builtins.c (std_expand_builtin_va_arg): Align operand when needed.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #ifdef TARGET_64BIT_DEFAULT
101 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102 #else
103 #define TARGET_CPU_DEFAULT 0
104 #endif
105 #endif
106
107 /* Masks for the -m switches */
108 #define MASK_80387 0x00000001 /* Hardware floating point */
109 #define MASK_RTD 0x00000002 /* Use ret that pops args */
110 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
111 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
112 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
113 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
114 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
115 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
116 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
117 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
118 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
119 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
120 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
121 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
122 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
123 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
124 #define MASK_PNI 0x00010000 /* Support PNI regs/builtins */
125 #define MASK_3DNOW 0x00020000 /* Support 3Dnow builtins */
126 #define MASK_3DNOW_A 0x00040000 /* Support Athlon 3Dnow builtins */
127 #define MASK_128BIT_LONG_DOUBLE 0x00080000 /* long double size is 128bit */
128 #define MASK_64BIT 0x00100000 /* Produce 64bit code */
129 #define MASK_MS_BITFIELD_LAYOUT 0x00200000 /* Use native (MS) bitfield layout */
130 #define MASK_TLS_DIRECT_SEG_REFS 0x00400000 /* Avoid adding %gs:0 */
131
132 /* Unused: 0x03e0000 */
133
134 /* ... overlap with subtarget options starts by 0x04000000. */
135 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
136
137 /* Use the floating point instructions */
138 #define TARGET_80387 (target_flags & MASK_80387)
139
140 /* Compile using ret insn that pops args.
141 This will not work unless you use prototypes at least
142 for all functions that can take varying numbers of args. */
143 #define TARGET_RTD (target_flags & MASK_RTD)
144
145 /* Align doubles to a two word boundary. This breaks compatibility with
146 the published ABI's for structures containing doubles, but produces
147 faster code on the pentium. */
148 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
149
150 /* Use push instructions to save outgoing args. */
151 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
152
153 /* Accumulate stack adjustments to prologue/epilogue. */
154 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
155 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
156
157 /* Put uninitialized locals into bss, not data.
158 Meaningful only on svr3. */
159 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
160
161 /* Use IEEE floating point comparisons. These handle correctly the cases
162 where the result of a comparison is unordered. Normally SIGFPE is
163 generated in such cases, in which case this isn't needed. */
164 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
165
166 /* Functions that return a floating point value may return that value
167 in the 387 FPU or in 386 integer registers. If set, this flag causes
168 the 387 to be used, which is compatible with most calling conventions. */
169 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
170
171 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
172 This mode wastes cache, but avoid misaligned data accesses and simplifies
173 address calculations. */
174 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
175
176 /* Disable generation of FP sin, cos and sqrt operations for 387.
177 This is because FreeBSD lacks these in the math-emulator-code */
178 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
179
180 /* Don't create frame pointers for leaf functions */
181 #define TARGET_OMIT_LEAF_FRAME_POINTER \
182 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
183
184 /* Debug GO_IF_LEGITIMATE_ADDRESS */
185 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
186
187 /* Debug FUNCTION_ARG macros */
188 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
189
190 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
191 compile-time constant. */
192 #ifdef IN_LIBGCC2
193 #ifdef __x86_64__
194 #define TARGET_64BIT 1
195 #else
196 #define TARGET_64BIT 0
197 #endif
198 #else
199 #ifdef TARGET_BI_ARCH
200 #define TARGET_64BIT (target_flags & MASK_64BIT)
201 #else
202 #if TARGET_64BIT_DEFAULT
203 #define TARGET_64BIT 1
204 #else
205 #define TARGET_64BIT 0
206 #endif
207 #endif
208 #endif
209
210 /* Avoid adding %gs:0 in TLS references; use %gs:address directly. */
211 #define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
212
213 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
214 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
215 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
216 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
217 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
218 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
219 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
220 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
221 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
222
223 #define TUNEMASK (1 << ix86_tune)
224 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
225 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
226 extern const int x86_branch_hints, x86_unroll_strlen;
227 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
228 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
229 extern const int x86_use_cltd, x86_read_modify_write;
230 extern const int x86_read_modify, x86_split_long_moves;
231 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
232 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
233 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
234 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
235 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
236 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
237 extern const int x86_epilogue_using_move, x86_decompose_lea;
238 extern const int x86_arch_always_fancy_math_387, x86_shift1;
239 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
240 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
241 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
242 extern const int x86_inter_unit_moves;
243 extern int x86_prefetch_sse;
244
245 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
246 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
247 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
248 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
249 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
250 /* For sane SSE instruction set generation we need fcomi instruction. It is
251 safe to enable all CMOVE instructions. */
252 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
253 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
254 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
255 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
256 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
257 #define TARGET_MOVX (x86_movx & TUNEMASK)
258 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
259 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
260 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
261 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
262 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
263 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
264 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
265 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
266 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
267 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
268 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
269 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
270 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
271 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
272 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
273 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
274 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
275 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
276 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
277 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
278 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
279 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
280 (x86_sse_partial_reg_dependency & TUNEMASK)
281 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
282 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
283 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
284 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
285 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
286 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
287 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
288 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
289 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
290 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
291 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
292 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
293 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
294 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
295 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
296
297 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
298
299 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
300 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
301
302 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
303
304 #define TARGET_SSE ((target_flags & MASK_SSE) != 0)
305 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
306 #define TARGET_PNI ((target_flags & MASK_PNI) != 0)
307 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
308 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
309 && (ix86_fpmath & FPMATH_387))
310 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
311 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
312 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
313
314 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
315
316 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
317
318 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
319 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
320
321 /* WARNING: Do not mark empty strings for translation, as calling
322 gettext on an empty string does NOT return an empty
323 string. */
324
325
326 #define TARGET_SWITCHES \
327 { { "80387", MASK_80387, N_("Use hardware fp") }, \
328 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
329 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
330 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
331 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
332 { "386", 0, "" /*Deprecated.*/}, \
333 { "486", 0, "" /*Deprecated.*/}, \
334 { "pentium", 0, "" /*Deprecated.*/}, \
335 { "pentiumpro", 0, "" /*Deprecated.*/}, \
336 { "intel-syntax", 0, "" /*Deprecated.*/}, \
337 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
338 { "rtd", MASK_RTD, \
339 N_("Alternate calling convention") }, \
340 { "no-rtd", -MASK_RTD, \
341 N_("Use normal calling convention") }, \
342 { "align-double", MASK_ALIGN_DOUBLE, \
343 N_("Align some doubles on dword boundary") }, \
344 { "no-align-double", -MASK_ALIGN_DOUBLE, \
345 N_("Align doubles on word boundary") }, \
346 { "svr3-shlib", MASK_SVR3_SHLIB, \
347 N_("Uninitialized locals in .bss") }, \
348 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
349 N_("Uninitialized locals in .data") }, \
350 { "ieee-fp", MASK_IEEE_FP, \
351 N_("Use IEEE math for fp comparisons") }, \
352 { "no-ieee-fp", -MASK_IEEE_FP, \
353 N_("Do not use IEEE math for fp comparisons") }, \
354 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
355 N_("Return values of functions in FPU registers") }, \
356 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
357 N_("Do not return values of functions in FPU registers")}, \
358 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
359 N_("Do not generate sin, cos, sqrt for FPU") }, \
360 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
361 N_("Generate sin, cos, sqrt for FPU")}, \
362 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
363 N_("Omit the frame pointer in leaf functions") }, \
364 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
365 { "stack-arg-probe", MASK_STACK_PROBE, \
366 N_("Enable stack probing") }, \
367 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
368 { "windows", 0, 0 /* undocumented */ }, \
369 { "dll", 0, 0 /* undocumented */ }, \
370 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
371 N_("Align destination of the string operations") }, \
372 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
373 N_("Do not align destination of the string operations") }, \
374 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
375 N_("Inline all known string operations") }, \
376 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
377 N_("Do not inline all known string operations") }, \
378 { "push-args", -MASK_NO_PUSH_ARGS, \
379 N_("Use push instructions to save outgoing arguments") }, \
380 { "no-push-args", MASK_NO_PUSH_ARGS, \
381 N_("Do not use push instructions to save outgoing arguments") }, \
382 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
383 N_("Use push instructions to save outgoing arguments") }, \
384 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
385 N_("Do not use push instructions to save outgoing arguments") }, \
386 { "mmx", MASK_MMX, \
387 N_("Support MMX built-in functions") }, \
388 { "no-mmx", -MASK_MMX, \
389 N_("Do not support MMX built-in functions") }, \
390 { "3dnow", MASK_3DNOW, \
391 N_("Support 3DNow! built-in functions") }, \
392 { "no-3dnow", -MASK_3DNOW, \
393 N_("Do not support 3DNow! built-in functions") }, \
394 { "sse", MASK_SSE, \
395 N_("Support MMX and SSE built-in functions and code generation") }, \
396 { "no-sse", -MASK_SSE, \
397 N_("Do not support MMX and SSE built-in functions and code generation") },\
398 { "sse2", MASK_SSE2, \
399 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
400 { "no-sse2", -MASK_SSE2, \
401 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
402 { "pni", MASK_PNI, \
403 N_("Support MMX, SSE, SSE2 and PNI built-in functions and code generation") },\
404 { "no-pni", -MASK_PNI, \
405 N_("Do not support MMX, SSE, SSE2 and PNI built-in functions and code generation") },\
406 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
407 N_("sizeof(long double) is 16") }, \
408 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
409 N_("sizeof(long double) is 12") }, \
410 { "64", MASK_64BIT, \
411 N_("Generate 64bit x86-64 code") }, \
412 { "32", -MASK_64BIT, \
413 N_("Generate 32bit i386 code") }, \
414 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
415 N_("Use native (MS) bitfield layout") }, \
416 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
417 N_("Use gcc default bitfield layout") }, \
418 { "red-zone", -MASK_NO_RED_ZONE, \
419 N_("Use red-zone in the x86-64 code") }, \
420 { "no-red-zone", MASK_NO_RED_ZONE, \
421 N_("Do not use red-zone in the x86-64 code") }, \
422 { "tls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS, \
423 N_("Use direct references against %gs when accessing tls data") }, \
424 { "no-tls-direct-seg-refs", -MASK_TLS_DIRECT_SEG_REFS, \
425 N_("Do not use direct references against %gs when accessing tls data") }, \
426 SUBTARGET_SWITCHES \
427 { "", \
428 TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT \
429 | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
430
431 #ifndef TARGET_64BIT_DEFAULT
432 #define TARGET_64BIT_DEFAULT 0
433 #endif
434 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
435 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
436 #endif
437
438 /* Once GDB has been enhanced to deal with functions without frame
439 pointers, we can change this to allow for elimination of
440 the frame pointer in leaf functions. */
441 #define TARGET_DEFAULT 0
442
443 /* This is not really a target flag, but is done this way so that
444 it's analogous to similar code for Mach-O on PowerPC. darwin.h
445 redefines this to 1. */
446 #define TARGET_MACHO 0
447
448 /* This macro is similar to `TARGET_SWITCHES' but defines names of
449 command options that have values. Its definition is an
450 initializer with a subgrouping for each command option.
451
452 Each subgrouping contains a string constant, that defines the
453 fixed part of the option name, and the address of a variable. The
454 variable, type `char *', is set to the variable part of the given
455 option if the fixed part matches. The actual option name is made
456 by appending `-m' to the specified name. */
457 #define TARGET_OPTIONS \
458 { { "tune=", &ix86_tune_string, \
459 N_("Schedule code for given CPU"), 0}, \
460 { "fpmath=", &ix86_fpmath_string, \
461 N_("Generate floating point mathematics using given instruction set"), 0},\
462 { "arch=", &ix86_arch_string, \
463 N_("Generate code for given CPU"), 0}, \
464 { "regparm=", &ix86_regparm_string, \
465 N_("Number of registers used to pass integer arguments"), 0},\
466 { "align-loops=", &ix86_align_loops_string, \
467 N_("Loop code aligned to this power of 2"), 0}, \
468 { "align-jumps=", &ix86_align_jumps_string, \
469 N_("Jump targets are aligned to this power of 2"), 0}, \
470 { "align-functions=", &ix86_align_funcs_string, \
471 N_("Function starts are aligned to this power of 2"), 0}, \
472 { "preferred-stack-boundary=", \
473 &ix86_preferred_stack_boundary_string, \
474 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
475 { "branch-cost=", &ix86_branch_cost_string, \
476 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
477 { "cmodel=", &ix86_cmodel_string, \
478 N_("Use given x86-64 code model"), 0}, \
479 { "debug-arg", &ix86_debug_arg_string, \
480 "" /* Undocumented. */, 0}, \
481 { "debug-addr", &ix86_debug_addr_string, \
482 "" /* Undocumented. */, 0}, \
483 { "asm=", &ix86_asm_string, \
484 N_("Use given assembler dialect"), 0}, \
485 { "tls-dialect=", &ix86_tls_dialect_string, \
486 N_("Use given thread-local storage dialect"), 0}, \
487 SUBTARGET_OPTIONS \
488 }
489
490 /* Sometimes certain combinations of command options do not make
491 sense on a particular target machine. You can define a macro
492 `OVERRIDE_OPTIONS' to take account of this. This macro, if
493 defined, is executed once just after all the command options have
494 been parsed.
495
496 Don't use this macro to turn on various extra optimizations for
497 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
498
499 #define OVERRIDE_OPTIONS override_options ()
500
501 /* These are meant to be redefined in the host dependent files */
502 #define SUBTARGET_SWITCHES
503 #define SUBTARGET_OPTIONS
504
505 /* Define this to change the optimizations performed by default. */
506 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
507 optimization_options ((LEVEL), (SIZE))
508
509 /* Support for configure-time defaults of some command line options. */
510 #define OPTION_DEFAULT_SPECS \
511 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
512 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
513 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
514
515 /* Specs for the compiler proper */
516
517 #ifndef CC1_CPU_SPEC
518 #define CC1_CPU_SPEC "\
519 %{!mtune*: \
520 %{m386:mtune=i386 \
521 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
522 %{m486:-mtune=i486 \
523 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
524 %{mpentium:-mtune=pentium \
525 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
526 %{mpentiumpro:-mtune=pentiumpro \
527 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
528 %{mcpu=*:-mtune=%* \
529 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
530 %<mcpu=* \
531 %{mintel-syntax:-masm=intel \
532 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
533 %{mno-intel-syntax:-masm=att \
534 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
535 #endif
536 \f
537 /* Target CPU builtins. */
538 #define TARGET_CPU_CPP_BUILTINS() \
539 do \
540 { \
541 size_t arch_len = strlen (ix86_arch_string); \
542 size_t tune_len = strlen (ix86_tune_string); \
543 int last_arch_char = ix86_arch_string[arch_len - 1]; \
544 int last_tune_char = ix86_tune_string[tune_len - 1]; \
545 \
546 if (TARGET_64BIT) \
547 { \
548 builtin_assert ("cpu=x86_64"); \
549 builtin_assert ("machine=x86_64"); \
550 builtin_define ("__amd64"); \
551 builtin_define ("__amd64__"); \
552 builtin_define ("__x86_64"); \
553 builtin_define ("__x86_64__"); \
554 } \
555 else \
556 { \
557 builtin_assert ("cpu=i386"); \
558 builtin_assert ("machine=i386"); \
559 builtin_define_std ("i386"); \
560 } \
561 \
562 /* Built-ins based on -mtune= (or -march= if no \
563 -mtune= given). */ \
564 if (TARGET_386) \
565 builtin_define ("__tune_i386__"); \
566 else if (TARGET_486) \
567 builtin_define ("__tune_i486__"); \
568 else if (TARGET_PENTIUM) \
569 { \
570 builtin_define ("__tune_i586__"); \
571 builtin_define ("__tune_pentium__"); \
572 if (last_tune_char == 'x') \
573 builtin_define ("__tune_pentium_mmx__"); \
574 } \
575 else if (TARGET_PENTIUMPRO) \
576 { \
577 builtin_define ("__tune_i686__"); \
578 builtin_define ("__tune_pentiumpro__"); \
579 switch (last_tune_char) \
580 { \
581 case '3': \
582 builtin_define ("__tune_pentium3__"); \
583 /* FALLTHRU */ \
584 case '2': \
585 builtin_define ("__tune_pentium2__"); \
586 break; \
587 } \
588 } \
589 else if (TARGET_K6) \
590 { \
591 builtin_define ("__tune_k6__"); \
592 if (last_tune_char == '2') \
593 builtin_define ("__tune_k6_2__"); \
594 else if (last_tune_char == '3') \
595 builtin_define ("__tune_k6_3__"); \
596 } \
597 else if (TARGET_ATHLON) \
598 { \
599 builtin_define ("__tune_athlon__"); \
600 /* Only plain "athlon" lacks SSE. */ \
601 if (last_tune_char != 'n') \
602 builtin_define ("__tune_athlon_sse__"); \
603 } \
604 else if (TARGET_K8) \
605 builtin_define ("__tune_k8__"); \
606 else if (TARGET_PENTIUM4) \
607 builtin_define ("__tune_pentium4__"); \
608 \
609 if (TARGET_MMX) \
610 builtin_define ("__MMX__"); \
611 if (TARGET_3DNOW) \
612 builtin_define ("__3dNOW__"); \
613 if (TARGET_3DNOW_A) \
614 builtin_define ("__3dNOW_A__"); \
615 if (TARGET_SSE) \
616 builtin_define ("__SSE__"); \
617 if (TARGET_SSE2) \
618 builtin_define ("__SSE2__"); \
619 if (TARGET_PNI) \
620 builtin_define ("__PNI__"); \
621 if (TARGET_SSE_MATH && TARGET_SSE) \
622 builtin_define ("__SSE_MATH__"); \
623 if (TARGET_SSE_MATH && TARGET_SSE2) \
624 builtin_define ("__SSE2_MATH__"); \
625 \
626 /* Built-ins based on -march=. */ \
627 if (ix86_arch == PROCESSOR_I486) \
628 { \
629 builtin_define ("__i486"); \
630 builtin_define ("__i486__"); \
631 } \
632 else if (ix86_arch == PROCESSOR_PENTIUM) \
633 { \
634 builtin_define ("__i586"); \
635 builtin_define ("__i586__"); \
636 builtin_define ("__pentium"); \
637 builtin_define ("__pentium__"); \
638 if (last_arch_char == 'x') \
639 builtin_define ("__pentium_mmx__"); \
640 } \
641 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
642 { \
643 builtin_define ("__i686"); \
644 builtin_define ("__i686__"); \
645 builtin_define ("__pentiumpro"); \
646 builtin_define ("__pentiumpro__"); \
647 } \
648 else if (ix86_arch == PROCESSOR_K6) \
649 { \
650 \
651 builtin_define ("__k6"); \
652 builtin_define ("__k6__"); \
653 if (last_arch_char == '2') \
654 builtin_define ("__k6_2__"); \
655 else if (last_arch_char == '3') \
656 builtin_define ("__k6_3__"); \
657 } \
658 else if (ix86_arch == PROCESSOR_ATHLON) \
659 { \
660 builtin_define ("__athlon"); \
661 builtin_define ("__athlon__"); \
662 /* Only plain "athlon" lacks SSE. */ \
663 if (last_arch_char != 'n') \
664 builtin_define ("__athlon_sse__"); \
665 } \
666 else if (ix86_arch == PROCESSOR_K8) \
667 { \
668 builtin_define ("__k8"); \
669 builtin_define ("__k8__"); \
670 } \
671 else if (ix86_arch == PROCESSOR_PENTIUM4) \
672 { \
673 builtin_define ("__pentium4"); \
674 builtin_define ("__pentium4__"); \
675 } \
676 } \
677 while (0)
678
679 #define TARGET_CPU_DEFAULT_i386 0
680 #define TARGET_CPU_DEFAULT_i486 1
681 #define TARGET_CPU_DEFAULT_pentium 2
682 #define TARGET_CPU_DEFAULT_pentium_mmx 3
683 #define TARGET_CPU_DEFAULT_pentiumpro 4
684 #define TARGET_CPU_DEFAULT_pentium2 5
685 #define TARGET_CPU_DEFAULT_pentium3 6
686 #define TARGET_CPU_DEFAULT_pentium4 7
687 #define TARGET_CPU_DEFAULT_k6 8
688 #define TARGET_CPU_DEFAULT_k6_2 9
689 #define TARGET_CPU_DEFAULT_k6_3 10
690 #define TARGET_CPU_DEFAULT_athlon 11
691 #define TARGET_CPU_DEFAULT_athlon_sse 12
692 #define TARGET_CPU_DEFAULT_k8 13
693
694 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
695 "pentiumpro", "pentium2", "pentium3", \
696 "pentium4", "k6", "k6-2", "k6-3",\
697 "athlon", "athlon-4", "k8"}
698
699 #ifndef CC1_SPEC
700 #define CC1_SPEC "%(cc1_cpu) "
701 #endif
702
703 /* This macro defines names of additional specifications to put in the
704 specs that can be used in various specifications like CC1_SPEC. Its
705 definition is an initializer with a subgrouping for each command option.
706
707 Each subgrouping contains a string constant, that defines the
708 specification name, and a string constant that used by the GCC driver
709 program.
710
711 Do not define this macro if it does not need to do anything. */
712
713 #ifndef SUBTARGET_EXTRA_SPECS
714 #define SUBTARGET_EXTRA_SPECS
715 #endif
716
717 #define EXTRA_SPECS \
718 { "cc1_cpu", CC1_CPU_SPEC }, \
719 SUBTARGET_EXTRA_SPECS
720 \f
721 /* target machine storage layout */
722
723 #define LONG_DOUBLE_TYPE_SIZE 96
724
725 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
726 FPU, assume that the fpcw is set to extended precision; when using
727 only SSE, rounding is correct; when using both SSE and the FPU,
728 the rounding precision is indeterminate, since either may be chosen
729 apparently at random. */
730 #define TARGET_FLT_EVAL_METHOD \
731 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
732
733 #define SHORT_TYPE_SIZE 16
734 #define INT_TYPE_SIZE 32
735 #define FLOAT_TYPE_SIZE 32
736 #define LONG_TYPE_SIZE BITS_PER_WORD
737 #define MAX_WCHAR_TYPE_SIZE 32
738 #define DOUBLE_TYPE_SIZE 64
739 #define LONG_LONG_TYPE_SIZE 64
740
741 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
742 #define MAX_BITS_PER_WORD 64
743 #define MAX_LONG_TYPE_SIZE 64
744 #else
745 #define MAX_BITS_PER_WORD 32
746 #define MAX_LONG_TYPE_SIZE 32
747 #endif
748
749 /* Define this if most significant byte of a word is the lowest numbered. */
750 /* That is true on the 80386. */
751
752 #define BITS_BIG_ENDIAN 0
753
754 /* Define this if most significant byte of a word is the lowest numbered. */
755 /* That is not true on the 80386. */
756 #define BYTES_BIG_ENDIAN 0
757
758 /* Define this if most significant word of a multiword number is the lowest
759 numbered. */
760 /* Not true for 80386 */
761 #define WORDS_BIG_ENDIAN 0
762
763 /* Width of a word, in units (bytes). */
764 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
765 #ifdef IN_LIBGCC2
766 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
767 #else
768 #define MIN_UNITS_PER_WORD 4
769 #endif
770
771 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
772 #define PARM_BOUNDARY BITS_PER_WORD
773
774 /* Boundary (in *bits*) on which stack pointer should be aligned. */
775 #define STACK_BOUNDARY BITS_PER_WORD
776
777 /* Boundary (in *bits*) on which the stack pointer prefers to be
778 aligned; the compiler cannot rely on having this alignment. */
779 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
780
781 /* As of July 2001, many runtimes to not align the stack properly when
782 entering main. This causes expand_main_function to forcibly align
783 the stack, which results in aligned frames for functions called from
784 main, though it does nothing for the alignment of main itself. */
785 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
786 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
787
788 /* Minimum allocation boundary for the code of a function. */
789 #define FUNCTION_BOUNDARY 8
790
791 /* C++ stores the virtual bit in the lowest bit of function pointers. */
792 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
793
794 /* Alignment of field after `int : 0' in a structure. */
795
796 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
797
798 /* Minimum size in bits of the largest boundary to which any
799 and all fundamental data types supported by the hardware
800 might need to be aligned. No data type wants to be aligned
801 rounder than this.
802
803 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
804 and Pentium Pro XFmode values at 128 bit boundaries. */
805
806 #define BIGGEST_ALIGNMENT 128
807
808 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
809 #define ALIGN_MODE_128(MODE) \
810 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
811
812 /* The published ABIs say that doubles should be aligned on word
813 boundaries, so lower the alignment for structure fields unless
814 -malign-double is set. */
815
816 /* ??? Blah -- this macro is used directly by libobjc. Since it
817 supports no vector modes, cut out the complexity and fall back
818 on BIGGEST_FIELD_ALIGNMENT. */
819 #ifdef IN_TARGET_LIBS
820 #ifdef __x86_64__
821 #define BIGGEST_FIELD_ALIGNMENT 128
822 #else
823 #define BIGGEST_FIELD_ALIGNMENT 32
824 #endif
825 #else
826 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
827 x86_field_alignment (FIELD, COMPUTED)
828 #endif
829
830 /* If defined, a C expression to compute the alignment given to a
831 constant that is being placed in memory. EXP is the constant
832 and ALIGN is the alignment that the object would ordinarily have.
833 The value of this macro is used instead of that alignment to align
834 the object.
835
836 If this macro is not defined, then ALIGN is used.
837
838 The typical use of this macro is to increase alignment for string
839 constants to be word aligned so that `strcpy' calls that copy
840 constants can be done inline. */
841
842 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
843
844 /* If defined, a C expression to compute the alignment for a static
845 variable. TYPE is the data type, and ALIGN is the alignment that
846 the object would ordinarily have. The value of this macro is used
847 instead of that alignment to align the object.
848
849 If this macro is not defined, then ALIGN is used.
850
851 One use of this macro is to increase alignment of medium-size
852 data to make it all fit in fewer cache lines. Another is to
853 cause character arrays to be word-aligned so that `strcpy' calls
854 that copy constants to character arrays can be done inline. */
855
856 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
857
858 /* If defined, a C expression to compute the alignment for a local
859 variable. TYPE is the data type, and ALIGN is the alignment that
860 the object would ordinarily have. The value of this macro is used
861 instead of that alignment to align the object.
862
863 If this macro is not defined, then ALIGN is used.
864
865 One use of this macro is to increase alignment of medium-size
866 data to make it all fit in fewer cache lines. */
867
868 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
869
870 /* If defined, a C expression that gives the alignment boundary, in
871 bits, of an argument with the specified mode and type. If it is
872 not defined, `PARM_BOUNDARY' is used for all arguments. */
873
874 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
875 ix86_function_arg_boundary ((MODE), (TYPE))
876
877 /* Set this nonzero if move instructions will actually fail to work
878 when given unaligned data. */
879 #define STRICT_ALIGNMENT 0
880
881 /* If bit field type is int, don't let it cross an int,
882 and give entire struct the alignment of an int. */
883 /* Required on the 386 since it doesn't have bit-field insns. */
884 #define PCC_BITFIELD_TYPE_MATTERS 1
885 \f
886 /* Standard register usage. */
887
888 /* This processor has special stack-like registers. See reg-stack.c
889 for details. */
890
891 #define STACK_REGS
892 #define IS_STACK_MODE(MODE) \
893 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
894
895 /* Number of actual hardware registers.
896 The hardware registers are assigned numbers for the compiler
897 from 0 to just below FIRST_PSEUDO_REGISTER.
898 All registers that the compiler knows about must be given numbers,
899 even those that are not normally considered general registers.
900
901 In the 80386 we give the 8 general purpose registers the numbers 0-7.
902 We number the floating point registers 8-15.
903 Note that registers 0-7 can be accessed as a short or int,
904 while only 0-3 may be used with byte `mov' instructions.
905
906 Reg 16 does not correspond to any hardware register, but instead
907 appears in the RTL as an argument pointer prior to reload, and is
908 eliminated during reloading in favor of either the stack or frame
909 pointer. */
910
911 #define FIRST_PSEUDO_REGISTER 53
912
913 /* Number of hardware registers that go into the DWARF-2 unwind info.
914 If not defined, equals FIRST_PSEUDO_REGISTER. */
915
916 #define DWARF_FRAME_REGISTERS 17
917
918 /* 1 for registers that have pervasive standard uses
919 and are not available for the register allocator.
920 On the 80386, the stack pointer is such, as is the arg pointer.
921
922 The value is a mask - bit 1 is set for fixed registers
923 for 32bit target, while 2 is set for fixed registers for 64bit.
924 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
925 */
926 #define FIXED_REGISTERS \
927 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
928 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
929 /*arg,flags,fpsr,dir,frame*/ \
930 3, 3, 3, 3, 3, \
931 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
932 0, 0, 0, 0, 0, 0, 0, 0, \
933 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
934 0, 0, 0, 0, 0, 0, 0, 0, \
935 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
936 1, 1, 1, 1, 1, 1, 1, 1, \
937 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
938 1, 1, 1, 1, 1, 1, 1, 1}
939
940
941 /* 1 for registers not available across function calls.
942 These must include the FIXED_REGISTERS and also any
943 registers that can be used without being saved.
944 The latter must include the registers where values are returned
945 and the register where structure-value addresses are passed.
946 Aside from that, you can include as many other registers as you like.
947
948 The value is a mask - bit 1 is set for call used
949 for 32bit target, while 2 is set for call used for 64bit.
950 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
951 */
952 #define CALL_USED_REGISTERS \
953 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
954 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
955 /*arg,flags,fpsr,dir,frame*/ \
956 3, 3, 3, 3, 3, \
957 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
958 3, 3, 3, 3, 3, 3, 3, 3, \
959 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
960 3, 3, 3, 3, 3, 3, 3, 3, \
961 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
962 3, 3, 3, 3, 1, 1, 1, 1, \
963 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
964 3, 3, 3, 3, 3, 3, 3, 3} \
965
966 /* Order in which to allocate registers. Each register must be
967 listed once, even those in FIXED_REGISTERS. List frame pointer
968 late and fixed registers last. Note that, in general, we prefer
969 registers listed in CALL_USED_REGISTERS, keeping the others
970 available for storage of persistent values.
971
972 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
973 so this is just empty initializer for array. */
974
975 #define REG_ALLOC_ORDER \
976 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
977 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
978 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
979 48, 49, 50, 51, 52 }
980
981 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
982 to be rearranged based on a particular function. When using sse math,
983 we want to allocate SSE before x87 registers and vice vera. */
984
985 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
986
987
988 /* Macro to conditionally modify fixed_regs/call_used_regs. */
989 #define CONDITIONAL_REGISTER_USAGE \
990 do { \
991 int i; \
992 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
993 { \
994 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
995 call_used_regs[i] = (call_used_regs[i] \
996 & (TARGET_64BIT ? 2 : 1)) != 0; \
997 } \
998 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
999 { \
1000 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1001 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1002 } \
1003 if (! TARGET_MMX) \
1004 { \
1005 int i; \
1006 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1007 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1008 fixed_regs[i] = call_used_regs[i] = 1; \
1009 } \
1010 if (! TARGET_SSE) \
1011 { \
1012 int i; \
1013 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1014 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1015 fixed_regs[i] = call_used_regs[i] = 1; \
1016 } \
1017 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1018 { \
1019 int i; \
1020 HARD_REG_SET x; \
1021 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1022 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1023 if (TEST_HARD_REG_BIT (x, i)) \
1024 fixed_regs[i] = call_used_regs[i] = 1; \
1025 } \
1026 } while (0)
1027
1028 /* Return number of consecutive hard regs needed starting at reg REGNO
1029 to hold something of mode MODE.
1030 This is ordinarily the length in words of a value of mode MODE
1031 but can be less for certain modes in special long registers.
1032
1033 Actually there are no two word move instructions for consecutive
1034 registers. And only registers 0-3 may have mov byte instructions
1035 applied to them.
1036 */
1037
1038 #define HARD_REGNO_NREGS(REGNO, MODE) \
1039 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1040 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1041 : ((MODE) == XFmode \
1042 ? (TARGET_64BIT ? 2 : 3) \
1043 : (MODE) == XCmode \
1044 ? (TARGET_64BIT ? 4 : 6) \
1045 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1046
1047 #define VALID_SSE2_REG_MODE(MODE) \
1048 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1049 || (MODE) == V2DImode)
1050
1051 #define VALID_SSE_REG_MODE(MODE) \
1052 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1053 || (MODE) == SFmode || (MODE) == TFmode \
1054 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1055 || VALID_SSE2_REG_MODE (MODE) \
1056 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1057
1058 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1059 ((MODE) == V2SFmode || (MODE) == SFmode)
1060
1061 #define VALID_MMX_REG_MODE(MODE) \
1062 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1063 || (MODE) == V2SImode || (MODE) == SImode)
1064
1065 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1066 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1067 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1068 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1069
1070 #define VALID_FP_MODE_P(MODE) \
1071 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1072 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1073
1074 #define VALID_INT_MODE_P(MODE) \
1075 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1076 || (MODE) == DImode \
1077 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1078 || (MODE) == CDImode \
1079 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1080 || (MODE) == TFmode || (MODE) == TCmode)))
1081
1082 /* Return true for modes passed in SSE registers. */
1083 #define SSE_REG_MODE_P(MODE) \
1084 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
1085 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1086 || (MODE) == V4SFmode || (MODE) == V4SImode)
1087
1088 /* Return true for modes passed in MMX registers. */
1089 #define MMX_REG_MODE_P(MODE) \
1090 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1091 || (MODE) == V2SFmode)
1092
1093 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1094
1095 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1096 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1097
1098 /* Value is 1 if it is a good idea to tie two pseudo registers
1099 when one has mode MODE1 and one has mode MODE2.
1100 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1101 for any hard reg, then this must be 0 for correct output. */
1102
1103 #define MODES_TIEABLE_P(MODE1, MODE2) \
1104 ((MODE1) == (MODE2) \
1105 || (((MODE1) == HImode || (MODE1) == SImode \
1106 || ((MODE1) == QImode \
1107 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1108 || ((MODE1) == DImode && TARGET_64BIT)) \
1109 && ((MODE2) == HImode || (MODE2) == SImode \
1110 || ((MODE2) == QImode \
1111 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1112 || ((MODE2) == DImode && TARGET_64BIT))))
1113
1114 /* It is possible to write patterns to move flags; but until someone
1115 does it, */
1116 #define AVOID_CCMODE_COPIES
1117
1118 /* Specify the modes required to caller save a given hard regno.
1119 We do this on i386 to prevent flags from being saved at all.
1120
1121 Kill any attempts to combine saving of modes. */
1122
1123 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1124 (CC_REGNO_P (REGNO) ? VOIDmode \
1125 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1126 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1127 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1128 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1129 : (MODE))
1130 /* Specify the registers used for certain standard purposes.
1131 The values of these macros are register numbers. */
1132
1133 /* on the 386 the pc register is %eip, and is not usable as a general
1134 register. The ordinary mov instructions won't work */
1135 /* #define PC_REGNUM */
1136
1137 /* Register to use for pushing function arguments. */
1138 #define STACK_POINTER_REGNUM 7
1139
1140 /* Base register for access to local variables of the function. */
1141 #define HARD_FRAME_POINTER_REGNUM 6
1142
1143 /* Base register for access to local variables of the function. */
1144 #define FRAME_POINTER_REGNUM 20
1145
1146 /* First floating point reg */
1147 #define FIRST_FLOAT_REG 8
1148
1149 /* First & last stack-like regs */
1150 #define FIRST_STACK_REG FIRST_FLOAT_REG
1151 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1152
1153 #define FLAGS_REG 17
1154 #define FPSR_REG 18
1155 #define DIRFLAG_REG 19
1156
1157 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1158 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1159
1160 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1161 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1162
1163 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1164 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1165
1166 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1167 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1168
1169 /* Value should be nonzero if functions must have frame pointers.
1170 Zero means the frame pointer need not be set up (and parms
1171 may be accessed via the stack pointer) in functions that seem suitable.
1172 This is computed in `reload', in reload1.c. */
1173 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1174
1175 /* Override this in other tm.h files to cope with various OS losage
1176 requiring a frame pointer. */
1177 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1178 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1179 #endif
1180
1181 /* Make sure we can access arbitrary call frames. */
1182 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1183
1184 /* Base register for access to arguments of the function. */
1185 #define ARG_POINTER_REGNUM 16
1186
1187 /* Register in which static-chain is passed to a function.
1188 We do use ECX as static chain register for 32 bit ABI. On the
1189 64bit ABI, ECX is an argument register, so we use R10 instead. */
1190 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1191
1192 /* Register to hold the addressing base for position independent
1193 code access to data items. We don't use PIC pointer for 64bit
1194 mode. Define the regnum to dummy value to prevent gcc from
1195 pessimizing code dealing with EBX.
1196
1197 To avoid clobbering a call-saved register unnecessarily, we renumber
1198 the pic register when possible. The change is visible after the
1199 prologue has been emitted. */
1200
1201 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1202
1203 #define PIC_OFFSET_TABLE_REGNUM \
1204 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1205 : reload_completed ? REGNO (pic_offset_table_rtx) \
1206 : REAL_PIC_OFFSET_TABLE_REGNUM)
1207
1208 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1209
1210 /* Register in which address to store a structure value
1211 arrives in the function. On the 386, the prologue
1212 copies this from the stack to register %eax. */
1213 #define STRUCT_VALUE_INCOMING 0
1214
1215 /* Place in which caller passes the structure value address.
1216 0 means push the value on the stack like an argument. */
1217 #define STRUCT_VALUE 0
1218
1219 /* A C expression which can inhibit the returning of certain function
1220 values in registers, based on the type of value. A nonzero value
1221 says to return the function value in memory, just as large
1222 structures are always returned. Here TYPE will be a C expression
1223 of type `tree', representing the data type of the value.
1224
1225 Note that values of mode `BLKmode' must be explicitly handled by
1226 this macro. Also, the option `-fpcc-struct-return' takes effect
1227 regardless of this macro. On most systems, it is possible to
1228 leave the macro undefined; this causes a default definition to be
1229 used, whose value is the constant 1 for `BLKmode' values, and 0
1230 otherwise.
1231
1232 Do not use this macro to indicate that structures and unions
1233 should always be returned in memory. You should instead use
1234 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1235
1236 #define RETURN_IN_MEMORY(TYPE) \
1237 ix86_return_in_memory (TYPE)
1238
1239 /* This is overridden by <cygwin.h>. */
1240 #define MS_AGGREGATE_RETURN 0
1241
1242 \f
1243 /* Define the classes of registers for register constraints in the
1244 machine description. Also define ranges of constants.
1245
1246 One of the classes must always be named ALL_REGS and include all hard regs.
1247 If there is more than one class, another class must be named NO_REGS
1248 and contain no registers.
1249
1250 The name GENERAL_REGS must be the name of a class (or an alias for
1251 another name such as ALL_REGS). This is the class of registers
1252 that is allowed by "g" or "r" in a register constraint.
1253 Also, registers outside this class are allocated only when
1254 instructions express preferences for them.
1255
1256 The classes must be numbered in nondecreasing order; that is,
1257 a larger-numbered class must never be contained completely
1258 in a smaller-numbered class.
1259
1260 For any two classes, it is very desirable that there be another
1261 class that represents their union.
1262
1263 It might seem that class BREG is unnecessary, since no useful 386
1264 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1265 and the "b" register constraint is useful in asms for syscalls.
1266
1267 The flags and fpsr registers are in no class. */
1268
1269 enum reg_class
1270 {
1271 NO_REGS,
1272 AREG, DREG, CREG, BREG, SIREG, DIREG,
1273 AD_REGS, /* %eax/%edx for DImode */
1274 Q_REGS, /* %eax %ebx %ecx %edx */
1275 NON_Q_REGS, /* %esi %edi %ebp %esp */
1276 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1277 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1278 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1279 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1280 FLOAT_REGS,
1281 SSE_REGS,
1282 MMX_REGS,
1283 FP_TOP_SSE_REGS,
1284 FP_SECOND_SSE_REGS,
1285 FLOAT_SSE_REGS,
1286 FLOAT_INT_REGS,
1287 INT_SSE_REGS,
1288 FLOAT_INT_SSE_REGS,
1289 ALL_REGS, LIM_REG_CLASSES
1290 };
1291
1292 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1293
1294 #define INTEGER_CLASS_P(CLASS) \
1295 reg_class_subset_p ((CLASS), GENERAL_REGS)
1296 #define FLOAT_CLASS_P(CLASS) \
1297 reg_class_subset_p ((CLASS), FLOAT_REGS)
1298 #define SSE_CLASS_P(CLASS) \
1299 reg_class_subset_p ((CLASS), SSE_REGS)
1300 #define MMX_CLASS_P(CLASS) \
1301 reg_class_subset_p ((CLASS), MMX_REGS)
1302 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1303 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1304 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1305 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1306 #define MAYBE_SSE_CLASS_P(CLASS) \
1307 reg_classes_intersect_p (SSE_REGS, (CLASS))
1308 #define MAYBE_MMX_CLASS_P(CLASS) \
1309 reg_classes_intersect_p (MMX_REGS, (CLASS))
1310
1311 #define Q_CLASS_P(CLASS) \
1312 reg_class_subset_p ((CLASS), Q_REGS)
1313
1314 /* Give names of register classes as strings for dump file. */
1315
1316 #define REG_CLASS_NAMES \
1317 { "NO_REGS", \
1318 "AREG", "DREG", "CREG", "BREG", \
1319 "SIREG", "DIREG", \
1320 "AD_REGS", \
1321 "Q_REGS", "NON_Q_REGS", \
1322 "INDEX_REGS", \
1323 "LEGACY_REGS", \
1324 "GENERAL_REGS", \
1325 "FP_TOP_REG", "FP_SECOND_REG", \
1326 "FLOAT_REGS", \
1327 "SSE_REGS", \
1328 "MMX_REGS", \
1329 "FP_TOP_SSE_REGS", \
1330 "FP_SECOND_SSE_REGS", \
1331 "FLOAT_SSE_REGS", \
1332 "FLOAT_INT_REGS", \
1333 "INT_SSE_REGS", \
1334 "FLOAT_INT_SSE_REGS", \
1335 "ALL_REGS" }
1336
1337 /* Define which registers fit in which classes.
1338 This is an initializer for a vector of HARD_REG_SET
1339 of length N_REG_CLASSES. */
1340
1341 #define REG_CLASS_CONTENTS \
1342 { { 0x00, 0x0 }, \
1343 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1344 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1345 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1346 { 0x03, 0x0 }, /* AD_REGS */ \
1347 { 0x0f, 0x0 }, /* Q_REGS */ \
1348 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1349 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1350 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1351 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1352 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1353 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1354 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1355 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1356 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1357 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1358 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1359 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1360 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1361 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1362 { 0xffffffff,0x1fffff } \
1363 }
1364
1365 /* The same information, inverted:
1366 Return the class number of the smallest class containing
1367 reg number REGNO. This could be a conditional expression
1368 or could index an array. */
1369
1370 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1371
1372 /* When defined, the compiler allows registers explicitly used in the
1373 rtl to be used as spill registers but prevents the compiler from
1374 extending the lifetime of these registers. */
1375
1376 #define SMALL_REGISTER_CLASSES 1
1377
1378 #define QI_REG_P(X) \
1379 (REG_P (X) && REGNO (X) < 4)
1380
1381 #define GENERAL_REGNO_P(N) \
1382 ((N) < 8 || REX_INT_REGNO_P (N))
1383
1384 #define GENERAL_REG_P(X) \
1385 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1386
1387 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1388
1389 #define NON_QI_REG_P(X) \
1390 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1391
1392 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1393 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1394
1395 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1396 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1397 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1398 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1399
1400 #define SSE_REGNO_P(N) \
1401 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1402 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1403
1404 #define REX_SSE_REGNO_P(N) \
1405 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1406
1407 #define SSE_REGNO(N) \
1408 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1409 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1410
1411 #define SSE_FLOAT_MODE_P(MODE) \
1412 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1413
1414 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1415 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1416
1417 #define STACK_REG_P(XOP) \
1418 (REG_P (XOP) && \
1419 REGNO (XOP) >= FIRST_STACK_REG && \
1420 REGNO (XOP) <= LAST_STACK_REG)
1421
1422 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1423
1424 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1425
1426 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1427 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1428
1429 /* The class value for index registers, and the one for base regs. */
1430
1431 #define INDEX_REG_CLASS INDEX_REGS
1432 #define BASE_REG_CLASS GENERAL_REGS
1433
1434 /* Get reg_class from a letter such as appears in the machine description. */
1435
1436 #define REG_CLASS_FROM_LETTER(C) \
1437 ((C) == 'r' ? GENERAL_REGS : \
1438 (C) == 'R' ? LEGACY_REGS : \
1439 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1440 (C) == 'Q' ? Q_REGS : \
1441 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1442 ? FLOAT_REGS \
1443 : NO_REGS) : \
1444 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1445 ? FP_TOP_REG \
1446 : NO_REGS) : \
1447 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1448 ? FP_SECOND_REG \
1449 : NO_REGS) : \
1450 (C) == 'a' ? AREG : \
1451 (C) == 'b' ? BREG : \
1452 (C) == 'c' ? CREG : \
1453 (C) == 'd' ? DREG : \
1454 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1455 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1456 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1457 (C) == 'A' ? AD_REGS : \
1458 (C) == 'D' ? DIREG : \
1459 (C) == 'S' ? SIREG : NO_REGS)
1460
1461 /* The letters I, J, K, L and M in a register constraint string
1462 can be used to stand for particular ranges of immediate operands.
1463 This macro defines what the ranges are.
1464 C is the letter, and VALUE is a constant value.
1465 Return 1 if VALUE is in the range specified by C.
1466
1467 I is for non-DImode shifts.
1468 J is for DImode shifts.
1469 K is for signed imm8 operands.
1470 L is for andsi as zero-extending move.
1471 M is for shifts that can be executed by the "lea" opcode.
1472 N is for immediate operands for out/in instructions (0-255)
1473 */
1474
1475 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1476 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1477 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1478 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1479 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1480 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1481 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1482 : 0)
1483
1484 /* Similar, but for floating constants, and defining letters G and H.
1485 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1486 TARGET_387 isn't set, because the stack register converter may need to
1487 load 0.0 into the function value register. */
1488
1489 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1490 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1491 : 0)
1492
1493 /* A C expression that defines the optional machine-dependent
1494 constraint letters that can be used to segregate specific types of
1495 operands, usually memory references, for the target machine. Any
1496 letter that is not elsewhere defined and not matched by
1497 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1498 be defined.
1499
1500 If it is required for a particular target machine, it should
1501 return 1 if VALUE corresponds to the operand type represented by
1502 the constraint letter C. If C is not defined as an extra
1503 constraint, the value returned should be 0 regardless of VALUE. */
1504
1505 #define EXTRA_CONSTRAINT(VALUE, D) \
1506 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1507 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1508 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1509 : 0)
1510
1511 /* Place additional restrictions on the register class to use when it
1512 is necessary to be able to hold a value of mode MODE in a reload
1513 register for which class CLASS would ordinarily be used. */
1514
1515 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1516 ((MODE) == QImode && !TARGET_64BIT \
1517 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1518 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1519 ? Q_REGS : (CLASS))
1520
1521 /* Given an rtx X being reloaded into a reg required to be
1522 in class CLASS, return the class of reg to actually use.
1523 In general this is just CLASS; but on some machines
1524 in some cases it is preferable to use a more restrictive class.
1525 On the 80386 series, we prevent floating constants from being
1526 reloaded into floating registers (since no move-insn can do that)
1527 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1528
1529 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1530 QImode must go into class Q_REGS.
1531 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1532 movdf to do mem-to-mem moves through integer regs. */
1533
1534 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1535 ix86_preferred_reload_class ((X), (CLASS))
1536
1537 /* If we are copying between general and FP registers, we need a memory
1538 location. The same is true for SSE and MMX registers. */
1539 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1540 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1541
1542 /* QImode spills from non-QI registers need a scratch. This does not
1543 happen often -- the only example so far requires an uninitialized
1544 pseudo. */
1545
1546 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1547 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1548 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1549 ? Q_REGS : NO_REGS)
1550
1551 /* Return the maximum number of consecutive registers
1552 needed to represent mode MODE in a register of class CLASS. */
1553 /* On the 80386, this is the size of MODE in words,
1554 except in the FP regs, where a single reg is always enough. */
1555 #define CLASS_MAX_NREGS(CLASS, MODE) \
1556 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1557 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1558 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1559 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1560
1561 /* A C expression whose value is nonzero if pseudos that have been
1562 assigned to registers of class CLASS would likely be spilled
1563 because registers of CLASS are needed for spill registers.
1564
1565 The default value of this macro returns 1 if CLASS has exactly one
1566 register and zero otherwise. On most machines, this default
1567 should be used. Only define this macro to some other expression
1568 if pseudo allocated by `local-alloc.c' end up in memory because
1569 their hard registers were needed for spill registers. If this
1570 macro returns nonzero for those classes, those pseudos will only
1571 be allocated by `global.c', which knows how to reallocate the
1572 pseudo to another register. If there would not be another
1573 register available for reallocation, you should not change the
1574 definition of this macro since the only effect of such a
1575 definition would be to slow down register allocation. */
1576
1577 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1578 (((CLASS) == AREG) \
1579 || ((CLASS) == DREG) \
1580 || ((CLASS) == CREG) \
1581 || ((CLASS) == BREG) \
1582 || ((CLASS) == AD_REGS) \
1583 || ((CLASS) == SIREG) \
1584 || ((CLASS) == DIREG) \
1585 || ((CLASS) == FP_TOP_REG) \
1586 || ((CLASS) == FP_SECOND_REG))
1587
1588 /* Return a class of registers that cannot change FROM mode to TO mode.
1589
1590 x87 registers can't do subreg as all values are reformated to extended
1591 precision. XMM registers does not support with nonzero offsets equal
1592 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1593 determine these, prohibit all nonparadoxical subregs changing size. */
1594
1595 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1596 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1597 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1598 || MAYBE_MMX_CLASS_P (CLASS) \
1599 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1600 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1601
1602 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1603 to automatically clobber for all asms.
1604
1605 We do this in the new i386 backend to maintain source compatibility
1606 with the old cc0-based compiler. */
1607
1608 #define MD_ASM_CLOBBERS(CLOBBERS) \
1609 do { \
1610 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1611 (CLOBBERS)); \
1612 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1613 (CLOBBERS)); \
1614 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1615 (CLOBBERS)); \
1616 } while (0)
1617 \f
1618 /* Stack layout; function entry, exit and calling. */
1619
1620 /* Define this if pushing a word on the stack
1621 makes the stack pointer a smaller address. */
1622 #define STACK_GROWS_DOWNWARD
1623
1624 /* Define this if the nominal address of the stack frame
1625 is at the high-address end of the local variables;
1626 that is, each additional local variable allocated
1627 goes at a more negative offset in the frame. */
1628 #define FRAME_GROWS_DOWNWARD
1629
1630 /* Offset within stack frame to start allocating local variables at.
1631 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1632 first local allocated. Otherwise, it is the offset to the BEGINNING
1633 of the first local allocated. */
1634 #define STARTING_FRAME_OFFSET 0
1635
1636 /* If we generate an insn to push BYTES bytes,
1637 this says how many the stack pointer really advances by.
1638 On 386 pushw decrements by exactly 2 no matter what the position was.
1639 On the 386 there is no pushb; we use pushw instead, and this
1640 has the effect of rounding up to 2.
1641
1642 For 64bit ABI we round up to 8 bytes.
1643 */
1644
1645 #define PUSH_ROUNDING(BYTES) \
1646 (TARGET_64BIT \
1647 ? (((BYTES) + 7) & (-8)) \
1648 : (((BYTES) + 1) & (-2)))
1649
1650 /* If defined, the maximum amount of space required for outgoing arguments will
1651 be computed and placed into the variable
1652 `current_function_outgoing_args_size'. No space will be pushed onto the
1653 stack for each call; instead, the function prologue should increase the stack
1654 frame size by this amount. */
1655
1656 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1657
1658 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1659 instructions to pass outgoing arguments. */
1660
1661 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1662
1663 /* We want the stack and args grow in opposite directions, even if
1664 PUSH_ARGS is 0. */
1665 #define PUSH_ARGS_REVERSED 1
1666
1667 /* Offset of first parameter from the argument pointer register value. */
1668 #define FIRST_PARM_OFFSET(FNDECL) 0
1669
1670 /* Define this macro if functions should assume that stack space has been
1671 allocated for arguments even when their values are passed in registers.
1672
1673 The value of this macro is the size, in bytes, of the area reserved for
1674 arguments passed in registers for the function represented by FNDECL.
1675
1676 This space can be allocated by the caller, or be a part of the
1677 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1678 which. */
1679 #define REG_PARM_STACK_SPACE(FNDECL) 0
1680
1681 /* Define as a C expression that evaluates to nonzero if we do not know how
1682 to pass TYPE solely in registers. The file expr.h defines a
1683 definition that is usually appropriate, refer to expr.h for additional
1684 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1685 computed in the stack and then loaded into a register. */
1686 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1687
1688 /* Value is the number of bytes of arguments automatically
1689 popped when returning from a subroutine call.
1690 FUNDECL is the declaration node of the function (as a tree),
1691 FUNTYPE is the data type of the function (as a tree),
1692 or for a library call it is an identifier node for the subroutine name.
1693 SIZE is the number of bytes of arguments passed on the stack.
1694
1695 On the 80386, the RTD insn may be used to pop them if the number
1696 of args is fixed, but if the number is variable then the caller
1697 must pop them all. RTD can't be used for library calls now
1698 because the library is compiled with the Unix compiler.
1699 Use of RTD is a selectable option, since it is incompatible with
1700 standard Unix calling sequences. If the option is not selected,
1701 the caller must always pop the args.
1702
1703 The attribute stdcall is equivalent to RTD on a per module basis. */
1704
1705 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1706 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1707
1708 /* Define how to find the value returned by a function.
1709 VALTYPE is the data type of the value (as a tree).
1710 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1711 otherwise, FUNC is 0. */
1712 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1713 ix86_function_value (VALTYPE)
1714
1715 #define FUNCTION_VALUE_REGNO_P(N) \
1716 ix86_function_value_regno_p (N)
1717
1718 /* Define how to find the value returned by a library function
1719 assuming the value has mode MODE. */
1720
1721 #define LIBCALL_VALUE(MODE) \
1722 ix86_libcall_value (MODE)
1723
1724 /* Define the size of the result block used for communication between
1725 untyped_call and untyped_return. The block contains a DImode value
1726 followed by the block used by fnsave and frstor. */
1727
1728 #define APPLY_RESULT_SIZE (8+108)
1729
1730 /* 1 if N is a possible register number for function argument passing. */
1731 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1732
1733 /* Define a data type for recording info about an argument list
1734 during the scan of that argument list. This data type should
1735 hold all necessary information about the function itself
1736 and about the args processed so far, enough to enable macros
1737 such as FUNCTION_ARG to determine where the next arg should go. */
1738
1739 typedef struct ix86_args {
1740 int words; /* # words passed so far */
1741 int nregs; /* # registers available for passing */
1742 int regno; /* next available register number */
1743 int fastcall; /* fastcall calling convention is used */
1744 int sse_words; /* # sse words passed so far */
1745 int sse_nregs; /* # sse registers available for passing */
1746 int warn_sse; /* True when we want to warn about SSE ABI. */
1747 int warn_mmx; /* True when we want to warn about MMX ABI. */
1748 int sse_regno; /* next available sse register number */
1749 int mmx_words; /* # mmx words passed so far */
1750 int mmx_nregs; /* # mmx registers available for passing */
1751 int mmx_regno; /* next available mmx register number */
1752 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1753 } CUMULATIVE_ARGS;
1754
1755 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1756 for a call to a function whose data type is FNTYPE.
1757 For a library call, FNTYPE is 0. */
1758
1759 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL) \
1760 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1761
1762 /* Update the data in CUM to advance over an argument
1763 of mode MODE and data type TYPE.
1764 (TYPE is null for libcalls where that information may not be available.) */
1765
1766 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1767 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1768
1769 /* Define where to put the arguments to a function.
1770 Value is zero to push the argument on the stack,
1771 or a hard register in which to store the argument.
1772
1773 MODE is the argument's machine mode.
1774 TYPE is the data type of the argument (as a tree).
1775 This is null for libcalls where that information may
1776 not be available.
1777 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1778 the preceding args and about the function being called.
1779 NAMED is nonzero if this argument is a named parameter
1780 (otherwise it is an extra parameter matching an ellipsis). */
1781
1782 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1783 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1784
1785 /* For an arg passed partly in registers and partly in memory,
1786 this is the number of registers used.
1787 For args passed entirely in registers or entirely in memory, zero. */
1788
1789 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1790
1791 /* A C expression that indicates when an argument must be passed by
1792 reference. If nonzero for an argument, a copy of that argument is
1793 made in memory and a pointer to the argument is passed instead of
1794 the argument itself. The pointer is passed in whatever way is
1795 appropriate for passing a pointer to that type. */
1796
1797 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1798 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1799
1800 /* Perform any needed actions needed for a function that is receiving a
1801 variable number of arguments.
1802
1803 CUM is as above.
1804
1805 MODE and TYPE are the mode and type of the current parameter.
1806
1807 PRETEND_SIZE is a variable that should be set to the amount of stack
1808 that must be pushed by the prolog to pretend that our caller pushed
1809 it.
1810
1811 Normally, this macro will push all remaining incoming registers on the
1812 stack and set PRETEND_SIZE to the length of the registers pushed. */
1813
1814 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1815 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1816 (NO_RTL))
1817
1818 /* Implement `va_start' for varargs and stdarg. */
1819 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1820 ix86_va_start (VALIST, NEXTARG)
1821
1822 /* Implement `va_arg'. */
1823 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1824 ix86_va_arg ((VALIST), (TYPE))
1825
1826 #define TARGET_ASM_FILE_END ix86_file_end
1827 #define NEED_INDICATE_EXEC_STACK 0
1828
1829 /* Output assembler code to FILE to increment profiler label # LABELNO
1830 for profiling a function entry. */
1831
1832 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1833
1834 #define MCOUNT_NAME "_mcount"
1835
1836 #define PROFILE_COUNT_REGISTER "edx"
1837
1838 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1839 the stack pointer does not matter. The value is tested only in
1840 functions that have frame pointers.
1841 No definition is equivalent to always zero. */
1842 /* Note on the 386 it might be more efficient not to define this since
1843 we have to restore it ourselves from the frame pointer, in order to
1844 use pop */
1845
1846 #define EXIT_IGNORE_STACK 1
1847
1848 /* Output assembler code for a block containing the constant parts
1849 of a trampoline, leaving space for the variable parts. */
1850
1851 /* On the 386, the trampoline contains two instructions:
1852 mov #STATIC,ecx
1853 jmp FUNCTION
1854 The trampoline is generated entirely at runtime. The operand of JMP
1855 is the address of FUNCTION relative to the instruction following the
1856 JMP (which is 5 bytes long). */
1857
1858 /* Length in units of the trampoline for entering a nested function. */
1859
1860 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1861
1862 /* Emit RTL insns to initialize the variable parts of a trampoline.
1863 FNADDR is an RTX for the address of the function's pure code.
1864 CXT is an RTX for the static chain value for the function. */
1865
1866 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1867 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1868 \f
1869 /* Definitions for register eliminations.
1870
1871 This is an array of structures. Each structure initializes one pair
1872 of eliminable registers. The "from" register number is given first,
1873 followed by "to". Eliminations of the same "from" register are listed
1874 in order of preference.
1875
1876 There are two registers that can always be eliminated on the i386.
1877 The frame pointer and the arg pointer can be replaced by either the
1878 hard frame pointer or to the stack pointer, depending upon the
1879 circumstances. The hard frame pointer is not used before reload and
1880 so it is not eligible for elimination. */
1881
1882 #define ELIMINABLE_REGS \
1883 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1884 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1885 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1886 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1887
1888 /* Given FROM and TO register numbers, say whether this elimination is
1889 allowed. Frame pointer elimination is automatically handled.
1890
1891 All other eliminations are valid. */
1892
1893 #define CAN_ELIMINATE(FROM, TO) \
1894 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1895
1896 /* Define the offset between two registers, one to be eliminated, and the other
1897 its replacement, at the start of a routine. */
1898
1899 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1900 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1901 \f
1902 /* Addressing modes, and classification of registers for them. */
1903
1904 /* Macros to check register numbers against specific register classes. */
1905
1906 /* These assume that REGNO is a hard or pseudo reg number.
1907 They give nonzero only if REGNO is a hard reg of the suitable class
1908 or a pseudo reg currently allocated to a suitable hard reg.
1909 Since they use reg_renumber, they are safe only once reg_renumber
1910 has been allocated, which happens in local-alloc.c. */
1911
1912 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1913 ((REGNO) < STACK_POINTER_REGNUM \
1914 || (REGNO >= FIRST_REX_INT_REG \
1915 && (REGNO) <= LAST_REX_INT_REG) \
1916 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1917 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1918 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1919
1920 #define REGNO_OK_FOR_BASE_P(REGNO) \
1921 ((REGNO) <= STACK_POINTER_REGNUM \
1922 || (REGNO) == ARG_POINTER_REGNUM \
1923 || (REGNO) == FRAME_POINTER_REGNUM \
1924 || (REGNO >= FIRST_REX_INT_REG \
1925 && (REGNO) <= LAST_REX_INT_REG) \
1926 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1927 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1928 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1929
1930 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1931 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1932 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1933 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1934
1935 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1936 and check its validity for a certain class.
1937 We have two alternate definitions for each of them.
1938 The usual definition accepts all pseudo regs; the other rejects
1939 them unless they have been allocated suitable hard regs.
1940 The symbol REG_OK_STRICT causes the latter definition to be used.
1941
1942 Most source files want to accept pseudo regs in the hope that
1943 they will get allocated to the class that the insn wants them to be in.
1944 Source files for reload pass need to be strict.
1945 After reload, it makes no difference, since pseudo regs have
1946 been eliminated by then. */
1947
1948
1949 /* Non strict versions, pseudos are ok */
1950 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1951 (REGNO (X) < STACK_POINTER_REGNUM \
1952 || (REGNO (X) >= FIRST_REX_INT_REG \
1953 && REGNO (X) <= LAST_REX_INT_REG) \
1954 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1955
1956 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1957 (REGNO (X) <= STACK_POINTER_REGNUM \
1958 || REGNO (X) == ARG_POINTER_REGNUM \
1959 || REGNO (X) == FRAME_POINTER_REGNUM \
1960 || (REGNO (X) >= FIRST_REX_INT_REG \
1961 && REGNO (X) <= LAST_REX_INT_REG) \
1962 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1963
1964 /* Strict versions, hard registers only */
1965 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1966 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1967
1968 #ifndef REG_OK_STRICT
1969 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1970 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1971
1972 #else
1973 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1974 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1975 #endif
1976
1977 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1978 that is a valid memory address for an instruction.
1979 The MODE argument is the machine mode for the MEM expression
1980 that wants to use this address.
1981
1982 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1983 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1984
1985 See legitimize_pic_address in i386.c for details as to what
1986 constitutes a legitimate address when -fpic is used. */
1987
1988 #define MAX_REGS_PER_ADDRESS 2
1989
1990 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1991
1992 /* Nonzero if the constant value X is a legitimate general operand.
1993 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1994
1995 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1996
1997 #ifdef REG_OK_STRICT
1998 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1999 do { \
2000 if (legitimate_address_p ((MODE), (X), 1)) \
2001 goto ADDR; \
2002 } while (0)
2003
2004 #else
2005 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2006 do { \
2007 if (legitimate_address_p ((MODE), (X), 0)) \
2008 goto ADDR; \
2009 } while (0)
2010
2011 #endif
2012
2013 /* If defined, a C expression to determine the base term of address X.
2014 This macro is used in only one place: `find_base_term' in alias.c.
2015
2016 It is always safe for this macro to not be defined. It exists so
2017 that alias analysis can understand machine-dependent addresses.
2018
2019 The typical use of this macro is to handle addresses containing
2020 a label_ref or symbol_ref within an UNSPEC. */
2021
2022 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
2023
2024 /* Try machine-dependent ways of modifying an illegitimate address
2025 to be legitimate. If we find one, return the new, valid address.
2026 This macro is used in only one place: `memory_address' in explow.c.
2027
2028 OLDX is the address as it was before break_out_memory_refs was called.
2029 In some cases it is useful to look at this to decide what needs to be done.
2030
2031 MODE and WIN are passed so that this macro can use
2032 GO_IF_LEGITIMATE_ADDRESS.
2033
2034 It is always safe for this macro to do nothing. It exists to recognize
2035 opportunities to optimize the output.
2036
2037 For the 80386, we handle X+REG by loading X into a register R and
2038 using R+REG. R will go in a general reg and indexing will be used.
2039 However, if REG is a broken-out memory address or multiplication,
2040 nothing needs to be done because REG can certainly go in a general reg.
2041
2042 When -fpic is used, special handling is needed for symbolic references.
2043 See comments by legitimize_pic_address in i386.c for details. */
2044
2045 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2046 do { \
2047 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2048 if (memory_address_p ((MODE), (X))) \
2049 goto WIN; \
2050 } while (0)
2051
2052 #define REWRITE_ADDRESS(X) rewrite_address (X)
2053
2054 /* Nonzero if the constant value X is a legitimate general operand
2055 when generating PIC code. It is given that flag_pic is on and
2056 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2057
2058 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2059
2060 #define SYMBOLIC_CONST(X) \
2061 (GET_CODE (X) == SYMBOL_REF \
2062 || GET_CODE (X) == LABEL_REF \
2063 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2064
2065 /* Go to LABEL if ADDR (a legitimate address expression)
2066 has an effect that depends on the machine mode it is used for.
2067 On the 80386, only postdecrement and postincrement address depend thus
2068 (the amount of decrement or increment being the length of the operand). */
2069 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2070 do { \
2071 if (GET_CODE (ADDR) == POST_INC \
2072 || GET_CODE (ADDR) == POST_DEC) \
2073 goto LABEL; \
2074 } while (0)
2075 \f
2076 /* Codes for all the SSE/MMX builtins. */
2077 enum ix86_builtins
2078 {
2079 IX86_BUILTIN_ADDPS,
2080 IX86_BUILTIN_ADDSS,
2081 IX86_BUILTIN_DIVPS,
2082 IX86_BUILTIN_DIVSS,
2083 IX86_BUILTIN_MULPS,
2084 IX86_BUILTIN_MULSS,
2085 IX86_BUILTIN_SUBPS,
2086 IX86_BUILTIN_SUBSS,
2087
2088 IX86_BUILTIN_CMPEQPS,
2089 IX86_BUILTIN_CMPLTPS,
2090 IX86_BUILTIN_CMPLEPS,
2091 IX86_BUILTIN_CMPGTPS,
2092 IX86_BUILTIN_CMPGEPS,
2093 IX86_BUILTIN_CMPNEQPS,
2094 IX86_BUILTIN_CMPNLTPS,
2095 IX86_BUILTIN_CMPNLEPS,
2096 IX86_BUILTIN_CMPNGTPS,
2097 IX86_BUILTIN_CMPNGEPS,
2098 IX86_BUILTIN_CMPORDPS,
2099 IX86_BUILTIN_CMPUNORDPS,
2100 IX86_BUILTIN_CMPNEPS,
2101 IX86_BUILTIN_CMPEQSS,
2102 IX86_BUILTIN_CMPLTSS,
2103 IX86_BUILTIN_CMPLESS,
2104 IX86_BUILTIN_CMPNEQSS,
2105 IX86_BUILTIN_CMPNLTSS,
2106 IX86_BUILTIN_CMPNLESS,
2107 IX86_BUILTIN_CMPORDSS,
2108 IX86_BUILTIN_CMPUNORDSS,
2109 IX86_BUILTIN_CMPNESS,
2110
2111 IX86_BUILTIN_COMIEQSS,
2112 IX86_BUILTIN_COMILTSS,
2113 IX86_BUILTIN_COMILESS,
2114 IX86_BUILTIN_COMIGTSS,
2115 IX86_BUILTIN_COMIGESS,
2116 IX86_BUILTIN_COMINEQSS,
2117 IX86_BUILTIN_UCOMIEQSS,
2118 IX86_BUILTIN_UCOMILTSS,
2119 IX86_BUILTIN_UCOMILESS,
2120 IX86_BUILTIN_UCOMIGTSS,
2121 IX86_BUILTIN_UCOMIGESS,
2122 IX86_BUILTIN_UCOMINEQSS,
2123
2124 IX86_BUILTIN_CVTPI2PS,
2125 IX86_BUILTIN_CVTPS2PI,
2126 IX86_BUILTIN_CVTSI2SS,
2127 IX86_BUILTIN_CVTSI642SS,
2128 IX86_BUILTIN_CVTSS2SI,
2129 IX86_BUILTIN_CVTSS2SI64,
2130 IX86_BUILTIN_CVTTPS2PI,
2131 IX86_BUILTIN_CVTTSS2SI,
2132 IX86_BUILTIN_CVTTSS2SI64,
2133
2134 IX86_BUILTIN_MAXPS,
2135 IX86_BUILTIN_MAXSS,
2136 IX86_BUILTIN_MINPS,
2137 IX86_BUILTIN_MINSS,
2138
2139 IX86_BUILTIN_LOADAPS,
2140 IX86_BUILTIN_LOADUPS,
2141 IX86_BUILTIN_STOREAPS,
2142 IX86_BUILTIN_STOREUPS,
2143 IX86_BUILTIN_LOADSS,
2144 IX86_BUILTIN_STORESS,
2145 IX86_BUILTIN_MOVSS,
2146
2147 IX86_BUILTIN_MOVHLPS,
2148 IX86_BUILTIN_MOVLHPS,
2149 IX86_BUILTIN_LOADHPS,
2150 IX86_BUILTIN_LOADLPS,
2151 IX86_BUILTIN_STOREHPS,
2152 IX86_BUILTIN_STORELPS,
2153
2154 IX86_BUILTIN_MASKMOVQ,
2155 IX86_BUILTIN_MOVMSKPS,
2156 IX86_BUILTIN_PMOVMSKB,
2157
2158 IX86_BUILTIN_MOVNTPS,
2159 IX86_BUILTIN_MOVNTQ,
2160
2161 IX86_BUILTIN_LOADDQA,
2162 IX86_BUILTIN_LOADDQU,
2163 IX86_BUILTIN_STOREDQA,
2164 IX86_BUILTIN_STOREDQU,
2165 IX86_BUILTIN_MOVQ,
2166 IX86_BUILTIN_LOADD,
2167 IX86_BUILTIN_STORED,
2168
2169 IX86_BUILTIN_CLRTI,
2170
2171 IX86_BUILTIN_PACKSSWB,
2172 IX86_BUILTIN_PACKSSDW,
2173 IX86_BUILTIN_PACKUSWB,
2174
2175 IX86_BUILTIN_PADDB,
2176 IX86_BUILTIN_PADDW,
2177 IX86_BUILTIN_PADDD,
2178 IX86_BUILTIN_PADDQ,
2179 IX86_BUILTIN_PADDSB,
2180 IX86_BUILTIN_PADDSW,
2181 IX86_BUILTIN_PADDUSB,
2182 IX86_BUILTIN_PADDUSW,
2183 IX86_BUILTIN_PSUBB,
2184 IX86_BUILTIN_PSUBW,
2185 IX86_BUILTIN_PSUBD,
2186 IX86_BUILTIN_PSUBQ,
2187 IX86_BUILTIN_PSUBSB,
2188 IX86_BUILTIN_PSUBSW,
2189 IX86_BUILTIN_PSUBUSB,
2190 IX86_BUILTIN_PSUBUSW,
2191
2192 IX86_BUILTIN_PAND,
2193 IX86_BUILTIN_PANDN,
2194 IX86_BUILTIN_POR,
2195 IX86_BUILTIN_PXOR,
2196
2197 IX86_BUILTIN_PAVGB,
2198 IX86_BUILTIN_PAVGW,
2199
2200 IX86_BUILTIN_PCMPEQB,
2201 IX86_BUILTIN_PCMPEQW,
2202 IX86_BUILTIN_PCMPEQD,
2203 IX86_BUILTIN_PCMPGTB,
2204 IX86_BUILTIN_PCMPGTW,
2205 IX86_BUILTIN_PCMPGTD,
2206
2207 IX86_BUILTIN_PEXTRW,
2208 IX86_BUILTIN_PINSRW,
2209
2210 IX86_BUILTIN_PMADDWD,
2211
2212 IX86_BUILTIN_PMAXSW,
2213 IX86_BUILTIN_PMAXUB,
2214 IX86_BUILTIN_PMINSW,
2215 IX86_BUILTIN_PMINUB,
2216
2217 IX86_BUILTIN_PMULHUW,
2218 IX86_BUILTIN_PMULHW,
2219 IX86_BUILTIN_PMULLW,
2220
2221 IX86_BUILTIN_PSADBW,
2222 IX86_BUILTIN_PSHUFW,
2223
2224 IX86_BUILTIN_PSLLW,
2225 IX86_BUILTIN_PSLLD,
2226 IX86_BUILTIN_PSLLQ,
2227 IX86_BUILTIN_PSRAW,
2228 IX86_BUILTIN_PSRAD,
2229 IX86_BUILTIN_PSRLW,
2230 IX86_BUILTIN_PSRLD,
2231 IX86_BUILTIN_PSRLQ,
2232 IX86_BUILTIN_PSLLWI,
2233 IX86_BUILTIN_PSLLDI,
2234 IX86_BUILTIN_PSLLQI,
2235 IX86_BUILTIN_PSRAWI,
2236 IX86_BUILTIN_PSRADI,
2237 IX86_BUILTIN_PSRLWI,
2238 IX86_BUILTIN_PSRLDI,
2239 IX86_BUILTIN_PSRLQI,
2240
2241 IX86_BUILTIN_PUNPCKHBW,
2242 IX86_BUILTIN_PUNPCKHWD,
2243 IX86_BUILTIN_PUNPCKHDQ,
2244 IX86_BUILTIN_PUNPCKLBW,
2245 IX86_BUILTIN_PUNPCKLWD,
2246 IX86_BUILTIN_PUNPCKLDQ,
2247
2248 IX86_BUILTIN_SHUFPS,
2249
2250 IX86_BUILTIN_RCPPS,
2251 IX86_BUILTIN_RCPSS,
2252 IX86_BUILTIN_RSQRTPS,
2253 IX86_BUILTIN_RSQRTSS,
2254 IX86_BUILTIN_SQRTPS,
2255 IX86_BUILTIN_SQRTSS,
2256
2257 IX86_BUILTIN_UNPCKHPS,
2258 IX86_BUILTIN_UNPCKLPS,
2259
2260 IX86_BUILTIN_ANDPS,
2261 IX86_BUILTIN_ANDNPS,
2262 IX86_BUILTIN_ORPS,
2263 IX86_BUILTIN_XORPS,
2264
2265 IX86_BUILTIN_EMMS,
2266 IX86_BUILTIN_LDMXCSR,
2267 IX86_BUILTIN_STMXCSR,
2268 IX86_BUILTIN_SFENCE,
2269
2270 /* 3DNow! Original */
2271 IX86_BUILTIN_FEMMS,
2272 IX86_BUILTIN_PAVGUSB,
2273 IX86_BUILTIN_PF2ID,
2274 IX86_BUILTIN_PFACC,
2275 IX86_BUILTIN_PFADD,
2276 IX86_BUILTIN_PFCMPEQ,
2277 IX86_BUILTIN_PFCMPGE,
2278 IX86_BUILTIN_PFCMPGT,
2279 IX86_BUILTIN_PFMAX,
2280 IX86_BUILTIN_PFMIN,
2281 IX86_BUILTIN_PFMUL,
2282 IX86_BUILTIN_PFRCP,
2283 IX86_BUILTIN_PFRCPIT1,
2284 IX86_BUILTIN_PFRCPIT2,
2285 IX86_BUILTIN_PFRSQIT1,
2286 IX86_BUILTIN_PFRSQRT,
2287 IX86_BUILTIN_PFSUB,
2288 IX86_BUILTIN_PFSUBR,
2289 IX86_BUILTIN_PI2FD,
2290 IX86_BUILTIN_PMULHRW,
2291
2292 /* 3DNow! Athlon Extensions */
2293 IX86_BUILTIN_PF2IW,
2294 IX86_BUILTIN_PFNACC,
2295 IX86_BUILTIN_PFPNACC,
2296 IX86_BUILTIN_PI2FW,
2297 IX86_BUILTIN_PSWAPDSI,
2298 IX86_BUILTIN_PSWAPDSF,
2299
2300 IX86_BUILTIN_SSE_ZERO,
2301 IX86_BUILTIN_MMX_ZERO,
2302
2303 /* SSE2 */
2304 IX86_BUILTIN_ADDPD,
2305 IX86_BUILTIN_ADDSD,
2306 IX86_BUILTIN_DIVPD,
2307 IX86_BUILTIN_DIVSD,
2308 IX86_BUILTIN_MULPD,
2309 IX86_BUILTIN_MULSD,
2310 IX86_BUILTIN_SUBPD,
2311 IX86_BUILTIN_SUBSD,
2312
2313 IX86_BUILTIN_CMPEQPD,
2314 IX86_BUILTIN_CMPLTPD,
2315 IX86_BUILTIN_CMPLEPD,
2316 IX86_BUILTIN_CMPGTPD,
2317 IX86_BUILTIN_CMPGEPD,
2318 IX86_BUILTIN_CMPNEQPD,
2319 IX86_BUILTIN_CMPNLTPD,
2320 IX86_BUILTIN_CMPNLEPD,
2321 IX86_BUILTIN_CMPNGTPD,
2322 IX86_BUILTIN_CMPNGEPD,
2323 IX86_BUILTIN_CMPORDPD,
2324 IX86_BUILTIN_CMPUNORDPD,
2325 IX86_BUILTIN_CMPNEPD,
2326 IX86_BUILTIN_CMPEQSD,
2327 IX86_BUILTIN_CMPLTSD,
2328 IX86_BUILTIN_CMPLESD,
2329 IX86_BUILTIN_CMPNEQSD,
2330 IX86_BUILTIN_CMPNLTSD,
2331 IX86_BUILTIN_CMPNLESD,
2332 IX86_BUILTIN_CMPORDSD,
2333 IX86_BUILTIN_CMPUNORDSD,
2334 IX86_BUILTIN_CMPNESD,
2335
2336 IX86_BUILTIN_COMIEQSD,
2337 IX86_BUILTIN_COMILTSD,
2338 IX86_BUILTIN_COMILESD,
2339 IX86_BUILTIN_COMIGTSD,
2340 IX86_BUILTIN_COMIGESD,
2341 IX86_BUILTIN_COMINEQSD,
2342 IX86_BUILTIN_UCOMIEQSD,
2343 IX86_BUILTIN_UCOMILTSD,
2344 IX86_BUILTIN_UCOMILESD,
2345 IX86_BUILTIN_UCOMIGTSD,
2346 IX86_BUILTIN_UCOMIGESD,
2347 IX86_BUILTIN_UCOMINEQSD,
2348
2349 IX86_BUILTIN_MAXPD,
2350 IX86_BUILTIN_MAXSD,
2351 IX86_BUILTIN_MINPD,
2352 IX86_BUILTIN_MINSD,
2353
2354 IX86_BUILTIN_ANDPD,
2355 IX86_BUILTIN_ANDNPD,
2356 IX86_BUILTIN_ORPD,
2357 IX86_BUILTIN_XORPD,
2358
2359 IX86_BUILTIN_SQRTPD,
2360 IX86_BUILTIN_SQRTSD,
2361
2362 IX86_BUILTIN_UNPCKHPD,
2363 IX86_BUILTIN_UNPCKLPD,
2364
2365 IX86_BUILTIN_SHUFPD,
2366
2367 IX86_BUILTIN_LOADAPD,
2368 IX86_BUILTIN_LOADUPD,
2369 IX86_BUILTIN_STOREAPD,
2370 IX86_BUILTIN_STOREUPD,
2371 IX86_BUILTIN_LOADSD,
2372 IX86_BUILTIN_STORESD,
2373 IX86_BUILTIN_MOVSD,
2374
2375 IX86_BUILTIN_LOADHPD,
2376 IX86_BUILTIN_LOADLPD,
2377 IX86_BUILTIN_STOREHPD,
2378 IX86_BUILTIN_STORELPD,
2379
2380 IX86_BUILTIN_CVTDQ2PD,
2381 IX86_BUILTIN_CVTDQ2PS,
2382
2383 IX86_BUILTIN_CVTPD2DQ,
2384 IX86_BUILTIN_CVTPD2PI,
2385 IX86_BUILTIN_CVTPD2PS,
2386 IX86_BUILTIN_CVTTPD2DQ,
2387 IX86_BUILTIN_CVTTPD2PI,
2388
2389 IX86_BUILTIN_CVTPI2PD,
2390 IX86_BUILTIN_CVTSI2SD,
2391 IX86_BUILTIN_CVTSI642SD,
2392
2393 IX86_BUILTIN_CVTSD2SI,
2394 IX86_BUILTIN_CVTSD2SI64,
2395 IX86_BUILTIN_CVTSD2SS,
2396 IX86_BUILTIN_CVTSS2SD,
2397 IX86_BUILTIN_CVTTSD2SI,
2398 IX86_BUILTIN_CVTTSD2SI64,
2399
2400 IX86_BUILTIN_CVTPS2DQ,
2401 IX86_BUILTIN_CVTPS2PD,
2402 IX86_BUILTIN_CVTTPS2DQ,
2403
2404 IX86_BUILTIN_MOVNTI,
2405 IX86_BUILTIN_MOVNTPD,
2406 IX86_BUILTIN_MOVNTDQ,
2407
2408 IX86_BUILTIN_SETPD1,
2409 IX86_BUILTIN_SETPD,
2410 IX86_BUILTIN_CLRPD,
2411 IX86_BUILTIN_SETRPD,
2412 IX86_BUILTIN_LOADPD1,
2413 IX86_BUILTIN_LOADRPD,
2414 IX86_BUILTIN_STOREPD1,
2415 IX86_BUILTIN_STORERPD,
2416
2417 /* SSE2 MMX */
2418 IX86_BUILTIN_MASKMOVDQU,
2419 IX86_BUILTIN_MOVMSKPD,
2420 IX86_BUILTIN_PMOVMSKB128,
2421 IX86_BUILTIN_MOVQ2DQ,
2422 IX86_BUILTIN_MOVDQ2Q,
2423
2424 IX86_BUILTIN_PACKSSWB128,
2425 IX86_BUILTIN_PACKSSDW128,
2426 IX86_BUILTIN_PACKUSWB128,
2427
2428 IX86_BUILTIN_PADDB128,
2429 IX86_BUILTIN_PADDW128,
2430 IX86_BUILTIN_PADDD128,
2431 IX86_BUILTIN_PADDQ128,
2432 IX86_BUILTIN_PADDSB128,
2433 IX86_BUILTIN_PADDSW128,
2434 IX86_BUILTIN_PADDUSB128,
2435 IX86_BUILTIN_PADDUSW128,
2436 IX86_BUILTIN_PSUBB128,
2437 IX86_BUILTIN_PSUBW128,
2438 IX86_BUILTIN_PSUBD128,
2439 IX86_BUILTIN_PSUBQ128,
2440 IX86_BUILTIN_PSUBSB128,
2441 IX86_BUILTIN_PSUBSW128,
2442 IX86_BUILTIN_PSUBUSB128,
2443 IX86_BUILTIN_PSUBUSW128,
2444
2445 IX86_BUILTIN_PAND128,
2446 IX86_BUILTIN_PANDN128,
2447 IX86_BUILTIN_POR128,
2448 IX86_BUILTIN_PXOR128,
2449
2450 IX86_BUILTIN_PAVGB128,
2451 IX86_BUILTIN_PAVGW128,
2452
2453 IX86_BUILTIN_PCMPEQB128,
2454 IX86_BUILTIN_PCMPEQW128,
2455 IX86_BUILTIN_PCMPEQD128,
2456 IX86_BUILTIN_PCMPGTB128,
2457 IX86_BUILTIN_PCMPGTW128,
2458 IX86_BUILTIN_PCMPGTD128,
2459
2460 IX86_BUILTIN_PEXTRW128,
2461 IX86_BUILTIN_PINSRW128,
2462
2463 IX86_BUILTIN_PMADDWD128,
2464
2465 IX86_BUILTIN_PMAXSW128,
2466 IX86_BUILTIN_PMAXUB128,
2467 IX86_BUILTIN_PMINSW128,
2468 IX86_BUILTIN_PMINUB128,
2469
2470 IX86_BUILTIN_PMULUDQ,
2471 IX86_BUILTIN_PMULUDQ128,
2472 IX86_BUILTIN_PMULHUW128,
2473 IX86_BUILTIN_PMULHW128,
2474 IX86_BUILTIN_PMULLW128,
2475
2476 IX86_BUILTIN_PSADBW128,
2477 IX86_BUILTIN_PSHUFHW,
2478 IX86_BUILTIN_PSHUFLW,
2479 IX86_BUILTIN_PSHUFD,
2480
2481 IX86_BUILTIN_PSLLW128,
2482 IX86_BUILTIN_PSLLD128,
2483 IX86_BUILTIN_PSLLQ128,
2484 IX86_BUILTIN_PSRAW128,
2485 IX86_BUILTIN_PSRAD128,
2486 IX86_BUILTIN_PSRLW128,
2487 IX86_BUILTIN_PSRLD128,
2488 IX86_BUILTIN_PSRLQ128,
2489 IX86_BUILTIN_PSLLDQI128,
2490 IX86_BUILTIN_PSLLWI128,
2491 IX86_BUILTIN_PSLLDI128,
2492 IX86_BUILTIN_PSLLQI128,
2493 IX86_BUILTIN_PSRAWI128,
2494 IX86_BUILTIN_PSRADI128,
2495 IX86_BUILTIN_PSRLDQI128,
2496 IX86_BUILTIN_PSRLWI128,
2497 IX86_BUILTIN_PSRLDI128,
2498 IX86_BUILTIN_PSRLQI128,
2499
2500 IX86_BUILTIN_PUNPCKHBW128,
2501 IX86_BUILTIN_PUNPCKHWD128,
2502 IX86_BUILTIN_PUNPCKHDQ128,
2503 IX86_BUILTIN_PUNPCKHQDQ128,
2504 IX86_BUILTIN_PUNPCKLBW128,
2505 IX86_BUILTIN_PUNPCKLWD128,
2506 IX86_BUILTIN_PUNPCKLDQ128,
2507 IX86_BUILTIN_PUNPCKLQDQ128,
2508
2509 IX86_BUILTIN_CLFLUSH,
2510 IX86_BUILTIN_MFENCE,
2511 IX86_BUILTIN_LFENCE,
2512
2513 /* Prescott New Instructions. */
2514 IX86_BUILTIN_ADDSUBPS,
2515 IX86_BUILTIN_HADDPS,
2516 IX86_BUILTIN_HSUBPS,
2517 IX86_BUILTIN_MOVSHDUP,
2518 IX86_BUILTIN_MOVSLDUP,
2519 IX86_BUILTIN_ADDSUBPD,
2520 IX86_BUILTIN_HADDPD,
2521 IX86_BUILTIN_HSUBPD,
2522 IX86_BUILTIN_LOADDDUP,
2523 IX86_BUILTIN_MOVDDUP,
2524 IX86_BUILTIN_LDDQU,
2525
2526 IX86_BUILTIN_MONITOR,
2527 IX86_BUILTIN_MWAIT,
2528
2529 IX86_BUILTIN_MAX
2530 };
2531 \f
2532 /* Max number of args passed in registers. If this is more than 3, we will
2533 have problems with ebx (register #4), since it is a caller save register and
2534 is also used as the pic register in ELF. So for now, don't allow more than
2535 3 registers to be passed in registers. */
2536
2537 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2538
2539 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
2540
2541 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
2542
2543 \f
2544 /* Specify the machine mode that this machine uses
2545 for the index in the tablejump instruction. */
2546 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2547
2548 /* Define as C expression which evaluates to nonzero if the tablejump
2549 instruction expects the table to contain offsets from the address of the
2550 table.
2551 Do not define this if the table should contain absolute addresses. */
2552 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2553
2554 /* Define this as 1 if `char' should by default be signed; else as 0. */
2555 #define DEFAULT_SIGNED_CHAR 1
2556
2557 /* Number of bytes moved into a data cache for a single prefetch operation. */
2558 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2559
2560 /* Number of prefetch operations that can be done in parallel. */
2561 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2562
2563 /* Max number of bytes we can move from memory to memory
2564 in one reasonably fast instruction. */
2565 #define MOVE_MAX 16
2566
2567 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2568 move efficiently, as opposed to MOVE_MAX which is the maximum
2569 number of bytes we can move with a single instruction. */
2570 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2571
2572 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2573 move-instruction pairs, we will do a movstr or libcall instead.
2574 Increasing the value will always make code faster, but eventually
2575 incurs high cost in increased code size.
2576
2577 If you don't define this, a reasonable default is used. */
2578
2579 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2580
2581 /* Define if shifts truncate the shift count
2582 which implies one can omit a sign-extension or zero-extension
2583 of a shift count. */
2584 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2585
2586 /* #define SHIFT_COUNT_TRUNCATED */
2587
2588 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2589 is done just by pretending it is already truncated. */
2590 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2591
2592 /* When a prototype says `char' or `short', really pass an `int'.
2593 (The 386 can't easily push less than an int.) */
2594
2595 #define PROMOTE_PROTOTYPES 1
2596
2597 /* A macro to update M and UNSIGNEDP when an object whose type is
2598 TYPE and which has the specified mode and signedness is to be
2599 stored in a register. This macro is only called when TYPE is a
2600 scalar type.
2601
2602 On i386 it is sometimes useful to promote HImode and QImode
2603 quantities to SImode. The choice depends on target type. */
2604
2605 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2606 do { \
2607 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2608 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2609 (MODE) = SImode; \
2610 } while (0)
2611
2612 /* Specify the machine mode that pointers have.
2613 After generation of rtl, the compiler makes no further distinction
2614 between pointers and any other objects of this machine mode. */
2615 #define Pmode (TARGET_64BIT ? DImode : SImode)
2616
2617 /* A function address in a call instruction
2618 is a byte address (for indexing purposes)
2619 so give the MEM rtx a byte's mode. */
2620 #define FUNCTION_MODE QImode
2621 \f
2622 /* A C expression for the cost of moving data from a register in class FROM to
2623 one in class TO. The classes are expressed using the enumeration values
2624 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2625 interpreted relative to that.
2626
2627 It is not required that the cost always equal 2 when FROM is the same as TO;
2628 on some machines it is expensive to move between registers if they are not
2629 general registers. */
2630
2631 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2632 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2633
2634 /* A C expression for the cost of moving data of mode M between a
2635 register and memory. A value of 2 is the default; this cost is
2636 relative to those in `REGISTER_MOVE_COST'.
2637
2638 If moving between registers and memory is more expensive than
2639 between two registers, you should define this macro to express the
2640 relative cost. */
2641
2642 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2643 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2644
2645 /* A C expression for the cost of a branch instruction. A value of 1
2646 is the default; other values are interpreted relative to that. */
2647
2648 #define BRANCH_COST ix86_branch_cost
2649
2650 /* Define this macro as a C expression which is nonzero if accessing
2651 less than a word of memory (i.e. a `char' or a `short') is no
2652 faster than accessing a word of memory, i.e., if such access
2653 require more than one instruction or if there is no difference in
2654 cost between byte and (aligned) word loads.
2655
2656 When this macro is not defined, the compiler will access a field by
2657 finding the smallest containing object; when it is defined, a
2658 fullword load will be used if alignment permits. Unless bytes
2659 accesses are faster than word accesses, using word accesses is
2660 preferable since it may eliminate subsequent memory access if
2661 subsequent accesses occur to other fields in the same word of the
2662 structure, but to different bytes. */
2663
2664 #define SLOW_BYTE_ACCESS 0
2665
2666 /* Nonzero if access to memory by shorts is slow and undesirable. */
2667 #define SLOW_SHORT_ACCESS 0
2668
2669 /* Define this macro to be the value 1 if unaligned accesses have a
2670 cost many times greater than aligned accesses, for example if they
2671 are emulated in a trap handler.
2672
2673 When this macro is nonzero, the compiler will act as if
2674 `STRICT_ALIGNMENT' were nonzero when generating code for block
2675 moves. This can cause significantly more instructions to be
2676 produced. Therefore, do not set this macro nonzero if unaligned
2677 accesses only add a cycle or two to the time for a memory access.
2678
2679 If the value of this macro is always zero, it need not be defined. */
2680
2681 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2682
2683 /* Define this macro if it is as good or better to call a constant
2684 function address than to call an address kept in a register.
2685
2686 Desirable on the 386 because a CALL with a constant address is
2687 faster than one with a register address. */
2688
2689 #define NO_FUNCTION_CSE
2690
2691 /* Define this macro if it is as good or better for a function to call
2692 itself with an explicit address than to call an address kept in a
2693 register. */
2694
2695 #define NO_RECURSIVE_FUNCTION_CSE
2696 \f
2697 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2698 return the mode to be used for the comparison.
2699
2700 For floating-point equality comparisons, CCFPEQmode should be used.
2701 VOIDmode should be used in all other cases.
2702
2703 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2704 possible, to allow for more combinations. */
2705
2706 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2707
2708 /* Return nonzero if MODE implies a floating point inequality can be
2709 reversed. */
2710
2711 #define REVERSIBLE_CC_MODE(MODE) 1
2712
2713 /* A C expression whose value is reversed condition code of the CODE for
2714 comparison done in CC_MODE mode. */
2715 #define REVERSE_CONDITION(CODE, MODE) \
2716 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2717 : reverse_condition_maybe_unordered (CODE))
2718
2719 \f
2720 /* Control the assembler format that we output, to the extent
2721 this does not vary between assemblers. */
2722
2723 /* How to refer to registers in assembler output.
2724 This sequence is indexed by compiler's hard-register-number (see above). */
2725
2726 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2727 For non floating point regs, the following are the HImode names.
2728
2729 For float regs, the stack top is sometimes referred to as "%st(0)"
2730 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
2731
2732 #define HI_REGISTER_NAMES \
2733 {"ax","dx","cx","bx","si","di","bp","sp", \
2734 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2735 "argp", "flags", "fpsr", "dirflag", "frame", \
2736 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2737 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2738 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2739 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2740
2741 #define REGISTER_NAMES HI_REGISTER_NAMES
2742
2743 /* Table of additional register names to use in user input. */
2744
2745 #define ADDITIONAL_REGISTER_NAMES \
2746 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2747 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2748 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2749 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2750 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2751 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2752 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2753 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2754
2755 /* Note we are omitting these since currently I don't know how
2756 to get gcc to use these, since they want the same but different
2757 number as al, and ax.
2758 */
2759
2760 #define QI_REGISTER_NAMES \
2761 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2762
2763 /* These parallel the array above, and can be used to access bits 8:15
2764 of regs 0 through 3. */
2765
2766 #define QI_HIGH_REGISTER_NAMES \
2767 {"ah", "dh", "ch", "bh", }
2768
2769 /* How to renumber registers for dbx and gdb. */
2770
2771 #define DBX_REGISTER_NUMBER(N) \
2772 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2773
2774 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2775 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2776 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2777
2778 /* Before the prologue, RA is at 0(%esp). */
2779 #define INCOMING_RETURN_ADDR_RTX \
2780 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2781
2782 /* After the prologue, RA is at -4(AP) in the current frame. */
2783 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2784 ((COUNT) == 0 \
2785 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2786 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2787
2788 /* PC is dbx register 8; let's use that column for RA. */
2789 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2790
2791 /* Before the prologue, the top of the frame is at 4(%esp). */
2792 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2793
2794 /* Describe how we implement __builtin_eh_return. */
2795 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2796 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2797
2798
2799 /* Select a format to encode pointers in exception handling data. CODE
2800 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2801 true if the symbol may be affected by dynamic relocations.
2802
2803 ??? All x86 object file formats are capable of representing this.
2804 After all, the relocation needed is the same as for the call insn.
2805 Whether or not a particular assembler allows us to enter such, I
2806 guess we'll have to see. */
2807 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2808 (flag_pic \
2809 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2810 : DW_EH_PE_absptr)
2811
2812 /* This is how to output an insn to push a register on the stack.
2813 It need not be very fast code. */
2814
2815 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2816 do { \
2817 if (TARGET_64BIT) \
2818 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2819 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2820 else \
2821 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2822 } while (0)
2823
2824 /* This is how to output an insn to pop a register from the stack.
2825 It need not be very fast code. */
2826
2827 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2828 do { \
2829 if (TARGET_64BIT) \
2830 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2831 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2832 else \
2833 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2834 } while (0)
2835
2836 /* This is how to output an element of a case-vector that is absolute. */
2837
2838 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2839 ix86_output_addr_vec_elt ((FILE), (VALUE))
2840
2841 /* This is how to output an element of a case-vector that is relative. */
2842
2843 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2844 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2845
2846 /* Under some conditions we need jump tables in the text section, because
2847 the assembler cannot handle label differences between sections. */
2848
2849 #define JUMP_TABLES_IN_TEXT_SECTION \
2850 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2851
2852 /* A C statement that outputs an address constant appropriate to
2853 for DWARF debugging. */
2854
2855 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2856 i386_dwarf_output_addr_const ((FILE), (X))
2857
2858 /* Emit a dtp-relative reference to a TLS variable. */
2859
2860 #ifdef HAVE_AS_TLS
2861 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2862 i386_output_dwarf_dtprel (FILE, SIZE, X)
2863 #endif
2864
2865 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2866 and switch back. For x86 we do this only to save a few bytes that
2867 would otherwise be unused in the text section. */
2868 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2869 asm (SECTION_OP "\n\t" \
2870 "call " USER_LABEL_PREFIX #FUNC "\n" \
2871 TEXT_SECTION_ASM_OP);
2872 \f
2873 /* Print operand X (an rtx) in assembler syntax to file FILE.
2874 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2875 Effect of various CODE letters is described in i386.c near
2876 print_operand function. */
2877
2878 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2879 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2880
2881 #define PRINT_OPERAND(FILE, X, CODE) \
2882 print_operand ((FILE), (X), (CODE))
2883
2884 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2885 print_operand_address ((FILE), (ADDR))
2886
2887 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2888 do { \
2889 if (! output_addr_const_extra (FILE, (X))) \
2890 goto FAIL; \
2891 } while (0);
2892
2893 /* a letter which is not needed by the normal asm syntax, which
2894 we can use for operand syntax in the extended asm */
2895
2896 #define ASM_OPERAND_LETTER '#'
2897 #define RET return ""
2898 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2899 \f
2900 /* Define the codes that are matched by predicates in i386.c. */
2901
2902 #define PREDICATE_CODES \
2903 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2904 SYMBOL_REF, LABEL_REF, CONST}}, \
2905 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2906 SYMBOL_REF, LABEL_REF, CONST}}, \
2907 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
2908 SYMBOL_REF, LABEL_REF, CONST}}, \
2909 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2910 SYMBOL_REF, LABEL_REF, CONST}}, \
2911 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2912 SYMBOL_REF, LABEL_REF, CONST}}, \
2913 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2914 SYMBOL_REF, LABEL_REF, CONST}}, \
2915 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2916 SYMBOL_REF, LABEL_REF}}, \
2917 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
2918 {"const_int_1_31_operand", {CONST_INT}}, \
2919 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2920 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2921 LABEL_REF, SUBREG, REG, MEM}}, \
2922 {"pic_symbolic_operand", {CONST}}, \
2923 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
2924 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
2925 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
2926 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
2927 {"const1_operand", {CONST_INT}}, \
2928 {"const248_operand", {CONST_INT}}, \
2929 {"const_0_to_3_operand", {CONST_INT}}, \
2930 {"const_0_to_7_operand", {CONST_INT}}, \
2931 {"const_0_to_15_operand", {CONST_INT}}, \
2932 {"const_0_to_255_operand", {CONST_INT}}, \
2933 {"incdec_operand", {CONST_INT}}, \
2934 {"mmx_reg_operand", {REG}}, \
2935 {"reg_no_sp_operand", {SUBREG, REG}}, \
2936 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2937 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
2938 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
2939 {"index_register_operand", {SUBREG, REG}}, \
2940 {"flags_reg_operand", {REG}}, \
2941 {"q_regs_operand", {SUBREG, REG}}, \
2942 {"non_q_regs_operand", {SUBREG, REG}}, \
2943 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
2944 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
2945 GE, UNGE, LTGT, UNEQ}}, \
2946 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
2947 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
2948 }}, \
2949 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
2950 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
2951 UNGE, UNGT, LTGT, UNEQ }}, \
2952 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
2953 GE, UNGE, LTGT, UNEQ}}, \
2954 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
2955 {"ext_register_operand", {SUBREG, REG}}, \
2956 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
2957 {"mult_operator", {MULT}}, \
2958 {"div_operator", {DIV}}, \
2959 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
2960 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
2961 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
2962 LSHIFTRT, ROTATERT}}, \
2963 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
2964 {"memory_displacement_operand", {MEM}}, \
2965 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2966 LABEL_REF, SUBREG, REG, MEM, AND}}, \
2967 {"long_memory_operand", {MEM}}, \
2968 {"tls_symbolic_operand", {SYMBOL_REF}}, \
2969 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2970 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2971 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
2972 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
2973 {"any_fp_register_operand", {REG}}, \
2974 {"register_and_not_any_fp_reg_operand", {REG}}, \
2975 {"fp_register_operand", {REG}}, \
2976 {"register_and_not_fp_reg_operand", {REG}}, \
2977 {"zero_extended_scalar_load_operand", {MEM}}, \
2978 {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}}, \
2979 {"no_seg_address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2980 LABEL_REF, SUBREG, REG, MEM, PLUS, MULT}},
2981
2982 /* A list of predicates that do special things with modes, and so
2983 should not elicit warnings for VOIDmode match_operand. */
2984
2985 #define SPECIAL_MODE_PREDICATES \
2986 "ext_register_operand",
2987 \f
2988 /* Which processor to schedule for. The cpu attribute defines a list that
2989 mirrors this list, so changes to i386.md must be made at the same time. */
2990
2991 enum processor_type
2992 {
2993 PROCESSOR_I386, /* 80386 */
2994 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2995 PROCESSOR_PENTIUM,
2996 PROCESSOR_PENTIUMPRO,
2997 PROCESSOR_K6,
2998 PROCESSOR_ATHLON,
2999 PROCESSOR_PENTIUM4,
3000 PROCESSOR_K8,
3001 PROCESSOR_max
3002 };
3003
3004 extern enum processor_type ix86_tune;
3005 extern const char *ix86_tune_string;
3006
3007 extern enum processor_type ix86_arch;
3008 extern const char *ix86_arch_string;
3009
3010 enum fpmath_unit
3011 {
3012 FPMATH_387 = 1,
3013 FPMATH_SSE = 2
3014 };
3015
3016 extern enum fpmath_unit ix86_fpmath;
3017 extern const char *ix86_fpmath_string;
3018
3019 enum tls_dialect
3020 {
3021 TLS_DIALECT_GNU,
3022 TLS_DIALECT_SUN
3023 };
3024
3025 extern enum tls_dialect ix86_tls_dialect;
3026 extern const char *ix86_tls_dialect_string;
3027
3028 enum cmodel {
3029 CM_32, /* The traditional 32-bit ABI. */
3030 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3031 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3032 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3033 CM_LARGE, /* No assumptions. */
3034 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3035 };
3036
3037 extern enum cmodel ix86_cmodel;
3038 extern const char *ix86_cmodel_string;
3039
3040 /* Size of the RED_ZONE area. */
3041 #define RED_ZONE_SIZE 128
3042 /* Reserved area of the red zone for temporaries. */
3043 #define RED_ZONE_RESERVE 8
3044
3045 enum asm_dialect {
3046 ASM_ATT,
3047 ASM_INTEL
3048 };
3049
3050 extern const char *ix86_asm_string;
3051 extern enum asm_dialect ix86_asm_dialect;
3052
3053 extern int ix86_regparm;
3054 extern const char *ix86_regparm_string;
3055
3056 extern int ix86_preferred_stack_boundary;
3057 extern const char *ix86_preferred_stack_boundary_string;
3058
3059 extern int ix86_branch_cost;
3060 extern const char *ix86_branch_cost_string;
3061
3062 extern const char *ix86_debug_arg_string;
3063 extern const char *ix86_debug_addr_string;
3064
3065 /* Obsoleted by -f options. Remove before 3.2 ships. */
3066 extern const char *ix86_align_loops_string;
3067 extern const char *ix86_align_jumps_string;
3068 extern const char *ix86_align_funcs_string;
3069
3070 /* Smallest class containing REGNO. */
3071 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3072
3073 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3074 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3075 \f
3076 /* To properly truncate FP values into integers, we need to set i387 control
3077 word. We can't emit proper mode switching code before reload, as spills
3078 generated by reload may truncate values incorrectly, but we still can avoid
3079 redundant computation of new control word by the mode switching pass.
3080 The fldcw instructions are still emitted redundantly, but this is probably
3081 not going to be noticeable problem, as most CPUs do have fast path for
3082 the sequence.
3083
3084 The machinery is to emit simple truncation instructions and split them
3085 before reload to instructions having USEs of two memory locations that
3086 are filled by this code to old and new control word.
3087
3088 Post-reload pass may be later used to eliminate the redundant fildcw if
3089 needed. */
3090
3091 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3092
3093 /* Define this macro if the port needs extra instructions inserted
3094 for mode switching in an optimizing compilation. */
3095
3096 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3097
3098 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3099 initializer for an array of integers. Each initializer element N
3100 refers to an entity that needs mode switching, and specifies the
3101 number of different modes that might need to be set for this
3102 entity. The position of the initializer in the initializer -
3103 starting counting at zero - determines the integer that is used to
3104 refer to the mode-switched entity in question. */
3105
3106 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3107
3108 /* ENTITY is an integer specifying a mode-switched entity. If
3109 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3110 return an integer value not larger than the corresponding element
3111 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3112 must be switched into prior to the execution of INSN. */
3113
3114 #define MODE_NEEDED(ENTITY, I) \
3115 (GET_CODE (I) == CALL_INSN \
3116 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3117 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3118 ? FP_CW_UNINITIALIZED \
3119 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3120 ? FP_CW_ANY \
3121 : FP_CW_STORED)
3122
3123 /* This macro specifies the order in which modes for ENTITY are
3124 processed. 0 is the highest priority. */
3125
3126 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3127
3128 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3129 is the set of hard registers live at the point where the insn(s)
3130 are to be inserted. */
3131
3132 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3133 ((MODE) == FP_CW_STORED \
3134 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3135 assign_386_stack_local (HImode, 2)), 0\
3136 : 0)
3137 \f
3138 /* Avoid renaming of stack registers, as doing so in combination with
3139 scheduling just increases amount of live registers at time and in
3140 the turn amount of fxch instructions needed.
3141
3142 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
3143
3144 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3145 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3146
3147 \f
3148 #define DLL_IMPORT_EXPORT_PREFIX '#'
3149
3150 #define FASTCALL_PREFIX '@'
3151 \f
3152 struct machine_function GTY(())
3153 {
3154 struct stack_local_entry *stack_locals;
3155 const char *some_ld_name;
3156 int save_varrargs_registers;
3157 int accesses_prev_frame;
3158 int optimize_mode_switching;
3159 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3160 determine the style used. */
3161 int use_fast_prologue_epilogue;
3162 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3163 for. */
3164 int use_fast_prologue_epilogue_nregs;
3165 };
3166
3167 #define ix86_stack_locals (cfun->machine->stack_locals)
3168 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3169 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3170
3171 /* Control behavior of x86_file_start. */
3172 #define X86_FILE_START_VERSION_DIRECTIVE false
3173 #define X86_FILE_START_FLTUSED false
3174
3175 /*
3176 Local variables:
3177 version-control: t
3178 End:
3179 */