320
321 /* WARNING: Do not mark empty strings for translation, as calling
322 gettext on an empty string does NOT return an empty
323 string. */
324
325
326 #define TARGET_SWITCHES \
327 { { "80387", MASK_80387, N_("Use hardware fp") }, \
328 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
329 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
330 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
331 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
332 { "386", 0, "" /*Deprecated.*/}, \
333 { "486", 0, "" /*Deprecated.*/}, \
334 { "pentium", 0, "" /*Deprecated.*/}, \
335 { "pentiumpro", 0, "" /*Deprecated.*/}, \
336 { "intel-syntax", 0, "" /*Deprecated.*/}, \
337 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
338 { "rtd", MASK_RTD, \
339 N_("Alternate calling convention") }, \
340 { "no-rtd", -MASK_RTD, \
341 N_("Use normal calling convention") }, \
342 { "align-double", MASK_ALIGN_DOUBLE, \
343 N_("Align some doubles on dword boundary") }, \
344 { "no-align-double", -MASK_ALIGN_DOUBLE, \
345 N_("Align doubles on word boundary") }, \
346 { "svr3-shlib", MASK_SVR3_SHLIB, \
347 N_("Uninitialized locals in .bss") }, \
348 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
349 N_("Uninitialized locals in .data") }, \
350 { "ieee-fp", MASK_IEEE_FP, \
351 N_("Use IEEE math for fp comparisons") }, \
352 { "no-ieee-fp", -MASK_IEEE_FP, \
353 N_("Do not use IEEE math for fp comparisons") }, \
354 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
355 N_("Return values of functions in FPU registers") }, \
356 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
357 N_("Do not return values of functions in FPU registers")}, \
358 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
359 N_("Do not generate sin, cos, sqrt for FPU") }, \
360 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
361 N_("Generate sin, cos, sqrt for FPU")}, \
362 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
363 N_("Omit the frame pointer in leaf functions") }, \
364 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
365 { "stack-arg-probe", MASK_STACK_PROBE, \
366 N_("Enable stack probing") }, \
367 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
368 { "windows", 0, 0 /* undocumented */ }, \
369 { "dll", 0, 0 /* undocumented */ }, \
370 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
371 N_("Align destination of the string operations") }, \
372 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
373 N_("Do not align destination of the string operations") }, \
374 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
375 N_("Inline all known string operations") }, \
376 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
377 N_("Do not inline all known string operations") }, \
378 { "push-args", -MASK_NO_PUSH_ARGS, \
379 N_("Use push instructions to save outgoing arguments") }, \
380 { "no-push-args", MASK_NO_PUSH_ARGS, \
381 N_("Do not use push instructions to save outgoing arguments") }, \
382 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
383 N_("Use push instructions to save outgoing arguments") }, \
384 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
385 N_("Do not use push instructions to save outgoing arguments") }, \
386 { "mmx", MASK_MMX, \
387 N_("Support MMX built-in functions") }, \
388 { "no-mmx", -MASK_MMX, \
389 N_("Do not support MMX built-in functions") }, \
390 { "3dnow", MASK_3DNOW, \
391 N_("Support 3DNow! built-in functions") }, \
392 { "no-3dnow", -MASK_3DNOW, \
393 N_("Do not support 3DNow! built-in functions") }, \
394 { "sse", MASK_SSE, \
395 N_("Support MMX and SSE built-in functions and code generation") }, \
396 { "no-sse", -MASK_SSE, \
397 N_("Do not support MMX and SSE built-in functions and code generation") },\
398 { "sse2", MASK_SSE2, \
399 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
400 { "no-sse2", -MASK_SSE2, \
401 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
402 { "pni", MASK_PNI, \
403 N_("Support MMX, SSE, SSE2 and PNI built-in functions and code generation") },\
404 { "no-pni", -MASK_PNI, \
405 N_("Do not support MMX, SSE, SSE2 and PNI built-in functions and code generation") },\
406 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
407 N_("sizeof(long double) is 16") }, \
408 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
409 N_("sizeof(long double) is 12") }, \
410 { "64", MASK_64BIT, \
411 N_("Generate 64bit x86-64 code") }, \
412 { "32", -MASK_64BIT, \
413 N_("Generate 32bit i386 code") }, \
414 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
415 N_("Use native (MS) bitfield layout") }, \
416 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
417 N_("Use gcc default bitfield layout") }, \
418 { "red-zone", -MASK_NO_RED_ZONE, \
419 N_("Use red-zone in the x86-64 code") }, \
420 { "no-red-zone", MASK_NO_RED_ZONE, \
421 N_("Do not use red-zone in the x86-64 code") }, \
422 { "tls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS, \
423 N_("Use direct references against %gs when accessing tls data") }, \
424 { "no-tls-direct-seg-refs", -MASK_TLS_DIRECT_SEG_REFS, \
425 N_("Do not use direct references against %gs when accessing tls data") }, \
426 SUBTARGET_SWITCHES \
427 { "", \
428 TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT \
429 | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
430
431 #ifndef TARGET_64BIT_DEFAULT
432 #define TARGET_64BIT_DEFAULT 0
433 #endif
434 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
435 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
436 #endif
437
438 /* Once GDB has been enhanced to deal with functions without frame
439 pointers, we can change this to allow for elimination of
440 the frame pointer in leaf functions. */
441 #define TARGET_DEFAULT 0
442
443 /* This is not really a target flag, but is done this way so that
444 it's analogous to similar code for Mach-O on PowerPC. darwin.h
445 redefines this to 1. */
446 #define TARGET_MACHO 0
447
448 /* This macro is similar to `TARGET_SWITCHES' but defines names of
449 command options that have values. Its definition is an
450 initializer with a subgrouping for each command option.
451
452 Each subgrouping contains a string constant, that defines the
453 fixed part of the option name, and the address of a variable. The
454 variable, type `char *', is set to the variable part of the given
455 option if the fixed part matches. The actual option name is made
456 by appending `-m' to the specified name. */
457 #define TARGET_OPTIONS \
458 { { "tune=", &ix86_tune_string, \
459 N_("Schedule code for given CPU"), 0}, \
460 { "fpmath=", &ix86_fpmath_string, \
461 N_("Generate floating point mathematics using given instruction set"), 0},\
462 { "arch=", &ix86_arch_string, \
463 N_("Generate code for given CPU"), 0}, \
464 { "regparm=", &ix86_regparm_string, \
465 N_("Number of registers used to pass integer arguments"), 0},\
466 { "align-loops=", &ix86_align_loops_string, \
467 N_("Loop code aligned to this power of 2"), 0}, \
468 { "align-jumps=", &ix86_align_jumps_string, \
469 N_("Jump targets are aligned to this power of 2"), 0}, \
470 { "align-functions=", &ix86_align_funcs_string, \
471 N_("Function starts are aligned to this power of 2"), 0}, \
472 { "preferred-stack-boundary=", \
473 &ix86_preferred_stack_boundary_string, \
474 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
475 { "branch-cost=", &ix86_branch_cost_string, \
476 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
477 { "cmodel=", &ix86_cmodel_string, \
478 N_("Use given x86-64 code model"), 0}, \
479 { "debug-arg", &ix86_debug_arg_string, \
480 "" /* Undocumented. */, 0}, \
481 { "debug-addr", &ix86_debug_addr_string, \
482 "" /* Undocumented. */, 0}, \
483 { "asm=", &ix86_asm_string, \
484 N_("Use given assembler dialect"), 0}, \
485 { "tls-dialect=", &ix86_tls_dialect_string, \
486 N_("Use given thread-local storage dialect"), 0}, \
487 SUBTARGET_OPTIONS \
488 }
489
490 /* Sometimes certain combinations of command options do not make
491 sense on a particular target machine. You can define a macro
492 `OVERRIDE_OPTIONS' to take account of this. This macro, if
493 defined, is executed once just after all the command options have
494 been parsed.
495
496 Don't use this macro to turn on various extra optimizations for
497 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
498
499 #define OVERRIDE_OPTIONS override_options ()
500
501 /* These are meant to be redefined in the host dependent files */
502 #define SUBTARGET_SWITCHES
503 #define SUBTARGET_OPTIONS
504
505 /* Define this to change the optimizations performed by default. */
506 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
507 optimization_options ((LEVEL), (SIZE))
508
509 /* Support for configure-time defaults of some command line options. */
510 #define OPTION_DEFAULT_SPECS \
511 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
512 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
513 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
514
515 /* Specs for the compiler proper */
516
517 #ifndef CC1_CPU_SPEC
518 #define CC1_CPU_SPEC "\
519 %{!mtune*: \
520 %{m386:mtune=i386 \
521 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
522 %{m486:-mtune=i486 \
523 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
524 %{mpentium:-mtune=pentium \
525 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
526 %{mpentiumpro:-mtune=pentiumpro \
527 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
528 %{mcpu=*:-mtune=%* \
529 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
530 %<mcpu=* \
531 %{mintel-syntax:-masm=intel \
532 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
533 %{mno-intel-syntax:-masm=att \
534 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
535 #endif
536 \f
537 /* Target CPU builtins. */
538 #define TARGET_CPU_CPP_BUILTINS() \
539 do \
540 { \
541 size_t arch_len = strlen (ix86_arch_string); \
542 size_t tune_len = strlen (ix86_tune_string); \
543 int last_arch_char = ix86_arch_string[arch_len - 1]; \
544 int last_tune_char = ix86_tune_string[tune_len - 1]; \
545 \
546 if (TARGET_64BIT) \
547 { \
548 builtin_assert ("cpu=x86_64"); \
549 builtin_define ("__amd64"); \
550 builtin_define ("__amd64__"); \
551 builtin_define ("__x86_64"); \
552 builtin_define ("__x86_64__"); \
553 builtin_define ("__amd64"); \
554 builtin_define ("__amd64__"); \
555 } \
556 else \
557 { \
558 builtin_assert ("cpu=i386"); \
559 builtin_assert ("machine=i386"); \
560 builtin_define_std ("i386"); \
561 } \
562 \
563 /* Built-ins based on -mtune= (or -march= if no \
564 -mtune= given). */ \
565 if (TARGET_386) \
566 builtin_define ("__tune_i386__"); \
567 else if (TARGET_486) \
568 builtin_define ("__tune_i486__"); \
569 else if (TARGET_PENTIUM) \
570 { \
571 builtin_define ("__tune_i586__"); \
572 builtin_define ("__tune_pentium__"); \
573 if (last_tune_char == 'x') \
574 builtin_define ("__tune_pentium_mmx__"); \
575 } \
576 else if (TARGET_PENTIUMPRO) \
577 { \
578 builtin_define ("__tune_i686__"); \
579 builtin_define ("__tune_pentiumpro__"); \
580 switch (last_tune_char) \
581 { \
582 case '3': \
583 builtin_define ("__tune_pentium3__"); \
584 /* FALLTHRU */ \
585 case '2': \
586 builtin_define ("__tune_pentium2__"); \
587 break; \
588 } \
589 } \
590 else if (TARGET_K6) \
591 { \
592 builtin_define ("__tune_k6__"); \
593 if (last_tune_char == '2') \
594 builtin_define ("__tune_k6_2__"); \
595 else if (last_tune_char == '3') \
596 builtin_define ("__tune_k6_3__"); \
597 } \
598 else if (TARGET_ATHLON) \
599 { \
600 builtin_define ("__tune_athlon__"); \
601 /* Only plain "athlon" lacks SSE. */ \
602 if (last_tune_char != 'n') \
603 builtin_define ("__tune_athlon_sse__"); \
604 } \
605 else if (TARGET_K8) \
606 builtin_define ("__tune_k8__"); \
607 else if (TARGET_PENTIUM4) \
608 builtin_define ("__tune_pentium4__"); \
609 \
610 if (TARGET_MMX) \
611 builtin_define ("__MMX__"); \
612 if (TARGET_3DNOW) \
613 builtin_define ("__3dNOW__"); \
614 if (TARGET_3DNOW_A) \
615 builtin_define ("__3dNOW_A__"); \
616 if (TARGET_SSE) \
617 builtin_define ("__SSE__"); \
618 if (TARGET_SSE2) \
619 builtin_define ("__SSE2__"); \
620 if (TARGET_PNI) \
621 builtin_define ("__PNI__"); \
622 if (TARGET_SSE_MATH && TARGET_SSE) \
623 builtin_define ("__SSE_MATH__"); \
624 if (TARGET_SSE_MATH && TARGET_SSE2) \
625 builtin_define ("__SSE2_MATH__"); \
626 \
627 /* Built-ins based on -march=. */ \
628 if (ix86_arch == PROCESSOR_I486) \
629 { \
630 builtin_define ("__i486"); \
631 builtin_define ("__i486__"); \
632 } \
633 else if (ix86_arch == PROCESSOR_PENTIUM) \
634 { \
635 builtin_define ("__i586"); \
636 builtin_define ("__i586__"); \
637 builtin_define ("__pentium"); \
638 builtin_define ("__pentium__"); \
639 if (last_arch_char == 'x') \
640 builtin_define ("__pentium_mmx__"); \
641 } \
642 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
643 { \
644 builtin_define ("__i686"); \
645 builtin_define ("__i686__"); \
646 builtin_define ("__pentiumpro"); \
647 builtin_define ("__pentiumpro__"); \
648 } \
649 else if (ix86_arch == PROCESSOR_K6) \
650 { \
651 \
652 builtin_define ("__k6"); \
653 builtin_define ("__k6__"); \
654 if (last_arch_char == '2') \
655 builtin_define ("__k6_2__"); \
656 else if (last_arch_char == '3') \
657 builtin_define ("__k6_3__"); \
658 } \
659 else if (ix86_arch == PROCESSOR_ATHLON) \
660 { \
661 builtin_define ("__athlon"); \
662 builtin_define ("__athlon__"); \
663 /* Only plain "athlon" lacks SSE. */ \
664 if (last_arch_char != 'n') \
665 builtin_define ("__athlon_sse__"); \
666 } \
667 else if (ix86_arch == PROCESSOR_K8) \
668 { \
669 builtin_define ("__k8"); \
670 builtin_define ("__k8__"); \
671 } \
672 else if (ix86_arch == PROCESSOR_PENTIUM4) \
673 { \
674 builtin_define ("__pentium4"); \
675 builtin_define ("__pentium4__"); \
676 } \
677 } \
678 while (0)
679
680 #define TARGET_CPU_DEFAULT_i386 0
681 #define TARGET_CPU_DEFAULT_i486 1
682 #define TARGET_CPU_DEFAULT_pentium 2
683 #define TARGET_CPU_DEFAULT_pentium_mmx 3
684 #define TARGET_CPU_DEFAULT_pentiumpro 4
685 #define TARGET_CPU_DEFAULT_pentium2 5
686 #define TARGET_CPU_DEFAULT_pentium3 6
687 #define TARGET_CPU_DEFAULT_pentium4 7
688 #define TARGET_CPU_DEFAULT_k6 8
689 #define TARGET_CPU_DEFAULT_k6_2 9
690 #define TARGET_CPU_DEFAULT_k6_3 10
691 #define TARGET_CPU_DEFAULT_athlon 11
692 #define TARGET_CPU_DEFAULT_athlon_sse 12
693 #define TARGET_CPU_DEFAULT_k8 13
694
695 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
696 "pentiumpro", "pentium2", "pentium3", \
697 "pentium4", "k6", "k6-2", "k6-3",\
698 "athlon", "athlon-4", "k8"}
699
700 #ifndef CC1_SPEC
701 #define CC1_SPEC "%(cc1_cpu) "
702 #endif
703
704 /* This macro defines names of additional specifications to put in the
705 specs that can be used in various specifications like CC1_SPEC. Its
706 definition is an initializer with a subgrouping for each command option.
707
708 Each subgrouping contains a string constant, that defines the
709 specification name, and a string constant that used by the GNU CC driver
710 program.
711
712 Do not define this macro if it does not need to do anything. */
713
714 #ifndef SUBTARGET_EXTRA_SPECS
715 #define SUBTARGET_EXTRA_SPECS
716 #endif
717
718 #define EXTRA_SPECS \
719 { "cc1_cpu", CC1_CPU_SPEC }, \
720 SUBTARGET_EXTRA_SPECS
721 \f
722 /* target machine storage layout */
723
724 /* Define for XFmode or TFmode extended real floating point support.
725 The XFmode is specified by i386 ABI, while TFmode may be faster
726 due to alignment and simplifications in the address calculations. */
727 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
728 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
729 #ifdef __x86_64__
730 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
731 #else
732 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
733 #endif
734
735 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
736 FPU, assume that the fpcw is set to extended precision; when using
737 only SSE, rounding is correct; when using both SSE and the FPU,
738 the rounding precision is indeterminate, since either may be chosen
739 apparently at random. */
740 #define TARGET_FLT_EVAL_METHOD \
741 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
742
743 #define SHORT_TYPE_SIZE 16
744 #define INT_TYPE_SIZE 32
745 #define FLOAT_TYPE_SIZE 32
746 #define LONG_TYPE_SIZE BITS_PER_WORD
747 #define MAX_WCHAR_TYPE_SIZE 32
748 #define DOUBLE_TYPE_SIZE 64
749 #define LONG_LONG_TYPE_SIZE 64
750
751 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
752 #define MAX_BITS_PER_WORD 64
753 #define MAX_LONG_TYPE_SIZE 64
754 #else
755 #define MAX_BITS_PER_WORD 32
756 #define MAX_LONG_TYPE_SIZE 32
757 #endif
758
759 /* Define this if most significant byte of a word is the lowest numbered. */
760 /* That is true on the 80386. */
761
762 #define BITS_BIG_ENDIAN 0
763
764 /* Define this if most significant byte of a word is the lowest numbered. */
765 /* That is not true on the 80386. */
766 #define BYTES_BIG_ENDIAN 0
767
768 /* Define this if most significant word of a multiword number is the lowest
769 numbered. */
770 /* Not true for 80386 */
771 #define WORDS_BIG_ENDIAN 0
772
773 /* Width of a word, in units (bytes). */
774 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
775 #ifdef IN_LIBGCC2
776 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
777 #else
778 #define MIN_UNITS_PER_WORD 4
779 #endif
780
781 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
782 #define PARM_BOUNDARY BITS_PER_WORD
783
784 /* Boundary (in *bits*) on which stack pointer should be aligned. */
785 #define STACK_BOUNDARY BITS_PER_WORD
786
787 /* Boundary (in *bits*) on which the stack pointer prefers to be
788 aligned; the compiler cannot rely on having this alignment. */
789 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
790
791 /* As of July 2001, many runtimes to not align the stack properly when
792 entering main. This causes expand_main_function to forcibly align
793 the stack, which results in aligned frames for functions called from
794 main, though it does nothing for the alignment of main itself. */
795 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
796 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
797
798 /* Minimum allocation boundary for the code of a function. */
799 #define FUNCTION_BOUNDARY 8
800
801 /* C++ stores the virtual bit in the lowest bit of function pointers. */
802 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
803
804 /* Alignment of field after `int : 0' in a structure. */
805
806 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
807
808 /* Minimum size in bits of the largest boundary to which any
809 and all fundamental data types supported by the hardware
810 might need to be aligned. No data type wants to be aligned
811 rounder than this.
812
813 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
814 and Pentium Pro XFmode values at 128 bit boundaries. */
815
816 #define BIGGEST_ALIGNMENT 128
817
818 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
819 #define ALIGN_MODE_128(MODE) \
820 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
821
822 /* The published ABIs say that doubles should be aligned on word
823 boundaries, so lower the alignment for structure fields unless
824 -malign-double is set. */
825
826 /* ??? Blah -- this macro is used directly by libobjc. Since it
827 supports no vector modes, cut out the complexity and fall back
828 on BIGGEST_FIELD_ALIGNMENT. */
829 #ifdef IN_TARGET_LIBS
830 #ifdef __x86_64__
831 #define BIGGEST_FIELD_ALIGNMENT 128
832 #else
833 #define BIGGEST_FIELD_ALIGNMENT 32
834 #endif
835 #else
836 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
837 x86_field_alignment (FIELD, COMPUTED)
838 #endif
839
840 /* If defined, a C expression to compute the alignment given to a
841 constant that is being placed in memory. EXP is the constant
842 and ALIGN is the alignment that the object would ordinarily have.
843 The value of this macro is used instead of that alignment to align
844 the object.
845
846 If this macro is not defined, then ALIGN is used.
847
848 The typical use of this macro is to increase alignment for string
849 constants to be word aligned so that `strcpy' calls that copy
850 constants can be done inline. */
851
852 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
853
854 /* If defined, a C expression to compute the alignment for a static
855 variable. TYPE is the data type, and ALIGN is the alignment that
856 the object would ordinarily have. The value of this macro is used
857 instead of that alignment to align the object.
858
859 If this macro is not defined, then ALIGN is used.
860
861 One use of this macro is to increase alignment of medium-size
862 data to make it all fit in fewer cache lines. Another is to
863 cause character arrays to be word-aligned so that `strcpy' calls
864 that copy constants to character arrays can be done inline. */
865
866 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
867
868 /* If defined, a C expression to compute the alignment for a local
869 variable. TYPE is the data type, and ALIGN is the alignment that
870 the object would ordinarily have. The value of this macro is used
871 instead of that alignment to align the object.
872
873 If this macro is not defined, then ALIGN is used.
874
875 One use of this macro is to increase alignment of medium-size
876 data to make it all fit in fewer cache lines. */
877
878 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
879
880 /* If defined, a C expression that gives the alignment boundary, in
881 bits, of an argument with the specified mode and type. If it is
882 not defined, `PARM_BOUNDARY' is used for all arguments. */
883
884 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
885 ix86_function_arg_boundary ((MODE), (TYPE))
886
887 /* Set this nonzero if move instructions will actually fail to work
888 when given unaligned data. */
889 #define STRICT_ALIGNMENT 0
890
891 /* If bit field type is int, don't let it cross an int,
892 and give entire struct the alignment of an int. */
893 /* Required on the 386 since it doesn't have bit-field insns. */
894 #define PCC_BITFIELD_TYPE_MATTERS 1
895 \f
896 /* Standard register usage. */
897
898 /* This processor has special stack-like registers. See reg-stack.c
899 for details. */
900
901 #define STACK_REGS
902 #define IS_STACK_MODE(MODE) \
903 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
904 || (MODE) == TFmode)
905
906 /* Number of actual hardware registers.
907 The hardware registers are assigned numbers for the compiler
908 from 0 to just below FIRST_PSEUDO_REGISTER.
909 All registers that the compiler knows about must be given numbers,
910 even those that are not normally considered general registers.
911
912 In the 80386 we give the 8 general purpose registers the numbers 0-7.
913 We number the floating point registers 8-15.
914 Note that registers 0-7 can be accessed as a short or int,
915 while only 0-3 may be used with byte `mov' instructions.
916
917 Reg 16 does not correspond to any hardware register, but instead
918 appears in the RTL as an argument pointer prior to reload, and is
919 eliminated during reloading in favor of either the stack or frame
920 pointer. */
921
922 #define FIRST_PSEUDO_REGISTER 53
923
924 /* Number of hardware registers that go into the DWARF-2 unwind info.
925 If not defined, equals FIRST_PSEUDO_REGISTER. */
926
927 #define DWARF_FRAME_REGISTERS 17
928
929 /* 1 for registers that have pervasive standard uses
930 and are not available for the register allocator.
931 On the 80386, the stack pointer is such, as is the arg pointer.
932
933 The value is a mask - bit 1 is set for fixed registers
934 for 32bit target, while 2 is set for fixed registers for 64bit.
935 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
936 */
937 #define FIXED_REGISTERS \
938 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
939 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
940 /*arg,flags,fpsr,dir,frame*/ \
941 3, 3, 3, 3, 3, \
942 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
943 0, 0, 0, 0, 0, 0, 0, 0, \
944 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
945 0, 0, 0, 0, 0, 0, 0, 0, \
946 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
947 1, 1, 1, 1, 1, 1, 1, 1, \
948 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
949 1, 1, 1, 1, 1, 1, 1, 1}
950
951
952 /* 1 for registers not available across function calls.
953 These must include the FIXED_REGISTERS and also any
954 registers that can be used without being saved.
955 The latter must include the registers where values are returned
956 and the register where structure-value addresses are passed.
957 Aside from that, you can include as many other registers as you like.
958
959 The value is a mask - bit 1 is set for call used
960 for 32bit target, while 2 is set for call used for 64bit.
961 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
962 */
963 #define CALL_USED_REGISTERS \
964 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
965 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
966 /*arg,flags,fpsr,dir,frame*/ \
967 3, 3, 3, 3, 3, \
968 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
969 3, 3, 3, 3, 3, 3, 3, 3, \
970 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
971 3, 3, 3, 3, 3, 3, 3, 3, \
972 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
973 3, 3, 3, 3, 1, 1, 1, 1, \
974 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
975 3, 3, 3, 3, 3, 3, 3, 3} \
976
977 /* Order in which to allocate registers. Each register must be
978 listed once, even those in FIXED_REGISTERS. List frame pointer
979 late and fixed registers last. Note that, in general, we prefer
980 registers listed in CALL_USED_REGISTERS, keeping the others
981 available for storage of persistent values.
982
983 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
984 so this is just empty initializer for array. */
985
986 #define REG_ALLOC_ORDER \
987 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
988 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
989 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
990 48, 49, 50, 51, 52 }
991
992 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
993 to be rearranged based on a particular function. When using sse math,
994 we want to allocate SSE before x87 registers and vice vera. */
995
996 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
997
998
999 /* Macro to conditionally modify fixed_regs/call_used_regs. */
1000 #define CONDITIONAL_REGISTER_USAGE \
1001 do { \
1002 int i; \
1003 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1004 { \
1005 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
1006 call_used_regs[i] = (call_used_regs[i] \
1007 & (TARGET_64BIT ? 2 : 1)) != 0; \
1008 } \
1009 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1010 { \
1011 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1012 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1013 } \
1014 if (! TARGET_MMX) \
1015 { \
1016 int i; \
1017 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1018 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1019 fixed_regs[i] = call_used_regs[i] = 1; \
1020 } \
1021 if (! TARGET_SSE) \
1022 { \
1023 int i; \
1024 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1025 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1026 fixed_regs[i] = call_used_regs[i] = 1; \
1027 } \
1028 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1029 { \
1030 int i; \
1031 HARD_REG_SET x; \
1032 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1033 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1034 if (TEST_HARD_REG_BIT (x, i)) \
1035 fixed_regs[i] = call_used_regs[i] = 1; \
1036 } \
1037 } while (0)
1038
1039 /* Return number of consecutive hard regs needed starting at reg REGNO
1040 to hold something of mode MODE.
1041 This is ordinarily the length in words of a value of mode MODE
1042 but can be less for certain modes in special long registers.
1043
1044 Actually there are no two word move instructions for consecutive
1045 registers. And only registers 0-3 may have mov byte instructions
1046 applied to them.
1047 */
1048
1049 #define HARD_REGNO_NREGS(REGNO, MODE) \
1050 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1051 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1052 : ((MODE) == TFmode \
1053 ? (TARGET_64BIT ? 2 : 3) \
1054 : (MODE) == TCmode \
1055 ? (TARGET_64BIT ? 4 : 6) \
1056 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1057
1058 #define VALID_SSE2_REG_MODE(MODE) \
1059 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1060 || (MODE) == V2DImode)
1061
1062 #define VALID_SSE_REG_MODE(MODE) \
1063 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1064 || (MODE) == SFmode \
1065 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1066 || VALID_SSE2_REG_MODE (MODE) \
1067 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1068
1069 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1070 ((MODE) == V2SFmode || (MODE) == SFmode)
1071
1072 #define VALID_MMX_REG_MODE(MODE) \
1073 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1074 || (MODE) == V2SImode || (MODE) == SImode)
1075
1076 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1077 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1078 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1079 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1080
1081 #define VALID_FP_MODE_P(MODE) \
1082 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
1083 || (!TARGET_64BIT && (MODE) == XFmode) \
1084 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
1085 || (!TARGET_64BIT && (MODE) == XCmode))
1086
1087 #define VALID_INT_MODE_P(MODE) \
1088 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1089 || (MODE) == DImode \
1090 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1091 || (MODE) == CDImode \
1092 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1093
1094 /* Return true for modes passed in SSE registers. */
1095 #define SSE_REG_MODE_P(MODE) \
1096 ((MODE) == TImode || (MODE) == V16QImode \
1097 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1098 || (MODE) == V4SFmode || (MODE) == V4SImode)
1099
1100 /* Return true for modes passed in MMX registers. */
1101 #define MMX_REG_MODE_P(MODE) \
1102 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1103 || (MODE) == V2SFmode)
1104
1105 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1106
1107 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1108 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1109
1110 /* Value is 1 if it is a good idea to tie two pseudo registers
1111 when one has mode MODE1 and one has mode MODE2.
1112 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1113 for any hard reg, then this must be 0 for correct output. */
1114
1115 #define MODES_TIEABLE_P(MODE1, MODE2) \
1116 ((MODE1) == (MODE2) \
1117 || (((MODE1) == HImode || (MODE1) == SImode \
1118 || ((MODE1) == QImode \
1119 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1120 || ((MODE1) == DImode && TARGET_64BIT)) \
1121 && ((MODE2) == HImode || (MODE2) == SImode \
1122 || ((MODE2) == QImode \
1123 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1124 || ((MODE2) == DImode && TARGET_64BIT))))
1125
1126 /* It is possible to write patterns to move flags; but until someone
1127 does it, */
1128 #define AVOID_CCMODE_COPIES
1129
1130 /* Specify the modes required to caller save a given hard regno.
1131 We do this on i386 to prevent flags from being saved at all.
1132
1133 Kill any attempts to combine saving of modes. */
1134
1135 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1136 (CC_REGNO_P (REGNO) ? VOIDmode \
1137 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1138 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1139 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1140 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1141 : (MODE))
1142 /* Specify the registers used for certain standard purposes.
1143 The values of these macros are register numbers. */
1144
1145 /* on the 386 the pc register is %eip, and is not usable as a general
1146 register. The ordinary mov instructions won't work */
1147 /* #define PC_REGNUM */
1148
1149 /* Register to use for pushing function arguments. */
1150 #define STACK_POINTER_REGNUM 7
1151
1152 /* Base register for access to local variables of the function. */
1153 #define HARD_FRAME_POINTER_REGNUM 6
1154
1155 /* Base register for access to local variables of the function. */
1156 #define FRAME_POINTER_REGNUM 20
1157
1158 /* First floating point reg */
1159 #define FIRST_FLOAT_REG 8
1160
1161 /* First & last stack-like regs */
1162 #define FIRST_STACK_REG FIRST_FLOAT_REG
1163 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1164
1165 #define FLAGS_REG 17
1166 #define FPSR_REG 18
1167 #define DIRFLAG_REG 19
1168
1169 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1170 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1171
1172 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1173 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1174
1175 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1176 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1177
1178 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1179 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1180
1181 /* Value should be nonzero if functions must have frame pointers.
1182 Zero means the frame pointer need not be set up (and parms
1183 may be accessed via the stack pointer) in functions that seem suitable.
1184 This is computed in `reload', in reload1.c. */
1185 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1186
1187 /* Override this in other tm.h files to cope with various OS losage
1188 requiring a frame pointer. */
1189 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1190 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1191 #endif
1192
1193 /* Make sure we can access arbitrary call frames. */
1194 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1195
1196 /* Base register for access to arguments of the function. */
1197 #define ARG_POINTER_REGNUM 16
1198
1199 /* Register in which static-chain is passed to a function.
1200 We do use ECX as static chain register for 32 bit ABI. On the
1201 64bit ABI, ECX is an argument register, so we use R10 instead. */
1202 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1203
1204 /* Register to hold the addressing base for position independent
1205 code access to data items. We don't use PIC pointer for 64bit
1206 mode. Define the regnum to dummy value to prevent gcc from
1207 pessimizing code dealing with EBX.
1208
1209 To avoid clobbering a call-saved register unnecessarily, we renumber
1210 the pic register when possible. The change is visible after the
1211 prologue has been emitted. */
1212
1213 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1214
1215 #define PIC_OFFSET_TABLE_REGNUM \
1216 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1217 : reload_completed ? REGNO (pic_offset_table_rtx) \
1218 : REAL_PIC_OFFSET_TABLE_REGNUM)
1219
1220 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1221
1222 /* Register in which address to store a structure value
1223 arrives in the function. On the 386, the prologue
1224 copies this from the stack to register %eax. */
1225 #define STRUCT_VALUE_INCOMING 0
1226
1227 /* Place in which caller passes the structure value address.
1228 0 means push the value on the stack like an argument. */
1229 #define STRUCT_VALUE 0
1230
1231 /* A C expression which can inhibit the returning of certain function
1232 values in registers, based on the type of value. A nonzero value
1233 says to return the function value in memory, just as large
1234 structures are always returned. Here TYPE will be a C expression
1235 of type `tree', representing the data type of the value.
1236
1237 Note that values of mode `BLKmode' must be explicitly handled by
1238 this macro. Also, the option `-fpcc-struct-return' takes effect
1239 regardless of this macro. On most systems, it is possible to
1240 leave the macro undefined; this causes a default definition to be
1241 used, whose value is the constant 1 for `BLKmode' values, and 0
1242 otherwise.
1243
1244 Do not use this macro to indicate that structures and unions
1245 should always be returned in memory. You should instead use
1246 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1247
1248 int ix86_return_in_memory (tree type);
1249 #define RETURN_IN_MEMORY(TYPE) \
1250 ix86_return_in_memory (TYPE)
1251
1252 /* This is overridden by <cygwin.h>. */
1253 #define MS_AGGREGATE_RETURN 0
1254
1255 \f
1256 /* Define the classes of registers for register constraints in the
1257 machine description. Also define ranges of constants.
1258
1259 One of the classes must always be named ALL_REGS and include all hard regs.
1260 If there is more than one class, another class must be named NO_REGS
1261 and contain no registers.
1262
1263 The name GENERAL_REGS must be the name of a class (or an alias for
1264 another name such as ALL_REGS). This is the class of registers
1265 that is allowed by "g" or "r" in a register constraint.
1266 Also, registers outside this class are allocated only when
1267 instructions express preferences for them.
1268
1269 The classes must be numbered in nondecreasing order; that is,
1270 a larger-numbered class must never be contained completely
1271 in a smaller-numbered class.
1272
1273 For any two classes, it is very desirable that there be another
1274 class that represents their union.
1275
1276 It might seem that class BREG is unnecessary, since no useful 386
1277 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1278 and the "b" register constraint is useful in asms for syscalls.
1279
1280 The flags and fpsr registers are in no class. */
1281
1282 enum reg_class
1283 {
1284 NO_REGS,
1285 AREG, DREG, CREG, BREG, SIREG, DIREG,
1286 AD_REGS, /* %eax/%edx for DImode */
1287 Q_REGS, /* %eax %ebx %ecx %edx */
1288 NON_Q_REGS, /* %esi %edi %ebp %esp */
1289 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1290 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1291 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1292 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1293 FLOAT_REGS,
1294 SSE_REGS,
1295 MMX_REGS,
1296 FP_TOP_SSE_REGS,
1297 FP_SECOND_SSE_REGS,
1298 FLOAT_SSE_REGS,
1299 FLOAT_INT_REGS,
1300 INT_SSE_REGS,
1301 FLOAT_INT_SSE_REGS,
1302 ALL_REGS, LIM_REG_CLASSES
1303 };
1304
1305 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1306
1307 #define INTEGER_CLASS_P(CLASS) \
1308 reg_class_subset_p ((CLASS), GENERAL_REGS)
1309 #define FLOAT_CLASS_P(CLASS) \
1310 reg_class_subset_p ((CLASS), FLOAT_REGS)
1311 #define SSE_CLASS_P(CLASS) \
1312 reg_class_subset_p ((CLASS), SSE_REGS)
1313 #define MMX_CLASS_P(CLASS) \
1314 reg_class_subset_p ((CLASS), MMX_REGS)
1315 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1316 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1317 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1318 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1319 #define MAYBE_SSE_CLASS_P(CLASS) \
1320 reg_classes_intersect_p (SSE_REGS, (CLASS))
1321 #define MAYBE_MMX_CLASS_P(CLASS) \
1322 reg_classes_intersect_p (MMX_REGS, (CLASS))
1323
1324 #define Q_CLASS_P(CLASS) \
1325 reg_class_subset_p ((CLASS), Q_REGS)
1326
1327 /* Give names of register classes as strings for dump file. */
1328
1329 #define REG_CLASS_NAMES \
1330 { "NO_REGS", \
1331 "AREG", "DREG", "CREG", "BREG", \
1332 "SIREG", "DIREG", \
1333 "AD_REGS", \
1334 "Q_REGS", "NON_Q_REGS", \
1335 "INDEX_REGS", \
1336 "LEGACY_REGS", \
1337 "GENERAL_REGS", \
1338 "FP_TOP_REG", "FP_SECOND_REG", \
1339 "FLOAT_REGS", \
1340 "SSE_REGS", \
1341 "MMX_REGS", \
1342 "FP_TOP_SSE_REGS", \
1343 "FP_SECOND_SSE_REGS", \
1344 "FLOAT_SSE_REGS", \
1345 "FLOAT_INT_REGS", \
1346 "INT_SSE_REGS", \
1347 "FLOAT_INT_SSE_REGS", \
1348 "ALL_REGS" }
1349
1350 /* Define which registers fit in which classes.
1351 This is an initializer for a vector of HARD_REG_SET
1352 of length N_REG_CLASSES. */
1353
1354 #define REG_CLASS_CONTENTS \
1355 { { 0x00, 0x0 }, \
1356 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1357 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1358 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1359 { 0x03, 0x0 }, /* AD_REGS */ \
1360 { 0x0f, 0x0 }, /* Q_REGS */ \
1361 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1362 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1363 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1364 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1365 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1366 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1367 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1368 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1369 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1370 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1371 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1372 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1373 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1374 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1375 { 0xffffffff,0x1fffff } \
1376 }
1377
1378 /* The same information, inverted:
1379 Return the class number of the smallest class containing
1380 reg number REGNO. This could be a conditional expression
1381 or could index an array. */
1382
1383 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1384
1385 /* When defined, the compiler allows registers explicitly used in the
1386 rtl to be used as spill registers but prevents the compiler from
1387 extending the lifetime of these registers. */
1388
1389 #define SMALL_REGISTER_CLASSES 1
1390
1391 #define QI_REG_P(X) \
1392 (REG_P (X) && REGNO (X) < 4)
1393
1394 #define GENERAL_REGNO_P(N) \
1395 ((N) < 8 || REX_INT_REGNO_P (N))
1396
1397 #define GENERAL_REG_P(X) \
1398 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1399
1400 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1401
1402 #define NON_QI_REG_P(X) \
1403 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1404
1405 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1406 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1407
1408 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1409 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1410 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1411 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1412
1413 #define SSE_REGNO_P(N) \
1414 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1415 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1416
1417 #define REX_SSE_REGNO_P(N) \
1418 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1419
1420 #define SSE_REGNO(N) \
1421 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1422 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1423
1424 #define SSE_FLOAT_MODE_P(MODE) \
1425 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1426
1427 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1428 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1429
1430 #define STACK_REG_P(XOP) \
1431 (REG_P (XOP) && \
1432 REGNO (XOP) >= FIRST_STACK_REG && \
1433 REGNO (XOP) <= LAST_STACK_REG)
1434
1435 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1436
1437 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1438
1439 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1440 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1441
1442 /* Indicate whether hard register numbered REG_NO should be converted
1443 to SSA form. */
1444 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1445 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1446
1447 /* The class value for index registers, and the one for base regs. */
1448
1449 #define INDEX_REG_CLASS INDEX_REGS
1450 #define BASE_REG_CLASS GENERAL_REGS
1451
1452 /* Get reg_class from a letter such as appears in the machine description. */
1453
1454 #define REG_CLASS_FROM_LETTER(C) \
1455 ((C) == 'r' ? GENERAL_REGS : \
1456 (C) == 'R' ? LEGACY_REGS : \
1457 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1458 (C) == 'Q' ? Q_REGS : \
1459 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1460 ? FLOAT_REGS \
1461 : NO_REGS) : \
1462 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1463 ? FP_TOP_REG \
1464 : NO_REGS) : \
1465 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1466 ? FP_SECOND_REG \
1467 : NO_REGS) : \
1468 (C) == 'a' ? AREG : \
1469 (C) == 'b' ? BREG : \
1470 (C) == 'c' ? CREG : \
1471 (C) == 'd' ? DREG : \
1472 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1473 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1474 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1475 (C) == 'A' ? AD_REGS : \
1476 (C) == 'D' ? DIREG : \
1477 (C) == 'S' ? SIREG : NO_REGS)
1478
1479 /* The letters I, J, K, L and M in a register constraint string
1480 can be used to stand for particular ranges of immediate operands.
1481 This macro defines what the ranges are.
1482 C is the letter, and VALUE is a constant value.
1483 Return 1 if VALUE is in the range specified by C.
1484
1485 I is for non-DImode shifts.
1486 J is for DImode shifts.
1487 K is for signed imm8 operands.
1488 L is for andsi as zero-extending move.
1489 M is for shifts that can be executed by the "lea" opcode.
1490 N is for immediate operands for out/in instructions (0-255)
1491 */
1492
1493 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1494 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1495 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1496 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1497 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1498 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1499 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1500 : 0)
1501
1502 /* Similar, but for floating constants, and defining letters G and H.
1503 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1504 TARGET_387 isn't set, because the stack register converter may need to
1505 load 0.0 into the function value register. */
1506
1507 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1508 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1509 : 0)
1510
1511 /* A C expression that defines the optional machine-dependent
1512 constraint letters that can be used to segregate specific types of
1513 operands, usually memory references, for the target machine. Any
1514 letter that is not elsewhere defined and not matched by
1515 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1516 be defined.
1517
1518 If it is required for a particular target machine, it should
1519 return 1 if VALUE corresponds to the operand type represented by
1520 the constraint letter C. If C is not defined as an extra
1521 constraint, the value returned should be 0 regardless of VALUE. */
1522
1523 #define EXTRA_CONSTRAINT(VALUE, D) \
1524 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1525 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1526 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1527 : 0)
1528
1529 /* Place additional restrictions on the register class to use when it
1530 is necessary to be able to hold a value of mode MODE in a reload
1531 register for which class CLASS would ordinarily be used. */
1532
1533 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1534 ((MODE) == QImode && !TARGET_64BIT \
1535 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1536 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1537 ? Q_REGS : (CLASS))
1538
1539 /* Given an rtx X being reloaded into a reg required to be
1540 in class CLASS, return the class of reg to actually use.
1541 In general this is just CLASS; but on some machines
1542 in some cases it is preferable to use a more restrictive class.
1543 On the 80386 series, we prevent floating constants from being
1544 reloaded into floating registers (since no move-insn can do that)
1545 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1546
1547 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1548 QImode must go into class Q_REGS.
1549 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1550 movdf to do mem-to-mem moves through integer regs. */
1551
1552 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1553 ix86_preferred_reload_class ((X), (CLASS))
1554
1555 /* If we are copying between general and FP registers, we need a memory
1556 location. The same is true for SSE and MMX registers. */
1557 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1558 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1559
1560 /* QImode spills from non-QI registers need a scratch. This does not
1561 happen often -- the only example so far requires an uninitialized
1562 pseudo. */
1563
1564 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1565 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1566 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1567 ? Q_REGS : NO_REGS)
1568
1569 /* Return the maximum number of consecutive registers
1570 needed to represent mode MODE in a register of class CLASS. */
1571 /* On the 80386, this is the size of MODE in words,
1572 except in the FP regs, where a single reg is always enough.
1573 The TFmodes are really just 80bit values, so we use only 3 registers
1574 to hold them, instead of 4, as the size would suggest.
1575 */
1576 #define CLASS_MAX_NREGS(CLASS, MODE) \
1577 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1578 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1579 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1580 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1581
1582 /* A C expression whose value is nonzero if pseudos that have been
1583 assigned to registers of class CLASS would likely be spilled
1584 because registers of CLASS are needed for spill registers.
1585
1586 The default value of this macro returns 1 if CLASS has exactly one
1587 register and zero otherwise. On most machines, this default
1588 should be used. Only define this macro to some other expression
1589 if pseudo allocated by `local-alloc.c' end up in memory because
1590 their hard registers were needed for spill registers. If this
1591 macro returns nonzero for those classes, those pseudos will only
1592 be allocated by `global.c', which knows how to reallocate the
1593 pseudo to another register. If there would not be another
1594 register available for reallocation, you should not change the
1595 definition of this macro since the only effect of such a
1596 definition would be to slow down register allocation. */
1597
1598 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1599 (((CLASS) == AREG) \
1600 || ((CLASS) == DREG) \
1601 || ((CLASS) == CREG) \
1602 || ((CLASS) == BREG) \
1603 || ((CLASS) == AD_REGS) \
1604 || ((CLASS) == SIREG) \
1605 || ((CLASS) == DIREG))
1606
1607 /* Return a class of registers that cannot change FROM mode to TO mode.
1608
1609 x87 registers can't do subreg as all values are reformated to extended
1610 precision. XMM registers does not support with nonzero offsets equal
1611 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1612 determine these, prohibit all nonparadoxical subregs changing size. */
1613
1614 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1615 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1616 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1617 || MAYBE_MMX_CLASS_P (CLASS) \
1618 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1619 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1620
1621 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1622 to automatically clobber for all asms.
1623
1624 We do this in the new i386 backend to maintain source compatibility
1625 with the old cc0-based compiler. */
1626
1627 #define MD_ASM_CLOBBERS(CLOBBERS) \
1628 do { \
1629 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1630 (CLOBBERS)); \
1631 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1632 (CLOBBERS)); \
1633 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1634 (CLOBBERS)); \
1635 } while (0)
1636 \f
1637 /* Stack layout; function entry, exit and calling. */
1638
1639 /* Define this if pushing a word on the stack
1640 makes the stack pointer a smaller address. */
1641 #define STACK_GROWS_DOWNWARD
1642
1643 /* Define this if the nominal address of the stack frame
1644 is at the high-address end of the local variables;
1645 that is, each additional local variable allocated
1646 goes at a more negative offset in the frame. */
1647 #define FRAME_GROWS_DOWNWARD
1648
1649 /* Offset within stack frame to start allocating local variables at.
1650 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1651 first local allocated. Otherwise, it is the offset to the BEGINNING
1652 of the first local allocated. */
1653 #define STARTING_FRAME_OFFSET 0
1654
1655 /* If we generate an insn to push BYTES bytes,
1656 this says how many the stack pointer really advances by.
1657 On 386 pushw decrements by exactly 2 no matter what the position was.
1658 On the 386 there is no pushb; we use pushw instead, and this
1659 has the effect of rounding up to 2.
1660
1661 For 64bit ABI we round up to 8 bytes.
1662 */
1663
1664 #define PUSH_ROUNDING(BYTES) \
1665 (TARGET_64BIT \
1666 ? (((BYTES) + 7) & (-8)) \
1667 : (((BYTES) + 1) & (-2)))
1668
1669 /* If defined, the maximum amount of space required for outgoing arguments will
1670 be computed and placed into the variable
1671 `current_function_outgoing_args_size'. No space will be pushed onto the
1672 stack for each call; instead, the function prologue should increase the stack
1673 frame size by this amount. */
1674
1675 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1676
1677 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1678 instructions to pass outgoing arguments. */
1679
1680 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1681
1682 /* We want the stack and args grow in opposite directions, even if
1683 PUSH_ARGS is 0. */
1684 #define PUSH_ARGS_REVERSED 1
1685
1686 /* Offset of first parameter from the argument pointer register value. */
1687 #define FIRST_PARM_OFFSET(FNDECL) 0
1688
1689 /* Define this macro if functions should assume that stack space has been
1690 allocated for arguments even when their values are passed in registers.
1691
1692 The value of this macro is the size, in bytes, of the area reserved for
1693 arguments passed in registers for the function represented by FNDECL.
1694
1695 This space can be allocated by the caller, or be a part of the
1696 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1697 which. */
1698 #define REG_PARM_STACK_SPACE(FNDECL) 0
1699
1700 /* Define as a C expression that evaluates to nonzero if we do not know how
1701 to pass TYPE solely in registers. The file expr.h defines a
1702 definition that is usually appropriate, refer to expr.h for additional
1703 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1704 computed in the stack and then loaded into a register. */
1705 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1706
1707 /* Value is the number of bytes of arguments automatically
1708 popped when returning from a subroutine call.
1709 FUNDECL is the declaration node of the function (as a tree),
1710 FUNTYPE is the data type of the function (as a tree),
1711 or for a library call it is an identifier node for the subroutine name.
1712 SIZE is the number of bytes of arguments passed on the stack.
1713
1714 On the 80386, the RTD insn may be used to pop them if the number
1715 of args is fixed, but if the number is variable then the caller
1716 must pop them all. RTD can't be used for library calls now
1717 because the library is compiled with the Unix compiler.
1718 Use of RTD is a selectable option, since it is incompatible with
1719 standard Unix calling sequences. If the option is not selected,
1720 the caller must always pop the args.
1721
1722 The attribute stdcall is equivalent to RTD on a per module basis. */
1723
1724 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1725 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1726
1727 /* Define how to find the value returned by a function.
1728 VALTYPE is the data type of the value (as a tree).
1729 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1730 otherwise, FUNC is 0. */
1731 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1732 ix86_function_value (VALTYPE)
1733
1734 #define FUNCTION_VALUE_REGNO_P(N) \
1735 ix86_function_value_regno_p (N)
1736
1737 /* Define how to find the value returned by a library function
1738 assuming the value has mode MODE. */
1739
1740 #define LIBCALL_VALUE(MODE) \
1741 ix86_libcall_value (MODE)
1742
1743 /* Define the size of the result block used for communication between
1744 untyped_call and untyped_return. The block contains a DImode value
1745 followed by the block used by fnsave and frstor. */
1746
1747 #define APPLY_RESULT_SIZE (8+108)
1748
1749 /* 1 if N is a possible register number for function argument passing. */
1750 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1751
1752 /* Define a data type for recording info about an argument list
1753 during the scan of that argument list. This data type should
1754 hold all necessary information about the function itself
1755 and about the args processed so far, enough to enable macros
1756 such as FUNCTION_ARG to determine where the next arg should go. */
1757
1758 typedef struct ix86_args {
1759 int words; /* # words passed so far */
1760 int nregs; /* # registers available for passing */
1761 int regno; /* next available register number */
1762 int fastcall; /* fastcall calling convention is used */
1763 int sse_words; /* # sse words passed so far */
1764 int sse_nregs; /* # sse registers available for passing */
1765 int sse_regno; /* next available sse register number */
1766 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1767 } CUMULATIVE_ARGS;
1768
1769 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1770 for a call to a function whose data type is FNTYPE.
1771 For a library call, FNTYPE is 0. */
1772
1773 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL) \
1774 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1775
1776 /* Update the data in CUM to advance over an argument
1777 of mode MODE and data type TYPE.
1778 (TYPE is null for libcalls where that information may not be available.) */
1779
1780 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1781 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1782
1783 /* Define where to put the arguments to a function.
1784 Value is zero to push the argument on the stack,
1785 or a hard register in which to store the argument.
1786
1787 MODE is the argument's machine mode.
1788 TYPE is the data type of the argument (as a tree).
1789 This is null for libcalls where that information may
1790 not be available.
1791 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1792 the preceding args and about the function being called.
1793 NAMED is nonzero if this argument is a named parameter
1794 (otherwise it is an extra parameter matching an ellipsis). */
1795
1796 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1797 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1798
1799 /* For an arg passed partly in registers and partly in memory,
1800 this is the number of registers used.
1801 For args passed entirely in registers or entirely in memory, zero. */
1802
1803 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1804
1805 /* A C expression that indicates when an argument must be passed by
1806 reference. If nonzero for an argument, a copy of that argument is
1807 made in memory and a pointer to the argument is passed instead of
1808 the argument itself. The pointer is passed in whatever way is
1809 appropriate for passing a pointer to that type. */
1810
1811 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1812 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1813
1814 /* Perform any needed actions needed for a function that is receiving a
1815 variable number of arguments.
1816
1817 CUM is as above.
1818
1819 MODE and TYPE are the mode and type of the current parameter.
1820
1821 PRETEND_SIZE is a variable that should be set to the amount of stack
1822 that must be pushed by the prolog to pretend that our caller pushed
1823 it.
1824
1825 Normally, this macro will push all remaining incoming registers on the
1826 stack and set PRETEND_SIZE to the length of the registers pushed. */
1827
1828 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1829 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1830 (NO_RTL))
1831
1832 /* Define the `__builtin_va_list' type for the ABI. */
1833 #define BUILD_VA_LIST_TYPE(VALIST) \
1834 ((VALIST) = ix86_build_va_list ())
1835
1836 /* Implement `va_start' for varargs and stdarg. */
1837 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1838 ix86_va_start (VALIST, NEXTARG)
1839
1840 /* Implement `va_arg'. */
1841 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1842 ix86_va_arg ((VALIST), (TYPE))
1843
1844 #define TARGET_ASM_FILE_END ix86_file_end
1845 #define NEED_INDICATE_EXEC_STACK 0
1846
1847 /* Output assembler code to FILE to increment profiler label # LABELNO
1848 for profiling a function entry. */
1849
1850 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1851
1852 #define MCOUNT_NAME "_mcount"
1853
1854 #define PROFILE_COUNT_REGISTER "edx"
1855
1856 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1857 the stack pointer does not matter. The value is tested only in
1858 functions that have frame pointers.
1859 No definition is equivalent to always zero. */
1860 /* Note on the 386 it might be more efficient not to define this since
1861 we have to restore it ourselves from the frame pointer, in order to
1862 use pop */
1863
1864 #define EXIT_IGNORE_STACK 1
1865
1866 /* Output assembler code for a block containing the constant parts
1867 of a trampoline, leaving space for the variable parts. */
1868
1869 /* On the 386, the trampoline contains two instructions:
1870 mov #STATIC,ecx
1871 jmp FUNCTION
1872 The trampoline is generated entirely at runtime. The operand of JMP
1873 is the address of FUNCTION relative to the instruction following the
1874 JMP (which is 5 bytes long). */
1875
1876 /* Length in units of the trampoline for entering a nested function. */
1877
1878 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1879
1880 /* Emit RTL insns to initialize the variable parts of a trampoline.
1881 FNADDR is an RTX for the address of the function's pure code.
1882 CXT is an RTX for the static chain value for the function. */
1883
1884 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1885 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1886 \f
1887 /* Definitions for register eliminations.
1888
1889 This is an array of structures. Each structure initializes one pair
1890 of eliminable registers. The "from" register number is given first,
1891 followed by "to". Eliminations of the same "from" register are listed
1892 in order of preference.
1893
1894 There are two registers that can always be eliminated on the i386.
1895 The frame pointer and the arg pointer can be replaced by either the
1896 hard frame pointer or to the stack pointer, depending upon the
1897 circumstances. The hard frame pointer is not used before reload and
1898 so it is not eligible for elimination. */
1899
1900 #define ELIMINABLE_REGS \
1901 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1902 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1903 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1904 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1905
1906 /* Given FROM and TO register numbers, say whether this elimination is
1907 allowed. Frame pointer elimination is automatically handled.
1908
1909 All other eliminations are valid. */
1910
1911 #define CAN_ELIMINATE(FROM, TO) \
1912 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1913
1914 /* Define the offset between two registers, one to be eliminated, and the other
1915 its replacement, at the start of a routine. */
1916
1917 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1918 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1919 \f
1920 /* Addressing modes, and classification of registers for them. */
1921
1922 /* Macros to check register numbers against specific register classes. */
1923
1924 /* These assume that REGNO is a hard or pseudo reg number.
1925 They give nonzero only if REGNO is a hard reg of the suitable class
1926 or a pseudo reg currently allocated to a suitable hard reg.
1927 Since they use reg_renumber, they are safe only once reg_renumber
1928 has been allocated, which happens in local-alloc.c. */
1929
1930 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1931 ((REGNO) < STACK_POINTER_REGNUM \
1932 || (REGNO >= FIRST_REX_INT_REG \
1933 && (REGNO) <= LAST_REX_INT_REG) \
1934 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1935 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1936 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1937
1938 #define REGNO_OK_FOR_BASE_P(REGNO) \
1939 ((REGNO) <= STACK_POINTER_REGNUM \
1940 || (REGNO) == ARG_POINTER_REGNUM \
1941 || (REGNO) == FRAME_POINTER_REGNUM \
1942 || (REGNO >= FIRST_REX_INT_REG \
1943 && (REGNO) <= LAST_REX_INT_REG) \
1944 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1945 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1946 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1947
1948 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1949 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1950 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1951 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1952
1953 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1954 and check its validity for a certain class.
1955 We have two alternate definitions for each of them.
1956 The usual definition accepts all pseudo regs; the other rejects
1957 them unless they have been allocated suitable hard regs.
1958 The symbol REG_OK_STRICT causes the latter definition to be used.
1959
1960 Most source files want to accept pseudo regs in the hope that
1961 they will get allocated to the class that the insn wants them to be in.
1962 Source files for reload pass need to be strict.
1963 After reload, it makes no difference, since pseudo regs have
1964 been eliminated by then. */
1965
1966
1967 /* Non strict versions, pseudos are ok */
1968 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1969 (REGNO (X) < STACK_POINTER_REGNUM \
1970 || (REGNO (X) >= FIRST_REX_INT_REG \
1971 && REGNO (X) <= LAST_REX_INT_REG) \
1972 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1973
1974 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1975 (REGNO (X) <= STACK_POINTER_REGNUM \
1976 || REGNO (X) == ARG_POINTER_REGNUM \
1977 || REGNO (X) == FRAME_POINTER_REGNUM \
1978 || (REGNO (X) >= FIRST_REX_INT_REG \
1979 && REGNO (X) <= LAST_REX_INT_REG) \
1980 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1981
1982 /* Strict versions, hard registers only */
1983 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1984 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1985
1986 #ifndef REG_OK_STRICT
1987 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1988 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1989
1990 #else
1991 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1992 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1993 #endif
1994
1995 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1996 that is a valid memory address for an instruction.
1997 The MODE argument is the machine mode for the MEM expression
1998 that wants to use this address.
1999
2000 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
2001 except for CONSTANT_ADDRESS_P which is usually machine-independent.
2002
2003 See legitimize_pic_address in i386.c for details as to what
2004 constitutes a legitimate address when -fpic is used. */
2005
2006 #define MAX_REGS_PER_ADDRESS 2
2007
2008 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
2009
2010 /* Nonzero if the constant value X is a legitimate general operand.
2011 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2012
2013 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
2014
2015 #ifdef REG_OK_STRICT
2016 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2017 do { \
2018 if (legitimate_address_p ((MODE), (X), 1)) \
2019 goto ADDR; \
2020 } while (0)
2021
2022 #else
2023 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2024 do { \
2025 if (legitimate_address_p ((MODE), (X), 0)) \
2026 goto ADDR; \
2027 } while (0)
2028
2029 #endif
2030
2031 /* If defined, a C expression to determine the base term of address X.
2032 This macro is used in only one place: `find_base_term' in alias.c.
2033
2034 It is always safe for this macro to not be defined. It exists so
2035 that alias analysis can understand machine-dependent addresses.
2036
2037 The typical use of this macro is to handle addresses containing
2038 a label_ref or symbol_ref within an UNSPEC. */
2039
2040 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
2041
2042 /* Try machine-dependent ways of modifying an illegitimate address
2043 to be legitimate. If we find one, return the new, valid address.
2044 This macro is used in only one place: `memory_address' in explow.c.
2045
2046 OLDX is the address as it was before break_out_memory_refs was called.
2047 In some cases it is useful to look at this to decide what needs to be done.
2048
2049 MODE and WIN are passed so that this macro can use
2050 GO_IF_LEGITIMATE_ADDRESS.
2051
2052 It is always safe for this macro to do nothing. It exists to recognize
2053 opportunities to optimize the output.
2054
2055 For the 80386, we handle X+REG by loading X into a register R and
2056 using R+REG. R will go in a general reg and indexing will be used.
2057 However, if REG is a broken-out memory address or multiplication,
2058 nothing needs to be done because REG can certainly go in a general reg.
2059
2060 When -fpic is used, special handling is needed for symbolic references.
2061 See comments by legitimize_pic_address in i386.c for details. */
2062
2063 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2064 do { \
2065 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2066 if (memory_address_p ((MODE), (X))) \
2067 goto WIN; \
2068 } while (0)
2069
2070 #define REWRITE_ADDRESS(X) rewrite_address (X)
2071
2072 /* Nonzero if the constant value X is a legitimate general operand
2073 when generating PIC code. It is given that flag_pic is on and
2074 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2075
2076 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2077
2078 #define SYMBOLIC_CONST(X) \
2079 (GET_CODE (X) == SYMBOL_REF \
2080 || GET_CODE (X) == LABEL_REF \
2081 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2082
2083 /* Go to LABEL if ADDR (a legitimate address expression)
2084 has an effect that depends on the machine mode it is used for.
2085 On the 80386, only postdecrement and postincrement address depend thus
2086 (the amount of decrement or increment being the length of the operand). */
2087 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2088 do { \
2089 if (GET_CODE (ADDR) == POST_INC \
2090 || GET_CODE (ADDR) == POST_DEC) \
2091 goto LABEL; \
2092 } while (0)
2093 \f
2094 /* Codes for all the SSE/MMX builtins. */
2095 enum ix86_builtins
2096 {
2097 IX86_BUILTIN_ADDPS,
2098 IX86_BUILTIN_ADDSS,
2099 IX86_BUILTIN_DIVPS,
2100 IX86_BUILTIN_DIVSS,
2101 IX86_BUILTIN_MULPS,
2102 IX86_BUILTIN_MULSS,
2103 IX86_BUILTIN_SUBPS,
2104 IX86_BUILTIN_SUBSS,
2105
2106 IX86_BUILTIN_CMPEQPS,
2107 IX86_BUILTIN_CMPLTPS,
2108 IX86_BUILTIN_CMPLEPS,
2109 IX86_BUILTIN_CMPGTPS,
2110 IX86_BUILTIN_CMPGEPS,
2111 IX86_BUILTIN_CMPNEQPS,
2112 IX86_BUILTIN_CMPNLTPS,
2113 IX86_BUILTIN_CMPNLEPS,
2114 IX86_BUILTIN_CMPNGTPS,
2115 IX86_BUILTIN_CMPNGEPS,
2116 IX86_BUILTIN_CMPORDPS,
2117 IX86_BUILTIN_CMPUNORDPS,
2118 IX86_BUILTIN_CMPNEPS,
2119 IX86_BUILTIN_CMPEQSS,
2120 IX86_BUILTIN_CMPLTSS,
2121 IX86_BUILTIN_CMPLESS,
2122 IX86_BUILTIN_CMPNEQSS,
2123 IX86_BUILTIN_CMPNLTSS,
2124 IX86_BUILTIN_CMPNLESS,
2125 IX86_BUILTIN_CMPORDSS,
2126 IX86_BUILTIN_CMPUNORDSS,
2127 IX86_BUILTIN_CMPNESS,
2128
2129 IX86_BUILTIN_COMIEQSS,
2130 IX86_BUILTIN_COMILTSS,
2131 IX86_BUILTIN_COMILESS,
2132 IX86_BUILTIN_COMIGTSS,
2133 IX86_BUILTIN_COMIGESS,
2134 IX86_BUILTIN_COMINEQSS,
2135 IX86_BUILTIN_UCOMIEQSS,
2136 IX86_BUILTIN_UCOMILTSS,
2137 IX86_BUILTIN_UCOMILESS,
2138 IX86_BUILTIN_UCOMIGTSS,
2139 IX86_BUILTIN_UCOMIGESS,
2140 IX86_BUILTIN_UCOMINEQSS,
2141
2142 IX86_BUILTIN_CVTPI2PS,
2143 IX86_BUILTIN_CVTPS2PI,
2144 IX86_BUILTIN_CVTSI2SS,
2145 IX86_BUILTIN_CVTSI642SS,
2146 IX86_BUILTIN_CVTSS2SI,
2147 IX86_BUILTIN_CVTSS2SI64,
2148 IX86_BUILTIN_CVTTPS2PI,
2149 IX86_BUILTIN_CVTTSS2SI,
2150 IX86_BUILTIN_CVTTSS2SI64,
2151
2152 IX86_BUILTIN_MAXPS,
2153 IX86_BUILTIN_MAXSS,
2154 IX86_BUILTIN_MINPS,
2155 IX86_BUILTIN_MINSS,
2156
2157 IX86_BUILTIN_LOADAPS,
2158 IX86_BUILTIN_LOADUPS,
2159 IX86_BUILTIN_STOREAPS,
2160 IX86_BUILTIN_STOREUPS,
2161 IX86_BUILTIN_LOADSS,
2162 IX86_BUILTIN_STORESS,
2163 IX86_BUILTIN_MOVSS,
2164
2165 IX86_BUILTIN_MOVHLPS,
2166 IX86_BUILTIN_MOVLHPS,
2167 IX86_BUILTIN_LOADHPS,
2168 IX86_BUILTIN_LOADLPS,
2169 IX86_BUILTIN_STOREHPS,
2170 IX86_BUILTIN_STORELPS,
2171
2172 IX86_BUILTIN_MASKMOVQ,
2173 IX86_BUILTIN_MOVMSKPS,
2174 IX86_BUILTIN_PMOVMSKB,
2175
2176 IX86_BUILTIN_MOVNTPS,
2177 IX86_BUILTIN_MOVNTQ,
2178
2179 IX86_BUILTIN_LOADDQA,
2180 IX86_BUILTIN_LOADDQU,
2181 IX86_BUILTIN_STOREDQA,
2182 IX86_BUILTIN_STOREDQU,
2183 IX86_BUILTIN_MOVQ,
2184 IX86_BUILTIN_LOADD,
2185 IX86_BUILTIN_STORED,
2186
2187 IX86_BUILTIN_CLRTI,
2188
2189 IX86_BUILTIN_PACKSSWB,
2190 IX86_BUILTIN_PACKSSDW,
2191 IX86_BUILTIN_PACKUSWB,
2192
2193 IX86_BUILTIN_PADDB,
2194 IX86_BUILTIN_PADDW,
2195 IX86_BUILTIN_PADDD,
2196 IX86_BUILTIN_PADDQ,
2197 IX86_BUILTIN_PADDSB,
2198 IX86_BUILTIN_PADDSW,
2199 IX86_BUILTIN_PADDUSB,
2200 IX86_BUILTIN_PADDUSW,
2201 IX86_BUILTIN_PSUBB,
2202 IX86_BUILTIN_PSUBW,
2203 IX86_BUILTIN_PSUBD,
2204 IX86_BUILTIN_PSUBQ,
2205 IX86_BUILTIN_PSUBSB,
2206 IX86_BUILTIN_PSUBSW,
2207 IX86_BUILTIN_PSUBUSB,
2208 IX86_BUILTIN_PSUBUSW,
2209
2210 IX86_BUILTIN_PAND,
2211 IX86_BUILTIN_PANDN,
2212 IX86_BUILTIN_POR,
2213 IX86_BUILTIN_PXOR,
2214
2215 IX86_BUILTIN_PAVGB,
2216 IX86_BUILTIN_PAVGW,
2217
2218 IX86_BUILTIN_PCMPEQB,
2219 IX86_BUILTIN_PCMPEQW,
2220 IX86_BUILTIN_PCMPEQD,
2221 IX86_BUILTIN_PCMPGTB,
2222 IX86_BUILTIN_PCMPGTW,
2223 IX86_BUILTIN_PCMPGTD,
2224
2225 IX86_BUILTIN_PEXTRW,
2226 IX86_BUILTIN_PINSRW,
2227
2228 IX86_BUILTIN_PMADDWD,
2229
2230 IX86_BUILTIN_PMAXSW,
2231 IX86_BUILTIN_PMAXUB,
2232 IX86_BUILTIN_PMINSW,
2233 IX86_BUILTIN_PMINUB,
2234
2235 IX86_BUILTIN_PMULHUW,
2236 IX86_BUILTIN_PMULHW,
2237 IX86_BUILTIN_PMULLW,
2238
2239 IX86_BUILTIN_PSADBW,
2240 IX86_BUILTIN_PSHUFW,
2241
2242 IX86_BUILTIN_PSLLW,
2243 IX86_BUILTIN_PSLLD,
2244 IX86_BUILTIN_PSLLQ,
2245 IX86_BUILTIN_PSRAW,
2246 IX86_BUILTIN_PSRAD,
2247 IX86_BUILTIN_PSRLW,
2248 IX86_BUILTIN_PSRLD,
2249 IX86_BUILTIN_PSRLQ,
2250 IX86_BUILTIN_PSLLWI,
2251 IX86_BUILTIN_PSLLDI,
2252 IX86_BUILTIN_PSLLQI,
2253 IX86_BUILTIN_PSRAWI,
2254 IX86_BUILTIN_PSRADI,
2255 IX86_BUILTIN_PSRLWI,
2256 IX86_BUILTIN_PSRLDI,
2257 IX86_BUILTIN_PSRLQI,
2258
2259 IX86_BUILTIN_PUNPCKHBW,
2260 IX86_BUILTIN_PUNPCKHWD,
2261 IX86_BUILTIN_PUNPCKHDQ,
2262 IX86_BUILTIN_PUNPCKLBW,
2263 IX86_BUILTIN_PUNPCKLWD,
2264 IX86_BUILTIN_PUNPCKLDQ,
2265
2266 IX86_BUILTIN_SHUFPS,
2267
2268 IX86_BUILTIN_RCPPS,
2269 IX86_BUILTIN_RCPSS,
2270 IX86_BUILTIN_RSQRTPS,
2271 IX86_BUILTIN_RSQRTSS,
2272 IX86_BUILTIN_SQRTPS,
2273 IX86_BUILTIN_SQRTSS,
2274
2275 IX86_BUILTIN_UNPCKHPS,
2276 IX86_BUILTIN_UNPCKLPS,
2277
2278 IX86_BUILTIN_ANDPS,
2279 IX86_BUILTIN_ANDNPS,
2280 IX86_BUILTIN_ORPS,
2281 IX86_BUILTIN_XORPS,
2282
2283 IX86_BUILTIN_EMMS,
2284 IX86_BUILTIN_LDMXCSR,
2285 IX86_BUILTIN_STMXCSR,
2286 IX86_BUILTIN_SFENCE,
2287
2288 /* 3DNow! Original */
2289 IX86_BUILTIN_FEMMS,
2290 IX86_BUILTIN_PAVGUSB,
2291 IX86_BUILTIN_PF2ID,
2292 IX86_BUILTIN_PFACC,
2293 IX86_BUILTIN_PFADD,
2294 IX86_BUILTIN_PFCMPEQ,
2295 IX86_BUILTIN_PFCMPGE,
2296 IX86_BUILTIN_PFCMPGT,
2297 IX86_BUILTIN_PFMAX,
2298 IX86_BUILTIN_PFMIN,
2299 IX86_BUILTIN_PFMUL,
2300 IX86_BUILTIN_PFRCP,
2301 IX86_BUILTIN_PFRCPIT1,
2302 IX86_BUILTIN_PFRCPIT2,
2303 IX86_BUILTIN_PFRSQIT1,
2304 IX86_BUILTIN_PFRSQRT,
2305 IX86_BUILTIN_PFSUB,
2306 IX86_BUILTIN_PFSUBR,
2307 IX86_BUILTIN_PI2FD,
2308 IX86_BUILTIN_PMULHRW,
2309
2310 /* 3DNow! Athlon Extensions */
2311 IX86_BUILTIN_PF2IW,
2312 IX86_BUILTIN_PFNACC,
2313 IX86_BUILTIN_PFPNACC,
2314 IX86_BUILTIN_PI2FW,
2315 IX86_BUILTIN_PSWAPDSI,
2316 IX86_BUILTIN_PSWAPDSF,
2317
2318 IX86_BUILTIN_SSE_ZERO,
2319 IX86_BUILTIN_MMX_ZERO,
2320
2321 /* SSE2 */
2322 IX86_BUILTIN_ADDPD,
2323 IX86_BUILTIN_ADDSD,
2324 IX86_BUILTIN_DIVPD,
2325 IX86_BUILTIN_DIVSD,
2326 IX86_BUILTIN_MULPD,
2327 IX86_BUILTIN_MULSD,
2328 IX86_BUILTIN_SUBPD,
2329 IX86_BUILTIN_SUBSD,
2330
2331 IX86_BUILTIN_CMPEQPD,
2332 IX86_BUILTIN_CMPLTPD,
2333 IX86_BUILTIN_CMPLEPD,
2334 IX86_BUILTIN_CMPGTPD,
2335 IX86_BUILTIN_CMPGEPD,
2336 IX86_BUILTIN_CMPNEQPD,
2337 IX86_BUILTIN_CMPNLTPD,
2338 IX86_BUILTIN_CMPNLEPD,
2339 IX86_BUILTIN_CMPNGTPD,
2340 IX86_BUILTIN_CMPNGEPD,
2341 IX86_BUILTIN_CMPORDPD,
2342 IX86_BUILTIN_CMPUNORDPD,
2343 IX86_BUILTIN_CMPNEPD,
2344 IX86_BUILTIN_CMPEQSD,
2345 IX86_BUILTIN_CMPLTSD,
2346 IX86_BUILTIN_CMPLESD,
2347 IX86_BUILTIN_CMPNEQSD,
2348 IX86_BUILTIN_CMPNLTSD,
2349 IX86_BUILTIN_CMPNLESD,
2350 IX86_BUILTIN_CMPORDSD,
2351 IX86_BUILTIN_CMPUNORDSD,
2352 IX86_BUILTIN_CMPNESD,
2353
2354 IX86_BUILTIN_COMIEQSD,
2355 IX86_BUILTIN_COMILTSD,
2356 IX86_BUILTIN_COMILESD,
2357 IX86_BUILTIN_COMIGTSD,
2358 IX86_BUILTIN_COMIGESD,
2359 IX86_BUILTIN_COMINEQSD,
2360 IX86_BUILTIN_UCOMIEQSD,
2361 IX86_BUILTIN_UCOMILTSD,
2362 IX86_BUILTIN_UCOMILESD,
2363 IX86_BUILTIN_UCOMIGTSD,
2364 IX86_BUILTIN_UCOMIGESD,
2365 IX86_BUILTIN_UCOMINEQSD,
2366
2367 IX86_BUILTIN_MAXPD,
2368 IX86_BUILTIN_MAXSD,
2369 IX86_BUILTIN_MINPD,
2370 IX86_BUILTIN_MINSD,
2371
2372 IX86_BUILTIN_ANDPD,
2373 IX86_BUILTIN_ANDNPD,
2374 IX86_BUILTIN_ORPD,
2375 IX86_BUILTIN_XORPD,
2376
2377 IX86_BUILTIN_SQRTPD,
2378 IX86_BUILTIN_SQRTSD,
2379
2380 IX86_BUILTIN_UNPCKHPD,
2381 IX86_BUILTIN_UNPCKLPD,
2382
2383 IX86_BUILTIN_SHUFPD,
2384
2385 IX86_BUILTIN_LOADAPD,
2386 IX86_BUILTIN_LOADUPD,
2387 IX86_BUILTIN_STOREAPD,
2388 IX86_BUILTIN_STOREUPD,
2389 IX86_BUILTIN_LOADSD,
2390 IX86_BUILTIN_STORESD,
2391 IX86_BUILTIN_MOVSD,
2392
2393 IX86_BUILTIN_LOADHPD,
2394 IX86_BUILTIN_LOADLPD,
2395 IX86_BUILTIN_STOREHPD,
2396 IX86_BUILTIN_STORELPD,
2397
2398 IX86_BUILTIN_CVTDQ2PD,
2399 IX86_BUILTIN_CVTDQ2PS,
2400
2401 IX86_BUILTIN_CVTPD2DQ,
2402 IX86_BUILTIN_CVTPD2PI,
2403 IX86_BUILTIN_CVTPD2PS,
2404 IX86_BUILTIN_CVTTPD2DQ,
2405 IX86_BUILTIN_CVTTPD2PI,
2406
2407 IX86_BUILTIN_CVTPI2PD,
2408 IX86_BUILTIN_CVTSI2SD,
2409 IX86_BUILTIN_CVTSI642SD,
2410
2411 IX86_BUILTIN_CVTSD2SI,
2412 IX86_BUILTIN_CVTSD2SI64,
2413 IX86_BUILTIN_CVTSD2SS,
2414 IX86_BUILTIN_CVTSS2SD,
2415 IX86_BUILTIN_CVTTSD2SI,
2416 IX86_BUILTIN_CVTTSD2SI64,
2417
2418 IX86_BUILTIN_CVTPS2DQ,
2419 IX86_BUILTIN_CVTPS2PD,
2420 IX86_BUILTIN_CVTTPS2DQ,
2421
2422 IX86_BUILTIN_MOVNTI,
2423 IX86_BUILTIN_MOVNTPD,
2424 IX86_BUILTIN_MOVNTDQ,
2425
2426 IX86_BUILTIN_SETPD1,
2427 IX86_BUILTIN_SETPD,
2428 IX86_BUILTIN_CLRPD,
2429 IX86_BUILTIN_SETRPD,
2430 IX86_BUILTIN_LOADPD1,
2431 IX86_BUILTIN_LOADRPD,
2432 IX86_BUILTIN_STOREPD1,
2433 IX86_BUILTIN_STORERPD,
2434
2435 /* SSE2 MMX */
2436 IX86_BUILTIN_MASKMOVDQU,
2437 IX86_BUILTIN_MOVMSKPD,
2438 IX86_BUILTIN_PMOVMSKB128,
2439 IX86_BUILTIN_MOVQ2DQ,
2440 IX86_BUILTIN_MOVDQ2Q,
2441
2442 IX86_BUILTIN_PACKSSWB128,
2443 IX86_BUILTIN_PACKSSDW128,
2444 IX86_BUILTIN_PACKUSWB128,
2445
2446 IX86_BUILTIN_PADDB128,
2447 IX86_BUILTIN_PADDW128,
2448 IX86_BUILTIN_PADDD128,
2449 IX86_BUILTIN_PADDQ128,
2450 IX86_BUILTIN_PADDSB128,
2451 IX86_BUILTIN_PADDSW128,
2452 IX86_BUILTIN_PADDUSB128,
2453 IX86_BUILTIN_PADDUSW128,
2454 IX86_BUILTIN_PSUBB128,
2455 IX86_BUILTIN_PSUBW128,
2456 IX86_BUILTIN_PSUBD128,
2457 IX86_BUILTIN_PSUBQ128,
2458 IX86_BUILTIN_PSUBSB128,
2459 IX86_BUILTIN_PSUBSW128,
2460 IX86_BUILTIN_PSUBUSB128,
2461 IX86_BUILTIN_PSUBUSW128,
2462
2463 IX86_BUILTIN_PAND128,
2464 IX86_BUILTIN_PANDN128,
2465 IX86_BUILTIN_POR128,
2466 IX86_BUILTIN_PXOR128,
2467
2468 IX86_BUILTIN_PAVGB128,
2469 IX86_BUILTIN_PAVGW128,
2470
2471 IX86_BUILTIN_PCMPEQB128,
2472 IX86_BUILTIN_PCMPEQW128,
2473 IX86_BUILTIN_PCMPEQD128,
2474 IX86_BUILTIN_PCMPGTB128,
2475 IX86_BUILTIN_PCMPGTW128,
2476 IX86_BUILTIN_PCMPGTD128,
2477
2478 IX86_BUILTIN_PEXTRW128,
2479 IX86_BUILTIN_PINSRW128,
2480
2481 IX86_BUILTIN_PMADDWD128,
2482
2483 IX86_BUILTIN_PMAXSW128,
2484 IX86_BUILTIN_PMAXUB128,
2485 IX86_BUILTIN_PMINSW128,
2486 IX86_BUILTIN_PMINUB128,
2487
2488 IX86_BUILTIN_PMULUDQ,
2489 IX86_BUILTIN_PMULUDQ128,
2490 IX86_BUILTIN_PMULHUW128,
2491 IX86_BUILTIN_PMULHW128,
2492 IX86_BUILTIN_PMULLW128,
2493
2494 IX86_BUILTIN_PSADBW128,
2495 IX86_BUILTIN_PSHUFHW,
2496 IX86_BUILTIN_PSHUFLW,
2497 IX86_BUILTIN_PSHUFD,
2498
2499 IX86_BUILTIN_PSLLW128,
2500 IX86_BUILTIN_PSLLD128,
2501 IX86_BUILTIN_PSLLQ128,
2502 IX86_BUILTIN_PSRAW128,
2503 IX86_BUILTIN_PSRAD128,
2504 IX86_BUILTIN_PSRLW128,
2505 IX86_BUILTIN_PSRLD128,
2506 IX86_BUILTIN_PSRLQ128,
2507 IX86_BUILTIN_PSLLDQI128,
2508 IX86_BUILTIN_PSLLWI128,
2509 IX86_BUILTIN_PSLLDI128,
2510 IX86_BUILTIN_PSLLQI128,
2511 IX86_BUILTIN_PSRAWI128,
2512 IX86_BUILTIN_PSRADI128,
2513 IX86_BUILTIN_PSRLDQI128,
2514 IX86_BUILTIN_PSRLWI128,
2515 IX86_BUILTIN_PSRLDI128,
2516 IX86_BUILTIN_PSRLQI128,
2517
2518 IX86_BUILTIN_PUNPCKHBW128,
2519 IX86_BUILTIN_PUNPCKHWD128,
2520 IX86_BUILTIN_PUNPCKHDQ128,
2521 IX86_BUILTIN_PUNPCKHQDQ128,
2522 IX86_BUILTIN_PUNPCKLBW128,
2523 IX86_BUILTIN_PUNPCKLWD128,
2524 IX86_BUILTIN_PUNPCKLDQ128,
2525 IX86_BUILTIN_PUNPCKLQDQ128,
2526
2527 IX86_BUILTIN_CLFLUSH,
2528 IX86_BUILTIN_MFENCE,
2529 IX86_BUILTIN_LFENCE,
2530
2531 /* Prescott New Instructions. */
2532 IX86_BUILTIN_ADDSUBPS,
2533 IX86_BUILTIN_HADDPS,
2534 IX86_BUILTIN_HSUBPS,
2535 IX86_BUILTIN_MOVSHDUP,
2536 IX86_BUILTIN_MOVSLDUP,
2537 IX86_BUILTIN_ADDSUBPD,
2538 IX86_BUILTIN_HADDPD,
2539 IX86_BUILTIN_HSUBPD,
2540 IX86_BUILTIN_LOADDDUP,
2541 IX86_BUILTIN_MOVDDUP,
2542 IX86_BUILTIN_LDDQU,
2543
2544 IX86_BUILTIN_MONITOR,
2545 IX86_BUILTIN_MWAIT,
2546
2547 IX86_BUILTIN_MAX
2548 };
2549 \f
2550 /* Max number of args passed in registers. If this is more than 3, we will
2551 have problems with ebx (register #4), since it is a caller save register and
2552 is also used as the pic register in ELF. So for now, don't allow more than
2553 3 registers to be passed in registers. */
2554
2555 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2556
2557 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2558
2559 \f
2560 /* Specify the machine mode that this machine uses
2561 for the index in the tablejump instruction. */
2562 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2563
2564 /* Define as C expression which evaluates to nonzero if the tablejump
2565 instruction expects the table to contain offsets from the address of the
2566 table.
2567 Do not define this if the table should contain absolute addresses. */
2568 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2569
2570 /* Define this as 1 if `char' should by default be signed; else as 0. */
2571 #define DEFAULT_SIGNED_CHAR 1
2572
2573 /* Number of bytes moved into a data cache for a single prefetch operation. */
2574 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2575
2576 /* Number of prefetch operations that can be done in parallel. */
2577 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2578
2579 /* Max number of bytes we can move from memory to memory
2580 in one reasonably fast instruction. */
2581 #define MOVE_MAX 16
2582
2583 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2584 move efficiently, as opposed to MOVE_MAX which is the maximum
2585 number of bytes we can move with a single instruction. */
2586 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2587
2588 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2589 move-instruction pairs, we will do a movstr or libcall instead.
2590 Increasing the value will always make code faster, but eventually
2591 incurs high cost in increased code size.
2592
2593 If you don't define this, a reasonable default is used. */
2594
2595 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2596
2597 /* Define if shifts truncate the shift count
2598 which implies one can omit a sign-extension or zero-extension
2599 of a shift count. */
2600 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2601
2602 /* #define SHIFT_COUNT_TRUNCATED */
2603
2604 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2605 is done just by pretending it is already truncated. */
2606 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2607
2608 /* When a prototype says `char' or `short', really pass an `int'.
2609 (The 386 can't easily push less than an int.) */
2610
2611 #define PROMOTE_PROTOTYPES 1
2612
2613 /* A macro to update M and UNSIGNEDP when an object whose type is
2614 TYPE and which has the specified mode and signedness is to be
2615 stored in a register. This macro is only called when TYPE is a
2616 scalar type.
2617
2618 On i386 it is sometimes useful to promote HImode and QImode
2619 quantities to SImode. The choice depends on target type. */
2620
2621 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2622 do { \
2623 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2624 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2625 (MODE) = SImode; \
2626 } while (0)
2627
2628 /* Specify the machine mode that pointers have.
2629 After generation of rtl, the compiler makes no further distinction
2630 between pointers and any other objects of this machine mode. */
2631 #define Pmode (TARGET_64BIT ? DImode : SImode)
2632
2633 /* A function address in a call instruction
2634 is a byte address (for indexing purposes)
2635 so give the MEM rtx a byte's mode. */
2636 #define FUNCTION_MODE QImode
2637 \f
2638 /* A C expression for the cost of moving data from a register in class FROM to
2639 one in class TO. The classes are expressed using the enumeration values
2640 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2641 interpreted relative to that.
2642
2643 It is not required that the cost always equal 2 when FROM is the same as TO;
2644 on some machines it is expensive to move between registers if they are not
2645 general registers. */
2646
2647 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2648 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2649
2650 /* A C expression for the cost of moving data of mode M between a
2651 register and memory. A value of 2 is the default; this cost is
2652 relative to those in `REGISTER_MOVE_COST'.
2653
2654 If moving between registers and memory is more expensive than
2655 between two registers, you should define this macro to express the
2656 relative cost. */
2657
2658 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2659 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2660
2661 /* A C expression for the cost of a branch instruction. A value of 1
2662 is the default; other values are interpreted relative to that. */
2663
2664 #define BRANCH_COST ix86_branch_cost
2665
2666 /* Define this macro as a C expression which is nonzero if accessing
2667 less than a word of memory (i.e. a `char' or a `short') is no
2668 faster than accessing a word of memory, i.e., if such access
2669 require more than one instruction or if there is no difference in
2670 cost between byte and (aligned) word loads.
2671
2672 When this macro is not defined, the compiler will access a field by
2673 finding the smallest containing object; when it is defined, a
2674 fullword load will be used if alignment permits. Unless bytes
2675 accesses are faster than word accesses, using word accesses is
2676 preferable since it may eliminate subsequent memory access if
2677 subsequent accesses occur to other fields in the same word of the
2678 structure, but to different bytes. */
2679
2680 #define SLOW_BYTE_ACCESS 0
2681
2682 /* Nonzero if access to memory by shorts is slow and undesirable. */
2683 #define SLOW_SHORT_ACCESS 0
2684
2685 /* Define this macro to be the value 1 if unaligned accesses have a
2686 cost many times greater than aligned accesses, for example if they
2687 are emulated in a trap handler.
2688
2689 When this macro is nonzero, the compiler will act as if
2690 `STRICT_ALIGNMENT' were nonzero when generating code for block
2691 moves. This can cause significantly more instructions to be
2692 produced. Therefore, do not set this macro nonzero if unaligned
2693 accesses only add a cycle or two to the time for a memory access.
2694
2695 If the value of this macro is always zero, it need not be defined. */
2696
2697 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2698
2699 /* Define this macro if it is as good or better to call a constant
2700 function address than to call an address kept in a register.
2701
2702 Desirable on the 386 because a CALL with a constant address is
2703 faster than one with a register address. */
2704
2705 #define NO_FUNCTION_CSE
2706
2707 /* Define this macro if it is as good or better for a function to call
2708 itself with an explicit address than to call an address kept in a
2709 register. */
2710
2711 #define NO_RECURSIVE_FUNCTION_CSE
2712 \f
2713 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2714 return the mode to be used for the comparison.
2715
2716 For floating-point equality comparisons, CCFPEQmode should be used.
2717 VOIDmode should be used in all other cases.
2718
2719 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2720 possible, to allow for more combinations. */
2721
2722 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2723
2724 /* Return nonzero if MODE implies a floating point inequality can be
2725 reversed. */
2726
2727 #define REVERSIBLE_CC_MODE(MODE) 1
2728
2729 /* A C expression whose value is reversed condition code of the CODE for
2730 comparison done in CC_MODE mode. */
2731 #define REVERSE_CONDITION(CODE, MODE) \
2732 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2733 : reverse_condition_maybe_unordered (CODE))
2734
2735 \f
2736 /* Control the assembler format that we output, to the extent
2737 this does not vary between assemblers. */
2738
2739 /* How to refer to registers in assembler output.
2740 This sequence is indexed by compiler's hard-register-number (see above). */
2741
2742 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2743 For non floating point regs, the following are the HImode names.
2744
2745 For float regs, the stack top is sometimes referred to as "%st(0)"
2746 instead of just "%st". PRINT_REG handles this with the "y" code. */
2747
2748 #undef HI_REGISTER_NAMES
2749 #define HI_REGISTER_NAMES \
2750 {"ax","dx","cx","bx","si","di","bp","sp", \
2751 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2752 "flags","fpsr", "dirflag", "frame", \
2753 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2754 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2755 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2756 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2757
2758 #define REGISTER_NAMES HI_REGISTER_NAMES
2759
2760 /* Table of additional register names to use in user input. */
2761
2762 #define ADDITIONAL_REGISTER_NAMES \
2763 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2764 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2765 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2766 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2767 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2768 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2769 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2770 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2771
2772 /* Note we are omitting these since currently I don't know how
2773 to get gcc to use these, since they want the same but different
2774 number as al, and ax.
2775 */
2776
2777 #define QI_REGISTER_NAMES \
2778 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2779
2780 /* These parallel the array above, and can be used to access bits 8:15
2781 of regs 0 through 3. */
2782
2783 #define QI_HIGH_REGISTER_NAMES \
2784 {"ah", "dh", "ch", "bh", }
2785
2786 /* How to renumber registers for dbx and gdb. */
2787
2788 #define DBX_REGISTER_NUMBER(N) \
2789 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2790
2791 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2792 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2793 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2794
2795 /* Before the prologue, RA is at 0(%esp). */
2796 #define INCOMING_RETURN_ADDR_RTX \
2797 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2798
2799 /* After the prologue, RA is at -4(AP) in the current frame. */
2800 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2801 ((COUNT) == 0 \
2802 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2803 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2804
2805 /* PC is dbx register 8; let's use that column for RA. */
2806 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2807
2808 /* Before the prologue, the top of the frame is at 4(%esp). */
2809 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2810
2811 /* Describe how we implement __builtin_eh_return. */
2812 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2813 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2814
2815
2816 /* Select a format to encode pointers in exception handling data. CODE
2817 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2818 true if the symbol may be affected by dynamic relocations.
2819
2820 ??? All x86 object file formats are capable of representing this.
2821 After all, the relocation needed is the same as for the call insn.
2822 Whether or not a particular assembler allows us to enter such, I
2823 guess we'll have to see. */
2824 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2825 (flag_pic \
2826 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2827 : DW_EH_PE_absptr)
2828
2829 /* This is how to output an insn to push a register on the stack.
2830 It need not be very fast code. */
2831
2832 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2833 do { \
2834 if (TARGET_64BIT) \
2835 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2836 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2837 else \
2838 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2839 } while (0)
2840
2841 /* This is how to output an insn to pop a register from the stack.
2842 It need not be very fast code. */
2843
2844 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2845 do { \
2846 if (TARGET_64BIT) \
2847 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2848 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2849 else \
2850 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2851 } while (0)
2852
2853 /* This is how to output an element of a case-vector that is absolute. */
2854
2855 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2856 ix86_output_addr_vec_elt ((FILE), (VALUE))
2857
2858 /* This is how to output an element of a case-vector that is relative. */
2859
2860 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2861 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2862
2863 /* Under some conditions we need jump tables in the text section, because
2864 the assembler cannot handle label differences between sections. */
2865
2866 #define JUMP_TABLES_IN_TEXT_SECTION \
2867 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2868
2869 /* A C statement that outputs an address constant appropriate to
2870 for DWARF debugging. */
2871
2872 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2873 i386_dwarf_output_addr_const ((FILE), (X))
2874
2875 /* Emit a dtp-relative reference to a TLS variable. */
2876
2877 #ifdef HAVE_AS_TLS
2878 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2879 i386_output_dwarf_dtprel (FILE, SIZE, X)
2880 #endif
2881
2882 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2883 and switch back. For x86 we do this only to save a few bytes that
2884 would otherwise be unused in the text section. */
2885 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2886 asm (SECTION_OP "\n\t" \
2887 "call " USER_LABEL_PREFIX #FUNC "\n" \
2888 TEXT_SECTION_ASM_OP);
2889 \f
2890 /* Print operand X (an rtx) in assembler syntax to file FILE.
2891 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2892 Effect of various CODE letters is described in i386.c near
2893 print_operand function. */
2894
2895 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2896 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2897
2898 /* Print the name of a register based on its machine mode and number.
2899 If CODE is 'w', pretend the mode is HImode.
2900 If CODE is 'b', pretend the mode is QImode.
2901 If CODE is 'k', pretend the mode is SImode.
2902 If CODE is 'q', pretend the mode is DImode.
2903 If CODE is 'h', pretend the reg is the `high' byte register.
2904 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2905
2906 #define PRINT_REG(X, CODE, FILE) \
2907 print_reg ((X), (CODE), (FILE))
2908
2909 #define PRINT_OPERAND(FILE, X, CODE) \
2910 print_operand ((FILE), (X), (CODE))
2911
2912 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2913 print_operand_address ((FILE), (ADDR))
2914
2915 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2916 do { \
2917 if (! output_addr_const_extra (FILE, (X))) \
2918 goto FAIL; \
2919 } while (0);
2920
2921 /* Print the name of a register for based on its machine mode and number.
2922 This macro is used to print debugging output.
2923 This macro is different from PRINT_REG in that it may be used in
2924 programs that are not linked with aux-output.o. */
2925
2926 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2927 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
2928 static const char * const qi_name[] = QI_REGISTER_NAMES; \
2929 fprintf ((FILE), "%d ", REGNO (X)); \
2930 if (REGNO (X) == FLAGS_REG) \
2931 { fputs ("flags", (FILE)); break; } \
2932 if (REGNO (X) == DIRFLAG_REG) \
2933 { fputs ("dirflag", (FILE)); break; } \
2934 if (REGNO (X) == FPSR_REG) \
2935 { fputs ("fpsr", (FILE)); break; } \
2936 if (REGNO (X) == ARG_POINTER_REGNUM) \
2937 { fputs ("argp", (FILE)); break; } \
2938 if (REGNO (X) == FRAME_POINTER_REGNUM) \
2939 { fputs ("frame", (FILE)); break; } \
2940 if (STACK_TOP_P (X)) \
2941 { fputs ("st(0)", (FILE)); break; } \
2942 if (FP_REG_P (X)) \
2943 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
2944 if (REX_INT_REG_P (X)) \
2945 { \
2946 switch (GET_MODE_SIZE (GET_MODE (X))) \
2947 { \
2948 default: \
2949 case 8: \
2950 fprintf ((FILE), "r%i", REGNO (X) \
2951 - FIRST_REX_INT_REG + 8); \
2952 break; \
2953 case 4: \
2954 fprintf ((FILE), "r%id", REGNO (X) \
2955 - FIRST_REX_INT_REG + 8); \
2956 break; \
2957 case 2: \
2958 fprintf ((FILE), "r%iw", REGNO (X) \
2959 - FIRST_REX_INT_REG + 8); \
2960 break; \
2961 case 1: \
2962 fprintf ((FILE), "r%ib", REGNO (X) \
2963 - FIRST_REX_INT_REG + 8); \
2964 break; \
2965 } \
2966 break; \
2967 } \
2968 switch (GET_MODE_SIZE (GET_MODE (X))) \
2969 { \
2970 case 8: \
2971 fputs ("r", (FILE)); \
2972 fputs (hi_name[REGNO (X)], (FILE)); \
2973 break; \
2974 default: \
2975 fputs ("e", (FILE)); \
2976 case 2: \
2977 fputs (hi_name[REGNO (X)], (FILE)); \
2978 break; \
2979 case 1: \
2980 fputs (qi_name[REGNO (X)], (FILE)); \
2981 break; \
2982 } \
2983 } while (0)
2984
2985 /* a letter which is not needed by the normal asm syntax, which
2986 we can use for operand syntax in the extended asm */
2987
2988 #define ASM_OPERAND_LETTER '#'
2989 #define RET return ""
2990 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2991 \f
2992 /* Define the codes that are matched by predicates in i386.c. */
2993
2994 #define PREDICATE_CODES \
2995 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2996 SYMBOL_REF, LABEL_REF, CONST}}, \
2997 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2998 SYMBOL_REF, LABEL_REF, CONST}}, \
2999 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
3000 SYMBOL_REF, LABEL_REF, CONST}}, \
3001 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3002 SYMBOL_REF, LABEL_REF, CONST}}, \
3003 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3004 SYMBOL_REF, LABEL_REF, CONST}}, \
3005 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3006 SYMBOL_REF, LABEL_REF, CONST}}, \
3007 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3008 SYMBOL_REF, LABEL_REF}}, \
3009 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
3010 {"const_int_1_operand", {CONST_INT}}, \
3011 {"const_int_1_31_operand", {CONST_INT}}, \
3012 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
3013 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3014 LABEL_REF, SUBREG, REG, MEM}}, \
3015 {"pic_symbolic_operand", {CONST}}, \
3016 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
3017 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
3018 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
3019 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3020 {"const1_operand", {CONST_INT}}, \
3021 {"const248_operand", {CONST_INT}}, \
3022 {"const_0_to_3_operand", {CONST_INT}}, \
3023 {"const_0_to_7_operand", {CONST_INT}}, \
3024 {"const_0_to_15_operand", {CONST_INT}}, \
3025 {"const_0_to_255_operand", {CONST_INT}}, \
3026 {"incdec_operand", {CONST_INT}}, \
3027 {"mmx_reg_operand", {REG}}, \
3028 {"reg_no_sp_operand", {SUBREG, REG}}, \
3029 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3030 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3031 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
3032 {"index_register_operand", {SUBREG, REG}}, \
3033 {"flags_reg_operand", {REG}}, \
3034 {"q_regs_operand", {SUBREG, REG}}, \
3035 {"non_q_regs_operand", {SUBREG, REG}}, \
3036 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3037 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3038 GE, UNGE, LTGT, UNEQ}}, \
3039 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3040 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3041 }}, \
3042 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
3043 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3044 UNGE, UNGT, LTGT, UNEQ }}, \
3045 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
3046 GE, UNGE, LTGT, UNEQ}}, \
3047 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3048 {"ext_register_operand", {SUBREG, REG}}, \
3049 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3050 {"mult_operator", {MULT}}, \
3051 {"div_operator", {DIV}}, \
3052 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3053 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3054 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3055 LSHIFTRT, ROTATERT}}, \
3056 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
3057 {"memory_displacement_operand", {MEM}}, \
3058 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3059 LABEL_REF, SUBREG, REG, MEM, AND}}, \
3060 {"long_memory_operand", {MEM}}, \
3061 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3062 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3063 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3064 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
3065 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
3066 {"any_fp_register_operand", {REG}}, \
3067 {"register_and_not_any_fp_reg_operand", {REG}}, \
3068 {"fp_register_operand", {REG}}, \
3069 {"register_and_not_fp_reg_operand", {REG}}, \
3070 {"zero_extended_scalar_load_operand", {MEM}}, \
3071 {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}}, \
3072 {"no_seg_address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3073 LABEL_REF, SUBREG, REG, MEM, PLUS, MULT}},
3074
3075 /* A list of predicates that do special things with modes, and so
3076 should not elicit warnings for VOIDmode match_operand. */
3077
3078 #define SPECIAL_MODE_PREDICATES \
3079 "ext_register_operand",
3080 \f
3081 /* Which processor to schedule for. The cpu attribute defines a list that
3082 mirrors this list, so changes to i386.md must be made at the same time. */
3083
3084 enum processor_type
3085 {
3086 PROCESSOR_I386, /* 80386 */
3087 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3088 PROCESSOR_PENTIUM,
3089 PROCESSOR_PENTIUMPRO,
3090 PROCESSOR_K6,
3091 PROCESSOR_ATHLON,
3092 PROCESSOR_PENTIUM4,
3093 PROCESSOR_K8,
3094 PROCESSOR_max
3095 };
3096
3097 extern enum processor_type ix86_tune;
3098 extern const char *ix86_tune_string;
3099
3100 extern enum processor_type ix86_arch;
3101 extern const char *ix86_arch_string;
3102
3103 enum fpmath_unit
3104 {
3105 FPMATH_387 = 1,
3106 FPMATH_SSE = 2
3107 };
3108
3109 extern enum fpmath_unit ix86_fpmath;
3110 extern const char *ix86_fpmath_string;
3111
3112 enum tls_dialect
3113 {
3114 TLS_DIALECT_GNU,
3115 TLS_DIALECT_SUN
3116 };
3117
3118 extern enum tls_dialect ix86_tls_dialect;
3119 extern const char *ix86_tls_dialect_string;
3120
3121 enum cmodel {
3122 CM_32, /* The traditional 32-bit ABI. */
3123 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3124 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3125 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3126 CM_LARGE, /* No assumptions. */
3127 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3128 };
3129
3130 extern enum cmodel ix86_cmodel;
3131 extern const char *ix86_cmodel_string;
3132
3133 /* Size of the RED_ZONE area. */
3134 #define RED_ZONE_SIZE 128
3135 /* Reserved area of the red zone for temporaries. */
3136 #define RED_ZONE_RESERVE 8
3137
3138 enum asm_dialect {
3139 ASM_ATT,
3140 ASM_INTEL
3141 };
3142
3143 extern const char *ix86_asm_string;
3144 extern enum asm_dialect ix86_asm_dialect;
3145
3146 extern int ix86_regparm;
3147 extern const char *ix86_regparm_string;
3148
3149 extern int ix86_preferred_stack_boundary;
3150 extern const char *ix86_preferred_stack_boundary_string;
3151
3152 extern int ix86_branch_cost;
3153 extern const char *ix86_branch_cost_string;
3154
3155 extern const char *ix86_debug_arg_string;
3156 extern const char *ix86_debug_addr_string;
3157
3158 /* Obsoleted by -f options. Remove before 3.2 ships. */
3159 extern const char *ix86_align_loops_string;
3160 extern const char *ix86_align_jumps_string;
3161 extern const char *ix86_align_funcs_string;
3162
3163 /* Smallest class containing REGNO. */
3164 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3165
3166 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3167 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3168 \f
3169 /* To properly truncate FP values into integers, we need to set i387 control
3170 word. We can't emit proper mode switching code before reload, as spills
3171 generated by reload may truncate values incorrectly, but we still can avoid
3172 redundant computation of new control word by the mode switching pass.
3173 The fldcw instructions are still emitted redundantly, but this is probably
3174 not going to be noticeable problem, as most CPUs do have fast path for
3175 the sequence.
3176
3177 The machinery is to emit simple truncation instructions and split them
3178 before reload to instructions having USEs of two memory locations that
3179 are filled by this code to old and new control word.
3180
3181 Post-reload pass may be later used to eliminate the redundant fildcw if
3182 needed. */
3183
3184 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3185
3186 /* Define this macro if the port needs extra instructions inserted
3187 for mode switching in an optimizing compilation. */
3188
3189 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3190
3191 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3192 initializer for an array of integers. Each initializer element N
3193 refers to an entity that needs mode switching, and specifies the
3194 number of different modes that might need to be set for this
3195 entity. The position of the initializer in the initializer -
3196 starting counting at zero - determines the integer that is used to
3197 refer to the mode-switched entity in question. */
3198
3199 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3200
3201 /* ENTITY is an integer specifying a mode-switched entity. If
3202 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3203 return an integer value not larger than the corresponding element
3204 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3205 must be switched into prior to the execution of INSN. */
3206
3207 #define MODE_NEEDED(ENTITY, I) \
3208 (GET_CODE (I) == CALL_INSN \
3209 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3210 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3211 ? FP_CW_UNINITIALIZED \
3212 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3213 ? FP_CW_ANY \
3214 : FP_CW_STORED)
3215
3216 /* This macro specifies the order in which modes for ENTITY are
3217 processed. 0 is the highest priority. */
3218
3219 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3220
3221 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3222 is the set of hard registers live at the point where the insn(s)
3223 are to be inserted. */
3224
3225 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3226 ((MODE) == FP_CW_STORED \
3227 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3228 assign_386_stack_local (HImode, 2)), 0\
3229 : 0)
3230 \f
3231 /* Avoid renaming of stack registers, as doing so in combination with
3232 scheduling just increases amount of live registers at time and in
3233 the turn amount of fxch instructions needed.
3234
3235 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3236
3237 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3238 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3239
3240 \f
3241 #define DLL_IMPORT_EXPORT_PREFIX '#'
3242
3243 #define FASTCALL_PREFIX '@'
3244 \f
3245 struct machine_function GTY(())
3246 {
3247 struct stack_local_entry *stack_locals;
3248 const char *some_ld_name;
3249 int save_varrargs_registers;
3250 int accesses_prev_frame;
3251 int optimize_mode_switching;
3252 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3253 determine the style used. */
3254 int use_fast_prologue_epilogue;
3255 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3256 for. */
3257 int use_fast_prologue_epilogue_nregs;
3258 };
3259
3260 #define ix86_stack_locals (cfun->machine->stack_locals)
3261 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3262 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3263
3264 /* Control behavior of x86_file_start. */
3265 #define X86_FILE_START_VERSION_DIRECTIVE false
3266 #define X86_FILE_START_FLTUSED false
3267
3268 /*
3269 Local variables:
3270 version-control: t
3271 End:
3272 */