athlon.md: Fix comment typos.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #define TARGET_CPU_DEFAULT 0
101 #endif
102
103 /* Masks for the -m switches */
104 #define MASK_80387 0x00000001 /* Hardware floating point */
105 #define MASK_RTD 0x00000002 /* Use ret that pops args */
106 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
107 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
108 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
109 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
110 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
111 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
112 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
113 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
114 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
115 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
116 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
117 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
118 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
119 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
120 #define MASK_3DNOW 0x00010000 /* Support 3Dnow builtins */
121 #define MASK_3DNOW_A 0x00020000 /* Support Athlon 3Dnow builtins */
122 #define MASK_128BIT_LONG_DOUBLE 0x00040000 /* long double size is 128bit */
123 #define MASK_64BIT 0x00080000 /* Produce 64bit code */
124 #define MASK_MS_BITFIELD_LAYOUT 0x00100000 /* Use native (MS) bitfield layout */
125
126 /* Unused: 0x03e0000 */
127
128 /* ... overlap with subtarget options starts by 0x04000000. */
129 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
130
131 /* Use the floating point instructions */
132 #define TARGET_80387 (target_flags & MASK_80387)
133
134 /* Compile using ret insn that pops args.
135 This will not work unless you use prototypes at least
136 for all functions that can take varying numbers of args. */
137 #define TARGET_RTD (target_flags & MASK_RTD)
138
139 /* Align doubles to a two word boundary. This breaks compatibility with
140 the published ABI's for structures containing doubles, but produces
141 faster code on the pentium. */
142 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
143
144 /* Use push instructions to save outgoing args. */
145 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
146
147 /* Accumulate stack adjustments to prologue/epilogue. */
148 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
149 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
150
151 /* Put uninitialized locals into bss, not data.
152 Meaningful only on svr3. */
153 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
154
155 /* Use IEEE floating point comparisons. These handle correctly the cases
156 where the result of a comparison is unordered. Normally SIGFPE is
157 generated in such cases, in which case this isn't needed. */
158 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
159
160 /* Functions that return a floating point value may return that value
161 in the 387 FPU or in 386 integer registers. If set, this flag causes
162 the 387 to be used, which is compatible with most calling conventions. */
163 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
164
165 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
166 This mode wastes cache, but avoid misaligned data accesses and simplifies
167 address calculations. */
168 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
169
170 /* Disable generation of FP sin, cos and sqrt operations for 387.
171 This is because FreeBSD lacks these in the math-emulator-code */
172 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
173
174 /* Don't create frame pointers for leaf functions */
175 #define TARGET_OMIT_LEAF_FRAME_POINTER \
176 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
177
178 /* Debug GO_IF_LEGITIMATE_ADDRESS */
179 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
180
181 /* Debug FUNCTION_ARG macros */
182 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
183
184 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
185 compile-time constant. */
186 #ifdef IN_LIBGCC2
187 #ifdef __x86_64__
188 #define TARGET_64BIT 1
189 #else
190 #define TARGET_64BIT 0
191 #endif
192 #else
193 #ifdef TARGET_BI_ARCH
194 #define TARGET_64BIT (target_flags & MASK_64BIT)
195 #else
196 #if TARGET_64BIT_DEFAULT
197 #define TARGET_64BIT 1
198 #else
199 #define TARGET_64BIT 0
200 #endif
201 #endif
202 #endif
203
204 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
205 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
206 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
207 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
208 #define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
209 #define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
210 #define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
211 #define TARGET_K8 (ix86_cpu == PROCESSOR_K8)
212 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
213
214 #define CPUMASK (1 << ix86_cpu)
215 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
216 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
217 extern const int x86_branch_hints, x86_unroll_strlen;
218 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
219 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
220 extern const int x86_use_cltd, x86_read_modify_write;
221 extern const int x86_read_modify, x86_split_long_moves;
222 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
223 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
224 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
225 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
226 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
227 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
228 extern const int x86_epilogue_using_move, x86_decompose_lea;
229 extern const int x86_arch_always_fancy_math_387, x86_shift1;
230 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
231 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
232 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
233 extern int x86_prefetch_sse;
234
235 #define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
236 #define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
237 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
238 #define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
239 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
240 /* For sane SSE instruction set generation we need fcomi instruction. It is
241 safe to enable all CMOVE instructions. */
242 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
243 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
244 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
245 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
246 #define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
247 #define TARGET_MOVX (x86_movx & CPUMASK)
248 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
249 #define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
250 #define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
251 #define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
252 #define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
253 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
254 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
255 #define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
256 #define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
257 #define TARGET_FAST_PREFIX (x86_fast_prefix & CPUMASK)
258 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
259 #define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
260 #define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
261 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
262 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
263 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
264 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
265 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
266 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
267 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
268 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
269 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
270 (x86_sse_partial_reg_dependency & CPUMASK)
271 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & CPUMASK)
272 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
273 (x86_sse_partial_regs_for_cvtsd2ss & CPUMASK)
274 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & CPUMASK)
275 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & CPUMASK)
276 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & CPUMASK)
277 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
278 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
279 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
280 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
281 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
282 #define TARGET_SHIFT1 (x86_shift1 & CPUMASK)
283 #define TARGET_USE_FFREEP (x86_use_ffreep & CPUMASK)
284 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & CPUMASK)
285
286 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
287
288 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
289 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
290
291 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
292
293 #define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
294 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
295 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
296 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
297 && (ix86_fpmath & FPMATH_387))
298 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
299 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
300 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
301
302 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
303
304 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
305
306 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
307 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
308
309 /* WARNING: Do not mark empty strings for translation, as calling
310 gettext on an empty string does NOT return an empty
311 string. */
312
313
314 #define TARGET_SWITCHES \
315 { { "80387", MASK_80387, N_("Use hardware fp") }, \
316 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
317 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
318 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
319 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
320 { "386", 0, "" /*Deprecated.*/}, \
321 { "486", 0, "" /*Deprecated.*/}, \
322 { "pentium", 0, "" /*Deprecated.*/}, \
323 { "pentiumpro", 0, "" /*Deprecated.*/}, \
324 { "intel-syntax", 0, "" /*Deprecated.*/}, \
325 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
326 { "rtd", MASK_RTD, \
327 N_("Alternate calling convention") }, \
328 { "no-rtd", -MASK_RTD, \
329 N_("Use normal calling convention") }, \
330 { "align-double", MASK_ALIGN_DOUBLE, \
331 N_("Align some doubles on dword boundary") }, \
332 { "no-align-double", -MASK_ALIGN_DOUBLE, \
333 N_("Align doubles on word boundary") }, \
334 { "svr3-shlib", MASK_SVR3_SHLIB, \
335 N_("Uninitialized locals in .bss") }, \
336 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
337 N_("Uninitialized locals in .data") }, \
338 { "ieee-fp", MASK_IEEE_FP, \
339 N_("Use IEEE math for fp comparisons") }, \
340 { "no-ieee-fp", -MASK_IEEE_FP, \
341 N_("Do not use IEEE math for fp comparisons") }, \
342 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
343 N_("Return values of functions in FPU registers") }, \
344 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
345 N_("Do not return values of functions in FPU registers")}, \
346 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
347 N_("Do not generate sin, cos, sqrt for FPU") }, \
348 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
349 N_("Generate sin, cos, sqrt for FPU")}, \
350 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
351 N_("Omit the frame pointer in leaf functions") }, \
352 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
353 { "stack-arg-probe", MASK_STACK_PROBE, \
354 N_("Enable stack probing") }, \
355 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
356 { "windows", 0, 0 /* undocumented */ }, \
357 { "dll", 0, 0 /* undocumented */ }, \
358 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
359 N_("Align destination of the string operations") }, \
360 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
361 N_("Do not align destination of the string operations") }, \
362 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
363 N_("Inline all known string operations") }, \
364 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
365 N_("Do not inline all known string operations") }, \
366 { "push-args", -MASK_NO_PUSH_ARGS, \
367 N_("Use push instructions to save outgoing arguments") }, \
368 { "no-push-args", MASK_NO_PUSH_ARGS, \
369 N_("Do not use push instructions to save outgoing arguments") }, \
370 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
371 N_("Use push instructions to save outgoing arguments") }, \
372 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
373 N_("Do not use push instructions to save outgoing arguments") }, \
374 { "mmx", MASK_MMX, \
375 N_("Support MMX built-in functions") }, \
376 { "no-mmx", -MASK_MMX, \
377 N_("Do not support MMX built-in functions") }, \
378 { "3dnow", MASK_3DNOW, \
379 N_("Support 3DNow! built-in functions") }, \
380 { "no-3dnow", -MASK_3DNOW, \
381 N_("Do not support 3DNow! built-in functions") }, \
382 { "sse", MASK_SSE, \
383 N_("Support MMX and SSE built-in functions and code generation") }, \
384 { "no-sse", -MASK_SSE, \
385 N_("Do not support MMX and SSE built-in functions and code generation") },\
386 { "sse2", MASK_SSE2, \
387 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
388 { "no-sse2", -MASK_SSE2, \
389 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
390 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
391 N_("sizeof(long double) is 16") }, \
392 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
393 N_("sizeof(long double) is 12") }, \
394 { "64", MASK_64BIT, \
395 N_("Generate 64bit x86-64 code") }, \
396 { "32", -MASK_64BIT, \
397 N_("Generate 32bit i386 code") }, \
398 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
399 N_("Use native (MS) bitfield layout") }, \
400 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
401 N_("Use gcc default bitfield layout") }, \
402 { "red-zone", -MASK_NO_RED_ZONE, \
403 N_("Use red-zone in the x86-64 code") }, \
404 { "no-red-zone", MASK_NO_RED_ZONE, \
405 N_("Do not use red-zone in the x86-64 code") }, \
406 SUBTARGET_SWITCHES \
407 { "", TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT, 0 }}
408
409 #ifndef TARGET_64BIT_DEFAULT
410 #define TARGET_64BIT_DEFAULT 0
411 #endif
412
413 /* Once GDB has been enhanced to deal with functions without frame
414 pointers, we can change this to allow for elimination of
415 the frame pointer in leaf functions. */
416 #define TARGET_DEFAULT 0
417
418 /* This is not really a target flag, but is done this way so that
419 it's analogous to similar code for Mach-O on PowerPC. darwin.h
420 redefines this to 1. */
421 #define TARGET_MACHO 0
422
423 /* This macro is similar to `TARGET_SWITCHES' but defines names of
424 command options that have values. Its definition is an
425 initializer with a subgrouping for each command option.
426
427 Each subgrouping contains a string constant, that defines the
428 fixed part of the option name, and the address of a variable. The
429 variable, type `char *', is set to the variable part of the given
430 option if the fixed part matches. The actual option name is made
431 by appending `-m' to the specified name. */
432 #define TARGET_OPTIONS \
433 { { "cpu=", &ix86_cpu_string, \
434 N_("Schedule code for given CPU")}, \
435 { "fpmath=", &ix86_fpmath_string, \
436 N_("Generate floating point mathematics using given instruction set")},\
437 { "arch=", &ix86_arch_string, \
438 N_("Generate code for given CPU")}, \
439 { "regparm=", &ix86_regparm_string, \
440 N_("Number of registers used to pass integer arguments") }, \
441 { "align-loops=", &ix86_align_loops_string, \
442 N_("Loop code aligned to this power of 2") }, \
443 { "align-jumps=", &ix86_align_jumps_string, \
444 N_("Jump targets are aligned to this power of 2") }, \
445 { "align-functions=", &ix86_align_funcs_string, \
446 N_("Function starts are aligned to this power of 2") }, \
447 { "preferred-stack-boundary=", \
448 &ix86_preferred_stack_boundary_string, \
449 N_("Attempt to keep stack aligned to this power of 2") }, \
450 { "branch-cost=", &ix86_branch_cost_string, \
451 N_("Branches are this expensive (1-5, arbitrary units)") }, \
452 { "cmodel=", &ix86_cmodel_string, \
453 N_("Use given x86-64 code model") }, \
454 { "debug-arg", &ix86_debug_arg_string, \
455 "" /* Undocumented. */ }, \
456 { "debug-addr", &ix86_debug_addr_string, \
457 "" /* Undocumented. */ }, \
458 { "asm=", &ix86_asm_string, \
459 N_("Use given assembler dialect") }, \
460 { "tls-dialect=", &ix86_tls_dialect_string, \
461 N_("Use given thread-local storage dialect") }, \
462 SUBTARGET_OPTIONS \
463 }
464
465 /* Sometimes certain combinations of command options do not make
466 sense on a particular target machine. You can define a macro
467 `OVERRIDE_OPTIONS' to take account of this. This macro, if
468 defined, is executed once just after all the command options have
469 been parsed.
470
471 Don't use this macro to turn on various extra optimizations for
472 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
473
474 #define OVERRIDE_OPTIONS override_options ()
475
476 /* These are meant to be redefined in the host dependent files */
477 #define SUBTARGET_SWITCHES
478 #define SUBTARGET_OPTIONS
479
480 /* Define this to change the optimizations performed by default. */
481 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
482 optimization_options ((LEVEL), (SIZE))
483
484 /* Specs for the compiler proper */
485
486 #ifndef CC1_CPU_SPEC
487 #define CC1_CPU_SPEC "\
488 %{!mcpu*: \
489 %{m386:-mcpu=i386 \
490 %n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
491 %{m486:-mcpu=i486 \
492 %n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
493 %{mpentium:-mcpu=pentium \
494 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
495 %{mpentiumpro:-mcpu=pentiumpro \
496 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
497 %{mintel-syntax:-masm=intel \
498 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
499 %{mno-intel-syntax:-masm=att \
500 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
501 #endif
502 \f
503 /* Target CPU builtins. */
504 #define TARGET_CPU_CPP_BUILTINS() \
505 do \
506 { \
507 size_t arch_len = strlen (ix86_arch_string); \
508 size_t cpu_len = strlen (ix86_cpu_string); \
509 int last_arch_char = ix86_arch_string[arch_len - 1]; \
510 int last_cpu_char = ix86_cpu_string[cpu_len - 1]; \
511 \
512 if (TARGET_64BIT) \
513 { \
514 builtin_assert ("cpu=x86_64"); \
515 builtin_assert ("machine=x86_64"); \
516 builtin_define ("__x86_64"); \
517 builtin_define ("__x86_64__"); \
518 } \
519 else \
520 { \
521 builtin_assert ("cpu=i386"); \
522 builtin_assert ("machine=i386"); \
523 builtin_define_std ("i386"); \
524 } \
525 \
526 /* Built-ins based on -mcpu= (or -march= if no \
527 CPU given). */ \
528 if (TARGET_386) \
529 builtin_define ("__tune_i386__"); \
530 else if (TARGET_486) \
531 builtin_define ("__tune_i486__"); \
532 else if (TARGET_PENTIUM) \
533 { \
534 builtin_define ("__tune_i586__"); \
535 builtin_define ("__tune_pentium__"); \
536 if (last_cpu_char == 'x') \
537 builtin_define ("__tune_pentium_mmx__"); \
538 } \
539 else if (TARGET_PENTIUMPRO) \
540 { \
541 builtin_define ("__tune_i686__"); \
542 builtin_define ("__tune_pentiumpro__"); \
543 switch (last_cpu_char) \
544 { \
545 case '3': \
546 builtin_define ("__tune_pentium3__"); \
547 /* FALLTHRU */ \
548 case '2': \
549 builtin_define ("__tune_pentium2__"); \
550 break; \
551 } \
552 } \
553 else if (TARGET_K6) \
554 { \
555 builtin_define ("__tune_k6__"); \
556 if (last_cpu_char == '2') \
557 builtin_define ("__tune_k6_2__"); \
558 else if (last_cpu_char == '3') \
559 builtin_define ("__tune_k6_3__"); \
560 } \
561 else if (TARGET_ATHLON) \
562 { \
563 builtin_define ("__tune_athlon__"); \
564 /* Only plain "athlon" lacks SSE. */ \
565 if (last_cpu_char != 'n') \
566 builtin_define ("__tune_athlon_sse__"); \
567 } \
568 else if (TARGET_K8) \
569 builtin_define ("__tune_k8__"); \
570 else if (TARGET_PENTIUM4) \
571 builtin_define ("__tune_pentium4__"); \
572 \
573 if (TARGET_MMX) \
574 builtin_define ("__MMX__"); \
575 if (TARGET_3DNOW) \
576 builtin_define ("__3dNOW__"); \
577 if (TARGET_3DNOW_A) \
578 builtin_define ("__3dNOW_A__"); \
579 if (TARGET_SSE) \
580 builtin_define ("__SSE__"); \
581 if (TARGET_SSE2) \
582 builtin_define ("__SSE2__"); \
583 if (TARGET_SSE_MATH && TARGET_SSE) \
584 builtin_define ("__SSE_MATH__"); \
585 if (TARGET_SSE_MATH && TARGET_SSE2) \
586 builtin_define ("__SSE2_MATH__"); \
587 \
588 /* Built-ins based on -march=. */ \
589 if (ix86_arch == PROCESSOR_I486) \
590 { \
591 builtin_define ("__i486"); \
592 builtin_define ("__i486__"); \
593 } \
594 else if (ix86_arch == PROCESSOR_PENTIUM) \
595 { \
596 builtin_define ("__i586"); \
597 builtin_define ("__i586__"); \
598 builtin_define ("__pentium"); \
599 builtin_define ("__pentium__"); \
600 if (last_arch_char == 'x') \
601 builtin_define ("__pentium_mmx__"); \
602 } \
603 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
604 { \
605 builtin_define ("__i686"); \
606 builtin_define ("__i686__"); \
607 builtin_define ("__pentiumpro"); \
608 builtin_define ("__pentiumpro__"); \
609 } \
610 else if (ix86_arch == PROCESSOR_K6) \
611 { \
612 \
613 builtin_define ("__k6"); \
614 builtin_define ("__k6__"); \
615 if (last_arch_char == '2') \
616 builtin_define ("__k6_2__"); \
617 else if (last_arch_char == '3') \
618 builtin_define ("__k6_3__"); \
619 } \
620 else if (ix86_arch == PROCESSOR_ATHLON) \
621 { \
622 builtin_define ("__athlon"); \
623 builtin_define ("__athlon__"); \
624 /* Only plain "athlon" lacks SSE. */ \
625 if (last_arch_char != 'n') \
626 builtin_define ("__athlon_sse__"); \
627 } \
628 else if (ix86_arch == PROCESSOR_K8) \
629 { \
630 builtin_define ("__k8"); \
631 builtin_define ("__k8__"); \
632 } \
633 else if (ix86_arch == PROCESSOR_PENTIUM4) \
634 { \
635 builtin_define ("__pentium4"); \
636 builtin_define ("__pentium4__"); \
637 } \
638 } \
639 while (0)
640
641 #define TARGET_CPU_DEFAULT_i386 0
642 #define TARGET_CPU_DEFAULT_i486 1
643 #define TARGET_CPU_DEFAULT_pentium 2
644 #define TARGET_CPU_DEFAULT_pentium_mmx 3
645 #define TARGET_CPU_DEFAULT_pentiumpro 4
646 #define TARGET_CPU_DEFAULT_pentium2 5
647 #define TARGET_CPU_DEFAULT_pentium3 6
648 #define TARGET_CPU_DEFAULT_pentium4 7
649 #define TARGET_CPU_DEFAULT_k6 8
650 #define TARGET_CPU_DEFAULT_k6_2 9
651 #define TARGET_CPU_DEFAULT_k6_3 10
652 #define TARGET_CPU_DEFAULT_athlon 11
653 #define TARGET_CPU_DEFAULT_athlon_sse 12
654 #define TARGET_CPU_DEFAULT_k8 13
655
656 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
657 "pentiumpro", "pentium2", "pentium3", \
658 "pentium4", "k6", "k6-2", "k6-3",\
659 "athlon", "athlon-4", "k8"}
660
661 #ifndef CC1_SPEC
662 #define CC1_SPEC "%(cc1_cpu) "
663 #endif
664
665 /* This macro defines names of additional specifications to put in the
666 specs that can be used in various specifications like CC1_SPEC. Its
667 definition is an initializer with a subgrouping for each command option.
668
669 Each subgrouping contains a string constant, that defines the
670 specification name, and a string constant that used by the GNU CC driver
671 program.
672
673 Do not define this macro if it does not need to do anything. */
674
675 #ifndef SUBTARGET_EXTRA_SPECS
676 #define SUBTARGET_EXTRA_SPECS
677 #endif
678
679 #define EXTRA_SPECS \
680 { "cc1_cpu", CC1_CPU_SPEC }, \
681 SUBTARGET_EXTRA_SPECS
682 \f
683 /* target machine storage layout */
684
685 /* Define for XFmode or TFmode extended real floating point support.
686 The XFmode is specified by i386 ABI, while TFmode may be faster
687 due to alignment and simplifications in the address calculations. */
688 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
689 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
690 #ifdef __x86_64__
691 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
692 #else
693 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
694 #endif
695
696 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
697 FPU, assume that the fpcw is set to extended precision; when using
698 only SSE, rounding is correct; when using both SSE and the FPU,
699 the rounding precision is indeterminate, since either may be chosen
700 apparently at random. */
701 #define TARGET_FLT_EVAL_METHOD \
702 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 1 : 2)
703
704 #define SHORT_TYPE_SIZE 16
705 #define INT_TYPE_SIZE 32
706 #define FLOAT_TYPE_SIZE 32
707 #define LONG_TYPE_SIZE BITS_PER_WORD
708 #define MAX_WCHAR_TYPE_SIZE 32
709 #define DOUBLE_TYPE_SIZE 64
710 #define LONG_LONG_TYPE_SIZE 64
711
712 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
713 #define MAX_BITS_PER_WORD 64
714 #define MAX_LONG_TYPE_SIZE 64
715 #else
716 #define MAX_BITS_PER_WORD 32
717 #define MAX_LONG_TYPE_SIZE 32
718 #endif
719
720 /* Define this if most significant byte of a word is the lowest numbered. */
721 /* That is true on the 80386. */
722
723 #define BITS_BIG_ENDIAN 0
724
725 /* Define this if most significant byte of a word is the lowest numbered. */
726 /* That is not true on the 80386. */
727 #define BYTES_BIG_ENDIAN 0
728
729 /* Define this if most significant word of a multiword number is the lowest
730 numbered. */
731 /* Not true for 80386 */
732 #define WORDS_BIG_ENDIAN 0
733
734 /* Width of a word, in units (bytes). */
735 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
736 #ifdef IN_LIBGCC2
737 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
738 #else
739 #define MIN_UNITS_PER_WORD 4
740 #endif
741
742 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
743 #define PARM_BOUNDARY BITS_PER_WORD
744
745 /* Boundary (in *bits*) on which stack pointer should be aligned. */
746 #define STACK_BOUNDARY BITS_PER_WORD
747
748 /* Boundary (in *bits*) on which the stack pointer prefers to be
749 aligned; the compiler cannot rely on having this alignment. */
750 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
751
752 /* As of July 2001, many runtimes to not align the stack properly when
753 entering main. This causes expand_main_function to forcibly align
754 the stack, which results in aligned frames for functions called from
755 main, though it does nothing for the alignment of main itself. */
756 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
757 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
758
759 /* Minimum allocation boundary for the code of a function. */
760 #define FUNCTION_BOUNDARY 8
761
762 /* C++ stores the virtual bit in the lowest bit of function pointers. */
763 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
764
765 /* Alignment of field after `int : 0' in a structure. */
766
767 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
768
769 /* Minimum size in bits of the largest boundary to which any
770 and all fundamental data types supported by the hardware
771 might need to be aligned. No data type wants to be aligned
772 rounder than this.
773
774 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
775 and Pentium Pro XFmode values at 128 bit boundaries. */
776
777 #define BIGGEST_ALIGNMENT 128
778
779 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
780 #define ALIGN_MODE_128(MODE) \
781 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
782
783 /* The published ABIs say that doubles should be aligned on word
784 boundaries, so lower the alignment for structure fields unless
785 -malign-double is set. */
786
787 /* ??? Blah -- this macro is used directly by libobjc. Since it
788 supports no vector modes, cut out the complexity and fall back
789 on BIGGEST_FIELD_ALIGNMENT. */
790 #ifdef IN_TARGET_LIBS
791 #ifdef __x86_64__
792 #define BIGGEST_FIELD_ALIGNMENT 128
793 #else
794 #define BIGGEST_FIELD_ALIGNMENT 32
795 #endif
796 #else
797 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
798 x86_field_alignment (FIELD, COMPUTED)
799 #endif
800
801 /* If defined, a C expression to compute the alignment given to a
802 constant that is being placed in memory. EXP is the constant
803 and ALIGN is the alignment that the object would ordinarily have.
804 The value of this macro is used instead of that alignment to align
805 the object.
806
807 If this macro is not defined, then ALIGN is used.
808
809 The typical use of this macro is to increase alignment for string
810 constants to be word aligned so that `strcpy' calls that copy
811 constants can be done inline. */
812
813 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
814
815 /* If defined, a C expression to compute the alignment for a static
816 variable. TYPE is the data type, and ALIGN is the alignment that
817 the object would ordinarily have. The value of this macro is used
818 instead of that alignment to align the object.
819
820 If this macro is not defined, then ALIGN is used.
821
822 One use of this macro is to increase alignment of medium-size
823 data to make it all fit in fewer cache lines. Another is to
824 cause character arrays to be word-aligned so that `strcpy' calls
825 that copy constants to character arrays can be done inline. */
826
827 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
828
829 /* If defined, a C expression to compute the alignment for a local
830 variable. TYPE is the data type, and ALIGN is the alignment that
831 the object would ordinarily have. The value of this macro is used
832 instead of that alignment to align the object.
833
834 If this macro is not defined, then ALIGN is used.
835
836 One use of this macro is to increase alignment of medium-size
837 data to make it all fit in fewer cache lines. */
838
839 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
840
841 /* If defined, a C expression that gives the alignment boundary, in
842 bits, of an argument with the specified mode and type. If it is
843 not defined, `PARM_BOUNDARY' is used for all arguments. */
844
845 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
846 ix86_function_arg_boundary ((MODE), (TYPE))
847
848 /* Set this nonzero if move instructions will actually fail to work
849 when given unaligned data. */
850 #define STRICT_ALIGNMENT 0
851
852 /* If bit field type is int, don't let it cross an int,
853 and give entire struct the alignment of an int. */
854 /* Required on the 386 since it doesn't have bit-field insns. */
855 #define PCC_BITFIELD_TYPE_MATTERS 1
856 \f
857 /* Standard register usage. */
858
859 /* This processor has special stack-like registers. See reg-stack.c
860 for details. */
861
862 #define STACK_REGS
863 #define IS_STACK_MODE(MODE) \
864 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
865 || (MODE) == TFmode)
866
867 /* Number of actual hardware registers.
868 The hardware registers are assigned numbers for the compiler
869 from 0 to just below FIRST_PSEUDO_REGISTER.
870 All registers that the compiler knows about must be given numbers,
871 even those that are not normally considered general registers.
872
873 In the 80386 we give the 8 general purpose registers the numbers 0-7.
874 We number the floating point registers 8-15.
875 Note that registers 0-7 can be accessed as a short or int,
876 while only 0-3 may be used with byte `mov' instructions.
877
878 Reg 16 does not correspond to any hardware register, but instead
879 appears in the RTL as an argument pointer prior to reload, and is
880 eliminated during reloading in favor of either the stack or frame
881 pointer. */
882
883 #define FIRST_PSEUDO_REGISTER 53
884
885 /* Number of hardware registers that go into the DWARF-2 unwind info.
886 If not defined, equals FIRST_PSEUDO_REGISTER. */
887
888 #define DWARF_FRAME_REGISTERS 17
889
890 /* 1 for registers that have pervasive standard uses
891 and are not available for the register allocator.
892 On the 80386, the stack pointer is such, as is the arg pointer.
893
894 The value is a mask - bit 1 is set for fixed registers
895 for 32bit target, while 2 is set for fixed registers for 64bit.
896 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
897 */
898 #define FIXED_REGISTERS \
899 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
900 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
901 /*arg,flags,fpsr,dir,frame*/ \
902 3, 3, 3, 3, 3, \
903 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
904 0, 0, 0, 0, 0, 0, 0, 0, \
905 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
906 0, 0, 0, 0, 0, 0, 0, 0, \
907 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
908 1, 1, 1, 1, 1, 1, 1, 1, \
909 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
910 1, 1, 1, 1, 1, 1, 1, 1}
911
912
913 /* 1 for registers not available across function calls.
914 These must include the FIXED_REGISTERS and also any
915 registers that can be used without being saved.
916 The latter must include the registers where values are returned
917 and the register where structure-value addresses are passed.
918 Aside from that, you can include as many other registers as you like.
919
920 The value is a mask - bit 1 is set for call used
921 for 32bit target, while 2 is set for call used for 64bit.
922 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
923 */
924 #define CALL_USED_REGISTERS \
925 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
926 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
927 /*arg,flags,fpsr,dir,frame*/ \
928 3, 3, 3, 3, 3, \
929 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
930 3, 3, 3, 3, 3, 3, 3, 3, \
931 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
932 3, 3, 3, 3, 3, 3, 3, 3, \
933 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
934 3, 3, 3, 3, 1, 1, 1, 1, \
935 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
936 3, 3, 3, 3, 3, 3, 3, 3} \
937
938 /* Order in which to allocate registers. Each register must be
939 listed once, even those in FIXED_REGISTERS. List frame pointer
940 late and fixed registers last. Note that, in general, we prefer
941 registers listed in CALL_USED_REGISTERS, keeping the others
942 available for storage of persistent values.
943
944 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
945 so this is just empty initializer for array. */
946
947 #define REG_ALLOC_ORDER \
948 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
949 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
950 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
951 48, 49, 50, 51, 52 }
952
953 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
954 to be rearranged based on a particular function. When using sse math,
955 we want to allocate SSE before x87 registers and vice vera. */
956
957 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
958
959
960 /* Macro to conditionally modify fixed_regs/call_used_regs. */
961 #define CONDITIONAL_REGISTER_USAGE \
962 do { \
963 int i; \
964 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
965 { \
966 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
967 call_used_regs[i] = (call_used_regs[i] \
968 & (TARGET_64BIT ? 2 : 1)) != 0; \
969 } \
970 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
971 { \
972 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
973 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
974 } \
975 if (! TARGET_MMX) \
976 { \
977 int i; \
978 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
979 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
980 fixed_regs[i] = call_used_regs[i] = 1; \
981 } \
982 if (! TARGET_SSE) \
983 { \
984 int i; \
985 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
986 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
987 fixed_regs[i] = call_used_regs[i] = 1; \
988 } \
989 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
990 { \
991 int i; \
992 HARD_REG_SET x; \
993 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
994 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
995 if (TEST_HARD_REG_BIT (x, i)) \
996 fixed_regs[i] = call_used_regs[i] = 1; \
997 } \
998 } while (0)
999
1000 /* Return number of consecutive hard regs needed starting at reg REGNO
1001 to hold something of mode MODE.
1002 This is ordinarily the length in words of a value of mode MODE
1003 but can be less for certain modes in special long registers.
1004
1005 Actually there are no two word move instructions for consecutive
1006 registers. And only registers 0-3 may have mov byte instructions
1007 applied to them.
1008 */
1009
1010 #define HARD_REGNO_NREGS(REGNO, MODE) \
1011 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1012 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1013 : ((MODE) == TFmode \
1014 ? (TARGET_64BIT ? 2 : 3) \
1015 : (MODE) == TCmode \
1016 ? (TARGET_64BIT ? 4 : 6) \
1017 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1018
1019 #define VALID_SSE2_REG_MODE(MODE) \
1020 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1021 || (MODE) == V2DImode)
1022
1023 #define VALID_SSE_REG_MODE(MODE) \
1024 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1025 || (MODE) == SFmode \
1026 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1027 || VALID_SSE2_REG_MODE (MODE) \
1028 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1029
1030 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1031 ((MODE) == V2SFmode || (MODE) == SFmode)
1032
1033 #define VALID_MMX_REG_MODE(MODE) \
1034 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1035 || (MODE) == V2SImode || (MODE) == SImode)
1036
1037 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1038 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1039 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1040 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1041
1042 #define VALID_FP_MODE_P(MODE) \
1043 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
1044 || (!TARGET_64BIT && (MODE) == XFmode) \
1045 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
1046 || (!TARGET_64BIT && (MODE) == XCmode))
1047
1048 #define VALID_INT_MODE_P(MODE) \
1049 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1050 || (MODE) == DImode \
1051 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1052 || (MODE) == CDImode \
1053 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1054
1055 /* Return true for modes passed in SSE registers. */
1056 #define SSE_REG_MODE_P(MODE) \
1057 ((MODE) == TImode || (MODE) == V16QImode \
1058 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1059 || (MODE) == V4SFmode || (MODE) == V4SImode)
1060
1061 /* Return true for modes passed in MMX registers. */
1062 #define MMX_REG_MODE_P(MODE) \
1063 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1064 || (MODE) == V2SFmode)
1065
1066 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1067
1068 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1069 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1070
1071 /* Value is 1 if it is a good idea to tie two pseudo registers
1072 when one has mode MODE1 and one has mode MODE2.
1073 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1074 for any hard reg, then this must be 0 for correct output. */
1075
1076 #define MODES_TIEABLE_P(MODE1, MODE2) \
1077 ((MODE1) == (MODE2) \
1078 || (((MODE1) == HImode || (MODE1) == SImode \
1079 || ((MODE1) == QImode \
1080 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1081 || ((MODE1) == DImode && TARGET_64BIT)) \
1082 && ((MODE2) == HImode || (MODE2) == SImode \
1083 || ((MODE1) == QImode \
1084 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1085 || ((MODE2) == DImode && TARGET_64BIT))))
1086
1087
1088 /* Specify the modes required to caller save a given hard regno.
1089 We do this on i386 to prevent flags from being saved at all.
1090
1091 Kill any attempts to combine saving of modes. */
1092
1093 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1094 (CC_REGNO_P (REGNO) ? VOIDmode \
1095 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1096 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1097 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1098 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1099 : (MODE))
1100 /* Specify the registers used for certain standard purposes.
1101 The values of these macros are register numbers. */
1102
1103 /* on the 386 the pc register is %eip, and is not usable as a general
1104 register. The ordinary mov instructions won't work */
1105 /* #define PC_REGNUM */
1106
1107 /* Register to use for pushing function arguments. */
1108 #define STACK_POINTER_REGNUM 7
1109
1110 /* Base register for access to local variables of the function. */
1111 #define HARD_FRAME_POINTER_REGNUM 6
1112
1113 /* Base register for access to local variables of the function. */
1114 #define FRAME_POINTER_REGNUM 20
1115
1116 /* First floating point reg */
1117 #define FIRST_FLOAT_REG 8
1118
1119 /* First & last stack-like regs */
1120 #define FIRST_STACK_REG FIRST_FLOAT_REG
1121 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1122
1123 #define FLAGS_REG 17
1124 #define FPSR_REG 18
1125 #define DIRFLAG_REG 19
1126
1127 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1128 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1129
1130 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1131 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1132
1133 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1134 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1135
1136 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1137 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1138
1139 /* Value should be nonzero if functions must have frame pointers.
1140 Zero means the frame pointer need not be set up (and parms
1141 may be accessed via the stack pointer) in functions that seem suitable.
1142 This is computed in `reload', in reload1.c. */
1143 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1144
1145 /* Override this in other tm.h files to cope with various OS losage
1146 requiring a frame pointer. */
1147 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1148 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1149 #endif
1150
1151 /* Make sure we can access arbitrary call frames. */
1152 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1153
1154 /* Base register for access to arguments of the function. */
1155 #define ARG_POINTER_REGNUM 16
1156
1157 /* Register in which static-chain is passed to a function.
1158 We do use ECX as static chain register for 32 bit ABI. On the
1159 64bit ABI, ECX is an argument register, so we use R10 instead. */
1160 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1161
1162 /* Register to hold the addressing base for position independent
1163 code access to data items. We don't use PIC pointer for 64bit
1164 mode. Define the regnum to dummy value to prevent gcc from
1165 pessimizing code dealing with EBX.
1166
1167 To avoid clobbering a call-saved register unnecessarily, we renumber
1168 the pic register when possible. The change is visible after the
1169 prologue has been emitted. */
1170
1171 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1172
1173 #define PIC_OFFSET_TABLE_REGNUM \
1174 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1175 : reload_completed ? REGNO (pic_offset_table_rtx) \
1176 : REAL_PIC_OFFSET_TABLE_REGNUM)
1177
1178 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1179
1180 /* Register in which address to store a structure value
1181 arrives in the function. On the 386, the prologue
1182 copies this from the stack to register %eax. */
1183 #define STRUCT_VALUE_INCOMING 0
1184
1185 /* Place in which caller passes the structure value address.
1186 0 means push the value on the stack like an argument. */
1187 #define STRUCT_VALUE 0
1188
1189 /* A C expression which can inhibit the returning of certain function
1190 values in registers, based on the type of value. A nonzero value
1191 says to return the function value in memory, just as large
1192 structures are always returned. Here TYPE will be a C expression
1193 of type `tree', representing the data type of the value.
1194
1195 Note that values of mode `BLKmode' must be explicitly handled by
1196 this macro. Also, the option `-fpcc-struct-return' takes effect
1197 regardless of this macro. On most systems, it is possible to
1198 leave the macro undefined; this causes a default definition to be
1199 used, whose value is the constant 1 for `BLKmode' values, and 0
1200 otherwise.
1201
1202 Do not use this macro to indicate that structures and unions
1203 should always be returned in memory. You should instead use
1204 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1205
1206 #define RETURN_IN_MEMORY(TYPE) \
1207 ix86_return_in_memory (TYPE)
1208
1209 \f
1210 /* Define the classes of registers for register constraints in the
1211 machine description. Also define ranges of constants.
1212
1213 One of the classes must always be named ALL_REGS and include all hard regs.
1214 If there is more than one class, another class must be named NO_REGS
1215 and contain no registers.
1216
1217 The name GENERAL_REGS must be the name of a class (or an alias for
1218 another name such as ALL_REGS). This is the class of registers
1219 that is allowed by "g" or "r" in a register constraint.
1220 Also, registers outside this class are allocated only when
1221 instructions express preferences for them.
1222
1223 The classes must be numbered in nondecreasing order; that is,
1224 a larger-numbered class must never be contained completely
1225 in a smaller-numbered class.
1226
1227 For any two classes, it is very desirable that there be another
1228 class that represents their union.
1229
1230 It might seem that class BREG is unnecessary, since no useful 386
1231 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1232 and the "b" register constraint is useful in asms for syscalls.
1233
1234 The flags and fpsr registers are in no class. */
1235
1236 enum reg_class
1237 {
1238 NO_REGS,
1239 AREG, DREG, CREG, BREG, SIREG, DIREG,
1240 AD_REGS, /* %eax/%edx for DImode */
1241 Q_REGS, /* %eax %ebx %ecx %edx */
1242 NON_Q_REGS, /* %esi %edi %ebp %esp */
1243 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1244 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1245 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1246 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1247 FLOAT_REGS,
1248 SSE_REGS,
1249 MMX_REGS,
1250 FP_TOP_SSE_REGS,
1251 FP_SECOND_SSE_REGS,
1252 FLOAT_SSE_REGS,
1253 FLOAT_INT_REGS,
1254 INT_SSE_REGS,
1255 FLOAT_INT_SSE_REGS,
1256 ALL_REGS, LIM_REG_CLASSES
1257 };
1258
1259 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1260
1261 #define INTEGER_CLASS_P(CLASS) \
1262 reg_class_subset_p ((CLASS), GENERAL_REGS)
1263 #define FLOAT_CLASS_P(CLASS) \
1264 reg_class_subset_p ((CLASS), FLOAT_REGS)
1265 #define SSE_CLASS_P(CLASS) \
1266 reg_class_subset_p ((CLASS), SSE_REGS)
1267 #define MMX_CLASS_P(CLASS) \
1268 reg_class_subset_p ((CLASS), MMX_REGS)
1269 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1270 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1271 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1272 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1273 #define MAYBE_SSE_CLASS_P(CLASS) \
1274 reg_classes_intersect_p (SSE_REGS, (CLASS))
1275 #define MAYBE_MMX_CLASS_P(CLASS) \
1276 reg_classes_intersect_p (MMX_REGS, (CLASS))
1277
1278 #define Q_CLASS_P(CLASS) \
1279 reg_class_subset_p ((CLASS), Q_REGS)
1280
1281 /* Give names of register classes as strings for dump file. */
1282
1283 #define REG_CLASS_NAMES \
1284 { "NO_REGS", \
1285 "AREG", "DREG", "CREG", "BREG", \
1286 "SIREG", "DIREG", \
1287 "AD_REGS", \
1288 "Q_REGS", "NON_Q_REGS", \
1289 "INDEX_REGS", \
1290 "LEGACY_REGS", \
1291 "GENERAL_REGS", \
1292 "FP_TOP_REG", "FP_SECOND_REG", \
1293 "FLOAT_REGS", \
1294 "SSE_REGS", \
1295 "MMX_REGS", \
1296 "FP_TOP_SSE_REGS", \
1297 "FP_SECOND_SSE_REGS", \
1298 "FLOAT_SSE_REGS", \
1299 "FLOAT_INT_REGS", \
1300 "INT_SSE_REGS", \
1301 "FLOAT_INT_SSE_REGS", \
1302 "ALL_REGS" }
1303
1304 /* Define which registers fit in which classes.
1305 This is an initializer for a vector of HARD_REG_SET
1306 of length N_REG_CLASSES. */
1307
1308 #define REG_CLASS_CONTENTS \
1309 { { 0x00, 0x0 }, \
1310 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1311 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1312 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1313 { 0x03, 0x0 }, /* AD_REGS */ \
1314 { 0x0f, 0x0 }, /* Q_REGS */ \
1315 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1316 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1317 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1318 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1319 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1320 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1321 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1322 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1323 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1324 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1325 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1326 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1327 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1328 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1329 { 0xffffffff,0x1fffff } \
1330 }
1331
1332 /* The same information, inverted:
1333 Return the class number of the smallest class containing
1334 reg number REGNO. This could be a conditional expression
1335 or could index an array. */
1336
1337 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1338
1339 /* When defined, the compiler allows registers explicitly used in the
1340 rtl to be used as spill registers but prevents the compiler from
1341 extending the lifetime of these registers. */
1342
1343 #define SMALL_REGISTER_CLASSES 1
1344
1345 #define QI_REG_P(X) \
1346 (REG_P (X) && REGNO (X) < 4)
1347
1348 #define GENERAL_REGNO_P(N) \
1349 ((N) < 8 || REX_INT_REGNO_P (N))
1350
1351 #define GENERAL_REG_P(X) \
1352 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1353
1354 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1355
1356 #define NON_QI_REG_P(X) \
1357 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1358
1359 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1360 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1361
1362 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1363 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1364 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1365 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1366
1367 #define SSE_REGNO_P(N) \
1368 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1369 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1370
1371 #define REX_SSE_REGNO_P(N) \
1372 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1373
1374 #define SSE_REGNO(N) \
1375 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1376 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1377
1378 #define SSE_FLOAT_MODE_P(MODE) \
1379 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1380
1381 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1382 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1383
1384 #define STACK_REG_P(XOP) \
1385 (REG_P (XOP) && \
1386 REGNO (XOP) >= FIRST_STACK_REG && \
1387 REGNO (XOP) <= LAST_STACK_REG)
1388
1389 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1390
1391 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1392
1393 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1394 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1395
1396 /* Indicate whether hard register numbered REG_NO should be converted
1397 to SSA form. */
1398 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1399 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1400
1401 /* The class value for index registers, and the one for base regs. */
1402
1403 #define INDEX_REG_CLASS INDEX_REGS
1404 #define BASE_REG_CLASS GENERAL_REGS
1405
1406 /* Get reg_class from a letter such as appears in the machine description. */
1407
1408 #define REG_CLASS_FROM_LETTER(C) \
1409 ((C) == 'r' ? GENERAL_REGS : \
1410 (C) == 'R' ? LEGACY_REGS : \
1411 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1412 (C) == 'Q' ? Q_REGS : \
1413 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1414 ? FLOAT_REGS \
1415 : NO_REGS) : \
1416 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1417 ? FP_TOP_REG \
1418 : NO_REGS) : \
1419 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1420 ? FP_SECOND_REG \
1421 : NO_REGS) : \
1422 (C) == 'a' ? AREG : \
1423 (C) == 'b' ? BREG : \
1424 (C) == 'c' ? CREG : \
1425 (C) == 'd' ? DREG : \
1426 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1427 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1428 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1429 (C) == 'A' ? AD_REGS : \
1430 (C) == 'D' ? DIREG : \
1431 (C) == 'S' ? SIREG : NO_REGS)
1432
1433 /* The letters I, J, K, L and M in a register constraint string
1434 can be used to stand for particular ranges of immediate operands.
1435 This macro defines what the ranges are.
1436 C is the letter, and VALUE is a constant value.
1437 Return 1 if VALUE is in the range specified by C.
1438
1439 I is for non-DImode shifts.
1440 J is for DImode shifts.
1441 K is for signed imm8 operands.
1442 L is for andsi as zero-extending move.
1443 M is for shifts that can be executed by the "lea" opcode.
1444 N is for immediate operands for out/in instructions (0-255)
1445 */
1446
1447 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1448 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1449 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1450 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1451 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1452 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1453 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1454 : 0)
1455
1456 /* Similar, but for floating constants, and defining letters G and H.
1457 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1458 TARGET_387 isn't set, because the stack register converter may need to
1459 load 0.0 into the function value register. */
1460
1461 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1462 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1463 : 0)
1464
1465 /* A C expression that defines the optional machine-dependent
1466 constraint letters that can be used to segregate specific types of
1467 operands, usually memory references, for the target machine. Any
1468 letter that is not elsewhere defined and not matched by
1469 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1470 be defined.
1471
1472 If it is required for a particular target machine, it should
1473 return 1 if VALUE corresponds to the operand type represented by
1474 the constraint letter C. If C is not defined as an extra
1475 constraint, the value returned should be 0 regardless of VALUE. */
1476
1477 #define EXTRA_CONSTRAINT(VALUE, D) \
1478 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1479 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1480 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1481 : 0)
1482
1483 /* Place additional restrictions on the register class to use when it
1484 is necessary to be able to hold a value of mode MODE in a reload
1485 register for which class CLASS would ordinarily be used. */
1486
1487 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1488 ((MODE) == QImode && !TARGET_64BIT \
1489 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1490 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1491 ? Q_REGS : (CLASS))
1492
1493 /* Given an rtx X being reloaded into a reg required to be
1494 in class CLASS, return the class of reg to actually use.
1495 In general this is just CLASS; but on some machines
1496 in some cases it is preferable to use a more restrictive class.
1497 On the 80386 series, we prevent floating constants from being
1498 reloaded into floating registers (since no move-insn can do that)
1499 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1500
1501 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1502 QImode must go into class Q_REGS.
1503 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1504 movdf to do mem-to-mem moves through integer regs. */
1505
1506 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1507 ix86_preferred_reload_class ((X), (CLASS))
1508
1509 /* If we are copying between general and FP registers, we need a memory
1510 location. The same is true for SSE and MMX registers. */
1511 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1512 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1513
1514 /* QImode spills from non-QI registers need a scratch. This does not
1515 happen often -- the only example so far requires an uninitialized
1516 pseudo. */
1517
1518 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1519 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1520 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1521 ? Q_REGS : NO_REGS)
1522
1523 /* Return the maximum number of consecutive registers
1524 needed to represent mode MODE in a register of class CLASS. */
1525 /* On the 80386, this is the size of MODE in words,
1526 except in the FP regs, where a single reg is always enough.
1527 The TFmodes are really just 80bit values, so we use only 3 registers
1528 to hold them, instead of 4, as the size would suggest.
1529 */
1530 #define CLASS_MAX_NREGS(CLASS, MODE) \
1531 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1532 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1533 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1534 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1535
1536 /* A C expression whose value is nonzero if pseudos that have been
1537 assigned to registers of class CLASS would likely be spilled
1538 because registers of CLASS are needed for spill registers.
1539
1540 The default value of this macro returns 1 if CLASS has exactly one
1541 register and zero otherwise. On most machines, this default
1542 should be used. Only define this macro to some other expression
1543 if pseudo allocated by `local-alloc.c' end up in memory because
1544 their hard registers were needed for spill registers. If this
1545 macro returns nonzero for those classes, those pseudos will only
1546 be allocated by `global.c', which knows how to reallocate the
1547 pseudo to another register. If there would not be another
1548 register available for reallocation, you should not change the
1549 definition of this macro since the only effect of such a
1550 definition would be to slow down register allocation. */
1551
1552 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1553 (((CLASS) == AREG) \
1554 || ((CLASS) == DREG) \
1555 || ((CLASS) == CREG) \
1556 || ((CLASS) == BREG) \
1557 || ((CLASS) == AD_REGS) \
1558 || ((CLASS) == SIREG) \
1559 || ((CLASS) == DIREG))
1560
1561 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1562 to automatically clobber for all asms.
1563
1564 We do this in the new i386 backend to maintain source compatibility
1565 with the old cc0-based compiler. */
1566
1567 #define MD_ASM_CLOBBERS(CLOBBERS) \
1568 do { \
1569 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1570 (CLOBBERS)); \
1571 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1572 (CLOBBERS)); \
1573 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1574 (CLOBBERS)); \
1575 } while (0)
1576 \f
1577 /* Stack layout; function entry, exit and calling. */
1578
1579 /* Define this if pushing a word on the stack
1580 makes the stack pointer a smaller address. */
1581 #define STACK_GROWS_DOWNWARD
1582
1583 /* Define this if the nominal address of the stack frame
1584 is at the high-address end of the local variables;
1585 that is, each additional local variable allocated
1586 goes at a more negative offset in the frame. */
1587 #define FRAME_GROWS_DOWNWARD
1588
1589 /* Offset within stack frame to start allocating local variables at.
1590 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1591 first local allocated. Otherwise, it is the offset to the BEGINNING
1592 of the first local allocated. */
1593 #define STARTING_FRAME_OFFSET 0
1594
1595 /* If we generate an insn to push BYTES bytes,
1596 this says how many the stack pointer really advances by.
1597 On 386 pushw decrements by exactly 2 no matter what the position was.
1598 On the 386 there is no pushb; we use pushw instead, and this
1599 has the effect of rounding up to 2.
1600
1601 For 64bit ABI we round up to 8 bytes.
1602 */
1603
1604 #define PUSH_ROUNDING(BYTES) \
1605 (TARGET_64BIT \
1606 ? (((BYTES) + 7) & (-8)) \
1607 : (((BYTES) + 1) & (-2)))
1608
1609 /* If defined, the maximum amount of space required for outgoing arguments will
1610 be computed and placed into the variable
1611 `current_function_outgoing_args_size'. No space will be pushed onto the
1612 stack for each call; instead, the function prologue should increase the stack
1613 frame size by this amount. */
1614
1615 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1616
1617 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1618 instructions to pass outgoing arguments. */
1619
1620 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1621
1622 /* We want the stack and args grow in opposite directions, even if
1623 PUSH_ARGS is 0. */
1624 #define PUSH_ARGS_REVERSED 1
1625
1626 /* Offset of first parameter from the argument pointer register value. */
1627 #define FIRST_PARM_OFFSET(FNDECL) 0
1628
1629 /* Define this macro if functions should assume that stack space has been
1630 allocated for arguments even when their values are passed in registers.
1631
1632 The value of this macro is the size, in bytes, of the area reserved for
1633 arguments passed in registers for the function represented by FNDECL.
1634
1635 This space can be allocated by the caller, or be a part of the
1636 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1637 which. */
1638 #define REG_PARM_STACK_SPACE(FNDECL) 0
1639
1640 /* Define as a C expression that evaluates to nonzero if we do not know how
1641 to pass TYPE solely in registers. The file expr.h defines a
1642 definition that is usually appropriate, refer to expr.h for additional
1643 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1644 computed in the stack and then loaded into a register. */
1645 #define MUST_PASS_IN_STACK(MODE, TYPE) \
1646 ((TYPE) != 0 \
1647 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1648 || TREE_ADDRESSABLE (TYPE) \
1649 || ((MODE) == TImode) \
1650 || ((MODE) == BLKmode \
1651 && ! ((TYPE) != 0 \
1652 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1653 && 0 == (int_size_in_bytes (TYPE) \
1654 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
1655 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
1656 == (BYTES_BIG_ENDIAN ? upward : downward)))))
1657
1658 /* Value is the number of bytes of arguments automatically
1659 popped when returning from a subroutine call.
1660 FUNDECL is the declaration node of the function (as a tree),
1661 FUNTYPE is the data type of the function (as a tree),
1662 or for a library call it is an identifier node for the subroutine name.
1663 SIZE is the number of bytes of arguments passed on the stack.
1664
1665 On the 80386, the RTD insn may be used to pop them if the number
1666 of args is fixed, but if the number is variable then the caller
1667 must pop them all. RTD can't be used for library calls now
1668 because the library is compiled with the Unix compiler.
1669 Use of RTD is a selectable option, since it is incompatible with
1670 standard Unix calling sequences. If the option is not selected,
1671 the caller must always pop the args.
1672
1673 The attribute stdcall is equivalent to RTD on a per module basis. */
1674
1675 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1676 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1677
1678 /* Define how to find the value returned by a function.
1679 VALTYPE is the data type of the value (as a tree).
1680 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1681 otherwise, FUNC is 0. */
1682 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1683 ix86_function_value (VALTYPE)
1684
1685 #define FUNCTION_VALUE_REGNO_P(N) \
1686 ix86_function_value_regno_p (N)
1687
1688 /* Define how to find the value returned by a library function
1689 assuming the value has mode MODE. */
1690
1691 #define LIBCALL_VALUE(MODE) \
1692 ix86_libcall_value (MODE)
1693
1694 /* Define the size of the result block used for communication between
1695 untyped_call and untyped_return. The block contains a DImode value
1696 followed by the block used by fnsave and frstor. */
1697
1698 #define APPLY_RESULT_SIZE (8+108)
1699
1700 /* 1 if N is a possible register number for function argument passing. */
1701 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1702
1703 /* Define a data type for recording info about an argument list
1704 during the scan of that argument list. This data type should
1705 hold all necessary information about the function itself
1706 and about the args processed so far, enough to enable macros
1707 such as FUNCTION_ARG to determine where the next arg should go. */
1708
1709 typedef struct ix86_args {
1710 int words; /* # words passed so far */
1711 int nregs; /* # registers available for passing */
1712 int regno; /* next available register number */
1713 int fastcall; /* fastcall calling convention is used */
1714 int sse_words; /* # sse words passed so far */
1715 int sse_nregs; /* # sse registers available for passing */
1716 int sse_regno; /* next available sse register number */
1717 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1718 } CUMULATIVE_ARGS;
1719
1720 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1721 for a call to a function whose data type is FNTYPE.
1722 For a library call, FNTYPE is 0. */
1723
1724 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1725 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
1726
1727 /* Update the data in CUM to advance over an argument
1728 of mode MODE and data type TYPE.
1729 (TYPE is null for libcalls where that information may not be available.) */
1730
1731 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1732 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1733
1734 /* Define where to put the arguments to a function.
1735 Value is zero to push the argument on the stack,
1736 or a hard register in which to store the argument.
1737
1738 MODE is the argument's machine mode.
1739 TYPE is the data type of the argument (as a tree).
1740 This is null for libcalls where that information may
1741 not be available.
1742 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1743 the preceding args and about the function being called.
1744 NAMED is nonzero if this argument is a named parameter
1745 (otherwise it is an extra parameter matching an ellipsis). */
1746
1747 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1748 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1749
1750 /* For an arg passed partly in registers and partly in memory,
1751 this is the number of registers used.
1752 For args passed entirely in registers or entirely in memory, zero. */
1753
1754 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1755
1756 /* Perform any needed actions needed for a function that is receiving a
1757 variable number of arguments.
1758
1759 CUM is as above.
1760
1761 MODE and TYPE are the mode and type of the current parameter.
1762
1763 PRETEND_SIZE is a variable that should be set to the amount of stack
1764 that must be pushed by the prolog to pretend that our caller pushed
1765 it.
1766
1767 Normally, this macro will push all remaining incoming registers on the
1768 stack and set PRETEND_SIZE to the length of the registers pushed. */
1769
1770 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1771 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1772 (NO_RTL))
1773
1774 /* Define the `__builtin_va_list' type for the ABI. */
1775 #define BUILD_VA_LIST_TYPE(VALIST) \
1776 ((VALIST) = ix86_build_va_list ())
1777
1778 /* Implement `va_start' for varargs and stdarg. */
1779 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1780 ix86_va_start (VALIST, NEXTARG)
1781
1782 /* Implement `va_arg'. */
1783 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1784 ix86_va_arg ((VALIST), (TYPE))
1785
1786 /* This macro is invoked at the end of compilation. It is used here to
1787 output code for -fpic that will load the return address into %ebx. */
1788
1789 #undef ASM_FILE_END
1790 #define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
1791
1792 /* Output assembler code to FILE to increment profiler label # LABELNO
1793 for profiling a function entry. */
1794
1795 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1796
1797 #define MCOUNT_NAME "_mcount"
1798
1799 #define PROFILE_COUNT_REGISTER "edx"
1800
1801 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1802 the stack pointer does not matter. The value is tested only in
1803 functions that have frame pointers.
1804 No definition is equivalent to always zero. */
1805 /* Note on the 386 it might be more efficient not to define this since
1806 we have to restore it ourselves from the frame pointer, in order to
1807 use pop */
1808
1809 #define EXIT_IGNORE_STACK 1
1810
1811 /* Output assembler code for a block containing the constant parts
1812 of a trampoline, leaving space for the variable parts. */
1813
1814 /* On the 386, the trampoline contains two instructions:
1815 mov #STATIC,ecx
1816 jmp FUNCTION
1817 The trampoline is generated entirely at runtime. The operand of JMP
1818 is the address of FUNCTION relative to the instruction following the
1819 JMP (which is 5 bytes long). */
1820
1821 /* Length in units of the trampoline for entering a nested function. */
1822
1823 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1824
1825 /* Emit RTL insns to initialize the variable parts of a trampoline.
1826 FNADDR is an RTX for the address of the function's pure code.
1827 CXT is an RTX for the static chain value for the function. */
1828
1829 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1830 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1831 \f
1832 /* Definitions for register eliminations.
1833
1834 This is an array of structures. Each structure initializes one pair
1835 of eliminable registers. The "from" register number is given first,
1836 followed by "to". Eliminations of the same "from" register are listed
1837 in order of preference.
1838
1839 There are two registers that can always be eliminated on the i386.
1840 The frame pointer and the arg pointer can be replaced by either the
1841 hard frame pointer or to the stack pointer, depending upon the
1842 circumstances. The hard frame pointer is not used before reload and
1843 so it is not eligible for elimination. */
1844
1845 #define ELIMINABLE_REGS \
1846 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1847 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1848 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1849 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1850
1851 /* Given FROM and TO register numbers, say whether this elimination is
1852 allowed. Frame pointer elimination is automatically handled.
1853
1854 All other eliminations are valid. */
1855
1856 #define CAN_ELIMINATE(FROM, TO) \
1857 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1858
1859 /* Define the offset between two registers, one to be eliminated, and the other
1860 its replacement, at the start of a routine. */
1861
1862 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1863 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1864 \f
1865 /* Addressing modes, and classification of registers for them. */
1866
1867 /* Macros to check register numbers against specific register classes. */
1868
1869 /* These assume that REGNO is a hard or pseudo reg number.
1870 They give nonzero only if REGNO is a hard reg of the suitable class
1871 or a pseudo reg currently allocated to a suitable hard reg.
1872 Since they use reg_renumber, they are safe only once reg_renumber
1873 has been allocated, which happens in local-alloc.c. */
1874
1875 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1876 ((REGNO) < STACK_POINTER_REGNUM \
1877 || (REGNO >= FIRST_REX_INT_REG \
1878 && (REGNO) <= LAST_REX_INT_REG) \
1879 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1880 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1881 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1882
1883 #define REGNO_OK_FOR_BASE_P(REGNO) \
1884 ((REGNO) <= STACK_POINTER_REGNUM \
1885 || (REGNO) == ARG_POINTER_REGNUM \
1886 || (REGNO) == FRAME_POINTER_REGNUM \
1887 || (REGNO >= FIRST_REX_INT_REG \
1888 && (REGNO) <= LAST_REX_INT_REG) \
1889 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1890 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1891 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1892
1893 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1894 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1895 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1896 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1897
1898 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1899 and check its validity for a certain class.
1900 We have two alternate definitions for each of them.
1901 The usual definition accepts all pseudo regs; the other rejects
1902 them unless they have been allocated suitable hard regs.
1903 The symbol REG_OK_STRICT causes the latter definition to be used.
1904
1905 Most source files want to accept pseudo regs in the hope that
1906 they will get allocated to the class that the insn wants them to be in.
1907 Source files for reload pass need to be strict.
1908 After reload, it makes no difference, since pseudo regs have
1909 been eliminated by then. */
1910
1911
1912 /* Non strict versions, pseudos are ok */
1913 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1914 (REGNO (X) < STACK_POINTER_REGNUM \
1915 || (REGNO (X) >= FIRST_REX_INT_REG \
1916 && REGNO (X) <= LAST_REX_INT_REG) \
1917 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1918
1919 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1920 (REGNO (X) <= STACK_POINTER_REGNUM \
1921 || REGNO (X) == ARG_POINTER_REGNUM \
1922 || REGNO (X) == FRAME_POINTER_REGNUM \
1923 || (REGNO (X) >= FIRST_REX_INT_REG \
1924 && REGNO (X) <= LAST_REX_INT_REG) \
1925 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1926
1927 /* Strict versions, hard registers only */
1928 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1929 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1930
1931 #ifndef REG_OK_STRICT
1932 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1933 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1934
1935 #else
1936 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1937 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1938 #endif
1939
1940 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1941 that is a valid memory address for an instruction.
1942 The MODE argument is the machine mode for the MEM expression
1943 that wants to use this address.
1944
1945 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1946 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1947
1948 See legitimize_pic_address in i386.c for details as to what
1949 constitutes a legitimate address when -fpic is used. */
1950
1951 #define MAX_REGS_PER_ADDRESS 2
1952
1953 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1954
1955 /* Nonzero if the constant value X is a legitimate general operand.
1956 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1957
1958 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1959
1960 #ifdef REG_OK_STRICT
1961 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1962 do { \
1963 if (legitimate_address_p ((MODE), (X), 1)) \
1964 goto ADDR; \
1965 } while (0)
1966
1967 #else
1968 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1969 do { \
1970 if (legitimate_address_p ((MODE), (X), 0)) \
1971 goto ADDR; \
1972 } while (0)
1973
1974 #endif
1975
1976 /* If defined, a C expression to determine the base term of address X.
1977 This macro is used in only one place: `find_base_term' in alias.c.
1978
1979 It is always safe for this macro to not be defined. It exists so
1980 that alias analysis can understand machine-dependent addresses.
1981
1982 The typical use of this macro is to handle addresses containing
1983 a label_ref or symbol_ref within an UNSPEC. */
1984
1985 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1986
1987 /* Try machine-dependent ways of modifying an illegitimate address
1988 to be legitimate. If we find one, return the new, valid address.
1989 This macro is used in only one place: `memory_address' in explow.c.
1990
1991 OLDX is the address as it was before break_out_memory_refs was called.
1992 In some cases it is useful to look at this to decide what needs to be done.
1993
1994 MODE and WIN are passed so that this macro can use
1995 GO_IF_LEGITIMATE_ADDRESS.
1996
1997 It is always safe for this macro to do nothing. It exists to recognize
1998 opportunities to optimize the output.
1999
2000 For the 80386, we handle X+REG by loading X into a register R and
2001 using R+REG. R will go in a general reg and indexing will be used.
2002 However, if REG is a broken-out memory address or multiplication,
2003 nothing needs to be done because REG can certainly go in a general reg.
2004
2005 When -fpic is used, special handling is needed for symbolic references.
2006 See comments by legitimize_pic_address in i386.c for details. */
2007
2008 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2009 do { \
2010 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2011 if (memory_address_p ((MODE), (X))) \
2012 goto WIN; \
2013 } while (0)
2014
2015 #define REWRITE_ADDRESS(X) rewrite_address (X)
2016
2017 /* Nonzero if the constant value X is a legitimate general operand
2018 when generating PIC code. It is given that flag_pic is on and
2019 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2020
2021 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2022
2023 #define SYMBOLIC_CONST(X) \
2024 (GET_CODE (X) == SYMBOL_REF \
2025 || GET_CODE (X) == LABEL_REF \
2026 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2027
2028 /* Go to LABEL if ADDR (a legitimate address expression)
2029 has an effect that depends on the machine mode it is used for.
2030 On the 80386, only postdecrement and postincrement address depend thus
2031 (the amount of decrement or increment being the length of the operand). */
2032 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2033 do { \
2034 if (GET_CODE (ADDR) == POST_INC \
2035 || GET_CODE (ADDR) == POST_DEC) \
2036 goto LABEL; \
2037 } while (0)
2038 \f
2039 /* Codes for all the SSE/MMX builtins. */
2040 enum ix86_builtins
2041 {
2042 IX86_BUILTIN_ADDPS,
2043 IX86_BUILTIN_ADDSS,
2044 IX86_BUILTIN_DIVPS,
2045 IX86_BUILTIN_DIVSS,
2046 IX86_BUILTIN_MULPS,
2047 IX86_BUILTIN_MULSS,
2048 IX86_BUILTIN_SUBPS,
2049 IX86_BUILTIN_SUBSS,
2050
2051 IX86_BUILTIN_CMPEQPS,
2052 IX86_BUILTIN_CMPLTPS,
2053 IX86_BUILTIN_CMPLEPS,
2054 IX86_BUILTIN_CMPGTPS,
2055 IX86_BUILTIN_CMPGEPS,
2056 IX86_BUILTIN_CMPNEQPS,
2057 IX86_BUILTIN_CMPNLTPS,
2058 IX86_BUILTIN_CMPNLEPS,
2059 IX86_BUILTIN_CMPNGTPS,
2060 IX86_BUILTIN_CMPNGEPS,
2061 IX86_BUILTIN_CMPORDPS,
2062 IX86_BUILTIN_CMPUNORDPS,
2063 IX86_BUILTIN_CMPNEPS,
2064 IX86_BUILTIN_CMPEQSS,
2065 IX86_BUILTIN_CMPLTSS,
2066 IX86_BUILTIN_CMPLESS,
2067 IX86_BUILTIN_CMPNEQSS,
2068 IX86_BUILTIN_CMPNLTSS,
2069 IX86_BUILTIN_CMPNLESS,
2070 IX86_BUILTIN_CMPORDSS,
2071 IX86_BUILTIN_CMPUNORDSS,
2072 IX86_BUILTIN_CMPNESS,
2073
2074 IX86_BUILTIN_COMIEQSS,
2075 IX86_BUILTIN_COMILTSS,
2076 IX86_BUILTIN_COMILESS,
2077 IX86_BUILTIN_COMIGTSS,
2078 IX86_BUILTIN_COMIGESS,
2079 IX86_BUILTIN_COMINEQSS,
2080 IX86_BUILTIN_UCOMIEQSS,
2081 IX86_BUILTIN_UCOMILTSS,
2082 IX86_BUILTIN_UCOMILESS,
2083 IX86_BUILTIN_UCOMIGTSS,
2084 IX86_BUILTIN_UCOMIGESS,
2085 IX86_BUILTIN_UCOMINEQSS,
2086
2087 IX86_BUILTIN_CVTPI2PS,
2088 IX86_BUILTIN_CVTPS2PI,
2089 IX86_BUILTIN_CVTSI2SS,
2090 IX86_BUILTIN_CVTSS2SI,
2091 IX86_BUILTIN_CVTTPS2PI,
2092 IX86_BUILTIN_CVTTSS2SI,
2093
2094 IX86_BUILTIN_MAXPS,
2095 IX86_BUILTIN_MAXSS,
2096 IX86_BUILTIN_MINPS,
2097 IX86_BUILTIN_MINSS,
2098
2099 IX86_BUILTIN_LOADAPS,
2100 IX86_BUILTIN_LOADUPS,
2101 IX86_BUILTIN_STOREAPS,
2102 IX86_BUILTIN_STOREUPS,
2103 IX86_BUILTIN_LOADSS,
2104 IX86_BUILTIN_STORESS,
2105 IX86_BUILTIN_MOVSS,
2106
2107 IX86_BUILTIN_MOVHLPS,
2108 IX86_BUILTIN_MOVLHPS,
2109 IX86_BUILTIN_LOADHPS,
2110 IX86_BUILTIN_LOADLPS,
2111 IX86_BUILTIN_STOREHPS,
2112 IX86_BUILTIN_STORELPS,
2113
2114 IX86_BUILTIN_MASKMOVQ,
2115 IX86_BUILTIN_MOVMSKPS,
2116 IX86_BUILTIN_PMOVMSKB,
2117
2118 IX86_BUILTIN_MOVNTPS,
2119 IX86_BUILTIN_MOVNTQ,
2120
2121 IX86_BUILTIN_LOADDQA,
2122 IX86_BUILTIN_LOADDQU,
2123 IX86_BUILTIN_STOREDQA,
2124 IX86_BUILTIN_STOREDQU,
2125 IX86_BUILTIN_MOVQ,
2126 IX86_BUILTIN_LOADD,
2127 IX86_BUILTIN_STORED,
2128
2129 IX86_BUILTIN_CLRTI,
2130
2131 IX86_BUILTIN_PACKSSWB,
2132 IX86_BUILTIN_PACKSSDW,
2133 IX86_BUILTIN_PACKUSWB,
2134
2135 IX86_BUILTIN_PADDB,
2136 IX86_BUILTIN_PADDW,
2137 IX86_BUILTIN_PADDD,
2138 IX86_BUILTIN_PADDSB,
2139 IX86_BUILTIN_PADDSW,
2140 IX86_BUILTIN_PADDUSB,
2141 IX86_BUILTIN_PADDUSW,
2142 IX86_BUILTIN_PSUBB,
2143 IX86_BUILTIN_PSUBW,
2144 IX86_BUILTIN_PSUBD,
2145 IX86_BUILTIN_PSUBSB,
2146 IX86_BUILTIN_PSUBSW,
2147 IX86_BUILTIN_PSUBUSB,
2148 IX86_BUILTIN_PSUBUSW,
2149
2150 IX86_BUILTIN_PAND,
2151 IX86_BUILTIN_PANDN,
2152 IX86_BUILTIN_POR,
2153 IX86_BUILTIN_PXOR,
2154
2155 IX86_BUILTIN_PAVGB,
2156 IX86_BUILTIN_PAVGW,
2157
2158 IX86_BUILTIN_PCMPEQB,
2159 IX86_BUILTIN_PCMPEQW,
2160 IX86_BUILTIN_PCMPEQD,
2161 IX86_BUILTIN_PCMPGTB,
2162 IX86_BUILTIN_PCMPGTW,
2163 IX86_BUILTIN_PCMPGTD,
2164
2165 IX86_BUILTIN_PEXTRW,
2166 IX86_BUILTIN_PINSRW,
2167
2168 IX86_BUILTIN_PMADDWD,
2169
2170 IX86_BUILTIN_PMAXSW,
2171 IX86_BUILTIN_PMAXUB,
2172 IX86_BUILTIN_PMINSW,
2173 IX86_BUILTIN_PMINUB,
2174
2175 IX86_BUILTIN_PMULHUW,
2176 IX86_BUILTIN_PMULHW,
2177 IX86_BUILTIN_PMULLW,
2178
2179 IX86_BUILTIN_PSADBW,
2180 IX86_BUILTIN_PSHUFW,
2181
2182 IX86_BUILTIN_PSLLW,
2183 IX86_BUILTIN_PSLLD,
2184 IX86_BUILTIN_PSLLQ,
2185 IX86_BUILTIN_PSRAW,
2186 IX86_BUILTIN_PSRAD,
2187 IX86_BUILTIN_PSRLW,
2188 IX86_BUILTIN_PSRLD,
2189 IX86_BUILTIN_PSRLQ,
2190 IX86_BUILTIN_PSLLWI,
2191 IX86_BUILTIN_PSLLDI,
2192 IX86_BUILTIN_PSLLQI,
2193 IX86_BUILTIN_PSRAWI,
2194 IX86_BUILTIN_PSRADI,
2195 IX86_BUILTIN_PSRLWI,
2196 IX86_BUILTIN_PSRLDI,
2197 IX86_BUILTIN_PSRLQI,
2198
2199 IX86_BUILTIN_PUNPCKHBW,
2200 IX86_BUILTIN_PUNPCKHWD,
2201 IX86_BUILTIN_PUNPCKHDQ,
2202 IX86_BUILTIN_PUNPCKLBW,
2203 IX86_BUILTIN_PUNPCKLWD,
2204 IX86_BUILTIN_PUNPCKLDQ,
2205
2206 IX86_BUILTIN_SHUFPS,
2207
2208 IX86_BUILTIN_RCPPS,
2209 IX86_BUILTIN_RCPSS,
2210 IX86_BUILTIN_RSQRTPS,
2211 IX86_BUILTIN_RSQRTSS,
2212 IX86_BUILTIN_SQRTPS,
2213 IX86_BUILTIN_SQRTSS,
2214
2215 IX86_BUILTIN_UNPCKHPS,
2216 IX86_BUILTIN_UNPCKLPS,
2217
2218 IX86_BUILTIN_ANDPS,
2219 IX86_BUILTIN_ANDNPS,
2220 IX86_BUILTIN_ORPS,
2221 IX86_BUILTIN_XORPS,
2222
2223 IX86_BUILTIN_EMMS,
2224 IX86_BUILTIN_LDMXCSR,
2225 IX86_BUILTIN_STMXCSR,
2226 IX86_BUILTIN_SFENCE,
2227
2228 /* 3DNow! Original */
2229 IX86_BUILTIN_FEMMS,
2230 IX86_BUILTIN_PAVGUSB,
2231 IX86_BUILTIN_PF2ID,
2232 IX86_BUILTIN_PFACC,
2233 IX86_BUILTIN_PFADD,
2234 IX86_BUILTIN_PFCMPEQ,
2235 IX86_BUILTIN_PFCMPGE,
2236 IX86_BUILTIN_PFCMPGT,
2237 IX86_BUILTIN_PFMAX,
2238 IX86_BUILTIN_PFMIN,
2239 IX86_BUILTIN_PFMUL,
2240 IX86_BUILTIN_PFRCP,
2241 IX86_BUILTIN_PFRCPIT1,
2242 IX86_BUILTIN_PFRCPIT2,
2243 IX86_BUILTIN_PFRSQIT1,
2244 IX86_BUILTIN_PFRSQRT,
2245 IX86_BUILTIN_PFSUB,
2246 IX86_BUILTIN_PFSUBR,
2247 IX86_BUILTIN_PI2FD,
2248 IX86_BUILTIN_PMULHRW,
2249
2250 /* 3DNow! Athlon Extensions */
2251 IX86_BUILTIN_PF2IW,
2252 IX86_BUILTIN_PFNACC,
2253 IX86_BUILTIN_PFPNACC,
2254 IX86_BUILTIN_PI2FW,
2255 IX86_BUILTIN_PSWAPDSI,
2256 IX86_BUILTIN_PSWAPDSF,
2257
2258 IX86_BUILTIN_SSE_ZERO,
2259 IX86_BUILTIN_MMX_ZERO,
2260
2261 /* SSE2 */
2262 IX86_BUILTIN_ADDPD,
2263 IX86_BUILTIN_ADDSD,
2264 IX86_BUILTIN_DIVPD,
2265 IX86_BUILTIN_DIVSD,
2266 IX86_BUILTIN_MULPD,
2267 IX86_BUILTIN_MULSD,
2268 IX86_BUILTIN_SUBPD,
2269 IX86_BUILTIN_SUBSD,
2270
2271 IX86_BUILTIN_CMPEQPD,
2272 IX86_BUILTIN_CMPLTPD,
2273 IX86_BUILTIN_CMPLEPD,
2274 IX86_BUILTIN_CMPGTPD,
2275 IX86_BUILTIN_CMPGEPD,
2276 IX86_BUILTIN_CMPNEQPD,
2277 IX86_BUILTIN_CMPNLTPD,
2278 IX86_BUILTIN_CMPNLEPD,
2279 IX86_BUILTIN_CMPNGTPD,
2280 IX86_BUILTIN_CMPNGEPD,
2281 IX86_BUILTIN_CMPORDPD,
2282 IX86_BUILTIN_CMPUNORDPD,
2283 IX86_BUILTIN_CMPNEPD,
2284 IX86_BUILTIN_CMPEQSD,
2285 IX86_BUILTIN_CMPLTSD,
2286 IX86_BUILTIN_CMPLESD,
2287 IX86_BUILTIN_CMPNEQSD,
2288 IX86_BUILTIN_CMPNLTSD,
2289 IX86_BUILTIN_CMPNLESD,
2290 IX86_BUILTIN_CMPORDSD,
2291 IX86_BUILTIN_CMPUNORDSD,
2292 IX86_BUILTIN_CMPNESD,
2293
2294 IX86_BUILTIN_COMIEQSD,
2295 IX86_BUILTIN_COMILTSD,
2296 IX86_BUILTIN_COMILESD,
2297 IX86_BUILTIN_COMIGTSD,
2298 IX86_BUILTIN_COMIGESD,
2299 IX86_BUILTIN_COMINEQSD,
2300 IX86_BUILTIN_UCOMIEQSD,
2301 IX86_BUILTIN_UCOMILTSD,
2302 IX86_BUILTIN_UCOMILESD,
2303 IX86_BUILTIN_UCOMIGTSD,
2304 IX86_BUILTIN_UCOMIGESD,
2305 IX86_BUILTIN_UCOMINEQSD,
2306
2307 IX86_BUILTIN_MAXPD,
2308 IX86_BUILTIN_MAXSD,
2309 IX86_BUILTIN_MINPD,
2310 IX86_BUILTIN_MINSD,
2311
2312 IX86_BUILTIN_ANDPD,
2313 IX86_BUILTIN_ANDNPD,
2314 IX86_BUILTIN_ORPD,
2315 IX86_BUILTIN_XORPD,
2316
2317 IX86_BUILTIN_SQRTPD,
2318 IX86_BUILTIN_SQRTSD,
2319
2320 IX86_BUILTIN_UNPCKHPD,
2321 IX86_BUILTIN_UNPCKLPD,
2322
2323 IX86_BUILTIN_SHUFPD,
2324
2325 IX86_BUILTIN_LOADAPD,
2326 IX86_BUILTIN_LOADUPD,
2327 IX86_BUILTIN_STOREAPD,
2328 IX86_BUILTIN_STOREUPD,
2329 IX86_BUILTIN_LOADSD,
2330 IX86_BUILTIN_STORESD,
2331 IX86_BUILTIN_MOVSD,
2332
2333 IX86_BUILTIN_LOADHPD,
2334 IX86_BUILTIN_LOADLPD,
2335 IX86_BUILTIN_STOREHPD,
2336 IX86_BUILTIN_STORELPD,
2337
2338 IX86_BUILTIN_CVTDQ2PD,
2339 IX86_BUILTIN_CVTDQ2PS,
2340
2341 IX86_BUILTIN_CVTPD2DQ,
2342 IX86_BUILTIN_CVTPD2PI,
2343 IX86_BUILTIN_CVTPD2PS,
2344 IX86_BUILTIN_CVTTPD2DQ,
2345 IX86_BUILTIN_CVTTPD2PI,
2346
2347 IX86_BUILTIN_CVTPI2PD,
2348 IX86_BUILTIN_CVTSI2SD,
2349
2350 IX86_BUILTIN_CVTSD2SI,
2351 IX86_BUILTIN_CVTSD2SS,
2352 IX86_BUILTIN_CVTSS2SD,
2353 IX86_BUILTIN_CVTTSD2SI,
2354
2355 IX86_BUILTIN_CVTPS2DQ,
2356 IX86_BUILTIN_CVTPS2PD,
2357 IX86_BUILTIN_CVTTPS2DQ,
2358
2359 IX86_BUILTIN_MOVNTI,
2360 IX86_BUILTIN_MOVNTPD,
2361 IX86_BUILTIN_MOVNTDQ,
2362
2363 IX86_BUILTIN_SETPD1,
2364 IX86_BUILTIN_SETPD,
2365 IX86_BUILTIN_CLRPD,
2366 IX86_BUILTIN_SETRPD,
2367 IX86_BUILTIN_LOADPD1,
2368 IX86_BUILTIN_LOADRPD,
2369 IX86_BUILTIN_STOREPD1,
2370 IX86_BUILTIN_STORERPD,
2371
2372 /* SSE2 MMX */
2373 IX86_BUILTIN_MASKMOVDQU,
2374 IX86_BUILTIN_MOVMSKPD,
2375 IX86_BUILTIN_PMOVMSKB128,
2376 IX86_BUILTIN_MOVQ2DQ,
2377 IX86_BUILTIN_MOVDQ2Q,
2378
2379 IX86_BUILTIN_PACKSSWB128,
2380 IX86_BUILTIN_PACKSSDW128,
2381 IX86_BUILTIN_PACKUSWB128,
2382
2383 IX86_BUILTIN_PADDB128,
2384 IX86_BUILTIN_PADDW128,
2385 IX86_BUILTIN_PADDD128,
2386 IX86_BUILTIN_PADDQ128,
2387 IX86_BUILTIN_PADDSB128,
2388 IX86_BUILTIN_PADDSW128,
2389 IX86_BUILTIN_PADDUSB128,
2390 IX86_BUILTIN_PADDUSW128,
2391 IX86_BUILTIN_PSUBB128,
2392 IX86_BUILTIN_PSUBW128,
2393 IX86_BUILTIN_PSUBD128,
2394 IX86_BUILTIN_PSUBQ128,
2395 IX86_BUILTIN_PSUBSB128,
2396 IX86_BUILTIN_PSUBSW128,
2397 IX86_BUILTIN_PSUBUSB128,
2398 IX86_BUILTIN_PSUBUSW128,
2399
2400 IX86_BUILTIN_PAND128,
2401 IX86_BUILTIN_PANDN128,
2402 IX86_BUILTIN_POR128,
2403 IX86_BUILTIN_PXOR128,
2404
2405 IX86_BUILTIN_PAVGB128,
2406 IX86_BUILTIN_PAVGW128,
2407
2408 IX86_BUILTIN_PCMPEQB128,
2409 IX86_BUILTIN_PCMPEQW128,
2410 IX86_BUILTIN_PCMPEQD128,
2411 IX86_BUILTIN_PCMPGTB128,
2412 IX86_BUILTIN_PCMPGTW128,
2413 IX86_BUILTIN_PCMPGTD128,
2414
2415 IX86_BUILTIN_PEXTRW128,
2416 IX86_BUILTIN_PINSRW128,
2417
2418 IX86_BUILTIN_PMADDWD128,
2419
2420 IX86_BUILTIN_PMAXSW128,
2421 IX86_BUILTIN_PMAXUB128,
2422 IX86_BUILTIN_PMINSW128,
2423 IX86_BUILTIN_PMINUB128,
2424
2425 IX86_BUILTIN_PMULUDQ,
2426 IX86_BUILTIN_PMULUDQ128,
2427 IX86_BUILTIN_PMULHUW128,
2428 IX86_BUILTIN_PMULHW128,
2429 IX86_BUILTIN_PMULLW128,
2430
2431 IX86_BUILTIN_PSADBW128,
2432 IX86_BUILTIN_PSHUFHW,
2433 IX86_BUILTIN_PSHUFLW,
2434 IX86_BUILTIN_PSHUFD,
2435
2436 IX86_BUILTIN_PSLLW128,
2437 IX86_BUILTIN_PSLLD128,
2438 IX86_BUILTIN_PSLLQ128,
2439 IX86_BUILTIN_PSRAW128,
2440 IX86_BUILTIN_PSRAD128,
2441 IX86_BUILTIN_PSRLW128,
2442 IX86_BUILTIN_PSRLD128,
2443 IX86_BUILTIN_PSRLQ128,
2444 IX86_BUILTIN_PSLLDQI128,
2445 IX86_BUILTIN_PSLLWI128,
2446 IX86_BUILTIN_PSLLDI128,
2447 IX86_BUILTIN_PSLLQI128,
2448 IX86_BUILTIN_PSRAWI128,
2449 IX86_BUILTIN_PSRADI128,
2450 IX86_BUILTIN_PSRLDQI128,
2451 IX86_BUILTIN_PSRLWI128,
2452 IX86_BUILTIN_PSRLDI128,
2453 IX86_BUILTIN_PSRLQI128,
2454
2455 IX86_BUILTIN_PUNPCKHBW128,
2456 IX86_BUILTIN_PUNPCKHWD128,
2457 IX86_BUILTIN_PUNPCKHDQ128,
2458 IX86_BUILTIN_PUNPCKHQDQ128,
2459 IX86_BUILTIN_PUNPCKLBW128,
2460 IX86_BUILTIN_PUNPCKLWD128,
2461 IX86_BUILTIN_PUNPCKLDQ128,
2462 IX86_BUILTIN_PUNPCKLQDQ128,
2463
2464 IX86_BUILTIN_CLFLUSH,
2465 IX86_BUILTIN_MFENCE,
2466 IX86_BUILTIN_LFENCE,
2467
2468 IX86_BUILTIN_MAX
2469 };
2470 \f
2471 #define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
2472 #define TARGET_STRIP_NAME_ENCODING ix86_strip_name_encoding
2473
2474 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2475 do { \
2476 const char *xname = (NAME); \
2477 if (xname[0] == '%') \
2478 xname += 2; \
2479 if (xname[0] == '*') \
2480 xname += 1; \
2481 else \
2482 fputs (user_label_prefix, FILE); \
2483 fputs (xname, FILE); \
2484 } while (0)
2485 \f
2486 /* Max number of args passed in registers. If this is more than 3, we will
2487 have problems with ebx (register #4), since it is a caller save register and
2488 is also used as the pic register in ELF. So for now, don't allow more than
2489 3 registers to be passed in registers. */
2490
2491 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2492
2493 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2494
2495 \f
2496 /* Specify the machine mode that this machine uses
2497 for the index in the tablejump instruction. */
2498 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2499
2500 /* Define as C expression which evaluates to nonzero if the tablejump
2501 instruction expects the table to contain offsets from the address of the
2502 table.
2503 Do not define this if the table should contain absolute addresses. */
2504 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2505
2506 /* Define this as 1 if `char' should by default be signed; else as 0. */
2507 #define DEFAULT_SIGNED_CHAR 1
2508
2509 /* Number of bytes moved into a data cache for a single prefetch operation. */
2510 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2511
2512 /* Number of prefetch operations that can be done in parallel. */
2513 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2514
2515 /* Max number of bytes we can move from memory to memory
2516 in one reasonably fast instruction. */
2517 #define MOVE_MAX 16
2518
2519 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2520 move efficiently, as opposed to MOVE_MAX which is the maximum
2521 number of bytes we can move with a single instruction. */
2522 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2523
2524 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2525 move-instruction pairs, we will do a movstr or libcall instead.
2526 Increasing the value will always make code faster, but eventually
2527 incurs high cost in increased code size.
2528
2529 If you don't define this, a reasonable default is used. */
2530
2531 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2532
2533 /* Define if shifts truncate the shift count
2534 which implies one can omit a sign-extension or zero-extension
2535 of a shift count. */
2536 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2537
2538 /* #define SHIFT_COUNT_TRUNCATED */
2539
2540 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2541 is done just by pretending it is already truncated. */
2542 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2543
2544 /* We assume that the store-condition-codes instructions store 0 for false
2545 and some other value for true. This is the value stored for true. */
2546
2547 #define STORE_FLAG_VALUE 1
2548
2549 /* When a prototype says `char' or `short', really pass an `int'.
2550 (The 386 can't easily push less than an int.) */
2551
2552 #define PROMOTE_PROTOTYPES 1
2553
2554 /* A macro to update M and UNSIGNEDP when an object whose type is
2555 TYPE and which has the specified mode and signedness is to be
2556 stored in a register. This macro is only called when TYPE is a
2557 scalar type.
2558
2559 On i386 it is sometimes useful to promote HImode and QImode
2560 quantities to SImode. The choice depends on target type. */
2561
2562 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2563 do { \
2564 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2565 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2566 (MODE) = SImode; \
2567 } while (0)
2568
2569 /* Specify the machine mode that pointers have.
2570 After generation of rtl, the compiler makes no further distinction
2571 between pointers and any other objects of this machine mode. */
2572 #define Pmode (TARGET_64BIT ? DImode : SImode)
2573
2574 /* A function address in a call instruction
2575 is a byte address (for indexing purposes)
2576 so give the MEM rtx a byte's mode. */
2577 #define FUNCTION_MODE QImode
2578 \f
2579 /* A part of a C `switch' statement that describes the relative costs
2580 of constant RTL expressions. It must contain `case' labels for
2581 expression codes `const_int', `const', `symbol_ref', `label_ref'
2582 and `const_double'. Each case must ultimately reach a `return'
2583 statement to return the relative cost of the use of that kind of
2584 constant value in an expression. The cost may depend on the
2585 precise value of the constant, which is available for examination
2586 in X, and the rtx code of the expression in which it is contained,
2587 found in OUTER_CODE.
2588
2589 CODE is the expression code--redundant, since it can be obtained
2590 with `GET_CODE (X)'. */
2591
2592 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
2593 case CONST_INT: \
2594 case CONST: \
2595 case LABEL_REF: \
2596 case SYMBOL_REF: \
2597 if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \
2598 return 3; \
2599 if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \
2600 return 2; \
2601 return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
2602 \
2603 case CONST_DOUBLE: \
2604 if (GET_MODE (RTX) == VOIDmode) \
2605 return 0; \
2606 switch (standard_80387_constant_p (RTX)) \
2607 { \
2608 case 1: /* 0.0 */ \
2609 return 1; \
2610 case 2: /* 1.0 */ \
2611 return 2; \
2612 default: \
2613 /* Start with (MEM (SYMBOL_REF)), since that's where \
2614 it'll probably end up. Add a penalty for size. */ \
2615 return (COSTS_N_INSNS (1) + (flag_pic != 0) \
2616 + (GET_MODE (RTX) == SFmode ? 0 \
2617 : GET_MODE (RTX) == DFmode ? 1 : 2)); \
2618 }
2619
2620 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2621 #define TOPLEVEL_COSTS_N_INSNS(N) \
2622 do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
2623
2624 /* Return index of given mode in mult and division cost tables. */
2625 #define MODE_INDEX(mode) \
2626 ((mode) == QImode ? 0 \
2627 : (mode) == HImode ? 1 \
2628 : (mode) == SImode ? 2 \
2629 : (mode) == DImode ? 3 \
2630 : 4)
2631
2632 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2633 This can be used, for example, to indicate how costly a multiply
2634 instruction is. In writing this macro, you can use the construct
2635 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2636 instructions. OUTER_CODE is the code of the expression in which X
2637 is contained.
2638
2639 This macro is optional; do not define it if the default cost
2640 assumptions are adequate for the target machine. */
2641
2642 #define RTX_COSTS(X, CODE, OUTER_CODE) \
2643 case ZERO_EXTEND: \
2644 /* The zero extensions is often completely free on x86_64, so make \
2645 it as cheap as possible. */ \
2646 if (TARGET_64BIT && GET_MODE (X) == DImode \
2647 && GET_MODE (XEXP (X, 0)) == SImode) \
2648 { \
2649 total = 1; goto egress_rtx_costs; \
2650 } \
2651 else \
2652 TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \
2653 ix86_cost->add : ix86_cost->movzx); \
2654 break; \
2655 case SIGN_EXTEND: \
2656 TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \
2657 break; \
2658 case ASHIFT: \
2659 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2660 && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \
2661 { \
2662 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2663 if (value == 1) \
2664 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2665 if ((value == 2 || value == 3) \
2666 && !TARGET_DECOMPOSE_LEA \
2667 && ix86_cost->lea <= ix86_cost->shift_const) \
2668 TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
2669 } \
2670 /* fall through */ \
2671 \
2672 case ROTATE: \
2673 case ASHIFTRT: \
2674 case LSHIFTRT: \
2675 case ROTATERT: \
2676 if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \
2677 { \
2678 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2679 { \
2680 if (INTVAL (XEXP (X, 1)) > 32) \
2681 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
2682 else \
2683 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
2684 } \
2685 else \
2686 { \
2687 if (GET_CODE (XEXP (X, 1)) == AND) \
2688 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
2689 else \
2690 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
2691 } \
2692 } \
2693 else \
2694 { \
2695 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2696 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
2697 else \
2698 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
2699 } \
2700 break; \
2701 \
2702 case MULT: \
2703 if (FLOAT_MODE_P (GET_MODE (X))) \
2704 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fmul); \
2705 else if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2706 { \
2707 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2708 int nbits = 0; \
2709 \
2710 while (value != 0) \
2711 { \
2712 nbits++; \
2713 value >>= 1; \
2714 } \
2715 \
2716 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2717 [MODE_INDEX (GET_MODE (X))] \
2718 + nbits * ix86_cost->mult_bit); \
2719 } \
2720 else /* This is arbitrary */ \
2721 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2722 [MODE_INDEX (GET_MODE (X))] \
2723 + 7 * ix86_cost->mult_bit); \
2724 \
2725 case DIV: \
2726 case UDIV: \
2727 case MOD: \
2728 case UMOD: \
2729 if (FLOAT_MODE_P (GET_MODE (X))) \
2730 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fdiv); \
2731 else \
2732 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide \
2733 [MODE_INDEX (GET_MODE (X))]); \
2734 break; \
2735 \
2736 case PLUS: \
2737 if (FLOAT_MODE_P (GET_MODE (X))) \
2738 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd); \
2739 else if (!TARGET_DECOMPOSE_LEA \
2740 && INTEGRAL_MODE_P (GET_MODE (X)) \
2741 && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \
2742 { \
2743 if (GET_CODE (XEXP (X, 0)) == PLUS \
2744 && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
2745 && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
2746 && CONSTANT_P (XEXP (X, 1))) \
2747 { \
2748 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2749 if (val == 2 || val == 4 || val == 8) \
2750 { \
2751 return (COSTS_N_INSNS (ix86_cost->lea) \
2752 + rtx_cost (XEXP (XEXP (X, 0), 1), \
2753 (OUTER_CODE)) \
2754 + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \
2755 (OUTER_CODE)) \
2756 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
2757 } \
2758 } \
2759 else if (GET_CODE (XEXP (X, 0)) == MULT \
2760 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
2761 { \
2762 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
2763 if (val == 2 || val == 4 || val == 8) \
2764 { \
2765 return (COSTS_N_INSNS (ix86_cost->lea) \
2766 + rtx_cost (XEXP (XEXP (X, 0), 0), \
2767 (OUTER_CODE)) \
2768 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
2769 } \
2770 } \
2771 else if (GET_CODE (XEXP (X, 0)) == PLUS) \
2772 { \
2773 return (COSTS_N_INSNS (ix86_cost->lea) \
2774 + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \
2775 + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \
2776 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
2777 } \
2778 } \
2779 /* fall through */ \
2780 \
2781 case MINUS: \
2782 if (FLOAT_MODE_P (GET_MODE (X))) \
2783 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fadd); \
2784 /* fall through */ \
2785 \
2786 case AND: \
2787 case IOR: \
2788 case XOR: \
2789 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
2790 return (COSTS_N_INSNS (ix86_cost->add) * 2 \
2791 + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \
2792 << (GET_MODE (XEXP (X, 0)) != DImode)) \
2793 + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \
2794 << (GET_MODE (XEXP (X, 1)) != DImode))); \
2795 /* fall through */ \
2796 \
2797 case NEG: \
2798 if (FLOAT_MODE_P (GET_MODE (X))) \
2799 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fchs); \
2800 /* fall through */ \
2801 \
2802 case NOT: \
2803 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
2804 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
2805 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2806 \
2807 case FLOAT_EXTEND: \
2808 if (!TARGET_SSE_MATH \
2809 || !VALID_SSE_REG_MODE (GET_MODE (X))) \
2810 TOPLEVEL_COSTS_N_INSNS (0); \
2811 break; \
2812 \
2813 case ABS: \
2814 if (FLOAT_MODE_P (GET_MODE (X))) \
2815 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fabs); \
2816 break; \
2817 \
2818 case SQRT: \
2819 if (FLOAT_MODE_P (GET_MODE (X))) \
2820 TOPLEVEL_COSTS_N_INSNS (ix86_cost->fsqrt); \
2821 break; \
2822 \
2823 egress_rtx_costs: \
2824 break;
2825
2826
2827 /* An expression giving the cost of an addressing mode that contains
2828 ADDRESS. If not defined, the cost is computed from the ADDRESS
2829 expression and the `CONST_COSTS' values.
2830
2831 For most CISC machines, the default cost is a good approximation
2832 of the true cost of the addressing mode. However, on RISC
2833 machines, all instructions normally have the same length and
2834 execution time. Hence all addresses will have equal costs.
2835
2836 In cases where more than one form of an address is known, the form
2837 with the lowest cost will be used. If multiple forms have the
2838 same, lowest, cost, the one that is the most complex will be used.
2839
2840 For example, suppose an address that is equal to the sum of a
2841 register and a constant is used twice in the same basic block.
2842 When this macro is not defined, the address will be computed in a
2843 register and memory references will be indirect through that
2844 register. On machines where the cost of the addressing mode
2845 containing the sum is no higher than that of a simple indirect
2846 reference, this will produce an additional instruction and
2847 possibly require an additional register. Proper specification of
2848 this macro eliminates this overhead for such machines.
2849
2850 Similar use of this macro is made in strength reduction of loops.
2851
2852 ADDRESS need not be valid as an address. In such a case, the cost
2853 is not relevant and can be any value; invalid addresses need not be
2854 assigned a different cost.
2855
2856 On machines where an address involving more than one register is as
2857 cheap as an address computation involving only one register,
2858 defining `ADDRESS_COST' to reflect this can cause two registers to
2859 be live over a region of code where only one would have been if
2860 `ADDRESS_COST' were not defined in that manner. This effect should
2861 be considered in the definition of this macro. Equivalent costs
2862 should probably only be given to addresses with different numbers
2863 of registers on machines with lots of registers.
2864
2865 This macro will normally either not be defined or be defined as a
2866 constant.
2867
2868 For i386, it is better to use a complex address than let gcc copy
2869 the address into a reg and make a new pseudo. But not if the address
2870 requires to two regs - that would mean more pseudos with longer
2871 lifetimes. */
2872
2873 #define ADDRESS_COST(RTX) \
2874 ix86_address_cost (RTX)
2875
2876 /* A C expression for the cost of moving data from a register in class FROM to
2877 one in class TO. The classes are expressed using the enumeration values
2878 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2879 interpreted relative to that.
2880
2881 It is not required that the cost always equal 2 when FROM is the same as TO;
2882 on some machines it is expensive to move between registers if they are not
2883 general registers. */
2884
2885 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2886 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2887
2888 /* A C expression for the cost of moving data of mode M between a
2889 register and memory. A value of 2 is the default; this cost is
2890 relative to those in `REGISTER_MOVE_COST'.
2891
2892 If moving between registers and memory is more expensive than
2893 between two registers, you should define this macro to express the
2894 relative cost. */
2895
2896 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2897 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2898
2899 /* A C expression for the cost of a branch instruction. A value of 1
2900 is the default; other values are interpreted relative to that. */
2901
2902 #define BRANCH_COST ix86_branch_cost
2903
2904 /* Define this macro as a C expression which is nonzero if accessing
2905 less than a word of memory (i.e. a `char' or a `short') is no
2906 faster than accessing a word of memory, i.e., if such access
2907 require more than one instruction or if there is no difference in
2908 cost between byte and (aligned) word loads.
2909
2910 When this macro is not defined, the compiler will access a field by
2911 finding the smallest containing object; when it is defined, a
2912 fullword load will be used if alignment permits. Unless bytes
2913 accesses are faster than word accesses, using word accesses is
2914 preferable since it may eliminate subsequent memory access if
2915 subsequent accesses occur to other fields in the same word of the
2916 structure, but to different bytes. */
2917
2918 #define SLOW_BYTE_ACCESS 0
2919
2920 /* Nonzero if access to memory by shorts is slow and undesirable. */
2921 #define SLOW_SHORT_ACCESS 0
2922
2923 /* Define this macro to be the value 1 if unaligned accesses have a
2924 cost many times greater than aligned accesses, for example if they
2925 are emulated in a trap handler.
2926
2927 When this macro is nonzero, the compiler will act as if
2928 `STRICT_ALIGNMENT' were nonzero when generating code for block
2929 moves. This can cause significantly more instructions to be
2930 produced. Therefore, do not set this macro nonzero if unaligned
2931 accesses only add a cycle or two to the time for a memory access.
2932
2933 If the value of this macro is always zero, it need not be defined. */
2934
2935 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2936
2937 /* Define this macro to inhibit strength reduction of memory
2938 addresses. (On some machines, such strength reduction seems to do
2939 harm rather than good.) */
2940
2941 /* #define DONT_REDUCE_ADDR */
2942
2943 /* Define this macro if it is as good or better to call a constant
2944 function address than to call an address kept in a register.
2945
2946 Desirable on the 386 because a CALL with a constant address is
2947 faster than one with a register address. */
2948
2949 #define NO_FUNCTION_CSE
2950
2951 /* Define this macro if it is as good or better for a function to call
2952 itself with an explicit address than to call an address kept in a
2953 register. */
2954
2955 #define NO_RECURSIVE_FUNCTION_CSE
2956 \f
2957 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2958 return the mode to be used for the comparison.
2959
2960 For floating-point equality comparisons, CCFPEQmode should be used.
2961 VOIDmode should be used in all other cases.
2962
2963 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2964 possible, to allow for more combinations. */
2965
2966 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2967
2968 /* Return nonzero if MODE implies a floating point inequality can be
2969 reversed. */
2970
2971 #define REVERSIBLE_CC_MODE(MODE) 1
2972
2973 /* A C expression whose value is reversed condition code of the CODE for
2974 comparison done in CC_MODE mode. */
2975 #define REVERSE_CONDITION(CODE, MODE) \
2976 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2977 : reverse_condition_maybe_unordered (CODE))
2978
2979 \f
2980 /* Control the assembler format that we output, to the extent
2981 this does not vary between assemblers. */
2982
2983 /* How to refer to registers in assembler output.
2984 This sequence is indexed by compiler's hard-register-number (see above). */
2985
2986 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2987 For non floating point regs, the following are the HImode names.
2988
2989 For float regs, the stack top is sometimes referred to as "%st(0)"
2990 instead of just "%st". PRINT_REG handles this with the "y" code. */
2991
2992 #undef HI_REGISTER_NAMES
2993 #define HI_REGISTER_NAMES \
2994 {"ax","dx","cx","bx","si","di","bp","sp", \
2995 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2996 "flags","fpsr", "dirflag", "frame", \
2997 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2998 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2999 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3000 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
3001
3002 #define REGISTER_NAMES HI_REGISTER_NAMES
3003
3004 /* Table of additional register names to use in user input. */
3005
3006 #define ADDITIONAL_REGISTER_NAMES \
3007 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
3008 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3009 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
3010 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
3011 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
3012 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
3013 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
3014 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
3015
3016 /* Note we are omitting these since currently I don't know how
3017 to get gcc to use these, since they want the same but different
3018 number as al, and ax.
3019 */
3020
3021 #define QI_REGISTER_NAMES \
3022 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
3023
3024 /* These parallel the array above, and can be used to access bits 8:15
3025 of regs 0 through 3. */
3026
3027 #define QI_HIGH_REGISTER_NAMES \
3028 {"ah", "dh", "ch", "bh", }
3029
3030 /* How to renumber registers for dbx and gdb. */
3031
3032 #define DBX_REGISTER_NUMBER(N) \
3033 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
3034
3035 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
3036 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
3037 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
3038
3039 /* Before the prologue, RA is at 0(%esp). */
3040 #define INCOMING_RETURN_ADDR_RTX \
3041 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
3042
3043 /* After the prologue, RA is at -4(AP) in the current frame. */
3044 #define RETURN_ADDR_RTX(COUNT, FRAME) \
3045 ((COUNT) == 0 \
3046 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
3047 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
3048
3049 /* PC is dbx register 8; let's use that column for RA. */
3050 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
3051
3052 /* Before the prologue, the top of the frame is at 4(%esp). */
3053 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
3054
3055 /* Describe how we implement __builtin_eh_return. */
3056 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
3057 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
3058
3059
3060 /* Select a format to encode pointers in exception handling data. CODE
3061 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
3062 true if the symbol may be affected by dynamic relocations.
3063
3064 ??? All x86 object file formats are capable of representing this.
3065 After all, the relocation needed is the same as for the call insn.
3066 Whether or not a particular assembler allows us to enter such, I
3067 guess we'll have to see. */
3068 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
3069 (flag_pic \
3070 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
3071 : DW_EH_PE_absptr)
3072
3073 /* This is how to output an insn to push a register on the stack.
3074 It need not be very fast code. */
3075
3076 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
3077 do { \
3078 if (TARGET_64BIT) \
3079 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
3080 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
3081 else \
3082 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
3083 } while (0)
3084
3085 /* This is how to output an insn to pop a register from the stack.
3086 It need not be very fast code. */
3087
3088 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
3089 do { \
3090 if (TARGET_64BIT) \
3091 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
3092 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
3093 else \
3094 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
3095 } while (0)
3096
3097 /* This is how to output an element of a case-vector that is absolute. */
3098
3099 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3100 ix86_output_addr_vec_elt ((FILE), (VALUE))
3101
3102 /* This is how to output an element of a case-vector that is relative. */
3103
3104 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3105 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
3106
3107 /* Under some conditions we need jump tables in the text section, because
3108 the assembler cannot handle label differences between sections. */
3109
3110 #define JUMP_TABLES_IN_TEXT_SECTION \
3111 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
3112
3113 /* A C statement that outputs an address constant appropriate to
3114 for DWARF debugging. */
3115
3116 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
3117 i386_dwarf_output_addr_const ((FILE), (X))
3118
3119 /* Either simplify a location expression, or return the original. */
3120
3121 #define ASM_SIMPLIFY_DWARF_ADDR(X) \
3122 i386_simplify_dwarf_addr (X)
3123
3124 /* Emit a dtp-relative reference to a TLS variable. */
3125
3126 #ifdef HAVE_AS_TLS
3127 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
3128 i386_output_dwarf_dtprel (FILE, SIZE, X)
3129 #endif
3130
3131 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
3132 and switch back. For x86 we do this only to save a few bytes that
3133 would otherwise be unused in the text section. */
3134 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3135 asm (SECTION_OP "\n\t" \
3136 "call " USER_LABEL_PREFIX #FUNC "\n" \
3137 TEXT_SECTION_ASM_OP);
3138 \f
3139 /* Print operand X (an rtx) in assembler syntax to file FILE.
3140 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3141 Effect of various CODE letters is described in i386.c near
3142 print_operand function. */
3143
3144 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3145 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
3146
3147 /* Print the name of a register based on its machine mode and number.
3148 If CODE is 'w', pretend the mode is HImode.
3149 If CODE is 'b', pretend the mode is QImode.
3150 If CODE is 'k', pretend the mode is SImode.
3151 If CODE is 'q', pretend the mode is DImode.
3152 If CODE is 'h', pretend the reg is the `high' byte register.
3153 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
3154
3155 #define PRINT_REG(X, CODE, FILE) \
3156 print_reg ((X), (CODE), (FILE))
3157
3158 #define PRINT_OPERAND(FILE, X, CODE) \
3159 print_operand ((FILE), (X), (CODE))
3160
3161 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
3162 print_operand_address ((FILE), (ADDR))
3163
3164 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
3165 do { \
3166 if (! output_addr_const_extra (FILE, (X))) \
3167 goto FAIL; \
3168 } while (0);
3169
3170 /* Print the name of a register for based on its machine mode and number.
3171 This macro is used to print debugging output.
3172 This macro is different from PRINT_REG in that it may be used in
3173 programs that are not linked with aux-output.o. */
3174
3175 #define DEBUG_PRINT_REG(X, CODE, FILE) \
3176 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
3177 static const char * const qi_name[] = QI_REGISTER_NAMES; \
3178 fprintf ((FILE), "%d ", REGNO (X)); \
3179 if (REGNO (X) == FLAGS_REG) \
3180 { fputs ("flags", (FILE)); break; } \
3181 if (REGNO (X) == DIRFLAG_REG) \
3182 { fputs ("dirflag", (FILE)); break; } \
3183 if (REGNO (X) == FPSR_REG) \
3184 { fputs ("fpsr", (FILE)); break; } \
3185 if (REGNO (X) == ARG_POINTER_REGNUM) \
3186 { fputs ("argp", (FILE)); break; } \
3187 if (REGNO (X) == FRAME_POINTER_REGNUM) \
3188 { fputs ("frame", (FILE)); break; } \
3189 if (STACK_TOP_P (X)) \
3190 { fputs ("st(0)", (FILE)); break; } \
3191 if (FP_REG_P (X)) \
3192 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
3193 if (REX_INT_REG_P (X)) \
3194 { \
3195 switch (GET_MODE_SIZE (GET_MODE (X))) \
3196 { \
3197 default: \
3198 case 8: \
3199 fprintf ((FILE), "r%i", REGNO (X) \
3200 - FIRST_REX_INT_REG + 8); \
3201 break; \
3202 case 4: \
3203 fprintf ((FILE), "r%id", REGNO (X) \
3204 - FIRST_REX_INT_REG + 8); \
3205 break; \
3206 case 2: \
3207 fprintf ((FILE), "r%iw", REGNO (X) \
3208 - FIRST_REX_INT_REG + 8); \
3209 break; \
3210 case 1: \
3211 fprintf ((FILE), "r%ib", REGNO (X) \
3212 - FIRST_REX_INT_REG + 8); \
3213 break; \
3214 } \
3215 break; \
3216 } \
3217 switch (GET_MODE_SIZE (GET_MODE (X))) \
3218 { \
3219 case 8: \
3220 fputs ("r", (FILE)); \
3221 fputs (hi_name[REGNO (X)], (FILE)); \
3222 break; \
3223 default: \
3224 fputs ("e", (FILE)); \
3225 case 2: \
3226 fputs (hi_name[REGNO (X)], (FILE)); \
3227 break; \
3228 case 1: \
3229 fputs (qi_name[REGNO (X)], (FILE)); \
3230 break; \
3231 } \
3232 } while (0)
3233
3234 /* a letter which is not needed by the normal asm syntax, which
3235 we can use for operand syntax in the extended asm */
3236
3237 #define ASM_OPERAND_LETTER '#'
3238 #define RET return ""
3239 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
3240 \f
3241 /* Define the codes that are matched by predicates in i386.c. */
3242
3243 #define PREDICATE_CODES \
3244 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
3245 SYMBOL_REF, LABEL_REF, CONST}}, \
3246 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3247 SYMBOL_REF, LABEL_REF, CONST}}, \
3248 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
3249 SYMBOL_REF, LABEL_REF, CONST}}, \
3250 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3251 SYMBOL_REF, LABEL_REF, CONST}}, \
3252 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3253 SYMBOL_REF, LABEL_REF, CONST}}, \
3254 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3255 SYMBOL_REF, LABEL_REF, CONST}}, \
3256 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3257 SYMBOL_REF, LABEL_REF}}, \
3258 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
3259 {"const_int_1_operand", {CONST_INT}}, \
3260 {"const_int_1_31_operand", {CONST_INT}}, \
3261 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
3262 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3263 LABEL_REF, SUBREG, REG, MEM}}, \
3264 {"pic_symbolic_operand", {CONST}}, \
3265 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
3266 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
3267 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
3268 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3269 {"const1_operand", {CONST_INT}}, \
3270 {"const248_operand", {CONST_INT}}, \
3271 {"incdec_operand", {CONST_INT}}, \
3272 {"mmx_reg_operand", {REG}}, \
3273 {"reg_no_sp_operand", {SUBREG, REG}}, \
3274 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3275 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3276 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
3277 {"index_register_operand", {SUBREG, REG}}, \
3278 {"flags_reg_operand", {REG}}, \
3279 {"q_regs_operand", {SUBREG, REG}}, \
3280 {"non_q_regs_operand", {SUBREG, REG}}, \
3281 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3282 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3283 GE, UNGE, LTGT, UNEQ}}, \
3284 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3285 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3286 }}, \
3287 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
3288 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3289 UNGE, UNGT, LTGT, UNEQ }}, \
3290 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3291 {"ext_register_operand", {SUBREG, REG}}, \
3292 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3293 {"mult_operator", {MULT}}, \
3294 {"div_operator", {DIV}}, \
3295 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3296 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3297 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3298 LSHIFTRT, ROTATERT}}, \
3299 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
3300 {"memory_displacement_operand", {MEM}}, \
3301 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3302 LABEL_REF, SUBREG, REG, MEM, AND}}, \
3303 {"long_memory_operand", {MEM}}, \
3304 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3305 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3306 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3307 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
3308 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
3309 {"any_fp_register_operand", {REG}}, \
3310 {"register_and_not_any_fp_reg_operand", {REG}}, \
3311 {"fp_register_operand", {REG}}, \
3312 {"register_and_not_fp_reg_operand", {REG}}, \
3313 {"zero_extended_scalar_load_operand", {MEM}}, \
3314
3315 /* A list of predicates that do special things with modes, and so
3316 should not elicit warnings for VOIDmode match_operand. */
3317
3318 #define SPECIAL_MODE_PREDICATES \
3319 "ext_register_operand",
3320 \f
3321 /* Which processor to schedule for. The cpu attribute defines a list that
3322 mirrors this list, so changes to i386.md must be made at the same time. */
3323
3324 enum processor_type
3325 {
3326 PROCESSOR_I386, /* 80386 */
3327 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3328 PROCESSOR_PENTIUM,
3329 PROCESSOR_PENTIUMPRO,
3330 PROCESSOR_K6,
3331 PROCESSOR_ATHLON,
3332 PROCESSOR_PENTIUM4,
3333 PROCESSOR_K8,
3334 PROCESSOR_max
3335 };
3336
3337 extern enum processor_type ix86_cpu;
3338 extern const char *ix86_cpu_string;
3339
3340 extern enum processor_type ix86_arch;
3341 extern const char *ix86_arch_string;
3342
3343 enum fpmath_unit
3344 {
3345 FPMATH_387 = 1,
3346 FPMATH_SSE = 2
3347 };
3348
3349 extern enum fpmath_unit ix86_fpmath;
3350 extern const char *ix86_fpmath_string;
3351
3352 enum tls_dialect
3353 {
3354 TLS_DIALECT_GNU,
3355 TLS_DIALECT_SUN
3356 };
3357
3358 extern enum tls_dialect ix86_tls_dialect;
3359 extern const char *ix86_tls_dialect_string;
3360
3361 enum cmodel {
3362 CM_32, /* The traditional 32-bit ABI. */
3363 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3364 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3365 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3366 CM_LARGE, /* No assumptions. */
3367 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3368 };
3369
3370 extern enum cmodel ix86_cmodel;
3371 extern const char *ix86_cmodel_string;
3372
3373 /* Size of the RED_ZONE area. */
3374 #define RED_ZONE_SIZE 128
3375 /* Reserved area of the red zone for temporaries. */
3376 #define RED_ZONE_RESERVE 8
3377
3378 enum asm_dialect {
3379 ASM_ATT,
3380 ASM_INTEL
3381 };
3382
3383 extern const char *ix86_asm_string;
3384 extern enum asm_dialect ix86_asm_dialect;
3385
3386 extern int ix86_regparm;
3387 extern const char *ix86_regparm_string;
3388
3389 extern int ix86_preferred_stack_boundary;
3390 extern const char *ix86_preferred_stack_boundary_string;
3391
3392 extern int ix86_branch_cost;
3393 extern const char *ix86_branch_cost_string;
3394
3395 extern const char *ix86_debug_arg_string;
3396 extern const char *ix86_debug_addr_string;
3397
3398 /* Obsoleted by -f options. Remove before 3.2 ships. */
3399 extern const char *ix86_align_loops_string;
3400 extern const char *ix86_align_jumps_string;
3401 extern const char *ix86_align_funcs_string;
3402
3403 /* Smallest class containing REGNO. */
3404 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3405
3406 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3407 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3408 \f
3409 /* To properly truncate FP values into integers, we need to set i387 control
3410 word. We can't emit proper mode switching code before reload, as spills
3411 generated by reload may truncate values incorrectly, but we still can avoid
3412 redundant computation of new control word by the mode switching pass.
3413 The fldcw instructions are still emitted redundantly, but this is probably
3414 not going to be noticeable problem, as most CPUs do have fast path for
3415 the sequence.
3416
3417 The machinery is to emit simple truncation instructions and split them
3418 before reload to instructions having USEs of two memory locations that
3419 are filled by this code to old and new control word.
3420
3421 Post-reload pass may be later used to eliminate the redundant fildcw if
3422 needed. */
3423
3424 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3425
3426 /* Define this macro if the port needs extra instructions inserted
3427 for mode switching in an optimizing compilation. */
3428
3429 #define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3430
3431 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3432 initializer for an array of integers. Each initializer element N
3433 refers to an entity that needs mode switching, and specifies the
3434 number of different modes that might need to be set for this
3435 entity. The position of the initializer in the initializer -
3436 starting counting at zero - determines the integer that is used to
3437 refer to the mode-switched entity in question. */
3438
3439 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3440
3441 /* ENTITY is an integer specifying a mode-switched entity. If
3442 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3443 return an integer value not larger than the corresponding element
3444 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3445 must be switched into prior to the execution of INSN. */
3446
3447 #define MODE_NEEDED(ENTITY, I) \
3448 (GET_CODE (I) == CALL_INSN \
3449 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3450 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3451 ? FP_CW_UNINITIALIZED \
3452 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3453 ? FP_CW_ANY \
3454 : FP_CW_STORED)
3455
3456 /* This macro specifies the order in which modes for ENTITY are
3457 processed. 0 is the highest priority. */
3458
3459 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3460
3461 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3462 is the set of hard registers live at the point where the insn(s)
3463 are to be inserted. */
3464
3465 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3466 ((MODE) == FP_CW_STORED \
3467 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3468 assign_386_stack_local (HImode, 2)), 0\
3469 : 0)
3470 \f
3471 /* Avoid renaming of stack registers, as doing so in combination with
3472 scheduling just increases amount of live registers at time and in
3473 the turn amount of fxch instructions needed.
3474
3475 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3476
3477 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3478 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3479
3480 \f
3481 #define MACHINE_DEPENDENT_REORG(X) x86_machine_dependent_reorg(X)
3482
3483 #define DLL_IMPORT_EXPORT_PREFIX '#'
3484
3485 #define FASTCALL_PREFIX '@'
3486
3487 /*
3488 Local variables:
3489 version-control: t
3490 End:
3491 */