i386.h (SSE_VEC_FLOAT_MODE_P): Remove.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27 /* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
42 /* Redefines for option macros. */
43
44 #define TARGET_64BIT OPTION_ISA_64BIT
45 #define TARGET_MMX OPTION_ISA_MMX
46 #define TARGET_3DNOW OPTION_ISA_3DNOW
47 #define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48 #define TARGET_SSE OPTION_ISA_SSE
49 #define TARGET_SSE2 OPTION_ISA_SSE2
50 #define TARGET_SSE3 OPTION_ISA_SSE3
51 #define TARGET_SSSE3 OPTION_ISA_SSSE3
52 #define TARGET_SSE4_1 OPTION_ISA_SSE4_1
53 #define TARGET_SSE4_2 OPTION_ISA_SSE4_2
54 #define TARGET_AVX OPTION_ISA_AVX
55 #define TARGET_FMA OPTION_ISA_FMA
56 #define TARGET_SSE4A OPTION_ISA_SSE4A
57 #define TARGET_FMA4 OPTION_ISA_FMA4
58 #define TARGET_XOP OPTION_ISA_XOP
59 #define TARGET_LWP OPTION_ISA_LWP
60 #define TARGET_ROUND OPTION_ISA_ROUND
61 #define TARGET_ABM OPTION_ISA_ABM
62 #define TARGET_BMI OPTION_ISA_BMI
63 #define TARGET_TBM OPTION_ISA_TBM
64 #define TARGET_POPCNT OPTION_ISA_POPCNT
65 #define TARGET_SAHF OPTION_ISA_SAHF
66 #define TARGET_MOVBE OPTION_ISA_MOVBE
67 #define TARGET_CRC32 OPTION_ISA_CRC32
68 #define TARGET_AES OPTION_ISA_AES
69 #define TARGET_PCLMUL OPTION_ISA_PCLMUL
70 #define TARGET_CMPXCHG16B OPTION_ISA_CX16
71 #define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
72 #define TARGET_RDRND OPTION_ISA_RDRND
73 #define TARGET_F16C OPTION_ISA_F16C
74
75
76 /* SSE4.1 defines round instructions */
77 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
78 #define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
79
80 #include "config/vxworks-dummy.h"
81
82 /* Algorithm to expand string function with. */
83 enum stringop_alg
84 {
85 no_stringop,
86 libcall,
87 rep_prefix_1_byte,
88 rep_prefix_4_byte,
89 rep_prefix_8_byte,
90 loop_1_byte,
91 loop,
92 unrolled_loop
93 };
94
95 #define MAX_STRINGOP_ALGS 4
96
97 /* Specify what algorithm to use for stringops on known size.
98 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
99 known at compile time or estimated via feedback, the SIZE array
100 is walked in order until MAX is greater then the estimate (or -1
101 means infinity). Corresponding ALG is used then.
102 For example initializer:
103 {{256, loop}, {-1, rep_prefix_4_byte}}
104 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
105 be used otherwise. */
106 struct stringop_algs
107 {
108 const enum stringop_alg unknown_size;
109 const struct stringop_strategy {
110 const int max;
111 const enum stringop_alg alg;
112 } size [MAX_STRINGOP_ALGS];
113 };
114
115 /* Define the specific costs for a given cpu */
116
117 struct processor_costs {
118 const int add; /* cost of an add instruction */
119 const int lea; /* cost of a lea instruction */
120 const int shift_var; /* variable shift costs */
121 const int shift_const; /* constant shift costs */
122 const int mult_init[5]; /* cost of starting a multiply
123 in QImode, HImode, SImode, DImode, TImode*/
124 const int mult_bit; /* cost of multiply per each bit set */
125 const int divide[5]; /* cost of a divide/mod
126 in QImode, HImode, SImode, DImode, TImode*/
127 int movsx; /* The cost of movsx operation. */
128 int movzx; /* The cost of movzx operation. */
129 const int large_insn; /* insns larger than this cost more */
130 const int move_ratio; /* The threshold of number of scalar
131 memory-to-memory move insns. */
132 const int movzbl_load; /* cost of loading using movzbl */
133 const int int_load[3]; /* cost of loading integer registers
134 in QImode, HImode and SImode relative
135 to reg-reg move (2). */
136 const int int_store[3]; /* cost of storing integer register
137 in QImode, HImode and SImode */
138 const int fp_move; /* cost of reg,reg fld/fst */
139 const int fp_load[3]; /* cost of loading FP register
140 in SFmode, DFmode and XFmode */
141 const int fp_store[3]; /* cost of storing FP register
142 in SFmode, DFmode and XFmode */
143 const int mmx_move; /* cost of moving MMX register. */
144 const int mmx_load[2]; /* cost of loading MMX register
145 in SImode and DImode */
146 const int mmx_store[2]; /* cost of storing MMX register
147 in SImode and DImode */
148 const int sse_move; /* cost of moving SSE register. */
149 const int sse_load[3]; /* cost of loading SSE register
150 in SImode, DImode and TImode*/
151 const int sse_store[3]; /* cost of storing SSE register
152 in SImode, DImode and TImode*/
153 const int mmxsse_to_integer; /* cost of moving mmxsse register to
154 integer and vice versa. */
155 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
156 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
157 const int prefetch_block; /* bytes moved to cache for prefetch. */
158 const int simultaneous_prefetches; /* number of parallel prefetch
159 operations. */
160 const int branch_cost; /* Default value for BRANCH_COST. */
161 const int fadd; /* cost of FADD and FSUB instructions. */
162 const int fmul; /* cost of FMUL instruction. */
163 const int fdiv; /* cost of FDIV instruction. */
164 const int fabs; /* cost of FABS instruction. */
165 const int fchs; /* cost of FCHS instruction. */
166 const int fsqrt; /* cost of FSQRT instruction. */
167 /* Specify what algorithm
168 to use for stringops on unknown size. */
169 struct stringop_algs memcpy[2], memset[2];
170 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
171 load and store. */
172 const int scalar_load_cost; /* Cost of scalar load. */
173 const int scalar_store_cost; /* Cost of scalar store. */
174 const int vec_stmt_cost; /* Cost of any vector operation, excluding
175 load, store, vector-to-scalar and
176 scalar-to-vector operation. */
177 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
178 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
179 const int vec_align_load_cost; /* Cost of aligned vector load. */
180 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
181 const int vec_store_cost; /* Cost of vector store. */
182 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
183 cost model. */
184 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
185 vectorizer cost model. */
186 };
187
188 extern const struct processor_costs *ix86_cost;
189 extern const struct processor_costs ix86_size_cost;
190
191 #define ix86_cur_cost() \
192 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
193
194 /* Macros used in the machine description to test the flags. */
195
196 /* configure can arrange to make this 2, to force a 486. */
197
198 #ifndef TARGET_CPU_DEFAULT
199 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
200 #endif
201
202 #ifndef TARGET_FPMATH_DEFAULT
203 #define TARGET_FPMATH_DEFAULT \
204 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
205 #endif
206
207 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
208
209 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
210 compile-time constant. */
211 #ifdef IN_LIBGCC2
212 #undef TARGET_64BIT
213 #ifdef __x86_64__
214 #define TARGET_64BIT 1
215 #else
216 #define TARGET_64BIT 0
217 #endif
218 #else
219 #ifndef TARGET_BI_ARCH
220 #undef TARGET_64BIT
221 #if TARGET_64BIT_DEFAULT
222 #define TARGET_64BIT 1
223 #else
224 #define TARGET_64BIT 0
225 #endif
226 #endif
227 #endif
228
229 #define HAS_LONG_COND_BRANCH 1
230 #define HAS_LONG_UNCOND_BRANCH 1
231
232 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
233 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
234 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
235 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
236 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
237 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
238 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
239 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
240 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
241 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
242 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
243 #define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
244 #define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
245 #define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
246 #define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
247 #define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
248 #define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
249 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
250 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
251 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
252 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
253 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
254 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
255 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
256
257 /* Feature tests against the various tunings. */
258 enum ix86_tune_indices {
259 X86_TUNE_USE_LEAVE,
260 X86_TUNE_PUSH_MEMORY,
261 X86_TUNE_ZERO_EXTEND_WITH_AND,
262 X86_TUNE_UNROLL_STRLEN,
263 X86_TUNE_DEEP_BRANCH_PREDICTION,
264 X86_TUNE_BRANCH_PREDICTION_HINTS,
265 X86_TUNE_DOUBLE_WITH_ADD,
266 X86_TUNE_USE_SAHF,
267 X86_TUNE_MOVX,
268 X86_TUNE_PARTIAL_REG_STALL,
269 X86_TUNE_PARTIAL_FLAG_REG_STALL,
270 X86_TUNE_USE_HIMODE_FIOP,
271 X86_TUNE_USE_SIMODE_FIOP,
272 X86_TUNE_USE_MOV0,
273 X86_TUNE_USE_CLTD,
274 X86_TUNE_USE_XCHGB,
275 X86_TUNE_SPLIT_LONG_MOVES,
276 X86_TUNE_READ_MODIFY_WRITE,
277 X86_TUNE_READ_MODIFY,
278 X86_TUNE_PROMOTE_QIMODE,
279 X86_TUNE_FAST_PREFIX,
280 X86_TUNE_SINGLE_STRINGOP,
281 X86_TUNE_QIMODE_MATH,
282 X86_TUNE_HIMODE_MATH,
283 X86_TUNE_PROMOTE_QI_REGS,
284 X86_TUNE_PROMOTE_HI_REGS,
285 X86_TUNE_SINGLE_POP,
286 X86_TUNE_DOUBLE_POP,
287 X86_TUNE_SINGLE_PUSH,
288 X86_TUNE_DOUBLE_PUSH,
289 X86_TUNE_INTEGER_DFMODE_MOVES,
290 X86_TUNE_PARTIAL_REG_DEPENDENCY,
291 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
292 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
293 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
294 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
295 X86_TUNE_SSE_SPLIT_REGS,
296 X86_TUNE_SSE_TYPELESS_STORES,
297 X86_TUNE_SSE_LOAD0_BY_PXOR,
298 X86_TUNE_MEMORY_MISMATCH_STALL,
299 X86_TUNE_PROLOGUE_USING_MOVE,
300 X86_TUNE_EPILOGUE_USING_MOVE,
301 X86_TUNE_SHIFT1,
302 X86_TUNE_USE_FFREEP,
303 X86_TUNE_INTER_UNIT_MOVES,
304 X86_TUNE_INTER_UNIT_CONVERSIONS,
305 X86_TUNE_FOUR_JUMP_LIMIT,
306 X86_TUNE_SCHEDULE,
307 X86_TUNE_USE_BT,
308 X86_TUNE_USE_INCDEC,
309 X86_TUNE_PAD_RETURNS,
310 X86_TUNE_PAD_SHORT_FUNCTION,
311 X86_TUNE_EXT_80387_CONSTANTS,
312 X86_TUNE_SHORTEN_X87_SSE,
313 X86_TUNE_AVOID_VECTOR_DECODE,
314 X86_TUNE_PROMOTE_HIMODE_IMUL,
315 X86_TUNE_SLOW_IMUL_IMM32_MEM,
316 X86_TUNE_SLOW_IMUL_IMM8,
317 X86_TUNE_MOVE_M1_VIA_OR,
318 X86_TUNE_NOT_UNPAIRABLE,
319 X86_TUNE_NOT_VECTORMODE,
320 X86_TUNE_USE_VECTOR_FP_CONVERTS,
321 X86_TUNE_USE_VECTOR_CONVERTS,
322 X86_TUNE_FUSE_CMP_AND_BRANCH,
323 X86_TUNE_OPT_AGU,
324 X86_TUNE_VECTORIZE_DOUBLE,
325
326 X86_TUNE_LAST
327 };
328
329 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
330
331 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
332 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
333 #define TARGET_ZERO_EXTEND_WITH_AND \
334 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
335 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
336 #define TARGET_DEEP_BRANCH_PREDICTION \
337 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
338 #define TARGET_BRANCH_PREDICTION_HINTS \
339 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
340 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
341 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
342 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
343 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
344 #define TARGET_PARTIAL_FLAG_REG_STALL \
345 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
346 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
347 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
348 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
349 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
350 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
351 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
352 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
353 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
354 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
355 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
356 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
357 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
358 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
359 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
360 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
361 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
362 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
363 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
364 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
365 #define TARGET_INTEGER_DFMODE_MOVES \
366 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
367 #define TARGET_PARTIAL_REG_DEPENDENCY \
368 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
369 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
370 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
371 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
372 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
373 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
374 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
375 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
376 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
377 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
378 #define TARGET_SSE_TYPELESS_STORES \
379 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
380 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
381 #define TARGET_MEMORY_MISMATCH_STALL \
382 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
383 #define TARGET_PROLOGUE_USING_MOVE \
384 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
385 #define TARGET_EPILOGUE_USING_MOVE \
386 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
387 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
388 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
389 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
390 #define TARGET_INTER_UNIT_CONVERSIONS\
391 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
392 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
393 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
394 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
395 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
396 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
397 #define TARGET_PAD_SHORT_FUNCTION \
398 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
399 #define TARGET_EXT_80387_CONSTANTS \
400 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
401 #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
402 #define TARGET_AVOID_VECTOR_DECODE \
403 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
404 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
405 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
406 #define TARGET_SLOW_IMUL_IMM32_MEM \
407 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
408 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
409 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
410 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
411 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
412 #define TARGET_USE_VECTOR_FP_CONVERTS \
413 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
414 #define TARGET_USE_VECTOR_CONVERTS \
415 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
416 #define TARGET_FUSE_CMP_AND_BRANCH \
417 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
418 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
419 #define TARGET_VECTORIZE_DOUBLE \
420 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
421
422 /* Feature tests against the various architecture variations. */
423 enum ix86_arch_indices {
424 X86_ARCH_CMOVE, /* || TARGET_SSE */
425 X86_ARCH_CMPXCHG,
426 X86_ARCH_CMPXCHG8B,
427 X86_ARCH_XADD,
428 X86_ARCH_BSWAP,
429
430 X86_ARCH_LAST
431 };
432
433 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
434
435 #define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
436 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
437 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
438 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
439 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
440
441 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
442
443 extern int x86_prefetch_sse;
444
445 #define TARGET_PREFETCH_SSE x86_prefetch_sse
446
447 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
448
449 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
450 #define TARGET_MIX_SSE_I387 \
451 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
452
453 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
454 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
455 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
456 #define TARGET_SUN_TLS 0
457
458 #ifndef TARGET_64BIT_DEFAULT
459 #define TARGET_64BIT_DEFAULT 0
460 #endif
461 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
462 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
463 #endif
464
465 /* Fence to use after loop using storent. */
466
467 extern tree x86_mfence;
468 #define FENCE_FOLLOWING_MOVNT x86_mfence
469
470 /* Once GDB has been enhanced to deal with functions without frame
471 pointers, we can change this to allow for elimination of
472 the frame pointer in leaf functions. */
473 #define TARGET_DEFAULT 0
474
475 /* Extra bits to force. */
476 #define TARGET_SUBTARGET_DEFAULT 0
477 #define TARGET_SUBTARGET_ISA_DEFAULT 0
478
479 /* Extra bits to force on w/ 32-bit mode. */
480 #define TARGET_SUBTARGET32_DEFAULT 0
481 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
482
483 /* Extra bits to force on w/ 64-bit mode. */
484 #define TARGET_SUBTARGET64_DEFAULT 0
485 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
486
487 /* Replace MACH-O, ifdefs by in-line tests, where possible.
488 (a) Macros defined in config/i386/darwin.h */
489 #define TARGET_MACHO 0
490 #define TARGET_MACHO_BRANCH_ISLANDS 0
491 #define MACHOPIC_ATT_STUB 0
492 /* (b) Macros defined in config/darwin.h */
493 #define MACHO_DYNAMIC_NO_PIC_P 0
494 #define MACHOPIC_INDIRECT 0
495 #define MACHOPIC_PURE 0
496
497 /* For the Windows 64-bit ABI. */
498 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
499
500 /* For the Windows 32-bit ABI. */
501 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
502
503 /* This is re-defined by cygming.h. */
504 #define TARGET_SEH 0
505
506 /* Available call abi. */
507 enum calling_abi
508 {
509 SYSV_ABI = 0,
510 MS_ABI = 1
511 };
512
513 /* The abi used by target. */
514 extern enum calling_abi ix86_abi;
515
516 /* The default abi used by target. */
517 #define DEFAULT_ABI SYSV_ABI
518
519 /* Subtargets may reset this to 1 in order to enable 96-bit long double
520 with the rounding mode forced to 53 bits. */
521 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
522
523 /* -march=native handling only makes sense with compiler running on
524 an x86 or x86_64 chip. If changing this condition, also change
525 the condition in driver-i386.c. */
526 #if defined(__i386__) || defined(__x86_64__)
527 /* In driver-i386.c. */
528 extern const char *host_detect_local_cpu (int argc, const char **argv);
529 #define EXTRA_SPEC_FUNCTIONS \
530 { "local_cpu_detect", host_detect_local_cpu },
531 #define HAVE_LOCAL_CPU_DETECT
532 #endif
533
534 #if TARGET_64BIT_DEFAULT
535 #define OPT_ARCH64 "!m32"
536 #define OPT_ARCH32 "m32"
537 #else
538 #define OPT_ARCH64 "m64"
539 #define OPT_ARCH32 "!m64"
540 #endif
541
542 /* Support for configure-time defaults of some command line options.
543 The order here is important so that -march doesn't squash the
544 tune or cpu values. */
545 #define OPTION_DEFAULT_SPECS \
546 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
547 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
548 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
549 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
550 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
551 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
552 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
553 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
554 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
555
556 /* Specs for the compiler proper */
557
558 #ifndef CC1_CPU_SPEC
559 #define CC1_CPU_SPEC_1 ""
560
561 #ifndef HAVE_LOCAL_CPU_DETECT
562 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
563 #else
564 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
565 "%{march=native:%>march=native %:local_cpu_detect(arch) \
566 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
567 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
568 #endif
569 #endif
570 \f
571 /* Target CPU builtins. */
572 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
573
574 /* Target Pragmas. */
575 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
576
577 enum target_cpu_default
578 {
579 TARGET_CPU_DEFAULT_generic = 0,
580
581 TARGET_CPU_DEFAULT_i386,
582 TARGET_CPU_DEFAULT_i486,
583 TARGET_CPU_DEFAULT_pentium,
584 TARGET_CPU_DEFAULT_pentium_mmx,
585 TARGET_CPU_DEFAULT_pentiumpro,
586 TARGET_CPU_DEFAULT_pentium2,
587 TARGET_CPU_DEFAULT_pentium3,
588 TARGET_CPU_DEFAULT_pentium4,
589 TARGET_CPU_DEFAULT_pentium_m,
590 TARGET_CPU_DEFAULT_prescott,
591 TARGET_CPU_DEFAULT_nocona,
592 TARGET_CPU_DEFAULT_core2,
593 TARGET_CPU_DEFAULT_corei7,
594 TARGET_CPU_DEFAULT_atom,
595
596 TARGET_CPU_DEFAULT_geode,
597 TARGET_CPU_DEFAULT_k6,
598 TARGET_CPU_DEFAULT_k6_2,
599 TARGET_CPU_DEFAULT_k6_3,
600 TARGET_CPU_DEFAULT_athlon,
601 TARGET_CPU_DEFAULT_athlon_sse,
602 TARGET_CPU_DEFAULT_k8,
603 TARGET_CPU_DEFAULT_amdfam10,
604 TARGET_CPU_DEFAULT_bdver1,
605 TARGET_CPU_DEFAULT_btver1,
606
607 TARGET_CPU_DEFAULT_max
608 };
609
610 #ifndef CC1_SPEC
611 #define CC1_SPEC "%(cc1_cpu) "
612 #endif
613
614 /* This macro defines names of additional specifications to put in the
615 specs that can be used in various specifications like CC1_SPEC. Its
616 definition is an initializer with a subgrouping for each command option.
617
618 Each subgrouping contains a string constant, that defines the
619 specification name, and a string constant that used by the GCC driver
620 program.
621
622 Do not define this macro if it does not need to do anything. */
623
624 #ifndef SUBTARGET_EXTRA_SPECS
625 #define SUBTARGET_EXTRA_SPECS
626 #endif
627
628 #define EXTRA_SPECS \
629 { "cc1_cpu", CC1_CPU_SPEC }, \
630 SUBTARGET_EXTRA_SPECS
631 \f
632
633 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
634 FPU, assume that the fpcw is set to extended precision; when using
635 only SSE, rounding is correct; when using both SSE and the FPU,
636 the rounding precision is indeterminate, since either may be chosen
637 apparently at random. */
638 #define TARGET_FLT_EVAL_METHOD \
639 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
640
641 /* Whether to allow x87 floating-point arithmetic on MODE (one of
642 SFmode, DFmode and XFmode) in the current excess precision
643 configuration. */
644 #define X87_ENABLE_ARITH(MODE) \
645 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
646
647 /* Likewise, whether to allow direct conversions from integer mode
648 IMODE (HImode, SImode or DImode) to MODE. */
649 #define X87_ENABLE_FLOAT(MODE, IMODE) \
650 (flag_excess_precision == EXCESS_PRECISION_FAST \
651 || (MODE) == XFmode \
652 || ((MODE) == DFmode && (IMODE) == SImode) \
653 || (IMODE) == HImode)
654
655 /* target machine storage layout */
656
657 #define SHORT_TYPE_SIZE 16
658 #define INT_TYPE_SIZE 32
659 #define LONG_LONG_TYPE_SIZE 64
660 #define FLOAT_TYPE_SIZE 32
661 #define DOUBLE_TYPE_SIZE 64
662 #define LONG_DOUBLE_TYPE_SIZE 80
663
664 #define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
665
666 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
667 #define MAX_BITS_PER_WORD 64
668 #else
669 #define MAX_BITS_PER_WORD 32
670 #endif
671
672 /* Define this if most significant byte of a word is the lowest numbered. */
673 /* That is true on the 80386. */
674
675 #define BITS_BIG_ENDIAN 0
676
677 /* Define this if most significant byte of a word is the lowest numbered. */
678 /* That is not true on the 80386. */
679 #define BYTES_BIG_ENDIAN 0
680
681 /* Define this if most significant word of a multiword number is the lowest
682 numbered. */
683 /* Not true for 80386 */
684 #define WORDS_BIG_ENDIAN 0
685
686 /* Width of a word, in units (bytes). */
687 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
688
689 #ifndef IN_LIBGCC2
690 #define MIN_UNITS_PER_WORD 4
691 #endif
692
693 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
694 #define PARM_BOUNDARY BITS_PER_WORD
695
696 /* Boundary (in *bits*) on which stack pointer should be aligned. */
697 #define STACK_BOUNDARY \
698 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
699
700 /* Stack boundary of the main function guaranteed by OS. */
701 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
702
703 /* Minimum stack boundary. */
704 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
705
706 /* Boundary (in *bits*) on which the stack pointer prefers to be
707 aligned; the compiler cannot rely on having this alignment. */
708 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
709
710 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
711 both 32bit and 64bit, to support codes that need 128 bit stack
712 alignment for SSE instructions, but can't realign the stack. */
713 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
714
715 /* 1 if -mstackrealign should be turned on by default. It will
716 generate an alternate prologue and epilogue that realigns the
717 runtime stack if nessary. This supports mixing codes that keep a
718 4-byte aligned stack, as specified by i386 psABI, with codes that
719 need a 16-byte aligned stack, as required by SSE instructions. */
720 #define STACK_REALIGN_DEFAULT 0
721
722 /* Boundary (in *bits*) on which the incoming stack is aligned. */
723 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
724
725 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
726 mandatory for the 64-bit ABI, and may or may not be true for other
727 operating systems. */
728 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
729
730 /* Minimum allocation boundary for the code of a function. */
731 #define FUNCTION_BOUNDARY 8
732
733 /* C++ stores the virtual bit in the lowest bit of function pointers. */
734 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
735
736 /* Minimum size in bits of the largest boundary to which any
737 and all fundamental data types supported by the hardware
738 might need to be aligned. No data type wants to be aligned
739 rounder than this.
740
741 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
742 and Pentium Pro XFmode values at 128 bit boundaries. */
743
744 #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
745
746 /* Maximum stack alignment. */
747 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
748
749 /* Alignment value for attribute ((aligned)). It is a constant since
750 it is the part of the ABI. We shouldn't change it with -mavx. */
751 #define ATTRIBUTE_ALIGNED_VALUE 128
752
753 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
754 #define ALIGN_MODE_128(MODE) \
755 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
756
757 /* The published ABIs say that doubles should be aligned on word
758 boundaries, so lower the alignment for structure fields unless
759 -malign-double is set. */
760
761 /* ??? Blah -- this macro is used directly by libobjc. Since it
762 supports no vector modes, cut out the complexity and fall back
763 on BIGGEST_FIELD_ALIGNMENT. */
764 #ifdef IN_TARGET_LIBS
765 #ifdef __x86_64__
766 #define BIGGEST_FIELD_ALIGNMENT 128
767 #else
768 #define BIGGEST_FIELD_ALIGNMENT 32
769 #endif
770 #else
771 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
772 x86_field_alignment (FIELD, COMPUTED)
773 #endif
774
775 /* If defined, a C expression to compute the alignment given to a
776 constant that is being placed in memory. EXP is the constant
777 and ALIGN is the alignment that the object would ordinarily have.
778 The value of this macro is used instead of that alignment to align
779 the object.
780
781 If this macro is not defined, then ALIGN is used.
782
783 The typical use of this macro is to increase alignment for string
784 constants to be word aligned so that `strcpy' calls that copy
785 constants can be done inline. */
786
787 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
788
789 /* If defined, a C expression to compute the alignment for a static
790 variable. TYPE is the data type, and ALIGN is the alignment that
791 the object would ordinarily have. The value of this macro is used
792 instead of that alignment to align the object.
793
794 If this macro is not defined, then ALIGN is used.
795
796 One use of this macro is to increase alignment of medium-size
797 data to make it all fit in fewer cache lines. Another is to
798 cause character arrays to be word-aligned so that `strcpy' calls
799 that copy constants to character arrays can be done inline. */
800
801 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
802
803 /* If defined, a C expression to compute the alignment for a local
804 variable. TYPE is the data type, and ALIGN is the alignment that
805 the object would ordinarily have. The value of this macro is used
806 instead of that alignment to align the object.
807
808 If this macro is not defined, then ALIGN is used.
809
810 One use of this macro is to increase alignment of medium-size
811 data to make it all fit in fewer cache lines. */
812
813 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
814 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
815
816 /* If defined, a C expression to compute the alignment for stack slot.
817 TYPE is the data type, MODE is the widest mode available, and ALIGN
818 is the alignment that the slot would ordinarily have. The value of
819 this macro is used instead of that alignment to align the slot.
820
821 If this macro is not defined, then ALIGN is used when TYPE is NULL,
822 Otherwise, LOCAL_ALIGNMENT will be used.
823
824 One use of this macro is to set alignment of stack slot to the
825 maximum alignment of all possible modes which the slot may have. */
826
827 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
828 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
829
830 /* If defined, a C expression to compute the alignment for a local
831 variable DECL.
832
833 If this macro is not defined, then
834 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
835
836 One use of this macro is to increase alignment of medium-size
837 data to make it all fit in fewer cache lines. */
838
839 #define LOCAL_DECL_ALIGNMENT(DECL) \
840 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
841
842 /* If defined, a C expression to compute the minimum required alignment
843 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
844 MODE, assuming normal alignment ALIGN.
845
846 If this macro is not defined, then (ALIGN) will be used. */
847
848 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
849 ix86_minimum_alignment (EXP, MODE, ALIGN)
850
851
852 /* Set this nonzero if move instructions will actually fail to work
853 when given unaligned data. */
854 #define STRICT_ALIGNMENT 0
855
856 /* If bit field type is int, don't let it cross an int,
857 and give entire struct the alignment of an int. */
858 /* Required on the 386 since it doesn't have bit-field insns. */
859 #define PCC_BITFIELD_TYPE_MATTERS 1
860 \f
861 /* Standard register usage. */
862
863 /* This processor has special stack-like registers. See reg-stack.c
864 for details. */
865
866 #define STACK_REGS
867
868 #define IS_STACK_MODE(MODE) \
869 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
870 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
871 || (MODE) == XFmode)
872
873 /* Number of actual hardware registers.
874 The hardware registers are assigned numbers for the compiler
875 from 0 to just below FIRST_PSEUDO_REGISTER.
876 All registers that the compiler knows about must be given numbers,
877 even those that are not normally considered general registers.
878
879 In the 80386 we give the 8 general purpose registers the numbers 0-7.
880 We number the floating point registers 8-15.
881 Note that registers 0-7 can be accessed as a short or int,
882 while only 0-3 may be used with byte `mov' instructions.
883
884 Reg 16 does not correspond to any hardware register, but instead
885 appears in the RTL as an argument pointer prior to reload, and is
886 eliminated during reloading in favor of either the stack or frame
887 pointer. */
888
889 #define FIRST_PSEUDO_REGISTER 53
890
891 /* Number of hardware registers that go into the DWARF-2 unwind info.
892 If not defined, equals FIRST_PSEUDO_REGISTER. */
893
894 #define DWARF_FRAME_REGISTERS 17
895
896 /* 1 for registers that have pervasive standard uses
897 and are not available for the register allocator.
898 On the 80386, the stack pointer is such, as is the arg pointer.
899
900 The value is zero if the register is not fixed on either 32 or
901 64 bit targets, one if the register if fixed on both 32 and 64
902 bit targets, two if it is only fixed on 32bit targets and three
903 if its only fixed on 64bit targets.
904 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
905 */
906 #define FIXED_REGISTERS \
907 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
908 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
909 /*arg,flags,fpsr,fpcr,frame*/ \
910 1, 1, 1, 1, 1, \
911 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
912 0, 0, 0, 0, 0, 0, 0, 0, \
913 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
914 0, 0, 0, 0, 0, 0, 0, 0, \
915 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
916 2, 2, 2, 2, 2, 2, 2, 2, \
917 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
918 2, 2, 2, 2, 2, 2, 2, 2 }
919
920
921 /* 1 for registers not available across function calls.
922 These must include the FIXED_REGISTERS and also any
923 registers that can be used without being saved.
924 The latter must include the registers where values are returned
925 and the register where structure-value addresses are passed.
926 Aside from that, you can include as many other registers as you like.
927
928 The value is zero if the register is not call used on either 32 or
929 64 bit targets, one if the register if call used on both 32 and 64
930 bit targets, two if it is only call used on 32bit targets and three
931 if its only call used on 64bit targets.
932 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
933 */
934 #define CALL_USED_REGISTERS \
935 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
936 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
937 /*arg,flags,fpsr,fpcr,frame*/ \
938 1, 1, 1, 1, 1, \
939 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
940 1, 1, 1, 1, 1, 1, 1, 1, \
941 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
942 1, 1, 1, 1, 1, 1, 1, 1, \
943 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
944 1, 1, 1, 1, 2, 2, 2, 2, \
945 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
946 1, 1, 1, 1, 1, 1, 1, 1 }
947
948 /* Order in which to allocate registers. Each register must be
949 listed once, even those in FIXED_REGISTERS. List frame pointer
950 late and fixed registers last. Note that, in general, we prefer
951 registers listed in CALL_USED_REGISTERS, keeping the others
952 available for storage of persistent values.
953
954 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
955 so this is just empty initializer for array. */
956
957 #define REG_ALLOC_ORDER \
958 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
959 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
960 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
961 48, 49, 50, 51, 52 }
962
963 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
964 to be rearranged based on a particular function. When using sse math,
965 we want to allocate SSE before x87 registers and vice versa. */
966
967 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
968
969
970 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
971
972 /* Return number of consecutive hard regs needed starting at reg REGNO
973 to hold something of mode MODE.
974 This is ordinarily the length in words of a value of mode MODE
975 but can be less for certain modes in special long registers.
976
977 Actually there are no two word move instructions for consecutive
978 registers. And only registers 0-3 may have mov byte instructions
979 applied to them. */
980
981 #define HARD_REGNO_NREGS(REGNO, MODE) \
982 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
983 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
984 : ((MODE) == XFmode \
985 ? (TARGET_64BIT ? 2 : 3) \
986 : (MODE) == XCmode \
987 ? (TARGET_64BIT ? 4 : 6) \
988 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
989
990 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
991 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
992 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
993 ? 0 \
994 : ((MODE) == XFmode || (MODE) == XCmode)) \
995 : 0)
996
997 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
998
999 #define VALID_AVX256_REG_MODE(MODE) \
1000 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1001 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1002
1003 #define VALID_SSE2_REG_MODE(MODE) \
1004 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1005 || (MODE) == V2DImode || (MODE) == DFmode)
1006
1007 #define VALID_SSE_REG_MODE(MODE) \
1008 ((MODE) == V1TImode || (MODE) == TImode \
1009 || (MODE) == V4SFmode || (MODE) == V4SImode \
1010 || (MODE) == SFmode || (MODE) == TFmode)
1011
1012 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1013 ((MODE) == V2SFmode || (MODE) == SFmode)
1014
1015 #define VALID_MMX_REG_MODE(MODE) \
1016 ((MODE == V1DImode) || (MODE) == DImode \
1017 || (MODE) == V2SImode || (MODE) == SImode \
1018 || (MODE) == V4HImode || (MODE) == V8QImode)
1019
1020 #define VALID_DFP_MODE_P(MODE) \
1021 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1022
1023 #define VALID_FP_MODE_P(MODE) \
1024 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1025 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1026
1027 #define VALID_INT_MODE_P(MODE) \
1028 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1029 || (MODE) == DImode \
1030 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1031 || (MODE) == CDImode \
1032 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1033 || (MODE) == TFmode || (MODE) == TCmode)))
1034
1035 /* Return true for modes passed in SSE registers. */
1036 #define SSE_REG_MODE_P(MODE) \
1037 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1038 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1039 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1040 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1041 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1042
1043 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1044
1045 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1046 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1047
1048 /* Value is 1 if it is a good idea to tie two pseudo registers
1049 when one has mode MODE1 and one has mode MODE2.
1050 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1051 for any hard reg, then this must be 0 for correct output. */
1052
1053 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1054
1055 /* It is possible to write patterns to move flags; but until someone
1056 does it, */
1057 #define AVOID_CCMODE_COPIES
1058
1059 /* Specify the modes required to caller save a given hard regno.
1060 We do this on i386 to prevent flags from being saved at all.
1061
1062 Kill any attempts to combine saving of modes. */
1063
1064 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1065 (CC_REGNO_P (REGNO) ? VOIDmode \
1066 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1067 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1068 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1069 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
1070 : (MODE))
1071
1072 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1073 need to check the current ABI here), and with AVX enabled Win64 only
1074 guarantees that the low 16 bytes are saved. */
1075 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1076 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1077
1078 /* Specify the registers used for certain standard purposes.
1079 The values of these macros are register numbers. */
1080
1081 /* on the 386 the pc register is %eip, and is not usable as a general
1082 register. The ordinary mov instructions won't work */
1083 /* #define PC_REGNUM */
1084
1085 /* Register to use for pushing function arguments. */
1086 #define STACK_POINTER_REGNUM 7
1087
1088 /* Base register for access to local variables of the function. */
1089 #define HARD_FRAME_POINTER_REGNUM 6
1090
1091 /* Base register for access to local variables of the function. */
1092 #define FRAME_POINTER_REGNUM 20
1093
1094 /* First floating point reg */
1095 #define FIRST_FLOAT_REG 8
1096
1097 /* First & last stack-like regs */
1098 #define FIRST_STACK_REG FIRST_FLOAT_REG
1099 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1100
1101 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1102 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1103
1104 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1105 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1106
1107 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1108 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1109
1110 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1111 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1112
1113 /* Override this in other tm.h files to cope with various OS lossage
1114 requiring a frame pointer. */
1115 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1116 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1117 #endif
1118
1119 /* Make sure we can access arbitrary call frames. */
1120 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1121
1122 /* Base register for access to arguments of the function. */
1123 #define ARG_POINTER_REGNUM 16
1124
1125 /* Register to hold the addressing base for position independent
1126 code access to data items. We don't use PIC pointer for 64bit
1127 mode. Define the regnum to dummy value to prevent gcc from
1128 pessimizing code dealing with EBX.
1129
1130 To avoid clobbering a call-saved register unnecessarily, we renumber
1131 the pic register when possible. The change is visible after the
1132 prologue has been emitted. */
1133
1134 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1135
1136 #define PIC_OFFSET_TABLE_REGNUM \
1137 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1138 || !flag_pic ? INVALID_REGNUM \
1139 : reload_completed ? REGNO (pic_offset_table_rtx) \
1140 : REAL_PIC_OFFSET_TABLE_REGNUM)
1141
1142 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1143
1144 /* This is overridden by <cygwin.h>. */
1145 #define MS_AGGREGATE_RETURN 0
1146
1147 /* This is overridden by <netware.h>. */
1148 #define KEEP_AGGREGATE_RETURN_POINTER 0
1149 \f
1150 /* Define the classes of registers for register constraints in the
1151 machine description. Also define ranges of constants.
1152
1153 One of the classes must always be named ALL_REGS and include all hard regs.
1154 If there is more than one class, another class must be named NO_REGS
1155 and contain no registers.
1156
1157 The name GENERAL_REGS must be the name of a class (or an alias for
1158 another name such as ALL_REGS). This is the class of registers
1159 that is allowed by "g" or "r" in a register constraint.
1160 Also, registers outside this class are allocated only when
1161 instructions express preferences for them.
1162
1163 The classes must be numbered in nondecreasing order; that is,
1164 a larger-numbered class must never be contained completely
1165 in a smaller-numbered class.
1166
1167 For any two classes, it is very desirable that there be another
1168 class that represents their union.
1169
1170 It might seem that class BREG is unnecessary, since no useful 386
1171 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1172 and the "b" register constraint is useful in asms for syscalls.
1173
1174 The flags, fpsr and fpcr registers are in no class. */
1175
1176 enum reg_class
1177 {
1178 NO_REGS,
1179 AREG, DREG, CREG, BREG, SIREG, DIREG,
1180 AD_REGS, /* %eax/%edx for DImode */
1181 CLOBBERED_REGS, /* call-clobbered integers */
1182 Q_REGS, /* %eax %ebx %ecx %edx */
1183 NON_Q_REGS, /* %esi %edi %ebp %esp */
1184 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1185 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1186 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1187 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1188 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1189 FLOAT_REGS,
1190 SSE_FIRST_REG,
1191 SSE_REGS,
1192 MMX_REGS,
1193 FP_TOP_SSE_REGS,
1194 FP_SECOND_SSE_REGS,
1195 FLOAT_SSE_REGS,
1196 FLOAT_INT_REGS,
1197 INT_SSE_REGS,
1198 FLOAT_INT_SSE_REGS,
1199 ALL_REGS, LIM_REG_CLASSES
1200 };
1201
1202 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1203
1204 #define INTEGER_CLASS_P(CLASS) \
1205 reg_class_subset_p ((CLASS), GENERAL_REGS)
1206 #define FLOAT_CLASS_P(CLASS) \
1207 reg_class_subset_p ((CLASS), FLOAT_REGS)
1208 #define SSE_CLASS_P(CLASS) \
1209 reg_class_subset_p ((CLASS), SSE_REGS)
1210 #define MMX_CLASS_P(CLASS) \
1211 ((CLASS) == MMX_REGS)
1212 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1213 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1214 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1215 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1216 #define MAYBE_SSE_CLASS_P(CLASS) \
1217 reg_classes_intersect_p (SSE_REGS, (CLASS))
1218 #define MAYBE_MMX_CLASS_P(CLASS) \
1219 reg_classes_intersect_p (MMX_REGS, (CLASS))
1220
1221 #define Q_CLASS_P(CLASS) \
1222 reg_class_subset_p ((CLASS), Q_REGS)
1223
1224 /* Give names of register classes as strings for dump file. */
1225
1226 #define REG_CLASS_NAMES \
1227 { "NO_REGS", \
1228 "AREG", "DREG", "CREG", "BREG", \
1229 "SIREG", "DIREG", \
1230 "AD_REGS", \
1231 "CLOBBERED_REGS", \
1232 "Q_REGS", "NON_Q_REGS", \
1233 "INDEX_REGS", \
1234 "LEGACY_REGS", \
1235 "GENERAL_REGS", \
1236 "FP_TOP_REG", "FP_SECOND_REG", \
1237 "FLOAT_REGS", \
1238 "SSE_FIRST_REG", \
1239 "SSE_REGS", \
1240 "MMX_REGS", \
1241 "FP_TOP_SSE_REGS", \
1242 "FP_SECOND_SSE_REGS", \
1243 "FLOAT_SSE_REGS", \
1244 "FLOAT_INT_REGS", \
1245 "INT_SSE_REGS", \
1246 "FLOAT_INT_SSE_REGS", \
1247 "ALL_REGS" }
1248
1249 /* Define which registers fit in which classes. This is an initializer
1250 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1251
1252 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1253 is adjusted by TARGET_CONDITIONAL_REGISTER_USAGE for the 64-bit ABI
1254 in effect. */
1255
1256 #define REG_CLASS_CONTENTS \
1257 { { 0x00, 0x0 }, \
1258 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1259 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1260 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1261 { 0x03, 0x0 }, /* AD_REGS */ \
1262 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
1263 { 0x0f, 0x0 }, /* Q_REGS */ \
1264 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1265 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1266 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1267 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1268 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1269 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1270 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1271 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1272 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1273 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1274 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1275 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1276 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1277 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1278 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1279 { 0xffffffff,0x1fffff } \
1280 }
1281
1282 /* The same information, inverted:
1283 Return the class number of the smallest class containing
1284 reg number REGNO. This could be a conditional expression
1285 or could index an array. */
1286
1287 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1288
1289 /* When this hook returns true for MODE, the compiler allows
1290 registers explicitly used in the rtl to be used as spill registers
1291 but prevents the compiler from extending the lifetime of these
1292 registers. */
1293 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1294
1295 #define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
1296
1297 #define GENERAL_REGNO_P(N) \
1298 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1299
1300 #define GENERAL_REG_P(X) \
1301 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1302
1303 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1304
1305 #define REX_INT_REGNO_P(N) \
1306 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1307 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1308
1309 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1310 #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1311 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1312 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1313
1314 #define X87_FLOAT_MODE_P(MODE) \
1315 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1316
1317 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1318 #define SSE_REGNO_P(N) \
1319 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1320 || REX_SSE_REGNO_P (N))
1321
1322 #define REX_SSE_REGNO_P(N) \
1323 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1324
1325 #define SSE_REGNO(N) \
1326 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1327
1328 #define SSE_FLOAT_MODE_P(MODE) \
1329 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1330
1331 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1332 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1333 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1334
1335 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1336 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1337
1338 #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1339 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1340
1341 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1342
1343 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1344 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1345
1346 /* The class value for index registers, and the one for base regs. */
1347
1348 #define INDEX_REG_CLASS INDEX_REGS
1349 #define BASE_REG_CLASS GENERAL_REGS
1350
1351 /* Place additional restrictions on the register class to use when it
1352 is necessary to be able to hold a value of mode MODE in a reload
1353 register for which class CLASS would ordinarily be used. */
1354
1355 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1356 ((MODE) == QImode && !TARGET_64BIT \
1357 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1358 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1359 ? Q_REGS : (CLASS))
1360
1361 /* If we are copying between general and FP registers, we need a memory
1362 location. The same is true for SSE and MMX registers. */
1363 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1364 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1365
1366 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1367 There is no need to emit full 64 bit move on 64 bit targets
1368 for integral modes that can be moved using 32 bit move. */
1369 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1370 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1371 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1372 : MODE)
1373
1374 /* Return the maximum number of consecutive registers
1375 needed to represent mode MODE in a register of class CLASS. */
1376 /* On the 80386, this is the size of MODE in words,
1377 except in the FP regs, where a single reg is always enough. */
1378 #define CLASS_MAX_NREGS(CLASS, MODE) \
1379 (MAYBE_INTEGER_CLASS_P (CLASS) \
1380 ? ((MODE) == XFmode \
1381 ? (TARGET_64BIT ? 2 : 3) \
1382 : (MODE) == XCmode \
1383 ? (TARGET_64BIT ? 4 : 6) \
1384 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
1385 : (COMPLEX_MODE_P (MODE) ? 2 : 1))
1386
1387 /* Return a class of registers that cannot change FROM mode to TO mode. */
1388
1389 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1390 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1391 \f
1392 /* Stack layout; function entry, exit and calling. */
1393
1394 /* Define this if pushing a word on the stack
1395 makes the stack pointer a smaller address. */
1396 #define STACK_GROWS_DOWNWARD
1397
1398 /* Define this to nonzero if the nominal address of the stack frame
1399 is at the high-address end of the local variables;
1400 that is, each additional local variable allocated
1401 goes at a more negative offset in the frame. */
1402 #define FRAME_GROWS_DOWNWARD 1
1403
1404 /* Offset within stack frame to start allocating local variables at.
1405 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1406 first local allocated. Otherwise, it is the offset to the BEGINNING
1407 of the first local allocated. */
1408 #define STARTING_FRAME_OFFSET 0
1409
1410 /* If we generate an insn to push BYTES bytes, this says how many the stack
1411 pointer really advances by. On 386, we have pushw instruction that
1412 decrements by exactly 2 no matter what the position was, there is no pushb.
1413
1414 But as CIE data alignment factor on this arch is -4 for 32bit targets
1415 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1416 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1417
1418 #define PUSH_ROUNDING(BYTES) \
1419 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1420
1421 /* If defined, the maximum amount of space required for outgoing arguments
1422 will be computed and placed into the variable `crtl->outgoing_args_size'.
1423 No space will be pushed onto the stack for each call; instead, the
1424 function prologue should increase the stack frame size by this amount.
1425
1426 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1427 function prologue and apilogue. This is not possible without
1428 ACCUMULATE_OUTGOING_ARGS. */
1429
1430 #define ACCUMULATE_OUTGOING_ARGS \
1431 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
1432
1433 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1434 instructions to pass outgoing arguments. */
1435
1436 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1437
1438 /* We want the stack and args grow in opposite directions, even if
1439 PUSH_ARGS is 0. */
1440 #define PUSH_ARGS_REVERSED 1
1441
1442 /* Offset of first parameter from the argument pointer register value. */
1443 #define FIRST_PARM_OFFSET(FNDECL) 0
1444
1445 /* Define this macro if functions should assume that stack space has been
1446 allocated for arguments even when their values are passed in registers.
1447
1448 The value of this macro is the size, in bytes, of the area reserved for
1449 arguments passed in registers for the function represented by FNDECL.
1450
1451 This space can be allocated by the caller, or be a part of the
1452 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1453 which. */
1454 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1455
1456 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1457 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1458
1459 /* Define how to find the value returned by a library function
1460 assuming the value has mode MODE. */
1461
1462 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1463
1464 /* Define the size of the result block used for communication between
1465 untyped_call and untyped_return. The block contains a DImode value
1466 followed by the block used by fnsave and frstor. */
1467
1468 #define APPLY_RESULT_SIZE (8+108)
1469
1470 /* 1 if N is a possible register number for function argument passing. */
1471 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1472
1473 /* Define a data type for recording info about an argument list
1474 during the scan of that argument list. This data type should
1475 hold all necessary information about the function itself
1476 and about the args processed so far, enough to enable macros
1477 such as FUNCTION_ARG to determine where the next arg should go. */
1478
1479 typedef struct ix86_args {
1480 int words; /* # words passed so far */
1481 int nregs; /* # registers available for passing */
1482 int regno; /* next available register number */
1483 int fastcall; /* fastcall or thiscall calling convention
1484 is used */
1485 int sse_words; /* # sse words passed so far */
1486 int sse_nregs; /* # sse registers available for passing */
1487 int warn_avx; /* True when we want to warn about AVX ABI. */
1488 int warn_sse; /* True when we want to warn about SSE ABI. */
1489 int warn_mmx; /* True when we want to warn about MMX ABI. */
1490 int sse_regno; /* next available sse register number */
1491 int mmx_words; /* # mmx words passed so far */
1492 int mmx_nregs; /* # mmx registers available for passing */
1493 int mmx_regno; /* next available mmx register number */
1494 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1495 int caller; /* true if it is caller. */
1496 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1497 SFmode/DFmode arguments should be passed
1498 in SSE registers. Otherwise 0. */
1499 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1500 MS_ABI for ms abi. */
1501 } CUMULATIVE_ARGS;
1502
1503 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1504 for a call to a function whose data type is FNTYPE.
1505 For a library call, FNTYPE is 0. */
1506
1507 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1508 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1509 (N_NAMED_ARGS) != -1)
1510
1511 /* Output assembler code to FILE to increment profiler label # LABELNO
1512 for profiling a function entry. */
1513
1514 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1515
1516 #define MCOUNT_NAME "_mcount"
1517
1518 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1519
1520 #define PROFILE_COUNT_REGISTER "edx"
1521
1522 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1523 the stack pointer does not matter. The value is tested only in
1524 functions that have frame pointers.
1525 No definition is equivalent to always zero. */
1526 /* Note on the 386 it might be more efficient not to define this since
1527 we have to restore it ourselves from the frame pointer, in order to
1528 use pop */
1529
1530 #define EXIT_IGNORE_STACK 1
1531
1532 /* Output assembler code for a block containing the constant parts
1533 of a trampoline, leaving space for the variable parts. */
1534
1535 /* On the 386, the trampoline contains two instructions:
1536 mov #STATIC,ecx
1537 jmp FUNCTION
1538 The trampoline is generated entirely at runtime. The operand of JMP
1539 is the address of FUNCTION relative to the instruction following the
1540 JMP (which is 5 bytes long). */
1541
1542 /* Length in units of the trampoline for entering a nested function. */
1543
1544 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1545 \f
1546 /* Definitions for register eliminations.
1547
1548 This is an array of structures. Each structure initializes one pair
1549 of eliminable registers. The "from" register number is given first,
1550 followed by "to". Eliminations of the same "from" register are listed
1551 in order of preference.
1552
1553 There are two registers that can always be eliminated on the i386.
1554 The frame pointer and the arg pointer can be replaced by either the
1555 hard frame pointer or to the stack pointer, depending upon the
1556 circumstances. The hard frame pointer is not used before reload and
1557 so it is not eligible for elimination. */
1558
1559 #define ELIMINABLE_REGS \
1560 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1561 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1562 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1563 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1564
1565 /* Define the offset between two registers, one to be eliminated, and the other
1566 its replacement, at the start of a routine. */
1567
1568 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1569 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1570 \f
1571 /* Addressing modes, and classification of registers for them. */
1572
1573 /* Macros to check register numbers against specific register classes. */
1574
1575 /* These assume that REGNO is a hard or pseudo reg number.
1576 They give nonzero only if REGNO is a hard reg of the suitable class
1577 or a pseudo reg currently allocated to a suitable hard reg.
1578 Since they use reg_renumber, they are safe only once reg_renumber
1579 has been allocated, which happens in local-alloc.c. */
1580
1581 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1582 ((REGNO) < STACK_POINTER_REGNUM \
1583 || REX_INT_REGNO_P (REGNO) \
1584 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1585 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1586
1587 #define REGNO_OK_FOR_BASE_P(REGNO) \
1588 (GENERAL_REGNO_P (REGNO) \
1589 || (REGNO) == ARG_POINTER_REGNUM \
1590 || (REGNO) == FRAME_POINTER_REGNUM \
1591 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1592
1593 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1594 and check its validity for a certain class.
1595 We have two alternate definitions for each of them.
1596 The usual definition accepts all pseudo regs; the other rejects
1597 them unless they have been allocated suitable hard regs.
1598 The symbol REG_OK_STRICT causes the latter definition to be used.
1599
1600 Most source files want to accept pseudo regs in the hope that
1601 they will get allocated to the class that the insn wants them to be in.
1602 Source files for reload pass need to be strict.
1603 After reload, it makes no difference, since pseudo regs have
1604 been eliminated by then. */
1605
1606
1607 /* Non strict versions, pseudos are ok. */
1608 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1609 (REGNO (X) < STACK_POINTER_REGNUM \
1610 || REX_INT_REGNO_P (REGNO (X)) \
1611 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1612
1613 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1614 (GENERAL_REGNO_P (REGNO (X)) \
1615 || REGNO (X) == ARG_POINTER_REGNUM \
1616 || REGNO (X) == FRAME_POINTER_REGNUM \
1617 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1618
1619 /* Strict versions, hard registers only */
1620 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1621 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1622
1623 #ifndef REG_OK_STRICT
1624 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1625 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1626
1627 #else
1628 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1629 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1630 #endif
1631
1632 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1633 that is a valid memory address for an instruction.
1634 The MODE argument is the machine mode for the MEM expression
1635 that wants to use this address.
1636
1637 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1638 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1639
1640 See legitimize_pic_address in i386.c for details as to what
1641 constitutes a legitimate address when -fpic is used. */
1642
1643 #define MAX_REGS_PER_ADDRESS 2
1644
1645 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1646
1647 /* Nonzero if the constant value X is a legitimate general operand.
1648 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1649
1650 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1651
1652 /* If defined, a C expression to determine the base term of address X.
1653 This macro is used in only one place: `find_base_term' in alias.c.
1654
1655 It is always safe for this macro to not be defined. It exists so
1656 that alias analysis can understand machine-dependent addresses.
1657
1658 The typical use of this macro is to handle addresses containing
1659 a label_ref or symbol_ref within an UNSPEC. */
1660
1661 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1662
1663 /* Nonzero if the constant value X is a legitimate general operand
1664 when generating PIC code. It is given that flag_pic is on and
1665 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1666
1667 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1668
1669 #define SYMBOLIC_CONST(X) \
1670 (GET_CODE (X) == SYMBOL_REF \
1671 || GET_CODE (X) == LABEL_REF \
1672 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1673 \f
1674 /* Max number of args passed in registers. If this is more than 3, we will
1675 have problems with ebx (register #4), since it is a caller save register and
1676 is also used as the pic register in ELF. So for now, don't allow more than
1677 3 registers to be passed in registers. */
1678
1679 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1680 #define X86_64_REGPARM_MAX 6
1681 #define X86_64_MS_REGPARM_MAX 4
1682
1683 #define X86_32_REGPARM_MAX 3
1684
1685 #define REGPARM_MAX \
1686 (TARGET_64BIT \
1687 ? (TARGET_64BIT_MS_ABI \
1688 ? X86_64_MS_REGPARM_MAX \
1689 : X86_64_REGPARM_MAX) \
1690 : X86_32_REGPARM_MAX)
1691
1692 #define X86_64_SSE_REGPARM_MAX 8
1693 #define X86_64_MS_SSE_REGPARM_MAX 4
1694
1695 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1696
1697 #define SSE_REGPARM_MAX \
1698 (TARGET_64BIT \
1699 ? (TARGET_64BIT_MS_ABI \
1700 ? X86_64_MS_SSE_REGPARM_MAX \
1701 : X86_64_SSE_REGPARM_MAX) \
1702 : X86_32_SSE_REGPARM_MAX)
1703
1704 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1705 \f
1706 /* Specify the machine mode that this machine uses
1707 for the index in the tablejump instruction. */
1708 #define CASE_VECTOR_MODE \
1709 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1710
1711 /* Define this as 1 if `char' should by default be signed; else as 0. */
1712 #define DEFAULT_SIGNED_CHAR 1
1713
1714 /* Max number of bytes we can move from memory to memory
1715 in one reasonably fast instruction. */
1716 #define MOVE_MAX 16
1717
1718 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1719 move efficiently, as opposed to MOVE_MAX which is the maximum
1720 number of bytes we can move with a single instruction. */
1721 #define MOVE_MAX_PIECES UNITS_PER_WORD
1722
1723 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1724 move-instruction pairs, we will do a movmem or libcall instead.
1725 Increasing the value will always make code faster, but eventually
1726 incurs high cost in increased code size.
1727
1728 If you don't define this, a reasonable default is used. */
1729
1730 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1731
1732 /* If a clear memory operation would take CLEAR_RATIO or more simple
1733 move-instruction sequences, we will do a clrmem or libcall instead. */
1734
1735 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1736
1737 /* Define if shifts truncate the shift count which implies one can
1738 omit a sign-extension or zero-extension of a shift count.
1739
1740 On i386, shifts do truncate the count. But bit test instructions
1741 take the modulo of the bit offset operand. */
1742
1743 /* #define SHIFT_COUNT_TRUNCATED */
1744
1745 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1746 is done just by pretending it is already truncated. */
1747 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1748
1749 /* A macro to update M and UNSIGNEDP when an object whose type is
1750 TYPE and which has the specified mode and signedness is to be
1751 stored in a register. This macro is only called when TYPE is a
1752 scalar type.
1753
1754 On i386 it is sometimes useful to promote HImode and QImode
1755 quantities to SImode. The choice depends on target type. */
1756
1757 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1758 do { \
1759 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1760 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1761 (MODE) = SImode; \
1762 } while (0)
1763
1764 /* Specify the machine mode that pointers have.
1765 After generation of rtl, the compiler makes no further distinction
1766 between pointers and any other objects of this machine mode. */
1767 #define Pmode (TARGET_64BIT ? DImode : SImode)
1768
1769 /* A function address in a call instruction
1770 is a byte address (for indexing purposes)
1771 so give the MEM rtx a byte's mode. */
1772 #define FUNCTION_MODE QImode
1773 \f
1774
1775 /* A C expression for the cost of a branch instruction. A value of 1
1776 is the default; other values are interpreted relative to that. */
1777
1778 #define BRANCH_COST(speed_p, predictable_p) \
1779 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1780
1781 /* Define this macro as a C expression which is nonzero if accessing
1782 less than a word of memory (i.e. a `char' or a `short') is no
1783 faster than accessing a word of memory, i.e., if such access
1784 require more than one instruction or if there is no difference in
1785 cost between byte and (aligned) word loads.
1786
1787 When this macro is not defined, the compiler will access a field by
1788 finding the smallest containing object; when it is defined, a
1789 fullword load will be used if alignment permits. Unless bytes
1790 accesses are faster than word accesses, using word accesses is
1791 preferable since it may eliminate subsequent memory access if
1792 subsequent accesses occur to other fields in the same word of the
1793 structure, but to different bytes. */
1794
1795 #define SLOW_BYTE_ACCESS 0
1796
1797 /* Nonzero if access to memory by shorts is slow and undesirable. */
1798 #define SLOW_SHORT_ACCESS 0
1799
1800 /* Define this macro to be the value 1 if unaligned accesses have a
1801 cost many times greater than aligned accesses, for example if they
1802 are emulated in a trap handler.
1803
1804 When this macro is nonzero, the compiler will act as if
1805 `STRICT_ALIGNMENT' were nonzero when generating code for block
1806 moves. This can cause significantly more instructions to be
1807 produced. Therefore, do not set this macro nonzero if unaligned
1808 accesses only add a cycle or two to the time for a memory access.
1809
1810 If the value of this macro is always zero, it need not be defined. */
1811
1812 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1813
1814 /* Define this macro if it is as good or better to call a constant
1815 function address than to call an address kept in a register.
1816
1817 Desirable on the 386 because a CALL with a constant address is
1818 faster than one with a register address. */
1819
1820 #define NO_FUNCTION_CSE
1821 \f
1822 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1823 return the mode to be used for the comparison.
1824
1825 For floating-point equality comparisons, CCFPEQmode should be used.
1826 VOIDmode should be used in all other cases.
1827
1828 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1829 possible, to allow for more combinations. */
1830
1831 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1832
1833 /* Return nonzero if MODE implies a floating point inequality can be
1834 reversed. */
1835
1836 #define REVERSIBLE_CC_MODE(MODE) 1
1837
1838 /* A C expression whose value is reversed condition code of the CODE for
1839 comparison done in CC_MODE mode. */
1840 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1841
1842 \f
1843 /* Control the assembler format that we output, to the extent
1844 this does not vary between assemblers. */
1845
1846 /* How to refer to registers in assembler output.
1847 This sequence is indexed by compiler's hard-register-number (see above). */
1848
1849 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1850 For non floating point regs, the following are the HImode names.
1851
1852 For float regs, the stack top is sometimes referred to as "%st(0)"
1853 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1854 "y" code. */
1855
1856 #define HI_REGISTER_NAMES \
1857 {"ax","dx","cx","bx","si","di","bp","sp", \
1858 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1859 "argp", "flags", "fpsr", "fpcr", "frame", \
1860 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1861 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1862 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1863 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1864
1865 #define REGISTER_NAMES HI_REGISTER_NAMES
1866
1867 /* Table of additional register names to use in user input. */
1868
1869 #define ADDITIONAL_REGISTER_NAMES \
1870 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1871 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1872 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1873 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1874 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1875 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1876
1877 /* Note we are omitting these since currently I don't know how
1878 to get gcc to use these, since they want the same but different
1879 number as al, and ax.
1880 */
1881
1882 #define QI_REGISTER_NAMES \
1883 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1884
1885 /* These parallel the array above, and can be used to access bits 8:15
1886 of regs 0 through 3. */
1887
1888 #define QI_HIGH_REGISTER_NAMES \
1889 {"ah", "dh", "ch", "bh", }
1890
1891 /* How to renumber registers for dbx and gdb. */
1892
1893 #define DBX_REGISTER_NUMBER(N) \
1894 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1895
1896 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1897 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1898 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1899
1900 /* Before the prologue, RA is at 0(%esp). */
1901 #define INCOMING_RETURN_ADDR_RTX \
1902 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1903
1904 /* After the prologue, RA is at -4(AP) in the current frame. */
1905 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1906 ((COUNT) == 0 \
1907 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1908 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
1909
1910 /* PC is dbx register 8; let's use that column for RA. */
1911 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
1912
1913 /* Before the prologue, the top of the frame is at 4(%esp). */
1914 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1915
1916 /* Describe how we implement __builtin_eh_return. */
1917 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1918 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1919
1920
1921 /* Select a format to encode pointers in exception handling data. CODE
1922 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1923 true if the symbol may be affected by dynamic relocations.
1924
1925 ??? All x86 object file formats are capable of representing this.
1926 After all, the relocation needed is the same as for the call insn.
1927 Whether or not a particular assembler allows us to enter such, I
1928 guess we'll have to see. */
1929 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1930 asm_preferred_eh_data_format ((CODE), (GLOBAL))
1931
1932 /* This is how to output an insn to push a register on the stack.
1933 It need not be very fast code. */
1934
1935 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1936 do { \
1937 if (TARGET_64BIT) \
1938 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1939 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1940 else \
1941 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1942 } while (0)
1943
1944 /* This is how to output an insn to pop a register from the stack.
1945 It need not be very fast code. */
1946
1947 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
1948 do { \
1949 if (TARGET_64BIT) \
1950 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
1951 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1952 else \
1953 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
1954 } while (0)
1955
1956 /* This is how to output an element of a case-vector that is absolute. */
1957
1958 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1959 ix86_output_addr_vec_elt ((FILE), (VALUE))
1960
1961 /* This is how to output an element of a case-vector that is relative. */
1962
1963 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1964 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
1965
1966 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
1967
1968 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
1969 { \
1970 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
1971 (PTR) += TARGET_AVX ? 1 : 2; \
1972 }
1973
1974 /* A C statement or statements which output an assembler instruction
1975 opcode to the stdio stream STREAM. The macro-operand PTR is a
1976 variable of type `char *' which points to the opcode name in
1977 its "internal" form--the form that is written in the machine
1978 description. */
1979
1980 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1981 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
1982
1983 /* A C statement to output to the stdio stream FILE an assembler
1984 command to pad the location counter to a multiple of 1<<LOG
1985 bytes if it is within MAX_SKIP bytes. */
1986
1987 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
1988 #undef ASM_OUTPUT_MAX_SKIP_PAD
1989 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
1990 if ((LOG) != 0) \
1991 { \
1992 if ((MAX_SKIP) == 0) \
1993 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
1994 else \
1995 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
1996 }
1997 #endif
1998
1999 /* Write the extra assembler code needed to declare a function
2000 properly. */
2001
2002 #undef ASM_OUTPUT_FUNCTION_LABEL
2003 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2004 ix86_asm_output_function_label (FILE, NAME, DECL)
2005
2006 /* Under some conditions we need jump tables in the text section,
2007 because the assembler cannot handle label differences between
2008 sections. This is the case for x86_64 on Mach-O for example. */
2009
2010 #define JUMP_TABLES_IN_TEXT_SECTION \
2011 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2012 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2013
2014 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2015 and switch back. For x86 we do this only to save a few bytes that
2016 would otherwise be unused in the text section. */
2017 #define CRT_MKSTR2(VAL) #VAL
2018 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2019
2020 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2021 asm (SECTION_OP "\n\t" \
2022 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2023 TEXT_SECTION_ASM_OP);
2024 \f
2025 /* Which processor to tune code generation for. */
2026
2027 enum processor_type
2028 {
2029 PROCESSOR_I386 = 0, /* 80386 */
2030 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2031 PROCESSOR_PENTIUM,
2032 PROCESSOR_PENTIUMPRO,
2033 PROCESSOR_GEODE,
2034 PROCESSOR_K6,
2035 PROCESSOR_ATHLON,
2036 PROCESSOR_PENTIUM4,
2037 PROCESSOR_K8,
2038 PROCESSOR_NOCONA,
2039 PROCESSOR_CORE2_32,
2040 PROCESSOR_CORE2_64,
2041 PROCESSOR_COREI7_32,
2042 PROCESSOR_COREI7_64,
2043 PROCESSOR_GENERIC32,
2044 PROCESSOR_GENERIC64,
2045 PROCESSOR_AMDFAM10,
2046 PROCESSOR_BDVER1,
2047 PROCESSOR_BTVER1,
2048 PROCESSOR_ATOM,
2049 PROCESSOR_max
2050 };
2051
2052 extern enum processor_type ix86_tune;
2053 extern enum processor_type ix86_arch;
2054
2055 enum fpmath_unit
2056 {
2057 FPMATH_387 = 1,
2058 FPMATH_SSE = 2
2059 };
2060
2061 extern enum fpmath_unit ix86_fpmath;
2062
2063 enum tls_dialect
2064 {
2065 TLS_DIALECT_GNU,
2066 TLS_DIALECT_GNU2,
2067 TLS_DIALECT_SUN
2068 };
2069
2070 extern enum tls_dialect ix86_tls_dialect;
2071
2072 enum cmodel {
2073 CM_32, /* The traditional 32-bit ABI. */
2074 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2075 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2076 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2077 CM_LARGE, /* No assumptions. */
2078 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2079 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2080 CM_LARGE_PIC /* No assumptions. */
2081 };
2082
2083 extern enum cmodel ix86_cmodel;
2084
2085 /* Size of the RED_ZONE area. */
2086 #define RED_ZONE_SIZE 128
2087 /* Reserved area of the red zone for temporaries. */
2088 #define RED_ZONE_RESERVE 8
2089
2090 enum asm_dialect {
2091 ASM_ATT,
2092 ASM_INTEL
2093 };
2094
2095 extern enum asm_dialect ix86_asm_dialect;
2096 extern unsigned int ix86_preferred_stack_boundary;
2097 extern unsigned int ix86_incoming_stack_boundary;
2098 extern int ix86_branch_cost, ix86_section_threshold;
2099
2100 /* Smallest class containing REGNO. */
2101 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2102
2103 enum ix86_fpcmp_strategy {
2104 IX86_FPCMP_SAHF,
2105 IX86_FPCMP_COMI,
2106 IX86_FPCMP_ARITH
2107 };
2108 \f
2109 /* To properly truncate FP values into integers, we need to set i387 control
2110 word. We can't emit proper mode switching code before reload, as spills
2111 generated by reload may truncate values incorrectly, but we still can avoid
2112 redundant computation of new control word by the mode switching pass.
2113 The fldcw instructions are still emitted redundantly, but this is probably
2114 not going to be noticeable problem, as most CPUs do have fast path for
2115 the sequence.
2116
2117 The machinery is to emit simple truncation instructions and split them
2118 before reload to instructions having USEs of two memory locations that
2119 are filled by this code to old and new control word.
2120
2121 Post-reload pass may be later used to eliminate the redundant fildcw if
2122 needed. */
2123
2124 enum ix86_entity
2125 {
2126 I387_TRUNC = 0,
2127 I387_FLOOR,
2128 I387_CEIL,
2129 I387_MASK_PM,
2130 MAX_386_ENTITIES
2131 };
2132
2133 enum ix86_stack_slot
2134 {
2135 SLOT_VIRTUAL = 0,
2136 SLOT_TEMP,
2137 SLOT_CW_STORED,
2138 SLOT_CW_TRUNC,
2139 SLOT_CW_FLOOR,
2140 SLOT_CW_CEIL,
2141 SLOT_CW_MASK_PM,
2142 MAX_386_STACK_LOCALS
2143 };
2144
2145 /* Define this macro if the port needs extra instructions inserted
2146 for mode switching in an optimizing compilation. */
2147
2148 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2149 ix86_optimize_mode_switching[(ENTITY)]
2150
2151 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2152 initializer for an array of integers. Each initializer element N
2153 refers to an entity that needs mode switching, and specifies the
2154 number of different modes that might need to be set for this
2155 entity. The position of the initializer in the initializer -
2156 starting counting at zero - determines the integer that is used to
2157 refer to the mode-switched entity in question. */
2158
2159 #define NUM_MODES_FOR_MODE_SWITCHING \
2160 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2161
2162 /* ENTITY is an integer specifying a mode-switched entity. If
2163 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2164 return an integer value not larger than the corresponding element
2165 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2166 must be switched into prior to the execution of INSN. */
2167
2168 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2169
2170 /* This macro specifies the order in which modes for ENTITY are
2171 processed. 0 is the highest priority. */
2172
2173 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2174
2175 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2176 is the set of hard registers live at the point where the insn(s)
2177 are to be inserted. */
2178
2179 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2180 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2181 ? emit_i387_cw_initialization (MODE), 0 \
2182 : 0)
2183
2184 \f
2185 /* Avoid renaming of stack registers, as doing so in combination with
2186 scheduling just increases amount of live registers at time and in
2187 the turn amount of fxch instructions needed.
2188
2189 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2190
2191 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2192 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2193
2194 \f
2195 #define FASTCALL_PREFIX '@'
2196 \f
2197 /* Machine specific frame tracking during prologue/epilogue generation. */
2198
2199 #ifndef USED_FOR_TARGET
2200 struct GTY(()) machine_frame_state
2201 {
2202 /* This pair tracks the currently active CFA as reg+offset. When reg
2203 is drap_reg, we don't bother trying to record here the real CFA when
2204 it might really be a DW_CFA_def_cfa_expression. */
2205 rtx cfa_reg;
2206 HOST_WIDE_INT cfa_offset;
2207
2208 /* The current offset (canonically from the CFA) of ESP and EBP.
2209 When stack frame re-alignment is active, these may not be relative
2210 to the CFA. However, in all cases they are relative to the offsets
2211 of the saved registers stored in ix86_frame. */
2212 HOST_WIDE_INT sp_offset;
2213 HOST_WIDE_INT fp_offset;
2214
2215 /* The size of the red-zone that may be assumed for the purposes of
2216 eliding register restore notes in the epilogue. This may be zero
2217 if no red-zone is in effect, or may be reduced from the real
2218 red-zone value by a maximum runtime stack re-alignment value. */
2219 int red_zone_offset;
2220
2221 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2222 value within the frame. If false then the offset above should be
2223 ignored. Note that DRAP, if valid, *always* points to the CFA and
2224 thus has an offset of zero. */
2225 BOOL_BITFIELD sp_valid : 1;
2226 BOOL_BITFIELD fp_valid : 1;
2227 BOOL_BITFIELD drap_valid : 1;
2228
2229 /* Indicate whether the local stack frame has been re-aligned. When
2230 set, the SP/FP offsets above are relative to the aligned frame
2231 and not the CFA. */
2232 BOOL_BITFIELD realigned : 1;
2233 };
2234
2235 /* Private to winnt.c. */
2236 struct seh_frame_state;
2237
2238 struct GTY(()) machine_function {
2239 struct stack_local_entry *stack_locals;
2240 const char *some_ld_name;
2241 int varargs_gpr_size;
2242 int varargs_fpr_size;
2243 int optimize_mode_switching[MAX_386_ENTITIES];
2244
2245 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2246 has been computed for. */
2247 int use_fast_prologue_epilogue_nregs;
2248
2249 /* For -fsplit-stack support: A stack local which holds a pointer to
2250 the stack arguments for a function with a variable number of
2251 arguments. This is set at the start of the function and is used
2252 to initialize the overflow_arg_area field of the va_list
2253 structure. */
2254 rtx split_stack_varargs_pointer;
2255
2256 /* This value is used for amd64 targets and specifies the current abi
2257 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2258 ENUM_BITFIELD(calling_abi) call_abi : 8;
2259
2260 /* Nonzero if the function accesses a previous frame. */
2261 BOOL_BITFIELD accesses_prev_frame : 1;
2262
2263 /* Nonzero if the function requires a CLD in the prologue. */
2264 BOOL_BITFIELD needs_cld : 1;
2265
2266 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2267 expander to determine the style used. */
2268 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2269
2270 /* If true, the current function needs the default PIC register, not
2271 an alternate register (on x86) and must not use the red zone (on
2272 x86_64), even if it's a leaf function. We don't want the
2273 function to be regarded as non-leaf because TLS calls need not
2274 affect register allocation. This flag is set when a TLS call
2275 instruction is expanded within a function, and never reset, even
2276 if all such instructions are optimized away. Use the
2277 ix86_current_function_calls_tls_descriptor macro for a better
2278 approximation. */
2279 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2280
2281 /* If true, the current function has a STATIC_CHAIN is placed on the
2282 stack below the return address. */
2283 BOOL_BITFIELD static_chain_on_stack : 1;
2284
2285 /* Nonzero if caller passes 256bit AVX modes. */
2286 BOOL_BITFIELD caller_pass_avx256_p : 1;
2287
2288 /* Nonzero if caller returns 256bit AVX modes. */
2289 BOOL_BITFIELD caller_return_avx256_p : 1;
2290
2291 /* Nonzero if the current callee passes 256bit AVX modes. */
2292 BOOL_BITFIELD callee_pass_avx256_p : 1;
2293
2294 /* Nonzero if the current callee returns 256bit AVX modes. */
2295 BOOL_BITFIELD callee_return_avx256_p : 1;
2296
2297 /* Nonzero if rescan vzerouppers in the current function is needed. */
2298 BOOL_BITFIELD rescan_vzeroupper_p : 1;
2299
2300 /* During prologue/epilogue generation, the current frame state.
2301 Otherwise, the frame state at the end of the prologue. */
2302 struct machine_frame_state fs;
2303
2304 /* During SEH output, this is non-null. */
2305 struct seh_frame_state * GTY((skip(""))) seh;
2306 };
2307 #endif
2308
2309 #define ix86_stack_locals (cfun->machine->stack_locals)
2310 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2311 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2312 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2313 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2314 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2315 (cfun->machine->tls_descriptor_call_expanded_p)
2316 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2317 calls are optimized away, we try to detect cases in which it was
2318 optimized away. Since such instructions (use (reg REG_SP)), we can
2319 verify whether there's any such instruction live by testing that
2320 REG_SP is live. */
2321 #define ix86_current_function_calls_tls_descriptor \
2322 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2323 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2324
2325 /* Control behavior of x86_file_start. */
2326 #define X86_FILE_START_VERSION_DIRECTIVE false
2327 #define X86_FILE_START_FLTUSED false
2328
2329 /* Flag to mark data that is in the large address area. */
2330 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2331 #define SYMBOL_REF_FAR_ADDR_P(X) \
2332 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2333
2334 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2335 have defined always, to avoid ifdefing. */
2336 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2337 #define SYMBOL_REF_DLLIMPORT_P(X) \
2338 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2339
2340 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2341 #define SYMBOL_REF_DLLEXPORT_P(X) \
2342 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2343
2344 extern void debug_ready_dispatch (void);
2345 extern void debug_dispatch_window (int);
2346
2347 /* The value at zero is only defined for the BMI instructions
2348 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2349 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2350 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2351 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2352 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2353
2354
2355 /* Flags returned by ix86_get_callcvt (). */
2356 #define IX86_CALLCVT_CDECL 0x1
2357 #define IX86_CALLCVT_STDCALL 0x2
2358 #define IX86_CALLCVT_FASTCALL 0x4
2359 #define IX86_CALLCVT_THISCALL 0x8
2360 #define IX86_CALLCVT_REGPARM 0x10
2361 #define IX86_CALLCVT_SSEREGPARM 0x20
2362
2363 #define IX86_BASE_CALLCVT(FLAGS) \
2364 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2365 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2366
2367 /*
2368 Local variables:
2369 version-control: t
2370 End:
2371 */