d27286068610aae845f4f851aa8e550c91558dd5
[gcc.git] / gcc / config / ia64 / ia64.c
1 /* Definitions of target machine for GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by James E. Wilson <wilson@cygnus.com> and
6 David Mosberger <davidm@hpl.hp.com>.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "insn-config.h"
33 #include "conditions.h"
34 #include "output.h"
35 #include "insn-attr.h"
36 #include "flags.h"
37 #include "recog.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "except.h"
41 #include "function.h"
42 #include "ggc.h"
43 #include "basic-block.h"
44 #include "libfuncs.h"
45 #include "diagnostic-core.h"
46 #include "toplev.h"
47 #include "sched-int.h"
48 #include "timevar.h"
49 #include "target.h"
50 #include "target-def.h"
51 #include "tm_p.h"
52 #include "hashtab.h"
53 #include "langhooks.h"
54 #include "cfglayout.h"
55 #include "gimple.h"
56 #include "intl.h"
57 #include "df.h"
58 #include "debug.h"
59 #include "params.h"
60 #include "dbgcnt.h"
61 #include "tm-constrs.h"
62 #include "sel-sched.h"
63 #include "reload.h"
64
65 /* This is used for communication between ASM_OUTPUT_LABEL and
66 ASM_OUTPUT_LABELREF. */
67 int ia64_asm_output_label = 0;
68
69 /* Register names for ia64_expand_prologue. */
70 static const char * const ia64_reg_numbers[96] =
71 { "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
72 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
73 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
74 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
75 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
76 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
77 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
78 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
79 "r96", "r97", "r98", "r99", "r100","r101","r102","r103",
80 "r104","r105","r106","r107","r108","r109","r110","r111",
81 "r112","r113","r114","r115","r116","r117","r118","r119",
82 "r120","r121","r122","r123","r124","r125","r126","r127"};
83
84 /* ??? These strings could be shared with REGISTER_NAMES. */
85 static const char * const ia64_input_reg_names[8] =
86 { "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7" };
87
88 /* ??? These strings could be shared with REGISTER_NAMES. */
89 static const char * const ia64_local_reg_names[80] =
90 { "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7",
91 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15",
92 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23",
93 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31",
94 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39",
95 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47",
96 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55",
97 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63",
98 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71",
99 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79" };
100
101 /* ??? These strings could be shared with REGISTER_NAMES. */
102 static const char * const ia64_output_reg_names[8] =
103 { "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7" };
104
105 /* Which cpu are we scheduling for. */
106 enum processor_type ia64_tune = PROCESSOR_ITANIUM2;
107
108 /* Determines whether we run our final scheduling pass or not. We always
109 avoid the normal second scheduling pass. */
110 static int ia64_flag_schedule_insns2;
111
112 /* Determines whether we run variable tracking in machine dependent
113 reorganization. */
114 static int ia64_flag_var_tracking;
115
116 /* Variables which are this size or smaller are put in the sdata/sbss
117 sections. */
118
119 unsigned int ia64_section_threshold;
120
121 /* The following variable is used by the DFA insn scheduler. The value is
122 TRUE if we do insn bundling instead of insn scheduling. */
123 int bundling_p = 0;
124
125 enum ia64_frame_regs
126 {
127 reg_fp,
128 reg_save_b0,
129 reg_save_pr,
130 reg_save_ar_pfs,
131 reg_save_ar_unat,
132 reg_save_ar_lc,
133 reg_save_gp,
134 number_of_ia64_frame_regs
135 };
136
137 /* Structure to be filled in by ia64_compute_frame_size with register
138 save masks and offsets for the current function. */
139
140 struct ia64_frame_info
141 {
142 HOST_WIDE_INT total_size; /* size of the stack frame, not including
143 the caller's scratch area. */
144 HOST_WIDE_INT spill_cfa_off; /* top of the reg spill area from the cfa. */
145 HOST_WIDE_INT spill_size; /* size of the gr/br/fr spill area. */
146 HOST_WIDE_INT extra_spill_size; /* size of spill area for others. */
147 HARD_REG_SET mask; /* mask of saved registers. */
148 unsigned int gr_used_mask; /* mask of registers in use as gr spill
149 registers or long-term scratches. */
150 int n_spilled; /* number of spilled registers. */
151 int r[number_of_ia64_frame_regs]; /* Frame related registers. */
152 int n_input_regs; /* number of input registers used. */
153 int n_local_regs; /* number of local registers used. */
154 int n_output_regs; /* number of output registers used. */
155 int n_rotate_regs; /* number of rotating registers used. */
156
157 char need_regstk; /* true if a .regstk directive needed. */
158 char initialized; /* true if the data is finalized. */
159 };
160
161 /* Current frame information calculated by ia64_compute_frame_size. */
162 static struct ia64_frame_info current_frame_info;
163 /* The actual registers that are emitted. */
164 static int emitted_frame_related_regs[number_of_ia64_frame_regs];
165 \f
166 static int ia64_first_cycle_multipass_dfa_lookahead (void);
167 static void ia64_dependencies_evaluation_hook (rtx, rtx);
168 static void ia64_init_dfa_pre_cycle_insn (void);
169 static rtx ia64_dfa_pre_cycle_insn (void);
170 static int ia64_first_cycle_multipass_dfa_lookahead_guard (rtx);
171 static bool ia64_first_cycle_multipass_dfa_lookahead_guard_spec (const_rtx);
172 static int ia64_dfa_new_cycle (FILE *, int, rtx, int, int, int *);
173 static void ia64_h_i_d_extended (void);
174 static void * ia64_alloc_sched_context (void);
175 static void ia64_init_sched_context (void *, bool);
176 static void ia64_set_sched_context (void *);
177 static void ia64_clear_sched_context (void *);
178 static void ia64_free_sched_context (void *);
179 static int ia64_mode_to_int (enum machine_mode);
180 static void ia64_set_sched_flags (spec_info_t);
181 static ds_t ia64_get_insn_spec_ds (rtx);
182 static ds_t ia64_get_insn_checked_ds (rtx);
183 static bool ia64_skip_rtx_p (const_rtx);
184 static int ia64_speculate_insn (rtx, ds_t, rtx *);
185 static bool ia64_needs_block_p (int);
186 static rtx ia64_gen_spec_check (rtx, rtx, ds_t);
187 static int ia64_spec_check_p (rtx);
188 static int ia64_spec_check_src_p (rtx);
189 static rtx gen_tls_get_addr (void);
190 static rtx gen_thread_pointer (void);
191 static int find_gr_spill (enum ia64_frame_regs, int);
192 static int next_scratch_gr_reg (void);
193 static void mark_reg_gr_used_mask (rtx, void *);
194 static void ia64_compute_frame_size (HOST_WIDE_INT);
195 static void setup_spill_pointers (int, rtx, HOST_WIDE_INT);
196 static void finish_spill_pointers (void);
197 static rtx spill_restore_mem (rtx, HOST_WIDE_INT);
198 static void do_spill (rtx (*)(rtx, rtx, rtx), rtx, HOST_WIDE_INT, rtx);
199 static void do_restore (rtx (*)(rtx, rtx, rtx), rtx, HOST_WIDE_INT);
200 static rtx gen_movdi_x (rtx, rtx, rtx);
201 static rtx gen_fr_spill_x (rtx, rtx, rtx);
202 static rtx gen_fr_restore_x (rtx, rtx, rtx);
203
204 static void ia64_option_override (void);
205 static void ia64_option_optimization (int, int);
206 static bool ia64_can_eliminate (const int, const int);
207 static enum machine_mode hfa_element_mode (const_tree, bool);
208 static void ia64_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
209 tree, int *, int);
210 static int ia64_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
211 tree, bool);
212 static bool ia64_function_ok_for_sibcall (tree, tree);
213 static bool ia64_return_in_memory (const_tree, const_tree);
214 static rtx ia64_function_value (const_tree, const_tree, bool);
215 static rtx ia64_libcall_value (enum machine_mode, const_rtx);
216 static bool ia64_function_value_regno_p (const unsigned int);
217 static int ia64_register_move_cost (enum machine_mode, reg_class_t,
218 reg_class_t);
219 static int ia64_memory_move_cost (enum machine_mode mode, reg_class_t,
220 bool);
221 static bool ia64_rtx_costs (rtx, int, int, int *, bool);
222 static int ia64_unspec_may_trap_p (const_rtx, unsigned);
223 static void fix_range (const char *);
224 static bool ia64_handle_option (size_t, const char *, int);
225 static struct machine_function * ia64_init_machine_status (void);
226 static void emit_insn_group_barriers (FILE *);
227 static void emit_all_insn_group_barriers (FILE *);
228 static void final_emit_insn_group_barriers (FILE *);
229 static void emit_predicate_relation_info (void);
230 static void ia64_reorg (void);
231 static bool ia64_in_small_data_p (const_tree);
232 static void process_epilogue (FILE *, rtx, bool, bool);
233
234 static bool ia64_assemble_integer (rtx, unsigned int, int);
235 static void ia64_output_function_prologue (FILE *, HOST_WIDE_INT);
236 static void ia64_output_function_epilogue (FILE *, HOST_WIDE_INT);
237 static void ia64_output_function_end_prologue (FILE *);
238
239 static int ia64_issue_rate (void);
240 static int ia64_adjust_cost_2 (rtx, int, rtx, int, dw_t);
241 static void ia64_sched_init (FILE *, int, int);
242 static void ia64_sched_init_global (FILE *, int, int);
243 static void ia64_sched_finish_global (FILE *, int);
244 static void ia64_sched_finish (FILE *, int);
245 static int ia64_dfa_sched_reorder (FILE *, int, rtx *, int *, int, int);
246 static int ia64_sched_reorder (FILE *, int, rtx *, int *, int);
247 static int ia64_sched_reorder2 (FILE *, int, rtx *, int *, int);
248 static int ia64_variable_issue (FILE *, int, rtx, int);
249
250 static void ia64_asm_unwind_emit (FILE *, rtx);
251 static void ia64_asm_emit_except_personality (rtx);
252 static void ia64_asm_init_sections (void);
253
254 static enum unwind_info_type ia64_debug_unwind_info (void);
255 static enum unwind_info_type ia64_except_unwind_info (void);
256
257 static struct bundle_state *get_free_bundle_state (void);
258 static void free_bundle_state (struct bundle_state *);
259 static void initiate_bundle_states (void);
260 static void finish_bundle_states (void);
261 static unsigned bundle_state_hash (const void *);
262 static int bundle_state_eq_p (const void *, const void *);
263 static int insert_bundle_state (struct bundle_state *);
264 static void initiate_bundle_state_table (void);
265 static void finish_bundle_state_table (void);
266 static int try_issue_nops (struct bundle_state *, int);
267 static int try_issue_insn (struct bundle_state *, rtx);
268 static void issue_nops_and_insn (struct bundle_state *, int, rtx, int, int);
269 static int get_max_pos (state_t);
270 static int get_template (state_t, int);
271
272 static rtx get_next_important_insn (rtx, rtx);
273 static bool important_for_bundling_p (rtx);
274 static void bundling (FILE *, int, rtx, rtx);
275
276 static void ia64_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
277 HOST_WIDE_INT, tree);
278 static void ia64_file_start (void);
279 static void ia64_globalize_decl_name (FILE *, tree);
280
281 static int ia64_hpux_reloc_rw_mask (void) ATTRIBUTE_UNUSED;
282 static int ia64_reloc_rw_mask (void) ATTRIBUTE_UNUSED;
283 static section *ia64_select_rtx_section (enum machine_mode, rtx,
284 unsigned HOST_WIDE_INT);
285 static void ia64_output_dwarf_dtprel (FILE *, int, rtx)
286 ATTRIBUTE_UNUSED;
287 static unsigned int ia64_section_type_flags (tree, const char *, int);
288 static void ia64_init_libfuncs (void)
289 ATTRIBUTE_UNUSED;
290 static void ia64_hpux_init_libfuncs (void)
291 ATTRIBUTE_UNUSED;
292 static void ia64_sysv4_init_libfuncs (void)
293 ATTRIBUTE_UNUSED;
294 static void ia64_vms_init_libfuncs (void)
295 ATTRIBUTE_UNUSED;
296 static void ia64_soft_fp_init_libfuncs (void)
297 ATTRIBUTE_UNUSED;
298 static bool ia64_vms_valid_pointer_mode (enum machine_mode mode)
299 ATTRIBUTE_UNUSED;
300 static tree ia64_vms_common_object_attribute (tree *, tree, tree, int, bool *)
301 ATTRIBUTE_UNUSED;
302
303 static tree ia64_handle_model_attribute (tree *, tree, tree, int, bool *);
304 static tree ia64_handle_version_id_attribute (tree *, tree, tree, int, bool *);
305 static void ia64_encode_section_info (tree, rtx, int);
306 static rtx ia64_struct_value_rtx (tree, int);
307 static tree ia64_gimplify_va_arg (tree, tree, gimple_seq *, gimple_seq *);
308 static bool ia64_scalar_mode_supported_p (enum machine_mode mode);
309 static bool ia64_vector_mode_supported_p (enum machine_mode mode);
310 static bool ia64_cannot_force_const_mem (rtx);
311 static const char *ia64_mangle_type (const_tree);
312 static const char *ia64_invalid_conversion (const_tree, const_tree);
313 static const char *ia64_invalid_unary_op (int, const_tree);
314 static const char *ia64_invalid_binary_op (int, const_tree, const_tree);
315 static enum machine_mode ia64_c_mode_for_suffix (char);
316 static enum machine_mode ia64_promote_function_mode (const_tree,
317 enum machine_mode,
318 int *,
319 const_tree,
320 int);
321 static void ia64_trampoline_init (rtx, tree, rtx);
322 static void ia64_override_options_after_change (void);
323
324 static void ia64_dwarf_handle_frame_unspec (const char *, rtx, int);
325 static tree ia64_builtin_decl (unsigned, bool);
326 \f
327 /* Table of valid machine attributes. */
328 static const struct attribute_spec ia64_attribute_table[] =
329 {
330 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
331 { "syscall_linkage", 0, 0, false, true, true, NULL },
332 { "model", 1, 1, true, false, false, ia64_handle_model_attribute },
333 #if TARGET_ABI_OPEN_VMS
334 { "common_object", 1, 1, true, false, false, ia64_vms_common_object_attribute},
335 #endif
336 { "version_id", 1, 1, true, false, false,
337 ia64_handle_version_id_attribute },
338 { NULL, 0, 0, false, false, false, NULL }
339 };
340
341 /* Initialize the GCC target structure. */
342 #undef TARGET_ATTRIBUTE_TABLE
343 #define TARGET_ATTRIBUTE_TABLE ia64_attribute_table
344
345 #undef TARGET_INIT_BUILTINS
346 #define TARGET_INIT_BUILTINS ia64_init_builtins
347
348 #undef TARGET_EXPAND_BUILTIN
349 #define TARGET_EXPAND_BUILTIN ia64_expand_builtin
350
351 #undef TARGET_BUILTIN_DECL
352 #define TARGET_BUILTIN_DECL ia64_builtin_decl
353
354 #undef TARGET_ASM_BYTE_OP
355 #define TARGET_ASM_BYTE_OP "\tdata1\t"
356 #undef TARGET_ASM_ALIGNED_HI_OP
357 #define TARGET_ASM_ALIGNED_HI_OP "\tdata2\t"
358 #undef TARGET_ASM_ALIGNED_SI_OP
359 #define TARGET_ASM_ALIGNED_SI_OP "\tdata4\t"
360 #undef TARGET_ASM_ALIGNED_DI_OP
361 #define TARGET_ASM_ALIGNED_DI_OP "\tdata8\t"
362 #undef TARGET_ASM_UNALIGNED_HI_OP
363 #define TARGET_ASM_UNALIGNED_HI_OP "\tdata2.ua\t"
364 #undef TARGET_ASM_UNALIGNED_SI_OP
365 #define TARGET_ASM_UNALIGNED_SI_OP "\tdata4.ua\t"
366 #undef TARGET_ASM_UNALIGNED_DI_OP
367 #define TARGET_ASM_UNALIGNED_DI_OP "\tdata8.ua\t"
368 #undef TARGET_ASM_INTEGER
369 #define TARGET_ASM_INTEGER ia64_assemble_integer
370
371 #undef TARGET_OPTION_OVERRIDE
372 #define TARGET_OPTION_OVERRIDE ia64_option_override
373 #undef TARGET_OPTION_OPTIMIZATION
374 #define TARGET_OPTION_OPTIMIZATION ia64_option_optimization
375
376 #undef TARGET_ASM_FUNCTION_PROLOGUE
377 #define TARGET_ASM_FUNCTION_PROLOGUE ia64_output_function_prologue
378 #undef TARGET_ASM_FUNCTION_END_PROLOGUE
379 #define TARGET_ASM_FUNCTION_END_PROLOGUE ia64_output_function_end_prologue
380 #undef TARGET_ASM_FUNCTION_EPILOGUE
381 #define TARGET_ASM_FUNCTION_EPILOGUE ia64_output_function_epilogue
382
383 #undef TARGET_IN_SMALL_DATA_P
384 #define TARGET_IN_SMALL_DATA_P ia64_in_small_data_p
385
386 #undef TARGET_SCHED_ADJUST_COST_2
387 #define TARGET_SCHED_ADJUST_COST_2 ia64_adjust_cost_2
388 #undef TARGET_SCHED_ISSUE_RATE
389 #define TARGET_SCHED_ISSUE_RATE ia64_issue_rate
390 #undef TARGET_SCHED_VARIABLE_ISSUE
391 #define TARGET_SCHED_VARIABLE_ISSUE ia64_variable_issue
392 #undef TARGET_SCHED_INIT
393 #define TARGET_SCHED_INIT ia64_sched_init
394 #undef TARGET_SCHED_FINISH
395 #define TARGET_SCHED_FINISH ia64_sched_finish
396 #undef TARGET_SCHED_INIT_GLOBAL
397 #define TARGET_SCHED_INIT_GLOBAL ia64_sched_init_global
398 #undef TARGET_SCHED_FINISH_GLOBAL
399 #define TARGET_SCHED_FINISH_GLOBAL ia64_sched_finish_global
400 #undef TARGET_SCHED_REORDER
401 #define TARGET_SCHED_REORDER ia64_sched_reorder
402 #undef TARGET_SCHED_REORDER2
403 #define TARGET_SCHED_REORDER2 ia64_sched_reorder2
404
405 #undef TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK
406 #define TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK ia64_dependencies_evaluation_hook
407
408 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
409 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ia64_first_cycle_multipass_dfa_lookahead
410
411 #undef TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN
412 #define TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN ia64_init_dfa_pre_cycle_insn
413 #undef TARGET_SCHED_DFA_PRE_CYCLE_INSN
414 #define TARGET_SCHED_DFA_PRE_CYCLE_INSN ia64_dfa_pre_cycle_insn
415
416 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
417 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD\
418 ia64_first_cycle_multipass_dfa_lookahead_guard
419
420 #undef TARGET_SCHED_DFA_NEW_CYCLE
421 #define TARGET_SCHED_DFA_NEW_CYCLE ia64_dfa_new_cycle
422
423 #undef TARGET_SCHED_H_I_D_EXTENDED
424 #define TARGET_SCHED_H_I_D_EXTENDED ia64_h_i_d_extended
425
426 #undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
427 #define TARGET_SCHED_ALLOC_SCHED_CONTEXT ia64_alloc_sched_context
428
429 #undef TARGET_SCHED_INIT_SCHED_CONTEXT
430 #define TARGET_SCHED_INIT_SCHED_CONTEXT ia64_init_sched_context
431
432 #undef TARGET_SCHED_SET_SCHED_CONTEXT
433 #define TARGET_SCHED_SET_SCHED_CONTEXT ia64_set_sched_context
434
435 #undef TARGET_SCHED_CLEAR_SCHED_CONTEXT
436 #define TARGET_SCHED_CLEAR_SCHED_CONTEXT ia64_clear_sched_context
437
438 #undef TARGET_SCHED_FREE_SCHED_CONTEXT
439 #define TARGET_SCHED_FREE_SCHED_CONTEXT ia64_free_sched_context
440
441 #undef TARGET_SCHED_SET_SCHED_FLAGS
442 #define TARGET_SCHED_SET_SCHED_FLAGS ia64_set_sched_flags
443
444 #undef TARGET_SCHED_GET_INSN_SPEC_DS
445 #define TARGET_SCHED_GET_INSN_SPEC_DS ia64_get_insn_spec_ds
446
447 #undef TARGET_SCHED_GET_INSN_CHECKED_DS
448 #define TARGET_SCHED_GET_INSN_CHECKED_DS ia64_get_insn_checked_ds
449
450 #undef TARGET_SCHED_SPECULATE_INSN
451 #define TARGET_SCHED_SPECULATE_INSN ia64_speculate_insn
452
453 #undef TARGET_SCHED_NEEDS_BLOCK_P
454 #define TARGET_SCHED_NEEDS_BLOCK_P ia64_needs_block_p
455
456 #undef TARGET_SCHED_GEN_SPEC_CHECK
457 #define TARGET_SCHED_GEN_SPEC_CHECK ia64_gen_spec_check
458
459 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC
460 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC\
461 ia64_first_cycle_multipass_dfa_lookahead_guard_spec
462
463 #undef TARGET_SCHED_SKIP_RTX_P
464 #define TARGET_SCHED_SKIP_RTX_P ia64_skip_rtx_p
465
466 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
467 #define TARGET_FUNCTION_OK_FOR_SIBCALL ia64_function_ok_for_sibcall
468 #undef TARGET_ARG_PARTIAL_BYTES
469 #define TARGET_ARG_PARTIAL_BYTES ia64_arg_partial_bytes
470
471 #undef TARGET_ASM_OUTPUT_MI_THUNK
472 #define TARGET_ASM_OUTPUT_MI_THUNK ia64_output_mi_thunk
473 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
474 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
475
476 #undef TARGET_ASM_FILE_START
477 #define TARGET_ASM_FILE_START ia64_file_start
478
479 #undef TARGET_ASM_GLOBALIZE_DECL_NAME
480 #define TARGET_ASM_GLOBALIZE_DECL_NAME ia64_globalize_decl_name
481
482 #undef TARGET_REGISTER_MOVE_COST
483 #define TARGET_REGISTER_MOVE_COST ia64_register_move_cost
484 #undef TARGET_MEMORY_MOVE_COST
485 #define TARGET_MEMORY_MOVE_COST ia64_memory_move_cost
486 #undef TARGET_RTX_COSTS
487 #define TARGET_RTX_COSTS ia64_rtx_costs
488 #undef TARGET_ADDRESS_COST
489 #define TARGET_ADDRESS_COST hook_int_rtx_bool_0
490
491 #undef TARGET_UNSPEC_MAY_TRAP_P
492 #define TARGET_UNSPEC_MAY_TRAP_P ia64_unspec_may_trap_p
493
494 #undef TARGET_MACHINE_DEPENDENT_REORG
495 #define TARGET_MACHINE_DEPENDENT_REORG ia64_reorg
496
497 #undef TARGET_ENCODE_SECTION_INFO
498 #define TARGET_ENCODE_SECTION_INFO ia64_encode_section_info
499
500 #undef TARGET_SECTION_TYPE_FLAGS
501 #define TARGET_SECTION_TYPE_FLAGS ia64_section_type_flags
502
503 #ifdef HAVE_AS_TLS
504 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
505 #define TARGET_ASM_OUTPUT_DWARF_DTPREL ia64_output_dwarf_dtprel
506 #endif
507
508 #undef TARGET_PROMOTE_FUNCTION_MODE
509 #define TARGET_PROMOTE_FUNCTION_MODE ia64_promote_function_mode
510
511 /* ??? Investigate. */
512 #if 0
513 #undef TARGET_PROMOTE_PROTOTYPES
514 #define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
515 #endif
516
517 #undef TARGET_FUNCTION_VALUE
518 #define TARGET_FUNCTION_VALUE ia64_function_value
519 #undef TARGET_LIBCALL_VALUE
520 #define TARGET_LIBCALL_VALUE ia64_libcall_value
521 #undef TARGET_FUNCTION_VALUE_REGNO_P
522 #define TARGET_FUNCTION_VALUE_REGNO_P ia64_function_value_regno_p
523
524 #undef TARGET_STRUCT_VALUE_RTX
525 #define TARGET_STRUCT_VALUE_RTX ia64_struct_value_rtx
526 #undef TARGET_RETURN_IN_MEMORY
527 #define TARGET_RETURN_IN_MEMORY ia64_return_in_memory
528 #undef TARGET_SETUP_INCOMING_VARARGS
529 #define TARGET_SETUP_INCOMING_VARARGS ia64_setup_incoming_varargs
530 #undef TARGET_STRICT_ARGUMENT_NAMING
531 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
532 #undef TARGET_MUST_PASS_IN_STACK
533 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
534
535 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
536 #define TARGET_GIMPLIFY_VA_ARG_EXPR ia64_gimplify_va_arg
537
538 #undef TARGET_DWARF_HANDLE_FRAME_UNSPEC
539 #define TARGET_DWARF_HANDLE_FRAME_UNSPEC ia64_dwarf_handle_frame_unspec
540 #undef TARGET_ASM_UNWIND_EMIT
541 #define TARGET_ASM_UNWIND_EMIT ia64_asm_unwind_emit
542 #undef TARGET_ASM_EMIT_EXCEPT_PERSONALITY
543 #define TARGET_ASM_EMIT_EXCEPT_PERSONALITY ia64_asm_emit_except_personality
544 #undef TARGET_ASM_INIT_SECTIONS
545 #define TARGET_ASM_INIT_SECTIONS ia64_asm_init_sections
546
547 #undef TARGET_DEBUG_UNWIND_INFO
548 #define TARGET_DEBUG_UNWIND_INFO ia64_debug_unwind_info
549 #undef TARGET_EXCEPT_UNWIND_INFO
550 #define TARGET_EXCEPT_UNWIND_INFO ia64_except_unwind_info
551
552 #undef TARGET_SCALAR_MODE_SUPPORTED_P
553 #define TARGET_SCALAR_MODE_SUPPORTED_P ia64_scalar_mode_supported_p
554 #undef TARGET_VECTOR_MODE_SUPPORTED_P
555 #define TARGET_VECTOR_MODE_SUPPORTED_P ia64_vector_mode_supported_p
556
557 /* ia64 architecture manual 4.4.7: ... reads, writes, and flushes may occur
558 in an order different from the specified program order. */
559 #undef TARGET_RELAXED_ORDERING
560 #define TARGET_RELAXED_ORDERING true
561
562 #undef TARGET_DEFAULT_TARGET_FLAGS
563 #define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | TARGET_CPU_DEFAULT)
564 #undef TARGET_HANDLE_OPTION
565 #define TARGET_HANDLE_OPTION ia64_handle_option
566
567 #undef TARGET_CANNOT_FORCE_CONST_MEM
568 #define TARGET_CANNOT_FORCE_CONST_MEM ia64_cannot_force_const_mem
569
570 #undef TARGET_MANGLE_TYPE
571 #define TARGET_MANGLE_TYPE ia64_mangle_type
572
573 #undef TARGET_INVALID_CONVERSION
574 #define TARGET_INVALID_CONVERSION ia64_invalid_conversion
575 #undef TARGET_INVALID_UNARY_OP
576 #define TARGET_INVALID_UNARY_OP ia64_invalid_unary_op
577 #undef TARGET_INVALID_BINARY_OP
578 #define TARGET_INVALID_BINARY_OP ia64_invalid_binary_op
579
580 #undef TARGET_C_MODE_FOR_SUFFIX
581 #define TARGET_C_MODE_FOR_SUFFIX ia64_c_mode_for_suffix
582
583 #undef TARGET_CAN_ELIMINATE
584 #define TARGET_CAN_ELIMINATE ia64_can_eliminate
585
586 #undef TARGET_TRAMPOLINE_INIT
587 #define TARGET_TRAMPOLINE_INIT ia64_trampoline_init
588
589 #undef TARGET_INVALID_WITHIN_DOLOOP
590 #define TARGET_INVALID_WITHIN_DOLOOP hook_constcharptr_const_rtx_null
591
592 #undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
593 #define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE ia64_override_options_after_change
594
595 struct gcc_target targetm = TARGET_INITIALIZER;
596 \f
597 typedef enum
598 {
599 ADDR_AREA_NORMAL, /* normal address area */
600 ADDR_AREA_SMALL /* addressable by "addl" (-2MB < addr < 2MB) */
601 }
602 ia64_addr_area;
603
604 static GTY(()) tree small_ident1;
605 static GTY(()) tree small_ident2;
606
607 static void
608 init_idents (void)
609 {
610 if (small_ident1 == 0)
611 {
612 small_ident1 = get_identifier ("small");
613 small_ident2 = get_identifier ("__small__");
614 }
615 }
616
617 /* Retrieve the address area that has been chosen for the given decl. */
618
619 static ia64_addr_area
620 ia64_get_addr_area (tree decl)
621 {
622 tree model_attr;
623
624 model_attr = lookup_attribute ("model", DECL_ATTRIBUTES (decl));
625 if (model_attr)
626 {
627 tree id;
628
629 init_idents ();
630 id = TREE_VALUE (TREE_VALUE (model_attr));
631 if (id == small_ident1 || id == small_ident2)
632 return ADDR_AREA_SMALL;
633 }
634 return ADDR_AREA_NORMAL;
635 }
636
637 static tree
638 ia64_handle_model_attribute (tree *node, tree name, tree args,
639 int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
640 {
641 ia64_addr_area addr_area = ADDR_AREA_NORMAL;
642 ia64_addr_area area;
643 tree arg, decl = *node;
644
645 init_idents ();
646 arg = TREE_VALUE (args);
647 if (arg == small_ident1 || arg == small_ident2)
648 {
649 addr_area = ADDR_AREA_SMALL;
650 }
651 else
652 {
653 warning (OPT_Wattributes, "invalid argument of %qE attribute",
654 name);
655 *no_add_attrs = true;
656 }
657
658 switch (TREE_CODE (decl))
659 {
660 case VAR_DECL:
661 if ((DECL_CONTEXT (decl) && TREE_CODE (DECL_CONTEXT (decl))
662 == FUNCTION_DECL)
663 && !TREE_STATIC (decl))
664 {
665 error_at (DECL_SOURCE_LOCATION (decl),
666 "an address area attribute cannot be specified for "
667 "local variables");
668 *no_add_attrs = true;
669 }
670 area = ia64_get_addr_area (decl);
671 if (area != ADDR_AREA_NORMAL && addr_area != area)
672 {
673 error ("address area of %q+D conflicts with previous "
674 "declaration", decl);
675 *no_add_attrs = true;
676 }
677 break;
678
679 case FUNCTION_DECL:
680 error_at (DECL_SOURCE_LOCATION (decl),
681 "address area attribute cannot be specified for "
682 "functions");
683 *no_add_attrs = true;
684 break;
685
686 default:
687 warning (OPT_Wattributes, "%qE attribute ignored",
688 name);
689 *no_add_attrs = true;
690 break;
691 }
692
693 return NULL_TREE;
694 }
695
696 /* The section must have global and overlaid attributes. */
697 #define SECTION_VMS_OVERLAY SECTION_MACH_DEP
698
699 /* Part of the low level implementation of DEC Ada pragma Common_Object which
700 enables the shared use of variables stored in overlaid linker areas
701 corresponding to the use of Fortran COMMON. */
702
703 static tree
704 ia64_vms_common_object_attribute (tree *node, tree name, tree args,
705 int flags ATTRIBUTE_UNUSED,
706 bool *no_add_attrs)
707 {
708 tree decl = *node;
709 tree id, val;
710 if (! DECL_P (decl))
711 abort ();
712
713 DECL_COMMON (decl) = 1;
714 id = TREE_VALUE (args);
715 if (TREE_CODE (id) == IDENTIFIER_NODE)
716 val = build_string (IDENTIFIER_LENGTH (id), IDENTIFIER_POINTER (id));
717 else if (TREE_CODE (id) == STRING_CST)
718 val = id;
719 else
720 {
721 warning (OPT_Wattributes,
722 "%qE attribute requires a string constant argument", name);
723 *no_add_attrs = true;
724 return NULL_TREE;
725 }
726 DECL_SECTION_NAME (decl) = val;
727 return NULL_TREE;
728 }
729
730 /* Part of the low level implementation of DEC Ada pragma Common_Object. */
731
732 void
733 ia64_vms_output_aligned_decl_common (FILE *file, tree decl, const char *name,
734 unsigned HOST_WIDE_INT size,
735 unsigned int align)
736 {
737 tree attr = DECL_ATTRIBUTES (decl);
738
739 /* As common_object attribute set DECL_SECTION_NAME check it before
740 looking up the attribute. */
741 if (DECL_SECTION_NAME (decl) && attr)
742 attr = lookup_attribute ("common_object", attr);
743 else
744 attr = NULL_TREE;
745
746 if (!attr)
747 {
748 /* Code from elfos.h. */
749 fprintf (file, "%s", COMMON_ASM_OP);
750 assemble_name (file, name);
751 fprintf (file, ","HOST_WIDE_INT_PRINT_UNSIGNED",%u\n",
752 size, align / BITS_PER_UNIT);
753 }
754 else
755 {
756 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
757 ASM_OUTPUT_LABEL (file, name);
758 ASM_OUTPUT_SKIP (file, size ? size : 1);
759 }
760 }
761
762 /* Definition of TARGET_ASM_NAMED_SECTION for VMS. */
763
764 void
765 ia64_vms_elf_asm_named_section (const char *name, unsigned int flags,
766 tree decl)
767 {
768 if (!(flags & SECTION_VMS_OVERLAY))
769 {
770 default_elf_asm_named_section (name, flags, decl);
771 return;
772 }
773 if (flags != (SECTION_VMS_OVERLAY | SECTION_WRITE))
774 abort ();
775
776 if (flags & SECTION_DECLARED)
777 {
778 fprintf (asm_out_file, "\t.section\t%s\n", name);
779 return;
780 }
781
782 fprintf (asm_out_file, "\t.section\t%s,\"awgO\"\n", name);
783 }
784
785 static void
786 ia64_encode_addr_area (tree decl, rtx symbol)
787 {
788 int flags;
789
790 flags = SYMBOL_REF_FLAGS (symbol);
791 switch (ia64_get_addr_area (decl))
792 {
793 case ADDR_AREA_NORMAL: break;
794 case ADDR_AREA_SMALL: flags |= SYMBOL_FLAG_SMALL_ADDR; break;
795 default: gcc_unreachable ();
796 }
797 SYMBOL_REF_FLAGS (symbol) = flags;
798 }
799
800 static void
801 ia64_encode_section_info (tree decl, rtx rtl, int first)
802 {
803 default_encode_section_info (decl, rtl, first);
804
805 /* Careful not to prod global register variables. */
806 if (TREE_CODE (decl) == VAR_DECL
807 && GET_CODE (DECL_RTL (decl)) == MEM
808 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == SYMBOL_REF
809 && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
810 ia64_encode_addr_area (decl, XEXP (rtl, 0));
811 }
812 \f
813 /* Return 1 if the operands of a move are ok. */
814
815 int
816 ia64_move_ok (rtx dst, rtx src)
817 {
818 /* If we're under init_recog_no_volatile, we'll not be able to use
819 memory_operand. So check the code directly and don't worry about
820 the validity of the underlying address, which should have been
821 checked elsewhere anyway. */
822 if (GET_CODE (dst) != MEM)
823 return 1;
824 if (GET_CODE (src) == MEM)
825 return 0;
826 if (register_operand (src, VOIDmode))
827 return 1;
828
829 /* Otherwise, this must be a constant, and that either 0 or 0.0 or 1.0. */
830 if (INTEGRAL_MODE_P (GET_MODE (dst)))
831 return src == const0_rtx;
832 else
833 return satisfies_constraint_G (src);
834 }
835
836 /* Return 1 if the operands are ok for a floating point load pair. */
837
838 int
839 ia64_load_pair_ok (rtx dst, rtx src)
840 {
841 if (GET_CODE (dst) != REG || !FP_REGNO_P (REGNO (dst)))
842 return 0;
843 if (GET_CODE (src) != MEM || MEM_VOLATILE_P (src))
844 return 0;
845 switch (GET_CODE (XEXP (src, 0)))
846 {
847 case REG:
848 case POST_INC:
849 break;
850 case POST_DEC:
851 return 0;
852 case POST_MODIFY:
853 {
854 rtx adjust = XEXP (XEXP (XEXP (src, 0), 1), 1);
855
856 if (GET_CODE (adjust) != CONST_INT
857 || INTVAL (adjust) != GET_MODE_SIZE (GET_MODE (src)))
858 return 0;
859 }
860 break;
861 default:
862 abort ();
863 }
864 return 1;
865 }
866
867 int
868 addp4_optimize_ok (rtx op1, rtx op2)
869 {
870 return (basereg_operand (op1, GET_MODE(op1)) !=
871 basereg_operand (op2, GET_MODE(op2)));
872 }
873
874 /* Check if OP is a mask suitable for use with SHIFT in a dep.z instruction.
875 Return the length of the field, or <= 0 on failure. */
876
877 int
878 ia64_depz_field_mask (rtx rop, rtx rshift)
879 {
880 unsigned HOST_WIDE_INT op = INTVAL (rop);
881 unsigned HOST_WIDE_INT shift = INTVAL (rshift);
882
883 /* Get rid of the zero bits we're shifting in. */
884 op >>= shift;
885
886 /* We must now have a solid block of 1's at bit 0. */
887 return exact_log2 (op + 1);
888 }
889
890 /* Return the TLS model to use for ADDR. */
891
892 static enum tls_model
893 tls_symbolic_operand_type (rtx addr)
894 {
895 enum tls_model tls_kind = TLS_MODEL_NONE;
896
897 if (GET_CODE (addr) == CONST)
898 {
899 if (GET_CODE (XEXP (addr, 0)) == PLUS
900 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF)
901 tls_kind = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (addr, 0), 0));
902 }
903 else if (GET_CODE (addr) == SYMBOL_REF)
904 tls_kind = SYMBOL_REF_TLS_MODEL (addr);
905
906 return tls_kind;
907 }
908
909 /* Return true if X is a constant that is valid for some immediate
910 field in an instruction. */
911
912 bool
913 ia64_legitimate_constant_p (rtx x)
914 {
915 switch (GET_CODE (x))
916 {
917 case CONST_INT:
918 case LABEL_REF:
919 return true;
920
921 case CONST_DOUBLE:
922 if (GET_MODE (x) == VOIDmode || GET_MODE (x) == SFmode
923 || GET_MODE (x) == DFmode)
924 return true;
925 return satisfies_constraint_G (x);
926
927 case CONST:
928 case SYMBOL_REF:
929 /* ??? Short term workaround for PR 28490. We must make the code here
930 match the code in ia64_expand_move and move_operand, even though they
931 are both technically wrong. */
932 if (tls_symbolic_operand_type (x) == 0)
933 {
934 HOST_WIDE_INT addend = 0;
935 rtx op = x;
936
937 if (GET_CODE (op) == CONST
938 && GET_CODE (XEXP (op, 0)) == PLUS
939 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
940 {
941 addend = INTVAL (XEXP (XEXP (op, 0), 1));
942 op = XEXP (XEXP (op, 0), 0);
943 }
944
945 if (any_offset_symbol_operand (op, GET_MODE (op))
946 || function_operand (op, GET_MODE (op)))
947 return true;
948 if (aligned_offset_symbol_operand (op, GET_MODE (op)))
949 return (addend & 0x3fff) == 0;
950 return false;
951 }
952 return false;
953
954 case CONST_VECTOR:
955 {
956 enum machine_mode mode = GET_MODE (x);
957
958 if (mode == V2SFmode)
959 return satisfies_constraint_Y (x);
960
961 return (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
962 && GET_MODE_SIZE (mode) <= 8);
963 }
964
965 default:
966 return false;
967 }
968 }
969
970 /* Don't allow TLS addresses to get spilled to memory. */
971
972 static bool
973 ia64_cannot_force_const_mem (rtx x)
974 {
975 if (GET_MODE (x) == RFmode)
976 return true;
977 return tls_symbolic_operand_type (x) != 0;
978 }
979
980 /* Expand a symbolic constant load. */
981
982 bool
983 ia64_expand_load_address (rtx dest, rtx src)
984 {
985 gcc_assert (GET_CODE (dest) == REG);
986
987 /* ILP32 mode still loads 64-bits of data from the GOT. This avoids
988 having to pointer-extend the value afterward. Other forms of address
989 computation below are also more natural to compute as 64-bit quantities.
990 If we've been given an SImode destination register, change it. */
991 if (GET_MODE (dest) != Pmode)
992 dest = gen_rtx_REG_offset (dest, Pmode, REGNO (dest),
993 byte_lowpart_offset (Pmode, GET_MODE (dest)));
994
995 if (TARGET_NO_PIC)
996 return false;
997 if (small_addr_symbolic_operand (src, VOIDmode))
998 return false;
999
1000 if (TARGET_AUTO_PIC)
1001 emit_insn (gen_load_gprel64 (dest, src));
1002 else if (GET_CODE (src) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (src))
1003 emit_insn (gen_load_fptr (dest, src));
1004 else if (sdata_symbolic_operand (src, VOIDmode))
1005 emit_insn (gen_load_gprel (dest, src));
1006 else
1007 {
1008 HOST_WIDE_INT addend = 0;
1009 rtx tmp;
1010
1011 /* We did split constant offsets in ia64_expand_move, and we did try
1012 to keep them split in move_operand, but we also allowed reload to
1013 rematerialize arbitrary constants rather than spill the value to
1014 the stack and reload it. So we have to be prepared here to split
1015 them apart again. */
1016 if (GET_CODE (src) == CONST)
1017 {
1018 HOST_WIDE_INT hi, lo;
1019
1020 hi = INTVAL (XEXP (XEXP (src, 0), 1));
1021 lo = ((hi & 0x3fff) ^ 0x2000) - 0x2000;
1022 hi = hi - lo;
1023
1024 if (lo != 0)
1025 {
1026 addend = lo;
1027 src = plus_constant (XEXP (XEXP (src, 0), 0), hi);
1028 }
1029 }
1030
1031 tmp = gen_rtx_HIGH (Pmode, src);
1032 tmp = gen_rtx_PLUS (Pmode, tmp, pic_offset_table_rtx);
1033 emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
1034
1035 tmp = gen_rtx_LO_SUM (Pmode, dest, src);
1036 emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
1037
1038 if (addend)
1039 {
1040 tmp = gen_rtx_PLUS (Pmode, dest, GEN_INT (addend));
1041 emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
1042 }
1043 }
1044
1045 return true;
1046 }
1047
1048 static GTY(()) rtx gen_tls_tga;
1049 static rtx
1050 gen_tls_get_addr (void)
1051 {
1052 if (!gen_tls_tga)
1053 gen_tls_tga = init_one_libfunc ("__tls_get_addr");
1054 return gen_tls_tga;
1055 }
1056
1057 static GTY(()) rtx thread_pointer_rtx;
1058 static rtx
1059 gen_thread_pointer (void)
1060 {
1061 if (!thread_pointer_rtx)
1062 thread_pointer_rtx = gen_rtx_REG (Pmode, 13);
1063 return thread_pointer_rtx;
1064 }
1065
1066 static rtx
1067 ia64_expand_tls_address (enum tls_model tls_kind, rtx op0, rtx op1,
1068 rtx orig_op1, HOST_WIDE_INT addend)
1069 {
1070 rtx tga_op1, tga_op2, tga_ret, tga_eqv, tmp, insns;
1071 rtx orig_op0 = op0;
1072 HOST_WIDE_INT addend_lo, addend_hi;
1073
1074 switch (tls_kind)
1075 {
1076 case TLS_MODEL_GLOBAL_DYNAMIC:
1077 start_sequence ();
1078
1079 tga_op1 = gen_reg_rtx (Pmode);
1080 emit_insn (gen_load_dtpmod (tga_op1, op1));
1081
1082 tga_op2 = gen_reg_rtx (Pmode);
1083 emit_insn (gen_load_dtprel (tga_op2, op1));
1084
1085 tga_ret = emit_library_call_value (gen_tls_get_addr (), NULL_RTX,
1086 LCT_CONST, Pmode, 2, tga_op1,
1087 Pmode, tga_op2, Pmode);
1088
1089 insns = get_insns ();
1090 end_sequence ();
1091
1092 if (GET_MODE (op0) != Pmode)
1093 op0 = tga_ret;
1094 emit_libcall_block (insns, op0, tga_ret, op1);
1095 break;
1096
1097 case TLS_MODEL_LOCAL_DYNAMIC:
1098 /* ??? This isn't the completely proper way to do local-dynamic
1099 If the call to __tls_get_addr is used only by a single symbol,
1100 then we should (somehow) move the dtprel to the second arg
1101 to avoid the extra add. */
1102 start_sequence ();
1103
1104 tga_op1 = gen_reg_rtx (Pmode);
1105 emit_insn (gen_load_dtpmod (tga_op1, op1));
1106
1107 tga_op2 = const0_rtx;
1108
1109 tga_ret = emit_library_call_value (gen_tls_get_addr (), NULL_RTX,
1110 LCT_CONST, Pmode, 2, tga_op1,
1111 Pmode, tga_op2, Pmode);
1112
1113 insns = get_insns ();
1114 end_sequence ();
1115
1116 tga_eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
1117 UNSPEC_LD_BASE);
1118 tmp = gen_reg_rtx (Pmode);
1119 emit_libcall_block (insns, tmp, tga_ret, tga_eqv);
1120
1121 if (!register_operand (op0, Pmode))
1122 op0 = gen_reg_rtx (Pmode);
1123 if (TARGET_TLS64)
1124 {
1125 emit_insn (gen_load_dtprel (op0, op1));
1126 emit_insn (gen_adddi3 (op0, tmp, op0));
1127 }
1128 else
1129 emit_insn (gen_add_dtprel (op0, op1, tmp));
1130 break;
1131
1132 case TLS_MODEL_INITIAL_EXEC:
1133 addend_lo = ((addend & 0x3fff) ^ 0x2000) - 0x2000;
1134 addend_hi = addend - addend_lo;
1135
1136 op1 = plus_constant (op1, addend_hi);
1137 addend = addend_lo;
1138
1139 tmp = gen_reg_rtx (Pmode);
1140 emit_insn (gen_load_tprel (tmp, op1));
1141
1142 if (!register_operand (op0, Pmode))
1143 op0 = gen_reg_rtx (Pmode);
1144 emit_insn (gen_adddi3 (op0, tmp, gen_thread_pointer ()));
1145 break;
1146
1147 case TLS_MODEL_LOCAL_EXEC:
1148 if (!register_operand (op0, Pmode))
1149 op0 = gen_reg_rtx (Pmode);
1150
1151 op1 = orig_op1;
1152 addend = 0;
1153 if (TARGET_TLS64)
1154 {
1155 emit_insn (gen_load_tprel (op0, op1));
1156 emit_insn (gen_adddi3 (op0, op0, gen_thread_pointer ()));
1157 }
1158 else
1159 emit_insn (gen_add_tprel (op0, op1, gen_thread_pointer ()));
1160 break;
1161
1162 default:
1163 gcc_unreachable ();
1164 }
1165
1166 if (addend)
1167 op0 = expand_simple_binop (Pmode, PLUS, op0, GEN_INT (addend),
1168 orig_op0, 1, OPTAB_DIRECT);
1169 if (orig_op0 == op0)
1170 return NULL_RTX;
1171 if (GET_MODE (orig_op0) == Pmode)
1172 return op0;
1173 return gen_lowpart (GET_MODE (orig_op0), op0);
1174 }
1175
1176 rtx
1177 ia64_expand_move (rtx op0, rtx op1)
1178 {
1179 enum machine_mode mode = GET_MODE (op0);
1180
1181 if (!reload_in_progress && !reload_completed && !ia64_move_ok (op0, op1))
1182 op1 = force_reg (mode, op1);
1183
1184 if ((mode == Pmode || mode == ptr_mode) && symbolic_operand (op1, VOIDmode))
1185 {
1186 HOST_WIDE_INT addend = 0;
1187 enum tls_model tls_kind;
1188 rtx sym = op1;
1189
1190 if (GET_CODE (op1) == CONST
1191 && GET_CODE (XEXP (op1, 0)) == PLUS
1192 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT)
1193 {
1194 addend = INTVAL (XEXP (XEXP (op1, 0), 1));
1195 sym = XEXP (XEXP (op1, 0), 0);
1196 }
1197
1198 tls_kind = tls_symbolic_operand_type (sym);
1199 if (tls_kind)
1200 return ia64_expand_tls_address (tls_kind, op0, sym, op1, addend);
1201
1202 if (any_offset_symbol_operand (sym, mode))
1203 addend = 0;
1204 else if (aligned_offset_symbol_operand (sym, mode))
1205 {
1206 HOST_WIDE_INT addend_lo, addend_hi;
1207
1208 addend_lo = ((addend & 0x3fff) ^ 0x2000) - 0x2000;
1209 addend_hi = addend - addend_lo;
1210
1211 if (addend_lo != 0)
1212 {
1213 op1 = plus_constant (sym, addend_hi);
1214 addend = addend_lo;
1215 }
1216 else
1217 addend = 0;
1218 }
1219 else
1220 op1 = sym;
1221
1222 if (reload_completed)
1223 {
1224 /* We really should have taken care of this offset earlier. */
1225 gcc_assert (addend == 0);
1226 if (ia64_expand_load_address (op0, op1))
1227 return NULL_RTX;
1228 }
1229
1230 if (addend)
1231 {
1232 rtx subtarget = !can_create_pseudo_p () ? op0 : gen_reg_rtx (mode);
1233
1234 emit_insn (gen_rtx_SET (VOIDmode, subtarget, op1));
1235
1236 op1 = expand_simple_binop (mode, PLUS, subtarget,
1237 GEN_INT (addend), op0, 1, OPTAB_DIRECT);
1238 if (op0 == op1)
1239 return NULL_RTX;
1240 }
1241 }
1242
1243 return op1;
1244 }
1245
1246 /* Split a move from OP1 to OP0 conditional on COND. */
1247
1248 void
1249 ia64_emit_cond_move (rtx op0, rtx op1, rtx cond)
1250 {
1251 rtx insn, first = get_last_insn ();
1252
1253 emit_move_insn (op0, op1);
1254
1255 for (insn = get_last_insn (); insn != first; insn = PREV_INSN (insn))
1256 if (INSN_P (insn))
1257 PATTERN (insn) = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (cond),
1258 PATTERN (insn));
1259 }
1260
1261 /* Split a post-reload TImode or TFmode reference into two DImode
1262 components. This is made extra difficult by the fact that we do
1263 not get any scratch registers to work with, because reload cannot
1264 be prevented from giving us a scratch that overlaps the register
1265 pair involved. So instead, when addressing memory, we tweak the
1266 pointer register up and back down with POST_INCs. Or up and not
1267 back down when we can get away with it.
1268
1269 REVERSED is true when the loads must be done in reversed order
1270 (high word first) for correctness. DEAD is true when the pointer
1271 dies with the second insn we generate and therefore the second
1272 address must not carry a postmodify.
1273
1274 May return an insn which is to be emitted after the moves. */
1275
1276 static rtx
1277 ia64_split_tmode (rtx out[2], rtx in, bool reversed, bool dead)
1278 {
1279 rtx fixup = 0;
1280
1281 switch (GET_CODE (in))
1282 {
1283 case REG:
1284 out[reversed] = gen_rtx_REG (DImode, REGNO (in));
1285 out[!reversed] = gen_rtx_REG (DImode, REGNO (in) + 1);
1286 break;
1287
1288 case CONST_INT:
1289 case CONST_DOUBLE:
1290 /* Cannot occur reversed. */
1291 gcc_assert (!reversed);
1292
1293 if (GET_MODE (in) != TFmode)
1294 split_double (in, &out[0], &out[1]);
1295 else
1296 /* split_double does not understand how to split a TFmode
1297 quantity into a pair of DImode constants. */
1298 {
1299 REAL_VALUE_TYPE r;
1300 unsigned HOST_WIDE_INT p[2];
1301 long l[4]; /* TFmode is 128 bits */
1302
1303 REAL_VALUE_FROM_CONST_DOUBLE (r, in);
1304 real_to_target (l, &r, TFmode);
1305
1306 if (FLOAT_WORDS_BIG_ENDIAN)
1307 {
1308 p[0] = (((unsigned HOST_WIDE_INT) l[0]) << 32) + l[1];
1309 p[1] = (((unsigned HOST_WIDE_INT) l[2]) << 32) + l[3];
1310 }
1311 else
1312 {
1313 p[0] = (((unsigned HOST_WIDE_INT) l[1]) << 32) + l[0];
1314 p[1] = (((unsigned HOST_WIDE_INT) l[3]) << 32) + l[2];
1315 }
1316 out[0] = GEN_INT (p[0]);
1317 out[1] = GEN_INT (p[1]);
1318 }
1319 break;
1320
1321 case MEM:
1322 {
1323 rtx base = XEXP (in, 0);
1324 rtx offset;
1325
1326 switch (GET_CODE (base))
1327 {
1328 case REG:
1329 if (!reversed)
1330 {
1331 out[0] = adjust_automodify_address
1332 (in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
1333 out[1] = adjust_automodify_address
1334 (in, DImode, dead ? 0 : gen_rtx_POST_DEC (Pmode, base), 8);
1335 }
1336 else
1337 {
1338 /* Reversal requires a pre-increment, which can only
1339 be done as a separate insn. */
1340 emit_insn (gen_adddi3 (base, base, GEN_INT (8)));
1341 out[0] = adjust_automodify_address
1342 (in, DImode, gen_rtx_POST_DEC (Pmode, base), 8);
1343 out[1] = adjust_address (in, DImode, 0);
1344 }
1345 break;
1346
1347 case POST_INC:
1348 gcc_assert (!reversed && !dead);
1349
1350 /* Just do the increment in two steps. */
1351 out[0] = adjust_automodify_address (in, DImode, 0, 0);
1352 out[1] = adjust_automodify_address (in, DImode, 0, 8);
1353 break;
1354
1355 case POST_DEC:
1356 gcc_assert (!reversed && !dead);
1357
1358 /* Add 8, subtract 24. */
1359 base = XEXP (base, 0);
1360 out[0] = adjust_automodify_address
1361 (in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
1362 out[1] = adjust_automodify_address
1363 (in, DImode,
1364 gen_rtx_POST_MODIFY (Pmode, base, plus_constant (base, -24)),
1365 8);
1366 break;
1367
1368 case POST_MODIFY:
1369 gcc_assert (!reversed && !dead);
1370
1371 /* Extract and adjust the modification. This case is
1372 trickier than the others, because we might have an
1373 index register, or we might have a combined offset that
1374 doesn't fit a signed 9-bit displacement field. We can
1375 assume the incoming expression is already legitimate. */
1376 offset = XEXP (base, 1);
1377 base = XEXP (base, 0);
1378
1379 out[0] = adjust_automodify_address
1380 (in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
1381
1382 if (GET_CODE (XEXP (offset, 1)) == REG)
1383 {
1384 /* Can't adjust the postmodify to match. Emit the
1385 original, then a separate addition insn. */
1386 out[1] = adjust_automodify_address (in, DImode, 0, 8);
1387 fixup = gen_adddi3 (base, base, GEN_INT (-8));
1388 }
1389 else
1390 {
1391 gcc_assert (GET_CODE (XEXP (offset, 1)) == CONST_INT);
1392 if (INTVAL (XEXP (offset, 1)) < -256 + 8)
1393 {
1394 /* Again the postmodify cannot be made to match,
1395 but in this case it's more efficient to get rid
1396 of the postmodify entirely and fix up with an
1397 add insn. */
1398 out[1] = adjust_automodify_address (in, DImode, base, 8);
1399 fixup = gen_adddi3
1400 (base, base, GEN_INT (INTVAL (XEXP (offset, 1)) - 8));
1401 }
1402 else
1403 {
1404 /* Combined offset still fits in the displacement field.
1405 (We cannot overflow it at the high end.) */
1406 out[1] = adjust_automodify_address
1407 (in, DImode, gen_rtx_POST_MODIFY
1408 (Pmode, base, gen_rtx_PLUS
1409 (Pmode, base,
1410 GEN_INT (INTVAL (XEXP (offset, 1)) - 8))),
1411 8);
1412 }
1413 }
1414 break;
1415
1416 default:
1417 gcc_unreachable ();
1418 }
1419 break;
1420 }
1421
1422 default:
1423 gcc_unreachable ();
1424 }
1425
1426 return fixup;
1427 }
1428
1429 /* Split a TImode or TFmode move instruction after reload.
1430 This is used by *movtf_internal and *movti_internal. */
1431 void
1432 ia64_split_tmode_move (rtx operands[])
1433 {
1434 rtx in[2], out[2], insn;
1435 rtx fixup[2];
1436 bool dead = false;
1437 bool reversed = false;
1438
1439 /* It is possible for reload to decide to overwrite a pointer with
1440 the value it points to. In that case we have to do the loads in
1441 the appropriate order so that the pointer is not destroyed too
1442 early. Also we must not generate a postmodify for that second
1443 load, or rws_access_regno will die. */
1444 if (GET_CODE (operands[1]) == MEM
1445 && reg_overlap_mentioned_p (operands[0], operands[1]))
1446 {
1447 rtx base = XEXP (operands[1], 0);
1448 while (GET_CODE (base) != REG)
1449 base = XEXP (base, 0);
1450
1451 if (REGNO (base) == REGNO (operands[0]))
1452 reversed = true;
1453 dead = true;
1454 }
1455 /* Another reason to do the moves in reversed order is if the first
1456 element of the target register pair is also the second element of
1457 the source register pair. */
1458 if (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG
1459 && REGNO (operands[0]) == REGNO (operands[1]) + 1)
1460 reversed = true;
1461
1462 fixup[0] = ia64_split_tmode (in, operands[1], reversed, dead);
1463 fixup[1] = ia64_split_tmode (out, operands[0], reversed, dead);
1464
1465 #define MAYBE_ADD_REG_INC_NOTE(INSN, EXP) \
1466 if (GET_CODE (EXP) == MEM \
1467 && (GET_CODE (XEXP (EXP, 0)) == POST_MODIFY \
1468 || GET_CODE (XEXP (EXP, 0)) == POST_INC \
1469 || GET_CODE (XEXP (EXP, 0)) == POST_DEC)) \
1470 add_reg_note (insn, REG_INC, XEXP (XEXP (EXP, 0), 0))
1471
1472 insn = emit_insn (gen_rtx_SET (VOIDmode, out[0], in[0]));
1473 MAYBE_ADD_REG_INC_NOTE (insn, in[0]);
1474 MAYBE_ADD_REG_INC_NOTE (insn, out[0]);
1475
1476 insn = emit_insn (gen_rtx_SET (VOIDmode, out[1], in[1]));
1477 MAYBE_ADD_REG_INC_NOTE (insn, in[1]);
1478 MAYBE_ADD_REG_INC_NOTE (insn, out[1]);
1479
1480 if (fixup[0])
1481 emit_insn (fixup[0]);
1482 if (fixup[1])
1483 emit_insn (fixup[1]);
1484
1485 #undef MAYBE_ADD_REG_INC_NOTE
1486 }
1487
1488 /* ??? Fixing GR->FR XFmode moves during reload is hard. You need to go
1489 through memory plus an extra GR scratch register. Except that you can
1490 either get the first from SECONDARY_MEMORY_NEEDED or the second from
1491 SECONDARY_RELOAD_CLASS, but not both.
1492
1493 We got into problems in the first place by allowing a construct like
1494 (subreg:XF (reg:TI)), which we got from a union containing a long double.
1495 This solution attempts to prevent this situation from occurring. When
1496 we see something like the above, we spill the inner register to memory. */
1497
1498 static rtx
1499 spill_xfmode_rfmode_operand (rtx in, int force, enum machine_mode mode)
1500 {
1501 if (GET_CODE (in) == SUBREG
1502 && GET_MODE (SUBREG_REG (in)) == TImode
1503 && GET_CODE (SUBREG_REG (in)) == REG)
1504 {
1505 rtx memt = assign_stack_temp (TImode, 16, 0);
1506 emit_move_insn (memt, SUBREG_REG (in));
1507 return adjust_address (memt, mode, 0);
1508 }
1509 else if (force && GET_CODE (in) == REG)
1510 {
1511 rtx memx = assign_stack_temp (mode, 16, 0);
1512 emit_move_insn (memx, in);
1513 return memx;
1514 }
1515 else
1516 return in;
1517 }
1518
1519 /* Expand the movxf or movrf pattern (MODE says which) with the given
1520 OPERANDS, returning true if the pattern should then invoke
1521 DONE. */
1522
1523 bool
1524 ia64_expand_movxf_movrf (enum machine_mode mode, rtx operands[])
1525 {
1526 rtx op0 = operands[0];
1527
1528 if (GET_CODE (op0) == SUBREG)
1529 op0 = SUBREG_REG (op0);
1530
1531 /* We must support XFmode loads into general registers for stdarg/vararg,
1532 unprototyped calls, and a rare case where a long double is passed as
1533 an argument after a float HFA fills the FP registers. We split them into
1534 DImode loads for convenience. We also need to support XFmode stores
1535 for the last case. This case does not happen for stdarg/vararg routines,
1536 because we do a block store to memory of unnamed arguments. */
1537
1538 if (GET_CODE (op0) == REG && GR_REGNO_P (REGNO (op0)))
1539 {
1540 rtx out[2];
1541
1542 /* We're hoping to transform everything that deals with XFmode
1543 quantities and GR registers early in the compiler. */
1544 gcc_assert (can_create_pseudo_p ());
1545
1546 /* Struct to register can just use TImode instead. */
1547 if ((GET_CODE (operands[1]) == SUBREG
1548 && GET_MODE (SUBREG_REG (operands[1])) == TImode)
1549 || (GET_CODE (operands[1]) == REG
1550 && GR_REGNO_P (REGNO (operands[1]))))
1551 {
1552 rtx op1 = operands[1];
1553
1554 if (GET_CODE (op1) == SUBREG)
1555 op1 = SUBREG_REG (op1);
1556 else
1557 op1 = gen_rtx_REG (TImode, REGNO (op1));
1558
1559 emit_move_insn (gen_rtx_REG (TImode, REGNO (op0)), op1);
1560 return true;
1561 }
1562
1563 if (GET_CODE (operands[1]) == CONST_DOUBLE)
1564 {
1565 /* Don't word-swap when reading in the constant. */
1566 emit_move_insn (gen_rtx_REG (DImode, REGNO (op0)),
1567 operand_subword (operands[1], WORDS_BIG_ENDIAN,
1568 0, mode));
1569 emit_move_insn (gen_rtx_REG (DImode, REGNO (op0) + 1),
1570 operand_subword (operands[1], !WORDS_BIG_ENDIAN,
1571 0, mode));
1572 return true;
1573 }
1574
1575 /* If the quantity is in a register not known to be GR, spill it. */
1576 if (register_operand (operands[1], mode))
1577 operands[1] = spill_xfmode_rfmode_operand (operands[1], 1, mode);
1578
1579 gcc_assert (GET_CODE (operands[1]) == MEM);
1580
1581 /* Don't word-swap when reading in the value. */
1582 out[0] = gen_rtx_REG (DImode, REGNO (op0));
1583 out[1] = gen_rtx_REG (DImode, REGNO (op0) + 1);
1584
1585 emit_move_insn (out[0], adjust_address (operands[1], DImode, 0));
1586 emit_move_insn (out[1], adjust_address (operands[1], DImode, 8));
1587 return true;
1588 }
1589
1590 if (GET_CODE (operands[1]) == REG && GR_REGNO_P (REGNO (operands[1])))
1591 {
1592 /* We're hoping to transform everything that deals with XFmode
1593 quantities and GR registers early in the compiler. */
1594 gcc_assert (can_create_pseudo_p ());
1595
1596 /* Op0 can't be a GR_REG here, as that case is handled above.
1597 If op0 is a register, then we spill op1, so that we now have a
1598 MEM operand. This requires creating an XFmode subreg of a TImode reg
1599 to force the spill. */
1600 if (register_operand (operands[0], mode))
1601 {
1602 rtx op1 = gen_rtx_REG (TImode, REGNO (operands[1]));
1603 op1 = gen_rtx_SUBREG (mode, op1, 0);
1604 operands[1] = spill_xfmode_rfmode_operand (op1, 0, mode);
1605 }
1606
1607 else
1608 {
1609 rtx in[2];
1610
1611 gcc_assert (GET_CODE (operands[0]) == MEM);
1612
1613 /* Don't word-swap when writing out the value. */
1614 in[0] = gen_rtx_REG (DImode, REGNO (operands[1]));
1615 in[1] = gen_rtx_REG (DImode, REGNO (operands[1]) + 1);
1616
1617 emit_move_insn (adjust_address (operands[0], DImode, 0), in[0]);
1618 emit_move_insn (adjust_address (operands[0], DImode, 8), in[1]);
1619 return true;
1620 }
1621 }
1622
1623 if (!reload_in_progress && !reload_completed)
1624 {
1625 operands[1] = spill_xfmode_rfmode_operand (operands[1], 0, mode);
1626
1627 if (GET_MODE (op0) == TImode && GET_CODE (op0) == REG)
1628 {
1629 rtx memt, memx, in = operands[1];
1630 if (CONSTANT_P (in))
1631 in = validize_mem (force_const_mem (mode, in));
1632 if (GET_CODE (in) == MEM)
1633 memt = adjust_address (in, TImode, 0);
1634 else
1635 {
1636 memt = assign_stack_temp (TImode, 16, 0);
1637 memx = adjust_address (memt, mode, 0);
1638 emit_move_insn (memx, in);
1639 }
1640 emit_move_insn (op0, memt);
1641 return true;
1642 }
1643
1644 if (!ia64_move_ok (operands[0], operands[1]))
1645 operands[1] = force_reg (mode, operands[1]);
1646 }
1647
1648 return false;
1649 }
1650
1651 /* Emit comparison instruction if necessary, replacing *EXPR, *OP0, *OP1
1652 with the expression that holds the compare result (in VOIDmode). */
1653
1654 static GTY(()) rtx cmptf_libfunc;
1655
1656 void
1657 ia64_expand_compare (rtx *expr, rtx *op0, rtx *op1)
1658 {
1659 enum rtx_code code = GET_CODE (*expr);
1660 rtx cmp;
1661
1662 /* If we have a BImode input, then we already have a compare result, and
1663 do not need to emit another comparison. */
1664 if (GET_MODE (*op0) == BImode)
1665 {
1666 gcc_assert ((code == NE || code == EQ) && *op1 == const0_rtx);
1667 cmp = *op0;
1668 }
1669 /* HPUX TFmode compare requires a library call to _U_Qfcmp, which takes a
1670 magic number as its third argument, that indicates what to do.
1671 The return value is an integer to be compared against zero. */
1672 else if (TARGET_HPUX && GET_MODE (*op0) == TFmode)
1673 {
1674 enum qfcmp_magic {
1675 QCMP_INV = 1, /* Raise FP_INVALID on SNaN as a side effect. */
1676 QCMP_UNORD = 2,
1677 QCMP_EQ = 4,
1678 QCMP_LT = 8,
1679 QCMP_GT = 16
1680 };
1681 int magic;
1682 enum rtx_code ncode;
1683 rtx ret, insns;
1684
1685 gcc_assert (cmptf_libfunc && GET_MODE (*op1) == TFmode);
1686 switch (code)
1687 {
1688 /* 1 = equal, 0 = not equal. Equality operators do
1689 not raise FP_INVALID when given an SNaN operand. */
1690 case EQ: magic = QCMP_EQ; ncode = NE; break;
1691 case NE: magic = QCMP_EQ; ncode = EQ; break;
1692 /* isunordered() from C99. */
1693 case UNORDERED: magic = QCMP_UNORD; ncode = NE; break;
1694 case ORDERED: magic = QCMP_UNORD; ncode = EQ; break;
1695 /* Relational operators raise FP_INVALID when given
1696 an SNaN operand. */
1697 case LT: magic = QCMP_LT |QCMP_INV; ncode = NE; break;
1698 case LE: magic = QCMP_LT|QCMP_EQ|QCMP_INV; ncode = NE; break;
1699 case GT: magic = QCMP_GT |QCMP_INV; ncode = NE; break;
1700 case GE: magic = QCMP_GT|QCMP_EQ|QCMP_INV; ncode = NE; break;
1701 /* FUTURE: Implement UNEQ, UNLT, UNLE, UNGT, UNGE, LTGT.
1702 Expanders for buneq etc. weuld have to be added to ia64.md
1703 for this to be useful. */
1704 default: gcc_unreachable ();
1705 }
1706
1707 start_sequence ();
1708
1709 ret = emit_library_call_value (cmptf_libfunc, 0, LCT_CONST, DImode, 3,
1710 *op0, TFmode, *op1, TFmode,
1711 GEN_INT (magic), DImode);
1712 cmp = gen_reg_rtx (BImode);
1713 emit_insn (gen_rtx_SET (VOIDmode, cmp,
1714 gen_rtx_fmt_ee (ncode, BImode,
1715 ret, const0_rtx)));
1716
1717 insns = get_insns ();
1718 end_sequence ();
1719
1720 emit_libcall_block (insns, cmp, cmp,
1721 gen_rtx_fmt_ee (code, BImode, *op0, *op1));
1722 code = NE;
1723 }
1724 else
1725 {
1726 cmp = gen_reg_rtx (BImode);
1727 emit_insn (gen_rtx_SET (VOIDmode, cmp,
1728 gen_rtx_fmt_ee (code, BImode, *op0, *op1)));
1729 code = NE;
1730 }
1731
1732 *expr = gen_rtx_fmt_ee (code, VOIDmode, cmp, const0_rtx);
1733 *op0 = cmp;
1734 *op1 = const0_rtx;
1735 }
1736
1737 /* Generate an integral vector comparison. Return true if the condition has
1738 been reversed, and so the sense of the comparison should be inverted. */
1739
1740 static bool
1741 ia64_expand_vecint_compare (enum rtx_code code, enum machine_mode mode,
1742 rtx dest, rtx op0, rtx op1)
1743 {
1744 bool negate = false;
1745 rtx x;
1746
1747 /* Canonicalize the comparison to EQ, GT, GTU. */
1748 switch (code)
1749 {
1750 case EQ:
1751 case GT:
1752 case GTU:
1753 break;
1754
1755 case NE:
1756 case LE:
1757 case LEU:
1758 code = reverse_condition (code);
1759 negate = true;
1760 break;
1761
1762 case GE:
1763 case GEU:
1764 code = reverse_condition (code);
1765 negate = true;
1766 /* FALLTHRU */
1767
1768 case LT:
1769 case LTU:
1770 code = swap_condition (code);
1771 x = op0, op0 = op1, op1 = x;
1772 break;
1773
1774 default:
1775 gcc_unreachable ();
1776 }
1777
1778 /* Unsigned parallel compare is not supported by the hardware. Play some
1779 tricks to turn this into a signed comparison against 0. */
1780 if (code == GTU)
1781 {
1782 switch (mode)
1783 {
1784 case V2SImode:
1785 {
1786 rtx t1, t2, mask;
1787
1788 /* Subtract (-(INT MAX) - 1) from both operands to make
1789 them signed. */
1790 mask = GEN_INT (0x80000000);
1791 mask = gen_rtx_CONST_VECTOR (V2SImode, gen_rtvec (2, mask, mask));
1792 mask = force_reg (mode, mask);
1793 t1 = gen_reg_rtx (mode);
1794 emit_insn (gen_subv2si3 (t1, op0, mask));
1795 t2 = gen_reg_rtx (mode);
1796 emit_insn (gen_subv2si3 (t2, op1, mask));
1797 op0 = t1;
1798 op1 = t2;
1799 code = GT;
1800 }
1801 break;
1802
1803 case V8QImode:
1804 case V4HImode:
1805 /* Perform a parallel unsigned saturating subtraction. */
1806 x = gen_reg_rtx (mode);
1807 emit_insn (gen_rtx_SET (VOIDmode, x,
1808 gen_rtx_US_MINUS (mode, op0, op1)));
1809
1810 code = EQ;
1811 op0 = x;
1812 op1 = CONST0_RTX (mode);
1813 negate = !negate;
1814 break;
1815
1816 default:
1817 gcc_unreachable ();
1818 }
1819 }
1820
1821 x = gen_rtx_fmt_ee (code, mode, op0, op1);
1822 emit_insn (gen_rtx_SET (VOIDmode, dest, x));
1823
1824 return negate;
1825 }
1826
1827 /* Emit an integral vector conditional move. */
1828
1829 void
1830 ia64_expand_vecint_cmov (rtx operands[])
1831 {
1832 enum machine_mode mode = GET_MODE (operands[0]);
1833 enum rtx_code code = GET_CODE (operands[3]);
1834 bool negate;
1835 rtx cmp, x, ot, of;
1836
1837 cmp = gen_reg_rtx (mode);
1838 negate = ia64_expand_vecint_compare (code, mode, cmp,
1839 operands[4], operands[5]);
1840
1841 ot = operands[1+negate];
1842 of = operands[2-negate];
1843
1844 if (ot == CONST0_RTX (mode))
1845 {
1846 if (of == CONST0_RTX (mode))
1847 {
1848 emit_move_insn (operands[0], ot);
1849 return;
1850 }
1851
1852 x = gen_rtx_NOT (mode, cmp);
1853 x = gen_rtx_AND (mode, x, of);
1854 emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
1855 }
1856 else if (of == CONST0_RTX (mode))
1857 {
1858 x = gen_rtx_AND (mode, cmp, ot);
1859 emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
1860 }
1861 else
1862 {
1863 rtx t, f;
1864
1865 t = gen_reg_rtx (mode);
1866 x = gen_rtx_AND (mode, cmp, operands[1+negate]);
1867 emit_insn (gen_rtx_SET (VOIDmode, t, x));
1868
1869 f = gen_reg_rtx (mode);
1870 x = gen_rtx_NOT (mode, cmp);
1871 x = gen_rtx_AND (mode, x, operands[2-negate]);
1872 emit_insn (gen_rtx_SET (VOIDmode, f, x));
1873
1874 x = gen_rtx_IOR (mode, t, f);
1875 emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
1876 }
1877 }
1878
1879 /* Emit an integral vector min or max operation. Return true if all done. */
1880
1881 bool
1882 ia64_expand_vecint_minmax (enum rtx_code code, enum machine_mode mode,
1883 rtx operands[])
1884 {
1885 rtx xops[6];
1886
1887 /* These four combinations are supported directly. */
1888 if (mode == V8QImode && (code == UMIN || code == UMAX))
1889 return false;
1890 if (mode == V4HImode && (code == SMIN || code == SMAX))
1891 return false;
1892
1893 /* This combination can be implemented with only saturating subtraction. */
1894 if (mode == V4HImode && code == UMAX)
1895 {
1896 rtx x, tmp = gen_reg_rtx (mode);
1897
1898 x = gen_rtx_US_MINUS (mode, operands[1], operands[2]);
1899 emit_insn (gen_rtx_SET (VOIDmode, tmp, x));
1900
1901 emit_insn (gen_addv4hi3 (operands[0], tmp, operands[2]));
1902 return true;
1903 }
1904
1905 /* Everything else implemented via vector comparisons. */
1906 xops[0] = operands[0];
1907 xops[4] = xops[1] = operands[1];
1908 xops[5] = xops[2] = operands[2];
1909
1910 switch (code)
1911 {
1912 case UMIN:
1913 code = LTU;
1914 break;
1915 case UMAX:
1916 code = GTU;
1917 break;
1918 case SMIN:
1919 code = LT;
1920 break;
1921 case SMAX:
1922 code = GT;
1923 break;
1924 default:
1925 gcc_unreachable ();
1926 }
1927 xops[3] = gen_rtx_fmt_ee (code, VOIDmode, operands[1], operands[2]);
1928
1929 ia64_expand_vecint_cmov (xops);
1930 return true;
1931 }
1932
1933 /* Emit an integral vector widening sum operations. */
1934
1935 void
1936 ia64_expand_widen_sum (rtx operands[3], bool unsignedp)
1937 {
1938 rtx l, h, x, s;
1939 enum machine_mode wmode, mode;
1940 rtx (*unpack_l) (rtx, rtx, rtx);
1941 rtx (*unpack_h) (rtx, rtx, rtx);
1942 rtx (*plus) (rtx, rtx, rtx);
1943
1944 wmode = GET_MODE (operands[0]);
1945 mode = GET_MODE (operands[1]);
1946
1947 switch (mode)
1948 {
1949 case V8QImode:
1950 unpack_l = gen_unpack1_l;
1951 unpack_h = gen_unpack1_h;
1952 plus = gen_addv4hi3;
1953 break;
1954 case V4HImode:
1955 unpack_l = gen_unpack2_l;
1956 unpack_h = gen_unpack2_h;
1957 plus = gen_addv2si3;
1958 break;
1959 default:
1960 gcc_unreachable ();
1961 }
1962
1963 /* Fill in x with the sign extension of each element in op1. */
1964 if (unsignedp)
1965 x = CONST0_RTX (mode);
1966 else
1967 {
1968 bool neg;
1969
1970 x = gen_reg_rtx (mode);
1971
1972 neg = ia64_expand_vecint_compare (LT, mode, x, operands[1],
1973 CONST0_RTX (mode));
1974 gcc_assert (!neg);
1975 }
1976
1977 l = gen_reg_rtx (wmode);
1978 h = gen_reg_rtx (wmode);
1979 s = gen_reg_rtx (wmode);
1980
1981 emit_insn (unpack_l (gen_lowpart (mode, l), operands[1], x));
1982 emit_insn (unpack_h (gen_lowpart (mode, h), operands[1], x));
1983 emit_insn (plus (s, l, operands[2]));
1984 emit_insn (plus (operands[0], h, s));
1985 }
1986
1987 /* Emit a signed or unsigned V8QI dot product operation. */
1988
1989 void
1990 ia64_expand_dot_prod_v8qi (rtx operands[4], bool unsignedp)
1991 {
1992 rtx l1, l2, h1, h2, x1, x2, p1, p2, p3, p4, s1, s2, s3;
1993
1994 /* Fill in x1 and x2 with the sign extension of each element. */
1995 if (unsignedp)
1996 x1 = x2 = CONST0_RTX (V8QImode);
1997 else
1998 {
1999 bool neg;
2000
2001 x1 = gen_reg_rtx (V8QImode);
2002 x2 = gen_reg_rtx (V8QImode);
2003
2004 neg = ia64_expand_vecint_compare (LT, V8QImode, x1, operands[1],
2005 CONST0_RTX (V8QImode));
2006 gcc_assert (!neg);
2007 neg = ia64_expand_vecint_compare (LT, V8QImode, x2, operands[2],
2008 CONST0_RTX (V8QImode));
2009 gcc_assert (!neg);
2010 }
2011
2012 l1 = gen_reg_rtx (V4HImode);
2013 l2 = gen_reg_rtx (V4HImode);
2014 h1 = gen_reg_rtx (V4HImode);
2015 h2 = gen_reg_rtx (V4HImode);
2016
2017 emit_insn (gen_unpack1_l (gen_lowpart (V8QImode, l1), operands[1], x1));
2018 emit_insn (gen_unpack1_l (gen_lowpart (V8QImode, l2), operands[2], x2));
2019 emit_insn (gen_unpack1_h (gen_lowpart (V8QImode, h1), operands[1], x1));
2020 emit_insn (gen_unpack1_h (gen_lowpart (V8QImode, h2), operands[2], x2));
2021
2022 p1 = gen_reg_rtx (V2SImode);
2023 p2 = gen_reg_rtx (V2SImode);
2024 p3 = gen_reg_rtx (V2SImode);
2025 p4 = gen_reg_rtx (V2SImode);
2026 emit_insn (gen_pmpy2_r (p1, l1, l2));
2027 emit_insn (gen_pmpy2_l (p2, l1, l2));
2028 emit_insn (gen_pmpy2_r (p3, h1, h2));
2029 emit_insn (gen_pmpy2_l (p4, h1, h2));
2030
2031 s1 = gen_reg_rtx (V2SImode);
2032 s2 = gen_reg_rtx (V2SImode);
2033 s3 = gen_reg_rtx (V2SImode);
2034 emit_insn (gen_addv2si3 (s1, p1, p2));
2035 emit_insn (gen_addv2si3 (s2, p3, p4));
2036 emit_insn (gen_addv2si3 (s3, s1, operands[3]));
2037 emit_insn (gen_addv2si3 (operands[0], s2, s3));
2038 }
2039
2040 /* Emit the appropriate sequence for a call. */
2041
2042 void
2043 ia64_expand_call (rtx retval, rtx addr, rtx nextarg ATTRIBUTE_UNUSED,
2044 int sibcall_p)
2045 {
2046 rtx insn, b0;
2047
2048 addr = XEXP (addr, 0);
2049 addr = convert_memory_address (DImode, addr);
2050 b0 = gen_rtx_REG (DImode, R_BR (0));
2051
2052 /* ??? Should do this for functions known to bind local too. */
2053 if (TARGET_NO_PIC || TARGET_AUTO_PIC)
2054 {
2055 if (sibcall_p)
2056 insn = gen_sibcall_nogp (addr);
2057 else if (! retval)
2058 insn = gen_call_nogp (addr, b0);
2059 else
2060 insn = gen_call_value_nogp (retval, addr, b0);
2061 insn = emit_call_insn (insn);
2062 }
2063 else
2064 {
2065 if (sibcall_p)
2066 insn = gen_sibcall_gp (addr);
2067 else if (! retval)
2068 insn = gen_call_gp (addr, b0);
2069 else
2070 insn = gen_call_value_gp (retval, addr, b0);
2071 insn = emit_call_insn (insn);
2072
2073 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
2074 }
2075
2076 if (sibcall_p)
2077 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), b0);
2078
2079 if (TARGET_ABI_OPEN_VMS)
2080 use_reg (&CALL_INSN_FUNCTION_USAGE (insn),
2081 gen_rtx_REG (DImode, GR_REG (25)));
2082 }
2083
2084 static void
2085 reg_emitted (enum ia64_frame_regs r)
2086 {
2087 if (emitted_frame_related_regs[r] == 0)
2088 emitted_frame_related_regs[r] = current_frame_info.r[r];
2089 else
2090 gcc_assert (emitted_frame_related_regs[r] == current_frame_info.r[r]);
2091 }
2092
2093 static int
2094 get_reg (enum ia64_frame_regs r)
2095 {
2096 reg_emitted (r);
2097 return current_frame_info.r[r];
2098 }
2099
2100 static bool
2101 is_emitted (int regno)
2102 {
2103 unsigned int r;
2104
2105 for (r = reg_fp; r < number_of_ia64_frame_regs; r++)
2106 if (emitted_frame_related_regs[r] == regno)
2107 return true;
2108 return false;
2109 }
2110
2111 void
2112 ia64_reload_gp (void)
2113 {
2114 rtx tmp;
2115
2116 if (current_frame_info.r[reg_save_gp])
2117 {
2118 tmp = gen_rtx_REG (DImode, get_reg (reg_save_gp));
2119 }
2120 else
2121 {
2122 HOST_WIDE_INT offset;
2123 rtx offset_r;
2124
2125 offset = (current_frame_info.spill_cfa_off
2126 + current_frame_info.spill_size);
2127 if (frame_pointer_needed)
2128 {
2129 tmp = hard_frame_pointer_rtx;
2130 offset = -offset;
2131 }
2132 else
2133 {
2134 tmp = stack_pointer_rtx;
2135 offset = current_frame_info.total_size - offset;
2136 }
2137
2138 offset_r = GEN_INT (offset);
2139 if (satisfies_constraint_I (offset_r))
2140 emit_insn (gen_adddi3 (pic_offset_table_rtx, tmp, offset_r));
2141 else
2142 {
2143 emit_move_insn (pic_offset_table_rtx, offset_r);
2144 emit_insn (gen_adddi3 (pic_offset_table_rtx,
2145 pic_offset_table_rtx, tmp));
2146 }
2147
2148 tmp = gen_rtx_MEM (DImode, pic_offset_table_rtx);
2149 }
2150
2151 emit_move_insn (pic_offset_table_rtx, tmp);
2152 }
2153
2154 void
2155 ia64_split_call (rtx retval, rtx addr, rtx retaddr, rtx scratch_r,
2156 rtx scratch_b, int noreturn_p, int sibcall_p)
2157 {
2158 rtx insn;
2159 bool is_desc = false;
2160
2161 /* If we find we're calling through a register, then we're actually
2162 calling through a descriptor, so load up the values. */
2163 if (REG_P (addr) && GR_REGNO_P (REGNO (addr)))
2164 {
2165 rtx tmp;
2166 bool addr_dead_p;
2167
2168 /* ??? We are currently constrained to *not* use peep2, because
2169 we can legitimately change the global lifetime of the GP
2170 (in the form of killing where previously live). This is
2171 because a call through a descriptor doesn't use the previous
2172 value of the GP, while a direct call does, and we do not
2173 commit to either form until the split here.
2174
2175 That said, this means that we lack precise life info for
2176 whether ADDR is dead after this call. This is not terribly
2177 important, since we can fix things up essentially for free
2178 with the POST_DEC below, but it's nice to not use it when we
2179 can immediately tell it's not necessary. */
2180 addr_dead_p = ((noreturn_p || sibcall_p
2181 || TEST_HARD_REG_BIT (regs_invalidated_by_call,
2182 REGNO (addr)))
2183 && !FUNCTION_ARG_REGNO_P (REGNO (addr)));
2184
2185 /* Load the code address into scratch_b. */
2186 tmp = gen_rtx_POST_INC (Pmode, addr);
2187 tmp = gen_rtx_MEM (Pmode, tmp);
2188 emit_move_insn (scratch_r, tmp);
2189 emit_move_insn (scratch_b, scratch_r);
2190
2191 /* Load the GP address. If ADDR is not dead here, then we must
2192 revert the change made above via the POST_INCREMENT. */
2193 if (!addr_dead_p)
2194 tmp = gen_rtx_POST_DEC (Pmode, addr);
2195 else
2196 tmp = addr;
2197 tmp = gen_rtx_MEM (Pmode, tmp);
2198 emit_move_insn (pic_offset_table_rtx, tmp);
2199
2200 is_desc = true;
2201 addr = scratch_b;
2202 }
2203
2204 if (sibcall_p)
2205 insn = gen_sibcall_nogp (addr);
2206 else if (retval)
2207 insn = gen_call_value_nogp (retval, addr, retaddr);
2208 else
2209 insn = gen_call_nogp (addr, retaddr);
2210 emit_call_insn (insn);
2211
2212 if ((!TARGET_CONST_GP || is_desc) && !noreturn_p && !sibcall_p)
2213 ia64_reload_gp ();
2214 }
2215
2216 /* Expand an atomic operation. We want to perform MEM <CODE>= VAL atomically.
2217
2218 This differs from the generic code in that we know about the zero-extending
2219 properties of cmpxchg, and the zero-extending requirements of ar.ccv. We
2220 also know that ld.acq+cmpxchg.rel equals a full barrier.
2221
2222 The loop we want to generate looks like
2223
2224 cmp_reg = mem;
2225 label:
2226 old_reg = cmp_reg;
2227 new_reg = cmp_reg op val;
2228 cmp_reg = compare-and-swap(mem, old_reg, new_reg)
2229 if (cmp_reg != old_reg)
2230 goto label;
2231
2232 Note that we only do the plain load from memory once. Subsequent
2233 iterations use the value loaded by the compare-and-swap pattern. */
2234
2235 void
2236 ia64_expand_atomic_op (enum rtx_code code, rtx mem, rtx val,
2237 rtx old_dst, rtx new_dst)
2238 {
2239 enum machine_mode mode = GET_MODE (mem);
2240 rtx old_reg, new_reg, cmp_reg, ar_ccv, label;
2241 enum insn_code icode;
2242
2243 /* Special case for using fetchadd. */
2244 if ((mode == SImode || mode == DImode)
2245 && (code == PLUS || code == MINUS)
2246 && fetchadd_operand (val, mode))
2247 {
2248 if (code == MINUS)
2249 val = GEN_INT (-INTVAL (val));
2250
2251 if (!old_dst)
2252 old_dst = gen_reg_rtx (mode);
2253
2254 emit_insn (gen_memory_barrier ());
2255
2256 if (mode == SImode)
2257 icode = CODE_FOR_fetchadd_acq_si;
2258 else
2259 icode = CODE_FOR_fetchadd_acq_di;
2260 emit_insn (GEN_FCN (icode) (old_dst, mem, val));
2261
2262 if (new_dst)
2263 {
2264 new_reg = expand_simple_binop (mode, PLUS, old_dst, val, new_dst,
2265 true, OPTAB_WIDEN);
2266 if (new_reg != new_dst)
2267 emit_move_insn (new_dst, new_reg);
2268 }
2269 return;
2270 }
2271
2272 /* Because of the volatile mem read, we get an ld.acq, which is the
2273 front half of the full barrier. The end half is the cmpxchg.rel. */
2274 gcc_assert (MEM_VOLATILE_P (mem));
2275
2276 old_reg = gen_reg_rtx (DImode);
2277 cmp_reg = gen_reg_rtx (DImode);
2278 label = gen_label_rtx ();
2279
2280 if (mode != DImode)
2281 {
2282 val = simplify_gen_subreg (DImode, val, mode, 0);
2283 emit_insn (gen_extend_insn (cmp_reg, mem, DImode, mode, 1));
2284 }
2285 else
2286 emit_move_insn (cmp_reg, mem);
2287
2288 emit_label (label);
2289
2290 ar_ccv = gen_rtx_REG (DImode, AR_CCV_REGNUM);
2291 emit_move_insn (old_reg, cmp_reg);
2292 emit_move_insn (ar_ccv, cmp_reg);
2293
2294 if (old_dst)
2295 emit_move_insn (old_dst, gen_lowpart (mode, cmp_reg));
2296
2297 new_reg = cmp_reg;
2298 if (code == NOT)
2299 {
2300 new_reg = expand_simple_binop (DImode, AND, new_reg, val, NULL_RTX,
2301 true, OPTAB_DIRECT);
2302 new_reg = expand_simple_unop (DImode, code, new_reg, NULL_RTX, true);
2303 }
2304 else
2305 new_reg = expand_simple_binop (DImode, code, new_reg, val, NULL_RTX,
2306 true, OPTAB_DIRECT);
2307
2308 if (mode != DImode)
2309 new_reg = gen_lowpart (mode, new_reg);
2310 if (new_dst)
2311 emit_move_insn (new_dst, new_reg);
2312
2313 switch (mode)
2314 {
2315 case QImode: icode = CODE_FOR_cmpxchg_rel_qi; break;
2316 case HImode: icode = CODE_FOR_cmpxchg_rel_hi; break;
2317 case SImode: icode = CODE_FOR_cmpxchg_rel_si; break;
2318 case DImode: icode = CODE_FOR_cmpxchg_rel_di; break;
2319 default:
2320 gcc_unreachable ();
2321 }
2322
2323 emit_insn (GEN_FCN (icode) (cmp_reg, mem, ar_ccv, new_reg));
2324
2325 emit_cmp_and_jump_insns (cmp_reg, old_reg, NE, NULL, DImode, true, label);
2326 }
2327 \f
2328 /* Begin the assembly file. */
2329
2330 static void
2331 ia64_file_start (void)
2332 {
2333 /* Variable tracking should be run after all optimizations which change order
2334 of insns. It also needs a valid CFG. This can't be done in
2335 ia64_option_override, because flag_var_tracking is finalized after
2336 that. */
2337 ia64_flag_var_tracking = flag_var_tracking;
2338 flag_var_tracking = 0;
2339
2340 default_file_start ();
2341 emit_safe_across_calls ();
2342 }
2343
2344 void
2345 emit_safe_across_calls (void)
2346 {
2347 unsigned int rs, re;
2348 int out_state;
2349
2350 rs = 1;
2351 out_state = 0;
2352 while (1)
2353 {
2354 while (rs < 64 && call_used_regs[PR_REG (rs)])
2355 rs++;
2356 if (rs >= 64)
2357 break;
2358 for (re = rs + 1; re < 64 && ! call_used_regs[PR_REG (re)]; re++)
2359 continue;
2360 if (out_state == 0)
2361 {
2362 fputs ("\t.pred.safe_across_calls ", asm_out_file);
2363 out_state = 1;
2364 }
2365 else
2366 fputc (',', asm_out_file);
2367 if (re == rs + 1)
2368 fprintf (asm_out_file, "p%u", rs);
2369 else
2370 fprintf (asm_out_file, "p%u-p%u", rs, re - 1);
2371 rs = re + 1;
2372 }
2373 if (out_state)
2374 fputc ('\n', asm_out_file);
2375 }
2376
2377 /* Globalize a declaration. */
2378
2379 static void
2380 ia64_globalize_decl_name (FILE * stream, tree decl)
2381 {
2382 const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
2383 tree version_attr = lookup_attribute ("version_id", DECL_ATTRIBUTES (decl));
2384 if (version_attr)
2385 {
2386 tree v = TREE_VALUE (TREE_VALUE (version_attr));
2387 const char *p = TREE_STRING_POINTER (v);
2388 fprintf (stream, "\t.alias %s#, \"%s{%s}\"\n", name, name, p);
2389 }
2390 targetm.asm_out.globalize_label (stream, name);
2391 if (TREE_CODE (decl) == FUNCTION_DECL)
2392 ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "function");
2393 }
2394
2395 /* Helper function for ia64_compute_frame_size: find an appropriate general
2396 register to spill some special register to. SPECIAL_SPILL_MASK contains
2397 bits in GR0 to GR31 that have already been allocated by this routine.
2398 TRY_LOCALS is true if we should attempt to locate a local regnum. */
2399
2400 static int
2401 find_gr_spill (enum ia64_frame_regs r, int try_locals)
2402 {
2403 int regno;
2404
2405 if (emitted_frame_related_regs[r] != 0)
2406 {
2407 regno = emitted_frame_related_regs[r];
2408 if (regno >= LOC_REG (0) && regno < LOC_REG (80 - frame_pointer_needed)
2409 && current_frame_info.n_local_regs < regno - LOC_REG (0) + 1)
2410 current_frame_info.n_local_regs = regno - LOC_REG (0) + 1;
2411 else if (current_function_is_leaf
2412 && regno >= GR_REG (1) && regno <= GR_REG (31))
2413 current_frame_info.gr_used_mask |= 1 << regno;
2414
2415 return regno;
2416 }
2417
2418 /* If this is a leaf function, first try an otherwise unused
2419 call-clobbered register. */
2420 if (current_function_is_leaf)
2421 {
2422 for (regno = GR_REG (1); regno <= GR_REG (31); regno++)
2423 if (! df_regs_ever_live_p (regno)
2424 && call_used_regs[regno]
2425 && ! fixed_regs[regno]
2426 && ! global_regs[regno]
2427 && ((current_frame_info.gr_used_mask >> regno) & 1) == 0
2428 && ! is_emitted (regno))
2429 {
2430 current_frame_info.gr_used_mask |= 1 << regno;
2431 return regno;
2432 }
2433 }
2434
2435 if (try_locals)
2436 {
2437 regno = current_frame_info.n_local_regs;
2438 /* If there is a frame pointer, then we can't use loc79, because
2439 that is HARD_FRAME_POINTER_REGNUM. In particular, see the
2440 reg_name switching code in ia64_expand_prologue. */
2441 while (regno < (80 - frame_pointer_needed))
2442 if (! is_emitted (LOC_REG (regno++)))
2443 {
2444 current_frame_info.n_local_regs = regno;
2445 return LOC_REG (regno - 1);
2446 }
2447 }
2448
2449 /* Failed to find a general register to spill to. Must use stack. */
2450 return 0;
2451 }
2452
2453 /* In order to make for nice schedules, we try to allocate every temporary
2454 to a different register. We must of course stay away from call-saved,
2455 fixed, and global registers. We must also stay away from registers
2456 allocated in current_frame_info.gr_used_mask, since those include regs
2457 used all through the prologue.
2458
2459 Any register allocated here must be used immediately. The idea is to
2460 aid scheduling, not to solve data flow problems. */
2461
2462 static int last_scratch_gr_reg;
2463
2464 static int
2465 next_scratch_gr_reg (void)
2466 {
2467 int i, regno;
2468
2469 for (i = 0; i < 32; ++i)
2470 {
2471 regno = (last_scratch_gr_reg + i + 1) & 31;
2472 if (call_used_regs[regno]
2473 && ! fixed_regs[regno]
2474 && ! global_regs[regno]
2475 && ((current_frame_info.gr_used_mask >> regno) & 1) == 0)
2476 {
2477 last_scratch_gr_reg = regno;
2478 return regno;
2479 }
2480 }
2481
2482 /* There must be _something_ available. */
2483 gcc_unreachable ();
2484 }
2485
2486 /* Helper function for ia64_compute_frame_size, called through
2487 diddle_return_value. Mark REG in current_frame_info.gr_used_mask. */
2488
2489 static void
2490 mark_reg_gr_used_mask (rtx reg, void *data ATTRIBUTE_UNUSED)
2491 {
2492 unsigned int regno = REGNO (reg);
2493 if (regno < 32)
2494 {
2495 unsigned int i, n = hard_regno_nregs[regno][GET_MODE (reg)];
2496 for (i = 0; i < n; ++i)
2497 current_frame_info.gr_used_mask |= 1 << (regno + i);
2498 }
2499 }
2500
2501
2502 /* Returns the number of bytes offset between the frame pointer and the stack
2503 pointer for the current function. SIZE is the number of bytes of space
2504 needed for local variables. */
2505
2506 static void
2507 ia64_compute_frame_size (HOST_WIDE_INT size)
2508 {
2509 HOST_WIDE_INT total_size;
2510 HOST_WIDE_INT spill_size = 0;
2511 HOST_WIDE_INT extra_spill_size = 0;
2512 HOST_WIDE_INT pretend_args_size;
2513 HARD_REG_SET mask;
2514 int n_spilled = 0;
2515 int spilled_gr_p = 0;
2516 int spilled_fr_p = 0;
2517 unsigned int regno;
2518 int min_regno;
2519 int max_regno;
2520 int i;
2521
2522 if (current_frame_info.initialized)
2523 return;
2524
2525 memset (&current_frame_info, 0, sizeof current_frame_info);
2526 CLEAR_HARD_REG_SET (mask);
2527
2528 /* Don't allocate scratches to the return register. */
2529 diddle_return_value (mark_reg_gr_used_mask, NULL);
2530
2531 /* Don't allocate scratches to the EH scratch registers. */
2532 if (cfun->machine->ia64_eh_epilogue_sp)
2533 mark_reg_gr_used_mask (cfun->machine->ia64_eh_epilogue_sp, NULL);
2534 if (cfun->machine->ia64_eh_epilogue_bsp)
2535 mark_reg_gr_used_mask (cfun->machine->ia64_eh_epilogue_bsp, NULL);
2536
2537 /* Find the size of the register stack frame. We have only 80 local
2538 registers, because we reserve 8 for the inputs and 8 for the
2539 outputs. */
2540
2541 /* Skip HARD_FRAME_POINTER_REGNUM (loc79) when frame_pointer_needed,
2542 since we'll be adjusting that down later. */
2543 regno = LOC_REG (78) + ! frame_pointer_needed;
2544 for (; regno >= LOC_REG (0); regno--)
2545 if (df_regs_ever_live_p (regno) && !is_emitted (regno))
2546 break;
2547 current_frame_info.n_local_regs = regno - LOC_REG (0) + 1;
2548
2549 /* For functions marked with the syscall_linkage attribute, we must mark
2550 all eight input registers as in use, so that locals aren't visible to
2551 the caller. */
2552
2553 if (cfun->machine->n_varargs > 0
2554 || lookup_attribute ("syscall_linkage",
2555 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2556 current_frame_info.n_input_regs = 8;
2557 else
2558 {
2559 for (regno = IN_REG (7); regno >= IN_REG (0); regno--)
2560 if (df_regs_ever_live_p (regno))
2561 break;
2562 current_frame_info.n_input_regs = regno - IN_REG (0) + 1;
2563 }
2564
2565 for (regno = OUT_REG (7); regno >= OUT_REG (0); regno--)
2566 if (df_regs_ever_live_p (regno))
2567 break;
2568 i = regno - OUT_REG (0) + 1;
2569
2570 #ifndef PROFILE_HOOK
2571 /* When -p profiling, we need one output register for the mcount argument.
2572 Likewise for -a profiling for the bb_init_func argument. For -ax
2573 profiling, we need two output registers for the two bb_init_trace_func
2574 arguments. */
2575 if (crtl->profile)
2576 i = MAX (i, 1);
2577 #endif
2578 current_frame_info.n_output_regs = i;
2579
2580 /* ??? No rotating register support yet. */
2581 current_frame_info.n_rotate_regs = 0;
2582
2583 /* Discover which registers need spilling, and how much room that
2584 will take. Begin with floating point and general registers,
2585 which will always wind up on the stack. */
2586
2587 for (regno = FR_REG (2); regno <= FR_REG (127); regno++)
2588 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2589 {
2590 SET_HARD_REG_BIT (mask, regno);
2591 spill_size += 16;
2592 n_spilled += 1;
2593 spilled_fr_p = 1;
2594 }
2595
2596 for (regno = GR_REG (1); regno <= GR_REG (31); regno++)
2597 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2598 {
2599 SET_HARD_REG_BIT (mask, regno);
2600 spill_size += 8;
2601 n_spilled += 1;
2602 spilled_gr_p = 1;
2603 }
2604
2605 for (regno = BR_REG (1); regno <= BR_REG (7); regno++)
2606 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2607 {
2608 SET_HARD_REG_BIT (mask, regno);
2609 spill_size += 8;
2610 n_spilled += 1;
2611 }
2612
2613 /* Now come all special registers that might get saved in other
2614 general registers. */
2615
2616 if (frame_pointer_needed)
2617 {
2618 current_frame_info.r[reg_fp] = find_gr_spill (reg_fp, 1);
2619 /* If we did not get a register, then we take LOC79. This is guaranteed
2620 to be free, even if regs_ever_live is already set, because this is
2621 HARD_FRAME_POINTER_REGNUM. This requires incrementing n_local_regs,
2622 as we don't count loc79 above. */
2623 if (current_frame_info.r[reg_fp] == 0)
2624 {
2625 current_frame_info.r[reg_fp] = LOC_REG (79);
2626 current_frame_info.n_local_regs = LOC_REG (79) - LOC_REG (0) + 1;
2627 }
2628 }
2629
2630 if (! current_function_is_leaf)
2631 {
2632 /* Emit a save of BR0 if we call other functions. Do this even
2633 if this function doesn't return, as EH depends on this to be
2634 able to unwind the stack. */
2635 SET_HARD_REG_BIT (mask, BR_REG (0));
2636
2637 current_frame_info.r[reg_save_b0] = find_gr_spill (reg_save_b0, 1);
2638 if (current_frame_info.r[reg_save_b0] == 0)
2639 {
2640 extra_spill_size += 8;
2641 n_spilled += 1;
2642 }
2643
2644 /* Similarly for ar.pfs. */
2645 SET_HARD_REG_BIT (mask, AR_PFS_REGNUM);
2646 current_frame_info.r[reg_save_ar_pfs] = find_gr_spill (reg_save_ar_pfs, 1);
2647 if (current_frame_info.r[reg_save_ar_pfs] == 0)
2648 {
2649 extra_spill_size += 8;
2650 n_spilled += 1;
2651 }
2652
2653 /* Similarly for gp. Note that if we're calling setjmp, the stacked
2654 registers are clobbered, so we fall back to the stack. */
2655 current_frame_info.r[reg_save_gp]
2656 = (cfun->calls_setjmp ? 0 : find_gr_spill (reg_save_gp, 1));
2657 if (current_frame_info.r[reg_save_gp] == 0)
2658 {
2659 SET_HARD_REG_BIT (mask, GR_REG (1));
2660 spill_size += 8;
2661 n_spilled += 1;
2662 }
2663 }
2664 else
2665 {
2666 if (df_regs_ever_live_p (BR_REG (0)) && ! call_used_regs[BR_REG (0)])
2667 {
2668 SET_HARD_REG_BIT (mask, BR_REG (0));
2669 extra_spill_size += 8;
2670 n_spilled += 1;
2671 }
2672
2673 if (df_regs_ever_live_p (AR_PFS_REGNUM))
2674 {
2675 SET_HARD_REG_BIT (mask, AR_PFS_REGNUM);
2676 current_frame_info.r[reg_save_ar_pfs]
2677 = find_gr_spill (reg_save_ar_pfs, 1);
2678 if (current_frame_info.r[reg_save_ar_pfs] == 0)
2679 {
2680 extra_spill_size += 8;
2681 n_spilled += 1;
2682 }
2683 }
2684 }
2685
2686 /* Unwind descriptor hackery: things are most efficient if we allocate
2687 consecutive GR save registers for RP, PFS, FP in that order. However,
2688 it is absolutely critical that FP get the only hard register that's
2689 guaranteed to be free, so we allocated it first. If all three did
2690 happen to be allocated hard regs, and are consecutive, rearrange them
2691 into the preferred order now.
2692
2693 If we have already emitted code for any of those registers,
2694 then it's already too late to change. */
2695 min_regno = MIN (current_frame_info.r[reg_fp],
2696 MIN (current_frame_info.r[reg_save_b0],
2697 current_frame_info.r[reg_save_ar_pfs]));
2698 max_regno = MAX (current_frame_info.r[reg_fp],
2699 MAX (current_frame_info.r[reg_save_b0],
2700 current_frame_info.r[reg_save_ar_pfs]));
2701 if (min_regno > 0
2702 && min_regno + 2 == max_regno
2703 && (current_frame_info.r[reg_fp] == min_regno + 1
2704 || current_frame_info.r[reg_save_b0] == min_regno + 1
2705 || current_frame_info.r[reg_save_ar_pfs] == min_regno + 1)
2706 && (emitted_frame_related_regs[reg_save_b0] == 0
2707 || emitted_frame_related_regs[reg_save_b0] == min_regno)
2708 && (emitted_frame_related_regs[reg_save_ar_pfs] == 0
2709 || emitted_frame_related_regs[reg_save_ar_pfs] == min_regno + 1)
2710 && (emitted_frame_related_regs[reg_fp] == 0
2711 || emitted_frame_related_regs[reg_fp] == min_regno + 2))
2712 {
2713 current_frame_info.r[reg_save_b0] = min_regno;
2714 current_frame_info.r[reg_save_ar_pfs] = min_regno + 1;
2715 current_frame_info.r[reg_fp] = min_regno + 2;
2716 }
2717
2718 /* See if we need to store the predicate register block. */
2719 for (regno = PR_REG (0); regno <= PR_REG (63); regno++)
2720 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2721 break;
2722 if (regno <= PR_REG (63))
2723 {
2724 SET_HARD_REG_BIT (mask, PR_REG (0));
2725 current_frame_info.r[reg_save_pr] = find_gr_spill (reg_save_pr, 1);
2726 if (current_frame_info.r[reg_save_pr] == 0)
2727 {
2728 extra_spill_size += 8;
2729 n_spilled += 1;
2730 }
2731
2732 /* ??? Mark them all as used so that register renaming and such
2733 are free to use them. */
2734 for (regno = PR_REG (0); regno <= PR_REG (63); regno++)
2735 df_set_regs_ever_live (regno, true);
2736 }
2737
2738 /* If we're forced to use st8.spill, we're forced to save and restore
2739 ar.unat as well. The check for existing liveness allows inline asm
2740 to touch ar.unat. */
2741 if (spilled_gr_p || cfun->machine->n_varargs
2742 || df_regs_ever_live_p (AR_UNAT_REGNUM))
2743 {
2744 df_set_regs_ever_live (AR_UNAT_REGNUM, true);
2745 SET_HARD_REG_BIT (mask, AR_UNAT_REGNUM);
2746 current_frame_info.r[reg_save_ar_unat]
2747 = find_gr_spill (reg_save_ar_unat, spill_size == 0);
2748 if (current_frame_info.r[reg_save_ar_unat] == 0)
2749 {
2750 extra_spill_size += 8;
2751 n_spilled += 1;
2752 }
2753 }
2754
2755 if (df_regs_ever_live_p (AR_LC_REGNUM))
2756 {
2757 SET_HARD_REG_BIT (mask, AR_LC_REGNUM);
2758 current_frame_info.r[reg_save_ar_lc]
2759 = find_gr_spill (reg_save_ar_lc, spill_size == 0);
2760 if (current_frame_info.r[reg_save_ar_lc] == 0)
2761 {
2762 extra_spill_size += 8;
2763 n_spilled += 1;
2764 }
2765 }
2766
2767 /* If we have an odd number of words of pretend arguments written to
2768 the stack, then the FR save area will be unaligned. We round the
2769 size of this area up to keep things 16 byte aligned. */
2770 if (spilled_fr_p)
2771 pretend_args_size = IA64_STACK_ALIGN (crtl->args.pretend_args_size);
2772 else
2773 pretend_args_size = crtl->args.pretend_args_size;
2774
2775 total_size = (spill_size + extra_spill_size + size + pretend_args_size
2776 + crtl->outgoing_args_size);
2777 total_size = IA64_STACK_ALIGN (total_size);
2778
2779 /* We always use the 16-byte scratch area provided by the caller, but
2780 if we are a leaf function, there's no one to which we need to provide
2781 a scratch area. */
2782 if (current_function_is_leaf)
2783 total_size = MAX (0, total_size - 16);
2784
2785 current_frame_info.total_size = total_size;
2786 current_frame_info.spill_cfa_off = pretend_args_size - 16;
2787 current_frame_info.spill_size = spill_size;
2788 current_frame_info.extra_spill_size = extra_spill_size;
2789 COPY_HARD_REG_SET (current_frame_info.mask, mask);
2790 current_frame_info.n_spilled = n_spilled;
2791 current_frame_info.initialized = reload_completed;
2792 }
2793
2794 /* Worker function for TARGET_CAN_ELIMINATE. */
2795
2796 bool
2797 ia64_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
2798 {
2799 return (to == BR_REG (0) ? current_function_is_leaf : true);
2800 }
2801
2802 /* Compute the initial difference between the specified pair of registers. */
2803
2804 HOST_WIDE_INT
2805 ia64_initial_elimination_offset (int from, int to)
2806 {
2807 HOST_WIDE_INT offset;
2808
2809 ia64_compute_frame_size (get_frame_size ());
2810 switch (from)
2811 {
2812 case FRAME_POINTER_REGNUM:
2813 switch (to)
2814 {
2815 case HARD_FRAME_POINTER_REGNUM:
2816 if (current_function_is_leaf)
2817 offset = -current_frame_info.total_size;
2818 else
2819 offset = -(current_frame_info.total_size
2820 - crtl->outgoing_args_size - 16);
2821 break;
2822
2823 case STACK_POINTER_REGNUM:
2824 if (current_function_is_leaf)
2825 offset = 0;
2826 else
2827 offset = 16 + crtl->outgoing_args_size;
2828 break;
2829
2830 default:
2831 gcc_unreachable ();
2832 }
2833 break;
2834
2835 case ARG_POINTER_REGNUM:
2836 /* Arguments start above the 16 byte save area, unless stdarg
2837 in which case we store through the 16 byte save area. */
2838 switch (to)
2839 {
2840 case HARD_FRAME_POINTER_REGNUM:
2841 offset = 16 - crtl->args.pretend_args_size;
2842 break;
2843
2844 case STACK_POINTER_REGNUM:
2845 offset = (current_frame_info.total_size
2846 + 16 - crtl->args.pretend_args_size);
2847 break;
2848
2849 default:
2850 gcc_unreachable ();
2851 }
2852 break;
2853
2854 default:
2855 gcc_unreachable ();
2856 }
2857
2858 return offset;
2859 }
2860
2861 /* If there are more than a trivial number of register spills, we use
2862 two interleaved iterators so that we can get two memory references
2863 per insn group.
2864
2865 In order to simplify things in the prologue and epilogue expanders,
2866 we use helper functions to fix up the memory references after the
2867 fact with the appropriate offsets to a POST_MODIFY memory mode.
2868 The following data structure tracks the state of the two iterators
2869 while insns are being emitted. */
2870
2871 struct spill_fill_data
2872 {
2873 rtx init_after; /* point at which to emit initializations */
2874 rtx init_reg[2]; /* initial base register */
2875 rtx iter_reg[2]; /* the iterator registers */
2876 rtx *prev_addr[2]; /* address of last memory use */
2877 rtx prev_insn[2]; /* the insn corresponding to prev_addr */
2878 HOST_WIDE_INT prev_off[2]; /* last offset */
2879 int n_iter; /* number of iterators in use */
2880 int next_iter; /* next iterator to use */
2881 unsigned int save_gr_used_mask;
2882 };
2883
2884 static struct spill_fill_data spill_fill_data;
2885
2886 static void
2887 setup_spill_pointers (int n_spills, rtx init_reg, HOST_WIDE_INT cfa_off)
2888 {
2889 int i;
2890
2891 spill_fill_data.init_after = get_last_insn ();
2892 spill_fill_data.init_reg[0] = init_reg;
2893 spill_fill_data.init_reg[1] = init_reg;
2894 spill_fill_data.prev_addr[0] = NULL;
2895 spill_fill_data.prev_addr[1] = NULL;
2896 spill_fill_data.prev_insn[0] = NULL;
2897 spill_fill_data.prev_insn[1] = NULL;
2898 spill_fill_data.prev_off[0] = cfa_off;
2899 spill_fill_data.prev_off[1] = cfa_off;
2900 spill_fill_data.next_iter = 0;
2901 spill_fill_data.save_gr_used_mask = current_frame_info.gr_used_mask;
2902
2903 spill_fill_data.n_iter = 1 + (n_spills > 2);
2904 for (i = 0; i < spill_fill_data.n_iter; ++i)
2905 {
2906 int regno = next_scratch_gr_reg ();
2907 spill_fill_data.iter_reg[i] = gen_rtx_REG (DImode, regno);
2908 current_frame_info.gr_used_mask |= 1 << regno;
2909 }
2910 }
2911
2912 static void
2913 finish_spill_pointers (void)
2914 {
2915 current_frame_info.gr_used_mask = spill_fill_data.save_gr_used_mask;
2916 }
2917
2918 static rtx
2919 spill_restore_mem (rtx reg, HOST_WIDE_INT cfa_off)
2920 {
2921 int iter = spill_fill_data.next_iter;
2922 HOST_WIDE_INT disp = spill_fill_data.prev_off[iter] - cfa_off;
2923 rtx disp_rtx = GEN_INT (disp);
2924 rtx mem;
2925
2926 if (spill_fill_data.prev_addr[iter])
2927 {
2928 if (satisfies_constraint_N (disp_rtx))
2929 {
2930 *spill_fill_data.prev_addr[iter]
2931 = gen_rtx_POST_MODIFY (DImode, spill_fill_data.iter_reg[iter],
2932 gen_rtx_PLUS (DImode,
2933 spill_fill_data.iter_reg[iter],
2934 disp_rtx));
2935 add_reg_note (spill_fill_data.prev_insn[iter],
2936 REG_INC, spill_fill_data.iter_reg[iter]);
2937 }
2938 else
2939 {
2940 /* ??? Could use register post_modify for loads. */
2941 if (!satisfies_constraint_I (disp_rtx))
2942 {
2943 rtx tmp = gen_rtx_REG (DImode, next_scratch_gr_reg ());
2944 emit_move_insn (tmp, disp_rtx);
2945 disp_rtx = tmp;
2946 }
2947 emit_insn (gen_adddi3 (spill_fill_data.iter_reg[iter],
2948 spill_fill_data.iter_reg[iter], disp_rtx));
2949 }
2950 }
2951 /* Micro-optimization: if we've created a frame pointer, it's at
2952 CFA 0, which may allow the real iterator to be initialized lower,
2953 slightly increasing parallelism. Also, if there are few saves
2954 it may eliminate the iterator entirely. */
2955 else if (disp == 0
2956 && spill_fill_data.init_reg[iter] == stack_pointer_rtx
2957 && frame_pointer_needed)
2958 {
2959 mem = gen_rtx_MEM (GET_MODE (reg), hard_frame_pointer_rtx);
2960 set_mem_alias_set (mem, get_varargs_alias_set ());
2961 return mem;
2962 }
2963 else
2964 {
2965 rtx seq, insn;
2966
2967 if (disp == 0)
2968 seq = gen_movdi (spill_fill_data.iter_reg[iter],
2969 spill_fill_data.init_reg[iter]);
2970 else
2971 {
2972 start_sequence ();
2973
2974 if (!satisfies_constraint_I (disp_rtx))
2975 {
2976 rtx tmp = gen_rtx_REG (DImode, next_scratch_gr_reg ());
2977 emit_move_insn (tmp, disp_rtx);
2978 disp_rtx = tmp;
2979 }
2980
2981 emit_insn (gen_adddi3 (spill_fill_data.iter_reg[iter],
2982 spill_fill_data.init_reg[iter],
2983 disp_rtx));
2984
2985 seq = get_insns ();
2986 end_sequence ();
2987 }
2988
2989 /* Careful for being the first insn in a sequence. */
2990 if (spill_fill_data.init_after)
2991 insn = emit_insn_after (seq, spill_fill_data.init_after);
2992 else
2993 {
2994 rtx first = get_insns ();
2995 if (first)
2996 insn = emit_insn_before (seq, first);
2997 else
2998 insn = emit_insn (seq);
2999 }
3000 spill_fill_data.init_after = insn;
3001 }
3002
3003 mem = gen_rtx_MEM (GET_MODE (reg), spill_fill_data.iter_reg[iter]);
3004
3005 /* ??? Not all of the spills are for varargs, but some of them are.
3006 The rest of the spills belong in an alias set of their own. But
3007 it doesn't actually hurt to include them here. */
3008 set_mem_alias_set (mem, get_varargs_alias_set ());
3009
3010 spill_fill_data.prev_addr[iter] = &XEXP (mem, 0);
3011 spill_fill_data.prev_off[iter] = cfa_off;
3012
3013 if (++iter >= spill_fill_data.n_iter)
3014 iter = 0;
3015 spill_fill_data.next_iter = iter;
3016
3017 return mem;
3018 }
3019
3020 static void
3021 do_spill (rtx (*move_fn) (rtx, rtx, rtx), rtx reg, HOST_WIDE_INT cfa_off,
3022 rtx frame_reg)
3023 {
3024 int iter = spill_fill_data.next_iter;
3025 rtx mem, insn;
3026
3027 mem = spill_restore_mem (reg, cfa_off);
3028 insn = emit_insn ((*move_fn) (mem, reg, GEN_INT (cfa_off)));
3029 spill_fill_data.prev_insn[iter] = insn;
3030
3031 if (frame_reg)
3032 {
3033 rtx base;
3034 HOST_WIDE_INT off;
3035
3036 RTX_FRAME_RELATED_P (insn) = 1;
3037
3038 /* Don't even pretend that the unwind code can intuit its way
3039 through a pair of interleaved post_modify iterators. Just
3040 provide the correct answer. */
3041
3042 if (frame_pointer_needed)
3043 {
3044 base = hard_frame_pointer_rtx;
3045 off = - cfa_off;
3046 }
3047 else
3048 {
3049 base = stack_pointer_rtx;
3050 off = current_frame_info.total_size - cfa_off;
3051 }
3052
3053 add_reg_note (insn, REG_CFA_OFFSET,
3054 gen_rtx_SET (VOIDmode,
3055 gen_rtx_MEM (GET_MODE (reg),
3056 plus_constant (base, off)),
3057 frame_reg));
3058 }
3059 }
3060
3061 static void
3062 do_restore (rtx (*move_fn) (rtx, rtx, rtx), rtx reg, HOST_WIDE_INT cfa_off)
3063 {
3064 int iter = spill_fill_data.next_iter;
3065 rtx insn;
3066
3067 insn = emit_insn ((*move_fn) (reg, spill_restore_mem (reg, cfa_off),
3068 GEN_INT (cfa_off)));
3069 spill_fill_data.prev_insn[iter] = insn;
3070 }
3071
3072 /* Wrapper functions that discards the CONST_INT spill offset. These
3073 exist so that we can give gr_spill/gr_fill the offset they need and
3074 use a consistent function interface. */
3075
3076 static rtx
3077 gen_movdi_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
3078 {
3079 return gen_movdi (dest, src);
3080 }
3081
3082 static rtx
3083 gen_fr_spill_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
3084 {
3085 return gen_fr_spill (dest, src);
3086 }
3087
3088 static rtx
3089 gen_fr_restore_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
3090 {
3091 return gen_fr_restore (dest, src);
3092 }
3093
3094 /* Called after register allocation to add any instructions needed for the
3095 prologue. Using a prologue insn is favored compared to putting all of the
3096 instructions in output_function_prologue(), since it allows the scheduler
3097 to intermix instructions with the saves of the caller saved registers. In
3098 some cases, it might be necessary to emit a barrier instruction as the last
3099 insn to prevent such scheduling.
3100
3101 Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
3102 so that the debug info generation code can handle them properly.
3103
3104 The register save area is layed out like so:
3105 cfa+16
3106 [ varargs spill area ]
3107 [ fr register spill area ]
3108 [ br register spill area ]
3109 [ ar register spill area ]
3110 [ pr register spill area ]
3111 [ gr register spill area ] */
3112
3113 /* ??? Get inefficient code when the frame size is larger than can fit in an
3114 adds instruction. */
3115
3116 void
3117 ia64_expand_prologue (void)
3118 {
3119 rtx insn, ar_pfs_save_reg, ar_unat_save_reg;
3120 int i, epilogue_p, regno, alt_regno, cfa_off, n_varargs;
3121 rtx reg, alt_reg;
3122
3123 ia64_compute_frame_size (get_frame_size ());
3124 last_scratch_gr_reg = 15;
3125
3126 if (flag_stack_usage)
3127 current_function_static_stack_size = current_frame_info.total_size;
3128
3129 if (dump_file)
3130 {
3131 fprintf (dump_file, "ia64 frame related registers "
3132 "recorded in current_frame_info.r[]:\n");
3133 #define PRINTREG(a) if (current_frame_info.r[a]) \
3134 fprintf(dump_file, "%s = %d\n", #a, current_frame_info.r[a])
3135 PRINTREG(reg_fp);
3136 PRINTREG(reg_save_b0);
3137 PRINTREG(reg_save_pr);
3138 PRINTREG(reg_save_ar_pfs);
3139 PRINTREG(reg_save_ar_unat);
3140 PRINTREG(reg_save_ar_lc);
3141 PRINTREG(reg_save_gp);
3142 #undef PRINTREG
3143 }
3144
3145 /* If there is no epilogue, then we don't need some prologue insns.
3146 We need to avoid emitting the dead prologue insns, because flow
3147 will complain about them. */
3148 if (optimize)
3149 {
3150 edge e;
3151 edge_iterator ei;
3152
3153 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
3154 if ((e->flags & EDGE_FAKE) == 0
3155 && (e->flags & EDGE_FALLTHRU) != 0)
3156 break;
3157 epilogue_p = (e != NULL);
3158 }
3159 else
3160 epilogue_p = 1;
3161
3162 /* Set the local, input, and output register names. We need to do this
3163 for GNU libc, which creates crti.S/crtn.S by splitting initfini.c in
3164 half. If we use in/loc/out register names, then we get assembler errors
3165 in crtn.S because there is no alloc insn or regstk directive in there. */
3166 if (! TARGET_REG_NAMES)
3167 {
3168 int inputs = current_frame_info.n_input_regs;
3169 int locals = current_frame_info.n_local_regs;
3170 int outputs = current_frame_info.n_output_regs;
3171
3172 for (i = 0; i < inputs; i++)
3173 reg_names[IN_REG (i)] = ia64_reg_numbers[i];
3174 for (i = 0; i < locals; i++)
3175 reg_names[LOC_REG (i)] = ia64_reg_numbers[inputs + i];
3176 for (i = 0; i < outputs; i++)
3177 reg_names[OUT_REG (i)] = ia64_reg_numbers[inputs + locals + i];
3178 }
3179
3180 /* Set the frame pointer register name. The regnum is logically loc79,
3181 but of course we'll not have allocated that many locals. Rather than
3182 worrying about renumbering the existing rtxs, we adjust the name. */
3183 /* ??? This code means that we can never use one local register when
3184 there is a frame pointer. loc79 gets wasted in this case, as it is
3185 renamed to a register that will never be used. See also the try_locals
3186 code in find_gr_spill. */
3187 if (current_frame_info.r[reg_fp])
3188 {
3189 const char *tmp = reg_names[HARD_FRAME_POINTER_REGNUM];
3190 reg_names[HARD_FRAME_POINTER_REGNUM]
3191 = reg_names[current_frame_info.r[reg_fp]];
3192 reg_names[current_frame_info.r[reg_fp]] = tmp;
3193 }
3194
3195 /* We don't need an alloc instruction if we've used no outputs or locals. */
3196 if (current_frame_info.n_local_regs == 0
3197 && current_frame_info.n_output_regs == 0
3198 && current_frame_info.n_input_regs <= crtl->args.info.int_regs
3199 && !TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM))
3200 {
3201 /* If there is no alloc, but there are input registers used, then we
3202 need a .regstk directive. */
3203 current_frame_info.need_regstk = (TARGET_REG_NAMES != 0);
3204 ar_pfs_save_reg = NULL_RTX;
3205 }
3206 else
3207 {
3208 current_frame_info.need_regstk = 0;
3209
3210 if (current_frame_info.r[reg_save_ar_pfs])
3211 {
3212 regno = current_frame_info.r[reg_save_ar_pfs];
3213 reg_emitted (reg_save_ar_pfs);
3214 }
3215 else
3216 regno = next_scratch_gr_reg ();
3217 ar_pfs_save_reg = gen_rtx_REG (DImode, regno);
3218
3219 insn = emit_insn (gen_alloc (ar_pfs_save_reg,
3220 GEN_INT (current_frame_info.n_input_regs),
3221 GEN_INT (current_frame_info.n_local_regs),
3222 GEN_INT (current_frame_info.n_output_regs),
3223 GEN_INT (current_frame_info.n_rotate_regs)));
3224 RTX_FRAME_RELATED_P (insn) = (current_frame_info.r[reg_save_ar_pfs] != 0);
3225 }
3226
3227 /* Set up frame pointer, stack pointer, and spill iterators. */
3228
3229 n_varargs = cfun->machine->n_varargs;
3230 setup_spill_pointers (current_frame_info.n_spilled + n_varargs,
3231 stack_pointer_rtx, 0);
3232
3233 if (frame_pointer_needed)
3234 {
3235 insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
3236 RTX_FRAME_RELATED_P (insn) = 1;
3237
3238 /* Force the unwind info to recognize this as defining a new CFA,
3239 rather than some temp register setup. */
3240 add_reg_note (insn, REG_CFA_ADJUST_CFA, NULL_RTX);
3241 }
3242
3243 if (current_frame_info.total_size != 0)
3244 {
3245 rtx frame_size_rtx = GEN_INT (- current_frame_info.total_size);
3246 rtx offset;
3247
3248 if (satisfies_constraint_I (frame_size_rtx))
3249 offset = frame_size_rtx;
3250 else
3251 {
3252 regno = next_scratch_gr_reg ();
3253 offset = gen_rtx_REG (DImode, regno);
3254 emit_move_insn (offset, frame_size_rtx);
3255 }
3256
3257 insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
3258 stack_pointer_rtx, offset));
3259
3260 if (! frame_pointer_needed)
3261 {
3262 RTX_FRAME_RELATED_P (insn) = 1;
3263 add_reg_note (insn, REG_CFA_ADJUST_CFA,
3264 gen_rtx_SET (VOIDmode,
3265 stack_pointer_rtx,
3266 gen_rtx_PLUS (DImode,
3267 stack_pointer_rtx,
3268 frame_size_rtx)));
3269 }
3270
3271 /* ??? At this point we must generate a magic insn that appears to
3272 modify the stack pointer, the frame pointer, and all spill
3273 iterators. This would allow the most scheduling freedom. For
3274 now, just hard stop. */
3275 emit_insn (gen_blockage ());
3276 }
3277
3278 /* Must copy out ar.unat before doing any integer spills. */
3279 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
3280 {
3281 if (current_frame_info.r[reg_save_ar_unat])
3282 {
3283 ar_unat_save_reg
3284 = gen_rtx_REG (DImode, current_frame_info.r[reg_save_ar_unat]);
3285 reg_emitted (reg_save_ar_unat);
3286 }
3287 else
3288 {
3289 alt_regno = next_scratch_gr_reg ();
3290 ar_unat_save_reg = gen_rtx_REG (DImode, alt_regno);
3291 current_frame_info.gr_used_mask |= 1 << alt_regno;
3292 }
3293
3294 reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
3295 insn = emit_move_insn (ar_unat_save_reg, reg);
3296 if (current_frame_info.r[reg_save_ar_unat])
3297 {
3298 RTX_FRAME_RELATED_P (insn) = 1;
3299 add_reg_note (insn, REG_CFA_REGISTER, NULL_RTX);
3300 }
3301
3302 /* Even if we're not going to generate an epilogue, we still
3303 need to save the register so that EH works. */
3304 if (! epilogue_p && current_frame_info.r[reg_save_ar_unat])
3305 emit_insn (gen_prologue_use (ar_unat_save_reg));
3306 }
3307 else
3308 ar_unat_save_reg = NULL_RTX;
3309
3310 /* Spill all varargs registers. Do this before spilling any GR registers,
3311 since we want the UNAT bits for the GR registers to override the UNAT
3312 bits from varargs, which we don't care about. */
3313
3314 cfa_off = -16;
3315 for (regno = GR_ARG_FIRST + 7; n_varargs > 0; --n_varargs, --regno)
3316 {
3317 reg = gen_rtx_REG (DImode, regno);
3318 do_spill (gen_gr_spill, reg, cfa_off += 8, NULL_RTX);
3319 }
3320
3321 /* Locate the bottom of the register save area. */
3322 cfa_off = (current_frame_info.spill_cfa_off
3323 + current_frame_info.spill_size
3324 + current_frame_info.extra_spill_size);
3325
3326 /* Save the predicate register block either in a register or in memory. */
3327 if (TEST_HARD_REG_BIT (current_frame_info.mask, PR_REG (0)))
3328 {
3329 reg = gen_rtx_REG (DImode, PR_REG (0));
3330 if (current_frame_info.r[reg_save_pr] != 0)
3331 {
3332 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_pr]);
3333 reg_emitted (reg_save_pr);
3334 insn = emit_move_insn (alt_reg, reg);
3335
3336 /* ??? Denote pr spill/fill by a DImode move that modifies all
3337 64 hard registers. */
3338 RTX_FRAME_RELATED_P (insn) = 1;
3339 add_reg_note (insn, REG_CFA_REGISTER, NULL_RTX);
3340
3341 /* Even if we're not going to generate an epilogue, we still
3342 need to save the register so that EH works. */
3343 if (! epilogue_p)
3344 emit_insn (gen_prologue_use (alt_reg));
3345 }
3346 else
3347 {
3348 alt_regno = next_scratch_gr_reg ();
3349 alt_reg = gen_rtx_REG (DImode, alt_regno);
3350 insn = emit_move_insn (alt_reg, reg);
3351 do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
3352 cfa_off -= 8;
3353 }
3354 }
3355
3356 /* Handle AR regs in numerical order. All of them get special handling. */
3357 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM)
3358 && current_frame_info.r[reg_save_ar_unat] == 0)
3359 {
3360 reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
3361 do_spill (gen_movdi_x, ar_unat_save_reg, cfa_off, reg);
3362 cfa_off -= 8;
3363 }
3364
3365 /* The alloc insn already copied ar.pfs into a general register. The
3366 only thing we have to do now is copy that register to a stack slot
3367 if we'd not allocated a local register for the job. */
3368 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM)
3369 && current_frame_info.r[reg_save_ar_pfs] == 0)
3370 {
3371 reg = gen_rtx_REG (DImode, AR_PFS_REGNUM);
3372 do_spill (gen_movdi_x, ar_pfs_save_reg, cfa_off, reg);
3373 cfa_off -= 8;
3374 }
3375
3376 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_LC_REGNUM))
3377 {
3378 reg = gen_rtx_REG (DImode, AR_LC_REGNUM);
3379 if (current_frame_info.r[reg_save_ar_lc] != 0)
3380 {
3381 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_ar_lc]);
3382 reg_emitted (reg_save_ar_lc);
3383 insn = emit_move_insn (alt_reg, reg);
3384 RTX_FRAME_RELATED_P (insn) = 1;
3385 add_reg_note (insn, REG_CFA_REGISTER, NULL_RTX);
3386
3387 /* Even if we're not going to generate an epilogue, we still
3388 need to save the register so that EH works. */
3389 if (! epilogue_p)
3390 emit_insn (gen_prologue_use (alt_reg));
3391 }
3392 else
3393 {
3394 alt_regno = next_scratch_gr_reg ();
3395 alt_reg = gen_rtx_REG (DImode, alt_regno);
3396 emit_move_insn (alt_reg, reg);
3397 do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
3398 cfa_off -= 8;
3399 }
3400 }
3401
3402 /* Save the return pointer. */
3403 if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0)))
3404 {
3405 reg = gen_rtx_REG (DImode, BR_REG (0));
3406 if (current_frame_info.r[reg_save_b0] != 0)
3407 {
3408 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_b0]);
3409 reg_emitted (reg_save_b0);
3410 insn = emit_move_insn (alt_reg, reg);
3411 RTX_FRAME_RELATED_P (insn) = 1;
3412 add_reg_note (insn, REG_CFA_REGISTER, NULL_RTX);
3413
3414 /* Even if we're not going to generate an epilogue, we still
3415 need to save the register so that EH works. */
3416 if (! epilogue_p)
3417 emit_insn (gen_prologue_use (alt_reg));
3418 }
3419 else
3420 {
3421 alt_regno = next_scratch_gr_reg ();
3422 alt_reg = gen_rtx_REG (DImode, alt_regno);
3423 emit_move_insn (alt_reg, reg);
3424 do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
3425 cfa_off -= 8;
3426 }
3427 }
3428
3429 if (current_frame_info.r[reg_save_gp])
3430 {
3431 reg_emitted (reg_save_gp);
3432 insn = emit_move_insn (gen_rtx_REG (DImode,
3433 current_frame_info.r[reg_save_gp]),
3434 pic_offset_table_rtx);
3435 }
3436
3437 /* We should now be at the base of the gr/br/fr spill area. */
3438 gcc_assert (cfa_off == (current_frame_info.spill_cfa_off
3439 + current_frame_info.spill_size));
3440
3441 /* Spill all general registers. */
3442 for (regno = GR_REG (1); regno <= GR_REG (31); ++regno)
3443 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3444 {
3445 reg = gen_rtx_REG (DImode, regno);
3446 do_spill (gen_gr_spill, reg, cfa_off, reg);
3447 cfa_off -= 8;
3448 }
3449
3450 /* Spill the rest of the BR registers. */
3451 for (regno = BR_REG (1); regno <= BR_REG (7); ++regno)
3452 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3453 {
3454 alt_regno = next_scratch_gr_reg ();
3455 alt_reg = gen_rtx_REG (DImode, alt_regno);
3456 reg = gen_rtx_REG (DImode, regno);
3457 emit_move_insn (alt_reg, reg);
3458 do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
3459 cfa_off -= 8;
3460 }
3461
3462 /* Align the frame and spill all FR registers. */
3463 for (regno = FR_REG (2); regno <= FR_REG (127); ++regno)
3464 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3465 {
3466 gcc_assert (!(cfa_off & 15));
3467 reg = gen_rtx_REG (XFmode, regno);
3468 do_spill (gen_fr_spill_x, reg, cfa_off, reg);
3469 cfa_off -= 16;
3470 }
3471
3472 gcc_assert (cfa_off == current_frame_info.spill_cfa_off);
3473
3474 finish_spill_pointers ();
3475 }
3476
3477 /* Output the textual info surrounding the prologue. */
3478
3479 void
3480 ia64_start_function (FILE *file, const char *fnname,
3481 tree decl ATTRIBUTE_UNUSED)
3482 {
3483 #if VMS_DEBUGGING_INFO
3484 if (vms_debug_main
3485 && strncmp (vms_debug_main, fnname, strlen (vms_debug_main)) == 0)
3486 {
3487 targetm.asm_out.globalize_label (asm_out_file, VMS_DEBUG_MAIN_POINTER);
3488 ASM_OUTPUT_DEF (asm_out_file, VMS_DEBUG_MAIN_POINTER, fnname);
3489 dwarf2out_vms_debug_main_pointer ();
3490 vms_debug_main = 0;
3491 }
3492 #endif
3493
3494 fputs ("\t.proc ", file);
3495 assemble_name (file, fnname);
3496 fputc ('\n', file);
3497 ASM_OUTPUT_LABEL (file, fnname);
3498 }
3499
3500 /* Called after register allocation to add any instructions needed for the
3501 epilogue. Using an epilogue insn is favored compared to putting all of the
3502 instructions in output_function_prologue(), since it allows the scheduler
3503 to intermix instructions with the saves of the caller saved registers. In
3504 some cases, it might be necessary to emit a barrier instruction as the last
3505 insn to prevent such scheduling. */
3506
3507 void
3508 ia64_expand_epilogue (int sibcall_p)
3509 {
3510 rtx insn, reg, alt_reg, ar_unat_save_reg;
3511 int regno, alt_regno, cfa_off;
3512
3513 ia64_compute_frame_size (get_frame_size ());
3514
3515 /* If there is a frame pointer, then we use it instead of the stack
3516 pointer, so that the stack pointer does not need to be valid when
3517 the epilogue starts. See EXIT_IGNORE_STACK. */
3518 if (frame_pointer_needed)
3519 setup_spill_pointers (current_frame_info.n_spilled,
3520 hard_frame_pointer_rtx, 0);
3521 else
3522 setup_spill_pointers (current_frame_info.n_spilled, stack_pointer_rtx,
3523 current_frame_info.total_size);
3524
3525 if (current_frame_info.total_size != 0)
3526 {
3527 /* ??? At this point we must generate a magic insn that appears to
3528 modify the spill iterators and the frame pointer. This would
3529 allow the most scheduling freedom. For now, just hard stop. */
3530 emit_insn (gen_blockage ());
3531 }
3532
3533 /* Locate the bottom of the register save area. */
3534 cfa_off = (current_frame_info.spill_cfa_off
3535 + current_frame_info.spill_size
3536 + current_frame_info.extra_spill_size);
3537
3538 /* Restore the predicate registers. */
3539 if (TEST_HARD_REG_BIT (current_frame_info.mask, PR_REG (0)))
3540 {
3541 if (current_frame_info.r[reg_save_pr] != 0)
3542 {
3543 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_pr]);
3544 reg_emitted (reg_save_pr);
3545 }
3546 else
3547 {
3548 alt_regno = next_scratch_gr_reg ();
3549 alt_reg = gen_rtx_REG (DImode, alt_regno);
3550 do_restore (gen_movdi_x, alt_reg, cfa_off);
3551 cfa_off -= 8;
3552 }
3553 reg = gen_rtx_REG (DImode, PR_REG (0));
3554 emit_move_insn (reg, alt_reg);
3555 }
3556
3557 /* Restore the application registers. */
3558
3559 /* Load the saved unat from the stack, but do not restore it until
3560 after the GRs have been restored. */
3561 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
3562 {
3563 if (current_frame_info.r[reg_save_ar_unat] != 0)
3564 {
3565 ar_unat_save_reg
3566 = gen_rtx_REG (DImode, current_frame_info.r[reg_save_ar_unat]);
3567 reg_emitted (reg_save_ar_unat);
3568 }
3569 else
3570 {
3571 alt_regno = next_scratch_gr_reg ();
3572 ar_unat_save_reg = gen_rtx_REG (DImode, alt_regno);
3573 current_frame_info.gr_used_mask |= 1 << alt_regno;
3574 do_restore (gen_movdi_x, ar_unat_save_reg, cfa_off);
3575 cfa_off -= 8;
3576 }
3577 }
3578 else
3579 ar_unat_save_reg = NULL_RTX;
3580
3581 if (current_frame_info.r[reg_save_ar_pfs] != 0)
3582 {
3583 reg_emitted (reg_save_ar_pfs);
3584 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_ar_pfs]);
3585 reg = gen_rtx_REG (DImode, AR_PFS_REGNUM);
3586 emit_move_insn (reg, alt_reg);
3587 }
3588 else if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM))
3589 {
3590 alt_regno = next_scratch_gr_reg ();
3591 alt_reg = gen_rtx_REG (DImode, alt_regno);
3592 do_restore (gen_movdi_x, alt_reg, cfa_off);
3593 cfa_off -= 8;
3594 reg = gen_rtx_REG (DImode, AR_PFS_REGNUM);
3595 emit_move_insn (reg, alt_reg);
3596 }
3597
3598 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_LC_REGNUM))
3599 {
3600 if (current_frame_info.r[reg_save_ar_lc] != 0)
3601 {
3602 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_ar_lc]);
3603 reg_emitted (reg_save_ar_lc);
3604 }
3605 else
3606 {
3607 alt_regno = next_scratch_gr_reg ();
3608 alt_reg = gen_rtx_REG (DImode, alt_regno);
3609 do_restore (gen_movdi_x, alt_reg, cfa_off);
3610 cfa_off -= 8;
3611 }
3612 reg = gen_rtx_REG (DImode, AR_LC_REGNUM);
3613 emit_move_insn (reg, alt_reg);
3614 }
3615
3616 /* Restore the return pointer. */
3617 if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0)))
3618 {
3619 if (current_frame_info.r[reg_save_b0] != 0)
3620 {
3621 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_b0]);
3622 reg_emitted (reg_save_b0);
3623 }
3624 else
3625 {
3626 alt_regno = next_scratch_gr_reg ();
3627 alt_reg = gen_rtx_REG (DImode, alt_regno);
3628 do_restore (gen_movdi_x, alt_reg, cfa_off);
3629 cfa_off -= 8;
3630 }
3631 reg = gen_rtx_REG (DImode, BR_REG (0));
3632 emit_move_insn (reg, alt_reg);
3633 }
3634
3635 /* We should now be at the base of the gr/br/fr spill area. */
3636 gcc_assert (cfa_off == (current_frame_info.spill_cfa_off
3637 + current_frame_info.spill_size));
3638
3639 /* The GP may be stored on the stack in the prologue, but it's
3640 never restored in the epilogue. Skip the stack slot. */
3641 if (TEST_HARD_REG_BIT (current_frame_info.mask, GR_REG (1)))
3642 cfa_off -= 8;
3643
3644 /* Restore all general registers. */
3645 for (regno = GR_REG (2); regno <= GR_REG (31); ++regno)
3646 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3647 {
3648 reg = gen_rtx_REG (DImode, regno);
3649 do_restore (gen_gr_restore, reg, cfa_off);
3650 cfa_off -= 8;
3651 }
3652
3653 /* Restore the branch registers. */
3654 for (regno = BR_REG (1); regno <= BR_REG (7); ++regno)
3655 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3656 {
3657 alt_regno = next_scratch_gr_reg ();
3658 alt_reg = gen_rtx_REG (DImode, alt_regno);
3659 do_restore (gen_movdi_x, alt_reg, cfa_off);
3660 cfa_off -= 8;
3661 reg = gen_rtx_REG (DImode, regno);
3662 emit_move_insn (reg, alt_reg);
3663 }
3664
3665 /* Restore floating point registers. */
3666 for (regno = FR_REG (2); regno <= FR_REG (127); ++regno)
3667 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3668 {
3669 gcc_assert (!(cfa_off & 15));
3670 reg = gen_rtx_REG (XFmode, regno);
3671 do_restore (gen_fr_restore_x, reg, cfa_off);
3672 cfa_off -= 16;
3673 }
3674
3675 /* Restore ar.unat for real. */
3676 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
3677 {
3678 reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
3679 emit_move_insn (reg, ar_unat_save_reg);
3680 }
3681
3682 gcc_assert (cfa_off == current_frame_info.spill_cfa_off);
3683
3684 finish_spill_pointers ();
3685
3686 if (current_frame_info.total_size
3687 || cfun->machine->ia64_eh_epilogue_sp
3688 || frame_pointer_needed)
3689 {
3690 /* ??? At this point we must generate a magic insn that appears to
3691 modify the spill iterators, the stack pointer, and the frame
3692 pointer. This would allow the most scheduling freedom. For now,
3693 just hard stop. */
3694 emit_insn (gen_blockage ());
3695 }
3696
3697 if (cfun->machine->ia64_eh_epilogue_sp)
3698 emit_move_insn (stack_pointer_rtx, cfun->machine->ia64_eh_epilogue_sp);
3699 else if (frame_pointer_needed)
3700 {
3701 insn = emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
3702 RTX_FRAME_RELATED_P (insn) = 1;
3703 add_reg_note (insn, REG_CFA_ADJUST_CFA, NULL);
3704 }
3705 else if (current_frame_info.total_size)
3706 {
3707 rtx offset, frame_size_rtx;
3708
3709 frame_size_rtx = GEN_INT (current_frame_info.total_size);
3710 if (satisfies_constraint_I (frame_size_rtx))
3711 offset = frame_size_rtx;
3712 else
3713 {
3714 regno = next_scratch_gr_reg ();
3715 offset = gen_rtx_REG (DImode, regno);
3716 emit_move_insn (offset, frame_size_rtx);
3717 }
3718
3719 insn = emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
3720 offset));
3721
3722 RTX_FRAME_RELATED_P (insn) = 1;
3723 add_reg_note (insn, REG_CFA_ADJUST_CFA,
3724 gen_rtx_SET (VOIDmode,
3725 stack_pointer_rtx,
3726 gen_rtx_PLUS (DImode,
3727 stack_pointer_rtx,
3728 frame_size_rtx)));
3729 }
3730
3731 if (cfun->machine->ia64_eh_epilogue_bsp)
3732 emit_insn (gen_set_bsp (cfun->machine->ia64_eh_epilogue_bsp));
3733
3734 if (! sibcall_p)
3735 emit_jump_insn (gen_return_internal (gen_rtx_REG (DImode, BR_REG (0))));
3736 else
3737 {
3738 int fp = GR_REG (2);
3739 /* We need a throw away register here, r0 and r1 are reserved,
3740 so r2 is the first available call clobbered register. If
3741 there was a frame_pointer register, we may have swapped the
3742 names of r2 and HARD_FRAME_POINTER_REGNUM, so we have to make
3743 sure we're using the string "r2" when emitting the register
3744 name for the assembler. */
3745 if (current_frame_info.r[reg_fp]
3746 && current_frame_info.r[reg_fp] == GR_REG (2))
3747 fp = HARD_FRAME_POINTER_REGNUM;
3748
3749 /* We must emit an alloc to force the input registers to become output
3750 registers. Otherwise, if the callee tries to pass its parameters
3751 through to another call without an intervening alloc, then these
3752 values get lost. */
3753 /* ??? We don't need to preserve all input registers. We only need to
3754 preserve those input registers used as arguments to the sibling call.
3755 It is unclear how to compute that number here. */
3756 if (current_frame_info.n_input_regs != 0)
3757 {
3758 rtx n_inputs = GEN_INT (current_frame_info.n_input_regs);
3759 insn = emit_insn (gen_alloc (gen_rtx_REG (DImode, fp),
3760 const0_rtx, const0_rtx,
3761 n_inputs, const0_rtx));
3762 RTX_FRAME_RELATED_P (insn) = 1;
3763 }
3764 }
3765 }
3766
3767 /* Return 1 if br.ret can do all the work required to return from a
3768 function. */
3769
3770 int
3771 ia64_direct_return (void)
3772 {
3773 if (reload_completed && ! frame_pointer_needed)
3774 {
3775 ia64_compute_frame_size (get_frame_size ());
3776
3777 return (current_frame_info.total_size == 0
3778 && current_frame_info.n_spilled == 0
3779 && current_frame_info.r[reg_save_b0] == 0
3780 && current_frame_info.r[reg_save_pr] == 0
3781 && current_frame_info.r[reg_save_ar_pfs] == 0
3782 && current_frame_info.r[reg_save_ar_unat] == 0
3783 && current_frame_info.r[reg_save_ar_lc] == 0);
3784 }
3785 return 0;
3786 }
3787
3788 /* Return the magic cookie that we use to hold the return address
3789 during early compilation. */
3790
3791 rtx
3792 ia64_return_addr_rtx (HOST_WIDE_INT count, rtx frame ATTRIBUTE_UNUSED)
3793 {
3794 if (count != 0)
3795 return NULL;
3796 return gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_RET_ADDR);
3797 }
3798
3799 /* Split this value after reload, now that we know where the return
3800 address is saved. */
3801
3802 void
3803 ia64_split_return_addr_rtx (rtx dest)
3804 {
3805 rtx src;
3806
3807 if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0)))
3808 {
3809 if (current_frame_info.r[reg_save_b0] != 0)
3810 {
3811 src = gen_rtx_REG (DImode, current_frame_info.r[reg_save_b0]);
3812 reg_emitted (reg_save_b0);
3813 }
3814 else
3815 {
3816 HOST_WIDE_INT off;
3817 unsigned int regno;
3818 rtx off_r;
3819
3820 /* Compute offset from CFA for BR0. */
3821 /* ??? Must be kept in sync with ia64_expand_prologue. */
3822 off = (current_frame_info.spill_cfa_off
3823 + current_frame_info.spill_size);
3824 for (regno = GR_REG (1); regno <= GR_REG (31); ++regno)
3825 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3826 off -= 8;
3827
3828 /* Convert CFA offset to a register based offset. */
3829 if (frame_pointer_needed)
3830 src = hard_frame_pointer_rtx;
3831 else
3832 {
3833 src = stack_pointer_rtx;
3834 off += current_frame_info.total_size;
3835 }
3836
3837 /* Load address into scratch register. */
3838 off_r = GEN_INT (off);
3839 if (satisfies_constraint_I (off_r))
3840 emit_insn (gen_adddi3 (dest, src, off_r));
3841 else
3842 {
3843 emit_move_insn (dest, off_r);
3844 emit_insn (gen_adddi3 (dest, src, dest));
3845 }
3846
3847 src = gen_rtx_MEM (Pmode, dest);
3848 }
3849 }
3850 else
3851 src = gen_rtx_REG (DImode, BR_REG (0));
3852
3853 emit_move_insn (dest, src);
3854 }
3855
3856 int
3857 ia64_hard_regno_rename_ok (int from, int to)
3858 {
3859 /* Don't clobber any of the registers we reserved for the prologue. */
3860 unsigned int r;
3861
3862 for (r = reg_fp; r <= reg_save_ar_lc; r++)
3863 if (to == current_frame_info.r[r]
3864 || from == current_frame_info.r[r]
3865 || to == emitted_frame_related_regs[r]
3866 || from == emitted_frame_related_regs[r])
3867 return 0;
3868
3869 /* Don't use output registers outside the register frame. */
3870 if (OUT_REGNO_P (to) && to >= OUT_REG (current_frame_info.n_output_regs))
3871 return 0;
3872
3873 /* Retain even/oddness on predicate register pairs. */
3874 if (PR_REGNO_P (from) && PR_REGNO_P (to))
3875 return (from & 1) == (to & 1);
3876
3877 return 1;
3878 }
3879
3880 /* Target hook for assembling integer objects. Handle word-sized
3881 aligned objects and detect the cases when @fptr is needed. */
3882
3883 static bool
3884 ia64_assemble_integer (rtx x, unsigned int size, int aligned_p)
3885 {
3886 if (size == POINTER_SIZE / BITS_PER_UNIT
3887 && !(TARGET_NO_PIC || TARGET_AUTO_PIC)
3888 && GET_CODE (x) == SYMBOL_REF
3889 && SYMBOL_REF_FUNCTION_P (x))
3890 {
3891 static const char * const directive[2][2] = {
3892 /* 64-bit pointer */ /* 32-bit pointer */
3893 { "\tdata8.ua\t@fptr(", "\tdata4.ua\t@fptr("}, /* unaligned */
3894 { "\tdata8\t@fptr(", "\tdata4\t@fptr("} /* aligned */
3895 };
3896 fputs (directive[(aligned_p != 0)][POINTER_SIZE == 32], asm_out_file);
3897 output_addr_const (asm_out_file, x);
3898 fputs (")\n", asm_out_file);
3899 return true;
3900 }
3901 return default_assemble_integer (x, size, aligned_p);
3902 }
3903
3904 /* Emit the function prologue. */
3905
3906 static void
3907 ia64_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
3908 {
3909 int mask, grsave, grsave_prev;
3910
3911 if (current_frame_info.need_regstk)
3912 fprintf (file, "\t.regstk %d, %d, %d, %d\n",
3913 current_frame_info.n_input_regs,
3914 current_frame_info.n_local_regs,
3915 current_frame_info.n_output_regs,
3916 current_frame_info.n_rotate_regs);
3917
3918 if (ia64_except_unwind_info () != UI_TARGET)
3919 return;
3920
3921 /* Emit the .prologue directive. */
3922
3923 mask = 0;
3924 grsave = grsave_prev = 0;
3925 if (current_frame_info.r[reg_save_b0] != 0)
3926 {
3927 mask |= 8;
3928 grsave = grsave_prev = current_frame_info.r[reg_save_b0];
3929 }
3930 if (current_frame_info.r[reg_save_ar_pfs] != 0
3931 && (grsave_prev == 0
3932 || current_frame_info.r[reg_save_ar_pfs] == grsave_prev + 1))
3933 {
3934 mask |= 4;
3935 if (grsave_prev == 0)
3936 grsave = current_frame_info.r[reg_save_ar_pfs];
3937 grsave_prev = current_frame_info.r[reg_save_ar_pfs];
3938 }
3939 if (current_frame_info.r[reg_fp] != 0
3940 && (grsave_prev == 0
3941 || current_frame_info.r[reg_fp] == grsave_prev + 1))
3942 {
3943 mask |= 2;
3944 if (grsave_prev == 0)
3945 grsave = HARD_FRAME_POINTER_REGNUM;
3946 grsave_prev = current_frame_info.r[reg_fp];
3947 }
3948 if (current_frame_info.r[reg_save_pr] != 0
3949 && (grsave_prev == 0
3950 || current_frame_info.r[reg_save_pr] == grsave_prev + 1))
3951 {
3952 mask |= 1;
3953 if (grsave_prev == 0)
3954 grsave = current_frame_info.r[reg_save_pr];
3955 }
3956
3957 if (mask && TARGET_GNU_AS)
3958 fprintf (file, "\t.prologue %d, %d\n", mask,
3959 ia64_dbx_register_number (grsave));
3960 else
3961 fputs ("\t.prologue\n", file);
3962
3963 /* Emit a .spill directive, if necessary, to relocate the base of
3964 the register spill area. */
3965 if (current_frame_info.spill_cfa_off != -16)
3966 fprintf (file, "\t.spill %ld\n",
3967 (long) (current_frame_info.spill_cfa_off
3968 + current_frame_info.spill_size));
3969 }
3970
3971 /* Emit the .body directive at the scheduled end of the prologue. */
3972
3973 static void
3974 ia64_output_function_end_prologue (FILE *file)
3975 {
3976 if (ia64_except_unwind_info () != UI_TARGET)
3977 return;
3978
3979 fputs ("\t.body\n", file);
3980 }
3981
3982 /* Emit the function epilogue. */
3983
3984 static void
3985 ia64_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
3986 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
3987 {
3988 int i;
3989
3990 if (current_frame_info.r[reg_fp])
3991 {
3992 const char *tmp = reg_names[HARD_FRAME_POINTER_REGNUM];
3993 reg_names[HARD_FRAME_POINTER_REGNUM]
3994 = reg_names[current_frame_info.r[reg_fp]];
3995 reg_names[current_frame_info.r[reg_fp]] = tmp;
3996 reg_emitted (reg_fp);
3997 }
3998 if (! TARGET_REG_NAMES)
3999 {
4000 for (i = 0; i < current_frame_info.n_input_regs; i++)
4001 reg_names[IN_REG (i)] = ia64_input_reg_names[i];
4002 for (i = 0; i < current_frame_info.n_local_regs; i++)
4003 reg_names[LOC_REG (i)] = ia64_local_reg_names[i];
4004 for (i = 0; i < current_frame_info.n_output_regs; i++)
4005 reg_names[OUT_REG (i)] = ia64_output_reg_names[i];
4006 }
4007
4008 current_frame_info.initialized = 0;
4009 }
4010
4011 int
4012 ia64_dbx_register_number (int regno)
4013 {
4014 /* In ia64_expand_prologue we quite literally renamed the frame pointer
4015 from its home at loc79 to something inside the register frame. We
4016 must perform the same renumbering here for the debug info. */
4017 if (current_frame_info.r[reg_fp])
4018 {
4019 if (regno == HARD_FRAME_POINTER_REGNUM)
4020 regno = current_frame_info.r[reg_fp];
4021 else if (regno == current_frame_info.r[reg_fp])
4022 regno = HARD_FRAME_POINTER_REGNUM;
4023 }
4024
4025 if (IN_REGNO_P (regno))
4026 return 32 + regno - IN_REG (0);
4027 else if (LOC_REGNO_P (regno))
4028 return 32 + current_frame_info.n_input_regs + regno - LOC_REG (0);
4029 else if (OUT_REGNO_P (regno))
4030 return (32 + current_frame_info.n_input_regs
4031 + current_frame_info.n_local_regs + regno - OUT_REG (0));
4032 else
4033 return regno;
4034 }
4035
4036 /* Implement TARGET_TRAMPOLINE_INIT.
4037
4038 The trampoline should set the static chain pointer to value placed
4039 into the trampoline and should branch to the specified routine.
4040 To make the normal indirect-subroutine calling convention work,
4041 the trampoline must look like a function descriptor; the first
4042 word being the target address and the second being the target's
4043 global pointer.
4044
4045 We abuse the concept of a global pointer by arranging for it
4046 to point to the data we need to load. The complete trampoline
4047 has the following form:
4048
4049 +-------------------+ \
4050 TRAMP: | __ia64_trampoline | |
4051 +-------------------+ > fake function descriptor
4052 | TRAMP+16 | |
4053 +-------------------+ /
4054 | target descriptor |
4055 +-------------------+
4056 | static link |
4057 +-------------------+
4058 */
4059
4060 static void
4061 ia64_trampoline_init (rtx m_tramp, tree fndecl, rtx static_chain)
4062 {
4063 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
4064 rtx addr, addr_reg, tramp, eight = GEN_INT (8);
4065
4066 /* The Intel assembler requires that the global __ia64_trampoline symbol
4067 be declared explicitly */
4068 if (!TARGET_GNU_AS)
4069 {
4070 static bool declared_ia64_trampoline = false;
4071
4072 if (!declared_ia64_trampoline)
4073 {
4074 declared_ia64_trampoline = true;
4075 (*targetm.asm_out.globalize_label) (asm_out_file,
4076 "__ia64_trampoline");
4077 }
4078 }
4079
4080 /* Make sure addresses are Pmode even if we are in ILP32 mode. */
4081 addr = convert_memory_address (Pmode, XEXP (m_tramp, 0));
4082 fnaddr = convert_memory_address (Pmode, fnaddr);
4083 static_chain = convert_memory_address (Pmode, static_chain);
4084
4085 /* Load up our iterator. */
4086 addr_reg = copy_to_reg (addr);
4087 m_tramp = adjust_automodify_address (m_tramp, Pmode, addr_reg, 0);
4088
4089 /* The first two words are the fake descriptor:
4090 __ia64_trampoline, ADDR+16. */
4091 tramp = gen_rtx_SYMBOL_REF (Pmode, "__ia64_trampoline");
4092 if (TARGET_ABI_OPEN_VMS)
4093 {
4094 /* HP decided to break the ELF ABI on VMS (to deal with an ambiguity
4095 in the Macro-32 compiler) and changed the semantics of the LTOFF22
4096 relocation against function symbols to make it identical to the
4097 LTOFF_FPTR22 relocation. Emit the latter directly to stay within
4098 strict ELF and dereference to get the bare code address. */
4099 rtx reg = gen_reg_rtx (Pmode);
4100 SYMBOL_REF_FLAGS (tramp) |= SYMBOL_FLAG_FUNCTION;
4101 emit_move_insn (reg, tramp);
4102 emit_move_insn (reg, gen_rtx_MEM (Pmode, reg));
4103 tramp = reg;
4104 }
4105 emit_move_insn (m_tramp, tramp);
4106 emit_insn (gen_adddi3 (addr_reg, addr_reg, eight));
4107 m_tramp = adjust_automodify_address (m_tramp, VOIDmode, NULL, 8);
4108
4109 emit_move_insn (m_tramp, force_reg (Pmode, plus_constant (addr, 16)));
4110 emit_insn (gen_adddi3 (addr_reg, addr_reg, eight));
4111 m_tramp = adjust_automodify_address (m_tramp, VOIDmode, NULL, 8);
4112
4113 /* The third word is the target descriptor. */
4114 emit_move_insn (m_tramp, force_reg (Pmode, fnaddr));
4115 emit_insn (gen_adddi3 (addr_reg, addr_reg, eight));
4116 m_tramp = adjust_automodify_address (m_tramp, VOIDmode, NULL, 8);
4117
4118 /* The fourth word is the static chain. */
4119 emit_move_insn (m_tramp, static_chain);
4120 }
4121 \f
4122 /* Do any needed setup for a variadic function. CUM has not been updated
4123 for the last named argument which has type TYPE and mode MODE.
4124
4125 We generate the actual spill instructions during prologue generation. */
4126
4127 static void
4128 ia64_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
4129 tree type, int * pretend_size,
4130 int second_time ATTRIBUTE_UNUSED)
4131 {
4132 CUMULATIVE_ARGS next_cum = *cum;
4133
4134 /* Skip the current argument. */
4135 ia64_function_arg_advance (&next_cum, mode, type, 1);
4136
4137 if (next_cum.words < MAX_ARGUMENT_SLOTS)
4138 {
4139 int n = MAX_ARGUMENT_SLOTS - next_cum.words;
4140 *pretend_size = n * UNITS_PER_WORD;
4141 cfun->machine->n_varargs = n;
4142 }
4143 }
4144
4145 /* Check whether TYPE is a homogeneous floating point aggregate. If
4146 it is, return the mode of the floating point type that appears
4147 in all leafs. If it is not, return VOIDmode.
4148
4149 An aggregate is a homogeneous floating point aggregate is if all
4150 fields/elements in it have the same floating point type (e.g,
4151 SFmode). 128-bit quad-precision floats are excluded.
4152
4153 Variable sized aggregates should never arrive here, since we should
4154 have already decided to pass them by reference. Top-level zero-sized
4155 aggregates are excluded because our parallels crash the middle-end. */
4156
4157 static enum machine_mode
4158 hfa_element_mode (const_tree type, bool nested)
4159 {
4160 enum machine_mode element_mode = VOIDmode;
4161 enum machine_mode mode;
4162 enum tree_code code = TREE_CODE (type);
4163 int know_element_mode = 0;
4164 tree t;
4165
4166 if (!nested && (!TYPE_SIZE (type) || integer_zerop (TYPE_SIZE (type))))
4167 return VOIDmode;
4168
4169 switch (code)
4170 {
4171 case VOID_TYPE: case INTEGER_TYPE: case ENUMERAL_TYPE:
4172 case BOOLEAN_TYPE: case POINTER_TYPE:
4173 case OFFSET_TYPE: case REFERENCE_TYPE: case METHOD_TYPE:
4174 case LANG_TYPE: case FUNCTION_TYPE:
4175 return VOIDmode;
4176
4177 /* Fortran complex types are supposed to be HFAs, so we need to handle
4178 gcc's COMPLEX_TYPEs as HFAs. We need to exclude the integral complex
4179 types though. */
4180 case COMPLEX_TYPE:
4181 if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT
4182 && TYPE_MODE (type) != TCmode)
4183 return GET_MODE_INNER (TYPE_MODE (type));
4184 else
4185 return VOIDmode;
4186
4187 case REAL_TYPE:
4188 /* We want to return VOIDmode for raw REAL_TYPEs, but the actual
4189 mode if this is contained within an aggregate. */
4190 if (nested && TYPE_MODE (type) != TFmode)
4191 return TYPE_MODE (type);
4192 else
4193 return VOIDmode;
4194
4195 case ARRAY_TYPE:
4196 return hfa_element_mode (TREE_TYPE (type), 1);
4197
4198 case RECORD_TYPE:
4199 case UNION_TYPE:
4200 case QUAL_UNION_TYPE:
4201 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
4202 {
4203 if (TREE_CODE (t) != FIELD_DECL)
4204 continue;
4205
4206 mode = hfa_element_mode (TREE_TYPE (t), 1);
4207 if (know_element_mode)
4208 {
4209 if (mode != element_mode)
4210 return VOIDmode;
4211 }
4212 else if (GET_MODE_CLASS (mode) != MODE_FLOAT)
4213 return VOIDmode;
4214 else
4215 {
4216 know_element_mode = 1;
4217 element_mode = mode;
4218 }
4219 }
4220 return element_mode;
4221
4222 default:
4223 /* If we reach here, we probably have some front-end specific type
4224 that the backend doesn't know about. This can happen via the
4225 aggregate_value_p call in init_function_start. All we can do is
4226 ignore unknown tree types. */
4227 return VOIDmode;
4228 }
4229
4230 return VOIDmode;
4231 }
4232
4233 /* Return the number of words required to hold a quantity of TYPE and MODE
4234 when passed as an argument. */
4235 static int
4236 ia64_function_arg_words (tree type, enum machine_mode mode)
4237 {
4238 int words;
4239
4240 if (mode == BLKmode)
4241 words = int_size_in_bytes (type);
4242 else
4243 words = GET_MODE_SIZE (mode);
4244
4245 return (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* round up */
4246 }
4247
4248 /* Return the number of registers that should be skipped so the current
4249 argument (described by TYPE and WORDS) will be properly aligned.
4250
4251 Integer and float arguments larger than 8 bytes start at the next
4252 even boundary. Aggregates larger than 8 bytes start at the next
4253 even boundary if the aggregate has 16 byte alignment. Note that
4254 in the 32-bit ABI, TImode and TFmode have only 8-byte alignment
4255 but are still to be aligned in registers.
4256
4257 ??? The ABI does not specify how to handle aggregates with
4258 alignment from 9 to 15 bytes, or greater than 16. We handle them
4259 all as if they had 16 byte alignment. Such aggregates can occur
4260 only if gcc extensions are used. */
4261 static int
4262 ia64_function_arg_offset (CUMULATIVE_ARGS *cum, tree type, int words)
4263 {
4264 /* No registers are skipped on VMS. */
4265 if (TARGET_ABI_OPEN_VMS || (cum->words & 1) == 0)
4266 return 0;
4267
4268 if (type
4269 && TREE_CODE (type) != INTEGER_TYPE
4270 && TREE_CODE (type) != REAL_TYPE)
4271 return TYPE_ALIGN (type) > 8 * BITS_PER_UNIT;
4272 else
4273 return words > 1;
4274 }
4275
4276 /* Return rtx for register where argument is passed, or zero if it is passed
4277 on the stack. */
4278 /* ??? 128-bit quad-precision floats are always passed in general
4279 registers. */
4280
4281 rtx
4282 ia64_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
4283 int named, int incoming)
4284 {
4285 int basereg = (incoming ? GR_ARG_FIRST : AR_ARG_FIRST);
4286 int words = ia64_function_arg_words (type, mode);
4287 int offset = ia64_function_arg_offset (cum, type, words);
4288 enum machine_mode hfa_mode = VOIDmode;
4289
4290 /* For OPEN VMS, emit the instruction setting up the argument register here,
4291 when we know this will be together with the other arguments setup related
4292 insns. This is not the conceptually best place to do this, but this is
4293 the easiest as we have convenient access to cumulative args info. */
4294
4295 if (TARGET_ABI_OPEN_VMS && mode == VOIDmode && type == void_type_node
4296 && named == 1)
4297 {
4298 unsigned HOST_WIDE_INT regval = cum->words;
4299 int i;
4300
4301 for (i = 0; i < 8; i++)
4302 regval |= ((int) cum->atypes[i]) << (i * 3 + 8);
4303
4304 emit_move_insn (gen_rtx_REG (DImode, GR_REG (25)),
4305 GEN_INT (regval));
4306 }
4307
4308 /* If all argument slots are used, then it must go on the stack. */
4309 if (cum->words + offset >= MAX_ARGUMENT_SLOTS)
4310 return 0;
4311
4312 /* Check for and handle homogeneous FP aggregates. */
4313 if (type)
4314 hfa_mode = hfa_element_mode (type, 0);
4315
4316 /* Unnamed prototyped hfas are passed as usual. Named prototyped hfas
4317 and unprototyped hfas are passed specially. */
4318 if (hfa_mode != VOIDmode && (! cum->prototype || named))
4319 {
4320 rtx loc[16];
4321 int i = 0;
4322 int fp_regs = cum->fp_regs;
4323 int int_regs = cum->words + offset;
4324 int hfa_size = GET_MODE_SIZE (hfa_mode);
4325 int byte_size;
4326 int args_byte_size;
4327
4328 /* If prototyped, pass it in FR regs then GR regs.
4329 If not prototyped, pass it in both FR and GR regs.
4330
4331 If this is an SFmode aggregate, then it is possible to run out of
4332 FR regs while GR regs are still left. In that case, we pass the
4333 remaining part in the GR regs. */
4334
4335 /* Fill the FP regs. We do this always. We stop if we reach the end
4336 of the argument, the last FP register, or the last argument slot. */
4337
4338 byte_size = ((mode == BLKmode)
4339 ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
4340 args_byte_size = int_regs * UNITS_PER_WORD;
4341 offset = 0;
4342 for (; (offset < byte_size && fp_regs < MAX_ARGUMENT_SLOTS
4343 && args_byte_size < (MAX_ARGUMENT_SLOTS * UNITS_PER_WORD)); i++)
4344 {
4345 loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
4346 gen_rtx_REG (hfa_mode, (FR_ARG_FIRST
4347 + fp_regs)),
4348 GEN_INT (offset));
4349 offset += hfa_size;
4350 args_byte_size += hfa_size;
4351 fp_regs++;
4352 }
4353
4354 /* If no prototype, then the whole thing must go in GR regs. */
4355 if (! cum->prototype)
4356 offset = 0;
4357 /* If this is an SFmode aggregate, then we might have some left over
4358 that needs to go in GR regs. */
4359 else if (byte_size != offset)
4360 int_regs += offset / UNITS_PER_WORD;
4361
4362 /* Fill in the GR regs. We must use DImode here, not the hfa mode. */
4363
4364 for (; offset < byte_size && int_regs < MAX_ARGUMENT_SLOTS; i++)
4365 {
4366 enum machine_mode gr_mode = DImode;
4367 unsigned int gr_size;
4368
4369 /* If we have an odd 4 byte hunk because we ran out of FR regs,
4370 then this goes in a GR reg left adjusted/little endian, right
4371 adjusted/big endian. */
4372 /* ??? Currently this is handled wrong, because 4-byte hunks are
4373 always right adjusted/little endian. */
4374 if (offset & 0x4)
4375 gr_mode = SImode;
4376 /* If we have an even 4 byte hunk because the aggregate is a
4377 multiple of 4 bytes in size, then this goes in a GR reg right
4378 adjusted/little endian. */
4379 else if (byte_size - offset == 4)
4380 gr_mode = SImode;
4381
4382 loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
4383 gen_rtx_REG (gr_mode, (basereg
4384 + int_regs)),
4385 GEN_INT (offset));
4386
4387 gr_size = GET_MODE_SIZE (gr_mode);
4388 offset += gr_size;
4389 if (gr_size == UNITS_PER_WORD
4390 || (gr_size < UNITS_PER_WORD && offset % UNITS_PER_WORD == 0))
4391 int_regs++;
4392 else if (gr_size > UNITS_PER_WORD)
4393 int_regs += gr_size / UNITS_PER_WORD;
4394 }
4395 return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc));
4396 }
4397
4398 /* On OpenVMS variable argument is either in Rn or Fn. */
4399 else if (TARGET_ABI_OPEN_VMS && named == 0)
4400 {
4401 if (FLOAT_MODE_P (mode))
4402 return gen_rtx_REG (mode, FR_ARG_FIRST + cum->words);
4403 else
4404 return gen_rtx_REG (mode, basereg + cum->words);
4405 }
4406
4407 /* Integral and aggregates go in general registers. If we have run out of
4408 FR registers, then FP values must also go in general registers. This can
4409 happen when we have a SFmode HFA. */
4410 else if (mode == TFmode || mode == TCmode
4411 || (! FLOAT_MODE_P (mode) || cum->fp_regs == MAX_ARGUMENT_SLOTS))
4412 {
4413 int byte_size = ((mode == BLKmode)
4414 ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
4415 if (BYTES_BIG_ENDIAN
4416 && (mode == BLKmode || (type && AGGREGATE_TYPE_P (type)))
4417 && byte_size < UNITS_PER_WORD
4418 && byte_size > 0)
4419 {
4420 rtx gr_reg = gen_rtx_EXPR_LIST (VOIDmode,
4421 gen_rtx_REG (DImode,
4422 (basereg + cum->words
4423 + offset)),
4424 const0_rtx);
4425 return gen_rtx_PARALLEL (mode, gen_rtvec (1, gr_reg));
4426 }
4427 else
4428 return gen_rtx_REG (mode, basereg + cum->words + offset);
4429
4430 }
4431
4432 /* If there is a prototype, then FP values go in a FR register when
4433 named, and in a GR register when unnamed. */
4434 else if (cum->prototype)
4435 {
4436 if (named)
4437 return gen_rtx_REG (mode, FR_ARG_FIRST + cum->fp_regs);
4438 /* In big-endian mode, an anonymous SFmode value must be represented
4439 as (parallel:SF [(expr_list (reg:DI n) (const_int 0))]) to force
4440 the value into the high half of the general register. */
4441 else if (BYTES_BIG_ENDIAN && mode == SFmode)
4442 return gen_rtx_PARALLEL (mode,
4443 gen_rtvec (1,
4444 gen_rtx_EXPR_LIST (VOIDmode,
4445 gen_rtx_REG (DImode, basereg + cum->words + offset),
4446 const0_rtx)));
4447 else
4448 return gen_rtx_REG (mode, basereg + cum->words + offset);
4449 }
4450 /* If there is no prototype, then FP values go in both FR and GR
4451 registers. */
4452 else
4453 {
4454 /* See comment above. */
4455 enum machine_mode inner_mode =
4456 (BYTES_BIG_ENDIAN && mode == SFmode) ? DImode : mode;
4457
4458 rtx fp_reg = gen_rtx_EXPR_LIST (VOIDmode,
4459 gen_rtx_REG (mode, (FR_ARG_FIRST
4460 + cum->fp_regs)),
4461 const0_rtx);
4462 rtx gr_reg = gen_rtx_EXPR_LIST (VOIDmode,
4463 gen_rtx_REG (inner_mode,
4464 (basereg + cum->words
4465 + offset)),
4466 const0_rtx);
4467
4468 return gen_rtx_PARALLEL (mode, gen_rtvec (2, fp_reg, gr_reg));
4469 }
4470 }
4471
4472 /* Return number of bytes, at the beginning of the argument, that must be
4473 put in registers. 0 is the argument is entirely in registers or entirely
4474 in memory. */
4475
4476 static int
4477 ia64_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
4478 tree type, bool named ATTRIBUTE_UNUSED)
4479 {
4480 int words = ia64_function_arg_words (type, mode);
4481 int offset = ia64_function_arg_offset (cum, type, words);
4482
4483 /* If all argument slots are used, then it must go on the stack. */
4484 if (cum->words + offset >= MAX_ARGUMENT_SLOTS)
4485 return 0;
4486
4487 /* It doesn't matter whether the argument goes in FR or GR regs. If
4488 it fits within the 8 argument slots, then it goes entirely in
4489 registers. If it extends past the last argument slot, then the rest
4490 goes on the stack. */
4491
4492 if (words + cum->words + offset <= MAX_ARGUMENT_SLOTS)
4493 return 0;
4494
4495 return (MAX_ARGUMENT_SLOTS - cum->words - offset) * UNITS_PER_WORD;
4496 }
4497
4498 /* Return ivms_arg_type based on machine_mode. */
4499
4500 static enum ivms_arg_type
4501 ia64_arg_type (enum machine_mode mode)
4502 {
4503 switch (mode)
4504 {
4505 case SFmode:
4506 return FS;
4507 case DFmode:
4508 return FT;
4509 default:
4510 return I64;
4511 }
4512 }
4513
4514 /* Update CUM to point after this argument. This is patterned after
4515 ia64_function_arg. */
4516
4517 void
4518 ia64_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
4519 tree type, int named)
4520 {
4521 int words = ia64_function_arg_words (type, mode);
4522 int offset = ia64_function_arg_offset (cum, type, words);
4523 enum machine_mode hfa_mode = VOIDmode;
4524
4525 /* If all arg slots are already full, then there is nothing to do. */
4526 if (cum->words >= MAX_ARGUMENT_SLOTS)
4527 {
4528 cum->words += words + offset;
4529 return;
4530 }
4531
4532 cum->atypes[cum->words] = ia64_arg_type (mode);
4533 cum->words += words + offset;
4534
4535 /* Check for and handle homogeneous FP aggregates. */
4536 if (type)
4537 hfa_mode = hfa_element_mode (type, 0);
4538
4539 /* Unnamed prototyped hfas are passed as usual. Named prototyped hfas
4540 and unprototyped hfas are passed specially. */
4541 if (hfa_mode != VOIDmode && (! cum->prototype || named))
4542 {
4543 int fp_regs = cum->fp_regs;
4544 /* This is the original value of cum->words + offset. */
4545 int int_regs = cum->words - words;
4546 int hfa_size = GET_MODE_SIZE (hfa_mode);
4547 int byte_size;
4548 int args_byte_size;
4549
4550 /* If prototyped, pass it in FR regs then GR regs.
4551 If not prototyped, pass it in both FR and GR regs.
4552
4553 If this is an SFmode aggregate, then it is possible to run out of
4554 FR regs while GR regs are still left. In that case, we pass the
4555 remaining part in the GR regs. */
4556
4557 /* Fill the FP regs. We do this always. We stop if we reach the end
4558 of the argument, the last FP register, or the last argument slot. */
4559
4560 byte_size = ((mode == BLKmode)
4561 ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
4562 args_byte_size = int_regs * UNITS_PER_WORD;
4563 offset = 0;
4564 for (; (offset < byte_size && fp_regs < MAX_ARGUMENT_SLOTS
4565 && args_byte_size < (MAX_ARGUMENT_SLOTS * UNITS_PER_WORD));)
4566 {
4567 offset += hfa_size;
4568 args_byte_size += hfa_size;
4569 fp_regs++;
4570 }
4571
4572 cum->fp_regs = fp_regs;
4573 }
4574
4575 /* On OpenVMS variable argument is either in Rn or Fn. */
4576 else if (TARGET_ABI_OPEN_VMS && named == 0)
4577 {
4578 cum->int_regs = cum->words;
4579 cum->fp_regs = cum->words;
4580 }
4581
4582 /* Integral and aggregates go in general registers. So do TFmode FP values.
4583 If we have run out of FR registers, then other FP values must also go in
4584 general registers. This can happen when we have a SFmode HFA. */
4585 else if (mode == TFmode || mode == TCmode
4586 || (! FLOAT_MODE_P (mode) || cum->fp_regs == MAX_ARGUMENT_SLOTS))
4587 cum->int_regs = cum->words;
4588
4589 /* If there is a prototype, then FP values go in a FR register when
4590 named, and in a GR register when unnamed. */
4591 else if (cum->prototype)
4592 {
4593 if (! named)
4594 cum->int_regs = cum->words;
4595 else
4596 /* ??? Complex types should not reach here. */
4597 cum->fp_regs += (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT ? 2 : 1);
4598 }
4599 /* If there is no prototype, then FP values go in both FR and GR
4600 registers. */
4601 else
4602 {
4603 /* ??? Complex types should not reach here. */
4604 cum->fp_regs += (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT ? 2 : 1);
4605 cum->int_regs = cum->words;
4606 }
4607 }
4608
4609 /* Arguments with alignment larger than 8 bytes start at the next even
4610 boundary. On ILP32 HPUX, TFmode arguments start on next even boundary
4611 even though their normal alignment is 8 bytes. See ia64_function_arg. */
4612
4613 int
4614 ia64_function_arg_boundary (enum machine_mode mode, tree type)
4615 {
4616
4617 if (mode == TFmode && TARGET_HPUX && TARGET_ILP32)
4618 return PARM_BOUNDARY * 2;
4619
4620 if (type)
4621 {
4622 if (TYPE_ALIGN (type) > PARM_BOUNDARY)
4623 return PARM_BOUNDARY * 2;
4624 else
4625 return PARM_BOUNDARY;
4626 }
4627
4628 if (GET_MODE_BITSIZE (mode) > PARM_BOUNDARY)
4629 return PARM_BOUNDARY * 2;
4630 else
4631 return PARM_BOUNDARY;
4632 }
4633
4634 /* True if it is OK to do sibling call optimization for the specified
4635 call expression EXP. DECL will be the called function, or NULL if
4636 this is an indirect call. */
4637 static bool
4638 ia64_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
4639 {
4640 /* We can't perform a sibcall if the current function has the syscall_linkage
4641 attribute. */
4642 if (lookup_attribute ("syscall_linkage",
4643 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
4644 return false;
4645
4646 /* We must always return with our current GP. This means we can
4647 only sibcall to functions defined in the current module unless
4648 TARGET_CONST_GP is set to true. */
4649 return (decl && (*targetm.binds_local_p) (decl)) || TARGET_CONST_GP;
4650 }
4651 \f
4652
4653 /* Implement va_arg. */
4654
4655 static tree
4656 ia64_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
4657 gimple_seq *post_p)
4658 {
4659 /* Variable sized types are passed by reference. */
4660 if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
4661 {
4662 tree ptrtype = build_pointer_type (type);
4663 tree addr = std_gimplify_va_arg_expr (valist, ptrtype, pre_p, post_p);
4664 return build_va_arg_indirect_ref (addr);
4665 }
4666
4667 /* Aggregate arguments with alignment larger than 8 bytes start at
4668 the next even boundary. Integer and floating point arguments
4669 do so if they are larger than 8 bytes, whether or not they are
4670 also aligned larger than 8 bytes. */
4671 if ((TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == INTEGER_TYPE)
4672 ? int_size_in_bytes (type) > 8 : TYPE_ALIGN (type) > 8 * BITS_PER_UNIT)
4673 {
4674 tree t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (valist), valist,
4675 size_int (2 * UNITS_PER_WORD - 1));
4676 t = fold_convert (sizetype, t);
4677 t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
4678 size_int (-2 * UNITS_PER_WORD));
4679 t = fold_convert (TREE_TYPE (valist), t);
4680 gimplify_assign (unshare_expr (valist), t, pre_p);
4681 }
4682
4683 return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
4684 }
4685 \f
4686 /* Return 1 if function return value returned in memory. Return 0 if it is
4687 in a register. */
4688
4689 static bool
4690 ia64_return_in_memory (const_tree valtype, const_tree fntype ATTRIBUTE_UNUSED)
4691 {
4692 enum machine_mode mode;
4693 enum machine_mode hfa_mode;
4694 HOST_WIDE_INT byte_size;
4695
4696 mode = TYPE_MODE (valtype);
4697 byte_size = GET_MODE_SIZE (mode);
4698 if (mode == BLKmode)
4699 {
4700 byte_size = int_size_in_bytes (valtype);
4701 if (byte_size < 0)
4702 return true;
4703 }
4704
4705 /* Hfa's with up to 8 elements are returned in the FP argument registers. */
4706
4707 hfa_mode = hfa_element_mode (valtype, 0);
4708 if (hfa_mode != VOIDmode)
4709 {
4710 int hfa_size = GET_MODE_SIZE (hfa_mode);
4711
4712 if (byte_size / hfa_size > MAX_ARGUMENT_SLOTS)
4713 return true;
4714 else
4715 return false;
4716 }
4717 else if (byte_size > UNITS_PER_WORD * MAX_INT_RETURN_SLOTS)
4718 return true;
4719 else
4720 return false;
4721 }
4722
4723 /* Return rtx for register that holds the function return value. */
4724
4725 static rtx
4726 ia64_function_value (const_tree valtype,
4727 const_tree fn_decl_or_type,
4728 bool outgoing ATTRIBUTE_UNUSED)
4729 {
4730 enum machine_mode mode;
4731 enum machine_mode hfa_mode;
4732 int unsignedp;
4733 const_tree func = fn_decl_or_type;
4734
4735 if (fn_decl_or_type
4736 && !DECL_P (fn_decl_or_type))
4737 func = NULL;
4738
4739 mode = TYPE_MODE (valtype);
4740 hfa_mode = hfa_element_mode (valtype, 0);
4741
4742 if (hfa_mode != VOIDmode)
4743 {
4744 rtx loc[8];
4745 int i;
4746 int hfa_size;
4747 int byte_size;
4748 int offset;
4749
4750 hfa_size = GET_MODE_SIZE (hfa_mode);
4751 byte_size = ((mode == BLKmode)
4752 ? int_size_in_bytes (valtype) : GET_MODE_SIZE (mode));
4753 offset = 0;
4754 for (i = 0; offset < byte_size; i++)
4755 {
4756 loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
4757 gen_rtx_REG (hfa_mode, FR_ARG_FIRST + i),
4758 GEN_INT (offset));
4759 offset += hfa_size;
4760 }
4761 return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc));
4762 }
4763 else if (FLOAT_TYPE_P (valtype) && mode != TFmode && mode != TCmode)
4764 return gen_rtx_REG (mode, FR_ARG_FIRST);
4765 else
4766 {
4767 bool need_parallel = false;
4768
4769 /* In big-endian mode, we need to manage the layout of aggregates
4770 in the registers so that we get the bits properly aligned in
4771 the highpart of the registers. */
4772 if (BYTES_BIG_ENDIAN
4773 && (mode == BLKmode || (valtype && AGGREGATE_TYPE_P (valtype))))
4774 need_parallel = true;
4775
4776 /* Something like struct S { long double x; char a[0] } is not an
4777 HFA structure, and therefore doesn't go in fp registers. But
4778 the middle-end will give it XFmode anyway, and XFmode values
4779 don't normally fit in integer registers. So we need to smuggle
4780 the value inside a parallel. */
4781 else if (mode == XFmode || mode == XCmode || mode == RFmode)
4782 need_parallel = true;
4783
4784 if (need_parallel)
4785 {
4786 rtx loc[8];
4787 int offset;
4788 int bytesize;
4789 int i;
4790
4791 offset = 0;
4792 bytesize = int_size_in_bytes (valtype);
4793 /* An empty PARALLEL is invalid here, but the return value
4794 doesn't matter for empty structs. */
4795 if (bytesize == 0)
4796 return gen_rtx_REG (mode, GR_RET_FIRST);
4797 for (i = 0; offset < bytesize; i++)
4798 {
4799 loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
4800 gen_rtx_REG (DImode,
4801 GR_RET_FIRST + i),
4802 GEN_INT (offset));
4803 offset += UNITS_PER_WORD;
4804 }
4805 return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc));
4806 }
4807
4808 mode = ia64_promote_function_mode (valtype, mode, &unsignedp,
4809 func ? TREE_TYPE (func) : NULL_TREE,
4810 true);
4811
4812 return gen_rtx_REG (mode, GR_RET_FIRST);
4813 }
4814 }
4815
4816 /* Worker function for TARGET_LIBCALL_VALUE. */
4817
4818 static rtx
4819 ia64_libcall_value (enum machine_mode mode,
4820 const_rtx fun ATTRIBUTE_UNUSED)
4821 {
4822 return gen_rtx_REG (mode,
4823 (((GET_MODE_CLASS (mode) == MODE_FLOAT
4824 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
4825 && (mode) != TFmode)
4826 ? FR_RET_FIRST : GR_RET_FIRST));
4827 }
4828
4829 /* Worker function for FUNCTION_VALUE_REGNO_P. */
4830
4831 static bool
4832 ia64_function_value_regno_p (const unsigned int regno)
4833 {
4834 return ((regno >= GR_RET_FIRST && regno <= GR_RET_LAST)
4835 || (regno >= FR_RET_FIRST && regno <= FR_RET_LAST));
4836 }
4837
4838 /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
4839 We need to emit DTP-relative relocations. */
4840
4841 static void
4842 ia64_output_dwarf_dtprel (FILE *file, int size, rtx x)
4843 {
4844 gcc_assert (size == 4 || size == 8);
4845 if (size == 4)
4846 fputs ("\tdata4.ua\t@dtprel(", file);
4847 else
4848 fputs ("\tdata8.ua\t@dtprel(", file);
4849 output_addr_const (file, x);
4850 fputs (")", file);
4851 }
4852
4853 /* Print a memory address as an operand to reference that memory location. */
4854
4855 /* ??? Do we need this? It gets used only for 'a' operands. We could perhaps
4856 also call this from ia64_print_operand for memory addresses. */
4857
4858 void
4859 ia64_print_operand_address (FILE * stream ATTRIBUTE_UNUSED,
4860 rtx address ATTRIBUTE_UNUSED)
4861 {
4862 }
4863
4864 /* Print an operand to an assembler instruction.
4865 C Swap and print a comparison operator.
4866 D Print an FP comparison operator.
4867 E Print 32 - constant, for SImode shifts as extract.
4868 e Print 64 - constant, for DImode rotates.
4869 F A floating point constant 0.0 emitted as f0, or 1.0 emitted as f1, or
4870 a floating point register emitted normally.
4871 G A floating point constant.
4872 I Invert a predicate register by adding 1.
4873 J Select the proper predicate register for a condition.
4874 j Select the inverse predicate register for a condition.
4875 O Append .acq for volatile load.
4876 P Postincrement of a MEM.
4877 Q Append .rel for volatile store.
4878 R Print .s .d or nothing for a single, double or no truncation.
4879 S Shift amount for shladd instruction.
4880 T Print an 8-bit sign extended number (K) as a 32-bit unsigned number
4881 for Intel assembler.
4882 U Print an 8-bit sign extended number (K) as a 64-bit unsigned number
4883 for Intel assembler.
4884 X A pair of floating point registers.
4885 r Print register name, or constant 0 as r0. HP compatibility for
4886 Linux kernel.
4887 v Print vector constant value as an 8-byte integer value. */
4888
4889 void
4890 ia64_print_operand (FILE * file, rtx x, int code)
4891 {
4892 const char *str;
4893
4894 switch (code)
4895 {
4896 case 0:
4897 /* Handled below. */
4898 break;
4899
4900 case 'C':
4901 {
4902 enum rtx_code c = swap_condition (GET_CODE (x));
4903 fputs (GET_RTX_NAME (c), file);
4904 return;
4905 }
4906
4907 case 'D':
4908 switch (GET_CODE (x))
4909 {
4910 case NE:
4911 str = "neq";
4912 break;
4913 case UNORDERED:
4914 str = "unord";
4915 break;
4916 case ORDERED:
4917 str = "ord";
4918 break;
4919 case UNLT:
4920 str = "nge";
4921 break;
4922 case UNLE:
4923 str = "ngt";
4924 break;
4925 case UNGT:
4926 str = "nle";
4927 break;
4928 case UNGE:
4929 str = "nlt";
4930 break;
4931 default:
4932 str = GET_RTX_NAME (GET_CODE (x));
4933 break;
4934 }
4935 fputs (str, file);
4936 return;
4937
4938 case 'E':
4939 fprintf (file, HOST_WIDE_INT_PRINT_DEC, 32 - INTVAL (x));
4940 return;
4941
4942 case 'e':
4943 fprintf (file, HOST_WIDE_INT_PRINT_DEC, 64 - INTVAL (x));
4944 return;
4945
4946 case 'F':
4947 if (x == CONST0_RTX (GET_MODE (x)))
4948 str = reg_names [FR_REG (0)];
4949 else if (x == CONST1_RTX (GET_MODE (x)))
4950 str = reg_names [FR_REG (1)];
4951 else
4952 {
4953 gcc_assert (GET_CODE (x) == REG);
4954 str = reg_names [REGNO (x)];
4955 }
4956 fputs (str, file);
4957 return;
4958
4959 case 'G':
4960 {
4961 long val[4];
4962 REAL_VALUE_TYPE rv;
4963 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
4964 real_to_target (val, &rv, GET_MODE (x));
4965 if (GET_MODE (x) == SFmode)
4966 fprintf (file, "0x%08lx", val[0] & 0xffffffff);
4967 else if (GET_MODE (x) == DFmode)
4968 fprintf (file, "0x%08lx%08lx", (WORDS_BIG_ENDIAN ? val[0] : val[1])
4969 & 0xffffffff,
4970 (WORDS_BIG_ENDIAN ? val[1] : val[0])
4971 & 0xffffffff);
4972 else
4973 output_operand_lossage ("invalid %%G mode");
4974 }
4975 return;
4976
4977 case 'I':
4978 fputs (reg_names [REGNO (x) + 1], file);
4979 return;
4980
4981 case 'J':
4982 case 'j':
4983 {
4984 unsigned int regno = REGNO (XEXP (x, 0));
4985 if (GET_CODE (x) == EQ)
4986 regno += 1;
4987 if (code == 'j')
4988 regno ^= 1;
4989 fputs (reg_names [regno], file);
4990 }
4991 return;
4992
4993 case 'O':
4994 if (MEM_VOLATILE_P (x))
4995 fputs(".acq", file);
4996 return;
4997
4998 case 'P':
4999 {
5000 HOST_WIDE_INT value;
5001
5002 switch (GET_CODE (XEXP (x, 0)))
5003 {
5004 default:
5005 return;
5006
5007 case POST_MODIFY:
5008 x = XEXP (XEXP (XEXP (x, 0), 1), 1);
5009 if (GET_CODE (x) == CONST_INT)
5010 value = INTVAL (x);
5011 else
5012 {
5013 gcc_assert (GET_CODE (x) == REG);
5014 fprintf (file, ", %s", reg_names[REGNO (x)]);
5015 return;
5016 }
5017 break;
5018
5019 case POST_INC:
5020 value = GET_MODE_SIZE (GET_MODE (x));
5021 break;
5022
5023 case POST_DEC:
5024 value = - (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (x));
5025 break;
5026 }
5027
5028 fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC, value);
5029 return;
5030 }
5031
5032 case 'Q':
5033 if (MEM_VOLATILE_P (x))
5034 fputs(".rel", file);
5035 return;
5036
5037 case 'R':
5038 if (x == CONST0_RTX (GET_MODE (x)))
5039 fputs(".s", file);
5040 else if (x == CONST1_RTX (GET_MODE (x)))
5041 fputs(".d", file);
5042 else if (x == CONST2_RTX (GET_MODE (x)))
5043 ;
5044 else
5045 output_operand_lossage ("invalid %%R value");
5046 return;
5047
5048 case 'S':
5049 fprintf (file, "%d", exact_log2 (INTVAL (x)));
5050 return;
5051
5052 case 'T':
5053 if (! TARGET_GNU_AS && GET_CODE (x) == CONST_INT)
5054 {
5055 fprintf (file, "0x%x", (int) INTVAL (x) & 0xffffffff);
5056 return;
5057 }
5058 break;
5059
5060 case 'U':
5061 if (! TARGET_GNU_AS && GET_CODE (x) == CONST_INT)
5062 {
5063 const char *prefix = "0x";
5064 if (INTVAL (x) & 0x80000000)
5065 {
5066 fprintf (file, "0xffffffff");
5067 prefix = "";
5068 }
5069 fprintf (file, "%s%x", prefix, (int) INTVAL (x) & 0xffffffff);
5070 return;
5071 }
5072 break;
5073
5074 case 'X':
5075 {
5076 unsigned int regno = REGNO (x);
5077 fprintf (file, "%s, %s", reg_names [regno], reg_names [regno + 1]);
5078 }
5079 return;
5080
5081 case 'r':
5082 /* If this operand is the constant zero, write it as register zero.
5083 Any register, zero, or CONST_INT value is OK here. */
5084 if (GET_CODE (x) == REG)
5085 fputs (reg_names[REGNO (x)], file);
5086 else if (x == CONST0_RTX (GET_MODE (x)))
5087 fputs ("r0", file);
5088 else if (GET_CODE (x) == CONST_INT)
5089 output_addr_const (file, x);
5090 else
5091 output_operand_lossage ("invalid %%r value");
5092 return;
5093
5094 case 'v':
5095 gcc_assert (GET_CODE (x) == CONST_VECTOR);
5096 x = simplify_subreg (DImode, x, GET_MODE (x), 0);
5097 break;
5098
5099 case '+':
5100 {
5101 const char *which;
5102
5103 /* For conditional branches, returns or calls, substitute
5104 sptk, dptk, dpnt, or spnt for %s. */
5105 x = find_reg_note (current_output_insn, REG_BR_PROB, 0);
5106 if (x)
5107 {
5108 int pred_val = INTVAL (XEXP (x, 0));
5109
5110 /* Guess top and bottom 10% statically predicted. */
5111 if (pred_val < REG_BR_PROB_BASE / 50
5112 && br_prob_note_reliable_p (x))
5113 which = ".spnt";
5114 else if (pred_val < REG_BR_PROB_BASE / 2)
5115 which = ".dpnt";
5116 else if (pred_val < REG_BR_PROB_BASE / 100 * 98
5117 || !br_prob_note_reliable_p (x))
5118 which = ".dptk";
5119 else
5120 which = ".sptk";
5121 }
5122 else if (GET_CODE (current_output_insn) == CALL_INSN)
5123 which = ".sptk";
5124 else
5125 which = ".dptk";
5126
5127 fputs (which, file);
5128 return;
5129 }
5130
5131 case ',':
5132 x = current_insn_predicate;
5133 if (x)
5134 {
5135 unsigned int regno = REGNO (XEXP (x, 0));
5136 if (GET_CODE (x) == EQ)
5137 regno += 1;
5138 fprintf (file, "(%s) ", reg_names [regno]);
5139 }
5140 return;
5141
5142 default:
5143 output_operand_lossage ("ia64_print_operand: unknown code");
5144 return;
5145 }
5146
5147 switch (GET_CODE (x))
5148 {
5149 /* This happens for the spill/restore instructions. */
5150 case POST_INC:
5151 case POST_DEC:
5152 case POST_MODIFY:
5153 x = XEXP (x, 0);
5154 /* ... fall through ... */
5155
5156 case REG:
5157 fputs (reg_names [REGNO (x)], file);
5158 break;
5159
5160 case MEM:
5161 {
5162 rtx addr = XEXP (x, 0);
5163 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
5164 addr = XEXP (addr, 0);
5165 fprintf (file, "[%s]", reg_names [REGNO (addr)]);
5166 break;
5167 }
5168
5169 default:
5170 output_addr_const (file, x);
5171 break;
5172 }
5173
5174 return;
5175 }
5176 \f
5177 /* Compute a (partial) cost for rtx X. Return true if the complete
5178 cost has been computed, and false if subexpressions should be
5179 scanned. In either case, *TOTAL contains the cost result. */
5180 /* ??? This is incomplete. */
5181
5182 static bool
5183 ia64_rtx_costs (rtx x, int code, int outer_code, int *total,
5184 bool speed ATTRIBUTE_UNUSED)
5185 {
5186 switch (code)
5187 {
5188 case CONST_INT:
5189 switch (outer_code)
5190 {
5191 case SET:
5192 *total = satisfies_constraint_J (x) ? 0 : COSTS_N_INSNS (1);
5193 return true;
5194 case PLUS:
5195 if (satisfies_constraint_I (x))
5196 *total = 0;
5197 else if (satisfies_constraint_J (x))
5198 *total = 1;
5199 else
5200 *total = COSTS_N_INSNS (1);
5201 return true;
5202 default:
5203 if (satisfies_constraint_K (x) || satisfies_constraint_L (x))
5204 *total = 0;
5205 else
5206 *total = COSTS_N_INSNS (1);
5207 return true;
5208 }
5209
5210 case CONST_DOUBLE:
5211 *total = COSTS_N_INSNS (1);
5212 return true;
5213
5214 case CONST:
5215 case SYMBOL_REF:
5216 case LABEL_REF:
5217 *total = COSTS_N_INSNS (3);
5218 return true;
5219
5220 case MULT:
5221 /* For multiplies wider than HImode, we have to go to the FPU,
5222 which normally involves copies. Plus there's the latency
5223 of the multiply itself, and the latency of the instructions to
5224 transfer integer regs to FP regs. */
5225 /* ??? Check for FP mode. */
5226 if (GET_MODE_SIZE (GET_MODE (x)) > 2)
5227 *total = COSTS_N_INSNS (10);
5228 else
5229 *total = COSTS_N_INSNS (2);
5230 return true;
5231
5232 case PLUS:
5233 case MINUS:
5234 case ASHIFT:
5235 case ASHIFTRT:
5236 case LSHIFTRT:
5237 *total = COSTS_N_INSNS (1);
5238 return true;
5239
5240 case DIV:
5241 case UDIV:
5242 case MOD:
5243 case UMOD:
5244 /* We make divide expensive, so that divide-by-constant will be
5245 optimized to a multiply. */
5246 *total = COSTS_N_INSNS (60);
5247 return true;
5248
5249 default:
5250 return false;
5251 }
5252 }
5253
5254 /* Calculate the cost of moving data from a register in class FROM to
5255 one in class TO, using MODE. */
5256
5257 static int
5258 ia64_register_move_cost (enum machine_mode mode, reg_class_t from_i,
5259 reg_class_t to_i)
5260 {
5261 enum reg_class from = (enum reg_class) from_i;
5262 enum reg_class to = (enum reg_class) to_i;
5263
5264 /* ADDL_REGS is the same as GR_REGS for movement purposes. */
5265 if (to == ADDL_REGS)
5266 to = GR_REGS;
5267 if (from == ADDL_REGS)
5268 from = GR_REGS;
5269
5270 /* All costs are symmetric, so reduce cases by putting the
5271 lower number class as the destination. */
5272 if (from < to)
5273 {
5274 enum reg_class tmp = to;
5275 to = from, from = tmp;
5276 }
5277
5278 /* Moving from FR<->GR in XFmode must be more expensive than 2,
5279 so that we get secondary memory reloads. Between FR_REGS,
5280 we have to make this at least as expensive as memory_move_cost
5281 to avoid spectacularly poor register class preferencing. */
5282 if (mode == XFmode || mode == RFmode)
5283 {
5284 if (to != GR_REGS || from != GR_REGS)
5285 return memory_move_cost (mode, to, false);
5286 else
5287 return 3;
5288 }
5289
5290 switch (to)
5291 {
5292 case PR_REGS:
5293 /* Moving between PR registers takes two insns. */
5294 if (from == PR_REGS)
5295 return 3;
5296 /* Moving between PR and anything but GR is impossible. */
5297 if (from != GR_REGS)
5298 return memory_move_cost (mode, to, false);
5299 break;
5300
5301 case BR_REGS:
5302 /* Moving between BR and anything but GR is impossible. */
5303 if (from != GR_REGS && from != GR_AND_BR_REGS)
5304 return memory_move_cost (mode, to, false);
5305 break;
5306
5307 case AR_I_REGS:
5308 case AR_M_REGS:
5309 /* Moving between AR and anything but GR is impossible. */
5310 if (from != GR_REGS)
5311 return memory_move_cost (mode, to, false);
5312 break;
5313
5314 case GR_REGS:
5315 case FR_REGS:
5316 case FP_REGS:
5317 case GR_AND_FR_REGS:
5318 case GR_AND_BR_REGS:
5319 case ALL_REGS:
5320 break;
5321
5322 default:
5323 gcc_unreachable ();
5324 }
5325
5326 return 2;
5327 }
5328
5329 /* Calculate the cost of moving data of MODE from a register to or from
5330 memory. */
5331
5332 static int
5333 ia64_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
5334 reg_class_t rclass,
5335 bool in ATTRIBUTE_UNUSED)
5336 {
5337 if (rclass == GENERAL_REGS
5338 || rclass == FR_REGS
5339 || rclass == FP_REGS
5340 || rclass == GR_AND_FR_REGS)
5341 return 4;
5342 else
5343 return 10;
5344 }
5345
5346 /* Implement PREFERRED_RELOAD_CLASS. Place additional restrictions on RCLASS
5347 to use when copying X into that class. */
5348
5349 enum reg_class
5350 ia64_preferred_reload_class (rtx x, enum reg_class rclass)
5351 {
5352 switch (rclass)
5353 {
5354 case FR_REGS:
5355 case FP_REGS:
5356 /* Don't allow volatile mem reloads into floating point registers.
5357 This is defined to force reload to choose the r/m case instead
5358 of the f/f case when reloading (set (reg fX) (mem/v)). */
5359 if (MEM_P (x) && MEM_VOLATILE_P (x))
5360 return NO_REGS;
5361
5362 /* Force all unrecognized constants into the constant pool. */
5363 if (CONSTANT_P (x))
5364 return NO_REGS;
5365 break;
5366
5367 case AR_M_REGS:
5368 case AR_I_REGS:
5369 if (!OBJECT_P (x))
5370 return NO_REGS;
5371 break;
5372
5373 default:
5374 break;
5375 }
5376
5377 return rclass;
5378 }
5379
5380 /* This function returns the register class required for a secondary
5381 register when copying between one of the registers in RCLASS, and X,
5382 using MODE. A return value of NO_REGS means that no secondary register
5383 is required. */
5384
5385 enum reg_class
5386 ia64_secondary_reload_class (enum reg_class rclass,
5387 enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
5388 {
5389 int regno = -1;
5390
5391 if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
5392 regno = true_regnum (x);
5393
5394 switch (rclass)
5395 {
5396 case BR_REGS:
5397 case AR_M_REGS:
5398 case AR_I_REGS:
5399 /* ??? BR<->BR register copies can happen due to a bad gcse/cse/global
5400 interaction. We end up with two pseudos with overlapping lifetimes
5401 both of which are equiv to the same constant, and both which need
5402 to be in BR_REGS. This seems to be a cse bug. cse_basic_block_end
5403 changes depending on the path length, which means the qty_first_reg
5404 check in make_regs_eqv can give different answers at different times.
5405 At some point I'll probably need a reload_indi pattern to handle
5406 this.
5407
5408 We can also get GR_AND_FR_REGS to BR_REGS/AR_REGS copies, where we
5409 wound up with a FP register from GR_AND_FR_REGS. Extend that to all
5410 non-general registers for good measure. */
5411 if (regno >= 0 && ! GENERAL_REGNO_P (regno))
5412 return GR_REGS;
5413
5414 /* This is needed if a pseudo used as a call_operand gets spilled to a
5415 stack slot. */
5416 if (GET_CODE (x) == MEM)
5417 return GR_REGS;
5418 break;
5419
5420 case FR_REGS:
5421 case FP_REGS:
5422 /* Need to go through general registers to get to other class regs. */
5423 if (regno >= 0 && ! (FR_REGNO_P (regno) || GENERAL_REGNO_P (regno)))
5424 return GR_REGS;
5425
5426 /* This can happen when a paradoxical subreg is an operand to the
5427 muldi3 pattern. */
5428 /* ??? This shouldn't be necessary after instruction scheduling is
5429 enabled, because paradoxical subregs are not accepted by
5430 register_operand when INSN_SCHEDULING is defined. Or alternatively,
5431 stop the paradoxical subreg stupidity in the *_operand functions
5432 in recog.c. */
5433 if (GET_CODE (x) == MEM
5434 && (GET_MODE (x) == SImode || GET_MODE (x) == HImode
5435 || GET_MODE (x) == QImode))
5436 return GR_REGS;
5437
5438 /* This can happen because of the ior/and/etc patterns that accept FP
5439 registers as operands. If the third operand is a constant, then it
5440 needs to be reloaded into a FP register. */
5441 if (GET_CODE (x) == CONST_INT)
5442 return GR_REGS;
5443
5444 /* This can happen because of register elimination in a muldi3 insn.
5445 E.g. `26107 * (unsigned long)&u'. */
5446 if (GET_CODE (x) == PLUS)
5447 return GR_REGS;
5448 break;
5449
5450 case PR_REGS:
5451 /* ??? This happens if we cse/gcse a BImode value across a call,
5452 and the function has a nonlocal goto. This is because global
5453 does not allocate call crossing pseudos to hard registers when
5454 crtl->has_nonlocal_goto is true. This is relatively
5455 common for C++ programs that use exceptions. To reproduce,
5456 return NO_REGS and compile libstdc++. */
5457 if (GET_CODE (x) == MEM)
5458 return GR_REGS;
5459
5460 /* This can happen when we take a BImode subreg of a DImode value,
5461 and that DImode value winds up in some non-GR register. */
5462 if (regno >= 0 && ! GENERAL_REGNO_P (regno) && ! PR_REGNO_P (regno))
5463 return GR_REGS;
5464 break;
5465
5466 default:
5467 break;
5468 }
5469
5470 return NO_REGS;
5471 }
5472
5473 \f
5474 /* Implement targetm.unspec_may_trap_p hook. */
5475 static int
5476 ia64_unspec_may_trap_p (const_rtx x, unsigned flags)
5477 {
5478 if (GET_CODE (x) == UNSPEC)
5479 {
5480 switch (XINT (x, 1))
5481 {
5482 case UNSPEC_LDA:
5483 case UNSPEC_LDS:
5484 case UNSPEC_LDSA:
5485 case UNSPEC_LDCCLR:
5486 case UNSPEC_CHKACLR:
5487 case UNSPEC_CHKS:
5488 /* These unspecs are just wrappers. */
5489 return may_trap_p_1 (XVECEXP (x, 0, 0), flags);
5490 }
5491 }
5492
5493 return default_unspec_may_trap_p (x, flags);
5494 }
5495
5496 \f
5497 /* Parse the -mfixed-range= option string. */
5498
5499 static void
5500 fix_range (const char *const_str)
5501 {
5502 int i, first, last;
5503 char *str, *dash, *comma;
5504
5505 /* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
5506 REG2 are either register names or register numbers. The effect
5507 of this option is to mark the registers in the range from REG1 to
5508 REG2 as ``fixed'' so they won't be used by the compiler. This is
5509 used, e.g., to ensure that kernel mode code doesn't use f32-f127. */
5510
5511 i = strlen (const_str);
5512 str = (char *) alloca (i + 1);
5513 memcpy (str, const_str, i + 1);
5514
5515 while (1)
5516 {
5517 dash = strchr (str, '-');
5518 if (!dash)
5519 {
5520 warning (0, "value of -mfixed-range must have form REG1-REG2");
5521 return;
5522 }
5523 *dash = '\0';
5524
5525 comma = strchr (dash + 1, ',');
5526 if (comma)
5527 *comma = '\0';
5528
5529 first = decode_reg_name (str);
5530 if (first < 0)
5531 {
5532 warning (0, "unknown register name: %s", str);
5533 return;
5534 }
5535
5536 last = decode_reg_name (dash + 1);
5537 if (last < 0)
5538 {
5539 warning (0, "unknown register name: %s", dash + 1);
5540 return;
5541 }
5542
5543 *dash = '-';
5544
5545 if (first > last)
5546 {
5547 warning (0, "%s-%s is an empty range", str, dash + 1);
5548 return;
5549 }
5550
5551 for (i = first; i <= last; ++i)
5552 fixed_regs[i] = call_used_regs[i] = 1;
5553
5554 if (!comma)
5555 break;
5556
5557 *comma = ',';
5558 str = comma + 1;
5559 }
5560 }
5561
5562 /* Implement TARGET_HANDLE_OPTION. */
5563
5564 static bool
5565 ia64_handle_option (size_t code, const char *arg, int value)
5566 {
5567 switch (code)
5568 {
5569 case OPT_mfixed_range_:
5570 fix_range (arg);
5571 return true;
5572
5573 case OPT_mtls_size_:
5574 if (value != 14 && value != 22 && value != 64)
5575 error ("bad value %<%s%> for -mtls-size= switch", arg);
5576 return true;
5577
5578 case OPT_mtune_:
5579 {
5580 static struct pta
5581 {
5582 const char *name; /* processor name or nickname. */
5583 enum processor_type processor;
5584 }
5585 const processor_alias_table[] =
5586 {
5587 {"itanium2", PROCESSOR_ITANIUM2},
5588 {"mckinley", PROCESSOR_ITANIUM2},
5589 };
5590 int const pta_size = ARRAY_SIZE (processor_alias_table);
5591 int i;
5592
5593 for (i = 0; i < pta_size; i++)
5594 if (!strcmp (arg, processor_alias_table[i].name))
5595 {
5596 ia64_tune = processor_alias_table[i].processor;
5597 break;
5598 }
5599 if (i == pta_size)
5600 error ("bad value %<%s%> for -mtune= switch", arg);
5601 return true;
5602 }
5603
5604 default:
5605 return true;
5606 }
5607 }
5608
5609 /* Implement TARGET_OPTION_OVERRIDE. */
5610
5611 static void
5612 ia64_option_override (void)
5613 {
5614 if (TARGET_AUTO_PIC)
5615 target_flags |= MASK_CONST_GP;
5616
5617 /* Numerous experiment shows that IRA based loop pressure
5618 calculation works better for RTL loop invariant motion on targets
5619 with enough (>= 32) registers. It is an expensive optimization.
5620 So it is on only for peak performance. */
5621 if (optimize >= 3)
5622 flag_ira_loop_pressure = 1;
5623
5624
5625 ia64_section_threshold = (global_options_set.x_g_switch_value
5626 ? g_switch_value
5627 : IA64_DEFAULT_GVALUE);
5628
5629 init_machine_status = ia64_init_machine_status;
5630
5631 if (align_functions <= 0)
5632 align_functions = 64;
5633 if (align_loops <= 0)
5634 align_loops = 32;
5635 if (TARGET_ABI_OPEN_VMS)
5636 flag_no_common = 1;
5637
5638 ia64_override_options_after_change();
5639 }
5640
5641 /* Implement targetm.override_options_after_change. */
5642
5643 static void
5644 ia64_override_options_after_change (void)
5645 {
5646 ia64_flag_schedule_insns2 = flag_schedule_insns_after_reload;
5647 flag_schedule_insns_after_reload = 0;
5648
5649 if (optimize >= 3
5650 && !global_options_set.x_flag_selective_scheduling
5651 && !global_options_set.x_flag_selective_scheduling2)
5652 {
5653 flag_selective_scheduling2 = 1;
5654 flag_sel_sched_pipelining = 1;
5655 }
5656 if (mflag_sched_control_spec == 2)
5657 {
5658 /* Control speculation is on by default for the selective scheduler,
5659 but not for the Haifa scheduler. */
5660 mflag_sched_control_spec = flag_selective_scheduling2 ? 1 : 0;
5661 }
5662 if (flag_sel_sched_pipelining && flag_auto_inc_dec)
5663 {
5664 /* FIXME: remove this when we'd implement breaking autoinsns as
5665 a transformation. */
5666 flag_auto_inc_dec = 0;
5667 }
5668 }
5669
5670 /* Initialize the record of emitted frame related registers. */
5671
5672 void ia64_init_expanders (void)
5673 {
5674 memset (&emitted_frame_related_regs, 0, sizeof (emitted_frame_related_regs));
5675 }
5676
5677 static struct machine_function *
5678 ia64_init_machine_status (void)
5679 {
5680 return ggc_alloc_cleared_machine_function ();
5681 }
5682 \f
5683 static enum attr_itanium_class ia64_safe_itanium_class (rtx);
5684 static enum attr_type ia64_safe_type (rtx);
5685
5686 static enum attr_itanium_class
5687 ia64_safe_itanium_class (rtx insn)
5688 {
5689 if (recog_memoized (insn) >= 0)
5690 return get_attr_itanium_class (insn);
5691 else if (DEBUG_INSN_P (insn))
5692 return ITANIUM_CLASS_IGNORE;
5693 else
5694 return ITANIUM_CLASS_UNKNOWN;
5695 }
5696
5697 static enum attr_type
5698 ia64_safe_type (rtx insn)
5699 {
5700 if (recog_memoized (insn) >= 0)
5701 return get_attr_type (insn);
5702 else
5703 return TYPE_UNKNOWN;
5704 }
5705 \f
5706 /* The following collection of routines emit instruction group stop bits as
5707 necessary to avoid dependencies. */
5708
5709 /* Need to track some additional registers as far as serialization is
5710 concerned so we can properly handle br.call and br.ret. We could
5711 make these registers visible to gcc, but since these registers are
5712 never explicitly used in gcc generated code, it seems wasteful to
5713 do so (plus it would make the call and return patterns needlessly
5714 complex). */
5715 #define REG_RP (BR_REG (0))
5716 #define REG_AR_CFM (FIRST_PSEUDO_REGISTER + 1)
5717 /* This is used for volatile asms which may require a stop bit immediately
5718 before and after them. */
5719 #define REG_VOLATILE (FIRST_PSEUDO_REGISTER + 2)
5720 #define AR_UNAT_BIT_0 (FIRST_PSEUDO_REGISTER + 3)
5721 #define NUM_REGS (AR_UNAT_BIT_0 + 64)
5722
5723 /* For each register, we keep track of how it has been written in the
5724 current instruction group.
5725
5726 If a register is written unconditionally (no qualifying predicate),
5727 WRITE_COUNT is set to 2 and FIRST_PRED is ignored.
5728
5729 If a register is written if its qualifying predicate P is true, we
5730 set WRITE_COUNT to 1 and FIRST_PRED to P. Later on, the same register
5731 may be written again by the complement of P (P^1) and when this happens,
5732 WRITE_COUNT gets set to 2.
5733
5734 The result of this is that whenever an insn attempts to write a register
5735 whose WRITE_COUNT is two, we need to issue an insn group barrier first.
5736
5737 If a predicate register is written by a floating-point insn, we set
5738 WRITTEN_BY_FP to true.
5739
5740 If a predicate register is written by an AND.ORCM we set WRITTEN_BY_AND
5741 to true; if it was written by an OR.ANDCM we set WRITTEN_BY_OR to true. */
5742
5743 #if GCC_VERSION >= 4000
5744 #define RWS_FIELD_TYPE __extension__ unsigned short
5745 #else
5746 #define RWS_FIELD_TYPE unsigned int
5747 #endif
5748 struct reg_write_state
5749 {
5750 RWS_FIELD_TYPE write_count : 2;
5751 RWS_FIELD_TYPE first_pred : 10;
5752 RWS_FIELD_TYPE written_by_fp : 1;
5753 RWS_FIELD_TYPE written_by_and : 1;
5754 RWS_FIELD_TYPE written_by_or : 1;
5755 };
5756
5757 /* Cumulative info for the current instruction group. */
5758 struct reg_write_state rws_sum[NUM_REGS];
5759 #ifdef ENABLE_CHECKING
5760 /* Bitmap whether a register has been written in the current insn. */
5761 HARD_REG_ELT_TYPE rws_insn[(NUM_REGS + HOST_BITS_PER_WIDEST_FAST_INT - 1)
5762 / HOST_BITS_PER_WIDEST_FAST_INT];
5763
5764 static inline void
5765 rws_insn_set (int regno)
5766 {
5767 gcc_assert (!TEST_HARD_REG_BIT (rws_insn, regno));
5768 SET_HARD_REG_BIT (rws_insn, regno);
5769 }
5770
5771 static inline int
5772 rws_insn_test (int regno)
5773 {
5774 return TEST_HARD_REG_BIT (rws_insn, regno);
5775 }
5776 #else
5777 /* When not checking, track just REG_AR_CFM and REG_VOLATILE. */
5778 unsigned char rws_insn[2];
5779
5780 static inline void
5781 rws_insn_set (int regno)
5782 {
5783 if (regno == REG_AR_CFM)
5784 rws_insn[0] = 1;
5785 else if (regno == REG_VOLATILE)
5786 rws_insn[1] = 1;
5787 }
5788
5789 static inline int
5790 rws_insn_test (int regno)
5791 {
5792 if (regno == REG_AR_CFM)
5793 return rws_insn[0];
5794 if (regno == REG_VOLATILE)
5795 return rws_insn[1];
5796 return 0;
5797 }
5798 #endif
5799
5800 /* Indicates whether this is the first instruction after a stop bit,
5801 in which case we don't need another stop bit. Without this,
5802 ia64_variable_issue will die when scheduling an alloc. */
5803 static int first_instruction;
5804
5805 /* Misc flags needed to compute RAW/WAW dependencies while we are traversing
5806 RTL for one instruction. */
5807 struct reg_flags
5808 {
5809 unsigned int is_write : 1; /* Is register being written? */
5810 unsigned int is_fp : 1; /* Is register used as part of an fp op? */
5811 unsigned int is_branch : 1; /* Is register used as part of a branch? */
5812 unsigned int is_and : 1; /* Is register used as part of and.orcm? */
5813 unsigned int is_or : 1; /* Is register used as part of or.andcm? */
5814 unsigned int is_sibcall : 1; /* Is this a sibling or normal call? */
5815 };
5816
5817 static void rws_update (int, struct reg_flags, int);
5818 static int rws_access_regno (int, struct reg_flags, int);
5819 static int rws_access_reg (rtx, struct reg_flags, int);
5820 static void update_set_flags (rtx, struct reg_flags *);
5821 static int set_src_needs_barrier (rtx, struct reg_flags, int);
5822 static int rtx_needs_barrier (rtx, struct reg_flags, int);
5823 static void init_insn_group_barriers (void);
5824 static int group_barrier_needed (rtx);
5825 static int safe_group_barrier_needed (rtx);
5826 static int in_safe_group_barrier;
5827
5828 /* Update *RWS for REGNO, which is being written by the current instruction,
5829 with predicate PRED, and associated register flags in FLAGS. */
5830
5831 static void
5832 rws_update (int regno, struct reg_flags flags, int pred)
5833 {
5834 if (pred)
5835 rws_sum[regno].write_count++;
5836 else
5837 rws_sum[regno].write_count = 2;
5838 rws_sum[regno].written_by_fp |= flags.is_fp;
5839 /* ??? Not tracking and/or across differing predicates. */
5840 rws_sum[regno].written_by_and = flags.is_and;
5841 rws_sum[regno].written_by_or = flags.is_or;
5842 rws_sum[regno].first_pred = pred;
5843 }
5844
5845 /* Handle an access to register REGNO of type FLAGS using predicate register
5846 PRED. Update rws_sum array. Return 1 if this access creates
5847 a dependency with an earlier instruction in the same group. */
5848
5849 static int
5850 rws_access_regno (int regno, struct reg_flags flags, int pred)
5851 {
5852 int need_barrier = 0;
5853
5854 gcc_assert (regno < NUM_REGS);
5855
5856 if (! PR_REGNO_P (regno))
5857 flags.is_and = flags.is_or = 0;
5858
5859 if (flags.is_write)
5860 {
5861 int write_count;
5862
5863 rws_insn_set (regno);
5864 write_count = rws_sum[regno].write_count;
5865
5866 switch (write_count)
5867 {
5868 case 0:
5869 /* The register has not been written yet. */
5870 if (!in_safe_group_barrier)
5871 rws_update (regno, flags, pred);
5872 break;
5873
5874 case 1:
5875 /* The register has been written via a predicate. If this is
5876 not a complementary predicate, then we need a barrier. */
5877 /* ??? This assumes that P and P+1 are always complementary
5878 predicates for P even. */
5879 if (flags.is_and && rws_sum[regno].written_by_and)
5880 ;
5881 else if (flags.is_or && rws_sum[regno].written_by_or)
5882 ;
5883 else if ((rws_sum[regno].first_pred ^ 1) != pred)
5884 need_barrier = 1;
5885 if (!in_safe_group_barrier)
5886 rws_update (regno, flags, pred);
5887 break;
5888
5889 case 2:
5890 /* The register has been unconditionally written already. We
5891 need a barrier. */
5892 if (flags.is_and && rws_sum[regno].written_by_and)
5893 ;
5894 else if (flags.is_or && rws_sum[regno].written_by_or)
5895 ;
5896 else
5897 need_barrier = 1;
5898 if (!in_safe_group_barrier)
5899 {
5900 rws_sum[regno].written_by_and = flags.is_and;
5901 rws_sum[regno].written_by_or = flags.is_or;
5902 }
5903 break;
5904
5905 default:
5906 gcc_unreachable ();
5907 }
5908 }
5909 else
5910 {
5911 if (flags.is_branch)
5912 {
5913 /* Branches have several RAW exceptions that allow to avoid
5914 barriers. */
5915
5916 if (REGNO_REG_CLASS (regno) == BR_REGS || regno == AR_PFS_REGNUM)
5917 /* RAW dependencies on branch regs are permissible as long
5918 as the writer is a non-branch instruction. Since we
5919 never generate code that uses a branch register written
5920 by a branch instruction, handling this case is
5921 easy. */
5922 return 0;
5923
5924 if (REGNO_REG_CLASS (regno) == PR_REGS
5925 && ! rws_sum[regno].written_by_fp)
5926 /* The predicates of a branch are available within the
5927 same insn group as long as the predicate was written by
5928 something other than a floating-point instruction. */
5929 return 0;
5930 }
5931
5932 if (flags.is_and && rws_sum[regno].written_by_and)
5933 return 0;
5934 if (flags.is_or && rws_sum[regno].written_by_or)
5935 return 0;
5936
5937 switch (rws_sum[regno].write_count)
5938 {
5939 case 0:
5940 /* The register has not been written yet. */
5941 break;
5942
5943 case 1:
5944 /* The register has been written via a predicate. If this is
5945 not a complementary predicate, then we need a barrier. */
5946 /* ??? This assumes that P and P+1 are always complementary
5947 predicates for P even. */
5948 if ((rws_sum[regno].first_pred ^ 1) != pred)
5949 need_barrier = 1;
5950 break;
5951
5952 case 2:
5953 /* The register has been unconditionally written already. We
5954 need a barrier. */
5955 need_barrier = 1;
5956 break;
5957
5958 default:
5959 gcc_unreachable ();
5960 }
5961 }
5962
5963 return need_barrier;
5964 }
5965
5966 static int
5967 rws_access_reg (rtx reg, struct reg_flags flags, int pred)
5968 {
5969 int regno = REGNO (reg);
5970 int n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
5971
5972 if (n == 1)
5973 return rws_access_regno (regno, flags, pred);
5974 else
5975 {
5976 int need_barrier = 0;
5977 while (--n >= 0)
5978 need_barrier |= rws_access_regno (regno + n, flags, pred);
5979 return need_barrier;
5980 }
5981 }
5982
5983 /* Examine X, which is a SET rtx, and update the flags, the predicate, and
5984 the condition, stored in *PFLAGS, *PPRED and *PCOND. */
5985
5986 static void
5987 update_set_flags (rtx x, struct reg_flags *pflags)
5988 {
5989 rtx src = SET_SRC (x);
5990
5991 switch (GET_CODE (src))
5992 {
5993 case CALL:
5994 return;
5995
5996 case IF_THEN_ELSE:
5997 /* There are four cases here:
5998 (1) The destination is (pc), in which case this is a branch,
5999 nothing here applies.
6000 (2) The destination is ar.lc, in which case this is a
6001 doloop_end_internal,
6002 (3) The destination is an fp register, in which case this is
6003 an fselect instruction.
6004 (4) The condition has (unspec [(reg)] UNSPEC_LDC), in which case
6005 this is a check load.
6006 In all cases, nothing we do in this function applies. */
6007 return;
6008
6009 default:
6010 if (COMPARISON_P (src)
6011 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (src, 0))))
6012 /* Set pflags->is_fp to 1 so that we know we're dealing
6013 with a floating point comparison when processing the
6014 destination of the SET. */
6015 pflags->is_fp = 1;
6016
6017 /* Discover if this is a parallel comparison. We only handle
6018 and.orcm and or.andcm at present, since we must retain a
6019 strict inverse on the predicate pair. */
6020 else if (GET_CODE (src) == AND)
6021 pflags->is_and = 1;
6022 else if (GET_CODE (src) == IOR)
6023 pflags->is_or = 1;
6024
6025 break;
6026 }
6027 }
6028
6029 /* Subroutine of rtx_needs_barrier; this function determines whether the
6030 source of a given SET rtx found in X needs a barrier. FLAGS and PRED
6031 are as in rtx_needs_barrier. COND is an rtx that holds the condition
6032 for this insn. */
6033
6034 static int
6035 set_src_needs_barrier (rtx x, struct reg_flags flags, int pred)
6036 {
6037 int need_barrier = 0;
6038 rtx dst;
6039 rtx src = SET_SRC (x);
6040
6041 if (GET_CODE (src) == CALL)
6042 /* We don't need to worry about the result registers that
6043 get written by subroutine call. */
6044 return rtx_needs_barrier (src, flags, pred);
6045 else if (SET_DEST (x) == pc_rtx)
6046 {
6047 /* X is a conditional branch. */
6048 /* ??? This seems redundant, as the caller sets this bit for
6049 all JUMP_INSNs. */
6050 if (!ia64_spec_check_src_p (src))
6051 flags.is_branch = 1;
6052 return rtx_needs_barrier (src, flags, pred);
6053 }
6054
6055 if (ia64_spec_check_src_p (src))
6056 /* Avoid checking one register twice (in condition
6057 and in 'then' section) for ldc pattern. */
6058 {
6059 gcc_assert (REG_P (XEXP (src, 2)));
6060 need_barrier = rtx_needs_barrier (XEXP (src, 2), flags, pred);
6061
6062 /* We process MEM below. */
6063 src = XEXP (src, 1);
6064 }
6065
6066 need_barrier |= rtx_needs_barrier (src, flags, pred);
6067
6068 dst = SET_DEST (x);
6069 if (GET_CODE (dst) == ZERO_EXTRACT)
6070 {
6071 need_barrier |= rtx_needs_barrier (XEXP (dst, 1), flags, pred);
6072 need_barrier |= rtx_needs_barrier (XEXP (dst, 2), flags, pred);
6073 }
6074 return need_barrier;
6075 }
6076
6077 /* Handle an access to rtx X of type FLAGS using predicate register
6078 PRED. Return 1 if this access creates a dependency with an earlier
6079 instruction in the same group. */
6080
6081 static int
6082 rtx_needs_barrier (rtx x, struct reg_flags flags, int pred)
6083 {
6084 int i, j;
6085 int is_complemented = 0;
6086 int need_barrier = 0;
6087 const char *format_ptr;
6088 struct reg_flags new_flags;
6089 rtx cond;
6090
6091 if (! x)
6092 return 0;
6093
6094 new_flags = flags;
6095
6096 switch (GET_CODE (x))
6097 {
6098 case SET:
6099 update_set_flags (x, &new_flags);
6100 need_barrier = set_src_needs_barrier (x, new_flags, pred);
6101 if (GET_CODE (SET_SRC (x)) != CALL)
6102 {
6103 new_flags.is_write = 1;
6104 need_barrier |= rtx_needs_barrier (SET_DEST (x), new_flags, pred);
6105 }
6106 break;
6107
6108 case CALL:
6109 new_flags.is_write = 0;
6110 need_barrier |= rws_access_regno (AR_EC_REGNUM, new_flags, pred);
6111
6112 /* Avoid multiple register writes, in case this is a pattern with
6113 multiple CALL rtx. This avoids a failure in rws_access_reg. */
6114 if (! flags.is_sibcall && ! rws_insn_test (REG_AR_CFM))
6115 {
6116 new_flags.is_write = 1;
6117 need_barrier |= rws_access_regno (REG_RP, new_flags, pred);
6118 need_barrier |= rws_access_regno (AR_PFS_REGNUM, new_flags, pred);
6119 need_barrier |= rws_access_regno (REG_AR_CFM, new_flags, pred);
6120 }
6121 break;
6122
6123 case COND_EXEC:
6124 /* X is a predicated instruction. */
6125
6126 cond = COND_EXEC_TEST (x);
6127 gcc_assert (!pred);
6128 need_barrier = rtx_needs_barrier (cond, flags, 0);
6129
6130 if (GET_CODE (cond) == EQ)
6131 is_complemented = 1;
6132 cond = XEXP (cond, 0);
6133 gcc_assert (GET_CODE (cond) == REG
6134 && REGNO_REG_CLASS (REGNO (cond)) == PR_REGS);
6135 pred = REGNO (cond);
6136 if (is_complemented)
6137 ++pred;
6138
6139 need_barrier |= rtx_needs_barrier (COND_EXEC_CODE (x), flags, pred);
6140 return need_barrier;
6141
6142 case CLOBBER:
6143 case USE:
6144 /* Clobber & use are for earlier compiler-phases only. */
6145 break;
6146
6147 case ASM_OPERANDS:
6148 case ASM_INPUT:
6149 /* We always emit stop bits for traditional asms. We emit stop bits
6150 for volatile extended asms if TARGET_VOL_ASM_STOP is true. */
6151 if (GET_CODE (x) != ASM_OPERANDS
6152 || (MEM_VOLATILE_P (x) && TARGET_VOL_ASM_STOP))
6153 {
6154 /* Avoid writing the register multiple times if we have multiple
6155 asm outputs. This avoids a failure in rws_access_reg. */
6156 if (! rws_insn_test (REG_VOLATILE))
6157 {
6158 new_flags.is_write = 1;
6159 rws_access_regno (REG_VOLATILE, new_flags, pred);
6160 }
6161 return 1;
6162 }
6163
6164 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
6165 We cannot just fall through here since then we would be confused
6166 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
6167 traditional asms unlike their normal usage. */
6168
6169 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; --i)
6170 if (rtx_needs_barrier (ASM_OPERANDS_INPUT (x, i), flags, pred))
6171 need_barrier = 1;
6172 break;
6173
6174 case PARALLEL:
6175 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
6176 {
6177 rtx pat = XVECEXP (x, 0, i);
6178 switch (GET_CODE (pat))
6179 {
6180 case SET:
6181 update_set_flags (pat, &new_flags);
6182 need_barrier |= set_src_needs_barrier (pat, new_flags, pred);
6183 break;
6184
6185 case USE:
6186 case CALL:
6187 case ASM_OPERANDS:
6188 need_barrier |= rtx_needs_barrier (pat, flags, pred);
6189 break;
6190
6191 case CLOBBER:
6192 case RETURN:
6193 break;
6194
6195 default:
6196 gcc_unreachable ();
6197 }
6198 }
6199 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
6200 {
6201 rtx pat = XVECEXP (x, 0, i);
6202 if (GET_CODE (pat) == SET)
6203 {
6204 if (GET_CODE (SET_SRC (pat)) != CALL)
6205 {
6206 new_flags.is_write = 1;
6207 need_barrier |= rtx_needs_barrier (SET_DEST (pat), new_flags,
6208 pred);
6209 }
6210 }
6211 else if (GET_CODE (pat) == CLOBBER || GET_CODE (pat) == RETURN)
6212 need_barrier |= rtx_needs_barrier (pat, flags, pred);
6213 }
6214 break;
6215
6216 case SUBREG:
6217 need_barrier |= rtx_needs_barrier (SUBREG_REG (x), flags, pred);
6218 break;
6219 case REG:
6220 if (REGNO (x) == AR_UNAT_REGNUM)
6221 {
6222 for (i = 0; i < 64; ++i)
6223 need_barrier |= rws_access_regno (AR_UNAT_BIT_0 + i, flags, pred);
6224 }
6225 else
6226 need_barrier = rws_access_reg (x, flags, pred);
6227 break;
6228
6229 case MEM:
6230 /* Find the regs used in memory address computation. */
6231 new_flags.is_write = 0;
6232 need_barrier = rtx_needs_barrier (XEXP (x, 0), new_flags, pred);
6233 break;
6234
6235 case CONST_INT: case CONST_DOUBLE: case CONST_VECTOR:
6236 case SYMBOL_REF: case LABEL_REF: case CONST:
6237 break;
6238
6239 /* Operators with side-effects. */
6240 case POST_INC: case POST_DEC:
6241 gcc_assert (GET_CODE (XEXP (x, 0)) == REG);
6242
6243 new_flags.is_write = 0;
6244 need_barrier = rws_access_reg (XEXP (x, 0), new_flags, pred);
6245 new_flags.is_write = 1;
6246 need_barrier |= rws_access_reg (XEXP (x, 0), new_flags, pred);
6247 break;
6248
6249 case POST_MODIFY:
6250 gcc_assert (GET_CODE (XEXP (x, 0)) == REG);
6251
6252 new_flags.is_write = 0;
6253 need_barrier = rws_access_reg (XEXP (x, 0), new_flags, pred);
6254 need_barrier |= rtx_needs_barrier (XEXP (x, 1), new_flags, pred);
6255 new_flags.is_write = 1;
6256 need_barrier |= rws_access_reg (XEXP (x, 0), new_flags, pred);
6257 break;
6258
6259 /* Handle common unary and binary ops for efficiency. */
6260 case COMPARE: case PLUS: case MINUS: case MULT: case DIV:
6261 case MOD: case UDIV: case UMOD: case AND: case IOR:
6262 case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT:
6263 case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX:
6264 case NE: case EQ: case GE: case GT: case LE:
6265 case LT: case GEU: case GTU: case LEU: case LTU:
6266 need_barrier = rtx_needs_barrier (XEXP (x, 0), new_flags, pred);
6267 need_barrier |= rtx_needs_barrier (XEXP (x, 1), new_flags, pred);
6268 break;
6269
6270 case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND:
6271 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT:
6272 case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS:
6273 case SQRT: case FFS: case POPCOUNT:
6274 need_barrier = rtx_needs_barrier (XEXP (x, 0), flags, pred);
6275 break;
6276
6277 case VEC_SELECT:
6278 /* VEC_SELECT's second argument is a PARALLEL with integers that
6279 describe the elements selected. On ia64, those integers are
6280 always constants. Avoid walking the PARALLEL so that we don't
6281 get confused with "normal" parallels and then die. */
6282 need_barrier = rtx_needs_barrier (XEXP (x, 0), flags, pred);
6283 break;
6284
6285 case UNSPEC:
6286 switch (XINT (x, 1))
6287 {
6288 case UNSPEC_LTOFF_DTPMOD:
6289 case UNSPEC_LTOFF_DTPREL:
6290 case UNSPEC_DTPREL:
6291 case UNSPEC_LTOFF_TPREL:
6292 case UNSPEC_TPREL:
6293 case UNSPEC_PRED_REL_MUTEX:
6294 case UNSPEC_PIC_CALL:
6295 case UNSPEC_MF:
6296 case UNSPEC_FETCHADD_ACQ:
6297 case UNSPEC_BSP_VALUE:
6298 case UNSPEC_FLUSHRS:
6299 case UNSPEC_BUNDLE_SELECTOR:
6300 break;
6301
6302 case UNSPEC_GR_SPILL:
6303 case UNSPEC_GR_RESTORE:
6304 {
6305 HOST_WIDE_INT offset = INTVAL (XVECEXP (x, 0, 1));
6306 HOST_WIDE_INT bit = (offset >> 3) & 63;
6307
6308 need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred);
6309 new_flags.is_write = (XINT (x, 1) == UNSPEC_GR_SPILL);
6310 need_barrier |= rws_access_regno (AR_UNAT_BIT_0 + bit,
6311 new_flags, pred);
6312 break;
6313 }
6314
6315 case UNSPEC_FR_SPILL:
6316 case UNSPEC_FR_RESTORE:
6317 case UNSPEC_GETF_EXP:
6318 case UNSPEC_SETF_EXP:
6319 case UNSPEC_ADDP4:
6320 case UNSPEC_FR_SQRT_RECIP_APPROX:
6321 case UNSPEC_FR_SQRT_RECIP_APPROX_RES:
6322 case UNSPEC_LDA:
6323 case UNSPEC_LDS:
6324 case UNSPEC_LDS_A:
6325 case UNSPEC_LDSA:
6326 case UNSPEC_CHKACLR:
6327 case UNSPEC_CHKS:
6328 need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred);
6329 break;
6330
6331 case UNSPEC_FR_RECIP_APPROX:
6332 case UNSPEC_SHRP:
6333 case UNSPEC_COPYSIGN:
6334 case UNSPEC_FR_RECIP_APPROX_RES:
6335 need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred);
6336 need_barrier |= rtx_needs_barrier (XVECEXP (x, 0, 1), flags, pred);
6337 break;
6338
6339 case UNSPEC_CMPXCHG_ACQ:
6340 need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 1), flags, pred);
6341 need_barrier |= rtx_needs_barrier (XVECEXP (x, 0, 2), flags, pred);
6342 break;
6343
6344 default:
6345 gcc_unreachable ();
6346 }
6347 break;
6348
6349 case UNSPEC_VOLATILE:
6350 switch (XINT (x, 1))
6351 {
6352 case UNSPECV_ALLOC:
6353 /* Alloc must always be the first instruction of a group.
6354 We force this by always returning true. */
6355 /* ??? We might get better scheduling if we explicitly check for
6356 input/local/output register dependencies, and modify the
6357 scheduler so that alloc is always reordered to the start of
6358 the current group. We could then eliminate all of the
6359 first_instruction code. */
6360 rws_access_regno (AR_PFS_REGNUM, flags, pred);
6361
6362 new_flags.is_write = 1;
6363 rws_access_regno (REG_AR_CFM, new_flags, pred);
6364 return 1;
6365
6366 case UNSPECV_SET_BSP:
6367 need_barrier = 1;
6368 break;
6369
6370 case UNSPECV_BLOCKAGE:
6371 case UNSPECV_INSN_GROUP_BARRIER:
6372 case UNSPECV_BREAK:
6373 case UNSPECV_PSAC_ALL:
6374 case UNSPECV_PSAC_NORMAL:
6375 return 0;
6376
6377 default:
6378 gcc_unreachable ();
6379 }
6380 break;
6381
6382 case RETURN:
6383 new_flags.is_write = 0;
6384 need_barrier = rws_access_regno (REG_RP, flags, pred);
6385 need_barrier |= rws_access_regno (AR_PFS_REGNUM, flags, pred);
6386
6387 new_flags.is_write = 1;
6388 need_barrier |= rws_access_regno (AR_EC_REGNUM, new_flags, pred);
6389 need_barrier |= rws_access_regno (REG_AR_CFM, new_flags, pred);
6390 break;
6391
6392 default:
6393 format_ptr = GET_RTX_FORMAT (GET_CODE (x));
6394 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6395 switch (format_ptr[i])
6396 {
6397 case '0': /* unused field */
6398 case 'i': /* integer */
6399 case 'n': /* note */
6400 case 'w': /* wide integer */
6401 case 's': /* pointer to string */
6402 case 'S': /* optional pointer to string */
6403 break;
6404
6405 case 'e':
6406 if (rtx_needs_barrier (XEXP (x, i), flags, pred))
6407 need_barrier = 1;
6408 break;
6409
6410 case 'E':
6411 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
6412 if (rtx_needs_barrier (XVECEXP (x, i, j), flags, pred))
6413 need_barrier = 1;
6414 break;
6415
6416 default:
6417 gcc_unreachable ();
6418 }
6419 break;
6420 }
6421 return need_barrier;
6422 }
6423
6424 /* Clear out the state for group_barrier_needed at the start of a
6425 sequence of insns. */
6426
6427 static void
6428 init_insn_group_barriers (void)
6429 {
6430 memset (rws_sum, 0, sizeof (rws_sum));
6431 first_instruction = 1;
6432 }
6433
6434 /* Given the current state, determine whether a group barrier (a stop bit) is
6435 necessary before INSN. Return nonzero if so. This modifies the state to
6436 include the effects of INSN as a side-effect. */
6437
6438 static int
6439 group_barrier_needed (rtx insn)
6440 {
6441 rtx pat;
6442 int need_barrier = 0;
6443 struct reg_flags flags;
6444
6445 memset (&flags, 0, sizeof (flags));
6446 switch (GET_CODE (insn))
6447 {
6448 case NOTE:
6449 case DEBUG_INSN:
6450 break;
6451
6452 case BARRIER:
6453 /* A barrier doesn't imply an instruction group boundary. */
6454 break;
6455
6456 case CODE_LABEL:
6457 memset (rws_insn, 0, sizeof (rws_insn));
6458 return 1;
6459
6460 case CALL_INSN:
6461 flags.is_branch = 1;
6462 flags.is_sibcall = SIBLING_CALL_P (insn);
6463 memset (rws_insn, 0, sizeof (rws_insn));
6464
6465 /* Don't bundle a call following another call. */
6466 if ((pat = prev_active_insn (insn))
6467 && GET_CODE (pat) == CALL_INSN)
6468 {
6469 need_barrier = 1;
6470 break;
6471 }
6472
6473 need_barrier = rtx_needs_barrier (PATTERN (insn), flags, 0);
6474 break;
6475
6476 case JUMP_INSN:
6477 if (!ia64_spec_check_p (insn))
6478 flags.is_branch = 1;
6479
6480 /* Don't bundle a jump following a call. */
6481 if ((pat = prev_active_insn (insn))
6482 && GET_CODE (pat) == CALL_INSN)
6483 {
6484 need_barrier = 1;
6485 break;
6486 }
6487 /* FALLTHRU */
6488
6489 case INSN:
6490 if (GET_CODE (PATTERN (insn)) == USE
6491 || GET_CODE (PATTERN (insn)) == CLOBBER)
6492 /* Don't care about USE and CLOBBER "insns"---those are used to
6493 indicate to the optimizer that it shouldn't get rid of
6494 certain operations. */
6495 break;
6496
6497 pat = PATTERN (insn);
6498
6499 /* Ug. Hack hacks hacked elsewhere. */
6500 switch (recog_memoized (insn))
6501 {
6502 /* We play dependency tricks with the epilogue in order
6503 to get proper schedules. Undo this for dv analysis. */
6504 case CODE_FOR_epilogue_deallocate_stack:
6505 case CODE_FOR_prologue_allocate_stack:
6506 pat = XVECEXP (pat, 0, 0);
6507 break;
6508
6509 /* The pattern we use for br.cloop confuses the code above.
6510 The second element of the vector is representative. */
6511 case CODE_FOR_doloop_end_internal:
6512 pat = XVECEXP (pat, 0, 1);
6513 break;
6514
6515 /* Doesn't generate code. */
6516 case CODE_FOR_pred_rel_mutex:
6517 case CODE_FOR_prologue_use:
6518 return 0;
6519
6520 default:
6521 break;
6522 }
6523
6524 memset (rws_insn, 0, sizeof (rws_insn));
6525 need_barrier = rtx_needs_barrier (pat, flags, 0);
6526
6527 /* Check to see if the previous instruction was a volatile
6528 asm. */
6529 if (! need_barrier)
6530 need_barrier = rws_access_regno (REG_VOLATILE, flags, 0);
6531
6532 break;
6533
6534 default:
6535 gcc_unreachable ();
6536 }
6537
6538 if (first_instruction && INSN_P (insn)
6539 && ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
6540 && GET_CODE (PATTERN (insn)) != USE
6541 && GET_CODE (PATTERN (insn)) != CLOBBER)
6542 {
6543 need_barrier = 0;
6544 first_instruction = 0;
6545 }
6546
6547 return need_barrier;
6548 }
6549
6550 /* Like group_barrier_needed, but do not clobber the current state. */
6551
6552 static int
6553 safe_group_barrier_needed (rtx insn)
6554 {
6555 int saved_first_instruction;
6556 int t;
6557
6558 saved_first_instruction = first_instruction;
6559 in_safe_group_barrier = 1;
6560
6561 t = group_barrier_needed (insn);
6562
6563 first_instruction = saved_first_instruction;
6564 in_safe_group_barrier = 0;
6565
6566 return t;
6567 }
6568
6569 /* Scan the current function and insert stop bits as necessary to
6570 eliminate dependencies. This function assumes that a final
6571 instruction scheduling pass has been run which has already
6572 inserted most of the necessary stop bits. This function only
6573 inserts new ones at basic block boundaries, since these are
6574 invisible to the scheduler. */
6575
6576 static void
6577 emit_insn_group_barriers (FILE *dump)
6578 {
6579 rtx insn;
6580 rtx last_label = 0;
6581 int insns_since_last_label = 0;
6582
6583 init_insn_group_barriers ();
6584
6585 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6586 {
6587 if (GET_CODE (insn) == CODE_LABEL)
6588 {
6589 if (insns_since_last_label)
6590 last_label = insn;
6591 insns_since_last_label = 0;
6592 }
6593 else if (GET_CODE (insn) == NOTE
6594 && NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK)
6595 {
6596 if (insns_since_last_label)
6597 last_label = insn;
6598 insns_since_last_label = 0;
6599 }
6600 else if (GET_CODE (insn) == INSN
6601 && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
6602 && XINT (PATTERN (insn), 1) == UNSPECV_INSN_GROUP_BARRIER)
6603 {
6604 init_insn_group_barriers ();
6605 last_label = 0;
6606 }
6607 else if (NONDEBUG_INSN_P (insn))
6608 {
6609 insns_since_last_label = 1;
6610
6611 if (group_barrier_needed (insn))
6612 {
6613 if (last_label)
6614 {
6615 if (dump)
6616 fprintf (dump, "Emitting stop before label %d\n",
6617 INSN_UID (last_label));
6618 emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), last_label);
6619 insn = last_label;
6620
6621 init_insn_group_barriers ();
6622 last_label = 0;
6623 }
6624 }
6625 }
6626 }
6627 }
6628
6629 /* Like emit_insn_group_barriers, but run if no final scheduling pass was run.
6630 This function has to emit all necessary group barriers. */
6631
6632 static void
6633 emit_all_insn_group_barriers (FILE *dump ATTRIBUTE_UNUSED)
6634 {
6635 rtx insn;
6636
6637 init_insn_group_barriers ();
6638
6639 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6640 {
6641 if (GET_CODE (insn) == BARRIER)
6642 {
6643 rtx last = prev_active_insn (insn);
6644
6645 if (! last)
6646 continue;
6647 if (GET_CODE (last) == JUMP_INSN
6648 && GET_CODE (PATTERN (last)) == ADDR_DIFF_VEC)
6649 last = prev_active_insn (last);
6650 if (recog_memoized (last) != CODE_FOR_insn_group_barrier)
6651 emit_insn_after (gen_insn_group_barrier (GEN_INT (3)), last);
6652
6653 init_insn_group_barriers ();
6654 }
6655 else if (NONDEBUG_INSN_P (insn))
6656 {
6657 if (recog_memoized (insn) == CODE_FOR_insn_group_barrier)
6658 init_insn_group_barriers ();
6659 else if (group_barrier_needed (insn))
6660 {
6661 emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), insn);
6662 init_insn_group_barriers ();
6663 group_barrier_needed (insn);
6664 }
6665 }
6666 }
6667 }
6668
6669 \f
6670
6671 /* Instruction scheduling support. */
6672
6673 #define NR_BUNDLES 10
6674
6675 /* A list of names of all available bundles. */
6676
6677 static const char *bundle_name [NR_BUNDLES] =
6678 {
6679 ".mii",
6680 ".mmi",
6681 ".mfi",
6682 ".mmf",
6683 #if NR_BUNDLES == 10
6684 ".bbb",
6685 ".mbb",
6686 #endif
6687 ".mib",
6688 ".mmb",
6689 ".mfb",
6690 ".mlx"
6691 };
6692
6693 /* Nonzero if we should insert stop bits into the schedule. */
6694
6695 int ia64_final_schedule = 0;
6696
6697 /* Codes of the corresponding queried units: */
6698
6699 static int _0mii_, _0mmi_, _0mfi_, _0mmf_;
6700 static int _0bbb_, _0mbb_, _0mib_, _0mmb_, _0mfb_, _0mlx_;
6701
6702 static int _1mii_, _1mmi_, _1mfi_, _1mmf_;
6703 static int _1bbb_, _1mbb_, _1mib_, _1mmb_, _1mfb_, _1mlx_;
6704
6705 static int pos_1, pos_2, pos_3, pos_4, pos_5, pos_6;
6706
6707 /* The following variable value is an insn group barrier. */
6708
6709 static rtx dfa_stop_insn;
6710
6711 /* The following variable value is the last issued insn. */
6712
6713 static rtx last_scheduled_insn;
6714
6715 /* The following variable value is pointer to a DFA state used as
6716 temporary variable. */
6717
6718 static state_t temp_dfa_state = NULL;
6719
6720 /* The following variable value is DFA state after issuing the last
6721 insn. */
6722
6723 static state_t prev_cycle_state = NULL;
6724
6725 /* The following array element values are TRUE if the corresponding
6726 insn requires to add stop bits before it. */
6727
6728 static char *stops_p = NULL;
6729
6730 /* The following variable is used to set up the mentioned above array. */
6731
6732 static int stop_before_p = 0;
6733
6734 /* The following variable value is length of the arrays `clocks' and
6735 `add_cycles'. */
6736
6737 static int clocks_length;
6738
6739 /* The following variable value is number of data speculations in progress. */
6740 static int pending_data_specs = 0;
6741
6742 /* Number of memory references on current and three future processor cycles. */
6743 static char mem_ops_in_group[4];
6744
6745 /* Number of current processor cycle (from scheduler's point of view). */
6746 static int current_cycle;
6747
6748 static rtx ia64_single_set (rtx);
6749 static void ia64_emit_insn_before (rtx, rtx);
6750
6751 /* Map a bundle number to its pseudo-op. */
6752
6753 const char *
6754 get_bundle_name (int b)
6755 {
6756 return bundle_name[b];
6757 }
6758
6759
6760 /* Return the maximum number of instructions a cpu can issue. */
6761
6762 static int
6763 ia64_issue_rate (void)
6764 {
6765 return 6;
6766 }
6767
6768 /* Helper function - like single_set, but look inside COND_EXEC. */
6769
6770 static rtx
6771 ia64_single_set (rtx insn)
6772 {
6773 rtx x = PATTERN (insn), ret;
6774 if (GET_CODE (x) == COND_EXEC)
6775 x = COND_EXEC_CODE (x);
6776 if (GET_CODE (x) == SET)
6777 return x;
6778
6779 /* Special case here prologue_allocate_stack and epilogue_deallocate_stack.
6780 Although they are not classical single set, the second set is there just
6781 to protect it from moving past FP-relative stack accesses. */
6782 switch (recog_memoized (insn))
6783 {
6784 case CODE_FOR_prologue_allocate_stack:
6785 case CODE_FOR_epilogue_deallocate_stack:
6786 ret = XVECEXP (x, 0, 0);
6787 break;
6788
6789 default:
6790 ret = single_set_2 (insn, x);
6791 break;
6792 }
6793
6794 return ret;
6795 }
6796
6797 /* Adjust the cost of a scheduling dependency.
6798 Return the new cost of a dependency of type DEP_TYPE or INSN on DEP_INSN.
6799 COST is the current cost, DW is dependency weakness. */
6800 static int
6801 ia64_adjust_cost_2 (rtx insn, int dep_type1, rtx dep_insn, int cost, dw_t dw)
6802 {
6803 enum reg_note dep_type = (enum reg_note) dep_type1;
6804 enum attr_itanium_class dep_class;
6805 enum attr_itanium_class insn_class;
6806
6807 insn_class = ia64_safe_itanium_class (insn);
6808 dep_class = ia64_safe_itanium_class (dep_insn);
6809
6810 /* Treat true memory dependencies separately. Ignore apparent true
6811 dependence between store and call (call has a MEM inside a SYMBOL_REF). */
6812 if (dep_type == REG_DEP_TRUE
6813 && (dep_class == ITANIUM_CLASS_ST || dep_class == ITANIUM_CLASS_STF)
6814 && (insn_class == ITANIUM_CLASS_BR || insn_class == ITANIUM_CLASS_SCALL))
6815 return 0;
6816
6817 if (dw == MIN_DEP_WEAK)
6818 /* Store and load are likely to alias, use higher cost to avoid stall. */
6819 return PARAM_VALUE (PARAM_SCHED_MEM_TRUE_DEP_COST);
6820 else if (dw > MIN_DEP_WEAK)
6821 {
6822 /* Store and load are less likely to alias. */
6823 if (mflag_sched_fp_mem_deps_zero_cost && dep_class == ITANIUM_CLASS_STF)
6824 /* Assume there will be no cache conflict for floating-point data.
6825 For integer data, L1 conflict penalty is huge (17 cycles), so we
6826 never assume it will not cause a conflict. */
6827 return 0;
6828 else
6829 return cost;
6830 }
6831
6832 if (dep_type != REG_DEP_OUTPUT)
6833 return cost;
6834
6835 if (dep_class == ITANIUM_CLASS_ST || dep_class == ITANIUM_CLASS_STF
6836 || insn_class == ITANIUM_CLASS_ST || insn_class == ITANIUM_CLASS_STF)
6837 return 0;
6838
6839 return cost;
6840 }
6841
6842 /* Like emit_insn_before, but skip cycle_display notes.
6843 ??? When cycle display notes are implemented, update this. */
6844
6845 static void
6846 ia64_emit_insn_before (rtx insn, rtx before)
6847 {
6848 emit_insn_before (insn, before);
6849 }
6850
6851 /* The following function marks insns who produce addresses for load
6852 and store insns. Such insns will be placed into M slots because it
6853 decrease latency time for Itanium1 (see function
6854 `ia64_produce_address_p' and the DFA descriptions). */
6855
6856 static void
6857 ia64_dependencies_evaluation_hook (rtx head, rtx tail)
6858 {
6859 rtx insn, next, next_tail;
6860
6861 /* Before reload, which_alternative is not set, which means that
6862 ia64_safe_itanium_class will produce wrong results for (at least)
6863 move instructions. */
6864 if (!reload_completed)
6865 return;
6866
6867 next_tail = NEXT_INSN (tail);
6868 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6869 if (INSN_P (insn))
6870 insn->call = 0;
6871 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6872 if (INSN_P (insn)
6873 && ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IALU)
6874 {
6875 sd_iterator_def sd_it;
6876 dep_t dep;
6877 bool has_mem_op_consumer_p = false;
6878
6879 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
6880 {
6881 enum attr_itanium_class c;
6882
6883 if (DEP_TYPE (dep) != REG_DEP_TRUE)
6884 continue;
6885
6886 next = DEP_CON (dep);
6887 c = ia64_safe_itanium_class (next);
6888 if ((c == ITANIUM_CLASS_ST
6889 || c == ITANIUM_CLASS_STF)
6890 && ia64_st_address_bypass_p (insn, next))
6891 {
6892 has_mem_op_consumer_p = true;
6893 break;
6894 }
6895 else if ((c == ITANIUM_CLASS_LD
6896 || c == ITANIUM_CLASS_FLD
6897 || c == ITANIUM_CLASS_FLDP)
6898 && ia64_ld_address_bypass_p (insn, next))
6899 {
6900 has_mem_op_consumer_p = true;
6901 break;
6902 }
6903 }
6904
6905 insn->call = has_mem_op_consumer_p;
6906 }
6907 }
6908
6909 /* We're beginning a new block. Initialize data structures as necessary. */
6910
6911 static void
6912 ia64_sched_init (FILE *dump ATTRIBUTE_UNUSED,
6913 int sched_verbose ATTRIBUTE_UNUSED,
6914 int max_ready ATTRIBUTE_UNUSED)
6915 {
6916 #ifdef ENABLE_CHECKING
6917 rtx insn;
6918
6919 if (!sel_sched_p () && reload_completed)
6920 for (insn = NEXT_INSN (current_sched_info->prev_head);
6921 insn != current_sched_info->next_tail;
6922 insn = NEXT_INSN (insn))
6923 gcc_assert (!SCHED_GROUP_P (insn));
6924 #endif
6925 last_scheduled_insn = NULL_RTX;
6926 init_insn_group_barriers ();
6927
6928 current_cycle = 0;
6929 memset (mem_ops_in_group, 0, sizeof (mem_ops_in_group));
6930 }
6931
6932 /* We're beginning a scheduling pass. Check assertion. */
6933
6934 static void
6935 ia64_sched_init_global (FILE *dump ATTRIBUTE_UNUSED,
6936 int sched_verbose ATTRIBUTE_UNUSED,
6937 int max_ready ATTRIBUTE_UNUSED)
6938 {
6939 gcc_assert (pending_data_specs == 0);
6940 }
6941
6942 /* Scheduling pass is now finished. Free/reset static variable. */
6943 static void
6944 ia64_sched_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6945 int sched_verbose ATTRIBUTE_UNUSED)
6946 {
6947 gcc_assert (pending_data_specs == 0);
6948 }
6949
6950 /* Return TRUE if INSN is a load (either normal or speculative, but not a
6951 speculation check), FALSE otherwise. */
6952 static bool
6953 is_load_p (rtx insn)
6954 {
6955 enum attr_itanium_class insn_class = ia64_safe_itanium_class (insn);
6956
6957 return
6958 ((insn_class == ITANIUM_CLASS_LD || insn_class == ITANIUM_CLASS_FLD)
6959 && get_attr_check_load (insn) == CHECK_LOAD_NO);
6960 }
6961
6962 /* If INSN is a memory reference, memoize it in MEM_OPS_IN_GROUP global array
6963 (taking account for 3-cycle cache reference postponing for stores: Intel
6964 Itanium 2 Reference Manual for Software Development and Optimization,
6965 6.7.3.1). */
6966 static void
6967 record_memory_reference (rtx insn)
6968 {
6969 enum attr_itanium_class insn_class = ia64_safe_itanium_class (insn);
6970
6971 switch (insn_class) {
6972 case ITANIUM_CLASS_FLD:
6973 case ITANIUM_CLASS_LD:
6974 mem_ops_in_group[current_cycle % 4]++;
6975 break;
6976 case ITANIUM_CLASS_STF:
6977 case ITANIUM_CLASS_ST:
6978 mem_ops_in_group[(current_cycle + 3) % 4]++;
6979 break;
6980 default:;
6981 }
6982 }
6983
6984 /* We are about to being issuing insns for this clock cycle.
6985 Override the default sort algorithm to better slot instructions. */
6986
6987 static int
6988 ia64_dfa_sched_reorder (FILE *dump, int sched_verbose, rtx *ready,
6989 int *pn_ready, int clock_var,
6990 int reorder_type)
6991 {
6992 int n_asms;
6993 int n_ready = *pn_ready;
6994 rtx *e_ready = ready + n_ready;
6995 rtx *insnp;
6996
6997 if (sched_verbose)
6998 fprintf (dump, "// ia64_dfa_sched_reorder (type %d):\n", reorder_type);
6999
7000 if (reorder_type == 0)
7001 {
7002 /* First, move all USEs, CLOBBERs and other crud out of the way. */
7003 n_asms = 0;
7004 for (insnp = ready; insnp < e_ready; insnp++)
7005 if (insnp < e_ready)
7006 {
7007 rtx insn = *insnp;
7008 enum attr_type t = ia64_safe_type (insn);
7009 if (t == TYPE_UNKNOWN)
7010 {
7011 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
7012 || asm_noperands (PATTERN (insn)) >= 0)
7013 {
7014 rtx lowest = ready[n_asms];
7015 ready[n_asms] = insn;
7016 *insnp = lowest;
7017 n_asms++;
7018 }
7019 else
7020 {
7021 rtx highest = ready[n_ready - 1];
7022 ready[n_ready - 1] = insn;
7023 *insnp = highest;
7024 return 1;
7025 }
7026 }
7027 }
7028
7029 if (n_asms < n_ready)
7030 {
7031 /* Some normal insns to process. Skip the asms. */
7032 ready += n_asms;
7033 n_ready -= n_asms;
7034 }
7035 else if (n_ready > 0)
7036 return 1;
7037 }
7038
7039 if (ia64_final_schedule)
7040 {
7041 int deleted = 0;
7042 int nr_need_stop = 0;
7043
7044 for (insnp = ready; insnp < e_ready; insnp++)
7045 if (safe_group_barrier_needed (*insnp))
7046 nr_need_stop++;
7047
7048 if (reorder_type == 1 && n_ready == nr_need_stop)
7049 return 0;
7050 if (reorder_type == 0)
7051 return 1;
7052 insnp = e_ready;
7053 /* Move down everything that needs a stop bit, preserving
7054 relative order. */
7055 while (insnp-- > ready + deleted)
7056 while (insnp >= ready + deleted)
7057 {
7058 rtx insn = *insnp;
7059 if (! safe_group_barrier_needed (insn))
7060 break;
7061 memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
7062 *ready = insn;
7063 deleted++;
7064 }
7065 n_ready -= deleted;
7066 ready += deleted;
7067 }
7068
7069 current_cycle = clock_var;
7070 if (reload_completed && mem_ops_in_group[clock_var % 4] >= ia64_max_memory_insns)
7071 {
7072 int moved = 0;
7073
7074 insnp = e_ready;
7075 /* Move down loads/stores, preserving relative order. */
7076 while (insnp-- > ready + moved)
7077 while (insnp >= ready + moved)
7078 {
7079 rtx insn = *insnp;
7080 if (! is_load_p (insn))
7081 break;
7082 memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
7083 *ready = insn;
7084 moved++;
7085 }
7086 n_ready -= moved;
7087 ready += moved;
7088 }
7089
7090 return 1;
7091 }
7092
7093 /* We are about to being issuing insns for this clock cycle. Override
7094 the default sort algorithm to better slot instructions. */
7095
7096 static int
7097 ia64_sched_reorder (FILE *dump, int sched_verbose, rtx *ready, int *pn_ready,
7098 int clock_var)
7099 {
7100 return ia64_dfa_sched_reorder (dump, sched_verbose, ready,
7101 pn_ready, clock_var, 0);
7102 }
7103
7104 /* Like ia64_sched_reorder, but called after issuing each insn.
7105 Override the default sort algorithm to better slot instructions. */
7106
7107 static int
7108 ia64_sched_reorder2 (FILE *dump ATTRIBUTE_UNUSED,
7109 int sched_verbose ATTRIBUTE_UNUSED, rtx *ready,
7110 int *pn_ready, int clock_var)
7111 {
7112 return ia64_dfa_sched_reorder (dump, sched_verbose, ready, pn_ready,
7113 clock_var, 1);
7114 }
7115
7116 /* We are about to issue INSN. Return the number of insns left on the
7117 ready queue that can be issued this cycle. */
7118
7119 static int
7120 ia64_variable_issue (FILE *dump ATTRIBUTE_UNUSED,
7121 int sched_verbose ATTRIBUTE_UNUSED,
7122 rtx insn ATTRIBUTE_UNUSED,
7123 int can_issue_more ATTRIBUTE_UNUSED)
7124 {
7125 if (sched_deps_info->generate_spec_deps && !sel_sched_p ())
7126 /* Modulo scheduling does not extend h_i_d when emitting
7127 new instructions. Don't use h_i_d, if we don't have to. */
7128 {
7129 if (DONE_SPEC (insn) & BEGIN_DATA)
7130 pending_data_specs++;
7131 if (CHECK_SPEC (insn) & BEGIN_DATA)
7132 pending_data_specs--;
7133 }
7134
7135 if (DEBUG_INSN_P (insn))
7136 return 1;
7137
7138 last_scheduled_insn = insn;
7139 memcpy (prev_cycle_state, curr_state, dfa_state_size);
7140 if (reload_completed)
7141 {
7142 int needed = group_barrier_needed (insn);
7143
7144 gcc_assert (!needed);
7145 if (GET_CODE (insn) == CALL_INSN)
7146 init_insn_group_barriers ();
7147 stops_p [INSN_UID (insn)] = stop_before_p;
7148 stop_before_p = 0;
7149
7150 record_memory_reference (insn);
7151 }
7152 return 1;
7153 }
7154
7155 /* We are choosing insn from the ready queue. Return nonzero if INSN
7156 can be chosen. */
7157
7158 static int
7159 ia64_first_cycle_multipass_dfa_lookahead_guard (rtx insn)
7160 {
7161 gcc_assert (insn && INSN_P (insn));
7162 return ((!reload_completed
7163 || !safe_group_barrier_needed (insn))
7164 && ia64_first_cycle_multipass_dfa_lookahead_guard_spec (insn)
7165 && (!mflag_sched_mem_insns_hard_limit
7166 || !is_load_p (insn)
7167 || mem_ops_in_group[current_cycle % 4] < ia64_max_memory_insns));
7168 }
7169
7170 /* We are choosing insn from the ready queue. Return nonzero if INSN
7171 can be chosen. */
7172
7173 static bool
7174 ia64_first_cycle_multipass_dfa_lookahead_guard_spec (const_rtx insn)
7175 {
7176 gcc_assert (insn && INSN_P (insn));
7177 /* Size of ALAT is 32. As far as we perform conservative data speculation,
7178 we keep ALAT half-empty. */
7179 return (pending_data_specs < 16
7180 || !(TODO_SPEC (insn) & BEGIN_DATA));
7181 }
7182
7183 /* The following variable value is pseudo-insn used by the DFA insn
7184 scheduler to change the DFA state when the simulated clock is
7185 increased. */
7186
7187 static rtx dfa_pre_cycle_insn;
7188
7189 /* Returns 1 when a meaningful insn was scheduled between the last group
7190 barrier and LAST. */
7191 static int
7192 scheduled_good_insn (rtx last)
7193 {
7194 if (last && recog_memoized (last) >= 0)
7195 return 1;
7196
7197 for ( ;
7198 last != NULL && !NOTE_INSN_BASIC_BLOCK_P (last)
7199 && !stops_p[INSN_UID (last)];
7200 last = PREV_INSN (last))
7201 /* We could hit a NOTE_INSN_DELETED here which is actually outside
7202 the ebb we're scheduling. */
7203 if (INSN_P (last) && recog_memoized (last) >= 0)
7204 return 1;
7205
7206 return 0;
7207 }
7208
7209 /* We are about to being issuing INSN. Return nonzero if we cannot
7210 issue it on given cycle CLOCK and return zero if we should not sort
7211 the ready queue on the next clock start. */
7212
7213 static int
7214 ia64_dfa_new_cycle (FILE *dump, int verbose, rtx insn, int last_clock,
7215 int clock, int *sort_p)
7216 {
7217 gcc_assert (insn && INSN_P (insn));
7218
7219 if (DEBUG_INSN_P (insn))
7220 return 0;
7221
7222 /* When a group barrier is needed for insn, last_scheduled_insn
7223 should be set. */
7224 gcc_assert (!(reload_completed && safe_group_barrier_needed (insn))
7225 || last_scheduled_insn);
7226
7227 if ((reload_completed
7228 && (safe_group_barrier_needed (insn)
7229 || (mflag_sched_stop_bits_after_every_cycle
7230 && last_clock != clock
7231 && last_scheduled_insn
7232 && scheduled_good_insn (last_scheduled_insn))))
7233 || (last_scheduled_insn
7234 && (GET_CODE (last_scheduled_insn) == CALL_INSN
7235 || GET_CODE (PATTERN (last_scheduled_insn)) == ASM_INPUT
7236 || asm_noperands (PATTERN (last_scheduled_insn)) >= 0)))
7237 {
7238 init_insn_group_barriers ();
7239
7240 if (verbose && dump)
7241 fprintf (dump, "// Stop should be before %d%s\n", INSN_UID (insn),
7242 last_clock == clock ? " + cycle advance" : "");
7243
7244 stop_before_p = 1;
7245 current_cycle = clock;
7246 mem_ops_in_group[current_cycle % 4] = 0;
7247
7248 if (last_clock == clock)
7249 {
7250 state_transition (curr_state, dfa_stop_insn);
7251 if (TARGET_EARLY_STOP_BITS)
7252 *sort_p = (last_scheduled_insn == NULL_RTX
7253 || GET_CODE (last_scheduled_insn) != CALL_INSN);
7254 else
7255 *sort_p = 0;
7256 return 1;
7257 }
7258
7259 if (last_scheduled_insn)
7260 {
7261 if (GET_CODE (PATTERN (last_scheduled_insn)) == ASM_INPUT
7262 || asm_noperands (PATTERN (last_scheduled_insn)) >= 0)
7263 state_reset (curr_state);
7264 else
7265 {
7266 memcpy (curr_state, prev_cycle_state, dfa_state_size);
7267 state_transition (curr_state, dfa_stop_insn);
7268 state_transition (curr_state, dfa_pre_cycle_insn);
7269 state_transition (curr_state, NULL);
7270 }
7271 }
7272 }
7273 return 0;
7274 }
7275
7276 /* Implement targetm.sched.h_i_d_extended hook.
7277 Extend internal data structures. */
7278 static void
7279 ia64_h_i_d_extended (void)
7280 {
7281 if (stops_p != NULL)
7282 {
7283 int new_clocks_length = get_max_uid () * 3 / 2;
7284 stops_p = (char *) xrecalloc (stops_p, new_clocks_length, clocks_length, 1);
7285 clocks_length = new_clocks_length;
7286 }
7287 }
7288 \f
7289
7290 /* This structure describes the data used by the backend to guide scheduling.
7291 When the current scheduling point is switched, this data should be saved
7292 and restored later, if the scheduler returns to this point. */
7293 struct _ia64_sched_context
7294 {
7295 state_t prev_cycle_state;
7296 rtx last_scheduled_insn;
7297 struct reg_write_state rws_sum[NUM_REGS];
7298 struct reg_write_state rws_insn[NUM_REGS];
7299 int first_instruction;
7300 int pending_data_specs;
7301 int current_cycle;
7302 char mem_ops_in_group[4];
7303 };
7304 typedef struct _ia64_sched_context *ia64_sched_context_t;
7305
7306 /* Allocates a scheduling context. */
7307 static void *
7308 ia64_alloc_sched_context (void)
7309 {
7310 return xmalloc (sizeof (struct _ia64_sched_context));
7311 }
7312
7313 /* Initializes the _SC context with clean data, if CLEAN_P, and from
7314 the global context otherwise. */
7315 static void
7316 ia64_init_sched_context (void *_sc, bool clean_p)
7317 {
7318 ia64_sched_context_t sc = (ia64_sched_context_t) _sc;
7319
7320 sc->prev_cycle_state = xmalloc (dfa_state_size);
7321 if (clean_p)
7322 {
7323 state_reset (sc->prev_cycle_state);
7324 sc->last_scheduled_insn = NULL_RTX;
7325 memset (sc->rws_sum, 0, sizeof (rws_sum));
7326 memset (sc->rws_insn, 0, sizeof (rws_insn));
7327 sc->first_instruction = 1;
7328 sc->pending_data_specs = 0;
7329 sc->current_cycle = 0;
7330 memset (sc->mem_ops_in_group, 0, sizeof (mem_ops_in_group));
7331 }
7332 else
7333 {
7334 memcpy (sc->prev_cycle_state, prev_cycle_state, dfa_state_size);
7335 sc->last_scheduled_insn = last_scheduled_insn;
7336 memcpy (sc->rws_sum, rws_sum, sizeof (rws_sum));
7337 memcpy (sc->rws_insn, rws_insn, sizeof (rws_insn));
7338 sc->first_instruction = first_instruction;
7339 sc->pending_data_specs = pending_data_specs;
7340 sc->current_cycle = current_cycle;
7341 memcpy (sc->mem_ops_in_group, mem_ops_in_group, sizeof (mem_ops_in_group));
7342 }
7343 }
7344
7345 /* Sets the global scheduling context to the one pointed to by _SC. */
7346 static void
7347 ia64_set_sched_context (void *_sc)
7348 {
7349 ia64_sched_context_t sc = (ia64_sched_context_t) _sc;
7350
7351 gcc_assert (sc != NULL);
7352
7353 memcpy (prev_cycle_state, sc->prev_cycle_state, dfa_state_size);
7354 last_scheduled_insn = sc->last_scheduled_insn;
7355 memcpy (rws_sum, sc->rws_sum, sizeof (rws_sum));
7356 memcpy (rws_insn, sc->rws_insn, sizeof (rws_insn));
7357 first_instruction = sc->first_instruction;
7358 pending_data_specs = sc->pending_data_specs;
7359 current_cycle = sc->current_cycle;
7360 memcpy (mem_ops_in_group, sc->mem_ops_in_group, sizeof (mem_ops_in_group));
7361 }
7362
7363 /* Clears the data in the _SC scheduling context. */
7364 static void
7365 ia64_clear_sched_context (void *_sc)
7366 {
7367 ia64_sched_context_t sc = (ia64_sched_context_t) _sc;
7368
7369 free (sc->prev_cycle_state);
7370 sc->prev_cycle_state = NULL;
7371 }
7372
7373 /* Frees the _SC scheduling context. */
7374 static void
7375 ia64_free_sched_context (void *_sc)
7376 {
7377 gcc_assert (_sc != NULL);
7378
7379 free (_sc);
7380 }
7381
7382 typedef rtx (* gen_func_t) (rtx, rtx);
7383
7384 /* Return a function that will generate a load of mode MODE_NO
7385 with speculation types TS. */
7386 static gen_func_t
7387 get_spec_load_gen_function (ds_t ts, int mode_no)
7388 {
7389 static gen_func_t gen_ld_[] = {
7390 gen_movbi,
7391 gen_movqi_internal,
7392 gen_movhi_internal,
7393 gen_movsi_internal,
7394 gen_movdi_internal,
7395 gen_movsf_internal,
7396 gen_movdf_internal,
7397 gen_movxf_internal,
7398 gen_movti_internal,
7399 gen_zero_extendqidi2,
7400 gen_zero_extendhidi2,
7401 gen_zero_extendsidi2,
7402 };
7403
7404 static gen_func_t gen_ld_a[] = {
7405 gen_movbi_advanced,
7406 gen_movqi_advanced,
7407 gen_movhi_advanced,
7408 gen_movsi_advanced,
7409 gen_movdi_advanced,
7410 gen_movsf_advanced,
7411 gen_movdf_advanced,
7412 gen_movxf_advanced,
7413 gen_movti_advanced,
7414 gen_zero_extendqidi2_advanced,
7415 gen_zero_extendhidi2_advanced,
7416 gen_zero_extendsidi2_advanced,
7417 };
7418 static gen_func_t gen_ld_s[] = {
7419 gen_movbi_speculative,
7420 gen_movqi_speculative,
7421 gen_movhi_speculative,
7422 gen_movsi_speculative,
7423 gen_movdi_speculative,
7424 gen_movsf_speculative,
7425 gen_movdf_speculative,
7426 gen_movxf_speculative,
7427 gen_movti_speculative,
7428 gen_zero_extendqidi2_speculative,
7429 gen_zero_extendhidi2_speculative,
7430 gen_zero_extendsidi2_speculative,
7431 };
7432 static gen_func_t gen_ld_sa[] = {
7433 gen_movbi_speculative_advanced,
7434 gen_movqi_speculative_advanced,
7435 gen_movhi_speculative_advanced,
7436 gen_movsi_speculative_advanced,
7437 gen_movdi_speculative_advanced,
7438 gen_movsf_speculative_advanced,
7439 gen_movdf_speculative_advanced,
7440 gen_movxf_speculative_advanced,
7441 gen_movti_speculative_advanced,
7442 gen_zero_extendqidi2_speculative_advanced,
7443 gen_zero_extendhidi2_speculative_advanced,
7444 gen_zero_extendsidi2_speculative_advanced,
7445 };
7446 static gen_func_t gen_ld_s_a[] = {
7447 gen_movbi_speculative_a,
7448 gen_movqi_speculative_a,
7449 gen_movhi_speculative_a,
7450 gen_movsi_speculative_a,
7451 gen_movdi_speculative_a,
7452 gen_movsf_speculative_a,
7453 gen_movdf_speculative_a,
7454 gen_movxf_speculative_a,
7455 gen_movti_speculative_a,
7456 gen_zero_extendqidi2_speculative_a,
7457 gen_zero_extendhidi2_speculative_a,
7458 gen_zero_extendsidi2_speculative_a,
7459 };
7460
7461 gen_func_t *gen_ld;
7462
7463 if (ts & BEGIN_DATA)
7464 {
7465 if (ts & BEGIN_CONTROL)
7466 gen_ld = gen_ld_sa;
7467 else
7468 gen_ld = gen_ld_a;
7469 }
7470 else if (ts & BEGIN_CONTROL)
7471 {
7472 if ((spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL)
7473 || ia64_needs_block_p (ts))
7474 gen_ld = gen_ld_s;
7475 else
7476 gen_ld = gen_ld_s_a;
7477 }
7478 else if (ts == 0)
7479 gen_ld = gen_ld_;
7480 else
7481 gcc_unreachable ();
7482
7483 return gen_ld[mode_no];
7484 }
7485
7486 /* Constants that help mapping 'enum machine_mode' to int. */
7487 enum SPEC_MODES
7488 {
7489 SPEC_MODE_INVALID = -1,
7490 SPEC_MODE_FIRST = 0,
7491 SPEC_MODE_FOR_EXTEND_FIRST = 1,
7492 SPEC_MODE_FOR_EXTEND_LAST = 3,
7493 SPEC_MODE_LAST = 8
7494 };
7495
7496 enum
7497 {
7498 /* Offset to reach ZERO_EXTEND patterns. */
7499 SPEC_GEN_EXTEND_OFFSET = SPEC_MODE_LAST - SPEC_MODE_FOR_EXTEND_FIRST + 1
7500 };
7501
7502 /* Return index of the MODE. */
7503 static int
7504 ia64_mode_to_int (enum machine_mode mode)
7505 {
7506 switch (mode)
7507 {
7508 case BImode: return 0; /* SPEC_MODE_FIRST */
7509 case QImode: return 1; /* SPEC_MODE_FOR_EXTEND_FIRST */
7510 case HImode: return 2;
7511 case SImode: return 3; /* SPEC_MODE_FOR_EXTEND_LAST */
7512 case DImode: return 4;
7513 case SFmode: return 5;
7514 case DFmode: return 6;
7515 case XFmode: return 7;
7516 case TImode:
7517 /* ??? This mode needs testing. Bypasses for ldfp8 instruction are not
7518 mentioned in itanium[12].md. Predicate fp_register_operand also
7519 needs to be defined. Bottom line: better disable for now. */
7520 return SPEC_MODE_INVALID;
7521 default: return SPEC_MODE_INVALID;
7522 }
7523 }
7524
7525 /* Provide information about speculation capabilities. */
7526 static void
7527 ia64_set_sched_flags (spec_info_t spec_info)
7528 {
7529 unsigned int *flags = &(current_sched_info->flags);
7530
7531 if (*flags & SCHED_RGN
7532 || *flags & SCHED_EBB
7533 || *flags & SEL_SCHED)
7534 {
7535 int mask = 0;
7536
7537 if ((mflag_sched_br_data_spec && !reload_completed && optimize > 0)
7538 || (mflag_sched_ar_data_spec && reload_completed))
7539 {
7540 mask |= BEGIN_DATA;
7541
7542 if (!sel_sched_p ()
7543 && ((mflag_sched_br_in_data_spec && !reload_completed)
7544 || (mflag_sched_ar_in_data_spec && reload_completed)))
7545 mask |= BE_IN_DATA;
7546 }
7547
7548 if (mflag_sched_control_spec
7549 && (!sel_sched_p ()
7550 || reload_completed))
7551 {
7552 mask |= BEGIN_CONTROL;
7553
7554 if (!sel_sched_p () && mflag_sched_in_control_spec)
7555 mask |= BE_IN_CONTROL;
7556 }
7557
7558 spec_info->mask = mask;
7559
7560 if (mask)
7561 {
7562 *flags |= USE_DEPS_LIST | DO_SPECULATION;
7563
7564 if (mask & BE_IN_SPEC)
7565 *flags |= NEW_BBS;
7566
7567 spec_info->flags = 0;
7568
7569 if ((mask & DATA_SPEC) && mflag_sched_prefer_non_data_spec_insns)
7570 spec_info->flags |= PREFER_NON_DATA_SPEC;
7571
7572 if (mask & CONTROL_SPEC)
7573 {
7574 if (mflag_sched_prefer_non_control_spec_insns)
7575 spec_info->flags |= PREFER_NON_CONTROL_SPEC;
7576
7577 if (sel_sched_p () && mflag_sel_sched_dont_check_control_spec)
7578 spec_info->flags |= SEL_SCHED_SPEC_DONT_CHECK_CONTROL;
7579 }
7580
7581 if (sched_verbose >= 1)
7582 spec_info->dump = sched_dump;
7583 else
7584 spec_info->dump = 0;
7585
7586 if (mflag_sched_count_spec_in_critical_path)
7587 spec_info->flags |= COUNT_SPEC_IN_CRITICAL_PATH;
7588 }
7589 }
7590 else
7591 spec_info->mask = 0;
7592 }
7593
7594 /* If INSN is an appropriate load return its mode.
7595 Return -1 otherwise. */
7596 static int
7597 get_mode_no_for_insn (rtx insn)
7598 {
7599 rtx reg, mem, mode_rtx;
7600 int mode_no;
7601 bool extend_p;
7602
7603 extract_insn_cached (insn);
7604
7605 /* We use WHICH_ALTERNATIVE only after reload. This will
7606 guarantee that reload won't touch a speculative insn. */
7607
7608 if (recog_data.n_operands != 2)
7609 return -1;
7610
7611 reg = recog_data.operand[0];
7612 mem = recog_data.operand[1];
7613
7614 /* We should use MEM's mode since REG's mode in presence of
7615 ZERO_EXTEND will always be DImode. */
7616 if (get_attr_speculable1 (insn) == SPECULABLE1_YES)
7617 /* Process non-speculative ld. */
7618 {
7619 if (!reload_completed)
7620 {
7621 /* Do not speculate into regs like ar.lc. */
7622 if (!REG_P (reg) || AR_REGNO_P (REGNO (reg)))
7623 return -1;
7624
7625 if (!MEM_P (mem))
7626 return -1;
7627
7628 {
7629 rtx mem_reg = XEXP (mem, 0);
7630
7631 if (!REG_P (mem_reg))
7632 return -1;
7633 }
7634
7635 mode_rtx = mem;
7636 }
7637 else if (get_attr_speculable2 (insn) == SPECULABLE2_YES)
7638 {
7639 gcc_assert (REG_P (reg) && MEM_P (mem));
7640 mode_rtx = mem;
7641 }
7642 else
7643 return -1;
7644 }
7645 else if (get_attr_data_speculative (insn) == DATA_SPECULATIVE_YES
7646 || get_attr_control_speculative (insn) == CONTROL_SPECULATIVE_YES
7647 || get_attr_check_load (insn) == CHECK_LOAD_YES)
7648 /* Process speculative ld or ld.c. */
7649 {
7650 gcc_assert (REG_P (reg) && MEM_P (mem));
7651 mode_rtx = mem;
7652 }
7653 else
7654 {
7655 enum attr_itanium_class attr_class = get_attr_itanium_class (insn);
7656
7657 if (attr_class == ITANIUM_CLASS_CHK_A
7658 || attr_class == ITANIUM_CLASS_CHK_S_I
7659 || attr_class == ITANIUM_CLASS_CHK_S_F)
7660 /* Process chk. */
7661 mode_rtx = reg;
7662 else
7663 return -1;
7664 }
7665
7666 mode_no = ia64_mode_to_int (GET_MODE (mode_rtx));
7667
7668 if (mode_no == SPEC_MODE_INVALID)
7669 return -1;
7670
7671 extend_p = (GET_MODE (reg) != GET_MODE (mode_rtx));
7672
7673 if (extend_p)
7674 {
7675 if (!(SPEC_MODE_FOR_EXTEND_FIRST <= mode_no
7676 && mode_no <= SPEC_MODE_FOR_EXTEND_LAST))
7677 return -1;
7678
7679 mode_no += SPEC_GEN_EXTEND_OFFSET;
7680 }
7681
7682 return mode_no;
7683 }
7684
7685 /* If X is an unspec part of a speculative load, return its code.
7686 Return -1 otherwise. */
7687 static int
7688 get_spec_unspec_code (const_rtx x)
7689 {
7690 if (GET_CODE (x) != UNSPEC)
7691 return -1;
7692
7693 {
7694 int code;
7695
7696 code = XINT (x, 1);
7697
7698 switch (code)
7699 {
7700 case UNSPEC_LDA:
7701 case UNSPEC_LDS:
7702 case UNSPEC_LDS_A:
7703 case UNSPEC_LDSA:
7704 return code;
7705
7706 default:
7707 return -1;
7708 }
7709 }
7710 }
7711
7712 /* Implement skip_rtx_p hook. */
7713 static bool
7714 ia64_skip_rtx_p (const_rtx x)
7715 {
7716 return get_spec_unspec_code (x) != -1;
7717 }
7718
7719 /* If INSN is a speculative load, return its UNSPEC code.
7720 Return -1 otherwise. */
7721 static int
7722 get_insn_spec_code (const_rtx insn)
7723 {
7724 rtx pat, reg, mem;
7725
7726 pat = PATTERN (insn);
7727
7728 if (GET_CODE (pat) == COND_EXEC)
7729 pat = COND_EXEC_CODE (pat);
7730
7731 if (GET_CODE (pat) != SET)
7732 return -1;
7733
7734 reg = SET_DEST (pat);
7735 if (!REG_P (reg))
7736 return -1;
7737
7738 mem = SET_SRC (pat);
7739 if (GET_CODE (mem) == ZERO_EXTEND)
7740 mem = XEXP (mem, 0);
7741
7742 return get_spec_unspec_code (mem);
7743 }
7744
7745 /* If INSN is a speculative load, return a ds with the speculation types.
7746 Otherwise [if INSN is a normal instruction] return 0. */
7747 static ds_t
7748 ia64_get_insn_spec_ds (rtx insn)
7749 {
7750 int code = get_insn_spec_code (insn);
7751
7752 switch (code)
7753 {
7754 case UNSPEC_LDA:
7755 return BEGIN_DATA;
7756
7757 case UNSPEC_LDS:
7758 case UNSPEC_LDS_A:
7759 return BEGIN_CONTROL;
7760
7761 case UNSPEC_LDSA:
7762 return BEGIN_DATA | BEGIN_CONTROL;
7763
7764 default:
7765 return 0;
7766 }
7767 }
7768
7769 /* If INSN is a speculative load return a ds with the speculation types that
7770 will be checked.
7771 Otherwise [if INSN is a normal instruction] return 0. */
7772 static ds_t
7773 ia64_get_insn_checked_ds (rtx insn)
7774 {
7775 int code = get_insn_spec_code (insn);
7776
7777 switch (code)
7778 {
7779 case UNSPEC_LDA:
7780 return BEGIN_DATA | BEGIN_CONTROL;
7781
7782 case UNSPEC_LDS:
7783 return BEGIN_CONTROL;
7784
7785 case UNSPEC_LDS_A:
7786 case UNSPEC_LDSA:
7787 return BEGIN_DATA | BEGIN_CONTROL;
7788
7789 default:
7790 return 0;
7791 }
7792 }
7793
7794 /* If GEN_P is true, calculate the index of needed speculation check and return
7795 speculative pattern for INSN with speculative mode TS, machine mode
7796 MODE_NO and with ZERO_EXTEND (if EXTEND_P is true).
7797 If GEN_P is false, just calculate the index of needed speculation check. */
7798 static rtx
7799 ia64_gen_spec_load (rtx insn, ds_t ts, int mode_no)
7800 {
7801 rtx pat, new_pat;
7802 gen_func_t gen_load;
7803
7804 gen_load = get_spec_load_gen_function (ts, mode_no);
7805
7806 new_pat = gen_load (copy_rtx (recog_data.operand[0]),
7807 copy_rtx (recog_data.operand[1]));
7808
7809 pat = PATTERN (insn);
7810 if (GET_CODE (pat) == COND_EXEC)
7811 new_pat = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (COND_EXEC_TEST (pat)),
7812 new_pat);
7813
7814 return new_pat;
7815 }
7816
7817 static bool
7818 insn_can_be_in_speculative_p (rtx insn ATTRIBUTE_UNUSED,
7819 ds_t ds ATTRIBUTE_UNUSED)
7820 {
7821 return false;
7822 }
7823
7824 /* Implement targetm.sched.speculate_insn hook.
7825 Check if the INSN can be TS speculative.
7826 If 'no' - return -1.
7827 If 'yes' - generate speculative pattern in the NEW_PAT and return 1.
7828 If current pattern of the INSN already provides TS speculation,
7829 return 0. */
7830 static int
7831 ia64_speculate_insn (rtx insn, ds_t ts, rtx *new_pat)
7832 {
7833 int mode_no;
7834 int res;
7835
7836 gcc_assert (!(ts & ~SPECULATIVE));
7837
7838 if (ia64_spec_check_p (insn))
7839 return -1;
7840
7841 if ((ts & BE_IN_SPEC)
7842 && !insn_can_be_in_speculative_p (insn, ts))
7843 return -1;
7844
7845 mode_no = get_mode_no_for_insn (insn);
7846
7847 if (mode_no != SPEC_MODE_INVALID)
7848 {
7849 if (ia64_get_insn_spec_ds (insn) == ds_get_speculation_types (ts))
7850 res = 0;
7851 else
7852 {
7853 res = 1;
7854 *new_pat = ia64_gen_spec_load (insn, ts, mode_no);
7855 }
7856 }
7857 else
7858 res = -1;
7859
7860 return res;
7861 }
7862
7863 /* Return a function that will generate a check for speculation TS with mode
7864 MODE_NO.
7865 If simple check is needed, pass true for SIMPLE_CHECK_P.
7866 If clearing check is needed, pass true for CLEARING_CHECK_P. */
7867 static gen_func_t
7868 get_spec_check_gen_function (ds_t ts, int mode_no,
7869 bool simple_check_p, bool clearing_check_p)
7870 {
7871 static gen_func_t gen_ld_c_clr[] = {
7872 gen_movbi_clr,
7873 gen_movqi_clr,
7874 gen_movhi_clr,
7875 gen_movsi_clr,
7876 gen_movdi_clr,
7877 gen_movsf_clr,
7878 gen_movdf_clr,
7879 gen_movxf_clr,
7880 gen_movti_clr,
7881 gen_zero_extendqidi2_clr,
7882 gen_zero_extendhidi2_clr,
7883 gen_zero_extendsidi2_clr,
7884 };
7885 static gen_func_t gen_ld_c_nc[] = {
7886 gen_movbi_nc,
7887 gen_movqi_nc,
7888 gen_movhi_nc,
7889 gen_movsi_nc,
7890 gen_movdi_nc,
7891 gen_movsf_nc,
7892 gen_movdf_nc,
7893 gen_movxf_nc,
7894 gen_movti_nc,
7895 gen_zero_extendqidi2_nc,
7896 gen_zero_extendhidi2_nc,
7897 gen_zero_extendsidi2_nc,
7898 };
7899 static gen_func_t gen_chk_a_clr[] = {
7900 gen_advanced_load_check_clr_bi,
7901 gen_advanced_load_check_clr_qi,
7902 gen_advanced_load_check_clr_hi,
7903 gen_advanced_load_check_clr_si,
7904 gen_advanced_load_check_clr_di,
7905 gen_advanced_load_check_clr_sf,
7906 gen_advanced_load_check_clr_df,
7907 gen_advanced_load_check_clr_xf,
7908 gen_advanced_load_check_clr_ti,
7909 gen_advanced_load_check_clr_di,
7910 gen_advanced_load_check_clr_di,
7911 gen_advanced_load_check_clr_di,
7912 };
7913 static gen_func_t gen_chk_a_nc[] = {
7914 gen_advanced_load_check_nc_bi,
7915 gen_advanced_load_check_nc_qi,
7916 gen_advanced_load_check_nc_hi,
7917 gen_advanced_load_check_nc_si,
7918 gen_advanced_load_check_nc_di,
7919 gen_advanced_load_check_nc_sf,
7920 gen_advanced_load_check_nc_df,
7921 gen_advanced_load_check_nc_xf,
7922 gen_advanced_load_check_nc_ti,
7923 gen_advanced_load_check_nc_di,
7924 gen_advanced_load_check_nc_di,
7925 gen_advanced_load_check_nc_di,
7926 };
7927 static gen_func_t gen_chk_s[] = {
7928 gen_speculation_check_bi,
7929 gen_speculation_check_qi,
7930 gen_speculation_check_hi,
7931 gen_speculation_check_si,
7932 gen_speculation_check_di,
7933 gen_speculation_check_sf,
7934 gen_speculation_check_df,
7935 gen_speculation_check_xf,
7936 gen_speculation_check_ti,
7937 gen_speculation_check_di,
7938 gen_speculation_check_di,
7939 gen_speculation_check_di,
7940 };
7941
7942 gen_func_t *gen_check;
7943
7944 if (ts & BEGIN_DATA)
7945 {
7946 /* We don't need recovery because even if this is ld.sa
7947 ALAT entry will be allocated only if NAT bit is set to zero.
7948 So it is enough to use ld.c here. */
7949
7950 if (simple_check_p)
7951 {
7952 gcc_assert (mflag_sched_spec_ldc);
7953
7954 if (clearing_check_p)
7955 gen_check = gen_ld_c_clr;
7956 else
7957 gen_check = gen_ld_c_nc;
7958 }
7959 else
7960 {
7961 if (clearing_check_p)
7962 gen_check = gen_chk_a_clr;
7963 else
7964 gen_check = gen_chk_a_nc;
7965 }
7966 }
7967 else if (ts & BEGIN_CONTROL)
7968 {
7969 if (simple_check_p)
7970 /* We might want to use ld.sa -> ld.c instead of
7971 ld.s -> chk.s. */
7972 {
7973 gcc_assert (!ia64_needs_block_p (ts));
7974
7975 if (clearing_check_p)
7976 gen_check = gen_ld_c_clr;
7977 else
7978 gen_check = gen_ld_c_nc;
7979 }
7980 else
7981 {
7982 gen_check = gen_chk_s;
7983 }
7984 }
7985 else
7986 gcc_unreachable ();
7987
7988 gcc_assert (mode_no >= 0);
7989 return gen_check[mode_no];
7990 }
7991
7992 /* Return nonzero, if INSN needs branchy recovery check. */
7993 static bool
7994 ia64_needs_block_p (ds_t ts)
7995 {
7996 if (ts & BEGIN_DATA)
7997 return !mflag_sched_spec_ldc;
7998
7999 gcc_assert ((ts & BEGIN_CONTROL) != 0);
8000
8001 return !(mflag_sched_spec_control_ldc && mflag_sched_spec_ldc);
8002 }
8003
8004 /* Generate (or regenerate, if (MUTATE_P)) recovery check for INSN.
8005 If (LABEL != 0 || MUTATE_P), generate branchy recovery check.
8006 Otherwise, generate a simple check. */
8007 static rtx
8008 ia64_gen_spec_check (rtx insn, rtx label, ds_t ds)
8009 {
8010 rtx op1, pat, check_pat;
8011 gen_func_t gen_check;
8012 int mode_no;
8013
8014 mode_no = get_mode_no_for_insn (insn);
8015 gcc_assert (mode_no >= 0);
8016
8017 if (label)
8018 op1 = label;
8019 else
8020 {
8021 gcc_assert (!ia64_needs_block_p (ds));
8022 op1 = copy_rtx (recog_data.operand[1]);
8023 }
8024
8025 gen_check = get_spec_check_gen_function (ds, mode_no, label == NULL_RTX,
8026 true);
8027
8028 check_pat = gen_check (copy_rtx (recog_data.operand[0]), op1);
8029
8030 pat = PATTERN (insn);
8031 if (GET_CODE (pat) == COND_EXEC)
8032 check_pat = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (COND_EXEC_TEST (pat)),
8033 check_pat);
8034
8035 return check_pat;
8036 }
8037
8038 /* Return nonzero, if X is branchy recovery check. */
8039 static int
8040 ia64_spec_check_p (rtx x)
8041 {
8042 x = PATTERN (x);
8043 if (GET_CODE (x) == COND_EXEC)
8044 x = COND_EXEC_CODE (x);
8045 if (GET_CODE (x) == SET)
8046 return ia64_spec_check_src_p (SET_SRC (x));
8047 return 0;
8048 }
8049
8050 /* Return nonzero, if SRC belongs to recovery check. */
8051 static int
8052 ia64_spec_check_src_p (rtx src)
8053 {
8054 if (GET_CODE (src) == IF_THEN_ELSE)
8055 {
8056 rtx t;
8057
8058 t = XEXP (src, 0);
8059 if (GET_CODE (t) == NE)
8060 {
8061 t = XEXP (t, 0);
8062
8063 if (GET_CODE (t) == UNSPEC)
8064 {
8065 int code;
8066
8067 code = XINT (t, 1);
8068
8069 if (code == UNSPEC_LDCCLR
8070 || code == UNSPEC_LDCNC
8071 || code == UNSPEC_CHKACLR
8072 || code == UNSPEC_CHKANC
8073 || code == UNSPEC_CHKS)
8074 {
8075 gcc_assert (code != 0);
8076 return code;
8077 }
8078 }
8079 }
8080 }
8081 return 0;
8082 }
8083 \f
8084
8085 /* The following page contains abstract data `bundle states' which are
8086 used for bundling insns (inserting nops and template generation). */
8087
8088 /* The following describes state of insn bundling. */
8089
8090 struct bundle_state
8091 {
8092 /* Unique bundle state number to identify them in the debugging
8093 output */
8094 int unique_num;
8095 rtx insn; /* corresponding insn, NULL for the 1st and the last state */
8096 /* number nops before and after the insn */
8097 short before_nops_num, after_nops_num;
8098 int insn_num; /* insn number (0 - for initial state, 1 - for the 1st
8099 insn */
8100 int cost; /* cost of the state in cycles */
8101 int accumulated_insns_num; /* number of all previous insns including
8102 nops. L is considered as 2 insns */
8103 int branch_deviation; /* deviation of previous branches from 3rd slots */
8104 int middle_bundle_stops; /* number of stop bits in the middle of bundles */
8105 struct bundle_state *next; /* next state with the same insn_num */
8106 struct bundle_state *originator; /* originator (previous insn state) */
8107 /* All bundle states are in the following chain. */
8108 struct bundle_state *allocated_states_chain;
8109 /* The DFA State after issuing the insn and the nops. */
8110 state_t dfa_state;
8111 };
8112
8113 /* The following is map insn number to the corresponding bundle state. */
8114
8115 static struct bundle_state **index_to_bundle_states;
8116
8117 /* The unique number of next bundle state. */
8118
8119 static int bundle_states_num;
8120
8121 /* All allocated bundle states are in the following chain. */
8122
8123 static struct bundle_state *allocated_bundle_states_chain;
8124
8125 /* All allocated but not used bundle states are in the following
8126 chain. */
8127
8128 static struct bundle_state *free_bundle_state_chain;
8129
8130
8131 /* The following function returns a free bundle state. */
8132
8133 static struct bundle_state *
8134 get_free_bundle_state (void)
8135 {
8136 struct bundle_state *result;
8137
8138 if (free_bundle_state_chain != NULL)
8139 {
8140 result = free_bundle_state_chain;
8141 free_bundle_state_chain = result->next;
8142 }
8143 else
8144 {
8145 result = XNEW (struct bundle_state);
8146 result->dfa_state = xmalloc (dfa_state_size);
8147 result->allocated_states_chain = allocated_bundle_states_chain;
8148 allocated_bundle_states_chain = result;
8149 }
8150 result->unique_num = bundle_states_num++;
8151 return result;
8152
8153 }
8154
8155 /* The following function frees given bundle state. */
8156
8157 static void
8158 free_bundle_state (struct bundle_state *state)
8159 {
8160 state->next = free_bundle_state_chain;
8161 free_bundle_state_chain = state;
8162 }
8163
8164 /* Start work with abstract data `bundle states'. */
8165
8166 static void
8167 initiate_bundle_states (void)
8168 {
8169 bundle_states_num = 0;
8170 free_bundle_state_chain = NULL;
8171 allocated_bundle_states_chain = NULL;
8172 }
8173
8174 /* Finish work with abstract data `bundle states'. */
8175
8176 static void
8177 finish_bundle_states (void)
8178 {
8179 struct bundle_state *curr_state, *next_state;
8180
8181 for (curr_state = allocated_bundle_states_chain;
8182 curr_state != NULL;
8183 curr_state = next_state)
8184 {
8185 next_state = curr_state->allocated_states_chain;
8186 free (curr_state->dfa_state);
8187 free (curr_state);
8188 }
8189 }
8190
8191 /* Hash table of the bundle states. The key is dfa_state and insn_num
8192 of the bundle states. */
8193
8194 static htab_t bundle_state_table;
8195
8196 /* The function returns hash of BUNDLE_STATE. */
8197
8198 static unsigned
8199 bundle_state_hash (const void *bundle_state)
8200 {
8201 const struct bundle_state *const state
8202 = (const struct bundle_state *) bundle_state;
8203 unsigned result, i;
8204
8205 for (result = i = 0; i < dfa_state_size; i++)
8206 result += (((unsigned char *) state->dfa_state) [i]
8207 << ((i % CHAR_BIT) * 3 + CHAR_BIT));
8208 return result + state->insn_num;
8209 }
8210
8211 /* The function returns nonzero if the bundle state keys are equal. */
8212
8213 static int
8214 bundle_state_eq_p (const void *bundle_state_1, const void *bundle_state_2)
8215 {
8216 const struct bundle_state *const state1
8217 = (const struct bundle_state *) bundle_state_1;
8218 const struct bundle_state *const state2
8219 = (const struct bundle_state *) bundle_state_2;
8220
8221 return (state1->insn_num == state2->insn_num
8222 && memcmp (state1->dfa_state, state2->dfa_state,
8223 dfa_state_size) == 0);
8224 }
8225
8226 /* The function inserts the BUNDLE_STATE into the hash table. The
8227 function returns nonzero if the bundle has been inserted into the
8228 table. The table contains the best bundle state with given key. */
8229
8230 static int
8231 insert_bundle_state (struct bundle_state *bundle_state)
8232 {
8233 void **entry_ptr;
8234
8235 entry_ptr = htab_find_slot (bundle_state_table, bundle_state, INSERT);
8236 if (*entry_ptr == NULL)
8237 {
8238 bundle_state->next = index_to_bundle_states [bundle_state->insn_num];
8239 index_to_bundle_states [bundle_state->insn_num] = bundle_state;
8240 *entry_ptr = (void *) bundle_state;
8241 return TRUE;
8242 }
8243 else if (bundle_state->cost < ((struct bundle_state *) *entry_ptr)->cost
8244 || (bundle_state->cost == ((struct bundle_state *) *entry_ptr)->cost
8245 && (((struct bundle_state *)*entry_ptr)->accumulated_insns_num
8246 > bundle_state->accumulated_insns_num
8247 || (((struct bundle_state *)
8248 *entry_ptr)->accumulated_insns_num
8249 == bundle_state->accumulated_insns_num
8250 && (((struct bundle_state *)
8251 *entry_ptr)->branch_deviation
8252 > bundle_state->branch_deviation
8253 || (((struct bundle_state *)
8254 *entry_ptr)->branch_deviation
8255 == bundle_state->branch_deviation
8256 && ((struct bundle_state *)
8257 *entry_ptr)->middle_bundle_stops
8258 > bundle_state->middle_bundle_stops))))))
8259
8260 {
8261 struct bundle_state temp;
8262
8263 temp = *(struct bundle_state *) *entry_ptr;
8264 *(struct bundle_state *) *entry_ptr = *bundle_state;
8265 ((struct bundle_state *) *entry_ptr)->next = temp.next;
8266 *bundle_state = temp;
8267 }
8268 return FALSE;
8269 }
8270
8271 /* Start work with the hash table. */
8272
8273 static void
8274 initiate_bundle_state_table (void)
8275 {
8276 bundle_state_table = htab_create (50, bundle_state_hash, bundle_state_eq_p,
8277 (htab_del) 0);
8278 }
8279
8280 /* Finish work with the hash table. */
8281
8282 static void
8283 finish_bundle_state_table (void)
8284 {
8285 htab_delete (bundle_state_table);
8286 }
8287
8288 \f
8289
8290 /* The following variable is a insn `nop' used to check bundle states
8291 with different number of inserted nops. */
8292
8293 static rtx ia64_nop;
8294
8295 /* The following function tries to issue NOPS_NUM nops for the current
8296 state without advancing processor cycle. If it failed, the
8297 function returns FALSE and frees the current state. */
8298
8299 static int
8300 try_issue_nops (struct bundle_state *curr_state, int nops_num)
8301 {
8302 int i;
8303
8304 for (i = 0; i < nops_num; i++)
8305 if (state_transition (curr_state->dfa_state, ia64_nop) >= 0)
8306 {
8307 free_bundle_state (curr_state);
8308 return FALSE;
8309 }
8310 return TRUE;
8311 }
8312
8313 /* The following function tries to issue INSN for the current
8314 state without advancing processor cycle. If it failed, the
8315 function returns FALSE and frees the current state. */
8316
8317 static int
8318 try_issue_insn (struct bundle_state *curr_state, rtx insn)
8319 {
8320 if (insn && state_transition (curr_state->dfa_state, insn) >= 0)
8321 {
8322 free_bundle_state (curr_state);
8323 return FALSE;
8324 }
8325 return TRUE;
8326 }
8327
8328 /* The following function tries to issue BEFORE_NOPS_NUM nops and INSN
8329 starting with ORIGINATOR without advancing processor cycle. If
8330 TRY_BUNDLE_END_P is TRUE, the function also/only (if
8331 ONLY_BUNDLE_END_P is TRUE) tries to issue nops to fill all bundle.
8332 If it was successful, the function creates new bundle state and
8333 insert into the hash table and into `index_to_bundle_states'. */
8334
8335 static void
8336 issue_nops_and_insn (struct bundle_state *originator, int before_nops_num,
8337 rtx insn, int try_bundle_end_p, int only_bundle_end_p)
8338 {
8339 struct bundle_state *curr_state;
8340
8341 curr_state = get_free_bundle_state ();
8342 memcpy (curr_state->dfa_state, originator->dfa_state, dfa_state_size);
8343 curr_state->insn = insn;
8344 curr_state->insn_num = originator->insn_num + 1;
8345 curr_state->cost = originator->cost;
8346 curr_state->originator = originator;
8347 curr_state->before_nops_num = before_nops_num;
8348 curr_state->after_nops_num = 0;
8349 curr_state->accumulated_insns_num
8350 = originator->accumulated_insns_num + before_nops_num;
8351 curr_state->branch_deviation = originator->branch_deviation;
8352 curr_state->middle_bundle_stops = originator->middle_bundle_stops;
8353 gcc_assert (insn);
8354 if (INSN_CODE (insn) == CODE_FOR_insn_group_barrier)
8355 {
8356 gcc_assert (GET_MODE (insn) != TImode);
8357 if (!try_issue_nops (curr_state, before_nops_num))
8358 return;
8359 if (!try_issue_insn (curr_state, insn))
8360 return;
8361 memcpy (temp_dfa_state, curr_state->dfa_state, dfa_state_size);
8362 if (curr_state->accumulated_insns_num % 3 != 0)
8363 curr_state->middle_bundle_stops++;
8364 if (state_transition (temp_dfa_state, dfa_pre_cycle_insn) >= 0
8365 && curr_state->accumulated_insns_num % 3 != 0)
8366 {
8367 free_bundle_state (curr_state);
8368 return;
8369 }
8370 }
8371 else if (GET_MODE (insn) != TImode)
8372 {
8373 if (!try_issue_nops (curr_state, before_nops_num))
8374 return;
8375 if (!try_issue_insn (curr_state, insn))
8376 return;
8377 curr_state->accumulated_insns_num++;
8378 gcc_assert (GET_CODE (PATTERN (insn)) != ASM_INPUT
8379 && asm_noperands (PATTERN (insn)) < 0);
8380
8381 if (ia64_safe_type (insn) == TYPE_L)
8382 curr_state->accumulated_insns_num++;
8383 }
8384 else
8385 {
8386 /* If this is an insn that must be first in a group, then don't allow
8387 nops to be emitted before it. Currently, alloc is the only such
8388 supported instruction. */
8389 /* ??? The bundling automatons should handle this for us, but they do
8390 not yet have support for the first_insn attribute. */
8391 if (before_nops_num > 0 && get_attr_first_insn (insn) == FIRST_INSN_YES)
8392 {
8393 free_bundle_state (curr_state);
8394 return;
8395 }
8396
8397 state_transition (curr_state->dfa_state, dfa_pre_cycle_insn);
8398 state_transition (curr_state->dfa_state, NULL);
8399 curr_state->cost++;
8400 if (!try_issue_nops (curr_state, before_nops_num))
8401 return;
8402 if (!try_issue_insn (curr_state, insn))
8403 return;
8404 curr_state->accumulated_insns_num++;
8405 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
8406 || asm_noperands (PATTERN (insn)) >= 0)
8407 {
8408 /* Finish bundle containing asm insn. */
8409 curr_state->after_nops_num
8410 = 3 - curr_state->accumulated_insns_num % 3;
8411 curr_state->accumulated_insns_num
8412 += 3 - curr_state->accumulated_insns_num % 3;
8413 }
8414 else if (ia64_safe_type (insn) == TYPE_L)
8415 curr_state->accumulated_insns_num++;
8416 }
8417 if (ia64_safe_type (insn) == TYPE_B)
8418 curr_state->branch_deviation
8419 += 2 - (curr_state->accumulated_insns_num - 1) % 3;
8420 if (try_bundle_end_p && curr_state->accumulated_insns_num % 3 != 0)
8421 {
8422 if (!only_bundle_end_p && insert_bundle_state (curr_state))
8423 {
8424 state_t dfa_state;
8425 struct bundle_state *curr_state1;
8426 struct bundle_state *allocated_states_chain;
8427
8428 curr_state1 = get_free_bundle_state ();
8429 dfa_state = curr_state1->dfa_state;
8430 allocated_states_chain = curr_state1->allocated_states_chain;
8431 *curr_state1 = *curr_state;
8432 curr_state1->dfa_state = dfa_state;
8433 curr_state1->allocated_states_chain = allocated_states_chain;
8434 memcpy (curr_state1->dfa_state, curr_state->dfa_state,
8435 dfa_state_size);
8436 curr_state = curr_state1;
8437 }
8438 if (!try_issue_nops (curr_state,
8439 3 - curr_state->accumulated_insns_num % 3))
8440 return;
8441 curr_state->after_nops_num
8442 = 3 - curr_state->accumulated_insns_num % 3;
8443 curr_state->accumulated_insns_num
8444 += 3 - curr_state->accumulated_insns_num % 3;
8445 }
8446 if (!insert_bundle_state (curr_state))
8447 free_bundle_state (curr_state);
8448 return;
8449 }
8450
8451 /* The following function returns position in the two window bundle
8452 for given STATE. */
8453
8454 static int
8455 get_max_pos (state_t state)
8456 {
8457 if (cpu_unit_reservation_p (state, pos_6))
8458 return 6;
8459 else if (cpu_unit_reservation_p (state, pos_5))
8460 return 5;
8461 else if (cpu_unit_reservation_p (state, pos_4))
8462 return 4;
8463 else if (cpu_unit_reservation_p (state, pos_3))
8464 return 3;
8465 else if (cpu_unit_reservation_p (state, pos_2))
8466 return 2;
8467 else if (cpu_unit_reservation_p (state, pos_1))
8468 return 1;
8469 else
8470 return 0;
8471 }
8472
8473 /* The function returns code of a possible template for given position
8474 and state. The function should be called only with 2 values of
8475 position equal to 3 or 6. We avoid generating F NOPs by putting
8476 templates containing F insns at the end of the template search
8477 because undocumented anomaly in McKinley derived cores which can
8478 cause stalls if an F-unit insn (including a NOP) is issued within a
8479 six-cycle window after reading certain application registers (such
8480 as ar.bsp). Furthermore, power-considerations also argue against
8481 the use of F-unit instructions unless they're really needed. */
8482
8483 static int
8484 get_template (state_t state, int pos)
8485 {
8486 switch (pos)
8487 {
8488 case 3:
8489 if (cpu_unit_reservation_p (state, _0mmi_))
8490 return 1;
8491 else if (cpu_unit_reservation_p (state, _0mii_))
8492 return 0;
8493 else if (cpu_unit_reservation_p (state, _0mmb_))
8494 return 7;
8495 else if (cpu_unit_reservation_p (state, _0mib_))
8496 return 6;
8497 else if (cpu_unit_reservation_p (state, _0mbb_))
8498 return 5;
8499 else if (cpu_unit_reservation_p (state, _0bbb_))
8500 return 4;
8501 else if (cpu_unit_reservation_p (state, _0mmf_))
8502 return 3;
8503 else if (cpu_unit_reservation_p (state, _0mfi_))
8504 return 2;
8505 else if (cpu_unit_reservation_p (state, _0mfb_))
8506 return 8;
8507 else if (cpu_unit_reservation_p (state, _0mlx_))
8508 return 9;
8509 else
8510 gcc_unreachable ();
8511 case 6:
8512 if (cpu_unit_reservation_p (state, _1mmi_))
8513 return 1;
8514 else if (cpu_unit_reservation_p (state, _1mii_))
8515 return 0;
8516 else if (cpu_unit_reservation_p (state, _1mmb_))
8517 return 7;
8518 else if (cpu_unit_reservation_p (state, _1mib_))
8519 return 6;
8520 else if (cpu_unit_reservation_p (state, _1mbb_))
8521 return 5;
8522 else if (cpu_unit_reservation_p (state, _1bbb_))
8523 return 4;
8524 else if (_1mmf_ >= 0 && cpu_unit_reservation_p (state, _1mmf_))
8525 return 3;
8526 else if (cpu_unit_reservation_p (state, _1mfi_))
8527 return 2;
8528 else if (cpu_unit_reservation_p (state, _1mfb_))
8529 return 8;
8530 else if (cpu_unit_reservation_p (state, _1mlx_))
8531 return 9;
8532 else
8533 gcc_unreachable ();
8534 default:
8535 gcc_unreachable ();
8536 }
8537 }
8538
8539 /* True when INSN is important for bundling. */
8540 static bool
8541 important_for_bundling_p (rtx insn)
8542 {
8543 return (INSN_P (insn)
8544 && ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
8545 && GET_CODE (PATTERN (insn)) != USE
8546 && GET_CODE (PATTERN (insn)) != CLOBBER);
8547 }
8548
8549 /* The following function returns an insn important for insn bundling
8550 followed by INSN and before TAIL. */
8551
8552 static rtx
8553 get_next_important_insn (rtx insn, rtx tail)
8554 {
8555 for (; insn && insn != tail; insn = NEXT_INSN (insn))
8556 if (important_for_bundling_p (insn))
8557 return insn;
8558 return NULL_RTX;
8559 }
8560
8561 /* Add a bundle selector TEMPLATE0 before INSN. */
8562
8563 static void
8564 ia64_add_bundle_selector_before (int template0, rtx insn)
8565 {
8566 rtx b = gen_bundle_selector (GEN_INT (template0));
8567
8568 ia64_emit_insn_before (b, insn);
8569 #if NR_BUNDLES == 10
8570 if ((template0 == 4 || template0 == 5)
8571 && ia64_except_unwind_info () == UI_TARGET)
8572 {
8573 int i;
8574 rtx note = NULL_RTX;
8575
8576 /* In .mbb and .bbb bundles, check if CALL_INSN isn't in the
8577 first or second slot. If it is and has REG_EH_NOTE set, copy it
8578 to following nops, as br.call sets rp to the address of following
8579 bundle and therefore an EH region end must be on a bundle
8580 boundary. */
8581 insn = PREV_INSN (insn);
8582 for (i = 0; i < 3; i++)
8583 {
8584 do
8585 insn = next_active_insn (insn);
8586 while (GET_CODE (insn) == INSN
8587 && get_attr_empty (insn) == EMPTY_YES);
8588 if (GET_CODE (insn) == CALL_INSN)
8589 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8590 else if (note)
8591 {
8592 int code;
8593
8594 gcc_assert ((code = recog_memoized (insn)) == CODE_FOR_nop
8595 || code == CODE_FOR_nop_b);
8596 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
8597 note = NULL_RTX;
8598 else
8599 add_reg_note (insn, REG_EH_REGION, XEXP (note, 0));
8600 }
8601 }
8602 }
8603 #endif
8604 }
8605
8606 /* The following function does insn bundling. Bundling means
8607 inserting templates and nop insns to fit insn groups into permitted
8608 templates. Instruction scheduling uses NDFA (non-deterministic
8609 finite automata) encoding informations about the templates and the
8610 inserted nops. Nondeterminism of the automata permits follows
8611 all possible insn sequences very fast.
8612
8613 Unfortunately it is not possible to get information about inserting
8614 nop insns and used templates from the automata states. The
8615 automata only says that we can issue an insn possibly inserting
8616 some nops before it and using some template. Therefore insn
8617 bundling in this function is implemented by using DFA
8618 (deterministic finite automata). We follow all possible insn
8619 sequences by inserting 0-2 nops (that is what the NDFA describe for
8620 insn scheduling) before/after each insn being bundled. We know the
8621 start of simulated processor cycle from insn scheduling (insn
8622 starting a new cycle has TImode).
8623
8624 Simple implementation of insn bundling would create enormous
8625 number of possible insn sequences satisfying information about new
8626 cycle ticks taken from the insn scheduling. To make the algorithm
8627 practical we use dynamic programming. Each decision (about
8628 inserting nops and implicitly about previous decisions) is described
8629 by structure bundle_state (see above). If we generate the same
8630 bundle state (key is automaton state after issuing the insns and
8631 nops for it), we reuse already generated one. As consequence we
8632 reject some decisions which cannot improve the solution and
8633 reduce memory for the algorithm.
8634
8635 When we reach the end of EBB (extended basic block), we choose the
8636 best sequence and then, moving back in EBB, insert templates for
8637 the best alternative. The templates are taken from querying
8638 automaton state for each insn in chosen bundle states.
8639
8640 So the algorithm makes two (forward and backward) passes through
8641 EBB. */
8642
8643 static void
8644 bundling (FILE *dump, int verbose, rtx prev_head_insn, rtx tail)
8645 {
8646 struct bundle_state *curr_state, *next_state, *best_state;
8647 rtx insn, next_insn;
8648 int insn_num;
8649 int i, bundle_end_p, only_bundle_end_p, asm_p;
8650 int pos = 0, max_pos, template0, template1;
8651 rtx b;
8652 rtx nop;
8653 enum attr_type type;
8654
8655 insn_num = 0;
8656 /* Count insns in the EBB. */
8657 for (insn = NEXT_INSN (prev_head_insn);
8658 insn && insn != tail;
8659 insn = NEXT_INSN (insn))
8660 if (INSN_P (insn))
8661 insn_num++;
8662 if (insn_num == 0)
8663 return;
8664 bundling_p = 1;
8665 dfa_clean_insn_cache ();
8666 initiate_bundle_state_table ();
8667 index_to_bundle_states = XNEWVEC (struct bundle_state *, insn_num + 2);
8668 /* First (forward) pass -- generation of bundle states. */
8669 curr_state = get_free_bundle_state ();
8670 curr_state->insn = NULL;
8671 curr_state->before_nops_num = 0;
8672 curr_state->after_nops_num = 0;
8673 curr_state->insn_num = 0;
8674 curr_state->cost = 0;
8675 curr_state->accumulated_insns_num = 0;
8676 curr_state->branch_deviation = 0;
8677 curr_state->middle_bundle_stops = 0;
8678 curr_state->next = NULL;
8679 curr_state->originator = NULL;
8680 state_reset (curr_state->dfa_state);
8681 index_to_bundle_states [0] = curr_state;
8682 insn_num = 0;
8683 /* Shift cycle mark if it is put on insn which could be ignored. */
8684 for (insn = NEXT_INSN (prev_head_insn);
8685 insn != tail;
8686 insn = NEXT_INSN (insn))
8687 if (INSN_P (insn)
8688 && (ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IGNORE
8689 || GET_CODE (PATTERN (insn)) == USE
8690 || GET_CODE (PATTERN (insn)) == CLOBBER)
8691 && GET_MODE (insn) == TImode)
8692 {
8693 PUT_MODE (insn, VOIDmode);
8694 for (next_insn = NEXT_INSN (insn);
8695 next_insn != tail;
8696 next_insn = NEXT_INSN (next_insn))
8697 if (INSN_P (next_insn)
8698 && ia64_safe_itanium_class (next_insn) != ITANIUM_CLASS_IGNORE
8699 && GET_CODE (PATTERN (next_insn)) != USE
8700 && GET_CODE (PATTERN (next_insn)) != CLOBBER
8701 && INSN_CODE (next_insn) != CODE_FOR_insn_group_barrier)
8702 {
8703 PUT_MODE (next_insn, TImode);
8704 break;
8705 }
8706 }
8707 /* Forward pass: generation of bundle states. */
8708 for (insn = get_next_important_insn (NEXT_INSN (prev_head_insn), tail);
8709 insn != NULL_RTX;
8710 insn = next_insn)
8711 {
8712 gcc_assert (INSN_P (insn)
8713 && ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
8714 && GET_CODE (PATTERN (insn)) != USE
8715 && GET_CODE (PATTERN (insn)) != CLOBBER);
8716 type = ia64_safe_type (insn);
8717 next_insn = get_next_important_insn (NEXT_INSN (insn), tail);
8718 insn_num++;
8719 index_to_bundle_states [insn_num] = NULL;
8720 for (curr_state = index_to_bundle_states [insn_num - 1];
8721 curr_state != NULL;
8722 curr_state = next_state)
8723 {
8724 pos = curr_state->accumulated_insns_num % 3;
8725 next_state = curr_state->next;
8726 /* We must fill up the current bundle in order to start a
8727 subsequent asm insn in a new bundle. Asm insn is always
8728 placed in a separate bundle. */
8729 only_bundle_end_p
8730 = (next_insn != NULL_RTX
8731 && INSN_CODE (insn) == CODE_FOR_insn_group_barrier
8732 && ia64_safe_type (next_insn) == TYPE_UNKNOWN);
8733 /* We may fill up the current bundle if it is the cycle end
8734 without a group barrier. */
8735 bundle_end_p
8736 = (only_bundle_end_p || next_insn == NULL_RTX
8737 || (GET_MODE (next_insn) == TImode
8738 && INSN_CODE (insn) != CODE_FOR_insn_group_barrier));
8739 if (type == TYPE_F || type == TYPE_B || type == TYPE_L
8740 || type == TYPE_S)
8741 issue_nops_and_insn (curr_state, 2, insn, bundle_end_p,
8742 only_bundle_end_p);
8743 issue_nops_and_insn (curr_state, 1, insn, bundle_end_p,
8744 only_bundle_end_p);
8745 issue_nops_and_insn (curr_state, 0, insn, bundle_end_p,
8746 only_bundle_end_p);
8747 }
8748 gcc_assert (index_to_bundle_states [insn_num]);
8749 for (curr_state = index_to_bundle_states [insn_num];
8750 curr_state != NULL;
8751 curr_state = curr_state->next)
8752 if (verbose >= 2 && dump)
8753 {
8754 /* This structure is taken from generated code of the
8755 pipeline hazard recognizer (see file insn-attrtab.c).
8756 Please don't forget to change the structure if a new
8757 automaton is added to .md file. */
8758 struct DFA_chip
8759 {
8760 unsigned short one_automaton_state;
8761 unsigned short oneb_automaton_state;
8762 unsigned short two_automaton_state;
8763 unsigned short twob_automaton_state;
8764 };
8765
8766 fprintf
8767 (dump,
8768 "// Bundle state %d (orig %d, cost %d, nops %d/%d, insns %d, branch %d, mid.stops %d state %d) for %d\n",
8769 curr_state->unique_num,
8770 (curr_state->originator == NULL
8771 ? -1 : curr_state->originator->unique_num),
8772 curr_state->cost,
8773 curr_state->before_nops_num, curr_state->after_nops_num,
8774 curr_state->accumulated_insns_num, curr_state->branch_deviation,
8775 curr_state->middle_bundle_stops,
8776 ((struct DFA_chip *) curr_state->dfa_state)->twob_automaton_state,
8777 INSN_UID (insn));
8778 }
8779 }
8780
8781 /* We should find a solution because the 2nd insn scheduling has
8782 found one. */
8783 gcc_assert (index_to_bundle_states [insn_num]);
8784 /* Find a state corresponding to the best insn sequence. */
8785 best_state = NULL;
8786 for (curr_state = index_to_bundle_states [insn_num];
8787 curr_state != NULL;
8788 curr_state = curr_state->next)
8789 /* We are just looking at the states with fully filled up last
8790 bundle. The first we prefer insn sequences with minimal cost
8791 then with minimal inserted nops and finally with branch insns
8792 placed in the 3rd slots. */
8793 if (curr_state->accumulated_insns_num % 3 == 0
8794 && (best_state == NULL || best_state->cost > curr_state->cost
8795 || (best_state->cost == curr_state->cost
8796 && (curr_state->accumulated_insns_num
8797 < best_state->accumulated_insns_num
8798 || (curr_state->accumulated_insns_num
8799 == best_state->accumulated_insns_num
8800 && (curr_state->branch_deviation
8801 < best_state->branch_deviation
8802 || (curr_state->branch_deviation
8803 == best_state->branch_deviation
8804 && curr_state->middle_bundle_stops
8805 < best_state->middle_bundle_stops)))))))
8806 best_state = curr_state;
8807 /* Second (backward) pass: adding nops and templates. */
8808 gcc_assert (best_state);
8809 insn_num = best_state->before_nops_num;
8810 template0 = template1 = -1;
8811 for (curr_state = best_state;
8812 curr_state->originator != NULL;
8813 curr_state = curr_state->originator)
8814 {
8815 insn = curr_state->insn;
8816 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
8817 || asm_noperands (PATTERN (insn)) >= 0);
8818 insn_num++;
8819 if (verbose >= 2 && dump)
8820 {
8821 struct DFA_chip
8822 {
8823 unsigned short one_automaton_state;
8824 unsigned short oneb_automaton_state;
8825 unsigned short two_automaton_state;
8826 unsigned short twob_automaton_state;
8827 };
8828
8829 fprintf
8830 (dump,
8831 "// Best %d (orig %d, cost %d, nops %d/%d, insns %d, branch %d, mid.stops %d, state %d) for %d\n",
8832 curr_state->unique_num,
8833 (curr_state->originator == NULL
8834 ? -1 : curr_state->originator->unique_num),
8835 curr_state->cost,
8836 curr_state->before_nops_num, curr_state->after_nops_num,
8837 curr_state->accumulated_insns_num, curr_state->branch_deviation,
8838 curr_state->middle_bundle_stops,
8839 ((struct DFA_chip *) curr_state->dfa_state)->twob_automaton_state,
8840 INSN_UID (insn));
8841 }
8842 /* Find the position in the current bundle window. The window can
8843 contain at most two bundles. Two bundle window means that
8844 the processor will make two bundle rotation. */
8845 max_pos = get_max_pos (curr_state->dfa_state);
8846 if (max_pos == 6
8847 /* The following (negative template number) means that the
8848 processor did one bundle rotation. */
8849 || (max_pos == 3 && template0 < 0))
8850 {
8851 /* We are at the end of the window -- find template(s) for
8852 its bundle(s). */
8853 pos = max_pos;
8854 if (max_pos == 3)
8855 template0 = get_template (curr_state->dfa_state, 3);
8856 else
8857 {
8858 template1 = get_template (curr_state->dfa_state, 3);
8859 template0 = get_template (curr_state->dfa_state, 6);
8860 }
8861 }
8862 if (max_pos > 3 && template1 < 0)
8863 /* It may happen when we have the stop inside a bundle. */
8864 {
8865 gcc_assert (pos <= 3);
8866 template1 = get_template (curr_state->dfa_state, 3);
8867 pos += 3;
8868 }
8869 if (!asm_p)
8870 /* Emit nops after the current insn. */
8871 for (i = 0; i < curr_state->after_nops_num; i++)
8872 {
8873 nop = gen_nop ();
8874 emit_insn_after (nop, insn);
8875 pos--;
8876 gcc_assert (pos >= 0);
8877 if (pos % 3 == 0)
8878 {
8879 /* We are at the start of a bundle: emit the template
8880 (it should be defined). */
8881 gcc_assert (template0 >= 0);
8882 ia64_add_bundle_selector_before (template0, nop);
8883 /* If we have two bundle window, we make one bundle
8884 rotation. Otherwise template0 will be undefined
8885 (negative value). */
8886 template0 = template1;
8887 template1 = -1;
8888 }
8889 }
8890 /* Move the position backward in the window. Group barrier has
8891 no slot. Asm insn takes all bundle. */
8892 if (INSN_CODE (insn) != CODE_FOR_insn_group_barrier
8893 && GET_CODE (PATTERN (insn)) != ASM_INPUT
8894 && asm_noperands (PATTERN (insn)) < 0)
8895 pos--;
8896 /* Long insn takes 2 slots. */
8897 if (ia64_safe_type (insn) == TYPE_L)
8898 pos--;
8899 gcc_assert (pos >= 0);
8900 if (pos % 3 == 0
8901 && INSN_CODE (insn) != CODE_FOR_insn_group_barrier
8902 && GET_CODE (PATTERN (insn)) != ASM_INPUT
8903 && asm_noperands (PATTERN (insn)) < 0)
8904 {
8905 /* The current insn is at the bundle start: emit the
8906 template. */
8907 gcc_assert (template0 >= 0);
8908 ia64_add_bundle_selector_before (template0, insn);
8909 b = PREV_INSN (insn);
8910 insn = b;
8911 /* See comment above in analogous place for emitting nops
8912 after the insn. */
8913 template0 = template1;
8914 template1 = -1;
8915 }
8916 /* Emit nops after the current insn. */
8917 for (i = 0; i < curr_state->before_nops_num; i++)
8918 {
8919 nop = gen_nop ();
8920 ia64_emit_insn_before (nop, insn);
8921 nop = PREV_INSN (insn);
8922 insn = nop;
8923 pos--;
8924 gcc_assert (pos >= 0);
8925 if (pos % 3 == 0)
8926 {
8927 /* See comment above in analogous place for emitting nops
8928 after the insn. */
8929 gcc_assert (template0 >= 0);
8930 ia64_add_bundle_selector_before (template0, insn);
8931 b = PREV_INSN (insn);
8932 insn = b;
8933 template0 = template1;
8934 template1 = -1;
8935 }
8936 }
8937 }
8938
8939 #ifdef ENABLE_CHECKING
8940 {
8941 /* Assert right calculation of middle_bundle_stops. */
8942 int num = best_state->middle_bundle_stops;
8943 bool start_bundle = true, end_bundle = false;
8944
8945 for (insn = NEXT_INSN (prev_head_insn);
8946 insn && insn != tail;
8947 insn = NEXT_INSN (insn))
8948 {
8949 if (!INSN_P (insn))
8950 continue;
8951 if (recog_memoized (insn) == CODE_FOR_bundle_selector)
8952 start_bundle = true;
8953 else
8954 {
8955 rtx next_insn;
8956
8957 for (next_insn = NEXT_INSN (insn);
8958 next_insn && next_insn != tail;
8959 next_insn = NEXT_INSN (next_insn))
8960 if (INSN_P (next_insn)
8961 && (ia64_safe_itanium_class (next_insn)
8962 != ITANIUM_CLASS_IGNORE
8963 || recog_memoized (next_insn)
8964 == CODE_FOR_bundle_selector)
8965 && GET_CODE (PATTERN (next_insn)) != USE
8966 && GET_CODE (PATTERN (next_insn)) != CLOBBER)
8967 break;
8968
8969 end_bundle = next_insn == NULL_RTX
8970 || next_insn == tail
8971 || (INSN_P (next_insn)
8972 && recog_memoized (next_insn)
8973 == CODE_FOR_bundle_selector);
8974 if (recog_memoized (insn) == CODE_FOR_insn_group_barrier
8975 && !start_bundle && !end_bundle
8976 && next_insn
8977 && GET_CODE (PATTERN (next_insn)) != ASM_INPUT
8978 && asm_noperands (PATTERN (next_insn)) < 0)
8979 num--;
8980
8981 start_bundle = false;
8982 }
8983 }
8984
8985 gcc_assert (num == 0);
8986 }
8987 #endif
8988
8989 free (index_to_bundle_states);
8990 finish_bundle_state_table ();
8991 bundling_p = 0;
8992 dfa_clean_insn_cache ();
8993 }
8994
8995 /* The following function is called at the end of scheduling BB or
8996 EBB. After reload, it inserts stop bits and does insn bundling. */
8997
8998 static void
8999 ia64_sched_finish (FILE *dump, int sched_verbose)
9000 {
9001 if (sched_verbose)
9002 fprintf (dump, "// Finishing schedule.\n");
9003 if (!reload_completed)
9004 return;
9005 if (reload_completed)
9006 {
9007 final_emit_insn_group_barriers (dump);
9008 bundling (dump, sched_verbose, current_sched_info->prev_head,
9009 current_sched_info->next_tail);
9010 if (sched_verbose && dump)
9011 fprintf (dump, "// finishing %d-%d\n",
9012 INSN_UID (NEXT_INSN (current_sched_info->prev_head)),
9013 INSN_UID (PREV_INSN (current_sched_info->next_tail)));
9014
9015 return;
9016 }
9017 }
9018
9019 /* The following function inserts stop bits in scheduled BB or EBB. */
9020
9021 static void
9022 final_emit_insn_group_barriers (FILE *dump ATTRIBUTE_UNUSED)
9023 {
9024 rtx insn;
9025 int need_barrier_p = 0;
9026 int seen_good_insn = 0;
9027
9028 init_insn_group_barriers ();
9029
9030 for (insn = NEXT_INSN (current_sched_info->prev_head);
9031 insn != current_sched_info->next_tail;
9032 insn = NEXT_INSN (insn))
9033 {
9034 if (GET_CODE (insn) == BARRIER)
9035 {
9036 rtx last = prev_active_insn (insn);
9037
9038 if (! last)
9039 continue;
9040 if (GET_CODE (last) == JUMP_INSN
9041 && GET_CODE (PATTERN (last)) == ADDR_DIFF_VEC)
9042 last = prev_active_insn (last);
9043 if (recog_memoized (last) != CODE_FOR_insn_group_barrier)
9044 emit_insn_after (gen_insn_group_barrier (GEN_INT (3)), last);
9045
9046 init_insn_group_barriers ();
9047 seen_good_insn = 0;
9048 need_barrier_p = 0;
9049 }
9050 else if (NONDEBUG_INSN_P (insn))
9051 {
9052 if (recog_memoized (insn) == CODE_FOR_insn_group_barrier)
9053 {
9054 init_insn_group_barriers ();
9055 seen_good_insn = 0;
9056 need_barrier_p = 0;
9057 }
9058 else if (need_barrier_p || group_barrier_needed (insn)
9059 || (mflag_sched_stop_bits_after_every_cycle
9060 && GET_MODE (insn) == TImode
9061 && seen_good_insn))
9062 {
9063 if (TARGET_EARLY_STOP_BITS)
9064 {
9065 rtx last;
9066
9067 for (last = insn;
9068 last != current_sched_info->prev_head;
9069 last = PREV_INSN (last))
9070 if (INSN_P (last) && GET_MODE (last) == TImode
9071 && stops_p [INSN_UID (last)])
9072 break;
9073 if (last == current_sched_info->prev_head)
9074 last = insn;
9075 last = prev_active_insn (last);
9076 if (last
9077 && recog_memoized (last) != CODE_FOR_insn_group_barrier)
9078 emit_insn_after (gen_insn_group_barrier (GEN_INT (3)),
9079 last);
9080 init_insn_group_barriers ();
9081 for (last = NEXT_INSN (last);
9082 last != insn;
9083 last = NEXT_INSN (last))
9084 if (INSN_P (last))
9085 {
9086 group_barrier_needed (last);
9087 if (recog_memoized (last) >= 0
9088 && important_for_bundling_p (last))
9089 seen_good_insn = 1;
9090 }
9091 }
9092 else
9093 {
9094 emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
9095 insn);
9096 init_insn_group_barriers ();
9097 seen_good_insn = 0;
9098 }
9099 group_barrier_needed (insn);
9100 if (recog_memoized (insn) >= 0
9101 && important_for_bundling_p (insn))
9102 seen_good_insn = 1;
9103 }
9104 else if (recog_memoized (insn) >= 0
9105 && important_for_bundling_p (insn))
9106 seen_good_insn = 1;
9107 need_barrier_p = (GET_CODE (insn) == CALL_INSN
9108 || GET_CODE (PATTERN (insn)) == ASM_INPUT
9109 || asm_noperands (PATTERN (insn)) >= 0);
9110 }
9111 }
9112 }
9113
9114 \f
9115
9116 /* If the following function returns TRUE, we will use the DFA
9117 insn scheduler. */
9118
9119 static int
9120 ia64_first_cycle_multipass_dfa_lookahead (void)
9121 {
9122 return (reload_completed ? 6 : 4);
9123 }
9124
9125 /* The following function initiates variable `dfa_pre_cycle_insn'. */
9126
9127 static void
9128 ia64_init_dfa_pre_cycle_insn (void)
9129 {
9130 if (temp_dfa_state == NULL)
9131 {
9132 dfa_state_size = state_size ();
9133 temp_dfa_state = xmalloc (dfa_state_size);
9134 prev_cycle_state = xmalloc (dfa_state_size);
9135 }
9136 dfa_pre_cycle_insn = make_insn_raw (gen_pre_cycle ());
9137 PREV_INSN (dfa_pre_cycle_insn) = NEXT_INSN (dfa_pre_cycle_insn) = NULL_RTX;
9138 recog_memoized (dfa_pre_cycle_insn);
9139 dfa_stop_insn = make_insn_raw (gen_insn_group_barrier (GEN_INT (3)));
9140 PREV_INSN (dfa_stop_insn) = NEXT_INSN (dfa_stop_insn) = NULL_RTX;
9141 recog_memoized (dfa_stop_insn);
9142 }
9143
9144 /* The following function returns the pseudo insn DFA_PRE_CYCLE_INSN
9145 used by the DFA insn scheduler. */
9146
9147 static rtx
9148 ia64_dfa_pre_cycle_insn (void)
9149 {
9150 return dfa_pre_cycle_insn;
9151 }
9152
9153 /* The following function returns TRUE if PRODUCER (of type ilog or
9154 ld) produces address for CONSUMER (of type st or stf). */
9155
9156 int
9157 ia64_st_address_bypass_p (rtx producer, rtx consumer)
9158 {
9159 rtx dest, reg, mem;
9160
9161 gcc_assert (producer && consumer);
9162 dest = ia64_single_set (producer);
9163 gcc_assert (dest);
9164 reg = SET_DEST (dest);
9165 gcc_assert (reg);
9166 if (GET_CODE (reg) == SUBREG)
9167 reg = SUBREG_REG (reg);
9168 gcc_assert (GET_CODE (reg) == REG);
9169
9170 dest = ia64_single_set (consumer);
9171 gcc_assert (dest);
9172 mem = SET_DEST (dest);
9173 gcc_assert (mem && GET_CODE (mem) == MEM);
9174 return reg_mentioned_p (reg, mem);
9175 }
9176
9177 /* The following function returns TRUE if PRODUCER (of type ilog or
9178 ld) produces address for CONSUMER (of type ld or fld). */
9179
9180 int
9181 ia64_ld_address_bypass_p (rtx producer, rtx consumer)
9182 {
9183 rtx dest, src, reg, mem;
9184
9185 gcc_assert (producer && consumer);
9186 dest = ia64_single_set (producer);
9187 gcc_assert (dest);
9188 reg = SET_DEST (dest);
9189 gcc_assert (reg);
9190 if (GET_CODE (reg) == SUBREG)
9191 reg = SUBREG_REG (reg);
9192 gcc_assert (GET_CODE (reg) == REG);
9193
9194 src = ia64_single_set (consumer);
9195 gcc_assert (src);
9196 mem = SET_SRC (src);
9197 gcc_assert (mem);
9198
9199 if (GET_CODE (mem) == UNSPEC && XVECLEN (mem, 0) > 0)
9200 mem = XVECEXP (mem, 0, 0);
9201 else if (GET_CODE (mem) == IF_THEN_ELSE)
9202 /* ??? Is this bypass necessary for ld.c? */
9203 {
9204 gcc_assert (XINT (XEXP (XEXP (mem, 0), 0), 1) == UNSPEC_LDCCLR);
9205 mem = XEXP (mem, 1);
9206 }
9207
9208 while (GET_CODE (mem) == SUBREG || GET_CODE (mem) == ZERO_EXTEND)
9209 mem = XEXP (mem, 0);
9210
9211 if (GET_CODE (mem) == UNSPEC)
9212 {
9213 int c = XINT (mem, 1);
9214
9215 gcc_assert (c == UNSPEC_LDA || c == UNSPEC_LDS || c == UNSPEC_LDS_A
9216 || c == UNSPEC_LDSA);
9217 mem = XVECEXP (mem, 0, 0);
9218 }
9219
9220 /* Note that LO_SUM is used for GOT loads. */
9221 gcc_assert (GET_CODE (mem) == LO_SUM || GET_CODE (mem) == MEM);
9222
9223 return reg_mentioned_p (reg, mem);
9224 }
9225
9226 /* The following function returns TRUE if INSN produces address for a
9227 load/store insn. We will place such insns into M slot because it
9228 decreases its latency time. */
9229
9230 int
9231 ia64_produce_address_p (rtx insn)
9232 {
9233 return insn->call;
9234 }
9235
9236 \f
9237 /* Emit pseudo-ops for the assembler to describe predicate relations.
9238 At present this assumes that we only consider predicate pairs to
9239 be mutex, and that the assembler can deduce proper values from
9240 straight-line code. */
9241
9242 static void
9243 emit_predicate_relation_info (void)
9244 {
9245 basic_block bb;
9246
9247 FOR_EACH_BB_REVERSE (bb)
9248 {
9249 int r;
9250 rtx head = BB_HEAD (bb);
9251
9252 /* We only need such notes at code labels. */
9253 if (GET_CODE (head) != CODE_LABEL)
9254 continue;
9255 if (NOTE_INSN_BASIC_BLOCK_P (NEXT_INSN (head)))
9256 head = NEXT_INSN (head);
9257
9258 /* Skip p0, which may be thought to be live due to (reg:DI p0)
9259 grabbing the entire block of predicate registers. */
9260 for (r = PR_REG (2); r < PR_REG (64); r += 2)
9261 if (REGNO_REG_SET_P (df_get_live_in (bb), r))
9262 {
9263 rtx p = gen_rtx_REG (BImode, r);
9264 rtx n = emit_insn_after (gen_pred_rel_mutex (p), head);
9265 if (head == BB_END (bb))
9266 BB_END (bb) = n;
9267 head = n;
9268 }
9269 }
9270
9271 /* Look for conditional calls that do not return, and protect predicate
9272 relations around them. Otherwise the assembler will assume the call
9273 returns, and complain about uses of call-clobbered predicates after
9274 the call. */
9275 FOR_EACH_BB_REVERSE (bb)
9276 {
9277 rtx insn = BB_HEAD (bb);
9278
9279 while (1)
9280 {
9281 if (GET_CODE (insn) == CALL_INSN
9282 && GET_CODE (PATTERN (insn)) == COND_EXEC
9283 && find_reg_note (insn, REG_NORETURN, NULL_RTX))
9284 {
9285 rtx b = emit_insn_before (gen_safe_across_calls_all (), insn);
9286 rtx a = emit_insn_after (gen_safe_across_calls_normal (), insn);
9287 if (BB_HEAD (bb) == insn)
9288 BB_HEAD (bb) = b;
9289 if (BB_END (bb) == insn)
9290 BB_END (bb) = a;
9291 }
9292
9293 if (insn == BB_END (bb))
9294 break;
9295 insn = NEXT_INSN (insn);
9296 }
9297 }
9298 }
9299
9300 /* Perform machine dependent operations on the rtl chain INSNS. */
9301
9302 static void
9303 ia64_reorg (void)
9304 {
9305 /* We are freeing block_for_insn in the toplev to keep compatibility
9306 with old MDEP_REORGS that are not CFG based. Recompute it now. */
9307 compute_bb_for_insn ();
9308
9309 /* If optimizing, we'll have split before scheduling. */
9310 if (optimize == 0)
9311 split_all_insns ();
9312
9313 if (optimize && ia64_flag_schedule_insns2
9314 && dbg_cnt (ia64_sched2))
9315 {
9316 timevar_push (TV_SCHED2);
9317 ia64_final_schedule = 1;
9318
9319 initiate_bundle_states ();
9320 ia64_nop = make_insn_raw (gen_nop ());
9321 PREV_INSN (ia64_nop) = NEXT_INSN (ia64_nop) = NULL_RTX;
9322 recog_memoized (ia64_nop);
9323 clocks_length = get_max_uid () + 1;
9324 stops_p = XCNEWVEC (char, clocks_length);
9325
9326 if (ia64_tune == PROCESSOR_ITANIUM2)
9327 {
9328 pos_1 = get_cpu_unit_code ("2_1");
9329 pos_2 = get_cpu_unit_code ("2_2");
9330 pos_3 = get_cpu_unit_code ("2_3");
9331 pos_4 = get_cpu_unit_code ("2_4");
9332 pos_5 = get_cpu_unit_code ("2_5");
9333 pos_6 = get_cpu_unit_code ("2_6");
9334 _0mii_ = get_cpu_unit_code ("2b_0mii.");
9335 _0mmi_ = get_cpu_unit_code ("2b_0mmi.");
9336 _0mfi_ = get_cpu_unit_code ("2b_0mfi.");
9337 _0mmf_ = get_cpu_unit_code ("2b_0mmf.");
9338 _0bbb_ = get_cpu_unit_code ("2b_0bbb.");
9339 _0mbb_ = get_cpu_unit_code ("2b_0mbb.");
9340 _0mib_ = get_cpu_unit_code ("2b_0mib.");
9341 _0mmb_ = get_cpu_unit_code ("2b_0mmb.");
9342 _0mfb_ = get_cpu_unit_code ("2b_0mfb.");
9343 _0mlx_ = get_cpu_unit_code ("2b_0mlx.");
9344 _1mii_ = get_cpu_unit_code ("2b_1mii.");
9345 _1mmi_ = get_cpu_unit_code ("2b_1mmi.");
9346 _1mfi_ = get_cpu_unit_code ("2b_1mfi.");
9347 _1mmf_ = get_cpu_unit_code ("2b_1mmf.");
9348 _1bbb_ = get_cpu_unit_code ("2b_1bbb.");
9349 _1mbb_ = get_cpu_unit_code ("2b_1mbb.");
9350 _1mib_ = get_cpu_unit_code ("2b_1mib.");
9351 _1mmb_ = get_cpu_unit_code ("2b_1mmb.");
9352 _1mfb_ = get_cpu_unit_code ("2b_1mfb.");
9353 _1mlx_ = get_cpu_unit_code ("2b_1mlx.");
9354 }
9355 else
9356 {
9357 pos_1 = get_cpu_unit_code ("1_1");
9358 pos_2 = get_cpu_unit_code ("1_2");
9359 pos_3 = get_cpu_unit_code ("1_3");
9360 pos_4 = get_cpu_unit_code ("1_4");
9361 pos_5 = get_cpu_unit_code ("1_5");
9362 pos_6 = get_cpu_unit_code ("1_6");
9363 _0mii_ = get_cpu_unit_code ("1b_0mii.");
9364 _0mmi_ = get_cpu_unit_code ("1b_0mmi.");
9365 _0mfi_ = get_cpu_unit_code ("1b_0mfi.");
9366 _0mmf_ = get_cpu_unit_code ("1b_0mmf.");
9367 _0bbb_ = get_cpu_unit_code ("1b_0bbb.");
9368 _0mbb_ = get_cpu_unit_code ("1b_0mbb.");
9369 _0mib_ = get_cpu_unit_code ("1b_0mib.");
9370 _0mmb_ = get_cpu_unit_code ("1b_0mmb.");
9371 _0mfb_ = get_cpu_unit_code ("1b_0mfb.");
9372 _0mlx_ = get_cpu_unit_code ("1b_0mlx.");
9373 _1mii_ = get_cpu_unit_code ("1b_1mii.");
9374 _1mmi_ = get_cpu_unit_code ("1b_1mmi.");
9375 _1mfi_ = get_cpu_unit_code ("1b_1mfi.");
9376 _1mmf_ = get_cpu_unit_code ("1b_1mmf.");
9377 _1bbb_ = get_cpu_unit_code ("1b_1bbb.");
9378 _1mbb_ = get_cpu_unit_code ("1b_1mbb.");
9379 _1mib_ = get_cpu_unit_code ("1b_1mib.");
9380 _1mmb_ = get_cpu_unit_code ("1b_1mmb.");
9381 _1mfb_ = get_cpu_unit_code ("1b_1mfb.");
9382 _1mlx_ = get_cpu_unit_code ("1b_1mlx.");
9383 }
9384
9385 if (flag_selective_scheduling2
9386 && !maybe_skip_selective_scheduling ())
9387 run_selective_scheduling ();
9388 else
9389 schedule_ebbs ();
9390
9391 /* Redo alignment computation, as it might gone wrong. */
9392 compute_alignments ();
9393
9394 /* We cannot reuse this one because it has been corrupted by the
9395 evil glat. */
9396 finish_bundle_states ();
9397 free (stops_p);
9398 stops_p = NULL;
9399 emit_insn_group_barriers (dump_file);
9400
9401 ia64_final_schedule = 0;
9402 timevar_pop (TV_SCHED2);
9403 }
9404 else
9405 emit_all_insn_group_barriers (dump_file);
9406
9407 df_analyze ();
9408
9409 /* A call must not be the last instruction in a function, so that the
9410 return address is still within the function, so that unwinding works
9411 properly. Note that IA-64 differs from dwarf2 on this point. */
9412 if (ia64_except_unwind_info () == UI_TARGET)
9413 {
9414 rtx insn;
9415 int saw_stop = 0;
9416
9417 insn = get_last_insn ();
9418 if (! INSN_P (insn))
9419 insn = prev_active_insn (insn);
9420 if (insn)
9421 {
9422 /* Skip over insns that expand to nothing. */
9423 while (GET_CODE (insn) == INSN
9424 && get_attr_empty (insn) == EMPTY_YES)
9425 {
9426 if (GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
9427 && XINT (PATTERN (insn), 1) == UNSPECV_INSN_GROUP_BARRIER)
9428 saw_stop = 1;
9429 insn = prev_active_insn (insn);
9430 }
9431 if (GET_CODE (insn) == CALL_INSN)
9432 {
9433 if (! saw_stop)
9434 emit_insn (gen_insn_group_barrier (GEN_INT (3)));
9435 emit_insn (gen_break_f ());
9436 emit_insn (gen_insn_group_barrier (GEN_INT (3)));
9437 }
9438 }
9439 }
9440
9441 emit_predicate_relation_info ();
9442
9443 if (ia64_flag_var_tracking)
9444 {
9445 timevar_push (TV_VAR_TRACKING);
9446 variable_tracking_main ();
9447 timevar_pop (TV_VAR_TRACKING);
9448 }
9449 df_finish_pass (false);
9450 }
9451 \f
9452 /* Return true if REGNO is used by the epilogue. */
9453
9454 int
9455 ia64_epilogue_uses (int regno)
9456 {
9457 switch (regno)
9458 {
9459 case R_GR (1):
9460 /* With a call to a function in another module, we will write a new
9461 value to "gp". After returning from such a call, we need to make
9462 sure the function restores the original gp-value, even if the
9463 function itself does not use the gp anymore. */
9464 return !(TARGET_AUTO_PIC || TARGET_NO_PIC);
9465
9466 case IN_REG (0): case IN_REG (1): case IN_REG (2): case IN_REG (3):
9467 case IN_REG (4): case IN_REG (5): case IN_REG (6): case IN_REG (7):
9468 /* For functions defined with the syscall_linkage attribute, all
9469 input registers are marked as live at all function exits. This
9470 prevents the register allocator from using the input registers,
9471 which in turn makes it possible to restart a system call after
9472 an interrupt without having to save/restore the input registers.
9473 This also prevents kernel data from leaking to application code. */
9474 return lookup_attribute ("syscall_linkage",
9475 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))) != NULL;
9476
9477 case R_BR (0):
9478 /* Conditional return patterns can't represent the use of `b0' as
9479 the return address, so we force the value live this way. */
9480 return 1;
9481
9482 case AR_PFS_REGNUM:
9483 /* Likewise for ar.pfs, which is used by br.ret. */
9484 return 1;
9485
9486 default:
9487 return 0;
9488 }
9489 }
9490
9491 /* Return true if REGNO is used by the frame unwinder. */
9492
9493 int
9494 ia64_eh_uses (int regno)
9495 {
9496 unsigned int r;
9497
9498 if (! reload_completed)
9499 return 0;
9500
9501 if (regno == 0)
9502 return 0;
9503
9504 for (r = reg_save_b0; r <= reg_save_ar_lc; r++)
9505 if (regno == current_frame_info.r[r]
9506 || regno == emitted_frame_related_regs[r])
9507 return 1;
9508
9509 return 0;
9510 }
9511 \f
9512 /* Return true if this goes in small data/bss. */
9513
9514 /* ??? We could also support own long data here. Generating movl/add/ld8
9515 instead of addl,ld8/ld8. This makes the code bigger, but should make the
9516 code faster because there is one less load. This also includes incomplete
9517 types which can't go in sdata/sbss. */
9518
9519 static bool
9520 ia64_in_small_data_p (const_tree exp)
9521 {
9522 if (TARGET_NO_SDATA)
9523 return false;
9524
9525 /* We want to merge strings, so we never consider them small data. */
9526 if (TREE_CODE (exp) == STRING_CST)
9527 return false;
9528
9529 /* Functions are never small data. */
9530 if (TREE_CODE (exp) == FUNCTION_DECL)
9531 return false;
9532
9533 if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
9534 {
9535 const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));
9536
9537 if (strcmp (section, ".sdata") == 0
9538 || strncmp (section, ".sdata.", 7) == 0
9539 || strncmp (section, ".gnu.linkonce.s.", 16) == 0
9540 || strcmp (section, ".sbss") == 0
9541 || strncmp (section, ".sbss.", 6) == 0
9542 || strncmp (section, ".gnu.linkonce.sb.", 17) == 0)
9543 return true;
9544 }
9545 else
9546 {
9547 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
9548
9549 /* If this is an incomplete type with size 0, then we can't put it
9550 in sdata because it might be too big when completed. */
9551 if (size > 0 && size <= ia64_section_threshold)
9552 return true;
9553 }
9554
9555 return false;
9556 }
9557 \f
9558 /* Output assembly directives for prologue regions. */
9559
9560 /* The current basic block number. */
9561
9562 static bool last_block;
9563
9564 /* True if we need a copy_state command at the start of the next block. */
9565
9566 static bool need_copy_state;
9567
9568 #ifndef MAX_ARTIFICIAL_LABEL_BYTES
9569 # define MAX_ARTIFICIAL_LABEL_BYTES 30
9570 #endif
9571
9572 /* Emit a debugging label after a call-frame-related insn. We'd
9573 rather output the label right away, but we'd have to output it
9574 after, not before, the instruction, and the instruction has not
9575 been output yet. So we emit the label after the insn, delete it to
9576 avoid introducing basic blocks, and mark it as preserved, such that
9577 it is still output, given that it is referenced in debug info. */
9578
9579 static const char *
9580 ia64_emit_deleted_label_after_insn (rtx insn)
9581 {
9582 char label[MAX_ARTIFICIAL_LABEL_BYTES];
9583 rtx lb = gen_label_rtx ();
9584 rtx label_insn = emit_label_after (lb, insn);
9585
9586 LABEL_PRESERVE_P (lb) = 1;
9587
9588 delete_insn (label_insn);
9589
9590 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (label_insn));
9591
9592 return xstrdup (label);
9593 }
9594
9595 /* Define the CFA after INSN with the steady-state definition. */
9596
9597 static void
9598 ia64_dwarf2out_def_steady_cfa (rtx insn, bool frame)
9599 {
9600 rtx fp = frame_pointer_needed
9601 ? hard_frame_pointer_rtx
9602 : stack_pointer_rtx;
9603 const char *label = ia64_emit_deleted_label_after_insn (insn);
9604
9605 if (!frame)
9606 return;
9607
9608 dwarf2out_def_cfa
9609 (label, REGNO (fp),
9610 ia64_initial_elimination_offset
9611 (REGNO (arg_pointer_rtx), REGNO (fp))
9612 + ARG_POINTER_CFA_OFFSET (current_function_decl));
9613 }
9614
9615 /* All we need to do here is avoid a crash in the generic dwarf2
9616 processing. The real CFA definition is set up above. */
9617
9618 static void
9619 ia64_dwarf_handle_frame_unspec (const char * ARG_UNUSED (label),
9620 rtx ARG_UNUSED (pattern),
9621 int index)
9622 {
9623 gcc_assert (index == UNSPECV_ALLOC);
9624 }
9625
9626 /* The generic dwarf2 frame debug info generator does not define a
9627 separate region for the very end of the epilogue, so refrain from
9628 doing so in the IA64-specific code as well. */
9629
9630 #define IA64_CHANGE_CFA_IN_EPILOGUE 0
9631
9632 /* The function emits unwind directives for the start of an epilogue. */
9633
9634 static void
9635 process_epilogue (FILE *asm_out_file, rtx insn, bool unwind, bool frame)
9636 {
9637 /* If this isn't the last block of the function, then we need to label the
9638 current state, and copy it back in at the start of the next block. */
9639
9640 if (!last_block)
9641 {
9642 if (unwind)
9643 fprintf (asm_out_file, "\t.label_state %d\n",
9644 ++cfun->machine->state_num);
9645 need_copy_state = true;
9646 }
9647
9648 if (unwind)
9649 fprintf (asm_out_file, "\t.restore sp\n");
9650 if (IA64_CHANGE_CFA_IN_EPILOGUE && frame)
9651 dwarf2out_def_cfa (ia64_emit_deleted_label_after_insn (insn),
9652 STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
9653 }
9654
9655 /* This function processes a SET pattern for REG_CFA_ADJUST_CFA. */
9656
9657 static void
9658 process_cfa_adjust_cfa (FILE *asm_out_file, rtx pat, rtx insn,
9659 bool unwind, bool frame)
9660 {
9661 rtx dest = SET_DEST (pat);
9662 rtx src = SET_SRC (pat);
9663
9664 if (dest == stack_pointer_rtx)
9665 {
9666 if (GET_CODE (src) == PLUS)
9667 {
9668 rtx op0 = XEXP (src, 0);
9669 rtx op1 = XEXP (src, 1);
9670
9671 gcc_assert (op0 == dest && GET_CODE (op1) == CONST_INT);
9672
9673 if (INTVAL (op1) < 0)
9674 {
9675 gcc_assert (!frame_pointer_needed);
9676 if (unwind)
9677 fprintf (asm_out_file,
9678 "\t.fframe "HOST_WIDE_INT_PRINT_DEC"\n",
9679 -INTVAL (op1));
9680 ia64_dwarf2out_def_steady_cfa (insn, frame);
9681 }
9682 else
9683 process_epilogue (asm_out_file, insn, unwind, frame);
9684 }
9685 else
9686 {
9687 gcc_assert (src == hard_frame_pointer_rtx);
9688 process_epilogue (asm_out_file, insn, unwind, frame);
9689 }
9690 }
9691 else if (dest == hard_frame_pointer_rtx)
9692 {
9693 gcc_assert (src == stack_pointer_rtx);
9694 gcc_assert (frame_pointer_needed);
9695
9696 if (unwind)
9697 fprintf (asm_out_file, "\t.vframe r%d\n",
9698 ia64_dbx_register_number (REGNO (dest)));
9699 ia64_dwarf2out_def_steady_cfa (insn, frame);
9700 }
9701 else
9702 gcc_unreachable ();
9703 }
9704
9705 /* This function processes a SET pattern for REG_CFA_REGISTER. */
9706
9707 static void
9708 process_cfa_register (FILE *asm_out_file, rtx pat, bool unwind)
9709 {
9710 rtx dest = SET_DEST (pat);
9711 rtx src = SET_SRC (pat);
9712
9713 int dest_regno = REGNO (dest);
9714 int src_regno = REGNO (src);
9715
9716 switch (src_regno)
9717 {
9718 case BR_REG (0):
9719 /* Saving return address pointer. */
9720 gcc_assert (dest_regno == current_frame_info.r[reg_save_b0]);
9721 if (unwind)
9722 fprintf (asm_out_file, "\t.save rp, r%d\n",
9723 ia64_dbx_register_number (dest_regno));
9724 break;
9725
9726 case PR_REG (0):
9727 gcc_assert (dest_regno == current_frame_info.r[reg_save_pr]);
9728 if (unwind)
9729 fprintf (asm_out_file, "\t.save pr, r%d\n",
9730 ia64_dbx_register_number (dest_regno));
9731 break;
9732
9733 case AR_UNAT_REGNUM:
9734 gcc_assert (dest_regno == current_frame_info.r[reg_save_ar_unat]);
9735 if (unwind)
9736 fprintf (asm_out_file, "\t.save ar.unat, r%d\n",
9737 ia64_dbx_register_number (dest_regno));
9738 break;
9739
9740 case AR_LC_REGNUM:
9741 gcc_assert (dest_regno == current_frame_info.r[reg_save_ar_lc]);
9742 if (unwind)
9743 fprintf (asm_out_file, "\t.save ar.lc, r%d\n",
9744 ia64_dbx_register_number (dest_regno));
9745 break;
9746
9747 default:
9748 /* Everything else should indicate being stored to memory. */
9749 gcc_unreachable ();
9750 }
9751 }
9752
9753 /* This function processes a SET pattern for REG_CFA_OFFSET. */
9754
9755 static void
9756 process_cfa_offset (FILE *asm_out_file, rtx pat, bool unwind)
9757 {
9758 rtx dest = SET_DEST (pat);
9759 rtx src = SET_SRC (pat);
9760 int src_regno = REGNO (src);
9761 const char *saveop;
9762 HOST_WIDE_INT off;
9763 rtx base;
9764
9765 gcc_assert (MEM_P (dest));
9766 if (GET_CODE (XEXP (dest, 0)) == REG)
9767 {
9768 base = XEXP (dest, 0);
9769 off = 0;
9770 }
9771 else
9772 {
9773 gcc_assert (GET_CODE (XEXP (dest, 0)) == PLUS
9774 && GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
9775 base = XEXP (XEXP (dest, 0), 0);
9776 off = INTVAL (XEXP (XEXP (dest, 0), 1));
9777 }
9778
9779 if (base == hard_frame_pointer_rtx)
9780 {
9781 saveop = ".savepsp";
9782 off = - off;
9783 }
9784 else
9785 {
9786 gcc_assert (base == stack_pointer_rtx);
9787 saveop = ".savesp";
9788 }
9789
9790 src_regno = REGNO (src);
9791 switch (src_regno)
9792 {
9793 case BR_REG (0):
9794 gcc_assert (!current_frame_info.r[reg_save_b0]);
9795 if (unwind)
9796 fprintf (asm_out_file, "\t%s rp, " HOST_WIDE_INT_PRINT_DEC "\n",
9797 saveop, off);
9798 break;
9799
9800 case PR_REG (0):
9801 gcc_assert (!current_frame_info.r[reg_save_pr]);
9802 if (unwind)
9803 fprintf (asm_out_file, "\t%s pr, " HOST_WIDE_INT_PRINT_DEC "\n",
9804 saveop, off);
9805 break;
9806
9807 case AR_LC_REGNUM:
9808 gcc_assert (!current_frame_info.r[reg_save_ar_lc]);
9809 if (unwind)
9810 fprintf (asm_out_file, "\t%s ar.lc, " HOST_WIDE_INT_PRINT_DEC "\n",
9811 saveop, off);
9812 break;
9813
9814 case AR_PFS_REGNUM:
9815 gcc_assert (!current_frame_info.r[reg_save_ar_pfs]);
9816 if (unwind)
9817 fprintf (asm_out_file, "\t%s ar.pfs, " HOST_WIDE_INT_PRINT_DEC "\n",
9818 saveop, off);
9819 break;
9820
9821 case AR_UNAT_REGNUM:
9822 gcc_assert (!current_frame_info.r[reg_save_ar_unat]);
9823 if (unwind)
9824 fprintf (asm_out_file, "\t%s ar.unat, " HOST_WIDE_INT_PRINT_DEC "\n",
9825 saveop, off);
9826 break;
9827
9828 case GR_REG (4):
9829 case GR_REG (5):
9830 case GR_REG (6):
9831 case GR_REG (7):
9832 if (unwind)
9833 fprintf (asm_out_file, "\t.save.g 0x%x\n",
9834 1 << (src_regno - GR_REG (4)));
9835 break;
9836
9837 case BR_REG (1):
9838 case BR_REG (2):
9839 case BR_REG (3):
9840 case BR_REG (4):
9841 case BR_REG (5):
9842 if (unwind)
9843 fprintf (asm_out_file, "\t.save.b 0x%x\n",
9844 1 << (src_regno - BR_REG (1)));
9845 break;
9846
9847 case FR_REG (2):
9848 case FR_REG (3):
9849 case FR_REG (4):
9850 case FR_REG (5):
9851 if (unwind)
9852 fprintf (asm_out_file, "\t.save.f 0x%x\n",
9853 1 << (src_regno - FR_REG (2)));
9854 break;
9855
9856 case FR_REG (16): case FR_REG (17): case FR_REG (18): case FR_REG (19):
9857 case FR_REG (20): case FR_REG (21): case FR_REG (22): case FR_REG (23):
9858 case FR_REG (24): case FR_REG (25): case FR_REG (26): case FR_REG (27):
9859 case FR_REG (28): case FR_REG (29): case FR_REG (30): case FR_REG (31):
9860 if (unwind)
9861 fprintf (asm_out_file, "\t.save.gf 0x0, 0x%x\n",
9862 1 << (src_regno - FR_REG (12)));
9863 break;
9864
9865 default:
9866 /* ??? For some reason we mark other general registers, even those
9867 we can't represent in the unwind info. Ignore them. */
9868 break;
9869 }
9870 }
9871
9872 /* This function looks at a single insn and emits any directives
9873 required to unwind this insn. */
9874
9875 static void
9876 ia64_asm_unwind_emit (FILE *asm_out_file, rtx insn)
9877 {
9878 bool unwind = ia64_except_unwind_info () == UI_TARGET;
9879 bool frame = dwarf2out_do_frame ();
9880 rtx note, pat;
9881 bool handled_one;
9882
9883 if (!unwind && !frame)
9884 return;
9885
9886 if (NOTE_INSN_BASIC_BLOCK_P (insn))
9887 {
9888 last_block = NOTE_BASIC_BLOCK (insn)->next_bb == EXIT_BLOCK_PTR;
9889
9890 /* Restore unwind state from immediately before the epilogue. */
9891 if (need_copy_state)
9892 {
9893 if (unwind)
9894 {
9895 fprintf (asm_out_file, "\t.body\n");
9896 fprintf (asm_out_file, "\t.copy_state %d\n",
9897 cfun->machine->state_num);
9898 }
9899 if (IA64_CHANGE_CFA_IN_EPILOGUE)
9900 ia64_dwarf2out_def_steady_cfa (insn, frame);
9901 need_copy_state = false;
9902 }
9903 }
9904
9905 if (GET_CODE (insn) == NOTE || ! RTX_FRAME_RELATED_P (insn))
9906 return;
9907
9908 /* Look for the ALLOC insn. */
9909 if (INSN_CODE (insn) == CODE_FOR_alloc)
9910 {
9911 rtx dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
9912 int dest_regno = REGNO (dest);
9913
9914 /* If this is the final destination for ar.pfs, then this must
9915 be the alloc in the prologue. */
9916 if (dest_regno == current_frame_info.r[reg_save_ar_pfs])
9917 {
9918 if (unwind)
9919 fprintf (asm_out_file, "\t.save ar.pfs, r%d\n",
9920 ia64_dbx_register_number (dest_regno));
9921 }
9922 else
9923 {
9924 /* This must be an alloc before a sibcall. We must drop the
9925 old frame info. The easiest way to drop the old frame
9926 info is to ensure we had a ".restore sp" directive
9927 followed by a new prologue. If the procedure doesn't
9928 have a memory-stack frame, we'll issue a dummy ".restore
9929 sp" now. */
9930 if (current_frame_info.total_size == 0 && !frame_pointer_needed)
9931 /* if haven't done process_epilogue() yet, do it now */
9932 process_epilogue (asm_out_file, insn, unwind, frame);
9933 if (unwind)
9934 fprintf (asm_out_file, "\t.prologue\n");
9935 }
9936 return;
9937 }
9938
9939 handled_one = false;
9940 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9941 switch (REG_NOTE_KIND (note))
9942 {
9943 case REG_CFA_ADJUST_CFA:
9944 pat = XEXP (note, 0);
9945 if (pat == NULL)
9946 pat = PATTERN (insn);
9947 process_cfa_adjust_cfa (asm_out_file, pat, insn, unwind, frame);
9948 handled_one = true;
9949 break;
9950
9951 case REG_CFA_OFFSET:
9952 pat = XEXP (note, 0);
9953 if (pat == NULL)
9954 pat = PATTERN (insn);
9955 process_cfa_offset (asm_out_file, pat, unwind);
9956 handled_one = true;
9957 break;
9958
9959 case REG_CFA_REGISTER:
9960 pat = XEXP (note, 0);
9961 if (pat == NULL)
9962 pat = PATTERN (insn);
9963 process_cfa_register (asm_out_file, pat, unwind);
9964 handled_one = true;
9965 break;
9966
9967 case REG_FRAME_RELATED_EXPR:
9968 case REG_CFA_DEF_CFA:
9969 case REG_CFA_EXPRESSION:
9970 case REG_CFA_RESTORE:
9971 case REG_CFA_SET_VDRAP:
9972 /* Not used in the ia64 port. */
9973 gcc_unreachable ();
9974
9975 default:
9976 /* Not a frame-related note. */
9977 break;
9978 }
9979
9980 /* All REG_FRAME_RELATED_P insns, besides ALLOC, are marked with the
9981 explicit action to take. No guessing required. */
9982 gcc_assert (handled_one);
9983 }
9984
9985 /* Implement TARGET_ASM_EMIT_EXCEPT_PERSONALITY. */
9986
9987 static void
9988 ia64_asm_emit_except_personality (rtx personality)
9989 {
9990 fputs ("\t.personality\t", asm_out_file);
9991 output_addr_const (asm_out_file, personality);
9992 fputc ('\n', asm_out_file);
9993 }
9994
9995 /* Implement TARGET_ASM_INITIALIZE_SECTIONS. */
9996
9997 static void
9998 ia64_asm_init_sections (void)
9999 {
10000 exception_section = get_unnamed_section (0, output_section_asm_op,
10001 "\t.handlerdata");
10002 }
10003
10004 /* Implement TARGET_DEBUG_UNWIND_INFO. */
10005
10006 static enum unwind_info_type
10007 ia64_debug_unwind_info (void)
10008 {
10009 return UI_TARGET;
10010 }
10011
10012 /* Implement TARGET_EXCEPT_UNWIND_INFO. */
10013
10014 static enum unwind_info_type
10015 ia64_except_unwind_info (void)
10016 {
10017 /* Honor the --enable-sjlj-exceptions configure switch. */
10018 #ifdef CONFIG_UNWIND_EXCEPTIONS
10019 if (CONFIG_UNWIND_EXCEPTIONS)
10020 return UI_SJLJ;
10021 #endif
10022
10023 /* For simplicity elsewhere in this file, indicate that all unwind
10024 info is disabled if we're not emitting unwind tables. */
10025 if (!flag_exceptions && !flag_unwind_tables)
10026 return UI_NONE;
10027
10028 return UI_TARGET;
10029 }
10030 \f
10031 enum ia64_builtins
10032 {
10033 IA64_BUILTIN_BSP,
10034 IA64_BUILTIN_COPYSIGNQ,
10035 IA64_BUILTIN_FABSQ,
10036 IA64_BUILTIN_FLUSHRS,
10037 IA64_BUILTIN_INFQ,
10038 IA64_BUILTIN_HUGE_VALQ,
10039 IA64_BUILTIN_max
10040 };
10041
10042 static GTY(()) tree ia64_builtins[(int) IA64_BUILTIN_max];
10043
10044 void
10045 ia64_init_builtins (void)
10046 {
10047 tree fpreg_type;
10048 tree float80_type;
10049 tree decl;
10050
10051 /* The __fpreg type. */
10052 fpreg_type = make_node (REAL_TYPE);
10053 TYPE_PRECISION (fpreg_type) = 82;
10054 layout_type (fpreg_type);
10055 (*lang_hooks.types.register_builtin_type) (fpreg_type, "__fpreg");
10056
10057 /* The __float80 type. */
10058 float80_type = make_node (REAL_TYPE);
10059 TYPE_PRECISION (float80_type) = 80;
10060 layout_type (float80_type);
10061 (*lang_hooks.types.register_builtin_type) (float80_type, "__float80");
10062
10063 /* The __float128 type. */
10064 if (!TARGET_HPUX)
10065 {
10066 tree ftype;
10067 tree float128_type = make_node (REAL_TYPE);
10068
10069 TYPE_PRECISION (float128_type) = 128;
10070 layout_type (float128_type);
10071 (*lang_hooks.types.register_builtin_type) (float128_type, "__float128");
10072
10073 /* TFmode support builtins. */
10074 ftype = build_function_type (float128_type, void_list_node);
10075 decl = add_builtin_function ("__builtin_infq", ftype,
10076 IA64_BUILTIN_INFQ, BUILT_IN_MD,
10077 NULL, NULL_TREE);
10078 ia64_builtins[IA64_BUILTIN_INFQ] = decl;
10079
10080 decl = add_builtin_function ("__builtin_huge_valq", ftype,
10081 IA64_BUILTIN_HUGE_VALQ, BUILT_IN_MD,
10082 NULL, NULL_TREE);
10083 ia64_builtins[IA64_BUILTIN_HUGE_VALQ] = decl;
10084
10085 ftype = build_function_type_list (float128_type,
10086 float128_type,
10087 NULL_TREE);
10088 decl = add_builtin_function ("__builtin_fabsq", ftype,
10089 IA64_BUILTIN_FABSQ, BUILT_IN_MD,
10090 "__fabstf2", NULL_TREE);
10091 TREE_READONLY (decl) = 1;
10092 ia64_builtins[IA64_BUILTIN_FABSQ] = decl;
10093
10094 ftype = build_function_type_list (float128_type,
10095 float128_type,
10096 float128_type,
10097 NULL_TREE);
10098 decl = add_builtin_function ("__builtin_copysignq", ftype,
10099 IA64_BUILTIN_COPYSIGNQ, BUILT_IN_MD,
10100 "__copysigntf3", NULL_TREE);
10101 TREE_READONLY (decl) = 1;
10102 ia64_builtins[IA64_BUILTIN_COPYSIGNQ] = decl;
10103 }
10104 else
10105 /* Under HPUX, this is a synonym for "long double". */
10106 (*lang_hooks.types.register_builtin_type) (long_double_type_node,
10107 "__float128");
10108
10109 /* Fwrite on VMS is non-standard. */
10110 if (TARGET_ABI_OPEN_VMS)
10111 {
10112 implicit_built_in_decls[(int) BUILT_IN_FWRITE] = NULL_TREE;
10113 implicit_built_in_decls[(int) BUILT_IN_FWRITE_UNLOCKED] = NULL_TREE;
10114 }
10115
10116 #define def_builtin(name, type, code) \
10117 add_builtin_function ((name), (type), (code), BUILT_IN_MD, \
10118 NULL, NULL_TREE)
10119
10120 decl = def_builtin ("__builtin_ia64_bsp",
10121 build_function_type (ptr_type_node, void_list_node),
10122 IA64_BUILTIN_BSP);
10123 ia64_builtins[IA64_BUILTIN_BSP] = decl;
10124
10125 decl = def_builtin ("__builtin_ia64_flushrs",
10126 build_function_type (void_type_node, void_list_node),
10127 IA64_BUILTIN_FLUSHRS);
10128 ia64_builtins[IA64_BUILTIN_FLUSHRS] = decl;
10129
10130 #undef def_builtin
10131
10132 if (TARGET_HPUX)
10133 {
10134 if (built_in_decls [BUILT_IN_FINITE])
10135 set_user_assembler_name (built_in_decls [BUILT_IN_FINITE],
10136 "_Isfinite");
10137 if (built_in_decls [BUILT_IN_FINITEF])
10138 set_user_assembler_name (built_in_decls [BUILT_IN_FINITEF],
10139 "_Isfinitef");
10140 if (built_in_decls [BUILT_IN_FINITEL])
10141 set_user_assembler_name (built_in_decls [BUILT_IN_FINITEL],
10142 "_Isfinitef128");
10143 }
10144 }
10145
10146 rtx
10147 ia64_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
10148 enum machine_mode mode ATTRIBUTE_UNUSED,
10149 int ignore ATTRIBUTE_UNUSED)
10150 {
10151 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
10152 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
10153
10154 switch (fcode)
10155 {
10156 case IA64_BUILTIN_BSP:
10157 if (! target || ! register_operand (target, DImode))
10158 target = gen_reg_rtx (DImode);
10159 emit_insn (gen_bsp_value (target));
10160 #ifdef POINTERS_EXTEND_UNSIGNED
10161 target = convert_memory_address (ptr_mode, target);
10162 #endif
10163 return target;
10164
10165 case IA64_BUILTIN_FLUSHRS:
10166 emit_insn (gen_flushrs ());
10167 return const0_rtx;
10168
10169 case IA64_BUILTIN_INFQ:
10170 case IA64_BUILTIN_HUGE_VALQ:
10171 {
10172 REAL_VALUE_TYPE inf;
10173 rtx tmp;
10174
10175 real_inf (&inf);
10176 tmp = CONST_DOUBLE_FROM_REAL_VALUE (inf, mode);
10177
10178 tmp = validize_mem (force_const_mem (mode, tmp));
10179
10180 if (target == 0)
10181 target = gen_reg_rtx (mode);
10182
10183 emit_move_insn (target, tmp);
10184 return target;
10185 }
10186
10187 case IA64_BUILTIN_FABSQ:
10188 case IA64_BUILTIN_COPYSIGNQ:
10189 return expand_call (exp, target, ignore);
10190
10191 default:
10192 gcc_unreachable ();
10193 }
10194
10195 return NULL_RTX;
10196 }
10197
10198 /* Return the ia64 builtin for CODE. */
10199
10200 static tree
10201 ia64_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
10202 {
10203 if (code >= IA64_BUILTIN_max)
10204 return error_mark_node;
10205
10206 return ia64_builtins[code];
10207 }
10208
10209 /* For the HP-UX IA64 aggregate parameters are passed stored in the
10210 most significant bits of the stack slot. */
10211
10212 enum direction
10213 ia64_hpux_function_arg_padding (enum machine_mode mode, const_tree type)
10214 {
10215 /* Exception to normal case for structures/unions/etc. */
10216
10217 if (type && AGGREGATE_TYPE_P (type)
10218 && int_size_in_bytes (type) < UNITS_PER_WORD)
10219 return upward;
10220
10221 /* Fall back to the default. */
10222 return DEFAULT_FUNCTION_ARG_PADDING (mode, type);
10223 }
10224
10225 /* Emit text to declare externally defined variables and functions, because
10226 the Intel assembler does not support undefined externals. */
10227
10228 void
10229 ia64_asm_output_external (FILE *file, tree decl, const char *name)
10230 {
10231 /* We output the name if and only if TREE_SYMBOL_REFERENCED is
10232 set in order to avoid putting out names that are never really
10233 used. */
10234 if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
10235 {
10236 /* maybe_assemble_visibility will return 1 if the assembler
10237 visibility directive is output. */
10238 int need_visibility = ((*targetm.binds_local_p) (decl)
10239 && maybe_assemble_visibility (decl));
10240
10241 #ifdef DO_CRTL_NAMES
10242 DO_CRTL_NAMES;
10243 #endif
10244
10245 /* GNU as does not need anything here, but the HP linker does
10246 need something for external functions. */
10247 if ((TARGET_HPUX_LD || !TARGET_GNU_AS)
10248 && TREE_CODE (decl) == FUNCTION_DECL)
10249 (*targetm.asm_out.globalize_decl_name) (file, decl);
10250 else if (need_visibility && !TARGET_GNU_AS)
10251 (*targetm.asm_out.globalize_label) (file, name);
10252 }
10253 }
10254
10255 /* Set SImode div/mod functions, init_integral_libfuncs only initializes
10256 modes of word_mode and larger. Rename the TFmode libfuncs using the
10257 HPUX conventions. __divtf3 is used for XFmode. We need to keep it for
10258 backward compatibility. */
10259
10260 static void
10261 ia64_init_libfuncs (void)
10262 {
10263 set_optab_libfunc (sdiv_optab, SImode, "__divsi3");
10264 set_optab_libfunc (udiv_optab, SImode, "__udivsi3");
10265 set_optab_libfunc (smod_optab, SImode, "__modsi3");
10266 set_optab_libfunc (umod_optab, SImode, "__umodsi3");
10267
10268 set_optab_libfunc (add_optab, TFmode, "_U_Qfadd");
10269 set_optab_libfunc (sub_optab, TFmode, "_U_Qfsub");
10270 set_optab_libfunc (smul_optab, TFmode, "_U_Qfmpy");
10271 set_optab_libfunc (sdiv_optab, TFmode, "_U_Qfdiv");
10272 set_optab_libfunc (neg_optab, TFmode, "_U_Qfneg");
10273
10274 set_conv_libfunc (sext_optab, TFmode, SFmode, "_U_Qfcnvff_sgl_to_quad");
10275 set_conv_libfunc (sext_optab, TFmode, DFmode, "_U_Qfcnvff_dbl_to_quad");
10276 set_conv_libfunc (sext_optab, TFmode, XFmode, "_U_Qfcnvff_f80_to_quad");
10277 set_conv_libfunc (trunc_optab, SFmode, TFmode, "_U_Qfcnvff_quad_to_sgl");
10278 set_conv_libfunc (trunc_optab, DFmode, TFmode, "_U_Qfcnvff_quad_to_dbl");
10279 set_conv_libfunc (trunc_optab, XFmode, TFmode, "_U_Qfcnvff_quad_to_f80");
10280
10281 set_conv_libfunc (sfix_optab, SImode, TFmode, "_U_Qfcnvfxt_quad_to_sgl");
10282 set_conv_libfunc (sfix_optab, DImode, TFmode, "_U_Qfcnvfxt_quad_to_dbl");
10283 set_conv_libfunc (sfix_optab, TImode, TFmode, "_U_Qfcnvfxt_quad_to_quad");
10284 set_conv_libfunc (ufix_optab, SImode, TFmode, "_U_Qfcnvfxut_quad_to_sgl");
10285 set_conv_libfunc (ufix_optab, DImode, TFmode, "_U_Qfcnvfxut_quad_to_dbl");
10286
10287 set_conv_libfunc (sfloat_optab, TFmode, SImode, "_U_Qfcnvxf_sgl_to_quad");
10288 set_conv_libfunc (sfloat_optab, TFmode, DImode, "_U_Qfcnvxf_dbl_to_quad");
10289 set_conv_libfunc (sfloat_optab, TFmode, TImode, "_U_Qfcnvxf_quad_to_quad");
10290 /* HP-UX 11.23 libc does not have a function for unsigned
10291 SImode-to-TFmode conversion. */
10292 set_conv_libfunc (ufloat_optab, TFmode, DImode, "_U_Qfcnvxuf_dbl_to_quad");
10293 }
10294
10295 /* Rename all the TFmode libfuncs using the HPUX conventions. */
10296
10297 static void
10298 ia64_hpux_init_libfuncs (void)
10299 {
10300 ia64_init_libfuncs ();
10301
10302 /* The HP SI millicode division and mod functions expect DI arguments.
10303 By turning them off completely we avoid using both libgcc and the
10304 non-standard millicode routines and use the HP DI millicode routines
10305 instead. */
10306
10307 set_optab_libfunc (sdiv_optab, SImode, 0);
10308 set_optab_libfunc (udiv_optab, SImode, 0);
10309 set_optab_libfunc (smod_optab, SImode, 0);
10310 set_optab_libfunc (umod_optab, SImode, 0);
10311
10312 set_optab_libfunc (sdiv_optab, DImode, "__milli_divI");
10313 set_optab_libfunc (udiv_optab, DImode, "__milli_divU");
10314 set_optab_libfunc (smod_optab, DImode, "__milli_remI");
10315 set_optab_libfunc (umod_optab, DImode, "__milli_remU");
10316
10317 /* HP-UX libc has TF min/max/abs routines in it. */
10318 set_optab_libfunc (smin_optab, TFmode, "_U_Qfmin");
10319 set_optab_libfunc (smax_optab, TFmode, "_U_Qfmax");
10320 set_optab_libfunc (abs_optab, TFmode, "_U_Qfabs");
10321
10322 /* ia64_expand_compare uses this. */
10323 cmptf_libfunc = init_one_libfunc ("_U_Qfcmp");
10324
10325 /* These should never be used. */
10326 set_optab_libfunc (eq_optab, TFmode, 0);
10327 set_optab_libfunc (ne_optab, TFmode, 0);
10328 set_optab_libfunc (gt_optab, TFmode, 0);
10329 set_optab_libfunc (ge_optab, TFmode, 0);
10330 set_optab_libfunc (lt_optab, TFmode, 0);
10331 set_optab_libfunc (le_optab, TFmode, 0);
10332 }
10333
10334 /* Rename the division and modulus functions in VMS. */
10335
10336 static void
10337 ia64_vms_init_libfuncs (void)
10338 {
10339 set_optab_libfunc (sdiv_optab, SImode, "OTS$DIV_I");
10340 set_optab_libfunc (sdiv_optab, DImode, "OTS$DIV_L");
10341 set_optab_libfunc (udiv_optab, SImode, "OTS$DIV_UI");
10342 set_optab_libfunc (udiv_optab, DImode, "OTS$DIV_UL");
10343 set_optab_libfunc (smod_optab, SImode, "OTS$REM_I");
10344 set_optab_libfunc (smod_optab, DImode, "OTS$REM_L");
10345 set_optab_libfunc (umod_optab, SImode, "OTS$REM_UI");
10346 set_optab_libfunc (umod_optab, DImode, "OTS$REM_UL");
10347 abort_libfunc = init_one_libfunc ("decc$abort");
10348 memcmp_libfunc = init_one_libfunc ("decc$memcmp");
10349 #ifdef MEM_LIBFUNCS_INIT
10350 MEM_LIBFUNCS_INIT;
10351 #endif
10352 }
10353
10354 /* Rename the TFmode libfuncs available from soft-fp in glibc using
10355 the HPUX conventions. */
10356
10357 static void
10358 ia64_sysv4_init_libfuncs (void)
10359 {
10360 ia64_init_libfuncs ();
10361
10362 /* These functions are not part of the HPUX TFmode interface. We
10363 use them instead of _U_Qfcmp, which doesn't work the way we
10364 expect. */
10365 set_optab_libfunc (eq_optab, TFmode, "_U_Qfeq");
10366 set_optab_libfunc (ne_optab, TFmode, "_U_Qfne");
10367 set_optab_libfunc (gt_optab, TFmode, "_U_Qfgt");
10368 set_optab_libfunc (ge_optab, TFmode, "_U_Qfge");
10369 set_optab_libfunc (lt_optab, TFmode, "_U_Qflt");
10370 set_optab_libfunc (le_optab, TFmode, "_U_Qfle");
10371
10372 /* We leave out _U_Qfmin, _U_Qfmax and _U_Qfabs since soft-fp in
10373 glibc doesn't have them. */
10374 }
10375
10376 /* Use soft-fp. */
10377
10378 static void
10379 ia64_soft_fp_init_libfuncs (void)
10380 {
10381 }
10382
10383 static bool
10384 ia64_vms_valid_pointer_mode (enum machine_mode mode)
10385 {
10386 return (mode == SImode || mode == DImode);
10387 }
10388 \f
10389 /* For HPUX, it is illegal to have relocations in shared segments. */
10390
10391 static int
10392 ia64_hpux_reloc_rw_mask (void)
10393 {
10394 return 3;
10395 }
10396
10397 /* For others, relax this so that relocations to local data goes in
10398 read-only segments, but we still cannot allow global relocations
10399 in read-only segments. */
10400
10401 static int
10402 ia64_reloc_rw_mask (void)
10403 {
10404 return flag_pic ? 3 : 2;
10405 }
10406
10407 /* Return the section to use for X. The only special thing we do here
10408 is to honor small data. */
10409
10410 static section *
10411 ia64_select_rtx_section (enum machine_mode mode, rtx x,
10412 unsigned HOST_WIDE_INT align)
10413 {
10414 if (GET_MODE_SIZE (mode) > 0
10415 && GET_MODE_SIZE (mode) <= ia64_section_threshold
10416 && !TARGET_NO_SDATA)
10417 return sdata_section;
10418 else
10419 return default_elf_select_rtx_section (mode, x, align);
10420 }
10421
10422 static unsigned int
10423 ia64_section_type_flags (tree decl, const char *name, int reloc)
10424 {
10425 unsigned int flags = 0;
10426
10427 if (strcmp (name, ".sdata") == 0
10428 || strncmp (name, ".sdata.", 7) == 0
10429 || strncmp (name, ".gnu.linkonce.s.", 16) == 0
10430 || strncmp (name, ".sdata2.", 8) == 0
10431 || strncmp (name, ".gnu.linkonce.s2.", 17) == 0
10432 || strcmp (name, ".sbss") == 0
10433 || strncmp (name, ".sbss.", 6) == 0
10434 || strncmp (name, ".gnu.linkonce.sb.", 17) == 0)
10435 flags = SECTION_SMALL;
10436
10437 #if TARGET_ABI_OPEN_VMS
10438 if (decl && DECL_ATTRIBUTES (decl)
10439 && lookup_attribute ("common_object", DECL_ATTRIBUTES (decl)))
10440 flags |= SECTION_VMS_OVERLAY;
10441 #endif
10442
10443 flags |= default_section_type_flags (decl, name, reloc);
10444 return flags;
10445 }
10446
10447 /* Returns true if FNTYPE (a FUNCTION_TYPE or a METHOD_TYPE) returns a
10448 structure type and that the address of that type should be passed
10449 in out0, rather than in r8. */
10450
10451 static bool
10452 ia64_struct_retval_addr_is_first_parm_p (tree fntype)
10453 {
10454 tree ret_type = TREE_TYPE (fntype);
10455
10456 /* The Itanium C++ ABI requires that out0, rather than r8, be used
10457 as the structure return address parameter, if the return value
10458 type has a non-trivial copy constructor or destructor. It is not
10459 clear if this same convention should be used for other
10460 programming languages. Until G++ 3.4, we incorrectly used r8 for
10461 these return values. */
10462 return (abi_version_at_least (2)
10463 && ret_type
10464 && TYPE_MODE (ret_type) == BLKmode
10465 && TREE_ADDRESSABLE (ret_type)
10466 && strcmp (lang_hooks.name, "GNU C++") == 0);
10467 }
10468
10469 /* Output the assembler code for a thunk function. THUNK_DECL is the
10470 declaration for the thunk function itself, FUNCTION is the decl for
10471 the target function. DELTA is an immediate constant offset to be
10472 added to THIS. If VCALL_OFFSET is nonzero, the word at
10473 *(*this + vcall_offset) should be added to THIS. */
10474
10475 static void
10476 ia64_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
10477 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
10478 tree function)
10479 {
10480 rtx this_rtx, insn, funexp;
10481 unsigned int this_parmno;
10482 unsigned int this_regno;
10483 rtx delta_rtx;
10484
10485 reload_completed = 1;
10486 epilogue_completed = 1;
10487
10488 /* Set things up as ia64_expand_prologue might. */
10489 last_scratch_gr_reg = 15;
10490
10491 memset (&current_frame_info, 0, sizeof (current_frame_info));
10492 current_frame_info.spill_cfa_off = -16;
10493 current_frame_info.n_input_regs = 1;
10494 current_frame_info.need_regstk = (TARGET_REG_NAMES != 0);
10495
10496 /* Mark the end of the (empty) prologue. */
10497 emit_note (NOTE_INSN_PROLOGUE_END);
10498
10499 /* Figure out whether "this" will be the first parameter (the
10500 typical case) or the second parameter (as happens when the
10501 virtual function returns certain class objects). */
10502 this_parmno
10503 = (ia64_struct_retval_addr_is_first_parm_p (TREE_TYPE (thunk))
10504 ? 1 : 0);
10505 this_regno = IN_REG (this_parmno);
10506 if (!TARGET_REG_NAMES)
10507 reg_names[this_regno] = ia64_reg_numbers[this_parmno];
10508
10509 this_rtx = gen_rtx_REG (Pmode, this_regno);
10510
10511 /* Apply the constant offset, if required. */
10512 delta_rtx = GEN_INT (delta);
10513 if (TARGET_ILP32)
10514 {
10515 rtx tmp = gen_rtx_REG (ptr_mode, this_regno);
10516 REG_POINTER (tmp) = 1;
10517 if (delta && satisfies_constraint_I (delta_rtx))
10518 {
10519 emit_insn (gen_ptr_extend_plus_imm (this_rtx, tmp, delta_rtx));
10520 delta = 0;
10521 }
10522 else
10523 emit_insn (gen_ptr_extend (this_rtx, tmp));
10524 }
10525 if (delta)
10526 {
10527 if (!satisfies_constraint_I (delta_rtx))
10528 {
10529 rtx tmp = gen_rtx_REG (Pmode, 2);
10530 emit_move_insn (tmp, delta_rtx);
10531 delta_rtx = tmp;
10532 }
10533 emit_insn (gen_adddi3 (this_rtx, this_rtx, delta_rtx));
10534 }
10535
10536 /* Apply the offset from the vtable, if required. */
10537 if (vcall_offset)
10538 {
10539 rtx vcall_offset_rtx = GEN_INT (vcall_offset);
10540 rtx tmp = gen_rtx_REG (Pmode, 2);
10541
10542 if (TARGET_ILP32)
10543 {
10544 rtx t = gen_rtx_REG (ptr_mode, 2);
10545 REG_POINTER (t) = 1;
10546 emit_move_insn (t, gen_rtx_MEM (ptr_mode, this_rtx));
10547 if (satisfies_constraint_I (vcall_offset_rtx))
10548 {
10549 emit_insn (gen_ptr_extend_plus_imm (tmp, t, vcall_offset_rtx));
10550 vcall_offset = 0;
10551 }
10552 else
10553 emit_insn (gen_ptr_extend (tmp, t));
10554 }
10555 else
10556 emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx));
10557
10558 if (vcall_offset)
10559 {
10560 if (!satisfies_constraint_J (vcall_offset_rtx))
10561 {
10562 rtx tmp2 = gen_rtx_REG (Pmode, next_scratch_gr_reg ());
10563 emit_move_insn (tmp2, vcall_offset_rtx);
10564 vcall_offset_rtx = tmp2;
10565 }
10566 emit_insn (gen_adddi3 (tmp, tmp, vcall_offset_rtx));
10567 }
10568
10569 if (TARGET_ILP32)
10570 emit_insn (gen_zero_extendsidi2 (tmp, gen_rtx_MEM (ptr_mode, tmp)));
10571 else
10572 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
10573
10574 emit_insn (gen_adddi3 (this_rtx, this_rtx, tmp));
10575 }
10576
10577 /* Generate a tail call to the target function. */
10578 if (! TREE_USED (function))
10579 {
10580 assemble_external (function);
10581 TREE_USED (function) = 1;
10582 }
10583 funexp = XEXP (DECL_RTL (function), 0);
10584 funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
10585 ia64_expand_call (NULL_RTX, funexp, NULL_RTX, 1);
10586 insn = get_last_insn ();
10587 SIBLING_CALL_P (insn) = 1;
10588
10589 /* Code generation for calls relies on splitting. */
10590 reload_completed = 1;
10591 epilogue_completed = 1;
10592 try_split (PATTERN (insn), insn, 0);
10593
10594 emit_barrier ();
10595
10596 /* Run just enough of rest_of_compilation to get the insns emitted.
10597 There's not really enough bulk here to make other passes such as
10598 instruction scheduling worth while. Note that use_thunk calls
10599 assemble_start_function and assemble_end_function. */
10600
10601 insn_locators_alloc ();
10602 emit_all_insn_group_barriers (NULL);
10603 insn = get_insns ();
10604 shorten_branches (insn);
10605 final_start_function (insn, file, 1);
10606 final (insn, file, 1);
10607 final_end_function ();
10608
10609 reload_completed = 0;
10610 epilogue_completed = 0;
10611 }
10612
10613 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
10614
10615 static rtx
10616 ia64_struct_value_rtx (tree fntype,
10617 int incoming ATTRIBUTE_UNUSED)
10618 {
10619 if (TARGET_ABI_OPEN_VMS ||
10620 (fntype && ia64_struct_retval_addr_is_first_parm_p (fntype)))
10621 return NULL_RTX;
10622 return gen_rtx_REG (Pmode, GR_REG (8));
10623 }
10624
10625 static bool
10626 ia64_scalar_mode_supported_p (enum machine_mode mode)
10627 {
10628 switch (mode)
10629 {
10630 case QImode:
10631 case HImode:
10632 case SImode:
10633 case DImode:
10634 case TImode:
10635 return true;
10636
10637 case SFmode:
10638 case DFmode:
10639 case XFmode:
10640 case RFmode:
10641 return true;
10642
10643 case TFmode:
10644 return true;
10645
10646 default:
10647 return false;
10648 }
10649 }
10650
10651 static bool
10652 ia64_vector_mode_supported_p (enum machine_mode mode)
10653 {
10654 switch (mode)
10655 {
10656 case V8QImode:
10657 case V4HImode:
10658 case V2SImode:
10659 return true;
10660
10661 case V2SFmode:
10662 return true;
10663
10664 default:
10665 return false;
10666 }
10667 }
10668
10669 /* Implement the FUNCTION_PROFILER macro. */
10670
10671 void
10672 ia64_output_function_profiler (FILE *file, int labelno)
10673 {
10674 bool indirect_call;
10675
10676 /* If the function needs a static chain and the static chain
10677 register is r15, we use an indirect call so as to bypass
10678 the PLT stub in case the executable is dynamically linked,
10679 because the stub clobbers r15 as per 5.3.6 of the psABI.
10680 We don't need to do that in non canonical PIC mode. */
10681
10682 if (cfun->static_chain_decl && !TARGET_NO_PIC && !TARGET_AUTO_PIC)
10683 {
10684 gcc_assert (STATIC_CHAIN_REGNUM == 15);
10685 indirect_call = true;
10686 }
10687 else
10688 indirect_call = false;
10689
10690 if (TARGET_GNU_AS)
10691 fputs ("\t.prologue 4, r40\n", file);
10692 else
10693 fputs ("\t.prologue\n\t.save ar.pfs, r40\n", file);
10694 fputs ("\talloc out0 = ar.pfs, 8, 0, 4, 0\n", file);
10695
10696 if (NO_PROFILE_COUNTERS)
10697 fputs ("\tmov out3 = r0\n", file);
10698 else
10699 {
10700 char buf[20];
10701 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
10702
10703 if (TARGET_AUTO_PIC)
10704 fputs ("\tmovl out3 = @gprel(", file);
10705 else
10706 fputs ("\taddl out3 = @ltoff(", file);
10707 assemble_name (file, buf);
10708 if (TARGET_AUTO_PIC)
10709 fputs (")\n", file);
10710 else
10711 fputs ("), r1\n", file);
10712 }
10713
10714 if (indirect_call)
10715 fputs ("\taddl r14 = @ltoff(@fptr(_mcount)), r1\n", file);
10716 fputs ("\t;;\n", file);
10717
10718 fputs ("\t.save rp, r42\n", file);
10719 fputs ("\tmov out2 = b0\n", file);
10720 if (indirect_call)
10721 fputs ("\tld8 r14 = [r14]\n\t;;\n", file);
10722 fputs ("\t.body\n", file);
10723 fputs ("\tmov out1 = r1\n", file);
10724 if (indirect_call)
10725 {
10726 fputs ("\tld8 r16 = [r14], 8\n\t;;\n", file);
10727 fputs ("\tmov b6 = r16\n", file);
10728 fputs ("\tld8 r1 = [r14]\n", file);
10729 fputs ("\tbr.call.sptk.many b0 = b6\n\t;;\n", file);
10730 }
10731 else
10732 fputs ("\tbr.call.sptk.many b0 = _mcount\n\t;;\n", file);
10733 }
10734
10735 static GTY(()) rtx mcount_func_rtx;
10736 static rtx
10737 gen_mcount_func_rtx (void)
10738 {
10739 if (!mcount_func_rtx)
10740 mcount_func_rtx = init_one_libfunc ("_mcount");
10741 return mcount_func_rtx;
10742 }
10743
10744 void
10745 ia64_profile_hook (int labelno)
10746 {
10747 rtx label, ip;
10748
10749 if (NO_PROFILE_COUNTERS)
10750 label = const0_rtx;
10751 else
10752 {
10753 char buf[30];
10754 const char *label_name;
10755 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
10756 label_name = (*targetm.strip_name_encoding) (ggc_strdup (buf));
10757 label = gen_rtx_SYMBOL_REF (Pmode, label_name);
10758 SYMBOL_REF_FLAGS (label) = SYMBOL_FLAG_LOCAL;
10759 }
10760 ip = gen_reg_rtx (Pmode);
10761 emit_insn (gen_ip_value (ip));
10762 emit_library_call (gen_mcount_func_rtx (), LCT_NORMAL,
10763 VOIDmode, 3,
10764 gen_rtx_REG (Pmode, BR_REG (0)), Pmode,
10765 ip, Pmode,
10766 label, Pmode);
10767 }
10768
10769 /* Return the mangling of TYPE if it is an extended fundamental type. */
10770
10771 static const char *
10772 ia64_mangle_type (const_tree type)
10773 {
10774 type = TYPE_MAIN_VARIANT (type);
10775
10776 if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE
10777 && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
10778 return NULL;
10779
10780 /* On HP-UX, "long double" is mangled as "e" so __float128 is
10781 mangled as "e". */
10782 if (!TARGET_HPUX && TYPE_MODE (type) == TFmode)
10783 return "g";
10784 /* On HP-UX, "e" is not available as a mangling of __float80 so use
10785 an extended mangling. Elsewhere, "e" is available since long
10786 double is 80 bits. */
10787 if (TYPE_MODE (type) == XFmode)
10788 return TARGET_HPUX ? "u9__float80" : "e";
10789 if (TYPE_MODE (type) == RFmode)
10790 return "u7__fpreg";
10791 return NULL;
10792 }
10793
10794 /* Return the diagnostic message string if conversion from FROMTYPE to
10795 TOTYPE is not allowed, NULL otherwise. */
10796 static const char *
10797 ia64_invalid_conversion (const_tree fromtype, const_tree totype)
10798 {
10799 /* Reject nontrivial conversion to or from __fpreg. */
10800 if (TYPE_MODE (fromtype) == RFmode
10801 && TYPE_MODE (totype) != RFmode
10802 && TYPE_MODE (totype) != VOIDmode)
10803 return N_("invalid conversion from %<__fpreg%>");
10804 if (TYPE_MODE (totype) == RFmode
10805 && TYPE_MODE (fromtype) != RFmode)
10806 return N_("invalid conversion to %<__fpreg%>");
10807 return NULL;
10808 }
10809
10810 /* Return the diagnostic message string if the unary operation OP is
10811 not permitted on TYPE, NULL otherwise. */
10812 static const char *
10813 ia64_invalid_unary_op (int op, const_tree type)
10814 {
10815 /* Reject operations on __fpreg other than unary + or &. */
10816 if (TYPE_MODE (type) == RFmode
10817 && op != CONVERT_EXPR
10818 && op != ADDR_EXPR)
10819 return N_("invalid operation on %<__fpreg%>");
10820 return NULL;
10821 }
10822
10823 /* Return the diagnostic message string if the binary operation OP is
10824 not permitted on TYPE1 and TYPE2, NULL otherwise. */
10825 static const char *
10826 ia64_invalid_binary_op (int op ATTRIBUTE_UNUSED, const_tree type1, const_tree type2)
10827 {
10828 /* Reject operations on __fpreg. */
10829 if (TYPE_MODE (type1) == RFmode || TYPE_MODE (type2) == RFmode)
10830 return N_("invalid operation on %<__fpreg%>");
10831 return NULL;
10832 }
10833
10834 /* Implement overriding of the optimization options. */
10835 static void
10836 ia64_option_optimization (int level ATTRIBUTE_UNUSED,
10837 int size ATTRIBUTE_UNUSED)
10838 {
10839 #ifdef SUBTARGET_OPTIMIZATION_OPTIONS
10840 SUBTARGET_OPTIMIZATION_OPTIONS;
10841 #endif
10842
10843 /* Let the scheduler form additional regions. */
10844 set_param_value ("max-sched-extend-regions-iters", 2);
10845
10846 /* Set the default values for cache-related parameters. */
10847 set_param_value ("simultaneous-prefetches", 6);
10848 set_param_value ("l1-cache-line-size", 32);
10849
10850 set_param_value("sched-mem-true-dep-cost", 4);
10851 }
10852
10853 /* HP-UX version_id attribute.
10854 For object foo, if the version_id is set to 1234 put out an alias
10855 of '.alias foo "foo{1234}" We can't use "foo{1234}" in anything
10856 other than an alias statement because it is an illegal symbol name. */
10857
10858 static tree
10859 ia64_handle_version_id_attribute (tree *node ATTRIBUTE_UNUSED,
10860 tree name ATTRIBUTE_UNUSED,
10861 tree args,
10862 int flags ATTRIBUTE_UNUSED,
10863 bool *no_add_attrs)
10864 {
10865 tree arg = TREE_VALUE (args);
10866
10867 if (TREE_CODE (arg) != STRING_CST)
10868 {
10869 error("version attribute is not a string");
10870 *no_add_attrs = true;
10871 return NULL_TREE;
10872 }
10873 return NULL_TREE;
10874 }
10875
10876 /* Target hook for c_mode_for_suffix. */
10877
10878 static enum machine_mode
10879 ia64_c_mode_for_suffix (char suffix)
10880 {
10881 if (suffix == 'q')
10882 return TFmode;
10883 if (suffix == 'w')
10884 return XFmode;
10885
10886 return VOIDmode;
10887 }
10888
10889 static enum machine_mode
10890 ia64_promote_function_mode (const_tree type,
10891 enum machine_mode mode,
10892 int *punsignedp,
10893 const_tree funtype,
10894 int for_return)
10895 {
10896 /* Special processing required for OpenVMS ... */
10897
10898 if (!TARGET_ABI_OPEN_VMS)
10899 return default_promote_function_mode(type, mode, punsignedp, funtype,
10900 for_return);
10901
10902 /* HP OpenVMS Calling Standard dated June, 2004, that describes
10903 HP OpenVMS I64 Version 8.2EFT,
10904 chapter 4 "OpenVMS I64 Conventions"
10905 section 4.7 "Procedure Linkage"
10906 subsection 4.7.5.2, "Normal Register Parameters"
10907
10908 "Unsigned integral (except unsigned 32-bit), set, and VAX floating-point
10909 values passed in registers are zero-filled; signed integral values as
10910 well as unsigned 32-bit integral values are sign-extended to 64 bits.
10911 For all other types passed in the general registers, unused bits are
10912 undefined." */
10913
10914 if (!AGGREGATE_TYPE_P (type)
10915 && GET_MODE_CLASS (mode) == MODE_INT
10916 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
10917 {
10918 if (mode == SImode)
10919 *punsignedp = 0;
10920 return DImode;
10921 }
10922 else
10923 return promote_mode (type, mode, punsignedp);
10924 }
10925
10926 static GTY(()) rtx ia64_dconst_0_5_rtx;
10927
10928 rtx
10929 ia64_dconst_0_5 (void)
10930 {
10931 if (! ia64_dconst_0_5_rtx)
10932 {
10933 REAL_VALUE_TYPE rv;
10934 real_from_string (&rv, "0.5");
10935 ia64_dconst_0_5_rtx = const_double_from_real_value (rv, DFmode);
10936 }
10937 return ia64_dconst_0_5_rtx;
10938 }
10939
10940 static GTY(()) rtx ia64_dconst_0_375_rtx;
10941
10942 rtx
10943 ia64_dconst_0_375 (void)
10944 {
10945 if (! ia64_dconst_0_375_rtx)
10946 {
10947 REAL_VALUE_TYPE rv;
10948 real_from_string (&rv, "0.375");
10949 ia64_dconst_0_375_rtx = const_double_from_real_value (rv, DFmode);
10950 }
10951 return ia64_dconst_0_375_rtx;
10952 }
10953
10954
10955 #include "gt-ia64.h"