defaults.h (FRAME_GROWS_DOWNWARD): Define to 0 if not defined.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Macros used in the machine description to test the flags. */
92
93 /* configure can arrange to make this 2, to force a 486. */
94
95 #ifndef TARGET_CPU_DEFAULT
96 #ifdef TARGET_64BIT_DEFAULT
97 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
98 #else
99 #define TARGET_CPU_DEFAULT 0
100 #endif
101 #endif
102
103 #ifndef TARGET_FPMATH_DEFAULT
104 #define TARGET_FPMATH_DEFAULT \
105 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
106 #endif
107
108 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
109
110 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
111 compile-time constant. */
112 #ifdef IN_LIBGCC2
113 #undef TARGET_64BIT
114 #ifdef __x86_64__
115 #define TARGET_64BIT 1
116 #else
117 #define TARGET_64BIT 0
118 #endif
119 #else
120 #ifndef TARGET_BI_ARCH
121 #undef TARGET_64BIT
122 #if TARGET_64BIT_DEFAULT
123 #define TARGET_64BIT 1
124 #else
125 #define TARGET_64BIT 0
126 #endif
127 #endif
128 #endif
129
130 #define HAS_LONG_COND_BRANCH 1
131 #define HAS_LONG_UNCOND_BRANCH 1
132
133 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
134 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
135 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
136 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
137 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
138 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
139 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
140 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
141 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
142 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
143
144 #define TUNEMASK (1 << ix86_tune)
145 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
146 extern const int x86_use_bit_test, x86_cmove, x86_fisttp, x86_deep_branch;
147 extern const int x86_branch_hints, x86_unroll_strlen;
148 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
149 extern const int x86_use_himode_fiop, x86_use_simode_fiop;
150 extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
151 extern const int x86_read_modify, x86_split_long_moves;
152 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
153 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
154 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
155 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
156 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
157 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
158 extern const int x86_epilogue_using_move, x86_decompose_lea;
159 extern const int x86_arch_always_fancy_math_387, x86_shift1;
160 extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
161 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
162 extern const int x86_use_ffreep;
163 extern const int x86_inter_unit_moves, x86_schedule;
164 extern const int x86_use_bt;
165 extern const int x86_cmpxchg, x86_xadd;
166 extern int x86_prefetch_sse;
167
168 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
169 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
170 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
171 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
172 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
173 /* For sane SSE instruction set generation we need fcomi instruction. It is
174 safe to enable all CMOVE instructions. */
175 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
176 #define TARGET_FISTTP (x86_fisttp & (1 << ix86_arch))
177 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
178 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
179 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
180 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
181 #define TARGET_MOVX (x86_movx & TUNEMASK)
182 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
183 #define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
184 #define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
185 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
186 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
187 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
188 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
189 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
190 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
191 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
192 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
193 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
194 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
195 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
196 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
197 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
198 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
199 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
200 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
201 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
202 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
203 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
204 (x86_sse_partial_reg_dependency & TUNEMASK)
205 #define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
206 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
207 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
208 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
209 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
210 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
211 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
212 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
213 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
214 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
215 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
216 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
217 #define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
218 #define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
219 #define TARGET_USE_BT (x86_use_bt & TUNEMASK)
220
221 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
222
223 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
224 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
225 && (ix86_fpmath & FPMATH_387))
226
227 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
228 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
229
230 #define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
231 #define TARGET_XADD (x86_xadd & (1 << ix86_arch))
232
233 #ifndef TARGET_64BIT_DEFAULT
234 #define TARGET_64BIT_DEFAULT 0
235 #endif
236 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
237 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
238 #endif
239
240 /* Once GDB has been enhanced to deal with functions without frame
241 pointers, we can change this to allow for elimination of
242 the frame pointer in leaf functions. */
243 #define TARGET_DEFAULT 0
244
245 /* This is not really a target flag, but is done this way so that
246 it's analogous to similar code for Mach-O on PowerPC. darwin.h
247 redefines this to 1. */
248 #define TARGET_MACHO 0
249
250 /* Subtargets may reset this to 1 in order to enable 96-bit long double
251 with the rounding mode forced to 53 bits. */
252 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
253
254 /* Sometimes certain combinations of command options do not make
255 sense on a particular target machine. You can define a macro
256 `OVERRIDE_OPTIONS' to take account of this. This macro, if
257 defined, is executed once just after all the command options have
258 been parsed.
259
260 Don't use this macro to turn on various extra optimizations for
261 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
262
263 #define OVERRIDE_OPTIONS override_options ()
264
265 /* Define this to change the optimizations performed by default. */
266 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
267 optimization_options ((LEVEL), (SIZE))
268
269 /* Support for configure-time defaults of some command line options. */
270 #define OPTION_DEFAULT_SPECS \
271 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
272 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
273 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
274
275 /* Specs for the compiler proper */
276
277 #ifndef CC1_CPU_SPEC
278 #define CC1_CPU_SPEC "\
279 %{!mtune*: \
280 %{m386:mtune=i386 \
281 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
282 %{m486:-mtune=i486 \
283 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
284 %{mpentium:-mtune=pentium \
285 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
286 %{mpentiumpro:-mtune=pentiumpro \
287 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
288 %{mcpu=*:-mtune=%* \
289 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
290 %<mcpu=* \
291 %{mintel-syntax:-masm=intel \
292 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
293 %{mno-intel-syntax:-masm=att \
294 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
295 #endif
296 \f
297 /* Target CPU builtins. */
298 #define TARGET_CPU_CPP_BUILTINS() \
299 do \
300 { \
301 size_t arch_len = strlen (ix86_arch_string); \
302 size_t tune_len = strlen (ix86_tune_string); \
303 int last_arch_char = ix86_arch_string[arch_len - 1]; \
304 int last_tune_char = ix86_tune_string[tune_len - 1]; \
305 \
306 if (TARGET_64BIT) \
307 { \
308 builtin_assert ("cpu=x86_64"); \
309 builtin_assert ("machine=x86_64"); \
310 builtin_define ("__amd64"); \
311 builtin_define ("__amd64__"); \
312 builtin_define ("__x86_64"); \
313 builtin_define ("__x86_64__"); \
314 } \
315 else \
316 { \
317 builtin_assert ("cpu=i386"); \
318 builtin_assert ("machine=i386"); \
319 builtin_define_std ("i386"); \
320 } \
321 \
322 /* Built-ins based on -mtune= (or -march= if no \
323 -mtune= given). */ \
324 if (TARGET_386) \
325 builtin_define ("__tune_i386__"); \
326 else if (TARGET_486) \
327 builtin_define ("__tune_i486__"); \
328 else if (TARGET_PENTIUM) \
329 { \
330 builtin_define ("__tune_i586__"); \
331 builtin_define ("__tune_pentium__"); \
332 if (last_tune_char == 'x') \
333 builtin_define ("__tune_pentium_mmx__"); \
334 } \
335 else if (TARGET_PENTIUMPRO) \
336 { \
337 builtin_define ("__tune_i686__"); \
338 builtin_define ("__tune_pentiumpro__"); \
339 switch (last_tune_char) \
340 { \
341 case '3': \
342 builtin_define ("__tune_pentium3__"); \
343 /* FALLTHRU */ \
344 case '2': \
345 builtin_define ("__tune_pentium2__"); \
346 break; \
347 } \
348 } \
349 else if (TARGET_K6) \
350 { \
351 builtin_define ("__tune_k6__"); \
352 if (last_tune_char == '2') \
353 builtin_define ("__tune_k6_2__"); \
354 else if (last_tune_char == '3') \
355 builtin_define ("__tune_k6_3__"); \
356 } \
357 else if (TARGET_ATHLON) \
358 { \
359 builtin_define ("__tune_athlon__"); \
360 /* Only plain "athlon" lacks SSE. */ \
361 if (last_tune_char != 'n') \
362 builtin_define ("__tune_athlon_sse__"); \
363 } \
364 else if (TARGET_K8) \
365 builtin_define ("__tune_k8__"); \
366 else if (TARGET_PENTIUM4) \
367 builtin_define ("__tune_pentium4__"); \
368 else if (TARGET_NOCONA) \
369 builtin_define ("__tune_nocona__"); \
370 \
371 if (TARGET_MMX) \
372 builtin_define ("__MMX__"); \
373 if (TARGET_3DNOW) \
374 builtin_define ("__3dNOW__"); \
375 if (TARGET_3DNOW_A) \
376 builtin_define ("__3dNOW_A__"); \
377 if (TARGET_SSE) \
378 builtin_define ("__SSE__"); \
379 if (TARGET_SSE2) \
380 builtin_define ("__SSE2__"); \
381 if (TARGET_SSE3) \
382 builtin_define ("__SSE3__"); \
383 if (TARGET_SSE_MATH && TARGET_SSE) \
384 builtin_define ("__SSE_MATH__"); \
385 if (TARGET_SSE_MATH && TARGET_SSE2) \
386 builtin_define ("__SSE2_MATH__"); \
387 \
388 /* Built-ins based on -march=. */ \
389 if (ix86_arch == PROCESSOR_I486) \
390 { \
391 builtin_define ("__i486"); \
392 builtin_define ("__i486__"); \
393 } \
394 else if (ix86_arch == PROCESSOR_PENTIUM) \
395 { \
396 builtin_define ("__i586"); \
397 builtin_define ("__i586__"); \
398 builtin_define ("__pentium"); \
399 builtin_define ("__pentium__"); \
400 if (last_arch_char == 'x') \
401 builtin_define ("__pentium_mmx__"); \
402 } \
403 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
404 { \
405 builtin_define ("__i686"); \
406 builtin_define ("__i686__"); \
407 builtin_define ("__pentiumpro"); \
408 builtin_define ("__pentiumpro__"); \
409 } \
410 else if (ix86_arch == PROCESSOR_K6) \
411 { \
412 \
413 builtin_define ("__k6"); \
414 builtin_define ("__k6__"); \
415 if (last_arch_char == '2') \
416 builtin_define ("__k6_2__"); \
417 else if (last_arch_char == '3') \
418 builtin_define ("__k6_3__"); \
419 } \
420 else if (ix86_arch == PROCESSOR_ATHLON) \
421 { \
422 builtin_define ("__athlon"); \
423 builtin_define ("__athlon__"); \
424 /* Only plain "athlon" lacks SSE. */ \
425 if (last_arch_char != 'n') \
426 builtin_define ("__athlon_sse__"); \
427 } \
428 else if (ix86_arch == PROCESSOR_K8) \
429 { \
430 builtin_define ("__k8"); \
431 builtin_define ("__k8__"); \
432 } \
433 else if (ix86_arch == PROCESSOR_PENTIUM4) \
434 { \
435 builtin_define ("__pentium4"); \
436 builtin_define ("__pentium4__"); \
437 } \
438 else if (ix86_arch == PROCESSOR_NOCONA) \
439 { \
440 builtin_define ("__nocona"); \
441 builtin_define ("__nocona__"); \
442 } \
443 } \
444 while (0)
445
446 #define TARGET_CPU_DEFAULT_i386 0
447 #define TARGET_CPU_DEFAULT_i486 1
448 #define TARGET_CPU_DEFAULT_pentium 2
449 #define TARGET_CPU_DEFAULT_pentium_mmx 3
450 #define TARGET_CPU_DEFAULT_pentiumpro 4
451 #define TARGET_CPU_DEFAULT_pentium2 5
452 #define TARGET_CPU_DEFAULT_pentium3 6
453 #define TARGET_CPU_DEFAULT_pentium4 7
454 #define TARGET_CPU_DEFAULT_k6 8
455 #define TARGET_CPU_DEFAULT_k6_2 9
456 #define TARGET_CPU_DEFAULT_k6_3 10
457 #define TARGET_CPU_DEFAULT_athlon 11
458 #define TARGET_CPU_DEFAULT_athlon_sse 12
459 #define TARGET_CPU_DEFAULT_k8 13
460 #define TARGET_CPU_DEFAULT_pentium_m 14
461 #define TARGET_CPU_DEFAULT_prescott 15
462 #define TARGET_CPU_DEFAULT_nocona 16
463
464 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
465 "pentiumpro", "pentium2", "pentium3", \
466 "pentium4", "k6", "k6-2", "k6-3",\
467 "athlon", "athlon-4", "k8", \
468 "pentium-m", "prescott", "nocona"}
469
470 #ifndef CC1_SPEC
471 #define CC1_SPEC "%(cc1_cpu) "
472 #endif
473
474 /* This macro defines names of additional specifications to put in the
475 specs that can be used in various specifications like CC1_SPEC. Its
476 definition is an initializer with a subgrouping for each command option.
477
478 Each subgrouping contains a string constant, that defines the
479 specification name, and a string constant that used by the GCC driver
480 program.
481
482 Do not define this macro if it does not need to do anything. */
483
484 #ifndef SUBTARGET_EXTRA_SPECS
485 #define SUBTARGET_EXTRA_SPECS
486 #endif
487
488 #define EXTRA_SPECS \
489 { "cc1_cpu", CC1_CPU_SPEC }, \
490 SUBTARGET_EXTRA_SPECS
491 \f
492 /* target machine storage layout */
493
494 #define LONG_DOUBLE_TYPE_SIZE 80
495
496 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
497 FPU, assume that the fpcw is set to extended precision; when using
498 only SSE, rounding is correct; when using both SSE and the FPU,
499 the rounding precision is indeterminate, since either may be chosen
500 apparently at random. */
501 #define TARGET_FLT_EVAL_METHOD \
502 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
503
504 #define SHORT_TYPE_SIZE 16
505 #define INT_TYPE_SIZE 32
506 #define FLOAT_TYPE_SIZE 32
507 #define LONG_TYPE_SIZE BITS_PER_WORD
508 #define DOUBLE_TYPE_SIZE 64
509 #define LONG_LONG_TYPE_SIZE 64
510
511 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
512 #define MAX_BITS_PER_WORD 64
513 #else
514 #define MAX_BITS_PER_WORD 32
515 #endif
516
517 /* Define this if most significant byte of a word is the lowest numbered. */
518 /* That is true on the 80386. */
519
520 #define BITS_BIG_ENDIAN 0
521
522 /* Define this if most significant byte of a word is the lowest numbered. */
523 /* That is not true on the 80386. */
524 #define BYTES_BIG_ENDIAN 0
525
526 /* Define this if most significant word of a multiword number is the lowest
527 numbered. */
528 /* Not true for 80386 */
529 #define WORDS_BIG_ENDIAN 0
530
531 /* Width of a word, in units (bytes). */
532 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
533 #ifdef IN_LIBGCC2
534 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
535 #else
536 #define MIN_UNITS_PER_WORD 4
537 #endif
538
539 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
540 #define PARM_BOUNDARY BITS_PER_WORD
541
542 /* Boundary (in *bits*) on which stack pointer should be aligned. */
543 #define STACK_BOUNDARY BITS_PER_WORD
544
545 /* Boundary (in *bits*) on which the stack pointer prefers to be
546 aligned; the compiler cannot rely on having this alignment. */
547 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
548
549 /* As of July 2001, many runtimes to not align the stack properly when
550 entering main. This causes expand_main_function to forcibly align
551 the stack, which results in aligned frames for functions called from
552 main, though it does nothing for the alignment of main itself. */
553 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
554 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
555
556 /* Minimum allocation boundary for the code of a function. */
557 #define FUNCTION_BOUNDARY 8
558
559 /* C++ stores the virtual bit in the lowest bit of function pointers. */
560 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
561
562 /* Alignment of field after `int : 0' in a structure. */
563
564 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
565
566 /* Minimum size in bits of the largest boundary to which any
567 and all fundamental data types supported by the hardware
568 might need to be aligned. No data type wants to be aligned
569 rounder than this.
570
571 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
572 and Pentium Pro XFmode values at 128 bit boundaries. */
573
574 #define BIGGEST_ALIGNMENT 128
575
576 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
577 #define ALIGN_MODE_128(MODE) \
578 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
579
580 /* The published ABIs say that doubles should be aligned on word
581 boundaries, so lower the alignment for structure fields unless
582 -malign-double is set. */
583
584 /* ??? Blah -- this macro is used directly by libobjc. Since it
585 supports no vector modes, cut out the complexity and fall back
586 on BIGGEST_FIELD_ALIGNMENT. */
587 #ifdef IN_TARGET_LIBS
588 #ifdef __x86_64__
589 #define BIGGEST_FIELD_ALIGNMENT 128
590 #else
591 #define BIGGEST_FIELD_ALIGNMENT 32
592 #endif
593 #else
594 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
595 x86_field_alignment (FIELD, COMPUTED)
596 #endif
597
598 /* If defined, a C expression to compute the alignment given to a
599 constant that is being placed in memory. EXP is the constant
600 and ALIGN is the alignment that the object would ordinarily have.
601 The value of this macro is used instead of that alignment to align
602 the object.
603
604 If this macro is not defined, then ALIGN is used.
605
606 The typical use of this macro is to increase alignment for string
607 constants to be word aligned so that `strcpy' calls that copy
608 constants can be done inline. */
609
610 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
611
612 /* If defined, a C expression to compute the alignment for a static
613 variable. TYPE is the data type, and ALIGN is the alignment that
614 the object would ordinarily have. The value of this macro is used
615 instead of that alignment to align the object.
616
617 If this macro is not defined, then ALIGN is used.
618
619 One use of this macro is to increase alignment of medium-size
620 data to make it all fit in fewer cache lines. Another is to
621 cause character arrays to be word-aligned so that `strcpy' calls
622 that copy constants to character arrays can be done inline. */
623
624 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
625
626 /* If defined, a C expression to compute the alignment for a local
627 variable. TYPE is the data type, and ALIGN is the alignment that
628 the object would ordinarily have. The value of this macro is used
629 instead of that alignment to align the object.
630
631 If this macro is not defined, then ALIGN is used.
632
633 One use of this macro is to increase alignment of medium-size
634 data to make it all fit in fewer cache lines. */
635
636 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
637
638 /* If defined, a C expression that gives the alignment boundary, in
639 bits, of an argument with the specified mode and type. If it is
640 not defined, `PARM_BOUNDARY' is used for all arguments. */
641
642 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
643 ix86_function_arg_boundary ((MODE), (TYPE))
644
645 /* Set this nonzero if move instructions will actually fail to work
646 when given unaligned data. */
647 #define STRICT_ALIGNMENT 0
648
649 /* If bit field type is int, don't let it cross an int,
650 and give entire struct the alignment of an int. */
651 /* Required on the 386 since it doesn't have bit-field insns. */
652 #define PCC_BITFIELD_TYPE_MATTERS 1
653 \f
654 /* Standard register usage. */
655
656 /* This processor has special stack-like registers. See reg-stack.c
657 for details. */
658
659 #define STACK_REGS
660 #define IS_STACK_MODE(MODE) \
661 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
662
663 /* Number of actual hardware registers.
664 The hardware registers are assigned numbers for the compiler
665 from 0 to just below FIRST_PSEUDO_REGISTER.
666 All registers that the compiler knows about must be given numbers,
667 even those that are not normally considered general registers.
668
669 In the 80386 we give the 8 general purpose registers the numbers 0-7.
670 We number the floating point registers 8-15.
671 Note that registers 0-7 can be accessed as a short or int,
672 while only 0-3 may be used with byte `mov' instructions.
673
674 Reg 16 does not correspond to any hardware register, but instead
675 appears in the RTL as an argument pointer prior to reload, and is
676 eliminated during reloading in favor of either the stack or frame
677 pointer. */
678
679 #define FIRST_PSEUDO_REGISTER 53
680
681 /* Number of hardware registers that go into the DWARF-2 unwind info.
682 If not defined, equals FIRST_PSEUDO_REGISTER. */
683
684 #define DWARF_FRAME_REGISTERS 17
685
686 /* 1 for registers that have pervasive standard uses
687 and are not available for the register allocator.
688 On the 80386, the stack pointer is such, as is the arg pointer.
689
690 The value is zero if the register is not fixed on either 32 or
691 64 bit targets, one if the register if fixed on both 32 and 64
692 bit targets, two if it is only fixed on 32bit targets and three
693 if its only fixed on 64bit targets.
694 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
695 */
696 #define FIXED_REGISTERS \
697 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
698 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
699 /*arg,flags,fpsr,dir,frame*/ \
700 1, 1, 1, 1, 1, \
701 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
702 0, 0, 0, 0, 0, 0, 0, 0, \
703 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
704 0, 0, 0, 0, 0, 0, 0, 0, \
705 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
706 2, 2, 2, 2, 2, 2, 2, 2, \
707 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
708 2, 2, 2, 2, 2, 2, 2, 2}
709
710
711 /* 1 for registers not available across function calls.
712 These must include the FIXED_REGISTERS and also any
713 registers that can be used without being saved.
714 The latter must include the registers where values are returned
715 and the register where structure-value addresses are passed.
716 Aside from that, you can include as many other registers as you like.
717
718 The value is zero if the register is not call used on either 32 or
719 64 bit targets, one if the register if call used on both 32 and 64
720 bit targets, two if it is only call used on 32bit targets and three
721 if its only call used on 64bit targets.
722 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
723 */
724 #define CALL_USED_REGISTERS \
725 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
726 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
727 /*arg,flags,fpsr,dir,frame*/ \
728 1, 1, 1, 1, 1, \
729 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
730 1, 1, 1, 1, 1, 1, 1, 1, \
731 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
732 1, 1, 1, 1, 1, 1, 1, 1, \
733 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
734 1, 1, 1, 1, 2, 2, 2, 2, \
735 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
736 1, 1, 1, 1, 1, 1, 1, 1} \
737
738 /* Order in which to allocate registers. Each register must be
739 listed once, even those in FIXED_REGISTERS. List frame pointer
740 late and fixed registers last. Note that, in general, we prefer
741 registers listed in CALL_USED_REGISTERS, keeping the others
742 available for storage of persistent values.
743
744 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
745 so this is just empty initializer for array. */
746
747 #define REG_ALLOC_ORDER \
748 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
749 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
750 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
751 48, 49, 50, 51, 52 }
752
753 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
754 to be rearranged based on a particular function. When using sse math,
755 we want to allocate SSE before x87 registers and vice vera. */
756
757 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
758
759
760 /* Macro to conditionally modify fixed_regs/call_used_regs. */
761 #define CONDITIONAL_REGISTER_USAGE \
762 do { \
763 int i; \
764 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
765 { \
766 if (fixed_regs[i] > 1) \
767 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
768 if (call_used_regs[i] > 1) \
769 call_used_regs[i] = (call_used_regs[i] \
770 == (TARGET_64BIT ? 3 : 2)); \
771 } \
772 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
773 { \
774 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
775 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
776 } \
777 if (! TARGET_MMX) \
778 { \
779 int i; \
780 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
781 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
782 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
783 } \
784 if (! TARGET_SSE) \
785 { \
786 int i; \
787 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
788 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
789 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
790 } \
791 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
792 { \
793 int i; \
794 HARD_REG_SET x; \
795 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
796 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
797 if (TEST_HARD_REG_BIT (x, i)) \
798 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
799 } \
800 if (! TARGET_64BIT) \
801 { \
802 int i; \
803 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
804 reg_names[i] = ""; \
805 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
806 reg_names[i] = ""; \
807 } \
808 } while (0)
809
810 /* Return number of consecutive hard regs needed starting at reg REGNO
811 to hold something of mode MODE.
812 This is ordinarily the length in words of a value of mode MODE
813 but can be less for certain modes in special long registers.
814
815 Actually there are no two word move instructions for consecutive
816 registers. And only registers 0-3 may have mov byte instructions
817 applied to them.
818 */
819
820 #define HARD_REGNO_NREGS(REGNO, MODE) \
821 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
822 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
823 : ((MODE) == XFmode \
824 ? (TARGET_64BIT ? 2 : 3) \
825 : (MODE) == XCmode \
826 ? (TARGET_64BIT ? 4 : 6) \
827 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
828
829 #define VALID_SSE2_REG_MODE(MODE) \
830 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
831 || (MODE) == V2DImode || (MODE) == DFmode)
832
833 #define VALID_SSE_REG_MODE(MODE) \
834 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
835 || (MODE) == SFmode || (MODE) == TFmode)
836
837 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
838 ((MODE) == V2SFmode || (MODE) == SFmode)
839
840 #define VALID_MMX_REG_MODE(MODE) \
841 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
842 || (MODE) == V2SImode || (MODE) == SImode)
843
844 /* ??? No autovectorization into MMX or 3DNOW until we can reliably
845 place emms and femms instructions. */
846 #define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
847
848 #define VALID_FP_MODE_P(MODE) \
849 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
850 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
851
852 #define VALID_INT_MODE_P(MODE) \
853 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
854 || (MODE) == DImode \
855 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
856 || (MODE) == CDImode \
857 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
858 || (MODE) == TFmode || (MODE) == TCmode)))
859
860 /* Return true for modes passed in SSE registers. */
861 #define SSE_REG_MODE_P(MODE) \
862 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
863 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
864 || (MODE) == V4SFmode || (MODE) == V4SImode)
865
866 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
867
868 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
869 ix86_hard_regno_mode_ok ((REGNO), (MODE))
870
871 /* Value is 1 if it is a good idea to tie two pseudo registers
872 when one has mode MODE1 and one has mode MODE2.
873 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
874 for any hard reg, then this must be 0 for correct output. */
875
876 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
877
878 /* It is possible to write patterns to move flags; but until someone
879 does it, */
880 #define AVOID_CCMODE_COPIES
881
882 /* Specify the modes required to caller save a given hard regno.
883 We do this on i386 to prevent flags from being saved at all.
884
885 Kill any attempts to combine saving of modes. */
886
887 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
888 (CC_REGNO_P (REGNO) ? VOIDmode \
889 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
890 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
891 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
892 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
893 : (MODE))
894 /* Specify the registers used for certain standard purposes.
895 The values of these macros are register numbers. */
896
897 /* on the 386 the pc register is %eip, and is not usable as a general
898 register. The ordinary mov instructions won't work */
899 /* #define PC_REGNUM */
900
901 /* Register to use for pushing function arguments. */
902 #define STACK_POINTER_REGNUM 7
903
904 /* Base register for access to local variables of the function. */
905 #define HARD_FRAME_POINTER_REGNUM 6
906
907 /* Base register for access to local variables of the function. */
908 #define FRAME_POINTER_REGNUM 20
909
910 /* First floating point reg */
911 #define FIRST_FLOAT_REG 8
912
913 /* First & last stack-like regs */
914 #define FIRST_STACK_REG FIRST_FLOAT_REG
915 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
916
917 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
918 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
919
920 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
921 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
922
923 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
924 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
925
926 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
927 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
928
929 /* Value should be nonzero if functions must have frame pointers.
930 Zero means the frame pointer need not be set up (and parms
931 may be accessed via the stack pointer) in functions that seem suitable.
932 This is computed in `reload', in reload1.c. */
933 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
934
935 /* Override this in other tm.h files to cope with various OS lossage
936 requiring a frame pointer. */
937 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
938 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
939 #endif
940
941 /* Make sure we can access arbitrary call frames. */
942 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
943
944 /* Base register for access to arguments of the function. */
945 #define ARG_POINTER_REGNUM 16
946
947 /* Register in which static-chain is passed to a function.
948 We do use ECX as static chain register for 32 bit ABI. On the
949 64bit ABI, ECX is an argument register, so we use R10 instead. */
950 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
951
952 /* Register to hold the addressing base for position independent
953 code access to data items. We don't use PIC pointer for 64bit
954 mode. Define the regnum to dummy value to prevent gcc from
955 pessimizing code dealing with EBX.
956
957 To avoid clobbering a call-saved register unnecessarily, we renumber
958 the pic register when possible. The change is visible after the
959 prologue has been emitted. */
960
961 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
962
963 #define PIC_OFFSET_TABLE_REGNUM \
964 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
965 : reload_completed ? REGNO (pic_offset_table_rtx) \
966 : REAL_PIC_OFFSET_TABLE_REGNUM)
967
968 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
969
970 /* A C expression which can inhibit the returning of certain function
971 values in registers, based on the type of value. A nonzero value
972 says to return the function value in memory, just as large
973 structures are always returned. Here TYPE will be a C expression
974 of type `tree', representing the data type of the value.
975
976 Note that values of mode `BLKmode' must be explicitly handled by
977 this macro. Also, the option `-fpcc-struct-return' takes effect
978 regardless of this macro. On most systems, it is possible to
979 leave the macro undefined; this causes a default definition to be
980 used, whose value is the constant 1 for `BLKmode' values, and 0
981 otherwise.
982
983 Do not use this macro to indicate that structures and unions
984 should always be returned in memory. You should instead use
985 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
986
987 #define RETURN_IN_MEMORY(TYPE) \
988 ix86_return_in_memory (TYPE)
989
990 /* This is overridden by <cygwin.h>. */
991 #define MS_AGGREGATE_RETURN 0
992
993 /* This is overridden by <netware.h>. */
994 #define KEEP_AGGREGATE_RETURN_POINTER 0
995 \f
996 /* Define the classes of registers for register constraints in the
997 machine description. Also define ranges of constants.
998
999 One of the classes must always be named ALL_REGS and include all hard regs.
1000 If there is more than one class, another class must be named NO_REGS
1001 and contain no registers.
1002
1003 The name GENERAL_REGS must be the name of a class (or an alias for
1004 another name such as ALL_REGS). This is the class of registers
1005 that is allowed by "g" or "r" in a register constraint.
1006 Also, registers outside this class are allocated only when
1007 instructions express preferences for them.
1008
1009 The classes must be numbered in nondecreasing order; that is,
1010 a larger-numbered class must never be contained completely
1011 in a smaller-numbered class.
1012
1013 For any two classes, it is very desirable that there be another
1014 class that represents their union.
1015
1016 It might seem that class BREG is unnecessary, since no useful 386
1017 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1018 and the "b" register constraint is useful in asms for syscalls.
1019
1020 The flags and fpsr registers are in no class. */
1021
1022 enum reg_class
1023 {
1024 NO_REGS,
1025 AREG, DREG, CREG, BREG, SIREG, DIREG,
1026 AD_REGS, /* %eax/%edx for DImode */
1027 Q_REGS, /* %eax %ebx %ecx %edx */
1028 NON_Q_REGS, /* %esi %edi %ebp %esp */
1029 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1030 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1031 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1032 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1033 FLOAT_REGS,
1034 SSE_REGS,
1035 MMX_REGS,
1036 FP_TOP_SSE_REGS,
1037 FP_SECOND_SSE_REGS,
1038 FLOAT_SSE_REGS,
1039 FLOAT_INT_REGS,
1040 INT_SSE_REGS,
1041 FLOAT_INT_SSE_REGS,
1042 ALL_REGS, LIM_REG_CLASSES
1043 };
1044
1045 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1046
1047 #define INTEGER_CLASS_P(CLASS) \
1048 reg_class_subset_p ((CLASS), GENERAL_REGS)
1049 #define FLOAT_CLASS_P(CLASS) \
1050 reg_class_subset_p ((CLASS), FLOAT_REGS)
1051 #define SSE_CLASS_P(CLASS) \
1052 ((CLASS) == SSE_REGS)
1053 #define MMX_CLASS_P(CLASS) \
1054 ((CLASS) == MMX_REGS)
1055 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1056 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1057 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1058 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1059 #define MAYBE_SSE_CLASS_P(CLASS) \
1060 reg_classes_intersect_p (SSE_REGS, (CLASS))
1061 #define MAYBE_MMX_CLASS_P(CLASS) \
1062 reg_classes_intersect_p (MMX_REGS, (CLASS))
1063
1064 #define Q_CLASS_P(CLASS) \
1065 reg_class_subset_p ((CLASS), Q_REGS)
1066
1067 /* Give names of register classes as strings for dump file. */
1068
1069 #define REG_CLASS_NAMES \
1070 { "NO_REGS", \
1071 "AREG", "DREG", "CREG", "BREG", \
1072 "SIREG", "DIREG", \
1073 "AD_REGS", \
1074 "Q_REGS", "NON_Q_REGS", \
1075 "INDEX_REGS", \
1076 "LEGACY_REGS", \
1077 "GENERAL_REGS", \
1078 "FP_TOP_REG", "FP_SECOND_REG", \
1079 "FLOAT_REGS", \
1080 "SSE_REGS", \
1081 "MMX_REGS", \
1082 "FP_TOP_SSE_REGS", \
1083 "FP_SECOND_SSE_REGS", \
1084 "FLOAT_SSE_REGS", \
1085 "FLOAT_INT_REGS", \
1086 "INT_SSE_REGS", \
1087 "FLOAT_INT_SSE_REGS", \
1088 "ALL_REGS" }
1089
1090 /* Define which registers fit in which classes.
1091 This is an initializer for a vector of HARD_REG_SET
1092 of length N_REG_CLASSES. */
1093
1094 #define REG_CLASS_CONTENTS \
1095 { { 0x00, 0x0 }, \
1096 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1097 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1098 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1099 { 0x03, 0x0 }, /* AD_REGS */ \
1100 { 0x0f, 0x0 }, /* Q_REGS */ \
1101 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1102 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1103 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1104 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1105 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1106 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1107 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1108 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1109 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1110 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1111 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1112 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1113 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1114 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1115 { 0xffffffff,0x1fffff } \
1116 }
1117
1118 /* The same information, inverted:
1119 Return the class number of the smallest class containing
1120 reg number REGNO. This could be a conditional expression
1121 or could index an array. */
1122
1123 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1124
1125 /* When defined, the compiler allows registers explicitly used in the
1126 rtl to be used as spill registers but prevents the compiler from
1127 extending the lifetime of these registers. */
1128
1129 #define SMALL_REGISTER_CLASSES 1
1130
1131 #define QI_REG_P(X) \
1132 (REG_P (X) && REGNO (X) < 4)
1133
1134 #define GENERAL_REGNO_P(N) \
1135 ((N) < 8 || REX_INT_REGNO_P (N))
1136
1137 #define GENERAL_REG_P(X) \
1138 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1139
1140 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1141
1142 #define NON_QI_REG_P(X) \
1143 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1144
1145 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1146 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1147
1148 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1149 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1150 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1151 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1152
1153 #define SSE_REGNO_P(N) \
1154 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1155 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1156
1157 #define REX_SSE_REGNO_P(N) \
1158 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1159
1160 #define SSE_REGNO(N) \
1161 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1162 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1163
1164 #define SSE_FLOAT_MODE_P(MODE) \
1165 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1166
1167 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1168 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1169
1170 #define STACK_REG_P(XOP) \
1171 (REG_P (XOP) && \
1172 REGNO (XOP) >= FIRST_STACK_REG && \
1173 REGNO (XOP) <= LAST_STACK_REG)
1174
1175 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1176
1177 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1178
1179 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1180 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1181
1182 /* The class value for index registers, and the one for base regs. */
1183
1184 #define INDEX_REG_CLASS INDEX_REGS
1185 #define BASE_REG_CLASS GENERAL_REGS
1186
1187 /* Unused letters:
1188 B TU W
1189 h jk vw z
1190 */
1191
1192 /* Get reg_class from a letter such as appears in the machine description. */
1193
1194 #define REG_CLASS_FROM_LETTER(C) \
1195 ((C) == 'r' ? GENERAL_REGS : \
1196 (C) == 'R' ? LEGACY_REGS : \
1197 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1198 (C) == 'Q' ? Q_REGS : \
1199 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1200 ? FLOAT_REGS \
1201 : NO_REGS) : \
1202 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1203 ? FP_TOP_REG \
1204 : NO_REGS) : \
1205 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1206 ? FP_SECOND_REG \
1207 : NO_REGS) : \
1208 (C) == 'a' ? AREG : \
1209 (C) == 'b' ? BREG : \
1210 (C) == 'c' ? CREG : \
1211 (C) == 'd' ? DREG : \
1212 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1213 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1214 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1215 (C) == 'A' ? AD_REGS : \
1216 (C) == 'D' ? DIREG : \
1217 (C) == 'S' ? SIREG : \
1218 (C) == 'l' ? INDEX_REGS : \
1219 NO_REGS)
1220
1221 /* The letters I, J, K, L and M in a register constraint string
1222 can be used to stand for particular ranges of immediate operands.
1223 This macro defines what the ranges are.
1224 C is the letter, and VALUE is a constant value.
1225 Return 1 if VALUE is in the range specified by C.
1226
1227 I is for non-DImode shifts.
1228 J is for DImode shifts.
1229 K is for signed imm8 operands.
1230 L is for andsi as zero-extending move.
1231 M is for shifts that can be executed by the "lea" opcode.
1232 N is for immediate operands for out/in instructions (0-255)
1233 */
1234
1235 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1236 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1237 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1238 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1239 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1240 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1241 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1242 : 0)
1243
1244 /* Similar, but for floating constants, and defining letters G and H.
1245 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1246 TARGET_387 isn't set, because the stack register converter may need to
1247 load 0.0 into the function value register. */
1248
1249 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1250 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1251 : 0)
1252
1253 /* A C expression that defines the optional machine-dependent
1254 constraint letters that can be used to segregate specific types of
1255 operands, usually memory references, for the target machine. Any
1256 letter that is not elsewhere defined and not matched by
1257 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1258 be defined.
1259
1260 If it is required for a particular target machine, it should
1261 return 1 if VALUE corresponds to the operand type represented by
1262 the constraint letter C. If C is not defined as an extra
1263 constraint, the value returned should be 0 regardless of VALUE. */
1264
1265 #define EXTRA_CONSTRAINT(VALUE, D) \
1266 ((D) == 'e' ? x86_64_immediate_operand (VALUE, VOIDmode) \
1267 : (D) == 'Z' ? x86_64_zext_immediate_operand (VALUE, VOIDmode) \
1268 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1269 : 0)
1270
1271 /* Place additional restrictions on the register class to use when it
1272 is necessary to be able to hold a value of mode MODE in a reload
1273 register for which class CLASS would ordinarily be used. */
1274
1275 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1276 ((MODE) == QImode && !TARGET_64BIT \
1277 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1278 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1279 ? Q_REGS : (CLASS))
1280
1281 /* Given an rtx X being reloaded into a reg required to be
1282 in class CLASS, return the class of reg to actually use.
1283 In general this is just CLASS; but on some machines
1284 in some cases it is preferable to use a more restrictive class.
1285 On the 80386 series, we prevent floating constants from being
1286 reloaded into floating registers (since no move-insn can do that)
1287 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1288
1289 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1290 QImode must go into class Q_REGS.
1291 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1292 movdf to do mem-to-mem moves through integer regs. */
1293
1294 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1295 ix86_preferred_reload_class ((X), (CLASS))
1296
1297 /* If we are copying between general and FP registers, we need a memory
1298 location. The same is true for SSE and MMX registers. */
1299 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1300 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1301
1302 /* QImode spills from non-QI registers need a scratch. This does not
1303 happen often -- the only example so far requires an uninitialized
1304 pseudo. */
1305
1306 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1307 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1308 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1309 ? Q_REGS : NO_REGS)
1310
1311 /* Return the maximum number of consecutive registers
1312 needed to represent mode MODE in a register of class CLASS. */
1313 /* On the 80386, this is the size of MODE in words,
1314 except in the FP regs, where a single reg is always enough. */
1315 #define CLASS_MAX_NREGS(CLASS, MODE) \
1316 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1317 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1318 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1319 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1320
1321 /* A C expression whose value is nonzero if pseudos that have been
1322 assigned to registers of class CLASS would likely be spilled
1323 because registers of CLASS are needed for spill registers.
1324
1325 The default value of this macro returns 1 if CLASS has exactly one
1326 register and zero otherwise. On most machines, this default
1327 should be used. Only define this macro to some other expression
1328 if pseudo allocated by `local-alloc.c' end up in memory because
1329 their hard registers were needed for spill registers. If this
1330 macro returns nonzero for those classes, those pseudos will only
1331 be allocated by `global.c', which knows how to reallocate the
1332 pseudo to another register. If there would not be another
1333 register available for reallocation, you should not change the
1334 definition of this macro since the only effect of such a
1335 definition would be to slow down register allocation. */
1336
1337 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1338 (((CLASS) == AREG) \
1339 || ((CLASS) == DREG) \
1340 || ((CLASS) == CREG) \
1341 || ((CLASS) == BREG) \
1342 || ((CLASS) == AD_REGS) \
1343 || ((CLASS) == SIREG) \
1344 || ((CLASS) == DIREG) \
1345 || ((CLASS) == FP_TOP_REG) \
1346 || ((CLASS) == FP_SECOND_REG))
1347
1348 /* Return a class of registers that cannot change FROM mode to TO mode. */
1349
1350 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1351 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1352 \f
1353 /* Stack layout; function entry, exit and calling. */
1354
1355 /* Define this if pushing a word on the stack
1356 makes the stack pointer a smaller address. */
1357 #define STACK_GROWS_DOWNWARD
1358
1359 /* Define this to non-zero if the nominal address of the stack frame
1360 is at the high-address end of the local variables;
1361 that is, each additional local variable allocated
1362 goes at a more negative offset in the frame. */
1363 #define FRAME_GROWS_DOWNWARD 1
1364
1365 /* Offset within stack frame to start allocating local variables at.
1366 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1367 first local allocated. Otherwise, it is the offset to the BEGINNING
1368 of the first local allocated. */
1369 #define STARTING_FRAME_OFFSET 0
1370
1371 /* If we generate an insn to push BYTES bytes,
1372 this says how many the stack pointer really advances by.
1373 On 386 pushw decrements by exactly 2 no matter what the position was.
1374 On the 386 there is no pushb; we use pushw instead, and this
1375 has the effect of rounding up to 2.
1376
1377 For 64bit ABI we round up to 8 bytes.
1378 */
1379
1380 #define PUSH_ROUNDING(BYTES) \
1381 (TARGET_64BIT \
1382 ? (((BYTES) + 7) & (-8)) \
1383 : (((BYTES) + 1) & (-2)))
1384
1385 /* If defined, the maximum amount of space required for outgoing arguments will
1386 be computed and placed into the variable
1387 `current_function_outgoing_args_size'. No space will be pushed onto the
1388 stack for each call; instead, the function prologue should increase the stack
1389 frame size by this amount. */
1390
1391 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1392
1393 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1394 instructions to pass outgoing arguments. */
1395
1396 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1397
1398 /* We want the stack and args grow in opposite directions, even if
1399 PUSH_ARGS is 0. */
1400 #define PUSH_ARGS_REVERSED 1
1401
1402 /* Offset of first parameter from the argument pointer register value. */
1403 #define FIRST_PARM_OFFSET(FNDECL) 0
1404
1405 /* Define this macro if functions should assume that stack space has been
1406 allocated for arguments even when their values are passed in registers.
1407
1408 The value of this macro is the size, in bytes, of the area reserved for
1409 arguments passed in registers for the function represented by FNDECL.
1410
1411 This space can be allocated by the caller, or be a part of the
1412 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1413 which. */
1414 #define REG_PARM_STACK_SPACE(FNDECL) 0
1415
1416 /* Value is the number of bytes of arguments automatically
1417 popped when returning from a subroutine call.
1418 FUNDECL is the declaration node of the function (as a tree),
1419 FUNTYPE is the data type of the function (as a tree),
1420 or for a library call it is an identifier node for the subroutine name.
1421 SIZE is the number of bytes of arguments passed on the stack.
1422
1423 On the 80386, the RTD insn may be used to pop them if the number
1424 of args is fixed, but if the number is variable then the caller
1425 must pop them all. RTD can't be used for library calls now
1426 because the library is compiled with the Unix compiler.
1427 Use of RTD is a selectable option, since it is incompatible with
1428 standard Unix calling sequences. If the option is not selected,
1429 the caller must always pop the args.
1430
1431 The attribute stdcall is equivalent to RTD on a per module basis. */
1432
1433 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1434 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1435
1436 /* Define how to find the value returned by a function.
1437 VALTYPE is the data type of the value (as a tree).
1438 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1439 otherwise, FUNC is 0. */
1440 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1441 ix86_function_value (VALTYPE, FUNC)
1442
1443 #define FUNCTION_VALUE_REGNO_P(N) \
1444 ix86_function_value_regno_p (N)
1445
1446 /* Define how to find the value returned by a library function
1447 assuming the value has mode MODE. */
1448
1449 #define LIBCALL_VALUE(MODE) \
1450 ix86_libcall_value (MODE)
1451
1452 /* Define the size of the result block used for communication between
1453 untyped_call and untyped_return. The block contains a DImode value
1454 followed by the block used by fnsave and frstor. */
1455
1456 #define APPLY_RESULT_SIZE (8+108)
1457
1458 /* 1 if N is a possible register number for function argument passing. */
1459 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1460
1461 /* Define a data type for recording info about an argument list
1462 during the scan of that argument list. This data type should
1463 hold all necessary information about the function itself
1464 and about the args processed so far, enough to enable macros
1465 such as FUNCTION_ARG to determine where the next arg should go. */
1466
1467 typedef struct ix86_args {
1468 int words; /* # words passed so far */
1469 int nregs; /* # registers available for passing */
1470 int regno; /* next available register number */
1471 int fastcall; /* fastcall calling convention is used */
1472 int sse_words; /* # sse words passed so far */
1473 int sse_nregs; /* # sse registers available for passing */
1474 int warn_sse; /* True when we want to warn about SSE ABI. */
1475 int warn_mmx; /* True when we want to warn about MMX ABI. */
1476 int sse_regno; /* next available sse register number */
1477 int mmx_words; /* # mmx words passed so far */
1478 int mmx_nregs; /* # mmx registers available for passing */
1479 int mmx_regno; /* next available mmx register number */
1480 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1481 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1482 be passed in SSE registers. Otherwise 0. */
1483 } CUMULATIVE_ARGS;
1484
1485 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1486 for a call to a function whose data type is FNTYPE.
1487 For a library call, FNTYPE is 0. */
1488
1489 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1490 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1491
1492 /* Update the data in CUM to advance over an argument
1493 of mode MODE and data type TYPE.
1494 (TYPE is null for libcalls where that information may not be available.) */
1495
1496 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1497 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1498
1499 /* Define where to put the arguments to a function.
1500 Value is zero to push the argument on the stack,
1501 or a hard register in which to store the argument.
1502
1503 MODE is the argument's machine mode.
1504 TYPE is the data type of the argument (as a tree).
1505 This is null for libcalls where that information may
1506 not be available.
1507 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1508 the preceding args and about the function being called.
1509 NAMED is nonzero if this argument is a named parameter
1510 (otherwise it is an extra parameter matching an ellipsis). */
1511
1512 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1513 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1514
1515 /* Implement `va_start' for varargs and stdarg. */
1516 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1517 ix86_va_start (VALIST, NEXTARG)
1518
1519 #define TARGET_ASM_FILE_END ix86_file_end
1520 #define NEED_INDICATE_EXEC_STACK 0
1521
1522 /* Output assembler code to FILE to increment profiler label # LABELNO
1523 for profiling a function entry. */
1524
1525 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1526
1527 #define MCOUNT_NAME "_mcount"
1528
1529 #define PROFILE_COUNT_REGISTER "edx"
1530
1531 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1532 the stack pointer does not matter. The value is tested only in
1533 functions that have frame pointers.
1534 No definition is equivalent to always zero. */
1535 /* Note on the 386 it might be more efficient not to define this since
1536 we have to restore it ourselves from the frame pointer, in order to
1537 use pop */
1538
1539 #define EXIT_IGNORE_STACK 1
1540
1541 /* Output assembler code for a block containing the constant parts
1542 of a trampoline, leaving space for the variable parts. */
1543
1544 /* On the 386, the trampoline contains two instructions:
1545 mov #STATIC,ecx
1546 jmp FUNCTION
1547 The trampoline is generated entirely at runtime. The operand of JMP
1548 is the address of FUNCTION relative to the instruction following the
1549 JMP (which is 5 bytes long). */
1550
1551 /* Length in units of the trampoline for entering a nested function. */
1552
1553 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1554
1555 /* Emit RTL insns to initialize the variable parts of a trampoline.
1556 FNADDR is an RTX for the address of the function's pure code.
1557 CXT is an RTX for the static chain value for the function. */
1558
1559 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1560 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1561 \f
1562 /* Definitions for register eliminations.
1563
1564 This is an array of structures. Each structure initializes one pair
1565 of eliminable registers. The "from" register number is given first,
1566 followed by "to". Eliminations of the same "from" register are listed
1567 in order of preference.
1568
1569 There are two registers that can always be eliminated on the i386.
1570 The frame pointer and the arg pointer can be replaced by either the
1571 hard frame pointer or to the stack pointer, depending upon the
1572 circumstances. The hard frame pointer is not used before reload and
1573 so it is not eligible for elimination. */
1574
1575 #define ELIMINABLE_REGS \
1576 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1577 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1578 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1579 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1580
1581 /* Given FROM and TO register numbers, say whether this elimination is
1582 allowed. Frame pointer elimination is automatically handled.
1583
1584 All other eliminations are valid. */
1585
1586 #define CAN_ELIMINATE(FROM, TO) \
1587 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1588
1589 /* Define the offset between two registers, one to be eliminated, and the other
1590 its replacement, at the start of a routine. */
1591
1592 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1593 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1594 \f
1595 /* Addressing modes, and classification of registers for them. */
1596
1597 /* Macros to check register numbers against specific register classes. */
1598
1599 /* These assume that REGNO is a hard or pseudo reg number.
1600 They give nonzero only if REGNO is a hard reg of the suitable class
1601 or a pseudo reg currently allocated to a suitable hard reg.
1602 Since they use reg_renumber, they are safe only once reg_renumber
1603 has been allocated, which happens in local-alloc.c. */
1604
1605 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1606 ((REGNO) < STACK_POINTER_REGNUM \
1607 || (REGNO >= FIRST_REX_INT_REG \
1608 && (REGNO) <= LAST_REX_INT_REG) \
1609 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1610 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1611 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1612
1613 #define REGNO_OK_FOR_BASE_P(REGNO) \
1614 ((REGNO) <= STACK_POINTER_REGNUM \
1615 || (REGNO) == ARG_POINTER_REGNUM \
1616 || (REGNO) == FRAME_POINTER_REGNUM \
1617 || (REGNO >= FIRST_REX_INT_REG \
1618 && (REGNO) <= LAST_REX_INT_REG) \
1619 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1620 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1621 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1622
1623 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1624 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1625 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1626 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1627
1628 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1629 and check its validity for a certain class.
1630 We have two alternate definitions for each of them.
1631 The usual definition accepts all pseudo regs; the other rejects
1632 them unless they have been allocated suitable hard regs.
1633 The symbol REG_OK_STRICT causes the latter definition to be used.
1634
1635 Most source files want to accept pseudo regs in the hope that
1636 they will get allocated to the class that the insn wants them to be in.
1637 Source files for reload pass need to be strict.
1638 After reload, it makes no difference, since pseudo regs have
1639 been eliminated by then. */
1640
1641
1642 /* Non strict versions, pseudos are ok. */
1643 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1644 (REGNO (X) < STACK_POINTER_REGNUM \
1645 || (REGNO (X) >= FIRST_REX_INT_REG \
1646 && REGNO (X) <= LAST_REX_INT_REG) \
1647 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1648
1649 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1650 (REGNO (X) <= STACK_POINTER_REGNUM \
1651 || REGNO (X) == ARG_POINTER_REGNUM \
1652 || REGNO (X) == FRAME_POINTER_REGNUM \
1653 || (REGNO (X) >= FIRST_REX_INT_REG \
1654 && REGNO (X) <= LAST_REX_INT_REG) \
1655 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1656
1657 /* Strict versions, hard registers only */
1658 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1659 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1660
1661 #ifndef REG_OK_STRICT
1662 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1663 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1664
1665 #else
1666 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1667 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1668 #endif
1669
1670 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1671 that is a valid memory address for an instruction.
1672 The MODE argument is the machine mode for the MEM expression
1673 that wants to use this address.
1674
1675 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1676 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1677
1678 See legitimize_pic_address in i386.c for details as to what
1679 constitutes a legitimate address when -fpic is used. */
1680
1681 #define MAX_REGS_PER_ADDRESS 2
1682
1683 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1684
1685 /* Nonzero if the constant value X is a legitimate general operand.
1686 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1687
1688 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1689
1690 #ifdef REG_OK_STRICT
1691 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1692 do { \
1693 if (legitimate_address_p ((MODE), (X), 1)) \
1694 goto ADDR; \
1695 } while (0)
1696
1697 #else
1698 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1699 do { \
1700 if (legitimate_address_p ((MODE), (X), 0)) \
1701 goto ADDR; \
1702 } while (0)
1703
1704 #endif
1705
1706 /* If defined, a C expression to determine the base term of address X.
1707 This macro is used in only one place: `find_base_term' in alias.c.
1708
1709 It is always safe for this macro to not be defined. It exists so
1710 that alias analysis can understand machine-dependent addresses.
1711
1712 The typical use of this macro is to handle addresses containing
1713 a label_ref or symbol_ref within an UNSPEC. */
1714
1715 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1716
1717 /* Try machine-dependent ways of modifying an illegitimate address
1718 to be legitimate. If we find one, return the new, valid address.
1719 This macro is used in only one place: `memory_address' in explow.c.
1720
1721 OLDX is the address as it was before break_out_memory_refs was called.
1722 In some cases it is useful to look at this to decide what needs to be done.
1723
1724 MODE and WIN are passed so that this macro can use
1725 GO_IF_LEGITIMATE_ADDRESS.
1726
1727 It is always safe for this macro to do nothing. It exists to recognize
1728 opportunities to optimize the output.
1729
1730 For the 80386, we handle X+REG by loading X into a register R and
1731 using R+REG. R will go in a general reg and indexing will be used.
1732 However, if REG is a broken-out memory address or multiplication,
1733 nothing needs to be done because REG can certainly go in a general reg.
1734
1735 When -fpic is used, special handling is needed for symbolic references.
1736 See comments by legitimize_pic_address in i386.c for details. */
1737
1738 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1739 do { \
1740 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1741 if (memory_address_p ((MODE), (X))) \
1742 goto WIN; \
1743 } while (0)
1744
1745 #define REWRITE_ADDRESS(X) rewrite_address (X)
1746
1747 /* Nonzero if the constant value X is a legitimate general operand
1748 when generating PIC code. It is given that flag_pic is on and
1749 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1750
1751 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1752
1753 #define SYMBOLIC_CONST(X) \
1754 (GET_CODE (X) == SYMBOL_REF \
1755 || GET_CODE (X) == LABEL_REF \
1756 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1757
1758 /* Go to LABEL if ADDR (a legitimate address expression)
1759 has an effect that depends on the machine mode it is used for.
1760 On the 80386, only postdecrement and postincrement address depend thus
1761 (the amount of decrement or increment being the length of the operand). */
1762 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1763 do { \
1764 if (GET_CODE (ADDR) == POST_INC \
1765 || GET_CODE (ADDR) == POST_DEC) \
1766 goto LABEL; \
1767 } while (0)
1768 \f
1769 /* Max number of args passed in registers. If this is more than 3, we will
1770 have problems with ebx (register #4), since it is a caller save register and
1771 is also used as the pic register in ELF. So for now, don't allow more than
1772 3 registers to be passed in registers. */
1773
1774 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1775
1776 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1777
1778 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1779
1780 \f
1781 /* Specify the machine mode that this machine uses
1782 for the index in the tablejump instruction. */
1783 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1784
1785 /* Define this as 1 if `char' should by default be signed; else as 0. */
1786 #define DEFAULT_SIGNED_CHAR 1
1787
1788 /* Number of bytes moved into a data cache for a single prefetch operation. */
1789 #define PREFETCH_BLOCK ix86_cost->prefetch_block
1790
1791 /* Number of prefetch operations that can be done in parallel. */
1792 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1793
1794 /* Max number of bytes we can move from memory to memory
1795 in one reasonably fast instruction. */
1796 #define MOVE_MAX 16
1797
1798 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1799 move efficiently, as opposed to MOVE_MAX which is the maximum
1800 number of bytes we can move with a single instruction. */
1801 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1802
1803 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1804 move-instruction pairs, we will do a movmem or libcall instead.
1805 Increasing the value will always make code faster, but eventually
1806 incurs high cost in increased code size.
1807
1808 If you don't define this, a reasonable default is used. */
1809
1810 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1811
1812 /* If a clear memory operation would take CLEAR_RATIO or more simple
1813 move-instruction sequences, we will do a clrmem or libcall instead. */
1814
1815 #define CLEAR_RATIO (optimize_size ? 2 \
1816 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1817
1818 /* Define if shifts truncate the shift count
1819 which implies one can omit a sign-extension or zero-extension
1820 of a shift count. */
1821 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1822
1823 /* #define SHIFT_COUNT_TRUNCATED */
1824
1825 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1826 is done just by pretending it is already truncated. */
1827 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1828
1829 /* A macro to update M and UNSIGNEDP when an object whose type is
1830 TYPE and which has the specified mode and signedness is to be
1831 stored in a register. This macro is only called when TYPE is a
1832 scalar type.
1833
1834 On i386 it is sometimes useful to promote HImode and QImode
1835 quantities to SImode. The choice depends on target type. */
1836
1837 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1838 do { \
1839 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1840 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1841 (MODE) = SImode; \
1842 } while (0)
1843
1844 /* Specify the machine mode that pointers have.
1845 After generation of rtl, the compiler makes no further distinction
1846 between pointers and any other objects of this machine mode. */
1847 #define Pmode (TARGET_64BIT ? DImode : SImode)
1848
1849 /* A function address in a call instruction
1850 is a byte address (for indexing purposes)
1851 so give the MEM rtx a byte's mode. */
1852 #define FUNCTION_MODE QImode
1853 \f
1854 /* A C expression for the cost of moving data from a register in class FROM to
1855 one in class TO. The classes are expressed using the enumeration values
1856 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1857 interpreted relative to that.
1858
1859 It is not required that the cost always equal 2 when FROM is the same as TO;
1860 on some machines it is expensive to move between registers if they are not
1861 general registers. */
1862
1863 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1864 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1865
1866 /* A C expression for the cost of moving data of mode M between a
1867 register and memory. A value of 2 is the default; this cost is
1868 relative to those in `REGISTER_MOVE_COST'.
1869
1870 If moving between registers and memory is more expensive than
1871 between two registers, you should define this macro to express the
1872 relative cost. */
1873
1874 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1875 ix86_memory_move_cost ((MODE), (CLASS), (IN))
1876
1877 /* A C expression for the cost of a branch instruction. A value of 1
1878 is the default; other values are interpreted relative to that. */
1879
1880 #define BRANCH_COST ix86_branch_cost
1881
1882 /* Define this macro as a C expression which is nonzero if accessing
1883 less than a word of memory (i.e. a `char' or a `short') is no
1884 faster than accessing a word of memory, i.e., if such access
1885 require more than one instruction or if there is no difference in
1886 cost between byte and (aligned) word loads.
1887
1888 When this macro is not defined, the compiler will access a field by
1889 finding the smallest containing object; when it is defined, a
1890 fullword load will be used if alignment permits. Unless bytes
1891 accesses are faster than word accesses, using word accesses is
1892 preferable since it may eliminate subsequent memory access if
1893 subsequent accesses occur to other fields in the same word of the
1894 structure, but to different bytes. */
1895
1896 #define SLOW_BYTE_ACCESS 0
1897
1898 /* Nonzero if access to memory by shorts is slow and undesirable. */
1899 #define SLOW_SHORT_ACCESS 0
1900
1901 /* Define this macro to be the value 1 if unaligned accesses have a
1902 cost many times greater than aligned accesses, for example if they
1903 are emulated in a trap handler.
1904
1905 When this macro is nonzero, the compiler will act as if
1906 `STRICT_ALIGNMENT' were nonzero when generating code for block
1907 moves. This can cause significantly more instructions to be
1908 produced. Therefore, do not set this macro nonzero if unaligned
1909 accesses only add a cycle or two to the time for a memory access.
1910
1911 If the value of this macro is always zero, it need not be defined. */
1912
1913 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1914
1915 /* Define this macro if it is as good or better to call a constant
1916 function address than to call an address kept in a register.
1917
1918 Desirable on the 386 because a CALL with a constant address is
1919 faster than one with a register address. */
1920
1921 #define NO_FUNCTION_CSE
1922 \f
1923 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1924 return the mode to be used for the comparison.
1925
1926 For floating-point equality comparisons, CCFPEQmode should be used.
1927 VOIDmode should be used in all other cases.
1928
1929 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1930 possible, to allow for more combinations. */
1931
1932 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1933
1934 /* Return nonzero if MODE implies a floating point inequality can be
1935 reversed. */
1936
1937 #define REVERSIBLE_CC_MODE(MODE) 1
1938
1939 /* A C expression whose value is reversed condition code of the CODE for
1940 comparison done in CC_MODE mode. */
1941 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1942
1943 \f
1944 /* Control the assembler format that we output, to the extent
1945 this does not vary between assemblers. */
1946
1947 /* How to refer to registers in assembler output.
1948 This sequence is indexed by compiler's hard-register-number (see above). */
1949
1950 /* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1951 For non floating point regs, the following are the HImode names.
1952
1953 For float regs, the stack top is sometimes referred to as "%st(0)"
1954 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
1955
1956 #define HI_REGISTER_NAMES \
1957 {"ax","dx","cx","bx","si","di","bp","sp", \
1958 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1959 "argp", "flags", "fpsr", "dirflag", "frame", \
1960 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1961 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
1962 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1963 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1964
1965 #define REGISTER_NAMES HI_REGISTER_NAMES
1966
1967 /* Table of additional register names to use in user input. */
1968
1969 #define ADDITIONAL_REGISTER_NAMES \
1970 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1971 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1972 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1973 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1974 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1975 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1976
1977 /* Note we are omitting these since currently I don't know how
1978 to get gcc to use these, since they want the same but different
1979 number as al, and ax.
1980 */
1981
1982 #define QI_REGISTER_NAMES \
1983 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1984
1985 /* These parallel the array above, and can be used to access bits 8:15
1986 of regs 0 through 3. */
1987
1988 #define QI_HIGH_REGISTER_NAMES \
1989 {"ah", "dh", "ch", "bh", }
1990
1991 /* How to renumber registers for dbx and gdb. */
1992
1993 #define DBX_REGISTER_NUMBER(N) \
1994 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1995
1996 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1997 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1998 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1999
2000 /* Before the prologue, RA is at 0(%esp). */
2001 #define INCOMING_RETURN_ADDR_RTX \
2002 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2003
2004 /* After the prologue, RA is at -4(AP) in the current frame. */
2005 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2006 ((COUNT) == 0 \
2007 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2008 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2009
2010 /* PC is dbx register 8; let's use that column for RA. */
2011 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2012
2013 /* Before the prologue, the top of the frame is at 4(%esp). */
2014 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2015
2016 /* Describe how we implement __builtin_eh_return. */
2017 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2018 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2019
2020
2021 /* Select a format to encode pointers in exception handling data. CODE
2022 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2023 true if the symbol may be affected by dynamic relocations.
2024
2025 ??? All x86 object file formats are capable of representing this.
2026 After all, the relocation needed is the same as for the call insn.
2027 Whether or not a particular assembler allows us to enter such, I
2028 guess we'll have to see. */
2029 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2030 (flag_pic \
2031 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2032 : DW_EH_PE_absptr)
2033
2034 /* This is how to output an insn to push a register on the stack.
2035 It need not be very fast code. */
2036
2037 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2038 do { \
2039 if (TARGET_64BIT) \
2040 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2041 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2042 else \
2043 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2044 } while (0)
2045
2046 /* This is how to output an insn to pop a register from the stack.
2047 It need not be very fast code. */
2048
2049 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2050 do { \
2051 if (TARGET_64BIT) \
2052 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2053 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2054 else \
2055 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2056 } while (0)
2057
2058 /* This is how to output an element of a case-vector that is absolute. */
2059
2060 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2061 ix86_output_addr_vec_elt ((FILE), (VALUE))
2062
2063 /* This is how to output an element of a case-vector that is relative. */
2064
2065 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2066 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2067
2068 /* Under some conditions we need jump tables in the text section, because
2069 the assembler cannot handle label differences between sections. */
2070
2071 #define JUMP_TABLES_IN_TEXT_SECTION \
2072 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2073
2074 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2075 and switch back. For x86 we do this only to save a few bytes that
2076 would otherwise be unused in the text section. */
2077 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2078 asm (SECTION_OP "\n\t" \
2079 "call " USER_LABEL_PREFIX #FUNC "\n" \
2080 TEXT_SECTION_ASM_OP);
2081 \f
2082 /* Print operand X (an rtx) in assembler syntax to file FILE.
2083 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2084 Effect of various CODE letters is described in i386.c near
2085 print_operand function. */
2086
2087 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2088 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2089
2090 #define PRINT_OPERAND(FILE, X, CODE) \
2091 print_operand ((FILE), (X), (CODE))
2092
2093 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2094 print_operand_address ((FILE), (ADDR))
2095
2096 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2097 do { \
2098 if (! output_addr_const_extra (FILE, (X))) \
2099 goto FAIL; \
2100 } while (0);
2101
2102 /* a letter which is not needed by the normal asm syntax, which
2103 we can use for operand syntax in the extended asm */
2104
2105 #define ASM_OPERAND_LETTER '#'
2106 #define RET return ""
2107 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2108 \f
2109 /* Which processor to schedule for. The cpu attribute defines a list that
2110 mirrors this list, so changes to i386.md must be made at the same time. */
2111
2112 enum processor_type
2113 {
2114 PROCESSOR_I386, /* 80386 */
2115 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2116 PROCESSOR_PENTIUM,
2117 PROCESSOR_PENTIUMPRO,
2118 PROCESSOR_K6,
2119 PROCESSOR_ATHLON,
2120 PROCESSOR_PENTIUM4,
2121 PROCESSOR_K8,
2122 PROCESSOR_NOCONA,
2123 PROCESSOR_max
2124 };
2125
2126 extern enum processor_type ix86_tune;
2127 extern enum processor_type ix86_arch;
2128
2129 enum fpmath_unit
2130 {
2131 FPMATH_387 = 1,
2132 FPMATH_SSE = 2
2133 };
2134
2135 extern enum fpmath_unit ix86_fpmath;
2136
2137 enum tls_dialect
2138 {
2139 TLS_DIALECT_GNU,
2140 TLS_DIALECT_SUN
2141 };
2142
2143 extern enum tls_dialect ix86_tls_dialect;
2144
2145 enum cmodel {
2146 CM_32, /* The traditional 32-bit ABI. */
2147 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2148 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2149 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2150 CM_LARGE, /* No assumptions. */
2151 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
2152 };
2153
2154 extern enum cmodel ix86_cmodel;
2155
2156 /* Size of the RED_ZONE area. */
2157 #define RED_ZONE_SIZE 128
2158 /* Reserved area of the red zone for temporaries. */
2159 #define RED_ZONE_RESERVE 8
2160
2161 enum asm_dialect {
2162 ASM_ATT,
2163 ASM_INTEL
2164 };
2165
2166 extern enum asm_dialect ix86_asm_dialect;
2167 extern unsigned int ix86_preferred_stack_boundary;
2168 extern int ix86_branch_cost;
2169
2170 /* Smallest class containing REGNO. */
2171 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2172
2173 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2174 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
2175 extern rtx ix86_compare_emitted;
2176 \f
2177 /* To properly truncate FP values into integers, we need to set i387 control
2178 word. We can't emit proper mode switching code before reload, as spills
2179 generated by reload may truncate values incorrectly, but we still can avoid
2180 redundant computation of new control word by the mode switching pass.
2181 The fldcw instructions are still emitted redundantly, but this is probably
2182 not going to be noticeable problem, as most CPUs do have fast path for
2183 the sequence.
2184
2185 The machinery is to emit simple truncation instructions and split them
2186 before reload to instructions having USEs of two memory locations that
2187 are filled by this code to old and new control word.
2188
2189 Post-reload pass may be later used to eliminate the redundant fildcw if
2190 needed. */
2191
2192 enum ix86_entity
2193 {
2194 I387_TRUNC = 0,
2195 I387_FLOOR,
2196 I387_CEIL,
2197 I387_MASK_PM,
2198 MAX_386_ENTITIES
2199 };
2200
2201 enum ix86_stack_slot
2202 {
2203 SLOT_TEMP = 0,
2204 SLOT_CW_STORED,
2205 SLOT_CW_TRUNC,
2206 SLOT_CW_FLOOR,
2207 SLOT_CW_CEIL,
2208 SLOT_CW_MASK_PM,
2209 MAX_386_STACK_LOCALS
2210 };
2211
2212 /* Define this macro if the port needs extra instructions inserted
2213 for mode switching in an optimizing compilation. */
2214
2215 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2216 ix86_optimize_mode_switching[(ENTITY)]
2217
2218 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2219 initializer for an array of integers. Each initializer element N
2220 refers to an entity that needs mode switching, and specifies the
2221 number of different modes that might need to be set for this
2222 entity. The position of the initializer in the initializer -
2223 starting counting at zero - determines the integer that is used to
2224 refer to the mode-switched entity in question. */
2225
2226 #define NUM_MODES_FOR_MODE_SWITCHING \
2227 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2228
2229 /* ENTITY is an integer specifying a mode-switched entity. If
2230 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2231 return an integer value not larger than the corresponding element
2232 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2233 must be switched into prior to the execution of INSN. */
2234
2235 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2236
2237 /* This macro specifies the order in which modes for ENTITY are
2238 processed. 0 is the highest priority. */
2239
2240 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2241
2242 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2243 is the set of hard registers live at the point where the insn(s)
2244 are to be inserted. */
2245
2246 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2247 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2248 ? emit_i387_cw_initialization (MODE), 0 \
2249 : 0)
2250
2251 \f
2252 /* Avoid renaming of stack registers, as doing so in combination with
2253 scheduling just increases amount of live registers at time and in
2254 the turn amount of fxch instructions needed.
2255
2256 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2257
2258 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2259 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2260
2261 \f
2262 #define DLL_IMPORT_EXPORT_PREFIX '#'
2263
2264 #define FASTCALL_PREFIX '@'
2265 \f
2266 struct machine_function GTY(())
2267 {
2268 struct stack_local_entry *stack_locals;
2269 const char *some_ld_name;
2270 int save_varrargs_registers;
2271 int accesses_prev_frame;
2272 int optimize_mode_switching[MAX_386_ENTITIES];
2273 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2274 determine the style used. */
2275 int use_fast_prologue_epilogue;
2276 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2277 for. */
2278 int use_fast_prologue_epilogue_nregs;
2279 };
2280
2281 #define ix86_stack_locals (cfun->machine->stack_locals)
2282 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2283 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2284
2285 /* Control behavior of x86_file_start. */
2286 #define X86_FILE_START_VERSION_DIRECTIVE false
2287 #define X86_FILE_START_FLTUSED false
2288
2289 /*
2290 Local variables:
2291 version-control: t
2292 End:
2293 */