i386.h (machine_function): New fields use_fast_prologue_epilogue.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #define TARGET_CPU_DEFAULT 0
101 #endif
102
103 /* Masks for the -m switches */
104 #define MASK_80387 0x00000001 /* Hardware floating point */
105 #define MASK_RTD 0x00000002 /* Use ret that pops args */
106 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
107 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
108 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
109 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
110 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
111 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
112 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
113 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
114 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
115 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
116 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
117 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
118 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
119 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
120 #define MASK_3DNOW 0x00010000 /* Support 3Dnow builtins */
121 #define MASK_3DNOW_A 0x00020000 /* Support Athlon 3Dnow builtins */
122 #define MASK_128BIT_LONG_DOUBLE 0x00040000 /* long double size is 128bit */
123 #define MASK_64BIT 0x00080000 /* Produce 64bit code */
124 #define MASK_MS_BITFIELD_LAYOUT 0x00100000 /* Use native (MS) bitfield layout */
125
126 /* Unused: 0x03e0000 */
127
128 /* ... overlap with subtarget options starts by 0x04000000. */
129 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
130
131 /* Use the floating point instructions */
132 #define TARGET_80387 (target_flags & MASK_80387)
133
134 /* Compile using ret insn that pops args.
135 This will not work unless you use prototypes at least
136 for all functions that can take varying numbers of args. */
137 #define TARGET_RTD (target_flags & MASK_RTD)
138
139 /* Align doubles to a two word boundary. This breaks compatibility with
140 the published ABI's for structures containing doubles, but produces
141 faster code on the pentium. */
142 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
143
144 /* Use push instructions to save outgoing args. */
145 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
146
147 /* Accumulate stack adjustments to prologue/epilogue. */
148 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
149 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
150
151 /* Put uninitialized locals into bss, not data.
152 Meaningful only on svr3. */
153 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
154
155 /* Use IEEE floating point comparisons. These handle correctly the cases
156 where the result of a comparison is unordered. Normally SIGFPE is
157 generated in such cases, in which case this isn't needed. */
158 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
159
160 /* Functions that return a floating point value may return that value
161 in the 387 FPU or in 386 integer registers. If set, this flag causes
162 the 387 to be used, which is compatible with most calling conventions. */
163 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
164
165 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
166 This mode wastes cache, but avoid misaligned data accesses and simplifies
167 address calculations. */
168 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
169
170 /* Disable generation of FP sin, cos and sqrt operations for 387.
171 This is because FreeBSD lacks these in the math-emulator-code */
172 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
173
174 /* Don't create frame pointers for leaf functions */
175 #define TARGET_OMIT_LEAF_FRAME_POINTER \
176 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
177
178 /* Debug GO_IF_LEGITIMATE_ADDRESS */
179 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
180
181 /* Debug FUNCTION_ARG macros */
182 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
183
184 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
185 compile-time constant. */
186 #ifdef IN_LIBGCC2
187 #ifdef __x86_64__
188 #define TARGET_64BIT 1
189 #else
190 #define TARGET_64BIT 0
191 #endif
192 #else
193 #ifdef TARGET_BI_ARCH
194 #define TARGET_64BIT (target_flags & MASK_64BIT)
195 #else
196 #if TARGET_64BIT_DEFAULT
197 #define TARGET_64BIT 1
198 #else
199 #define TARGET_64BIT 0
200 #endif
201 #endif
202 #endif
203
204 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
205 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
206 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
207 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
208 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
209 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
210 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
211 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
212 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
213
214 #define TUNEMASK (1 << ix86_tune)
215 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
216 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
217 extern const int x86_branch_hints, x86_unroll_strlen;
218 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
219 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
220 extern const int x86_use_cltd, x86_read_modify_write;
221 extern const int x86_read_modify, x86_split_long_moves;
222 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
223 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
224 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
225 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
226 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
227 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
228 extern const int x86_epilogue_using_move, x86_decompose_lea;
229 extern const int x86_arch_always_fancy_math_387, x86_shift1;
230 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
231 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
232 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
233 extern const int x86_inter_unit_moves;
234 extern int x86_prefetch_sse;
235
236 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
237 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
238 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
239 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
240 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
241 /* For sane SSE instruction set generation we need fcomi instruction. It is
242 safe to enable all CMOVE instructions. */
243 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
244 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
245 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
246 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
247 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
248 #define TARGET_MOVX (x86_movx & TUNEMASK)
249 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
250 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
251 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
252 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
253 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
254 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
255 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
256 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
257 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
258 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
259 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
260 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
261 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
262 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
263 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
264 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
265 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
266 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
267 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
268 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
269 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
270 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
271 (x86_sse_partial_reg_dependency & TUNEMASK)
272 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
273 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
274 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
275 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
276 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
277 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
278 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
279 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
280 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
281 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
282 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
283 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
284 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
285 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
286 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
287
288 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
289
290 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
291 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
292
293 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
294
295 #define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
296 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
297 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
298 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
299 && (ix86_fpmath & FPMATH_387))
300 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
301 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
302 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
303
304 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
305
306 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
307
308 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
309 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
310
311 /* WARNING: Do not mark empty strings for translation, as calling
312 gettext on an empty string does NOT return an empty
313 string. */
314
315
316 #define TARGET_SWITCHES \
317 { { "80387", MASK_80387, N_("Use hardware fp") }, \
318 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
319 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
320 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
321 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
322 { "386", 0, "" /*Deprecated.*/}, \
323 { "486", 0, "" /*Deprecated.*/}, \
324 { "pentium", 0, "" /*Deprecated.*/}, \
325 { "pentiumpro", 0, "" /*Deprecated.*/}, \
326 { "intel-syntax", 0, "" /*Deprecated.*/}, \
327 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
328 { "rtd", MASK_RTD, \
329 N_("Alternate calling convention") }, \
330 { "no-rtd", -MASK_RTD, \
331 N_("Use normal calling convention") }, \
332 { "align-double", MASK_ALIGN_DOUBLE, \
333 N_("Align some doubles on dword boundary") }, \
334 { "no-align-double", -MASK_ALIGN_DOUBLE, \
335 N_("Align doubles on word boundary") }, \
336 { "svr3-shlib", MASK_SVR3_SHLIB, \
337 N_("Uninitialized locals in .bss") }, \
338 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
339 N_("Uninitialized locals in .data") }, \
340 { "ieee-fp", MASK_IEEE_FP, \
341 N_("Use IEEE math for fp comparisons") }, \
342 { "no-ieee-fp", -MASK_IEEE_FP, \
343 N_("Do not use IEEE math for fp comparisons") }, \
344 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
345 N_("Return values of functions in FPU registers") }, \
346 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
347 N_("Do not return values of functions in FPU registers")}, \
348 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
349 N_("Do not generate sin, cos, sqrt for FPU") }, \
350 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
351 N_("Generate sin, cos, sqrt for FPU")}, \
352 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
353 N_("Omit the frame pointer in leaf functions") }, \
354 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
355 { "stack-arg-probe", MASK_STACK_PROBE, \
356 N_("Enable stack probing") }, \
357 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
358 { "windows", 0, 0 /* undocumented */ }, \
359 { "dll", 0, 0 /* undocumented */ }, \
360 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
361 N_("Align destination of the string operations") }, \
362 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
363 N_("Do not align destination of the string operations") }, \
364 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
365 N_("Inline all known string operations") }, \
366 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
367 N_("Do not inline all known string operations") }, \
368 { "push-args", -MASK_NO_PUSH_ARGS, \
369 N_("Use push instructions to save outgoing arguments") }, \
370 { "no-push-args", MASK_NO_PUSH_ARGS, \
371 N_("Do not use push instructions to save outgoing arguments") }, \
372 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
373 N_("Use push instructions to save outgoing arguments") }, \
374 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
375 N_("Do not use push instructions to save outgoing arguments") }, \
376 { "mmx", MASK_MMX, \
377 N_("Support MMX built-in functions") }, \
378 { "no-mmx", -MASK_MMX, \
379 N_("Do not support MMX built-in functions") }, \
380 { "3dnow", MASK_3DNOW, \
381 N_("Support 3DNow! built-in functions") }, \
382 { "no-3dnow", -MASK_3DNOW, \
383 N_("Do not support 3DNow! built-in functions") }, \
384 { "sse", MASK_SSE, \
385 N_("Support MMX and SSE built-in functions and code generation") }, \
386 { "no-sse", -MASK_SSE, \
387 N_("Do not support MMX and SSE built-in functions and code generation") },\
388 { "sse2", MASK_SSE2, \
389 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
390 { "no-sse2", -MASK_SSE2, \
391 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
392 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
393 N_("sizeof(long double) is 16") }, \
394 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
395 N_("sizeof(long double) is 12") }, \
396 { "64", MASK_64BIT, \
397 N_("Generate 64bit x86-64 code") }, \
398 { "32", -MASK_64BIT, \
399 N_("Generate 32bit i386 code") }, \
400 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
401 N_("Use native (MS) bitfield layout") }, \
402 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
403 N_("Use gcc default bitfield layout") }, \
404 { "red-zone", -MASK_NO_RED_ZONE, \
405 N_("Use red-zone in the x86-64 code") }, \
406 { "no-red-zone", MASK_NO_RED_ZONE, \
407 N_("Do not use red-zone in the x86-64 code") }, \
408 SUBTARGET_SWITCHES \
409 { "", TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT, 0 }}
410
411 #ifndef TARGET_64BIT_DEFAULT
412 #define TARGET_64BIT_DEFAULT 0
413 #endif
414
415 /* Once GDB has been enhanced to deal with functions without frame
416 pointers, we can change this to allow for elimination of
417 the frame pointer in leaf functions. */
418 #define TARGET_DEFAULT 0
419
420 /* This is not really a target flag, but is done this way so that
421 it's analogous to similar code for Mach-O on PowerPC. darwin.h
422 redefines this to 1. */
423 #define TARGET_MACHO 0
424
425 /* This macro is similar to `TARGET_SWITCHES' but defines names of
426 command options that have values. Its definition is an
427 initializer with a subgrouping for each command option.
428
429 Each subgrouping contains a string constant, that defines the
430 fixed part of the option name, and the address of a variable. The
431 variable, type `char *', is set to the variable part of the given
432 option if the fixed part matches. The actual option name is made
433 by appending `-m' to the specified name. */
434 #define TARGET_OPTIONS \
435 { { "tune=", &ix86_tune_string, \
436 N_("Schedule code for given CPU")}, \
437 { "fpmath=", &ix86_fpmath_string, \
438 N_("Generate floating point mathematics using given instruction set")},\
439 { "arch=", &ix86_arch_string, \
440 N_("Generate code for given CPU")}, \
441 { "regparm=", &ix86_regparm_string, \
442 N_("Number of registers used to pass integer arguments") }, \
443 { "align-loops=", &ix86_align_loops_string, \
444 N_("Loop code aligned to this power of 2") }, \
445 { "align-jumps=", &ix86_align_jumps_string, \
446 N_("Jump targets are aligned to this power of 2") }, \
447 { "align-functions=", &ix86_align_funcs_string, \
448 N_("Function starts are aligned to this power of 2") }, \
449 { "preferred-stack-boundary=", \
450 &ix86_preferred_stack_boundary_string, \
451 N_("Attempt to keep stack aligned to this power of 2") }, \
452 { "branch-cost=", &ix86_branch_cost_string, \
453 N_("Branches are this expensive (1-5, arbitrary units)") }, \
454 { "cmodel=", &ix86_cmodel_string, \
455 N_("Use given x86-64 code model") }, \
456 { "debug-arg", &ix86_debug_arg_string, \
457 "" /* Undocumented. */ }, \
458 { "debug-addr", &ix86_debug_addr_string, \
459 "" /* Undocumented. */ }, \
460 { "asm=", &ix86_asm_string, \
461 N_("Use given assembler dialect") }, \
462 { "tls-dialect=", &ix86_tls_dialect_string, \
463 N_("Use given thread-local storage dialect") }, \
464 SUBTARGET_OPTIONS \
465 }
466
467 /* Sometimes certain combinations of command options do not make
468 sense on a particular target machine. You can define a macro
469 `OVERRIDE_OPTIONS' to take account of this. This macro, if
470 defined, is executed once just after all the command options have
471 been parsed.
472
473 Don't use this macro to turn on various extra optimizations for
474 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
475
476 #define OVERRIDE_OPTIONS override_options ()
477
478 /* These are meant to be redefined in the host dependent files */
479 #define SUBTARGET_SWITCHES
480 #define SUBTARGET_OPTIONS
481
482 /* Define this to change the optimizations performed by default. */
483 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
484 optimization_options ((LEVEL), (SIZE))
485
486 /* Specs for the compiler proper */
487
488 #ifndef CC1_CPU_SPEC
489 #define CC1_CPU_SPEC "\
490 %{!mtune*: \
491 %{m386:mtune=i386 \
492 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
493 %{m486:-mtune=i486 \
494 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
495 %{mpentium:-mtune=pentium \
496 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
497 %{mpentiumpro:-mtune=pentiumpro \
498 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
499 %{mcpu=*:-mtune=%* \
500 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
501 %<mcpu=* \
502 %{mintel-syntax:-masm=intel \
503 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
504 %{mno-intel-syntax:-masm=att \
505 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
506 #endif
507 \f
508 /* Target CPU builtins. */
509 #define TARGET_CPU_CPP_BUILTINS() \
510 do \
511 { \
512 size_t arch_len = strlen (ix86_arch_string); \
513 size_t tune_len = strlen (ix86_tune_string); \
514 int last_arch_char = ix86_arch_string[arch_len - 1]; \
515 int last_tune_char = ix86_tune_string[tune_len - 1]; \
516 \
517 if (TARGET_64BIT) \
518 { \
519 builtin_assert ("cpu=x86_64"); \
520 builtin_assert ("machine=x86_64"); \
521 builtin_define ("__x86_64"); \
522 builtin_define ("__x86_64__"); \
523 } \
524 else \
525 { \
526 builtin_assert ("cpu=i386"); \
527 builtin_assert ("machine=i386"); \
528 builtin_define_std ("i386"); \
529 } \
530 \
531 /* Built-ins based on -mtune= (or -march= if no \
532 -mtune= given). */ \
533 if (TARGET_386) \
534 builtin_define ("__tune_i386__"); \
535 else if (TARGET_486) \
536 builtin_define ("__tune_i486__"); \
537 else if (TARGET_PENTIUM) \
538 { \
539 builtin_define ("__tune_i586__"); \
540 builtin_define ("__tune_pentium__"); \
541 if (last_tune_char == 'x') \
542 builtin_define ("__tune_pentium_mmx__"); \
543 } \
544 else if (TARGET_PENTIUMPRO) \
545 { \
546 builtin_define ("__tune_i686__"); \
547 builtin_define ("__tune_pentiumpro__"); \
548 switch (last_tune_char) \
549 { \
550 case '3': \
551 builtin_define ("__tune_pentium3__"); \
552 /* FALLTHRU */ \
553 case '2': \
554 builtin_define ("__tune_pentium2__"); \
555 break; \
556 } \
557 } \
558 else if (TARGET_K6) \
559 { \
560 builtin_define ("__tune_k6__"); \
561 if (last_tune_char == '2') \
562 builtin_define ("__tune_k6_2__"); \
563 else if (last_tune_char == '3') \
564 builtin_define ("__tune_k6_3__"); \
565 } \
566 else if (TARGET_ATHLON) \
567 { \
568 builtin_define ("__tune_athlon__"); \
569 /* Only plain "athlon" lacks SSE. */ \
570 if (last_tune_char != 'n') \
571 builtin_define ("__tune_athlon_sse__"); \
572 } \
573 else if (TARGET_K8) \
574 builtin_define ("__tune_k8__"); \
575 else if (TARGET_PENTIUM4) \
576 builtin_define ("__tune_pentium4__"); \
577 \
578 if (TARGET_MMX) \
579 builtin_define ("__MMX__"); \
580 if (TARGET_3DNOW) \
581 builtin_define ("__3dNOW__"); \
582 if (TARGET_3DNOW_A) \
583 builtin_define ("__3dNOW_A__"); \
584 if (TARGET_SSE) \
585 builtin_define ("__SSE__"); \
586 if (TARGET_SSE2) \
587 builtin_define ("__SSE2__"); \
588 if (TARGET_SSE_MATH && TARGET_SSE) \
589 builtin_define ("__SSE_MATH__"); \
590 if (TARGET_SSE_MATH && TARGET_SSE2) \
591 builtin_define ("__SSE2_MATH__"); \
592 \
593 /* Built-ins based on -march=. */ \
594 if (ix86_arch == PROCESSOR_I486) \
595 { \
596 builtin_define ("__i486"); \
597 builtin_define ("__i486__"); \
598 } \
599 else if (ix86_arch == PROCESSOR_PENTIUM) \
600 { \
601 builtin_define ("__i586"); \
602 builtin_define ("__i586__"); \
603 builtin_define ("__pentium"); \
604 builtin_define ("__pentium__"); \
605 if (last_arch_char == 'x') \
606 builtin_define ("__pentium_mmx__"); \
607 } \
608 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
609 { \
610 builtin_define ("__i686"); \
611 builtin_define ("__i686__"); \
612 builtin_define ("__pentiumpro"); \
613 builtin_define ("__pentiumpro__"); \
614 } \
615 else if (ix86_arch == PROCESSOR_K6) \
616 { \
617 \
618 builtin_define ("__k6"); \
619 builtin_define ("__k6__"); \
620 if (last_arch_char == '2') \
621 builtin_define ("__k6_2__"); \
622 else if (last_arch_char == '3') \
623 builtin_define ("__k6_3__"); \
624 } \
625 else if (ix86_arch == PROCESSOR_ATHLON) \
626 { \
627 builtin_define ("__athlon"); \
628 builtin_define ("__athlon__"); \
629 /* Only plain "athlon" lacks SSE. */ \
630 if (last_arch_char != 'n') \
631 builtin_define ("__athlon_sse__"); \
632 } \
633 else if (ix86_arch == PROCESSOR_K8) \
634 { \
635 builtin_define ("__k8"); \
636 builtin_define ("__k8__"); \
637 } \
638 else if (ix86_arch == PROCESSOR_PENTIUM4) \
639 { \
640 builtin_define ("__pentium4"); \
641 builtin_define ("__pentium4__"); \
642 } \
643 } \
644 while (0)
645
646 #define TARGET_CPU_DEFAULT_i386 0
647 #define TARGET_CPU_DEFAULT_i486 1
648 #define TARGET_CPU_DEFAULT_pentium 2
649 #define TARGET_CPU_DEFAULT_pentium_mmx 3
650 #define TARGET_CPU_DEFAULT_pentiumpro 4
651 #define TARGET_CPU_DEFAULT_pentium2 5
652 #define TARGET_CPU_DEFAULT_pentium3 6
653 #define TARGET_CPU_DEFAULT_pentium4 7
654 #define TARGET_CPU_DEFAULT_k6 8
655 #define TARGET_CPU_DEFAULT_k6_2 9
656 #define TARGET_CPU_DEFAULT_k6_3 10
657 #define TARGET_CPU_DEFAULT_athlon 11
658 #define TARGET_CPU_DEFAULT_athlon_sse 12
659 #define TARGET_CPU_DEFAULT_k8 13
660
661 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
662 "pentiumpro", "pentium2", "pentium3", \
663 "pentium4", "k6", "k6-2", "k6-3",\
664 "athlon", "athlon-4", "k8"}
665
666 #ifndef CC1_SPEC
667 #define CC1_SPEC "%(cc1_cpu) "
668 #endif
669
670 /* This macro defines names of additional specifications to put in the
671 specs that can be used in various specifications like CC1_SPEC. Its
672 definition is an initializer with a subgrouping for each command option.
673
674 Each subgrouping contains a string constant, that defines the
675 specification name, and a string constant that used by the GNU CC driver
676 program.
677
678 Do not define this macro if it does not need to do anything. */
679
680 #ifndef SUBTARGET_EXTRA_SPECS
681 #define SUBTARGET_EXTRA_SPECS
682 #endif
683
684 #define EXTRA_SPECS \
685 { "cc1_cpu", CC1_CPU_SPEC }, \
686 SUBTARGET_EXTRA_SPECS
687 \f
688 /* target machine storage layout */
689
690 /* Define for XFmode or TFmode extended real floating point support.
691 The XFmode is specified by i386 ABI, while TFmode may be faster
692 due to alignment and simplifications in the address calculations. */
693 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
694 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
695 #ifdef __x86_64__
696 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
697 #else
698 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
699 #endif
700
701 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
702 FPU, assume that the fpcw is set to extended precision; when using
703 only SSE, rounding is correct; when using both SSE and the FPU,
704 the rounding precision is indeterminate, since either may be chosen
705 apparently at random. */
706 #define TARGET_FLT_EVAL_METHOD \
707 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 1 : 2)
708
709 #define SHORT_TYPE_SIZE 16
710 #define INT_TYPE_SIZE 32
711 #define FLOAT_TYPE_SIZE 32
712 #define LONG_TYPE_SIZE BITS_PER_WORD
713 #define MAX_WCHAR_TYPE_SIZE 32
714 #define DOUBLE_TYPE_SIZE 64
715 #define LONG_LONG_TYPE_SIZE 64
716
717 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
718 #define MAX_BITS_PER_WORD 64
719 #define MAX_LONG_TYPE_SIZE 64
720 #else
721 #define MAX_BITS_PER_WORD 32
722 #define MAX_LONG_TYPE_SIZE 32
723 #endif
724
725 /* Define this if most significant byte of a word is the lowest numbered. */
726 /* That is true on the 80386. */
727
728 #define BITS_BIG_ENDIAN 0
729
730 /* Define this if most significant byte of a word is the lowest numbered. */
731 /* That is not true on the 80386. */
732 #define BYTES_BIG_ENDIAN 0
733
734 /* Define this if most significant word of a multiword number is the lowest
735 numbered. */
736 /* Not true for 80386 */
737 #define WORDS_BIG_ENDIAN 0
738
739 /* Width of a word, in units (bytes). */
740 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
741 #ifdef IN_LIBGCC2
742 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
743 #else
744 #define MIN_UNITS_PER_WORD 4
745 #endif
746
747 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
748 #define PARM_BOUNDARY BITS_PER_WORD
749
750 /* Boundary (in *bits*) on which stack pointer should be aligned. */
751 #define STACK_BOUNDARY BITS_PER_WORD
752
753 /* Boundary (in *bits*) on which the stack pointer prefers to be
754 aligned; the compiler cannot rely on having this alignment. */
755 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
756
757 /* As of July 2001, many runtimes to not align the stack properly when
758 entering main. This causes expand_main_function to forcibly align
759 the stack, which results in aligned frames for functions called from
760 main, though it does nothing for the alignment of main itself. */
761 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
762 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
763
764 /* Minimum allocation boundary for the code of a function. */
765 #define FUNCTION_BOUNDARY 8
766
767 /* C++ stores the virtual bit in the lowest bit of function pointers. */
768 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
769
770 /* Alignment of field after `int : 0' in a structure. */
771
772 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
773
774 /* Minimum size in bits of the largest boundary to which any
775 and all fundamental data types supported by the hardware
776 might need to be aligned. No data type wants to be aligned
777 rounder than this.
778
779 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
780 and Pentium Pro XFmode values at 128 bit boundaries. */
781
782 #define BIGGEST_ALIGNMENT 128
783
784 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
785 #define ALIGN_MODE_128(MODE) \
786 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
787
788 /* The published ABIs say that doubles should be aligned on word
789 boundaries, so lower the alignment for structure fields unless
790 -malign-double is set. */
791
792 /* ??? Blah -- this macro is used directly by libobjc. Since it
793 supports no vector modes, cut out the complexity and fall back
794 on BIGGEST_FIELD_ALIGNMENT. */
795 #ifdef IN_TARGET_LIBS
796 #ifdef __x86_64__
797 #define BIGGEST_FIELD_ALIGNMENT 128
798 #else
799 #define BIGGEST_FIELD_ALIGNMENT 32
800 #endif
801 #else
802 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
803 x86_field_alignment (FIELD, COMPUTED)
804 #endif
805
806 /* If defined, a C expression to compute the alignment given to a
807 constant that is being placed in memory. EXP is the constant
808 and ALIGN is the alignment that the object would ordinarily have.
809 The value of this macro is used instead of that alignment to align
810 the object.
811
812 If this macro is not defined, then ALIGN is used.
813
814 The typical use of this macro is to increase alignment for string
815 constants to be word aligned so that `strcpy' calls that copy
816 constants can be done inline. */
817
818 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
819
820 /* If defined, a C expression to compute the alignment for a static
821 variable. TYPE is the data type, and ALIGN is the alignment that
822 the object would ordinarily have. The value of this macro is used
823 instead of that alignment to align the object.
824
825 If this macro is not defined, then ALIGN is used.
826
827 One use of this macro is to increase alignment of medium-size
828 data to make it all fit in fewer cache lines. Another is to
829 cause character arrays to be word-aligned so that `strcpy' calls
830 that copy constants to character arrays can be done inline. */
831
832 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
833
834 /* If defined, a C expression to compute the alignment for a local
835 variable. TYPE is the data type, and ALIGN is the alignment that
836 the object would ordinarily have. The value of this macro is used
837 instead of that alignment to align the object.
838
839 If this macro is not defined, then ALIGN is used.
840
841 One use of this macro is to increase alignment of medium-size
842 data to make it all fit in fewer cache lines. */
843
844 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
845
846 /* If defined, a C expression that gives the alignment boundary, in
847 bits, of an argument with the specified mode and type. If it is
848 not defined, `PARM_BOUNDARY' is used for all arguments. */
849
850 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
851 ix86_function_arg_boundary ((MODE), (TYPE))
852
853 /* Set this nonzero if move instructions will actually fail to work
854 when given unaligned data. */
855 #define STRICT_ALIGNMENT 0
856
857 /* If bit field type is int, don't let it cross an int,
858 and give entire struct the alignment of an int. */
859 /* Required on the 386 since it doesn't have bit-field insns. */
860 #define PCC_BITFIELD_TYPE_MATTERS 1
861 \f
862 /* Standard register usage. */
863
864 /* This processor has special stack-like registers. See reg-stack.c
865 for details. */
866
867 #define STACK_REGS
868 #define IS_STACK_MODE(MODE) \
869 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
870 || (MODE) == TFmode)
871
872 /* Number of actual hardware registers.
873 The hardware registers are assigned numbers for the compiler
874 from 0 to just below FIRST_PSEUDO_REGISTER.
875 All registers that the compiler knows about must be given numbers,
876 even those that are not normally considered general registers.
877
878 In the 80386 we give the 8 general purpose registers the numbers 0-7.
879 We number the floating point registers 8-15.
880 Note that registers 0-7 can be accessed as a short or int,
881 while only 0-3 may be used with byte `mov' instructions.
882
883 Reg 16 does not correspond to any hardware register, but instead
884 appears in the RTL as an argument pointer prior to reload, and is
885 eliminated during reloading in favor of either the stack or frame
886 pointer. */
887
888 #define FIRST_PSEUDO_REGISTER 53
889
890 /* Number of hardware registers that go into the DWARF-2 unwind info.
891 If not defined, equals FIRST_PSEUDO_REGISTER. */
892
893 #define DWARF_FRAME_REGISTERS 17
894
895 /* 1 for registers that have pervasive standard uses
896 and are not available for the register allocator.
897 On the 80386, the stack pointer is such, as is the arg pointer.
898
899 The value is a mask - bit 1 is set for fixed registers
900 for 32bit target, while 2 is set for fixed registers for 64bit.
901 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
902 */
903 #define FIXED_REGISTERS \
904 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
905 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
906 /*arg,flags,fpsr,dir,frame*/ \
907 3, 3, 3, 3, 3, \
908 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
909 0, 0, 0, 0, 0, 0, 0, 0, \
910 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
911 0, 0, 0, 0, 0, 0, 0, 0, \
912 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
913 1, 1, 1, 1, 1, 1, 1, 1, \
914 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
915 1, 1, 1, 1, 1, 1, 1, 1}
916
917
918 /* 1 for registers not available across function calls.
919 These must include the FIXED_REGISTERS and also any
920 registers that can be used without being saved.
921 The latter must include the registers where values are returned
922 and the register where structure-value addresses are passed.
923 Aside from that, you can include as many other registers as you like.
924
925 The value is a mask - bit 1 is set for call used
926 for 32bit target, while 2 is set for call used for 64bit.
927 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
928 */
929 #define CALL_USED_REGISTERS \
930 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
931 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
932 /*arg,flags,fpsr,dir,frame*/ \
933 3, 3, 3, 3, 3, \
934 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
935 3, 3, 3, 3, 3, 3, 3, 3, \
936 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
937 3, 3, 3, 3, 3, 3, 3, 3, \
938 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
939 3, 3, 3, 3, 1, 1, 1, 1, \
940 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
941 3, 3, 3, 3, 3, 3, 3, 3} \
942
943 /* Order in which to allocate registers. Each register must be
944 listed once, even those in FIXED_REGISTERS. List frame pointer
945 late and fixed registers last. Note that, in general, we prefer
946 registers listed in CALL_USED_REGISTERS, keeping the others
947 available for storage of persistent values.
948
949 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
950 so this is just empty initializer for array. */
951
952 #define REG_ALLOC_ORDER \
953 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
954 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
955 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
956 48, 49, 50, 51, 52 }
957
958 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
959 to be rearranged based on a particular function. When using sse math,
960 we want to allocate SSE before x87 registers and vice vera. */
961
962 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
963
964
965 /* Macro to conditionally modify fixed_regs/call_used_regs. */
966 #define CONDITIONAL_REGISTER_USAGE \
967 do { \
968 int i; \
969 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
970 { \
971 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
972 call_used_regs[i] = (call_used_regs[i] \
973 & (TARGET_64BIT ? 2 : 1)) != 0; \
974 } \
975 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
976 { \
977 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
978 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
979 } \
980 if (! TARGET_MMX) \
981 { \
982 int i; \
983 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
984 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
985 fixed_regs[i] = call_used_regs[i] = 1; \
986 } \
987 if (! TARGET_SSE) \
988 { \
989 int i; \
990 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
991 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
992 fixed_regs[i] = call_used_regs[i] = 1; \
993 } \
994 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
995 { \
996 int i; \
997 HARD_REG_SET x; \
998 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
999 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1000 if (TEST_HARD_REG_BIT (x, i)) \
1001 fixed_regs[i] = call_used_regs[i] = 1; \
1002 } \
1003 } while (0)
1004
1005 /* Return number of consecutive hard regs needed starting at reg REGNO
1006 to hold something of mode MODE.
1007 This is ordinarily the length in words of a value of mode MODE
1008 but can be less for certain modes in special long registers.
1009
1010 Actually there are no two word move instructions for consecutive
1011 registers. And only registers 0-3 may have mov byte instructions
1012 applied to them.
1013 */
1014
1015 #define HARD_REGNO_NREGS(REGNO, MODE) \
1016 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1017 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1018 : ((MODE) == TFmode \
1019 ? (TARGET_64BIT ? 2 : 3) \
1020 : (MODE) == TCmode \
1021 ? (TARGET_64BIT ? 4 : 6) \
1022 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1023
1024 #define VALID_SSE2_REG_MODE(MODE) \
1025 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1026 || (MODE) == V2DImode)
1027
1028 #define VALID_SSE_REG_MODE(MODE) \
1029 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1030 || (MODE) == SFmode \
1031 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1032 || VALID_SSE2_REG_MODE (MODE) \
1033 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1034
1035 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1036 ((MODE) == V2SFmode || (MODE) == SFmode)
1037
1038 #define VALID_MMX_REG_MODE(MODE) \
1039 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1040 || (MODE) == V2SImode || (MODE) == SImode)
1041
1042 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1043 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1044 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1045 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1046
1047 #define VALID_FP_MODE_P(MODE) \
1048 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
1049 || (!TARGET_64BIT && (MODE) == XFmode) \
1050 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
1051 || (!TARGET_64BIT && (MODE) == XCmode))
1052
1053 #define VALID_INT_MODE_P(MODE) \
1054 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1055 || (MODE) == DImode \
1056 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1057 || (MODE) == CDImode \
1058 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1059
1060 /* Return true for modes passed in SSE registers. */
1061 #define SSE_REG_MODE_P(MODE) \
1062 ((MODE) == TImode || (MODE) == V16QImode \
1063 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1064 || (MODE) == V4SFmode || (MODE) == V4SImode)
1065
1066 /* Return true for modes passed in MMX registers. */
1067 #define MMX_REG_MODE_P(MODE) \
1068 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1069 || (MODE) == V2SFmode)
1070
1071 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1072
1073 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1074 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1075
1076 /* Value is 1 if it is a good idea to tie two pseudo registers
1077 when one has mode MODE1 and one has mode MODE2.
1078 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1079 for any hard reg, then this must be 0 for correct output. */
1080
1081 #define MODES_TIEABLE_P(MODE1, MODE2) \
1082 ((MODE1) == (MODE2) \
1083 || (((MODE1) == HImode || (MODE1) == SImode \
1084 || ((MODE1) == QImode \
1085 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1086 || ((MODE1) == DImode && TARGET_64BIT)) \
1087 && ((MODE2) == HImode || (MODE2) == SImode \
1088 || ((MODE1) == QImode \
1089 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1090 || ((MODE2) == DImode && TARGET_64BIT))))
1091
1092
1093 /* Specify the modes required to caller save a given hard regno.
1094 We do this on i386 to prevent flags from being saved at all.
1095
1096 Kill any attempts to combine saving of modes. */
1097
1098 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1099 (CC_REGNO_P (REGNO) ? VOIDmode \
1100 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1101 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1102 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1103 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1104 : (MODE))
1105 /* Specify the registers used for certain standard purposes.
1106 The values of these macros are register numbers. */
1107
1108 /* on the 386 the pc register is %eip, and is not usable as a general
1109 register. The ordinary mov instructions won't work */
1110 /* #define PC_REGNUM */
1111
1112 /* Register to use for pushing function arguments. */
1113 #define STACK_POINTER_REGNUM 7
1114
1115 /* Base register for access to local variables of the function. */
1116 #define HARD_FRAME_POINTER_REGNUM 6
1117
1118 /* Base register for access to local variables of the function. */
1119 #define FRAME_POINTER_REGNUM 20
1120
1121 /* First floating point reg */
1122 #define FIRST_FLOAT_REG 8
1123
1124 /* First & last stack-like regs */
1125 #define FIRST_STACK_REG FIRST_FLOAT_REG
1126 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1127
1128 #define FLAGS_REG 17
1129 #define FPSR_REG 18
1130 #define DIRFLAG_REG 19
1131
1132 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1133 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1134
1135 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1136 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1137
1138 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1139 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1140
1141 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1142 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1143
1144 /* Value should be nonzero if functions must have frame pointers.
1145 Zero means the frame pointer need not be set up (and parms
1146 may be accessed via the stack pointer) in functions that seem suitable.
1147 This is computed in `reload', in reload1.c. */
1148 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1149
1150 /* Override this in other tm.h files to cope with various OS losage
1151 requiring a frame pointer. */
1152 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1153 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1154 #endif
1155
1156 /* Make sure we can access arbitrary call frames. */
1157 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1158
1159 /* Base register for access to arguments of the function. */
1160 #define ARG_POINTER_REGNUM 16
1161
1162 /* Register in which static-chain is passed to a function.
1163 We do use ECX as static chain register for 32 bit ABI. On the
1164 64bit ABI, ECX is an argument register, so we use R10 instead. */
1165 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1166
1167 /* Register to hold the addressing base for position independent
1168 code access to data items. We don't use PIC pointer for 64bit
1169 mode. Define the regnum to dummy value to prevent gcc from
1170 pessimizing code dealing with EBX.
1171
1172 To avoid clobbering a call-saved register unnecessarily, we renumber
1173 the pic register when possible. The change is visible after the
1174 prologue has been emitted. */
1175
1176 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1177
1178 #define PIC_OFFSET_TABLE_REGNUM \
1179 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1180 : reload_completed ? REGNO (pic_offset_table_rtx) \
1181 : REAL_PIC_OFFSET_TABLE_REGNUM)
1182
1183 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1184
1185 /* Register in which address to store a structure value
1186 arrives in the function. On the 386, the prologue
1187 copies this from the stack to register %eax. */
1188 #define STRUCT_VALUE_INCOMING 0
1189
1190 /* Place in which caller passes the structure value address.
1191 0 means push the value on the stack like an argument. */
1192 #define STRUCT_VALUE 0
1193
1194 /* A C expression which can inhibit the returning of certain function
1195 values in registers, based on the type of value. A nonzero value
1196 says to return the function value in memory, just as large
1197 structures are always returned. Here TYPE will be a C expression
1198 of type `tree', representing the data type of the value.
1199
1200 Note that values of mode `BLKmode' must be explicitly handled by
1201 this macro. Also, the option `-fpcc-struct-return' takes effect
1202 regardless of this macro. On most systems, it is possible to
1203 leave the macro undefined; this causes a default definition to be
1204 used, whose value is the constant 1 for `BLKmode' values, and 0
1205 otherwise.
1206
1207 Do not use this macro to indicate that structures and unions
1208 should always be returned in memory. You should instead use
1209 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1210
1211 #define RETURN_IN_MEMORY(TYPE) \
1212 ix86_return_in_memory (TYPE)
1213
1214 /* This is overriden by <cygwin.h>. */
1215 #define MS_AGGREGATE_RETURN 0
1216
1217 \f
1218 /* Define the classes of registers for register constraints in the
1219 machine description. Also define ranges of constants.
1220
1221 One of the classes must always be named ALL_REGS and include all hard regs.
1222 If there is more than one class, another class must be named NO_REGS
1223 and contain no registers.
1224
1225 The name GENERAL_REGS must be the name of a class (or an alias for
1226 another name such as ALL_REGS). This is the class of registers
1227 that is allowed by "g" or "r" in a register constraint.
1228 Also, registers outside this class are allocated only when
1229 instructions express preferences for them.
1230
1231 The classes must be numbered in nondecreasing order; that is,
1232 a larger-numbered class must never be contained completely
1233 in a smaller-numbered class.
1234
1235 For any two classes, it is very desirable that there be another
1236 class that represents their union.
1237
1238 It might seem that class BREG is unnecessary, since no useful 386
1239 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1240 and the "b" register constraint is useful in asms for syscalls.
1241
1242 The flags and fpsr registers are in no class. */
1243
1244 enum reg_class
1245 {
1246 NO_REGS,
1247 AREG, DREG, CREG, BREG, SIREG, DIREG,
1248 AD_REGS, /* %eax/%edx for DImode */
1249 Q_REGS, /* %eax %ebx %ecx %edx */
1250 NON_Q_REGS, /* %esi %edi %ebp %esp */
1251 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1252 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1253 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1254 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1255 FLOAT_REGS,
1256 SSE_REGS,
1257 MMX_REGS,
1258 FP_TOP_SSE_REGS,
1259 FP_SECOND_SSE_REGS,
1260 FLOAT_SSE_REGS,
1261 FLOAT_INT_REGS,
1262 INT_SSE_REGS,
1263 FLOAT_INT_SSE_REGS,
1264 ALL_REGS, LIM_REG_CLASSES
1265 };
1266
1267 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1268
1269 #define INTEGER_CLASS_P(CLASS) \
1270 reg_class_subset_p ((CLASS), GENERAL_REGS)
1271 #define FLOAT_CLASS_P(CLASS) \
1272 reg_class_subset_p ((CLASS), FLOAT_REGS)
1273 #define SSE_CLASS_P(CLASS) \
1274 reg_class_subset_p ((CLASS), SSE_REGS)
1275 #define MMX_CLASS_P(CLASS) \
1276 reg_class_subset_p ((CLASS), MMX_REGS)
1277 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1278 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1279 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1280 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1281 #define MAYBE_SSE_CLASS_P(CLASS) \
1282 reg_classes_intersect_p (SSE_REGS, (CLASS))
1283 #define MAYBE_MMX_CLASS_P(CLASS) \
1284 reg_classes_intersect_p (MMX_REGS, (CLASS))
1285
1286 #define Q_CLASS_P(CLASS) \
1287 reg_class_subset_p ((CLASS), Q_REGS)
1288
1289 /* Give names of register classes as strings for dump file. */
1290
1291 #define REG_CLASS_NAMES \
1292 { "NO_REGS", \
1293 "AREG", "DREG", "CREG", "BREG", \
1294 "SIREG", "DIREG", \
1295 "AD_REGS", \
1296 "Q_REGS", "NON_Q_REGS", \
1297 "INDEX_REGS", \
1298 "LEGACY_REGS", \
1299 "GENERAL_REGS", \
1300 "FP_TOP_REG", "FP_SECOND_REG", \
1301 "FLOAT_REGS", \
1302 "SSE_REGS", \
1303 "MMX_REGS", \
1304 "FP_TOP_SSE_REGS", \
1305 "FP_SECOND_SSE_REGS", \
1306 "FLOAT_SSE_REGS", \
1307 "FLOAT_INT_REGS", \
1308 "INT_SSE_REGS", \
1309 "FLOAT_INT_SSE_REGS", \
1310 "ALL_REGS" }
1311
1312 /* Define which registers fit in which classes.
1313 This is an initializer for a vector of HARD_REG_SET
1314 of length N_REG_CLASSES. */
1315
1316 #define REG_CLASS_CONTENTS \
1317 { { 0x00, 0x0 }, \
1318 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1319 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1320 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1321 { 0x03, 0x0 }, /* AD_REGS */ \
1322 { 0x0f, 0x0 }, /* Q_REGS */ \
1323 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1324 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1325 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1326 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1327 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1328 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1329 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1330 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1331 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1332 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1333 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1334 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1335 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1336 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1337 { 0xffffffff,0x1fffff } \
1338 }
1339
1340 /* The same information, inverted:
1341 Return the class number of the smallest class containing
1342 reg number REGNO. This could be a conditional expression
1343 or could index an array. */
1344
1345 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1346
1347 /* When defined, the compiler allows registers explicitly used in the
1348 rtl to be used as spill registers but prevents the compiler from
1349 extending the lifetime of these registers. */
1350
1351 #define SMALL_REGISTER_CLASSES 1
1352
1353 #define QI_REG_P(X) \
1354 (REG_P (X) && REGNO (X) < 4)
1355
1356 #define GENERAL_REGNO_P(N) \
1357 ((N) < 8 || REX_INT_REGNO_P (N))
1358
1359 #define GENERAL_REG_P(X) \
1360 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1361
1362 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1363
1364 #define NON_QI_REG_P(X) \
1365 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1366
1367 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1368 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1369
1370 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1371 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1372 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1373 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1374
1375 #define SSE_REGNO_P(N) \
1376 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1377 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1378
1379 #define REX_SSE_REGNO_P(N) \
1380 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1381
1382 #define SSE_REGNO(N) \
1383 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1384 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1385
1386 #define SSE_FLOAT_MODE_P(MODE) \
1387 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1388
1389 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1390 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1391
1392 #define STACK_REG_P(XOP) \
1393 (REG_P (XOP) && \
1394 REGNO (XOP) >= FIRST_STACK_REG && \
1395 REGNO (XOP) <= LAST_STACK_REG)
1396
1397 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1398
1399 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1400
1401 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1402 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1403
1404 /* Indicate whether hard register numbered REG_NO should be converted
1405 to SSA form. */
1406 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1407 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1408
1409 /* The class value for index registers, and the one for base regs. */
1410
1411 #define INDEX_REG_CLASS INDEX_REGS
1412 #define BASE_REG_CLASS GENERAL_REGS
1413
1414 /* Get reg_class from a letter such as appears in the machine description. */
1415
1416 #define REG_CLASS_FROM_LETTER(C) \
1417 ((C) == 'r' ? GENERAL_REGS : \
1418 (C) == 'R' ? LEGACY_REGS : \
1419 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1420 (C) == 'Q' ? Q_REGS : \
1421 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1422 ? FLOAT_REGS \
1423 : NO_REGS) : \
1424 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1425 ? FP_TOP_REG \
1426 : NO_REGS) : \
1427 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1428 ? FP_SECOND_REG \
1429 : NO_REGS) : \
1430 (C) == 'a' ? AREG : \
1431 (C) == 'b' ? BREG : \
1432 (C) == 'c' ? CREG : \
1433 (C) == 'd' ? DREG : \
1434 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1435 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1436 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1437 (C) == 'A' ? AD_REGS : \
1438 (C) == 'D' ? DIREG : \
1439 (C) == 'S' ? SIREG : NO_REGS)
1440
1441 /* The letters I, J, K, L and M in a register constraint string
1442 can be used to stand for particular ranges of immediate operands.
1443 This macro defines what the ranges are.
1444 C is the letter, and VALUE is a constant value.
1445 Return 1 if VALUE is in the range specified by C.
1446
1447 I is for non-DImode shifts.
1448 J is for DImode shifts.
1449 K is for signed imm8 operands.
1450 L is for andsi as zero-extending move.
1451 M is for shifts that can be executed by the "lea" opcode.
1452 N is for immediate operands for out/in instructions (0-255)
1453 */
1454
1455 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1456 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1457 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1458 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1459 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1460 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1461 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1462 : 0)
1463
1464 /* Similar, but for floating constants, and defining letters G and H.
1465 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1466 TARGET_387 isn't set, because the stack register converter may need to
1467 load 0.0 into the function value register. */
1468
1469 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1470 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1471 : 0)
1472
1473 /* A C expression that defines the optional machine-dependent
1474 constraint letters that can be used to segregate specific types of
1475 operands, usually memory references, for the target machine. Any
1476 letter that is not elsewhere defined and not matched by
1477 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1478 be defined.
1479
1480 If it is required for a particular target machine, it should
1481 return 1 if VALUE corresponds to the operand type represented by
1482 the constraint letter C. If C is not defined as an extra
1483 constraint, the value returned should be 0 regardless of VALUE. */
1484
1485 #define EXTRA_CONSTRAINT(VALUE, D) \
1486 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1487 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1488 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1489 : 0)
1490
1491 /* Place additional restrictions on the register class to use when it
1492 is necessary to be able to hold a value of mode MODE in a reload
1493 register for which class CLASS would ordinarily be used. */
1494
1495 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1496 ((MODE) == QImode && !TARGET_64BIT \
1497 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1498 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1499 ? Q_REGS : (CLASS))
1500
1501 /* Given an rtx X being reloaded into a reg required to be
1502 in class CLASS, return the class of reg to actually use.
1503 In general this is just CLASS; but on some machines
1504 in some cases it is preferable to use a more restrictive class.
1505 On the 80386 series, we prevent floating constants from being
1506 reloaded into floating registers (since no move-insn can do that)
1507 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1508
1509 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1510 QImode must go into class Q_REGS.
1511 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1512 movdf to do mem-to-mem moves through integer regs. */
1513
1514 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1515 ix86_preferred_reload_class ((X), (CLASS))
1516
1517 /* If we are copying between general and FP registers, we need a memory
1518 location. The same is true for SSE and MMX registers. */
1519 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1520 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1521
1522 /* QImode spills from non-QI registers need a scratch. This does not
1523 happen often -- the only example so far requires an uninitialized
1524 pseudo. */
1525
1526 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1527 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1528 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1529 ? Q_REGS : NO_REGS)
1530
1531 /* Return the maximum number of consecutive registers
1532 needed to represent mode MODE in a register of class CLASS. */
1533 /* On the 80386, this is the size of MODE in words,
1534 except in the FP regs, where a single reg is always enough.
1535 The TFmodes are really just 80bit values, so we use only 3 registers
1536 to hold them, instead of 4, as the size would suggest.
1537 */
1538 #define CLASS_MAX_NREGS(CLASS, MODE) \
1539 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1540 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1541 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1542 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1543
1544 /* A C expression whose value is nonzero if pseudos that have been
1545 assigned to registers of class CLASS would likely be spilled
1546 because registers of CLASS are needed for spill registers.
1547
1548 The default value of this macro returns 1 if CLASS has exactly one
1549 register and zero otherwise. On most machines, this default
1550 should be used. Only define this macro to some other expression
1551 if pseudo allocated by `local-alloc.c' end up in memory because
1552 their hard registers were needed for spill registers. If this
1553 macro returns nonzero for those classes, those pseudos will only
1554 be allocated by `global.c', which knows how to reallocate the
1555 pseudo to another register. If there would not be another
1556 register available for reallocation, you should not change the
1557 definition of this macro since the only effect of such a
1558 definition would be to slow down register allocation. */
1559
1560 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1561 (((CLASS) == AREG) \
1562 || ((CLASS) == DREG) \
1563 || ((CLASS) == CREG) \
1564 || ((CLASS) == BREG) \
1565 || ((CLASS) == AD_REGS) \
1566 || ((CLASS) == SIREG) \
1567 || ((CLASS) == DIREG))
1568
1569 /* Return a class of registers that cannot change FROM mode to TO mode.
1570
1571 x87 registers can't do subreg as all values are reformated to extended
1572 precision. XMM registers does not support with nonzero offsets equal
1573 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1574 determine these, prohibit all nonparadoxical subregs changing size. */
1575
1576 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1577 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1578 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1579 || MAYBE_MMX_CLASS_P (CLASS) \
1580 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1581 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1582
1583 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1584 to automatically clobber for all asms.
1585
1586 We do this in the new i386 backend to maintain source compatibility
1587 with the old cc0-based compiler. */
1588
1589 #define MD_ASM_CLOBBERS(CLOBBERS) \
1590 do { \
1591 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1592 (CLOBBERS)); \
1593 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1594 (CLOBBERS)); \
1595 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1596 (CLOBBERS)); \
1597 } while (0)
1598 \f
1599 /* Stack layout; function entry, exit and calling. */
1600
1601 /* Define this if pushing a word on the stack
1602 makes the stack pointer a smaller address. */
1603 #define STACK_GROWS_DOWNWARD
1604
1605 /* Define this if the nominal address of the stack frame
1606 is at the high-address end of the local variables;
1607 that is, each additional local variable allocated
1608 goes at a more negative offset in the frame. */
1609 #define FRAME_GROWS_DOWNWARD
1610
1611 /* Offset within stack frame to start allocating local variables at.
1612 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1613 first local allocated. Otherwise, it is the offset to the BEGINNING
1614 of the first local allocated. */
1615 #define STARTING_FRAME_OFFSET 0
1616
1617 /* If we generate an insn to push BYTES bytes,
1618 this says how many the stack pointer really advances by.
1619 On 386 pushw decrements by exactly 2 no matter what the position was.
1620 On the 386 there is no pushb; we use pushw instead, and this
1621 has the effect of rounding up to 2.
1622
1623 For 64bit ABI we round up to 8 bytes.
1624 */
1625
1626 #define PUSH_ROUNDING(BYTES) \
1627 (TARGET_64BIT \
1628 ? (((BYTES) + 7) & (-8)) \
1629 : (((BYTES) + 1) & (-2)))
1630
1631 /* If defined, the maximum amount of space required for outgoing arguments will
1632 be computed and placed into the variable
1633 `current_function_outgoing_args_size'. No space will be pushed onto the
1634 stack for each call; instead, the function prologue should increase the stack
1635 frame size by this amount. */
1636
1637 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1638
1639 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1640 instructions to pass outgoing arguments. */
1641
1642 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1643
1644 /* We want the stack and args grow in opposite directions, even if
1645 PUSH_ARGS is 0. */
1646 #define PUSH_ARGS_REVERSED 1
1647
1648 /* Offset of first parameter from the argument pointer register value. */
1649 #define FIRST_PARM_OFFSET(FNDECL) 0
1650
1651 /* Define this macro if functions should assume that stack space has been
1652 allocated for arguments even when their values are passed in registers.
1653
1654 The value of this macro is the size, in bytes, of the area reserved for
1655 arguments passed in registers for the function represented by FNDECL.
1656
1657 This space can be allocated by the caller, or be a part of the
1658 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1659 which. */
1660 #define REG_PARM_STACK_SPACE(FNDECL) 0
1661
1662 /* Define as a C expression that evaluates to nonzero if we do not know how
1663 to pass TYPE solely in registers. The file expr.h defines a
1664 definition that is usually appropriate, refer to expr.h for additional
1665 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1666 computed in the stack and then loaded into a register. */
1667 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1668
1669 /* Value is the number of bytes of arguments automatically
1670 popped when returning from a subroutine call.
1671 FUNDECL is the declaration node of the function (as a tree),
1672 FUNTYPE is the data type of the function (as a tree),
1673 or for a library call it is an identifier node for the subroutine name.
1674 SIZE is the number of bytes of arguments passed on the stack.
1675
1676 On the 80386, the RTD insn may be used to pop them if the number
1677 of args is fixed, but if the number is variable then the caller
1678 must pop them all. RTD can't be used for library calls now
1679 because the library is compiled with the Unix compiler.
1680 Use of RTD is a selectable option, since it is incompatible with
1681 standard Unix calling sequences. If the option is not selected,
1682 the caller must always pop the args.
1683
1684 The attribute stdcall is equivalent to RTD on a per module basis. */
1685
1686 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1687 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1688
1689 /* Define how to find the value returned by a function.
1690 VALTYPE is the data type of the value (as a tree).
1691 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1692 otherwise, FUNC is 0. */
1693 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1694 ix86_function_value (VALTYPE)
1695
1696 #define FUNCTION_VALUE_REGNO_P(N) \
1697 ix86_function_value_regno_p (N)
1698
1699 /* Define how to find the value returned by a library function
1700 assuming the value has mode MODE. */
1701
1702 #define LIBCALL_VALUE(MODE) \
1703 ix86_libcall_value (MODE)
1704
1705 /* Define the size of the result block used for communication between
1706 untyped_call and untyped_return. The block contains a DImode value
1707 followed by the block used by fnsave and frstor. */
1708
1709 #define APPLY_RESULT_SIZE (8+108)
1710
1711 /* 1 if N is a possible register number for function argument passing. */
1712 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1713
1714 /* Define a data type for recording info about an argument list
1715 during the scan of that argument list. This data type should
1716 hold all necessary information about the function itself
1717 and about the args processed so far, enough to enable macros
1718 such as FUNCTION_ARG to determine where the next arg should go. */
1719
1720 typedef struct ix86_args {
1721 int words; /* # words passed so far */
1722 int nregs; /* # registers available for passing */
1723 int regno; /* next available register number */
1724 int fastcall; /* fastcall calling convention is used */
1725 int sse_words; /* # sse words passed so far */
1726 int sse_nregs; /* # sse registers available for passing */
1727 int sse_regno; /* next available sse register number */
1728 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1729 } CUMULATIVE_ARGS;
1730
1731 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1732 for a call to a function whose data type is FNTYPE.
1733 For a library call, FNTYPE is 0. */
1734
1735 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL) \
1736 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1737
1738 /* Update the data in CUM to advance over an argument
1739 of mode MODE and data type TYPE.
1740 (TYPE is null for libcalls where that information may not be available.) */
1741
1742 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1743 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1744
1745 /* Define where to put the arguments to a function.
1746 Value is zero to push the argument on the stack,
1747 or a hard register in which to store the argument.
1748
1749 MODE is the argument's machine mode.
1750 TYPE is the data type of the argument (as a tree).
1751 This is null for libcalls where that information may
1752 not be available.
1753 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1754 the preceding args and about the function being called.
1755 NAMED is nonzero if this argument is a named parameter
1756 (otherwise it is an extra parameter matching an ellipsis). */
1757
1758 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1759 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1760
1761 /* For an arg passed partly in registers and partly in memory,
1762 this is the number of registers used.
1763 For args passed entirely in registers or entirely in memory, zero. */
1764
1765 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1766
1767 /* A C expression that indicates when an argument must be passed by
1768 reference. If nonzero for an argument, a copy of that argument is
1769 made in memory and a pointer to the argument is passed instead of
1770 the argument itself. The pointer is passed in whatever way is
1771 appropriate for passing a pointer to that type. */
1772
1773 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1774 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1775
1776 /* Perform any needed actions needed for a function that is receiving a
1777 variable number of arguments.
1778
1779 CUM is as above.
1780
1781 MODE and TYPE are the mode and type of the current parameter.
1782
1783 PRETEND_SIZE is a variable that should be set to the amount of stack
1784 that must be pushed by the prolog to pretend that our caller pushed
1785 it.
1786
1787 Normally, this macro will push all remaining incoming registers on the
1788 stack and set PRETEND_SIZE to the length of the registers pushed. */
1789
1790 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1791 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1792 (NO_RTL))
1793
1794 /* Define the `__builtin_va_list' type for the ABI. */
1795 #define BUILD_VA_LIST_TYPE(VALIST) \
1796 ((VALIST) = ix86_build_va_list ())
1797
1798 /* Implement `va_start' for varargs and stdarg. */
1799 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1800 ix86_va_start (VALIST, NEXTARG)
1801
1802 /* Implement `va_arg'. */
1803 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1804 ix86_va_arg ((VALIST), (TYPE))
1805
1806 /* This macro is invoked at the end of compilation. It is used here to
1807 output code for -fpic that will load the return address into %ebx. */
1808
1809 #undef ASM_FILE_END
1810 #define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
1811
1812 /* Output assembler code to FILE to increment profiler label # LABELNO
1813 for profiling a function entry. */
1814
1815 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1816
1817 #define MCOUNT_NAME "_mcount"
1818
1819 #define PROFILE_COUNT_REGISTER "edx"
1820
1821 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1822 the stack pointer does not matter. The value is tested only in
1823 functions that have frame pointers.
1824 No definition is equivalent to always zero. */
1825 /* Note on the 386 it might be more efficient not to define this since
1826 we have to restore it ourselves from the frame pointer, in order to
1827 use pop */
1828
1829 #define EXIT_IGNORE_STACK 1
1830
1831 /* Output assembler code for a block containing the constant parts
1832 of a trampoline, leaving space for the variable parts. */
1833
1834 /* On the 386, the trampoline contains two instructions:
1835 mov #STATIC,ecx
1836 jmp FUNCTION
1837 The trampoline is generated entirely at runtime. The operand of JMP
1838 is the address of FUNCTION relative to the instruction following the
1839 JMP (which is 5 bytes long). */
1840
1841 /* Length in units of the trampoline for entering a nested function. */
1842
1843 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1844
1845 /* Emit RTL insns to initialize the variable parts of a trampoline.
1846 FNADDR is an RTX for the address of the function's pure code.
1847 CXT is an RTX for the static chain value for the function. */
1848
1849 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1850 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1851 \f
1852 /* Definitions for register eliminations.
1853
1854 This is an array of structures. Each structure initializes one pair
1855 of eliminable registers. The "from" register number is given first,
1856 followed by "to". Eliminations of the same "from" register are listed
1857 in order of preference.
1858
1859 There are two registers that can always be eliminated on the i386.
1860 The frame pointer and the arg pointer can be replaced by either the
1861 hard frame pointer or to the stack pointer, depending upon the
1862 circumstances. The hard frame pointer is not used before reload and
1863 so it is not eligible for elimination. */
1864
1865 #define ELIMINABLE_REGS \
1866 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1867 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1868 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1869 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1870
1871 /* Given FROM and TO register numbers, say whether this elimination is
1872 allowed. Frame pointer elimination is automatically handled.
1873
1874 All other eliminations are valid. */
1875
1876 #define CAN_ELIMINATE(FROM, TO) \
1877 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1878
1879 /* Define the offset between two registers, one to be eliminated, and the other
1880 its replacement, at the start of a routine. */
1881
1882 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1883 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1884 \f
1885 /* Addressing modes, and classification of registers for them. */
1886
1887 /* Macros to check register numbers against specific register classes. */
1888
1889 /* These assume that REGNO is a hard or pseudo reg number.
1890 They give nonzero only if REGNO is a hard reg of the suitable class
1891 or a pseudo reg currently allocated to a suitable hard reg.
1892 Since they use reg_renumber, they are safe only once reg_renumber
1893 has been allocated, which happens in local-alloc.c. */
1894
1895 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1896 ((REGNO) < STACK_POINTER_REGNUM \
1897 || (REGNO >= FIRST_REX_INT_REG \
1898 && (REGNO) <= LAST_REX_INT_REG) \
1899 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1900 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1901 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1902
1903 #define REGNO_OK_FOR_BASE_P(REGNO) \
1904 ((REGNO) <= STACK_POINTER_REGNUM \
1905 || (REGNO) == ARG_POINTER_REGNUM \
1906 || (REGNO) == FRAME_POINTER_REGNUM \
1907 || (REGNO >= FIRST_REX_INT_REG \
1908 && (REGNO) <= LAST_REX_INT_REG) \
1909 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1910 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1911 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1912
1913 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1914 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1915 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1916 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1917
1918 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1919 and check its validity for a certain class.
1920 We have two alternate definitions for each of them.
1921 The usual definition accepts all pseudo regs; the other rejects
1922 them unless they have been allocated suitable hard regs.
1923 The symbol REG_OK_STRICT causes the latter definition to be used.
1924
1925 Most source files want to accept pseudo regs in the hope that
1926 they will get allocated to the class that the insn wants them to be in.
1927 Source files for reload pass need to be strict.
1928 After reload, it makes no difference, since pseudo regs have
1929 been eliminated by then. */
1930
1931
1932 /* Non strict versions, pseudos are ok */
1933 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1934 (REGNO (X) < STACK_POINTER_REGNUM \
1935 || (REGNO (X) >= FIRST_REX_INT_REG \
1936 && REGNO (X) <= LAST_REX_INT_REG) \
1937 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1938
1939 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1940 (REGNO (X) <= STACK_POINTER_REGNUM \
1941 || REGNO (X) == ARG_POINTER_REGNUM \
1942 || REGNO (X) == FRAME_POINTER_REGNUM \
1943 || (REGNO (X) >= FIRST_REX_INT_REG \
1944 && REGNO (X) <= LAST_REX_INT_REG) \
1945 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1946
1947 /* Strict versions, hard registers only */
1948 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1949 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1950
1951 #ifndef REG_OK_STRICT
1952 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1953 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1954
1955 #else
1956 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1957 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1958 #endif
1959
1960 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1961 that is a valid memory address for an instruction.
1962 The MODE argument is the machine mode for the MEM expression
1963 that wants to use this address.
1964
1965 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1966 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1967
1968 See legitimize_pic_address in i386.c for details as to what
1969 constitutes a legitimate address when -fpic is used. */
1970
1971 #define MAX_REGS_PER_ADDRESS 2
1972
1973 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1974
1975 /* Nonzero if the constant value X is a legitimate general operand.
1976 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1977
1978 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1979
1980 #ifdef REG_OK_STRICT
1981 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1982 do { \
1983 if (legitimate_address_p ((MODE), (X), 1)) \
1984 goto ADDR; \
1985 } while (0)
1986
1987 #else
1988 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1989 do { \
1990 if (legitimate_address_p ((MODE), (X), 0)) \
1991 goto ADDR; \
1992 } while (0)
1993
1994 #endif
1995
1996 /* If defined, a C expression to determine the base term of address X.
1997 This macro is used in only one place: `find_base_term' in alias.c.
1998
1999 It is always safe for this macro to not be defined. It exists so
2000 that alias analysis can understand machine-dependent addresses.
2001
2002 The typical use of this macro is to handle addresses containing
2003 a label_ref or symbol_ref within an UNSPEC. */
2004
2005 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
2006
2007 /* Try machine-dependent ways of modifying an illegitimate address
2008 to be legitimate. If we find one, return the new, valid address.
2009 This macro is used in only one place: `memory_address' in explow.c.
2010
2011 OLDX is the address as it was before break_out_memory_refs was called.
2012 In some cases it is useful to look at this to decide what needs to be done.
2013
2014 MODE and WIN are passed so that this macro can use
2015 GO_IF_LEGITIMATE_ADDRESS.
2016
2017 It is always safe for this macro to do nothing. It exists to recognize
2018 opportunities to optimize the output.
2019
2020 For the 80386, we handle X+REG by loading X into a register R and
2021 using R+REG. R will go in a general reg and indexing will be used.
2022 However, if REG is a broken-out memory address or multiplication,
2023 nothing needs to be done because REG can certainly go in a general reg.
2024
2025 When -fpic is used, special handling is needed for symbolic references.
2026 See comments by legitimize_pic_address in i386.c for details. */
2027
2028 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2029 do { \
2030 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2031 if (memory_address_p ((MODE), (X))) \
2032 goto WIN; \
2033 } while (0)
2034
2035 #define REWRITE_ADDRESS(X) rewrite_address (X)
2036
2037 /* Nonzero if the constant value X is a legitimate general operand
2038 when generating PIC code. It is given that flag_pic is on and
2039 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2040
2041 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2042
2043 #define SYMBOLIC_CONST(X) \
2044 (GET_CODE (X) == SYMBOL_REF \
2045 || GET_CODE (X) == LABEL_REF \
2046 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2047
2048 /* Go to LABEL if ADDR (a legitimate address expression)
2049 has an effect that depends on the machine mode it is used for.
2050 On the 80386, only postdecrement and postincrement address depend thus
2051 (the amount of decrement or increment being the length of the operand). */
2052 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2053 do { \
2054 if (GET_CODE (ADDR) == POST_INC \
2055 || GET_CODE (ADDR) == POST_DEC) \
2056 goto LABEL; \
2057 } while (0)
2058 \f
2059 /* Codes for all the SSE/MMX builtins. */
2060 enum ix86_builtins
2061 {
2062 IX86_BUILTIN_ADDPS,
2063 IX86_BUILTIN_ADDSS,
2064 IX86_BUILTIN_DIVPS,
2065 IX86_BUILTIN_DIVSS,
2066 IX86_BUILTIN_MULPS,
2067 IX86_BUILTIN_MULSS,
2068 IX86_BUILTIN_SUBPS,
2069 IX86_BUILTIN_SUBSS,
2070
2071 IX86_BUILTIN_CMPEQPS,
2072 IX86_BUILTIN_CMPLTPS,
2073 IX86_BUILTIN_CMPLEPS,
2074 IX86_BUILTIN_CMPGTPS,
2075 IX86_BUILTIN_CMPGEPS,
2076 IX86_BUILTIN_CMPNEQPS,
2077 IX86_BUILTIN_CMPNLTPS,
2078 IX86_BUILTIN_CMPNLEPS,
2079 IX86_BUILTIN_CMPNGTPS,
2080 IX86_BUILTIN_CMPNGEPS,
2081 IX86_BUILTIN_CMPORDPS,
2082 IX86_BUILTIN_CMPUNORDPS,
2083 IX86_BUILTIN_CMPNEPS,
2084 IX86_BUILTIN_CMPEQSS,
2085 IX86_BUILTIN_CMPLTSS,
2086 IX86_BUILTIN_CMPLESS,
2087 IX86_BUILTIN_CMPNEQSS,
2088 IX86_BUILTIN_CMPNLTSS,
2089 IX86_BUILTIN_CMPNLESS,
2090 IX86_BUILTIN_CMPORDSS,
2091 IX86_BUILTIN_CMPUNORDSS,
2092 IX86_BUILTIN_CMPNESS,
2093
2094 IX86_BUILTIN_COMIEQSS,
2095 IX86_BUILTIN_COMILTSS,
2096 IX86_BUILTIN_COMILESS,
2097 IX86_BUILTIN_COMIGTSS,
2098 IX86_BUILTIN_COMIGESS,
2099 IX86_BUILTIN_COMINEQSS,
2100 IX86_BUILTIN_UCOMIEQSS,
2101 IX86_BUILTIN_UCOMILTSS,
2102 IX86_BUILTIN_UCOMILESS,
2103 IX86_BUILTIN_UCOMIGTSS,
2104 IX86_BUILTIN_UCOMIGESS,
2105 IX86_BUILTIN_UCOMINEQSS,
2106
2107 IX86_BUILTIN_CVTPI2PS,
2108 IX86_BUILTIN_CVTPS2PI,
2109 IX86_BUILTIN_CVTSI2SS,
2110 IX86_BUILTIN_CVTSI642SS,
2111 IX86_BUILTIN_CVTSS2SI,
2112 IX86_BUILTIN_CVTSS2SI64,
2113 IX86_BUILTIN_CVTTPS2PI,
2114 IX86_BUILTIN_CVTTSS2SI,
2115 IX86_BUILTIN_CVTTSS2SI64,
2116
2117 IX86_BUILTIN_MAXPS,
2118 IX86_BUILTIN_MAXSS,
2119 IX86_BUILTIN_MINPS,
2120 IX86_BUILTIN_MINSS,
2121
2122 IX86_BUILTIN_LOADAPS,
2123 IX86_BUILTIN_LOADUPS,
2124 IX86_BUILTIN_STOREAPS,
2125 IX86_BUILTIN_STOREUPS,
2126 IX86_BUILTIN_LOADSS,
2127 IX86_BUILTIN_STORESS,
2128 IX86_BUILTIN_MOVSS,
2129
2130 IX86_BUILTIN_MOVHLPS,
2131 IX86_BUILTIN_MOVLHPS,
2132 IX86_BUILTIN_LOADHPS,
2133 IX86_BUILTIN_LOADLPS,
2134 IX86_BUILTIN_STOREHPS,
2135 IX86_BUILTIN_STORELPS,
2136
2137 IX86_BUILTIN_MASKMOVQ,
2138 IX86_BUILTIN_MOVMSKPS,
2139 IX86_BUILTIN_PMOVMSKB,
2140
2141 IX86_BUILTIN_MOVNTPS,
2142 IX86_BUILTIN_MOVNTQ,
2143
2144 IX86_BUILTIN_LOADDQA,
2145 IX86_BUILTIN_LOADDQU,
2146 IX86_BUILTIN_STOREDQA,
2147 IX86_BUILTIN_STOREDQU,
2148 IX86_BUILTIN_MOVQ,
2149 IX86_BUILTIN_LOADD,
2150 IX86_BUILTIN_STORED,
2151
2152 IX86_BUILTIN_CLRTI,
2153
2154 IX86_BUILTIN_PACKSSWB,
2155 IX86_BUILTIN_PACKSSDW,
2156 IX86_BUILTIN_PACKUSWB,
2157
2158 IX86_BUILTIN_PADDB,
2159 IX86_BUILTIN_PADDW,
2160 IX86_BUILTIN_PADDD,
2161 IX86_BUILTIN_PADDQ,
2162 IX86_BUILTIN_PADDSB,
2163 IX86_BUILTIN_PADDSW,
2164 IX86_BUILTIN_PADDUSB,
2165 IX86_BUILTIN_PADDUSW,
2166 IX86_BUILTIN_PSUBB,
2167 IX86_BUILTIN_PSUBW,
2168 IX86_BUILTIN_PSUBD,
2169 IX86_BUILTIN_PSUBQ,
2170 IX86_BUILTIN_PSUBSB,
2171 IX86_BUILTIN_PSUBSW,
2172 IX86_BUILTIN_PSUBUSB,
2173 IX86_BUILTIN_PSUBUSW,
2174
2175 IX86_BUILTIN_PAND,
2176 IX86_BUILTIN_PANDN,
2177 IX86_BUILTIN_POR,
2178 IX86_BUILTIN_PXOR,
2179
2180 IX86_BUILTIN_PAVGB,
2181 IX86_BUILTIN_PAVGW,
2182
2183 IX86_BUILTIN_PCMPEQB,
2184 IX86_BUILTIN_PCMPEQW,
2185 IX86_BUILTIN_PCMPEQD,
2186 IX86_BUILTIN_PCMPGTB,
2187 IX86_BUILTIN_PCMPGTW,
2188 IX86_BUILTIN_PCMPGTD,
2189
2190 IX86_BUILTIN_PEXTRW,
2191 IX86_BUILTIN_PINSRW,
2192
2193 IX86_BUILTIN_PMADDWD,
2194
2195 IX86_BUILTIN_PMAXSW,
2196 IX86_BUILTIN_PMAXUB,
2197 IX86_BUILTIN_PMINSW,
2198 IX86_BUILTIN_PMINUB,
2199
2200 IX86_BUILTIN_PMULHUW,
2201 IX86_BUILTIN_PMULHW,
2202 IX86_BUILTIN_PMULLW,
2203
2204 IX86_BUILTIN_PSADBW,
2205 IX86_BUILTIN_PSHUFW,
2206
2207 IX86_BUILTIN_PSLLW,
2208 IX86_BUILTIN_PSLLD,
2209 IX86_BUILTIN_PSLLQ,
2210 IX86_BUILTIN_PSRAW,
2211 IX86_BUILTIN_PSRAD,
2212 IX86_BUILTIN_PSRLW,
2213 IX86_BUILTIN_PSRLD,
2214 IX86_BUILTIN_PSRLQ,
2215 IX86_BUILTIN_PSLLWI,
2216 IX86_BUILTIN_PSLLDI,
2217 IX86_BUILTIN_PSLLQI,
2218 IX86_BUILTIN_PSRAWI,
2219 IX86_BUILTIN_PSRADI,
2220 IX86_BUILTIN_PSRLWI,
2221 IX86_BUILTIN_PSRLDI,
2222 IX86_BUILTIN_PSRLQI,
2223
2224 IX86_BUILTIN_PUNPCKHBW,
2225 IX86_BUILTIN_PUNPCKHWD,
2226 IX86_BUILTIN_PUNPCKHDQ,
2227 IX86_BUILTIN_PUNPCKLBW,
2228 IX86_BUILTIN_PUNPCKLWD,
2229 IX86_BUILTIN_PUNPCKLDQ,
2230
2231 IX86_BUILTIN_SHUFPS,
2232
2233 IX86_BUILTIN_RCPPS,
2234 IX86_BUILTIN_RCPSS,
2235 IX86_BUILTIN_RSQRTPS,
2236 IX86_BUILTIN_RSQRTSS,
2237 IX86_BUILTIN_SQRTPS,
2238 IX86_BUILTIN_SQRTSS,
2239
2240 IX86_BUILTIN_UNPCKHPS,
2241 IX86_BUILTIN_UNPCKLPS,
2242
2243 IX86_BUILTIN_ANDPS,
2244 IX86_BUILTIN_ANDNPS,
2245 IX86_BUILTIN_ORPS,
2246 IX86_BUILTIN_XORPS,
2247
2248 IX86_BUILTIN_EMMS,
2249 IX86_BUILTIN_LDMXCSR,
2250 IX86_BUILTIN_STMXCSR,
2251 IX86_BUILTIN_SFENCE,
2252
2253 /* 3DNow! Original */
2254 IX86_BUILTIN_FEMMS,
2255 IX86_BUILTIN_PAVGUSB,
2256 IX86_BUILTIN_PF2ID,
2257 IX86_BUILTIN_PFACC,
2258 IX86_BUILTIN_PFADD,
2259 IX86_BUILTIN_PFCMPEQ,
2260 IX86_BUILTIN_PFCMPGE,
2261 IX86_BUILTIN_PFCMPGT,
2262 IX86_BUILTIN_PFMAX,
2263 IX86_BUILTIN_PFMIN,
2264 IX86_BUILTIN_PFMUL,
2265 IX86_BUILTIN_PFRCP,
2266 IX86_BUILTIN_PFRCPIT1,
2267 IX86_BUILTIN_PFRCPIT2,
2268 IX86_BUILTIN_PFRSQIT1,
2269 IX86_BUILTIN_PFRSQRT,
2270 IX86_BUILTIN_PFSUB,
2271 IX86_BUILTIN_PFSUBR,
2272 IX86_BUILTIN_PI2FD,
2273 IX86_BUILTIN_PMULHRW,
2274
2275 /* 3DNow! Athlon Extensions */
2276 IX86_BUILTIN_PF2IW,
2277 IX86_BUILTIN_PFNACC,
2278 IX86_BUILTIN_PFPNACC,
2279 IX86_BUILTIN_PI2FW,
2280 IX86_BUILTIN_PSWAPDSI,
2281 IX86_BUILTIN_PSWAPDSF,
2282
2283 IX86_BUILTIN_SSE_ZERO,
2284 IX86_BUILTIN_MMX_ZERO,
2285
2286 /* SSE2 */
2287 IX86_BUILTIN_ADDPD,
2288 IX86_BUILTIN_ADDSD,
2289 IX86_BUILTIN_DIVPD,
2290 IX86_BUILTIN_DIVSD,
2291 IX86_BUILTIN_MULPD,
2292 IX86_BUILTIN_MULSD,
2293 IX86_BUILTIN_SUBPD,
2294 IX86_BUILTIN_SUBSD,
2295
2296 IX86_BUILTIN_CMPEQPD,
2297 IX86_BUILTIN_CMPLTPD,
2298 IX86_BUILTIN_CMPLEPD,
2299 IX86_BUILTIN_CMPGTPD,
2300 IX86_BUILTIN_CMPGEPD,
2301 IX86_BUILTIN_CMPNEQPD,
2302 IX86_BUILTIN_CMPNLTPD,
2303 IX86_BUILTIN_CMPNLEPD,
2304 IX86_BUILTIN_CMPNGTPD,
2305 IX86_BUILTIN_CMPNGEPD,
2306 IX86_BUILTIN_CMPORDPD,
2307 IX86_BUILTIN_CMPUNORDPD,
2308 IX86_BUILTIN_CMPNEPD,
2309 IX86_BUILTIN_CMPEQSD,
2310 IX86_BUILTIN_CMPLTSD,
2311 IX86_BUILTIN_CMPLESD,
2312 IX86_BUILTIN_CMPNEQSD,
2313 IX86_BUILTIN_CMPNLTSD,
2314 IX86_BUILTIN_CMPNLESD,
2315 IX86_BUILTIN_CMPORDSD,
2316 IX86_BUILTIN_CMPUNORDSD,
2317 IX86_BUILTIN_CMPNESD,
2318
2319 IX86_BUILTIN_COMIEQSD,
2320 IX86_BUILTIN_COMILTSD,
2321 IX86_BUILTIN_COMILESD,
2322 IX86_BUILTIN_COMIGTSD,
2323 IX86_BUILTIN_COMIGESD,
2324 IX86_BUILTIN_COMINEQSD,
2325 IX86_BUILTIN_UCOMIEQSD,
2326 IX86_BUILTIN_UCOMILTSD,
2327 IX86_BUILTIN_UCOMILESD,
2328 IX86_BUILTIN_UCOMIGTSD,
2329 IX86_BUILTIN_UCOMIGESD,
2330 IX86_BUILTIN_UCOMINEQSD,
2331
2332 IX86_BUILTIN_MAXPD,
2333 IX86_BUILTIN_MAXSD,
2334 IX86_BUILTIN_MINPD,
2335 IX86_BUILTIN_MINSD,
2336
2337 IX86_BUILTIN_ANDPD,
2338 IX86_BUILTIN_ANDNPD,
2339 IX86_BUILTIN_ORPD,
2340 IX86_BUILTIN_XORPD,
2341
2342 IX86_BUILTIN_SQRTPD,
2343 IX86_BUILTIN_SQRTSD,
2344
2345 IX86_BUILTIN_UNPCKHPD,
2346 IX86_BUILTIN_UNPCKLPD,
2347
2348 IX86_BUILTIN_SHUFPD,
2349
2350 IX86_BUILTIN_LOADAPD,
2351 IX86_BUILTIN_LOADUPD,
2352 IX86_BUILTIN_STOREAPD,
2353 IX86_BUILTIN_STOREUPD,
2354 IX86_BUILTIN_LOADSD,
2355 IX86_BUILTIN_STORESD,
2356 IX86_BUILTIN_MOVSD,
2357
2358 IX86_BUILTIN_LOADHPD,
2359 IX86_BUILTIN_LOADLPD,
2360 IX86_BUILTIN_STOREHPD,
2361 IX86_BUILTIN_STORELPD,
2362
2363 IX86_BUILTIN_CVTDQ2PD,
2364 IX86_BUILTIN_CVTDQ2PS,
2365
2366 IX86_BUILTIN_CVTPD2DQ,
2367 IX86_BUILTIN_CVTPD2PI,
2368 IX86_BUILTIN_CVTPD2PS,
2369 IX86_BUILTIN_CVTTPD2DQ,
2370 IX86_BUILTIN_CVTTPD2PI,
2371
2372 IX86_BUILTIN_CVTPI2PD,
2373 IX86_BUILTIN_CVTSI2SD,
2374 IX86_BUILTIN_CVTSI642SD,
2375
2376 IX86_BUILTIN_CVTSD2SI,
2377 IX86_BUILTIN_CVTSD2SI64,
2378 IX86_BUILTIN_CVTSD2SS,
2379 IX86_BUILTIN_CVTSS2SD,
2380 IX86_BUILTIN_CVTTSD2SI,
2381 IX86_BUILTIN_CVTTSD2SI64,
2382
2383 IX86_BUILTIN_CVTPS2DQ,
2384 IX86_BUILTIN_CVTPS2PD,
2385 IX86_BUILTIN_CVTTPS2DQ,
2386
2387 IX86_BUILTIN_MOVNTI,
2388 IX86_BUILTIN_MOVNTPD,
2389 IX86_BUILTIN_MOVNTDQ,
2390
2391 IX86_BUILTIN_SETPD1,
2392 IX86_BUILTIN_SETPD,
2393 IX86_BUILTIN_CLRPD,
2394 IX86_BUILTIN_SETRPD,
2395 IX86_BUILTIN_LOADPD1,
2396 IX86_BUILTIN_LOADRPD,
2397 IX86_BUILTIN_STOREPD1,
2398 IX86_BUILTIN_STORERPD,
2399
2400 /* SSE2 MMX */
2401 IX86_BUILTIN_MASKMOVDQU,
2402 IX86_BUILTIN_MOVMSKPD,
2403 IX86_BUILTIN_PMOVMSKB128,
2404 IX86_BUILTIN_MOVQ2DQ,
2405 IX86_BUILTIN_MOVDQ2Q,
2406
2407 IX86_BUILTIN_PACKSSWB128,
2408 IX86_BUILTIN_PACKSSDW128,
2409 IX86_BUILTIN_PACKUSWB128,
2410
2411 IX86_BUILTIN_PADDB128,
2412 IX86_BUILTIN_PADDW128,
2413 IX86_BUILTIN_PADDD128,
2414 IX86_BUILTIN_PADDQ128,
2415 IX86_BUILTIN_PADDSB128,
2416 IX86_BUILTIN_PADDSW128,
2417 IX86_BUILTIN_PADDUSB128,
2418 IX86_BUILTIN_PADDUSW128,
2419 IX86_BUILTIN_PSUBB128,
2420 IX86_BUILTIN_PSUBW128,
2421 IX86_BUILTIN_PSUBD128,
2422 IX86_BUILTIN_PSUBQ128,
2423 IX86_BUILTIN_PSUBSB128,
2424 IX86_BUILTIN_PSUBSW128,
2425 IX86_BUILTIN_PSUBUSB128,
2426 IX86_BUILTIN_PSUBUSW128,
2427
2428 IX86_BUILTIN_PAND128,
2429 IX86_BUILTIN_PANDN128,
2430 IX86_BUILTIN_POR128,
2431 IX86_BUILTIN_PXOR128,
2432
2433 IX86_BUILTIN_PAVGB128,
2434 IX86_BUILTIN_PAVGW128,
2435
2436 IX86_BUILTIN_PCMPEQB128,
2437 IX86_BUILTIN_PCMPEQW128,
2438 IX86_BUILTIN_PCMPEQD128,
2439 IX86_BUILTIN_PCMPGTB128,
2440 IX86_BUILTIN_PCMPGTW128,
2441 IX86_BUILTIN_PCMPGTD128,
2442
2443 IX86_BUILTIN_PEXTRW128,
2444 IX86_BUILTIN_PINSRW128,
2445
2446 IX86_BUILTIN_PMADDWD128,
2447
2448 IX86_BUILTIN_PMAXSW128,
2449 IX86_BUILTIN_PMAXUB128,
2450 IX86_BUILTIN_PMINSW128,
2451 IX86_BUILTIN_PMINUB128,
2452
2453 IX86_BUILTIN_PMULUDQ,
2454 IX86_BUILTIN_PMULUDQ128,
2455 IX86_BUILTIN_PMULHUW128,
2456 IX86_BUILTIN_PMULHW128,
2457 IX86_BUILTIN_PMULLW128,
2458
2459 IX86_BUILTIN_PSADBW128,
2460 IX86_BUILTIN_PSHUFHW,
2461 IX86_BUILTIN_PSHUFLW,
2462 IX86_BUILTIN_PSHUFD,
2463
2464 IX86_BUILTIN_PSLLW128,
2465 IX86_BUILTIN_PSLLD128,
2466 IX86_BUILTIN_PSLLQ128,
2467 IX86_BUILTIN_PSRAW128,
2468 IX86_BUILTIN_PSRAD128,
2469 IX86_BUILTIN_PSRLW128,
2470 IX86_BUILTIN_PSRLD128,
2471 IX86_BUILTIN_PSRLQ128,
2472 IX86_BUILTIN_PSLLDQI128,
2473 IX86_BUILTIN_PSLLWI128,
2474 IX86_BUILTIN_PSLLDI128,
2475 IX86_BUILTIN_PSLLQI128,
2476 IX86_BUILTIN_PSRAWI128,
2477 IX86_BUILTIN_PSRADI128,
2478 IX86_BUILTIN_PSRLDQI128,
2479 IX86_BUILTIN_PSRLWI128,
2480 IX86_BUILTIN_PSRLDI128,
2481 IX86_BUILTIN_PSRLQI128,
2482
2483 IX86_BUILTIN_PUNPCKHBW128,
2484 IX86_BUILTIN_PUNPCKHWD128,
2485 IX86_BUILTIN_PUNPCKHDQ128,
2486 IX86_BUILTIN_PUNPCKHQDQ128,
2487 IX86_BUILTIN_PUNPCKLBW128,
2488 IX86_BUILTIN_PUNPCKLWD128,
2489 IX86_BUILTIN_PUNPCKLDQ128,
2490 IX86_BUILTIN_PUNPCKLQDQ128,
2491
2492 IX86_BUILTIN_CLFLUSH,
2493 IX86_BUILTIN_MFENCE,
2494 IX86_BUILTIN_LFENCE,
2495
2496 IX86_BUILTIN_MAX
2497 };
2498 \f
2499 #define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
2500 #define TARGET_STRIP_NAME_ENCODING ix86_strip_name_encoding
2501
2502 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2503 do { \
2504 const char *xname = (NAME); \
2505 if (xname[0] == '%') \
2506 xname += 2; \
2507 if (xname[0] == '*') \
2508 xname += 1; \
2509 else \
2510 fputs (user_label_prefix, FILE); \
2511 fputs (xname, FILE); \
2512 } while (0)
2513 \f
2514 /* Max number of args passed in registers. If this is more than 3, we will
2515 have problems with ebx (register #4), since it is a caller save register and
2516 is also used as the pic register in ELF. So for now, don't allow more than
2517 3 registers to be passed in registers. */
2518
2519 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2520
2521 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2522
2523 \f
2524 /* Specify the machine mode that this machine uses
2525 for the index in the tablejump instruction. */
2526 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2527
2528 /* Define as C expression which evaluates to nonzero if the tablejump
2529 instruction expects the table to contain offsets from the address of the
2530 table.
2531 Do not define this if the table should contain absolute addresses. */
2532 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2533
2534 /* Define this as 1 if `char' should by default be signed; else as 0. */
2535 #define DEFAULT_SIGNED_CHAR 1
2536
2537 /* Number of bytes moved into a data cache for a single prefetch operation. */
2538 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2539
2540 /* Number of prefetch operations that can be done in parallel. */
2541 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2542
2543 /* Max number of bytes we can move from memory to memory
2544 in one reasonably fast instruction. */
2545 #define MOVE_MAX 16
2546
2547 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2548 move efficiently, as opposed to MOVE_MAX which is the maximum
2549 number of bytes we can move with a single instruction. */
2550 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2551
2552 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2553 move-instruction pairs, we will do a movstr or libcall instead.
2554 Increasing the value will always make code faster, but eventually
2555 incurs high cost in increased code size.
2556
2557 If you don't define this, a reasonable default is used. */
2558
2559 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2560
2561 /* Define if shifts truncate the shift count
2562 which implies one can omit a sign-extension or zero-extension
2563 of a shift count. */
2564 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2565
2566 /* #define SHIFT_COUNT_TRUNCATED */
2567
2568 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2569 is done just by pretending it is already truncated. */
2570 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2571
2572 /* We assume that the store-condition-codes instructions store 0 for false
2573 and some other value for true. This is the value stored for true. */
2574
2575 #define STORE_FLAG_VALUE 1
2576
2577 /* When a prototype says `char' or `short', really pass an `int'.
2578 (The 386 can't easily push less than an int.) */
2579
2580 #define PROMOTE_PROTOTYPES 1
2581
2582 /* A macro to update M and UNSIGNEDP when an object whose type is
2583 TYPE and which has the specified mode and signedness is to be
2584 stored in a register. This macro is only called when TYPE is a
2585 scalar type.
2586
2587 On i386 it is sometimes useful to promote HImode and QImode
2588 quantities to SImode. The choice depends on target type. */
2589
2590 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2591 do { \
2592 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2593 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2594 (MODE) = SImode; \
2595 } while (0)
2596
2597 /* Specify the machine mode that pointers have.
2598 After generation of rtl, the compiler makes no further distinction
2599 between pointers and any other objects of this machine mode. */
2600 #define Pmode (TARGET_64BIT ? DImode : SImode)
2601
2602 /* A function address in a call instruction
2603 is a byte address (for indexing purposes)
2604 so give the MEM rtx a byte's mode. */
2605 #define FUNCTION_MODE QImode
2606 \f
2607 /* A C expression for the cost of moving data from a register in class FROM to
2608 one in class TO. The classes are expressed using the enumeration values
2609 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2610 interpreted relative to that.
2611
2612 It is not required that the cost always equal 2 when FROM is the same as TO;
2613 on some machines it is expensive to move between registers if they are not
2614 general registers. */
2615
2616 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2617 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2618
2619 /* A C expression for the cost of moving data of mode M between a
2620 register and memory. A value of 2 is the default; this cost is
2621 relative to those in `REGISTER_MOVE_COST'.
2622
2623 If moving between registers and memory is more expensive than
2624 between two registers, you should define this macro to express the
2625 relative cost. */
2626
2627 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2628 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2629
2630 /* A C expression for the cost of a branch instruction. A value of 1
2631 is the default; other values are interpreted relative to that. */
2632
2633 #define BRANCH_COST ix86_branch_cost
2634
2635 /* Define this macro as a C expression which is nonzero if accessing
2636 less than a word of memory (i.e. a `char' or a `short') is no
2637 faster than accessing a word of memory, i.e., if such access
2638 require more than one instruction or if there is no difference in
2639 cost between byte and (aligned) word loads.
2640
2641 When this macro is not defined, the compiler will access a field by
2642 finding the smallest containing object; when it is defined, a
2643 fullword load will be used if alignment permits. Unless bytes
2644 accesses are faster than word accesses, using word accesses is
2645 preferable since it may eliminate subsequent memory access if
2646 subsequent accesses occur to other fields in the same word of the
2647 structure, but to different bytes. */
2648
2649 #define SLOW_BYTE_ACCESS 0
2650
2651 /* Nonzero if access to memory by shorts is slow and undesirable. */
2652 #define SLOW_SHORT_ACCESS 0
2653
2654 /* Define this macro to be the value 1 if unaligned accesses have a
2655 cost many times greater than aligned accesses, for example if they
2656 are emulated in a trap handler.
2657
2658 When this macro is nonzero, the compiler will act as if
2659 `STRICT_ALIGNMENT' were nonzero when generating code for block
2660 moves. This can cause significantly more instructions to be
2661 produced. Therefore, do not set this macro nonzero if unaligned
2662 accesses only add a cycle or two to the time for a memory access.
2663
2664 If the value of this macro is always zero, it need not be defined. */
2665
2666 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2667
2668 /* Define this macro to inhibit strength reduction of memory
2669 addresses. (On some machines, such strength reduction seems to do
2670 harm rather than good.) */
2671
2672 /* #define DONT_REDUCE_ADDR */
2673
2674 /* Define this macro if it is as good or better to call a constant
2675 function address than to call an address kept in a register.
2676
2677 Desirable on the 386 because a CALL with a constant address is
2678 faster than one with a register address. */
2679
2680 #define NO_FUNCTION_CSE
2681
2682 /* Define this macro if it is as good or better for a function to call
2683 itself with an explicit address than to call an address kept in a
2684 register. */
2685
2686 #define NO_RECURSIVE_FUNCTION_CSE
2687 \f
2688 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2689 return the mode to be used for the comparison.
2690
2691 For floating-point equality comparisons, CCFPEQmode should be used.
2692 VOIDmode should be used in all other cases.
2693
2694 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2695 possible, to allow for more combinations. */
2696
2697 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2698
2699 /* Return nonzero if MODE implies a floating point inequality can be
2700 reversed. */
2701
2702 #define REVERSIBLE_CC_MODE(MODE) 1
2703
2704 /* A C expression whose value is reversed condition code of the CODE for
2705 comparison done in CC_MODE mode. */
2706 #define REVERSE_CONDITION(CODE, MODE) \
2707 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2708 : reverse_condition_maybe_unordered (CODE))
2709
2710 \f
2711 /* Control the assembler format that we output, to the extent
2712 this does not vary between assemblers. */
2713
2714 /* How to refer to registers in assembler output.
2715 This sequence is indexed by compiler's hard-register-number (see above). */
2716
2717 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2718 For non floating point regs, the following are the HImode names.
2719
2720 For float regs, the stack top is sometimes referred to as "%st(0)"
2721 instead of just "%st". PRINT_REG handles this with the "y" code. */
2722
2723 #undef HI_REGISTER_NAMES
2724 #define HI_REGISTER_NAMES \
2725 {"ax","dx","cx","bx","si","di","bp","sp", \
2726 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2727 "flags","fpsr", "dirflag", "frame", \
2728 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2729 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2730 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2731 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2732
2733 #define REGISTER_NAMES HI_REGISTER_NAMES
2734
2735 /* Table of additional register names to use in user input. */
2736
2737 #define ADDITIONAL_REGISTER_NAMES \
2738 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2739 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2740 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2741 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2742 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2743 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2744 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2745 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2746
2747 /* Note we are omitting these since currently I don't know how
2748 to get gcc to use these, since they want the same but different
2749 number as al, and ax.
2750 */
2751
2752 #define QI_REGISTER_NAMES \
2753 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2754
2755 /* These parallel the array above, and can be used to access bits 8:15
2756 of regs 0 through 3. */
2757
2758 #define QI_HIGH_REGISTER_NAMES \
2759 {"ah", "dh", "ch", "bh", }
2760
2761 /* How to renumber registers for dbx and gdb. */
2762
2763 #define DBX_REGISTER_NUMBER(N) \
2764 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2765
2766 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2767 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2768 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2769
2770 /* Before the prologue, RA is at 0(%esp). */
2771 #define INCOMING_RETURN_ADDR_RTX \
2772 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2773
2774 /* After the prologue, RA is at -4(AP) in the current frame. */
2775 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2776 ((COUNT) == 0 \
2777 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2778 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2779
2780 /* PC is dbx register 8; let's use that column for RA. */
2781 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2782
2783 /* Before the prologue, the top of the frame is at 4(%esp). */
2784 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2785
2786 /* Describe how we implement __builtin_eh_return. */
2787 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2788 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2789
2790
2791 /* Select a format to encode pointers in exception handling data. CODE
2792 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2793 true if the symbol may be affected by dynamic relocations.
2794
2795 ??? All x86 object file formats are capable of representing this.
2796 After all, the relocation needed is the same as for the call insn.
2797 Whether or not a particular assembler allows us to enter such, I
2798 guess we'll have to see. */
2799 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2800 (flag_pic \
2801 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2802 : DW_EH_PE_absptr)
2803
2804 /* This is how to output an insn to push a register on the stack.
2805 It need not be very fast code. */
2806
2807 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2808 do { \
2809 if (TARGET_64BIT) \
2810 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2811 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2812 else \
2813 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2814 } while (0)
2815
2816 /* This is how to output an insn to pop a register from the stack.
2817 It need not be very fast code. */
2818
2819 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2820 do { \
2821 if (TARGET_64BIT) \
2822 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2823 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2824 else \
2825 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2826 } while (0)
2827
2828 /* This is how to output an element of a case-vector that is absolute. */
2829
2830 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2831 ix86_output_addr_vec_elt ((FILE), (VALUE))
2832
2833 /* This is how to output an element of a case-vector that is relative. */
2834
2835 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2836 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2837
2838 /* Under some conditions we need jump tables in the text section, because
2839 the assembler cannot handle label differences between sections. */
2840
2841 #define JUMP_TABLES_IN_TEXT_SECTION \
2842 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2843
2844 /* A C statement that outputs an address constant appropriate to
2845 for DWARF debugging. */
2846
2847 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2848 i386_dwarf_output_addr_const ((FILE), (X))
2849
2850 /* Emit a dtp-relative reference to a TLS variable. */
2851
2852 #ifdef HAVE_AS_TLS
2853 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2854 i386_output_dwarf_dtprel (FILE, SIZE, X)
2855 #endif
2856
2857 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2858 and switch back. For x86 we do this only to save a few bytes that
2859 would otherwise be unused in the text section. */
2860 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2861 asm (SECTION_OP "\n\t" \
2862 "call " USER_LABEL_PREFIX #FUNC "\n" \
2863 TEXT_SECTION_ASM_OP);
2864 \f
2865 /* Print operand X (an rtx) in assembler syntax to file FILE.
2866 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2867 Effect of various CODE letters is described in i386.c near
2868 print_operand function. */
2869
2870 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2871 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2872
2873 /* Print the name of a register based on its machine mode and number.
2874 If CODE is 'w', pretend the mode is HImode.
2875 If CODE is 'b', pretend the mode is QImode.
2876 If CODE is 'k', pretend the mode is SImode.
2877 If CODE is 'q', pretend the mode is DImode.
2878 If CODE is 'h', pretend the reg is the `high' byte register.
2879 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2880
2881 #define PRINT_REG(X, CODE, FILE) \
2882 print_reg ((X), (CODE), (FILE))
2883
2884 #define PRINT_OPERAND(FILE, X, CODE) \
2885 print_operand ((FILE), (X), (CODE))
2886
2887 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2888 print_operand_address ((FILE), (ADDR))
2889
2890 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2891 do { \
2892 if (! output_addr_const_extra (FILE, (X))) \
2893 goto FAIL; \
2894 } while (0);
2895
2896 /* Print the name of a register for based on its machine mode and number.
2897 This macro is used to print debugging output.
2898 This macro is different from PRINT_REG in that it may be used in
2899 programs that are not linked with aux-output.o. */
2900
2901 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2902 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
2903 static const char * const qi_name[] = QI_REGISTER_NAMES; \
2904 fprintf ((FILE), "%d ", REGNO (X)); \
2905 if (REGNO (X) == FLAGS_REG) \
2906 { fputs ("flags", (FILE)); break; } \
2907 if (REGNO (X) == DIRFLAG_REG) \
2908 { fputs ("dirflag", (FILE)); break; } \
2909 if (REGNO (X) == FPSR_REG) \
2910 { fputs ("fpsr", (FILE)); break; } \
2911 if (REGNO (X) == ARG_POINTER_REGNUM) \
2912 { fputs ("argp", (FILE)); break; } \
2913 if (REGNO (X) == FRAME_POINTER_REGNUM) \
2914 { fputs ("frame", (FILE)); break; } \
2915 if (STACK_TOP_P (X)) \
2916 { fputs ("st(0)", (FILE)); break; } \
2917 if (FP_REG_P (X)) \
2918 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
2919 if (REX_INT_REG_P (X)) \
2920 { \
2921 switch (GET_MODE_SIZE (GET_MODE (X))) \
2922 { \
2923 default: \
2924 case 8: \
2925 fprintf ((FILE), "r%i", REGNO (X) \
2926 - FIRST_REX_INT_REG + 8); \
2927 break; \
2928 case 4: \
2929 fprintf ((FILE), "r%id", REGNO (X) \
2930 - FIRST_REX_INT_REG + 8); \
2931 break; \
2932 case 2: \
2933 fprintf ((FILE), "r%iw", REGNO (X) \
2934 - FIRST_REX_INT_REG + 8); \
2935 break; \
2936 case 1: \
2937 fprintf ((FILE), "r%ib", REGNO (X) \
2938 - FIRST_REX_INT_REG + 8); \
2939 break; \
2940 } \
2941 break; \
2942 } \
2943 switch (GET_MODE_SIZE (GET_MODE (X))) \
2944 { \
2945 case 8: \
2946 fputs ("r", (FILE)); \
2947 fputs (hi_name[REGNO (X)], (FILE)); \
2948 break; \
2949 default: \
2950 fputs ("e", (FILE)); \
2951 case 2: \
2952 fputs (hi_name[REGNO (X)], (FILE)); \
2953 break; \
2954 case 1: \
2955 fputs (qi_name[REGNO (X)], (FILE)); \
2956 break; \
2957 } \
2958 } while (0)
2959
2960 /* a letter which is not needed by the normal asm syntax, which
2961 we can use for operand syntax in the extended asm */
2962
2963 #define ASM_OPERAND_LETTER '#'
2964 #define RET return ""
2965 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2966 \f
2967 /* Define the codes that are matched by predicates in i386.c. */
2968
2969 #define PREDICATE_CODES \
2970 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2971 SYMBOL_REF, LABEL_REF, CONST}}, \
2972 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2973 SYMBOL_REF, LABEL_REF, CONST}}, \
2974 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
2975 SYMBOL_REF, LABEL_REF, CONST}}, \
2976 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2977 SYMBOL_REF, LABEL_REF, CONST}}, \
2978 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2979 SYMBOL_REF, LABEL_REF, CONST}}, \
2980 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2981 SYMBOL_REF, LABEL_REF, CONST}}, \
2982 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2983 SYMBOL_REF, LABEL_REF}}, \
2984 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
2985 {"const_int_1_operand", {CONST_INT}}, \
2986 {"const_int_1_31_operand", {CONST_INT}}, \
2987 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2988 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2989 LABEL_REF, SUBREG, REG, MEM}}, \
2990 {"pic_symbolic_operand", {CONST}}, \
2991 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
2992 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
2993 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
2994 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
2995 {"const1_operand", {CONST_INT}}, \
2996 {"const248_operand", {CONST_INT}}, \
2997 {"incdec_operand", {CONST_INT}}, \
2998 {"mmx_reg_operand", {REG}}, \
2999 {"reg_no_sp_operand", {SUBREG, REG}}, \
3000 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3001 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3002 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
3003 {"index_register_operand", {SUBREG, REG}}, \
3004 {"flags_reg_operand", {REG}}, \
3005 {"q_regs_operand", {SUBREG, REG}}, \
3006 {"non_q_regs_operand", {SUBREG, REG}}, \
3007 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3008 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3009 GE, UNGE, LTGT, UNEQ}}, \
3010 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3011 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3012 }}, \
3013 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
3014 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3015 UNGE, UNGT, LTGT, UNEQ }}, \
3016 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
3017 GE, UNGE, LTGT, UNEQ}}, \
3018 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3019 {"ext_register_operand", {SUBREG, REG}}, \
3020 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3021 {"mult_operator", {MULT}}, \
3022 {"div_operator", {DIV}}, \
3023 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3024 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3025 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3026 LSHIFTRT, ROTATERT}}, \
3027 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
3028 {"memory_displacement_operand", {MEM}}, \
3029 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3030 LABEL_REF, SUBREG, REG, MEM, AND}}, \
3031 {"long_memory_operand", {MEM}}, \
3032 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3033 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3034 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3035 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
3036 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
3037 {"any_fp_register_operand", {REG}}, \
3038 {"register_and_not_any_fp_reg_operand", {REG}}, \
3039 {"fp_register_operand", {REG}}, \
3040 {"register_and_not_fp_reg_operand", {REG}}, \
3041 {"zero_extended_scalar_load_operand", {MEM}}, \
3042 {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}}, \
3043
3044 /* A list of predicates that do special things with modes, and so
3045 should not elicit warnings for VOIDmode match_operand. */
3046
3047 #define SPECIAL_MODE_PREDICATES \
3048 "ext_register_operand",
3049 \f
3050 /* Which processor to schedule for. The cpu attribute defines a list that
3051 mirrors this list, so changes to i386.md must be made at the same time. */
3052
3053 enum processor_type
3054 {
3055 PROCESSOR_I386, /* 80386 */
3056 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3057 PROCESSOR_PENTIUM,
3058 PROCESSOR_PENTIUMPRO,
3059 PROCESSOR_K6,
3060 PROCESSOR_ATHLON,
3061 PROCESSOR_PENTIUM4,
3062 PROCESSOR_K8,
3063 PROCESSOR_max
3064 };
3065
3066 extern enum processor_type ix86_tune;
3067 extern const char *ix86_tune_string;
3068
3069 extern enum processor_type ix86_arch;
3070 extern const char *ix86_arch_string;
3071
3072 enum fpmath_unit
3073 {
3074 FPMATH_387 = 1,
3075 FPMATH_SSE = 2
3076 };
3077
3078 extern enum fpmath_unit ix86_fpmath;
3079 extern const char *ix86_fpmath_string;
3080
3081 enum tls_dialect
3082 {
3083 TLS_DIALECT_GNU,
3084 TLS_DIALECT_SUN
3085 };
3086
3087 extern enum tls_dialect ix86_tls_dialect;
3088 extern const char *ix86_tls_dialect_string;
3089
3090 enum cmodel {
3091 CM_32, /* The traditional 32-bit ABI. */
3092 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3093 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3094 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3095 CM_LARGE, /* No assumptions. */
3096 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3097 };
3098
3099 extern enum cmodel ix86_cmodel;
3100 extern const char *ix86_cmodel_string;
3101
3102 /* Size of the RED_ZONE area. */
3103 #define RED_ZONE_SIZE 128
3104 /* Reserved area of the red zone for temporaries. */
3105 #define RED_ZONE_RESERVE 8
3106
3107 enum asm_dialect {
3108 ASM_ATT,
3109 ASM_INTEL
3110 };
3111
3112 extern const char *ix86_asm_string;
3113 extern enum asm_dialect ix86_asm_dialect;
3114
3115 extern int ix86_regparm;
3116 extern const char *ix86_regparm_string;
3117
3118 extern int ix86_preferred_stack_boundary;
3119 extern const char *ix86_preferred_stack_boundary_string;
3120
3121 extern int ix86_branch_cost;
3122 extern const char *ix86_branch_cost_string;
3123
3124 extern const char *ix86_debug_arg_string;
3125 extern const char *ix86_debug_addr_string;
3126
3127 /* Obsoleted by -f options. Remove before 3.2 ships. */
3128 extern const char *ix86_align_loops_string;
3129 extern const char *ix86_align_jumps_string;
3130 extern const char *ix86_align_funcs_string;
3131
3132 /* Smallest class containing REGNO. */
3133 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3134
3135 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3136 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3137 \f
3138 /* To properly truncate FP values into integers, we need to set i387 control
3139 word. We can't emit proper mode switching code before reload, as spills
3140 generated by reload may truncate values incorrectly, but we still can avoid
3141 redundant computation of new control word by the mode switching pass.
3142 The fldcw instructions are still emitted redundantly, but this is probably
3143 not going to be noticeable problem, as most CPUs do have fast path for
3144 the sequence.
3145
3146 The machinery is to emit simple truncation instructions and split them
3147 before reload to instructions having USEs of two memory locations that
3148 are filled by this code to old and new control word.
3149
3150 Post-reload pass may be later used to eliminate the redundant fildcw if
3151 needed. */
3152
3153 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3154
3155 /* Define this macro if the port needs extra instructions inserted
3156 for mode switching in an optimizing compilation. */
3157
3158 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3159
3160 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3161 initializer for an array of integers. Each initializer element N
3162 refers to an entity that needs mode switching, and specifies the
3163 number of different modes that might need to be set for this
3164 entity. The position of the initializer in the initializer -
3165 starting counting at zero - determines the integer that is used to
3166 refer to the mode-switched entity in question. */
3167
3168 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3169
3170 /* ENTITY is an integer specifying a mode-switched entity. If
3171 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3172 return an integer value not larger than the corresponding element
3173 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3174 must be switched into prior to the execution of INSN. */
3175
3176 #define MODE_NEEDED(ENTITY, I) \
3177 (GET_CODE (I) == CALL_INSN \
3178 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3179 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3180 ? FP_CW_UNINITIALIZED \
3181 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3182 ? FP_CW_ANY \
3183 : FP_CW_STORED)
3184
3185 /* This macro specifies the order in which modes for ENTITY are
3186 processed. 0 is the highest priority. */
3187
3188 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3189
3190 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3191 is the set of hard registers live at the point where the insn(s)
3192 are to be inserted. */
3193
3194 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3195 ((MODE) == FP_CW_STORED \
3196 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3197 assign_386_stack_local (HImode, 2)), 0\
3198 : 0)
3199 \f
3200 /* Avoid renaming of stack registers, as doing so in combination with
3201 scheduling just increases amount of live registers at time and in
3202 the turn amount of fxch instructions needed.
3203
3204 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3205
3206 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3207 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3208
3209 \f
3210 #define MACHINE_DEPENDENT_REORG(X) x86_machine_dependent_reorg(X)
3211
3212 #define DLL_IMPORT_EXPORT_PREFIX '#'
3213
3214 #define FASTCALL_PREFIX '@'
3215 \f
3216 struct machine_function GTY(())
3217 {
3218 struct stack_local_entry *stack_locals;
3219 const char *some_ld_name;
3220 int save_varrargs_registers;
3221 int accesses_prev_frame;
3222 int optimize_mode_switching;
3223 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3224 determine the style used. */
3225 int use_fast_prologue_epilogue;
3226 };
3227
3228 #define ix86_stack_locals (cfun->machine->stack_locals)
3229 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3230 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3231
3232 /*
3233 Local variables:
3234 version-control: t
3235 End:
3236 */