re PR target/36720 (ia64_split_tmode_move doesn't work on little endian)
[gcc.git] / gcc / config / ia64 / ia64.c
1 /* Definitions of target machine for GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by James E. Wilson <wilson@cygnus.com> and
5 David Mosberger <davidm@hpl.hp.com>.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "real.h"
32 #include "insn-config.h"
33 #include "conditions.h"
34 #include "output.h"
35 #include "insn-attr.h"
36 #include "flags.h"
37 #include "recog.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "except.h"
41 #include "function.h"
42 #include "ggc.h"
43 #include "basic-block.h"
44 #include "toplev.h"
45 #include "sched-int.h"
46 #include "timevar.h"
47 #include "target.h"
48 #include "target-def.h"
49 #include "tm_p.h"
50 #include "hashtab.h"
51 #include "langhooks.h"
52 #include "cfglayout.h"
53 #include "tree-gimple.h"
54 #include "intl.h"
55 #include "df.h"
56 #include "debug.h"
57 #include "params.h"
58 #include "dbgcnt.h"
59 #include "tm-constrs.h"
60
61 /* This is used for communication between ASM_OUTPUT_LABEL and
62 ASM_OUTPUT_LABELREF. */
63 int ia64_asm_output_label = 0;
64
65 /* Define the information needed to generate branch and scc insns. This is
66 stored from the compare operation. */
67 struct rtx_def * ia64_compare_op0;
68 struct rtx_def * ia64_compare_op1;
69
70 /* Register names for ia64_expand_prologue. */
71 static const char * const ia64_reg_numbers[96] =
72 { "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
73 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
74 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
75 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
76 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
77 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
78 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
79 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
80 "r96", "r97", "r98", "r99", "r100","r101","r102","r103",
81 "r104","r105","r106","r107","r108","r109","r110","r111",
82 "r112","r113","r114","r115","r116","r117","r118","r119",
83 "r120","r121","r122","r123","r124","r125","r126","r127"};
84
85 /* ??? These strings could be shared with REGISTER_NAMES. */
86 static const char * const ia64_input_reg_names[8] =
87 { "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7" };
88
89 /* ??? These strings could be shared with REGISTER_NAMES. */
90 static const char * const ia64_local_reg_names[80] =
91 { "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7",
92 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15",
93 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23",
94 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31",
95 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39",
96 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47",
97 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55",
98 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63",
99 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71",
100 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79" };
101
102 /* ??? These strings could be shared with REGISTER_NAMES. */
103 static const char * const ia64_output_reg_names[8] =
104 { "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7" };
105
106 /* Which cpu are we scheduling for. */
107 enum processor_type ia64_tune = PROCESSOR_ITANIUM2;
108
109 /* Determines whether we run our final scheduling pass or not. We always
110 avoid the normal second scheduling pass. */
111 static int ia64_flag_schedule_insns2;
112
113 /* Determines whether we run variable tracking in machine dependent
114 reorganization. */
115 static int ia64_flag_var_tracking;
116
117 /* Variables which are this size or smaller are put in the sdata/sbss
118 sections. */
119
120 unsigned int ia64_section_threshold;
121
122 /* The following variable is used by the DFA insn scheduler. The value is
123 TRUE if we do insn bundling instead of insn scheduling. */
124 int bundling_p = 0;
125
126 enum ia64_frame_regs
127 {
128 reg_fp,
129 reg_save_b0,
130 reg_save_pr,
131 reg_save_ar_pfs,
132 reg_save_ar_unat,
133 reg_save_ar_lc,
134 reg_save_gp,
135 number_of_ia64_frame_regs
136 };
137
138 /* Structure to be filled in by ia64_compute_frame_size with register
139 save masks and offsets for the current function. */
140
141 struct ia64_frame_info
142 {
143 HOST_WIDE_INT total_size; /* size of the stack frame, not including
144 the caller's scratch area. */
145 HOST_WIDE_INT spill_cfa_off; /* top of the reg spill area from the cfa. */
146 HOST_WIDE_INT spill_size; /* size of the gr/br/fr spill area. */
147 HOST_WIDE_INT extra_spill_size; /* size of spill area for others. */
148 HARD_REG_SET mask; /* mask of saved registers. */
149 unsigned int gr_used_mask; /* mask of registers in use as gr spill
150 registers or long-term scratches. */
151 int n_spilled; /* number of spilled registers. */
152 int r[number_of_ia64_frame_regs]; /* Frame related registers. */
153 int n_input_regs; /* number of input registers used. */
154 int n_local_regs; /* number of local registers used. */
155 int n_output_regs; /* number of output registers used. */
156 int n_rotate_regs; /* number of rotating registers used. */
157
158 char need_regstk; /* true if a .regstk directive needed. */
159 char initialized; /* true if the data is finalized. */
160 };
161
162 /* Current frame information calculated by ia64_compute_frame_size. */
163 static struct ia64_frame_info current_frame_info;
164 /* The actual registers that are emitted. */
165 static int emitted_frame_related_regs[number_of_ia64_frame_regs];
166 \f
167 static int ia64_first_cycle_multipass_dfa_lookahead (void);
168 static void ia64_dependencies_evaluation_hook (rtx, rtx);
169 static void ia64_init_dfa_pre_cycle_insn (void);
170 static rtx ia64_dfa_pre_cycle_insn (void);
171 static int ia64_first_cycle_multipass_dfa_lookahead_guard (rtx);
172 static bool ia64_first_cycle_multipass_dfa_lookahead_guard_spec (const_rtx);
173 static int ia64_dfa_new_cycle (FILE *, int, rtx, int, int, int *);
174 static void ia64_h_i_d_extended (void);
175 static int ia64_mode_to_int (enum machine_mode);
176 static void ia64_set_sched_flags (spec_info_t);
177 static int ia64_speculate_insn (rtx, ds_t, rtx *);
178 static rtx ia64_gen_spec_insn (rtx, ds_t, int, bool, bool);
179 static bool ia64_needs_block_p (const_rtx);
180 static rtx ia64_gen_check (rtx, rtx, bool);
181 static int ia64_spec_check_p (rtx);
182 static int ia64_spec_check_src_p (rtx);
183 static rtx gen_tls_get_addr (void);
184 static rtx gen_thread_pointer (void);
185 static int find_gr_spill (enum ia64_frame_regs, int);
186 static int next_scratch_gr_reg (void);
187 static void mark_reg_gr_used_mask (rtx, void *);
188 static void ia64_compute_frame_size (HOST_WIDE_INT);
189 static void setup_spill_pointers (int, rtx, HOST_WIDE_INT);
190 static void finish_spill_pointers (void);
191 static rtx spill_restore_mem (rtx, HOST_WIDE_INT);
192 static void do_spill (rtx (*)(rtx, rtx, rtx), rtx, HOST_WIDE_INT, rtx);
193 static void do_restore (rtx (*)(rtx, rtx, rtx), rtx, HOST_WIDE_INT);
194 static rtx gen_movdi_x (rtx, rtx, rtx);
195 static rtx gen_fr_spill_x (rtx, rtx, rtx);
196 static rtx gen_fr_restore_x (rtx, rtx, rtx);
197
198 static enum machine_mode hfa_element_mode (const_tree, bool);
199 static void ia64_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
200 tree, int *, int);
201 static int ia64_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
202 tree, bool);
203 static bool ia64_function_ok_for_sibcall (tree, tree);
204 static bool ia64_return_in_memory (const_tree, const_tree);
205 static bool ia64_rtx_costs (rtx, int, int, int *);
206 static int ia64_unspec_may_trap_p (const_rtx, unsigned);
207 static void fix_range (const char *);
208 static bool ia64_handle_option (size_t, const char *, int);
209 static struct machine_function * ia64_init_machine_status (void);
210 static void emit_insn_group_barriers (FILE *);
211 static void emit_all_insn_group_barriers (FILE *);
212 static void final_emit_insn_group_barriers (FILE *);
213 static void emit_predicate_relation_info (void);
214 static void ia64_reorg (void);
215 static bool ia64_in_small_data_p (const_tree);
216 static void process_epilogue (FILE *, rtx, bool, bool);
217 static int process_set (FILE *, rtx, rtx, bool, bool);
218
219 static bool ia64_assemble_integer (rtx, unsigned int, int);
220 static void ia64_output_function_prologue (FILE *, HOST_WIDE_INT);
221 static void ia64_output_function_epilogue (FILE *, HOST_WIDE_INT);
222 static void ia64_output_function_end_prologue (FILE *);
223
224 static int ia64_issue_rate (void);
225 static int ia64_adjust_cost (rtx, rtx, rtx, int);
226 static void ia64_sched_init (FILE *, int, int);
227 static void ia64_sched_init_global (FILE *, int, int);
228 static void ia64_sched_finish_global (FILE *, int);
229 static void ia64_sched_finish (FILE *, int);
230 static int ia64_dfa_sched_reorder (FILE *, int, rtx *, int *, int, int);
231 static int ia64_sched_reorder (FILE *, int, rtx *, int *, int);
232 static int ia64_sched_reorder2 (FILE *, int, rtx *, int *, int);
233 static int ia64_variable_issue (FILE *, int, rtx, int);
234
235 static struct bundle_state *get_free_bundle_state (void);
236 static void free_bundle_state (struct bundle_state *);
237 static void initiate_bundle_states (void);
238 static void finish_bundle_states (void);
239 static unsigned bundle_state_hash (const void *);
240 static int bundle_state_eq_p (const void *, const void *);
241 static int insert_bundle_state (struct bundle_state *);
242 static void initiate_bundle_state_table (void);
243 static void finish_bundle_state_table (void);
244 static int try_issue_nops (struct bundle_state *, int);
245 static int try_issue_insn (struct bundle_state *, rtx);
246 static void issue_nops_and_insn (struct bundle_state *, int, rtx, int, int);
247 static int get_max_pos (state_t);
248 static int get_template (state_t, int);
249
250 static rtx get_next_important_insn (rtx, rtx);
251 static void bundling (FILE *, int, rtx, rtx);
252
253 static void ia64_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
254 HOST_WIDE_INT, tree);
255 static void ia64_file_start (void);
256 static void ia64_globalize_decl_name (FILE *, tree);
257
258 static int ia64_hpux_reloc_rw_mask (void) ATTRIBUTE_UNUSED;
259 static int ia64_reloc_rw_mask (void) ATTRIBUTE_UNUSED;
260 static section *ia64_select_rtx_section (enum machine_mode, rtx,
261 unsigned HOST_WIDE_INT);
262 static void ia64_output_dwarf_dtprel (FILE *, int, rtx)
263 ATTRIBUTE_UNUSED;
264 static unsigned int ia64_section_type_flags (tree, const char *, int);
265 static void ia64_init_libfuncs (void)
266 ATTRIBUTE_UNUSED;
267 static void ia64_hpux_init_libfuncs (void)
268 ATTRIBUTE_UNUSED;
269 static void ia64_sysv4_init_libfuncs (void)
270 ATTRIBUTE_UNUSED;
271 static void ia64_vms_init_libfuncs (void)
272 ATTRIBUTE_UNUSED;
273
274 static tree ia64_handle_model_attribute (tree *, tree, tree, int, bool *);
275 static tree ia64_handle_version_id_attribute (tree *, tree, tree, int, bool *);
276 static void ia64_encode_section_info (tree, rtx, int);
277 static rtx ia64_struct_value_rtx (tree, int);
278 static tree ia64_gimplify_va_arg (tree, tree, tree *, tree *);
279 static bool ia64_scalar_mode_supported_p (enum machine_mode mode);
280 static bool ia64_vector_mode_supported_p (enum machine_mode mode);
281 static bool ia64_cannot_force_const_mem (rtx);
282 static const char *ia64_mangle_type (const_tree);
283 static const char *ia64_invalid_conversion (const_tree, const_tree);
284 static const char *ia64_invalid_unary_op (int, const_tree);
285 static const char *ia64_invalid_binary_op (int, const_tree, const_tree);
286 static enum machine_mode ia64_c_mode_for_suffix (char);
287 \f
288 /* Table of valid machine attributes. */
289 static const struct attribute_spec ia64_attribute_table[] =
290 {
291 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
292 { "syscall_linkage", 0, 0, false, true, true, NULL },
293 { "model", 1, 1, true, false, false, ia64_handle_model_attribute },
294 { "version_id", 1, 1, true, false, false,
295 ia64_handle_version_id_attribute },
296 { NULL, 0, 0, false, false, false, NULL }
297 };
298
299 /* Initialize the GCC target structure. */
300 #undef TARGET_ATTRIBUTE_TABLE
301 #define TARGET_ATTRIBUTE_TABLE ia64_attribute_table
302
303 #undef TARGET_INIT_BUILTINS
304 #define TARGET_INIT_BUILTINS ia64_init_builtins
305
306 #undef TARGET_EXPAND_BUILTIN
307 #define TARGET_EXPAND_BUILTIN ia64_expand_builtin
308
309 #undef TARGET_ASM_BYTE_OP
310 #define TARGET_ASM_BYTE_OP "\tdata1\t"
311 #undef TARGET_ASM_ALIGNED_HI_OP
312 #define TARGET_ASM_ALIGNED_HI_OP "\tdata2\t"
313 #undef TARGET_ASM_ALIGNED_SI_OP
314 #define TARGET_ASM_ALIGNED_SI_OP "\tdata4\t"
315 #undef TARGET_ASM_ALIGNED_DI_OP
316 #define TARGET_ASM_ALIGNED_DI_OP "\tdata8\t"
317 #undef TARGET_ASM_UNALIGNED_HI_OP
318 #define TARGET_ASM_UNALIGNED_HI_OP "\tdata2.ua\t"
319 #undef TARGET_ASM_UNALIGNED_SI_OP
320 #define TARGET_ASM_UNALIGNED_SI_OP "\tdata4.ua\t"
321 #undef TARGET_ASM_UNALIGNED_DI_OP
322 #define TARGET_ASM_UNALIGNED_DI_OP "\tdata8.ua\t"
323 #undef TARGET_ASM_INTEGER
324 #define TARGET_ASM_INTEGER ia64_assemble_integer
325
326 #undef TARGET_ASM_FUNCTION_PROLOGUE
327 #define TARGET_ASM_FUNCTION_PROLOGUE ia64_output_function_prologue
328 #undef TARGET_ASM_FUNCTION_END_PROLOGUE
329 #define TARGET_ASM_FUNCTION_END_PROLOGUE ia64_output_function_end_prologue
330 #undef TARGET_ASM_FUNCTION_EPILOGUE
331 #define TARGET_ASM_FUNCTION_EPILOGUE ia64_output_function_epilogue
332
333 #undef TARGET_IN_SMALL_DATA_P
334 #define TARGET_IN_SMALL_DATA_P ia64_in_small_data_p
335
336 #undef TARGET_SCHED_ADJUST_COST
337 #define TARGET_SCHED_ADJUST_COST ia64_adjust_cost
338 #undef TARGET_SCHED_ISSUE_RATE
339 #define TARGET_SCHED_ISSUE_RATE ia64_issue_rate
340 #undef TARGET_SCHED_VARIABLE_ISSUE
341 #define TARGET_SCHED_VARIABLE_ISSUE ia64_variable_issue
342 #undef TARGET_SCHED_INIT
343 #define TARGET_SCHED_INIT ia64_sched_init
344 #undef TARGET_SCHED_FINISH
345 #define TARGET_SCHED_FINISH ia64_sched_finish
346 #undef TARGET_SCHED_INIT_GLOBAL
347 #define TARGET_SCHED_INIT_GLOBAL ia64_sched_init_global
348 #undef TARGET_SCHED_FINISH_GLOBAL
349 #define TARGET_SCHED_FINISH_GLOBAL ia64_sched_finish_global
350 #undef TARGET_SCHED_REORDER
351 #define TARGET_SCHED_REORDER ia64_sched_reorder
352 #undef TARGET_SCHED_REORDER2
353 #define TARGET_SCHED_REORDER2 ia64_sched_reorder2
354
355 #undef TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK
356 #define TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK ia64_dependencies_evaluation_hook
357
358 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
359 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ia64_first_cycle_multipass_dfa_lookahead
360
361 #undef TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN
362 #define TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN ia64_init_dfa_pre_cycle_insn
363 #undef TARGET_SCHED_DFA_PRE_CYCLE_INSN
364 #define TARGET_SCHED_DFA_PRE_CYCLE_INSN ia64_dfa_pre_cycle_insn
365
366 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
367 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD\
368 ia64_first_cycle_multipass_dfa_lookahead_guard
369
370 #undef TARGET_SCHED_DFA_NEW_CYCLE
371 #define TARGET_SCHED_DFA_NEW_CYCLE ia64_dfa_new_cycle
372
373 #undef TARGET_SCHED_H_I_D_EXTENDED
374 #define TARGET_SCHED_H_I_D_EXTENDED ia64_h_i_d_extended
375
376 #undef TARGET_SCHED_SET_SCHED_FLAGS
377 #define TARGET_SCHED_SET_SCHED_FLAGS ia64_set_sched_flags
378
379 #undef TARGET_SCHED_SPECULATE_INSN
380 #define TARGET_SCHED_SPECULATE_INSN ia64_speculate_insn
381
382 #undef TARGET_SCHED_NEEDS_BLOCK_P
383 #define TARGET_SCHED_NEEDS_BLOCK_P ia64_needs_block_p
384
385 #undef TARGET_SCHED_GEN_CHECK
386 #define TARGET_SCHED_GEN_CHECK ia64_gen_check
387
388 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC
389 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC\
390 ia64_first_cycle_multipass_dfa_lookahead_guard_spec
391
392 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
393 #define TARGET_FUNCTION_OK_FOR_SIBCALL ia64_function_ok_for_sibcall
394 #undef TARGET_ARG_PARTIAL_BYTES
395 #define TARGET_ARG_PARTIAL_BYTES ia64_arg_partial_bytes
396
397 #undef TARGET_ASM_OUTPUT_MI_THUNK
398 #define TARGET_ASM_OUTPUT_MI_THUNK ia64_output_mi_thunk
399 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
400 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
401
402 #undef TARGET_ASM_FILE_START
403 #define TARGET_ASM_FILE_START ia64_file_start
404
405 #undef TARGET_ASM_GLOBALIZE_DECL_NAME
406 #define TARGET_ASM_GLOBALIZE_DECL_NAME ia64_globalize_decl_name
407
408 #undef TARGET_RTX_COSTS
409 #define TARGET_RTX_COSTS ia64_rtx_costs
410 #undef TARGET_ADDRESS_COST
411 #define TARGET_ADDRESS_COST hook_int_rtx_0
412
413 #undef TARGET_UNSPEC_MAY_TRAP_P
414 #define TARGET_UNSPEC_MAY_TRAP_P ia64_unspec_may_trap_p
415
416 #undef TARGET_MACHINE_DEPENDENT_REORG
417 #define TARGET_MACHINE_DEPENDENT_REORG ia64_reorg
418
419 #undef TARGET_ENCODE_SECTION_INFO
420 #define TARGET_ENCODE_SECTION_INFO ia64_encode_section_info
421
422 #undef TARGET_SECTION_TYPE_FLAGS
423 #define TARGET_SECTION_TYPE_FLAGS ia64_section_type_flags
424
425 #ifdef HAVE_AS_TLS
426 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
427 #define TARGET_ASM_OUTPUT_DWARF_DTPREL ia64_output_dwarf_dtprel
428 #endif
429
430 /* ??? ABI doesn't allow us to define this. */
431 #if 0
432 #undef TARGET_PROMOTE_FUNCTION_ARGS
433 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
434 #endif
435
436 /* ??? ABI doesn't allow us to define this. */
437 #if 0
438 #undef TARGET_PROMOTE_FUNCTION_RETURN
439 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
440 #endif
441
442 /* ??? Investigate. */
443 #if 0
444 #undef TARGET_PROMOTE_PROTOTYPES
445 #define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
446 #endif
447
448 #undef TARGET_STRUCT_VALUE_RTX
449 #define TARGET_STRUCT_VALUE_RTX ia64_struct_value_rtx
450 #undef TARGET_RETURN_IN_MEMORY
451 #define TARGET_RETURN_IN_MEMORY ia64_return_in_memory
452 #undef TARGET_SETUP_INCOMING_VARARGS
453 #define TARGET_SETUP_INCOMING_VARARGS ia64_setup_incoming_varargs
454 #undef TARGET_STRICT_ARGUMENT_NAMING
455 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
456 #undef TARGET_MUST_PASS_IN_STACK
457 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
458
459 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
460 #define TARGET_GIMPLIFY_VA_ARG_EXPR ia64_gimplify_va_arg
461
462 #undef TARGET_UNWIND_EMIT
463 #define TARGET_UNWIND_EMIT process_for_unwind_directive
464
465 #undef TARGET_SCALAR_MODE_SUPPORTED_P
466 #define TARGET_SCALAR_MODE_SUPPORTED_P ia64_scalar_mode_supported_p
467 #undef TARGET_VECTOR_MODE_SUPPORTED_P
468 #define TARGET_VECTOR_MODE_SUPPORTED_P ia64_vector_mode_supported_p
469
470 /* ia64 architecture manual 4.4.7: ... reads, writes, and flushes may occur
471 in an order different from the specified program order. */
472 #undef TARGET_RELAXED_ORDERING
473 #define TARGET_RELAXED_ORDERING true
474
475 #undef TARGET_DEFAULT_TARGET_FLAGS
476 #define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | TARGET_CPU_DEFAULT)
477 #undef TARGET_HANDLE_OPTION
478 #define TARGET_HANDLE_OPTION ia64_handle_option
479
480 #undef TARGET_CANNOT_FORCE_CONST_MEM
481 #define TARGET_CANNOT_FORCE_CONST_MEM ia64_cannot_force_const_mem
482
483 #undef TARGET_MANGLE_TYPE
484 #define TARGET_MANGLE_TYPE ia64_mangle_type
485
486 #undef TARGET_INVALID_CONVERSION
487 #define TARGET_INVALID_CONVERSION ia64_invalid_conversion
488 #undef TARGET_INVALID_UNARY_OP
489 #define TARGET_INVALID_UNARY_OP ia64_invalid_unary_op
490 #undef TARGET_INVALID_BINARY_OP
491 #define TARGET_INVALID_BINARY_OP ia64_invalid_binary_op
492
493 #undef TARGET_C_MODE_FOR_SUFFIX
494 #define TARGET_C_MODE_FOR_SUFFIX ia64_c_mode_for_suffix
495
496 struct gcc_target targetm = TARGET_INITIALIZER;
497 \f
498 typedef enum
499 {
500 ADDR_AREA_NORMAL, /* normal address area */
501 ADDR_AREA_SMALL /* addressable by "addl" (-2MB < addr < 2MB) */
502 }
503 ia64_addr_area;
504
505 static GTY(()) tree small_ident1;
506 static GTY(()) tree small_ident2;
507
508 static void
509 init_idents (void)
510 {
511 if (small_ident1 == 0)
512 {
513 small_ident1 = get_identifier ("small");
514 small_ident2 = get_identifier ("__small__");
515 }
516 }
517
518 /* Retrieve the address area that has been chosen for the given decl. */
519
520 static ia64_addr_area
521 ia64_get_addr_area (tree decl)
522 {
523 tree model_attr;
524
525 model_attr = lookup_attribute ("model", DECL_ATTRIBUTES (decl));
526 if (model_attr)
527 {
528 tree id;
529
530 init_idents ();
531 id = TREE_VALUE (TREE_VALUE (model_attr));
532 if (id == small_ident1 || id == small_ident2)
533 return ADDR_AREA_SMALL;
534 }
535 return ADDR_AREA_NORMAL;
536 }
537
538 static tree
539 ia64_handle_model_attribute (tree *node, tree name, tree args,
540 int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
541 {
542 ia64_addr_area addr_area = ADDR_AREA_NORMAL;
543 ia64_addr_area area;
544 tree arg, decl = *node;
545
546 init_idents ();
547 arg = TREE_VALUE (args);
548 if (arg == small_ident1 || arg == small_ident2)
549 {
550 addr_area = ADDR_AREA_SMALL;
551 }
552 else
553 {
554 warning (OPT_Wattributes, "invalid argument of %qs attribute",
555 IDENTIFIER_POINTER (name));
556 *no_add_attrs = true;
557 }
558
559 switch (TREE_CODE (decl))
560 {
561 case VAR_DECL:
562 if ((DECL_CONTEXT (decl) && TREE_CODE (DECL_CONTEXT (decl))
563 == FUNCTION_DECL)
564 && !TREE_STATIC (decl))
565 {
566 error ("%Jan address area attribute cannot be specified for "
567 "local variables", decl);
568 *no_add_attrs = true;
569 }
570 area = ia64_get_addr_area (decl);
571 if (area != ADDR_AREA_NORMAL && addr_area != area)
572 {
573 error ("address area of %q+D conflicts with previous "
574 "declaration", decl);
575 *no_add_attrs = true;
576 }
577 break;
578
579 case FUNCTION_DECL:
580 error ("%Jaddress area attribute cannot be specified for functions",
581 decl);
582 *no_add_attrs = true;
583 break;
584
585 default:
586 warning (OPT_Wattributes, "%qs attribute ignored",
587 IDENTIFIER_POINTER (name));
588 *no_add_attrs = true;
589 break;
590 }
591
592 return NULL_TREE;
593 }
594
595 static void
596 ia64_encode_addr_area (tree decl, rtx symbol)
597 {
598 int flags;
599
600 flags = SYMBOL_REF_FLAGS (symbol);
601 switch (ia64_get_addr_area (decl))
602 {
603 case ADDR_AREA_NORMAL: break;
604 case ADDR_AREA_SMALL: flags |= SYMBOL_FLAG_SMALL_ADDR; break;
605 default: gcc_unreachable ();
606 }
607 SYMBOL_REF_FLAGS (symbol) = flags;
608 }
609
610 static void
611 ia64_encode_section_info (tree decl, rtx rtl, int first)
612 {
613 default_encode_section_info (decl, rtl, first);
614
615 /* Careful not to prod global register variables. */
616 if (TREE_CODE (decl) == VAR_DECL
617 && GET_CODE (DECL_RTL (decl)) == MEM
618 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == SYMBOL_REF
619 && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
620 ia64_encode_addr_area (decl, XEXP (rtl, 0));
621 }
622 \f
623 /* Return 1 if the operands of a move are ok. */
624
625 int
626 ia64_move_ok (rtx dst, rtx src)
627 {
628 /* If we're under init_recog_no_volatile, we'll not be able to use
629 memory_operand. So check the code directly and don't worry about
630 the validity of the underlying address, which should have been
631 checked elsewhere anyway. */
632 if (GET_CODE (dst) != MEM)
633 return 1;
634 if (GET_CODE (src) == MEM)
635 return 0;
636 if (register_operand (src, VOIDmode))
637 return 1;
638
639 /* Otherwise, this must be a constant, and that either 0 or 0.0 or 1.0. */
640 if (INTEGRAL_MODE_P (GET_MODE (dst)))
641 return src == const0_rtx;
642 else
643 return satisfies_constraint_G (src);
644 }
645
646 /* Return 1 if the operands are ok for a floating point load pair. */
647
648 int
649 ia64_load_pair_ok (rtx dst, rtx src)
650 {
651 if (GET_CODE (dst) != REG || !FP_REGNO_P (REGNO (dst)))
652 return 0;
653 if (GET_CODE (src) != MEM || MEM_VOLATILE_P (src))
654 return 0;
655 switch (GET_CODE (XEXP (src, 0)))
656 {
657 case REG:
658 case POST_INC:
659 break;
660 case POST_DEC:
661 return 0;
662 case POST_MODIFY:
663 {
664 rtx adjust = XEXP (XEXP (XEXP (src, 0), 1), 1);
665
666 if (GET_CODE (adjust) != CONST_INT
667 || INTVAL (adjust) != GET_MODE_SIZE (GET_MODE (src)))
668 return 0;
669 }
670 break;
671 default:
672 abort ();
673 }
674 return 1;
675 }
676
677 int
678 addp4_optimize_ok (rtx op1, rtx op2)
679 {
680 return (basereg_operand (op1, GET_MODE(op1)) !=
681 basereg_operand (op2, GET_MODE(op2)));
682 }
683
684 /* Check if OP is a mask suitable for use with SHIFT in a dep.z instruction.
685 Return the length of the field, or <= 0 on failure. */
686
687 int
688 ia64_depz_field_mask (rtx rop, rtx rshift)
689 {
690 unsigned HOST_WIDE_INT op = INTVAL (rop);
691 unsigned HOST_WIDE_INT shift = INTVAL (rshift);
692
693 /* Get rid of the zero bits we're shifting in. */
694 op >>= shift;
695
696 /* We must now have a solid block of 1's at bit 0. */
697 return exact_log2 (op + 1);
698 }
699
700 /* Return the TLS model to use for ADDR. */
701
702 static enum tls_model
703 tls_symbolic_operand_type (rtx addr)
704 {
705 enum tls_model tls_kind = 0;
706
707 if (GET_CODE (addr) == CONST)
708 {
709 if (GET_CODE (XEXP (addr, 0)) == PLUS
710 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF)
711 tls_kind = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (addr, 0), 0));
712 }
713 else if (GET_CODE (addr) == SYMBOL_REF)
714 tls_kind = SYMBOL_REF_TLS_MODEL (addr);
715
716 return tls_kind;
717 }
718
719 /* Return true if X is a constant that is valid for some immediate
720 field in an instruction. */
721
722 bool
723 ia64_legitimate_constant_p (rtx x)
724 {
725 switch (GET_CODE (x))
726 {
727 case CONST_INT:
728 case LABEL_REF:
729 return true;
730
731 case CONST_DOUBLE:
732 if (GET_MODE (x) == VOIDmode)
733 return true;
734 return satisfies_constraint_G (x);
735
736 case CONST:
737 case SYMBOL_REF:
738 /* ??? Short term workaround for PR 28490. We must make the code here
739 match the code in ia64_expand_move and move_operand, even though they
740 are both technically wrong. */
741 if (tls_symbolic_operand_type (x) == 0)
742 {
743 HOST_WIDE_INT addend = 0;
744 rtx op = x;
745
746 if (GET_CODE (op) == CONST
747 && GET_CODE (XEXP (op, 0)) == PLUS
748 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
749 {
750 addend = INTVAL (XEXP (XEXP (op, 0), 1));
751 op = XEXP (XEXP (op, 0), 0);
752 }
753
754 if (any_offset_symbol_operand (op, GET_MODE (op))
755 || function_operand (op, GET_MODE (op)))
756 return true;
757 if (aligned_offset_symbol_operand (op, GET_MODE (op)))
758 return (addend & 0x3fff) == 0;
759 return false;
760 }
761 return false;
762
763 case CONST_VECTOR:
764 {
765 enum machine_mode mode = GET_MODE (x);
766
767 if (mode == V2SFmode)
768 return satisfies_constraint_Y (x);
769
770 return (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
771 && GET_MODE_SIZE (mode) <= 8);
772 }
773
774 default:
775 return false;
776 }
777 }
778
779 /* Don't allow TLS addresses to get spilled to memory. */
780
781 static bool
782 ia64_cannot_force_const_mem (rtx x)
783 {
784 if (GET_MODE (x) == RFmode)
785 return true;
786 return tls_symbolic_operand_type (x) != 0;
787 }
788
789 /* Expand a symbolic constant load. */
790
791 bool
792 ia64_expand_load_address (rtx dest, rtx src)
793 {
794 gcc_assert (GET_CODE (dest) == REG);
795
796 /* ILP32 mode still loads 64-bits of data from the GOT. This avoids
797 having to pointer-extend the value afterward. Other forms of address
798 computation below are also more natural to compute as 64-bit quantities.
799 If we've been given an SImode destination register, change it. */
800 if (GET_MODE (dest) != Pmode)
801 dest = gen_rtx_REG_offset (dest, Pmode, REGNO (dest),
802 byte_lowpart_offset (Pmode, GET_MODE (dest)));
803
804 if (TARGET_NO_PIC)
805 return false;
806 if (small_addr_symbolic_operand (src, VOIDmode))
807 return false;
808
809 if (TARGET_AUTO_PIC)
810 emit_insn (gen_load_gprel64 (dest, src));
811 else if (GET_CODE (src) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (src))
812 emit_insn (gen_load_fptr (dest, src));
813 else if (sdata_symbolic_operand (src, VOIDmode))
814 emit_insn (gen_load_gprel (dest, src));
815 else
816 {
817 HOST_WIDE_INT addend = 0;
818 rtx tmp;
819
820 /* We did split constant offsets in ia64_expand_move, and we did try
821 to keep them split in move_operand, but we also allowed reload to
822 rematerialize arbitrary constants rather than spill the value to
823 the stack and reload it. So we have to be prepared here to split
824 them apart again. */
825 if (GET_CODE (src) == CONST)
826 {
827 HOST_WIDE_INT hi, lo;
828
829 hi = INTVAL (XEXP (XEXP (src, 0), 1));
830 lo = ((hi & 0x3fff) ^ 0x2000) - 0x2000;
831 hi = hi - lo;
832
833 if (lo != 0)
834 {
835 addend = lo;
836 src = plus_constant (XEXP (XEXP (src, 0), 0), hi);
837 }
838 }
839
840 tmp = gen_rtx_HIGH (Pmode, src);
841 tmp = gen_rtx_PLUS (Pmode, tmp, pic_offset_table_rtx);
842 emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
843
844 tmp = gen_rtx_LO_SUM (Pmode, dest, src);
845 emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
846
847 if (addend)
848 {
849 tmp = gen_rtx_PLUS (Pmode, dest, GEN_INT (addend));
850 emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
851 }
852 }
853
854 return true;
855 }
856
857 static GTY(()) rtx gen_tls_tga;
858 static rtx
859 gen_tls_get_addr (void)
860 {
861 if (!gen_tls_tga)
862 gen_tls_tga = init_one_libfunc ("__tls_get_addr");
863 return gen_tls_tga;
864 }
865
866 static GTY(()) rtx thread_pointer_rtx;
867 static rtx
868 gen_thread_pointer (void)
869 {
870 if (!thread_pointer_rtx)
871 thread_pointer_rtx = gen_rtx_REG (Pmode, 13);
872 return thread_pointer_rtx;
873 }
874
875 static rtx
876 ia64_expand_tls_address (enum tls_model tls_kind, rtx op0, rtx op1,
877 rtx orig_op1, HOST_WIDE_INT addend)
878 {
879 rtx tga_op1, tga_op2, tga_ret, tga_eqv, tmp, insns;
880 rtx orig_op0 = op0;
881 HOST_WIDE_INT addend_lo, addend_hi;
882
883 switch (tls_kind)
884 {
885 case TLS_MODEL_GLOBAL_DYNAMIC:
886 start_sequence ();
887
888 tga_op1 = gen_reg_rtx (Pmode);
889 emit_insn (gen_load_dtpmod (tga_op1, op1));
890
891 tga_op2 = gen_reg_rtx (Pmode);
892 emit_insn (gen_load_dtprel (tga_op2, op1));
893
894 tga_ret = emit_library_call_value (gen_tls_get_addr (), NULL_RTX,
895 LCT_CONST, Pmode, 2, tga_op1,
896 Pmode, tga_op2, Pmode);
897
898 insns = get_insns ();
899 end_sequence ();
900
901 if (GET_MODE (op0) != Pmode)
902 op0 = tga_ret;
903 emit_libcall_block (insns, op0, tga_ret, op1);
904 break;
905
906 case TLS_MODEL_LOCAL_DYNAMIC:
907 /* ??? This isn't the completely proper way to do local-dynamic
908 If the call to __tls_get_addr is used only by a single symbol,
909 then we should (somehow) move the dtprel to the second arg
910 to avoid the extra add. */
911 start_sequence ();
912
913 tga_op1 = gen_reg_rtx (Pmode);
914 emit_insn (gen_load_dtpmod (tga_op1, op1));
915
916 tga_op2 = const0_rtx;
917
918 tga_ret = emit_library_call_value (gen_tls_get_addr (), NULL_RTX,
919 LCT_CONST, Pmode, 2, tga_op1,
920 Pmode, tga_op2, Pmode);
921
922 insns = get_insns ();
923 end_sequence ();
924
925 tga_eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
926 UNSPEC_LD_BASE);
927 tmp = gen_reg_rtx (Pmode);
928 emit_libcall_block (insns, tmp, tga_ret, tga_eqv);
929
930 if (!register_operand (op0, Pmode))
931 op0 = gen_reg_rtx (Pmode);
932 if (TARGET_TLS64)
933 {
934 emit_insn (gen_load_dtprel (op0, op1));
935 emit_insn (gen_adddi3 (op0, tmp, op0));
936 }
937 else
938 emit_insn (gen_add_dtprel (op0, op1, tmp));
939 break;
940
941 case TLS_MODEL_INITIAL_EXEC:
942 addend_lo = ((addend & 0x3fff) ^ 0x2000) - 0x2000;
943 addend_hi = addend - addend_lo;
944
945 op1 = plus_constant (op1, addend_hi);
946 addend = addend_lo;
947
948 tmp = gen_reg_rtx (Pmode);
949 emit_insn (gen_load_tprel (tmp, op1));
950
951 if (!register_operand (op0, Pmode))
952 op0 = gen_reg_rtx (Pmode);
953 emit_insn (gen_adddi3 (op0, tmp, gen_thread_pointer ()));
954 break;
955
956 case TLS_MODEL_LOCAL_EXEC:
957 if (!register_operand (op0, Pmode))
958 op0 = gen_reg_rtx (Pmode);
959
960 op1 = orig_op1;
961 addend = 0;
962 if (TARGET_TLS64)
963 {
964 emit_insn (gen_load_tprel (op0, op1));
965 emit_insn (gen_adddi3 (op0, op0, gen_thread_pointer ()));
966 }
967 else
968 emit_insn (gen_add_tprel (op0, op1, gen_thread_pointer ()));
969 break;
970
971 default:
972 gcc_unreachable ();
973 }
974
975 if (addend)
976 op0 = expand_simple_binop (Pmode, PLUS, op0, GEN_INT (addend),
977 orig_op0, 1, OPTAB_DIRECT);
978 if (orig_op0 == op0)
979 return NULL_RTX;
980 if (GET_MODE (orig_op0) == Pmode)
981 return op0;
982 return gen_lowpart (GET_MODE (orig_op0), op0);
983 }
984
985 rtx
986 ia64_expand_move (rtx op0, rtx op1)
987 {
988 enum machine_mode mode = GET_MODE (op0);
989
990 if (!reload_in_progress && !reload_completed && !ia64_move_ok (op0, op1))
991 op1 = force_reg (mode, op1);
992
993 if ((mode == Pmode || mode == ptr_mode) && symbolic_operand (op1, VOIDmode))
994 {
995 HOST_WIDE_INT addend = 0;
996 enum tls_model tls_kind;
997 rtx sym = op1;
998
999 if (GET_CODE (op1) == CONST
1000 && GET_CODE (XEXP (op1, 0)) == PLUS
1001 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT)
1002 {
1003 addend = INTVAL (XEXP (XEXP (op1, 0), 1));
1004 sym = XEXP (XEXP (op1, 0), 0);
1005 }
1006
1007 tls_kind = tls_symbolic_operand_type (sym);
1008 if (tls_kind)
1009 return ia64_expand_tls_address (tls_kind, op0, sym, op1, addend);
1010
1011 if (any_offset_symbol_operand (sym, mode))
1012 addend = 0;
1013 else if (aligned_offset_symbol_operand (sym, mode))
1014 {
1015 HOST_WIDE_INT addend_lo, addend_hi;
1016
1017 addend_lo = ((addend & 0x3fff) ^ 0x2000) - 0x2000;
1018 addend_hi = addend - addend_lo;
1019
1020 if (addend_lo != 0)
1021 {
1022 op1 = plus_constant (sym, addend_hi);
1023 addend = addend_lo;
1024 }
1025 else
1026 addend = 0;
1027 }
1028 else
1029 op1 = sym;
1030
1031 if (reload_completed)
1032 {
1033 /* We really should have taken care of this offset earlier. */
1034 gcc_assert (addend == 0);
1035 if (ia64_expand_load_address (op0, op1))
1036 return NULL_RTX;
1037 }
1038
1039 if (addend)
1040 {
1041 rtx subtarget = !can_create_pseudo_p () ? op0 : gen_reg_rtx (mode);
1042
1043 emit_insn (gen_rtx_SET (VOIDmode, subtarget, op1));
1044
1045 op1 = expand_simple_binop (mode, PLUS, subtarget,
1046 GEN_INT (addend), op0, 1, OPTAB_DIRECT);
1047 if (op0 == op1)
1048 return NULL_RTX;
1049 }
1050 }
1051
1052 return op1;
1053 }
1054
1055 /* Split a move from OP1 to OP0 conditional on COND. */
1056
1057 void
1058 ia64_emit_cond_move (rtx op0, rtx op1, rtx cond)
1059 {
1060 rtx insn, first = get_last_insn ();
1061
1062 emit_move_insn (op0, op1);
1063
1064 for (insn = get_last_insn (); insn != first; insn = PREV_INSN (insn))
1065 if (INSN_P (insn))
1066 PATTERN (insn) = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (cond),
1067 PATTERN (insn));
1068 }
1069
1070 /* Split a post-reload TImode or TFmode reference into two DImode
1071 components. This is made extra difficult by the fact that we do
1072 not get any scratch registers to work with, because reload cannot
1073 be prevented from giving us a scratch that overlaps the register
1074 pair involved. So instead, when addressing memory, we tweak the
1075 pointer register up and back down with POST_INCs. Or up and not
1076 back down when we can get away with it.
1077
1078 REVERSED is true when the loads must be done in reversed order
1079 (high word first) for correctness. DEAD is true when the pointer
1080 dies with the second insn we generate and therefore the second
1081 address must not carry a postmodify.
1082
1083 May return an insn which is to be emitted after the moves. */
1084
1085 static rtx
1086 ia64_split_tmode (rtx out[2], rtx in, bool reversed, bool dead)
1087 {
1088 rtx fixup = 0;
1089
1090 switch (GET_CODE (in))
1091 {
1092 case REG:
1093 out[reversed] = gen_rtx_REG (DImode, REGNO (in));
1094 out[!reversed] = gen_rtx_REG (DImode, REGNO (in) + 1);
1095 break;
1096
1097 case CONST_INT:
1098 case CONST_DOUBLE:
1099 /* Cannot occur reversed. */
1100 gcc_assert (!reversed);
1101
1102 if (GET_MODE (in) != TFmode)
1103 split_double (in, &out[0], &out[1]);
1104 else
1105 /* split_double does not understand how to split a TFmode
1106 quantity into a pair of DImode constants. */
1107 {
1108 REAL_VALUE_TYPE r;
1109 unsigned HOST_WIDE_INT p[2];
1110 long l[4]; /* TFmode is 128 bits */
1111
1112 REAL_VALUE_FROM_CONST_DOUBLE (r, in);
1113 real_to_target (l, &r, TFmode);
1114
1115 if (FLOAT_WORDS_BIG_ENDIAN)
1116 {
1117 p[0] = (((unsigned HOST_WIDE_INT) l[0]) << 32) + l[1];
1118 p[1] = (((unsigned HOST_WIDE_INT) l[2]) << 32) + l[3];
1119 }
1120 else
1121 {
1122 p[0] = (((unsigned HOST_WIDE_INT) l[1]) << 32) + l[0];
1123 p[1] = (((unsigned HOST_WIDE_INT) l[3]) << 32) + l[2];
1124 }
1125 out[0] = GEN_INT (p[0]);
1126 out[1] = GEN_INT (p[1]);
1127 }
1128 break;
1129
1130 case MEM:
1131 {
1132 rtx base = XEXP (in, 0);
1133 rtx offset;
1134
1135 switch (GET_CODE (base))
1136 {
1137 case REG:
1138 if (!reversed)
1139 {
1140 out[0] = adjust_automodify_address
1141 (in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
1142 out[1] = adjust_automodify_address
1143 (in, DImode, dead ? 0 : gen_rtx_POST_DEC (Pmode, base), 8);
1144 }
1145 else
1146 {
1147 /* Reversal requires a pre-increment, which can only
1148 be done as a separate insn. */
1149 emit_insn (gen_adddi3 (base, base, GEN_INT (8)));
1150 out[0] = adjust_automodify_address
1151 (in, DImode, gen_rtx_POST_DEC (Pmode, base), 8);
1152 out[1] = adjust_address (in, DImode, 0);
1153 }
1154 break;
1155
1156 case POST_INC:
1157 gcc_assert (!reversed && !dead);
1158
1159 /* Just do the increment in two steps. */
1160 out[0] = adjust_automodify_address (in, DImode, 0, 0);
1161 out[1] = adjust_automodify_address (in, DImode, 0, 8);
1162 break;
1163
1164 case POST_DEC:
1165 gcc_assert (!reversed && !dead);
1166
1167 /* Add 8, subtract 24. */
1168 base = XEXP (base, 0);
1169 out[0] = adjust_automodify_address
1170 (in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
1171 out[1] = adjust_automodify_address
1172 (in, DImode,
1173 gen_rtx_POST_MODIFY (Pmode, base, plus_constant (base, -24)),
1174 8);
1175 break;
1176
1177 case POST_MODIFY:
1178 gcc_assert (!reversed && !dead);
1179
1180 /* Extract and adjust the modification. This case is
1181 trickier than the others, because we might have an
1182 index register, or we might have a combined offset that
1183 doesn't fit a signed 9-bit displacement field. We can
1184 assume the incoming expression is already legitimate. */
1185 offset = XEXP (base, 1);
1186 base = XEXP (base, 0);
1187
1188 out[0] = adjust_automodify_address
1189 (in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
1190
1191 if (GET_CODE (XEXP (offset, 1)) == REG)
1192 {
1193 /* Can't adjust the postmodify to match. Emit the
1194 original, then a separate addition insn. */
1195 out[1] = adjust_automodify_address (in, DImode, 0, 8);
1196 fixup = gen_adddi3 (base, base, GEN_INT (-8));
1197 }
1198 else
1199 {
1200 gcc_assert (GET_CODE (XEXP (offset, 1)) == CONST_INT);
1201 if (INTVAL (XEXP (offset, 1)) < -256 + 8)
1202 {
1203 /* Again the postmodify cannot be made to match,
1204 but in this case it's more efficient to get rid
1205 of the postmodify entirely and fix up with an
1206 add insn. */
1207 out[1] = adjust_automodify_address (in, DImode, base, 8);
1208 fixup = gen_adddi3
1209 (base, base, GEN_INT (INTVAL (XEXP (offset, 1)) - 8));
1210 }
1211 else
1212 {
1213 /* Combined offset still fits in the displacement field.
1214 (We cannot overflow it at the high end.) */
1215 out[1] = adjust_automodify_address
1216 (in, DImode, gen_rtx_POST_MODIFY
1217 (Pmode, base, gen_rtx_PLUS
1218 (Pmode, base,
1219 GEN_INT (INTVAL (XEXP (offset, 1)) - 8))),
1220 8);
1221 }
1222 }
1223 break;
1224
1225 default:
1226 gcc_unreachable ();
1227 }
1228 break;
1229 }
1230
1231 default:
1232 gcc_unreachable ();
1233 }
1234
1235 return fixup;
1236 }
1237
1238 /* Split a TImode or TFmode move instruction after reload.
1239 This is used by *movtf_internal and *movti_internal. */
1240 void
1241 ia64_split_tmode_move (rtx operands[])
1242 {
1243 rtx in[2], out[2], insn;
1244 rtx fixup[2];
1245 bool dead = false;
1246 bool reversed = false;
1247
1248 /* It is possible for reload to decide to overwrite a pointer with
1249 the value it points to. In that case we have to do the loads in
1250 the appropriate order so that the pointer is not destroyed too
1251 early. Also we must not generate a postmodify for that second
1252 load, or rws_access_regno will die. */
1253 if (GET_CODE (operands[1]) == MEM
1254 && reg_overlap_mentioned_p (operands[0], operands[1]))
1255 {
1256 rtx base = XEXP (operands[1], 0);
1257 while (GET_CODE (base) != REG)
1258 base = XEXP (base, 0);
1259
1260 if (REGNO (base) == REGNO (operands[0]))
1261 reversed = true;
1262 dead = true;
1263 }
1264 /* Another reason to do the moves in reversed order is if the first
1265 element of the target register pair is also the second element of
1266 the source register pair. */
1267 if (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG
1268 && REGNO (operands[0]) == REGNO (operands[1]) + 1)
1269 reversed = true;
1270
1271 fixup[0] = ia64_split_tmode (in, operands[1], reversed, dead);
1272 fixup[1] = ia64_split_tmode (out, operands[0], reversed, dead);
1273
1274 #define MAYBE_ADD_REG_INC_NOTE(INSN, EXP) \
1275 if (GET_CODE (EXP) == MEM \
1276 && (GET_CODE (XEXP (EXP, 0)) == POST_MODIFY \
1277 || GET_CODE (XEXP (EXP, 0)) == POST_INC \
1278 || GET_CODE (XEXP (EXP, 0)) == POST_DEC)) \
1279 REG_NOTES (INSN) = gen_rtx_EXPR_LIST (REG_INC, \
1280 XEXP (XEXP (EXP, 0), 0), \
1281 REG_NOTES (INSN))
1282
1283 insn = emit_insn (gen_rtx_SET (VOIDmode, out[0], in[0]));
1284 MAYBE_ADD_REG_INC_NOTE (insn, in[0]);
1285 MAYBE_ADD_REG_INC_NOTE (insn, out[0]);
1286
1287 insn = emit_insn (gen_rtx_SET (VOIDmode, out[1], in[1]));
1288 MAYBE_ADD_REG_INC_NOTE (insn, in[1]);
1289 MAYBE_ADD_REG_INC_NOTE (insn, out[1]);
1290
1291 if (fixup[0])
1292 emit_insn (fixup[0]);
1293 if (fixup[1])
1294 emit_insn (fixup[1]);
1295
1296 #undef MAYBE_ADD_REG_INC_NOTE
1297 }
1298
1299 /* ??? Fixing GR->FR XFmode moves during reload is hard. You need to go
1300 through memory plus an extra GR scratch register. Except that you can
1301 either get the first from SECONDARY_MEMORY_NEEDED or the second from
1302 SECONDARY_RELOAD_CLASS, but not both.
1303
1304 We got into problems in the first place by allowing a construct like
1305 (subreg:XF (reg:TI)), which we got from a union containing a long double.
1306 This solution attempts to prevent this situation from occurring. When
1307 we see something like the above, we spill the inner register to memory. */
1308
1309 static rtx
1310 spill_xfmode_rfmode_operand (rtx in, int force, enum machine_mode mode)
1311 {
1312 if (GET_CODE (in) == SUBREG
1313 && GET_MODE (SUBREG_REG (in)) == TImode
1314 && GET_CODE (SUBREG_REG (in)) == REG)
1315 {
1316 rtx memt = assign_stack_temp (TImode, 16, 0);
1317 emit_move_insn (memt, SUBREG_REG (in));
1318 return adjust_address (memt, mode, 0);
1319 }
1320 else if (force && GET_CODE (in) == REG)
1321 {
1322 rtx memx = assign_stack_temp (mode, 16, 0);
1323 emit_move_insn (memx, in);
1324 return memx;
1325 }
1326 else
1327 return in;
1328 }
1329
1330 /* Expand the movxf or movrf pattern (MODE says which) with the given
1331 OPERANDS, returning true if the pattern should then invoke
1332 DONE. */
1333
1334 bool
1335 ia64_expand_movxf_movrf (enum machine_mode mode, rtx operands[])
1336 {
1337 rtx op0 = operands[0];
1338
1339 if (GET_CODE (op0) == SUBREG)
1340 op0 = SUBREG_REG (op0);
1341
1342 /* We must support XFmode loads into general registers for stdarg/vararg,
1343 unprototyped calls, and a rare case where a long double is passed as
1344 an argument after a float HFA fills the FP registers. We split them into
1345 DImode loads for convenience. We also need to support XFmode stores
1346 for the last case. This case does not happen for stdarg/vararg routines,
1347 because we do a block store to memory of unnamed arguments. */
1348
1349 if (GET_CODE (op0) == REG && GR_REGNO_P (REGNO (op0)))
1350 {
1351 rtx out[2];
1352
1353 /* We're hoping to transform everything that deals with XFmode
1354 quantities and GR registers early in the compiler. */
1355 gcc_assert (can_create_pseudo_p ());
1356
1357 /* Struct to register can just use TImode instead. */
1358 if ((GET_CODE (operands[1]) == SUBREG
1359 && GET_MODE (SUBREG_REG (operands[1])) == TImode)
1360 || (GET_CODE (operands[1]) == REG
1361 && GR_REGNO_P (REGNO (operands[1]))))
1362 {
1363 rtx op1 = operands[1];
1364
1365 if (GET_CODE (op1) == SUBREG)
1366 op1 = SUBREG_REG (op1);
1367 else
1368 op1 = gen_rtx_REG (TImode, REGNO (op1));
1369
1370 emit_move_insn (gen_rtx_REG (TImode, REGNO (op0)), op1);
1371 return true;
1372 }
1373
1374 if (GET_CODE (operands[1]) == CONST_DOUBLE)
1375 {
1376 /* Don't word-swap when reading in the constant. */
1377 emit_move_insn (gen_rtx_REG (DImode, REGNO (op0)),
1378 operand_subword (operands[1], WORDS_BIG_ENDIAN,
1379 0, mode));
1380 emit_move_insn (gen_rtx_REG (DImode, REGNO (op0) + 1),
1381 operand_subword (operands[1], !WORDS_BIG_ENDIAN,
1382 0, mode));
1383 return true;
1384 }
1385
1386 /* If the quantity is in a register not known to be GR, spill it. */
1387 if (register_operand (operands[1], mode))
1388 operands[1] = spill_xfmode_rfmode_operand (operands[1], 1, mode);
1389
1390 gcc_assert (GET_CODE (operands[1]) == MEM);
1391
1392 /* Don't word-swap when reading in the value. */
1393 out[0] = gen_rtx_REG (DImode, REGNO (op0));
1394 out[1] = gen_rtx_REG (DImode, REGNO (op0) + 1);
1395
1396 emit_move_insn (out[0], adjust_address (operands[1], DImode, 0));
1397 emit_move_insn (out[1], adjust_address (operands[1], DImode, 8));
1398 return true;
1399 }
1400
1401 if (GET_CODE (operands[1]) == REG && GR_REGNO_P (REGNO (operands[1])))
1402 {
1403 /* We're hoping to transform everything that deals with XFmode
1404 quantities and GR registers early in the compiler. */
1405 gcc_assert (can_create_pseudo_p ());
1406
1407 /* Op0 can't be a GR_REG here, as that case is handled above.
1408 If op0 is a register, then we spill op1, so that we now have a
1409 MEM operand. This requires creating an XFmode subreg of a TImode reg
1410 to force the spill. */
1411 if (register_operand (operands[0], mode))
1412 {
1413 rtx op1 = gen_rtx_REG (TImode, REGNO (operands[1]));
1414 op1 = gen_rtx_SUBREG (mode, op1, 0);
1415 operands[1] = spill_xfmode_rfmode_operand (op1, 0, mode);
1416 }
1417
1418 else
1419 {
1420 rtx in[2];
1421
1422 gcc_assert (GET_CODE (operands[0]) == MEM);
1423
1424 /* Don't word-swap when writing out the value. */
1425 in[0] = gen_rtx_REG (DImode, REGNO (operands[1]));
1426 in[1] = gen_rtx_REG (DImode, REGNO (operands[1]) + 1);
1427
1428 emit_move_insn (adjust_address (operands[0], DImode, 0), in[0]);
1429 emit_move_insn (adjust_address (operands[0], DImode, 8), in[1]);
1430 return true;
1431 }
1432 }
1433
1434 if (!reload_in_progress && !reload_completed)
1435 {
1436 operands[1] = spill_xfmode_rfmode_operand (operands[1], 0, mode);
1437
1438 if (GET_MODE (op0) == TImode && GET_CODE (op0) == REG)
1439 {
1440 rtx memt, memx, in = operands[1];
1441 if (CONSTANT_P (in))
1442 in = validize_mem (force_const_mem (mode, in));
1443 if (GET_CODE (in) == MEM)
1444 memt = adjust_address (in, TImode, 0);
1445 else
1446 {
1447 memt = assign_stack_temp (TImode, 16, 0);
1448 memx = adjust_address (memt, mode, 0);
1449 emit_move_insn (memx, in);
1450 }
1451 emit_move_insn (op0, memt);
1452 return true;
1453 }
1454
1455 if (!ia64_move_ok (operands[0], operands[1]))
1456 operands[1] = force_reg (mode, operands[1]);
1457 }
1458
1459 return false;
1460 }
1461
1462 /* Emit comparison instruction if necessary, returning the expression
1463 that holds the compare result in the proper mode. */
1464
1465 static GTY(()) rtx cmptf_libfunc;
1466
1467 rtx
1468 ia64_expand_compare (enum rtx_code code, enum machine_mode mode)
1469 {
1470 rtx op0 = ia64_compare_op0, op1 = ia64_compare_op1;
1471 rtx cmp;
1472
1473 /* If we have a BImode input, then we already have a compare result, and
1474 do not need to emit another comparison. */
1475 if (GET_MODE (op0) == BImode)
1476 {
1477 gcc_assert ((code == NE || code == EQ) && op1 == const0_rtx);
1478 cmp = op0;
1479 }
1480 /* HPUX TFmode compare requires a library call to _U_Qfcmp, which takes a
1481 magic number as its third argument, that indicates what to do.
1482 The return value is an integer to be compared against zero. */
1483 else if (GET_MODE (op0) == TFmode)
1484 {
1485 enum qfcmp_magic {
1486 QCMP_INV = 1, /* Raise FP_INVALID on SNaN as a side effect. */
1487 QCMP_UNORD = 2,
1488 QCMP_EQ = 4,
1489 QCMP_LT = 8,
1490 QCMP_GT = 16
1491 } magic;
1492 enum rtx_code ncode;
1493 rtx ret, insns;
1494
1495 gcc_assert (cmptf_libfunc && GET_MODE (op1) == TFmode);
1496 switch (code)
1497 {
1498 /* 1 = equal, 0 = not equal. Equality operators do
1499 not raise FP_INVALID when given an SNaN operand. */
1500 case EQ: magic = QCMP_EQ; ncode = NE; break;
1501 case NE: magic = QCMP_EQ; ncode = EQ; break;
1502 /* isunordered() from C99. */
1503 case UNORDERED: magic = QCMP_UNORD; ncode = NE; break;
1504 case ORDERED: magic = QCMP_UNORD; ncode = EQ; break;
1505 /* Relational operators raise FP_INVALID when given
1506 an SNaN operand. */
1507 case LT: magic = QCMP_LT |QCMP_INV; ncode = NE; break;
1508 case LE: magic = QCMP_LT|QCMP_EQ|QCMP_INV; ncode = NE; break;
1509 case GT: magic = QCMP_GT |QCMP_INV; ncode = NE; break;
1510 case GE: magic = QCMP_GT|QCMP_EQ|QCMP_INV; ncode = NE; break;
1511 /* FUTURE: Implement UNEQ, UNLT, UNLE, UNGT, UNGE, LTGT.
1512 Expanders for buneq etc. weuld have to be added to ia64.md
1513 for this to be useful. */
1514 default: gcc_unreachable ();
1515 }
1516
1517 start_sequence ();
1518
1519 ret = emit_library_call_value (cmptf_libfunc, 0, LCT_CONST, DImode, 3,
1520 op0, TFmode, op1, TFmode,
1521 GEN_INT (magic), DImode);
1522 cmp = gen_reg_rtx (BImode);
1523 emit_insn (gen_rtx_SET (VOIDmode, cmp,
1524 gen_rtx_fmt_ee (ncode, BImode,
1525 ret, const0_rtx)));
1526
1527 insns = get_insns ();
1528 end_sequence ();
1529
1530 emit_libcall_block (insns, cmp, cmp,
1531 gen_rtx_fmt_ee (code, BImode, op0, op1));
1532 code = NE;
1533 }
1534 else
1535 {
1536 cmp = gen_reg_rtx (BImode);
1537 emit_insn (gen_rtx_SET (VOIDmode, cmp,
1538 gen_rtx_fmt_ee (code, BImode, op0, op1)));
1539 code = NE;
1540 }
1541
1542 return gen_rtx_fmt_ee (code, mode, cmp, const0_rtx);
1543 }
1544
1545 /* Generate an integral vector comparison. Return true if the condition has
1546 been reversed, and so the sense of the comparison should be inverted. */
1547
1548 static bool
1549 ia64_expand_vecint_compare (enum rtx_code code, enum machine_mode mode,
1550 rtx dest, rtx op0, rtx op1)
1551 {
1552 bool negate = false;
1553 rtx x;
1554
1555 /* Canonicalize the comparison to EQ, GT, GTU. */
1556 switch (code)
1557 {
1558 case EQ:
1559 case GT:
1560 case GTU:
1561 break;
1562
1563 case NE:
1564 case LE:
1565 case LEU:
1566 code = reverse_condition (code);
1567 negate = true;
1568 break;
1569
1570 case GE:
1571 case GEU:
1572 code = reverse_condition (code);
1573 negate = true;
1574 /* FALLTHRU */
1575
1576 case LT:
1577 case LTU:
1578 code = swap_condition (code);
1579 x = op0, op0 = op1, op1 = x;
1580 break;
1581
1582 default:
1583 gcc_unreachable ();
1584 }
1585
1586 /* Unsigned parallel compare is not supported by the hardware. Play some
1587 tricks to turn this into a signed comparison against 0. */
1588 if (code == GTU)
1589 {
1590 switch (mode)
1591 {
1592 case V2SImode:
1593 {
1594 rtx t1, t2, mask;
1595
1596 /* Perform a parallel modulo subtraction. */
1597 t1 = gen_reg_rtx (V2SImode);
1598 emit_insn (gen_subv2si3 (t1, op0, op1));
1599
1600 /* Extract the original sign bit of op0. */
1601 mask = GEN_INT (-0x80000000);
1602 mask = gen_rtx_CONST_VECTOR (V2SImode, gen_rtvec (2, mask, mask));
1603 mask = force_reg (V2SImode, mask);
1604 t2 = gen_reg_rtx (V2SImode);
1605 emit_insn (gen_andv2si3 (t2, op0, mask));
1606
1607 /* XOR it back into the result of the subtraction. This results
1608 in the sign bit set iff we saw unsigned underflow. */
1609 x = gen_reg_rtx (V2SImode);
1610 emit_insn (gen_xorv2si3 (x, t1, t2));
1611
1612 code = GT;
1613 op0 = x;
1614 op1 = CONST0_RTX (mode);
1615 }
1616 break;
1617
1618 case V8QImode:
1619 case V4HImode:
1620 /* Perform a parallel unsigned saturating subtraction. */
1621 x = gen_reg_rtx (mode);
1622 emit_insn (gen_rtx_SET (VOIDmode, x,
1623 gen_rtx_US_MINUS (mode, op0, op1)));
1624
1625 code = EQ;
1626 op0 = x;
1627 op1 = CONST0_RTX (mode);
1628 negate = !negate;
1629 break;
1630
1631 default:
1632 gcc_unreachable ();
1633 }
1634 }
1635
1636 x = gen_rtx_fmt_ee (code, mode, op0, op1);
1637 emit_insn (gen_rtx_SET (VOIDmode, dest, x));
1638
1639 return negate;
1640 }
1641
1642 /* Emit an integral vector conditional move. */
1643
1644 void
1645 ia64_expand_vecint_cmov (rtx operands[])
1646 {
1647 enum machine_mode mode = GET_MODE (operands[0]);
1648 enum rtx_code code = GET_CODE (operands[3]);
1649 bool negate;
1650 rtx cmp, x, ot, of;
1651
1652 cmp = gen_reg_rtx (mode);
1653 negate = ia64_expand_vecint_compare (code, mode, cmp,
1654 operands[4], operands[5]);
1655
1656 ot = operands[1+negate];
1657 of = operands[2-negate];
1658
1659 if (ot == CONST0_RTX (mode))
1660 {
1661 if (of == CONST0_RTX (mode))
1662 {
1663 emit_move_insn (operands[0], ot);
1664 return;
1665 }
1666
1667 x = gen_rtx_NOT (mode, cmp);
1668 x = gen_rtx_AND (mode, x, of);
1669 emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
1670 }
1671 else if (of == CONST0_RTX (mode))
1672 {
1673 x = gen_rtx_AND (mode, cmp, ot);
1674 emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
1675 }
1676 else
1677 {
1678 rtx t, f;
1679
1680 t = gen_reg_rtx (mode);
1681 x = gen_rtx_AND (mode, cmp, operands[1+negate]);
1682 emit_insn (gen_rtx_SET (VOIDmode, t, x));
1683
1684 f = gen_reg_rtx (mode);
1685 x = gen_rtx_NOT (mode, cmp);
1686 x = gen_rtx_AND (mode, x, operands[2-negate]);
1687 emit_insn (gen_rtx_SET (VOIDmode, f, x));
1688
1689 x = gen_rtx_IOR (mode, t, f);
1690 emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
1691 }
1692 }
1693
1694 /* Emit an integral vector min or max operation. Return true if all done. */
1695
1696 bool
1697 ia64_expand_vecint_minmax (enum rtx_code code, enum machine_mode mode,
1698 rtx operands[])
1699 {
1700 rtx xops[6];
1701
1702 /* These four combinations are supported directly. */
1703 if (mode == V8QImode && (code == UMIN || code == UMAX))
1704 return false;
1705 if (mode == V4HImode && (code == SMIN || code == SMAX))
1706 return false;
1707
1708 /* This combination can be implemented with only saturating subtraction. */
1709 if (mode == V4HImode && code == UMAX)
1710 {
1711 rtx x, tmp = gen_reg_rtx (mode);
1712
1713 x = gen_rtx_US_MINUS (mode, operands[1], operands[2]);
1714 emit_insn (gen_rtx_SET (VOIDmode, tmp, x));
1715
1716 emit_insn (gen_addv4hi3 (operands[0], tmp, operands[2]));
1717 return true;
1718 }
1719
1720 /* Everything else implemented via vector comparisons. */
1721 xops[0] = operands[0];
1722 xops[4] = xops[1] = operands[1];
1723 xops[5] = xops[2] = operands[2];
1724
1725 switch (code)
1726 {
1727 case UMIN:
1728 code = LTU;
1729 break;
1730 case UMAX:
1731 code = GTU;
1732 break;
1733 case SMIN:
1734 code = LT;
1735 break;
1736 case SMAX:
1737 code = GT;
1738 break;
1739 default:
1740 gcc_unreachable ();
1741 }
1742 xops[3] = gen_rtx_fmt_ee (code, VOIDmode, operands[1], operands[2]);
1743
1744 ia64_expand_vecint_cmov (xops);
1745 return true;
1746 }
1747
1748 /* Emit an integral vector widening sum operations. */
1749
1750 void
1751 ia64_expand_widen_sum (rtx operands[3], bool unsignedp)
1752 {
1753 rtx l, h, x, s;
1754 enum machine_mode wmode, mode;
1755 rtx (*unpack_l) (rtx, rtx, rtx);
1756 rtx (*unpack_h) (rtx, rtx, rtx);
1757 rtx (*plus) (rtx, rtx, rtx);
1758
1759 wmode = GET_MODE (operands[0]);
1760 mode = GET_MODE (operands[1]);
1761
1762 switch (mode)
1763 {
1764 case V8QImode:
1765 unpack_l = gen_unpack1_l;
1766 unpack_h = gen_unpack1_h;
1767 plus = gen_addv4hi3;
1768 break;
1769 case V4HImode:
1770 unpack_l = gen_unpack2_l;
1771 unpack_h = gen_unpack2_h;
1772 plus = gen_addv2si3;
1773 break;
1774 default:
1775 gcc_unreachable ();
1776 }
1777
1778 /* Fill in x with the sign extension of each element in op1. */
1779 if (unsignedp)
1780 x = CONST0_RTX (mode);
1781 else
1782 {
1783 bool neg;
1784
1785 x = gen_reg_rtx (mode);
1786
1787 neg = ia64_expand_vecint_compare (LT, mode, x, operands[1],
1788 CONST0_RTX (mode));
1789 gcc_assert (!neg);
1790 }
1791
1792 l = gen_reg_rtx (wmode);
1793 h = gen_reg_rtx (wmode);
1794 s = gen_reg_rtx (wmode);
1795
1796 emit_insn (unpack_l (gen_lowpart (mode, l), operands[1], x));
1797 emit_insn (unpack_h (gen_lowpart (mode, h), operands[1], x));
1798 emit_insn (plus (s, l, operands[2]));
1799 emit_insn (plus (operands[0], h, s));
1800 }
1801
1802 /* Emit a signed or unsigned V8QI dot product operation. */
1803
1804 void
1805 ia64_expand_dot_prod_v8qi (rtx operands[4], bool unsignedp)
1806 {
1807 rtx l1, l2, h1, h2, x1, x2, p1, p2, p3, p4, s1, s2, s3;
1808
1809 /* Fill in x1 and x2 with the sign extension of each element. */
1810 if (unsignedp)
1811 x1 = x2 = CONST0_RTX (V8QImode);
1812 else
1813 {
1814 bool neg;
1815
1816 x1 = gen_reg_rtx (V8QImode);
1817 x2 = gen_reg_rtx (V8QImode);
1818
1819 neg = ia64_expand_vecint_compare (LT, V8QImode, x1, operands[1],
1820 CONST0_RTX (V8QImode));
1821 gcc_assert (!neg);
1822 neg = ia64_expand_vecint_compare (LT, V8QImode, x2, operands[2],
1823 CONST0_RTX (V8QImode));
1824 gcc_assert (!neg);
1825 }
1826
1827 l1 = gen_reg_rtx (V4HImode);
1828 l2 = gen_reg_rtx (V4HImode);
1829 h1 = gen_reg_rtx (V4HImode);
1830 h2 = gen_reg_rtx (V4HImode);
1831
1832 emit_insn (gen_unpack1_l (gen_lowpart (V8QImode, l1), operands[1], x1));
1833 emit_insn (gen_unpack1_l (gen_lowpart (V8QImode, l2), operands[2], x2));
1834 emit_insn (gen_unpack1_h (gen_lowpart (V8QImode, h1), operands[1], x1));
1835 emit_insn (gen_unpack1_h (gen_lowpart (V8QImode, h2), operands[2], x2));
1836
1837 p1 = gen_reg_rtx (V2SImode);
1838 p2 = gen_reg_rtx (V2SImode);
1839 p3 = gen_reg_rtx (V2SImode);
1840 p4 = gen_reg_rtx (V2SImode);
1841 emit_insn (gen_pmpy2_r (p1, l1, l2));
1842 emit_insn (gen_pmpy2_l (p2, l1, l2));
1843 emit_insn (gen_pmpy2_r (p3, h1, h2));
1844 emit_insn (gen_pmpy2_l (p4, h1, h2));
1845
1846 s1 = gen_reg_rtx (V2SImode);
1847 s2 = gen_reg_rtx (V2SImode);
1848 s3 = gen_reg_rtx (V2SImode);
1849 emit_insn (gen_addv2si3 (s1, p1, p2));
1850 emit_insn (gen_addv2si3 (s2, p3, p4));
1851 emit_insn (gen_addv2si3 (s3, s1, operands[3]));
1852 emit_insn (gen_addv2si3 (operands[0], s2, s3));
1853 }
1854
1855 /* Emit the appropriate sequence for a call. */
1856
1857 void
1858 ia64_expand_call (rtx retval, rtx addr, rtx nextarg ATTRIBUTE_UNUSED,
1859 int sibcall_p)
1860 {
1861 rtx insn, b0;
1862
1863 addr = XEXP (addr, 0);
1864 addr = convert_memory_address (DImode, addr);
1865 b0 = gen_rtx_REG (DImode, R_BR (0));
1866
1867 /* ??? Should do this for functions known to bind local too. */
1868 if (TARGET_NO_PIC || TARGET_AUTO_PIC)
1869 {
1870 if (sibcall_p)
1871 insn = gen_sibcall_nogp (addr);
1872 else if (! retval)
1873 insn = gen_call_nogp (addr, b0);
1874 else
1875 insn = gen_call_value_nogp (retval, addr, b0);
1876 insn = emit_call_insn (insn);
1877 }
1878 else
1879 {
1880 if (sibcall_p)
1881 insn = gen_sibcall_gp (addr);
1882 else if (! retval)
1883 insn = gen_call_gp (addr, b0);
1884 else
1885 insn = gen_call_value_gp (retval, addr, b0);
1886 insn = emit_call_insn (insn);
1887
1888 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
1889 }
1890
1891 if (sibcall_p)
1892 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), b0);
1893 }
1894
1895 static void
1896 reg_emitted (enum ia64_frame_regs r)
1897 {
1898 if (emitted_frame_related_regs[r] == 0)
1899 emitted_frame_related_regs[r] = current_frame_info.r[r];
1900 else
1901 gcc_assert (emitted_frame_related_regs[r] == current_frame_info.r[r]);
1902 }
1903
1904 static int
1905 get_reg (enum ia64_frame_regs r)
1906 {
1907 reg_emitted (r);
1908 return current_frame_info.r[r];
1909 }
1910
1911 static bool
1912 is_emitted (int regno)
1913 {
1914 enum ia64_frame_regs r;
1915
1916 for (r = reg_fp; r < number_of_ia64_frame_regs; r++)
1917 if (emitted_frame_related_regs[r] == regno)
1918 return true;
1919 return false;
1920 }
1921
1922 void
1923 ia64_reload_gp (void)
1924 {
1925 rtx tmp;
1926
1927 if (current_frame_info.r[reg_save_gp])
1928 {
1929 tmp = gen_rtx_REG (DImode, get_reg (reg_save_gp));
1930 }
1931 else
1932 {
1933 HOST_WIDE_INT offset;
1934 rtx offset_r;
1935
1936 offset = (current_frame_info.spill_cfa_off
1937 + current_frame_info.spill_size);
1938 if (frame_pointer_needed)
1939 {
1940 tmp = hard_frame_pointer_rtx;
1941 offset = -offset;
1942 }
1943 else
1944 {
1945 tmp = stack_pointer_rtx;
1946 offset = current_frame_info.total_size - offset;
1947 }
1948
1949 offset_r = GEN_INT (offset);
1950 if (satisfies_constraint_I (offset_r))
1951 emit_insn (gen_adddi3 (pic_offset_table_rtx, tmp, offset_r));
1952 else
1953 {
1954 emit_move_insn (pic_offset_table_rtx, offset_r);
1955 emit_insn (gen_adddi3 (pic_offset_table_rtx,
1956 pic_offset_table_rtx, tmp));
1957 }
1958
1959 tmp = gen_rtx_MEM (DImode, pic_offset_table_rtx);
1960 }
1961
1962 emit_move_insn (pic_offset_table_rtx, tmp);
1963 }
1964
1965 void
1966 ia64_split_call (rtx retval, rtx addr, rtx retaddr, rtx scratch_r,
1967 rtx scratch_b, int noreturn_p, int sibcall_p)
1968 {
1969 rtx insn;
1970 bool is_desc = false;
1971
1972 /* If we find we're calling through a register, then we're actually
1973 calling through a descriptor, so load up the values. */
1974 if (REG_P (addr) && GR_REGNO_P (REGNO (addr)))
1975 {
1976 rtx tmp;
1977 bool addr_dead_p;
1978
1979 /* ??? We are currently constrained to *not* use peep2, because
1980 we can legitimately change the global lifetime of the GP
1981 (in the form of killing where previously live). This is
1982 because a call through a descriptor doesn't use the previous
1983 value of the GP, while a direct call does, and we do not
1984 commit to either form until the split here.
1985
1986 That said, this means that we lack precise life info for
1987 whether ADDR is dead after this call. This is not terribly
1988 important, since we can fix things up essentially for free
1989 with the POST_DEC below, but it's nice to not use it when we
1990 can immediately tell it's not necessary. */
1991 addr_dead_p = ((noreturn_p || sibcall_p
1992 || TEST_HARD_REG_BIT (regs_invalidated_by_call,
1993 REGNO (addr)))
1994 && !FUNCTION_ARG_REGNO_P (REGNO (addr)));
1995
1996 /* Load the code address into scratch_b. */
1997 tmp = gen_rtx_POST_INC (Pmode, addr);
1998 tmp = gen_rtx_MEM (Pmode, tmp);
1999 emit_move_insn (scratch_r, tmp);
2000 emit_move_insn (scratch_b, scratch_r);
2001
2002 /* Load the GP address. If ADDR is not dead here, then we must
2003 revert the change made above via the POST_INCREMENT. */
2004 if (!addr_dead_p)
2005 tmp = gen_rtx_POST_DEC (Pmode, addr);
2006 else
2007 tmp = addr;
2008 tmp = gen_rtx_MEM (Pmode, tmp);
2009 emit_move_insn (pic_offset_table_rtx, tmp);
2010
2011 is_desc = true;
2012 addr = scratch_b;
2013 }
2014
2015 if (sibcall_p)
2016 insn = gen_sibcall_nogp (addr);
2017 else if (retval)
2018 insn = gen_call_value_nogp (retval, addr, retaddr);
2019 else
2020 insn = gen_call_nogp (addr, retaddr);
2021 emit_call_insn (insn);
2022
2023 if ((!TARGET_CONST_GP || is_desc) && !noreturn_p && !sibcall_p)
2024 ia64_reload_gp ();
2025 }
2026
2027 /* Expand an atomic operation. We want to perform MEM <CODE>= VAL atomically.
2028
2029 This differs from the generic code in that we know about the zero-extending
2030 properties of cmpxchg, and the zero-extending requirements of ar.ccv. We
2031 also know that ld.acq+cmpxchg.rel equals a full barrier.
2032
2033 The loop we want to generate looks like
2034
2035 cmp_reg = mem;
2036 label:
2037 old_reg = cmp_reg;
2038 new_reg = cmp_reg op val;
2039 cmp_reg = compare-and-swap(mem, old_reg, new_reg)
2040 if (cmp_reg != old_reg)
2041 goto label;
2042
2043 Note that we only do the plain load from memory once. Subsequent
2044 iterations use the value loaded by the compare-and-swap pattern. */
2045
2046 void
2047 ia64_expand_atomic_op (enum rtx_code code, rtx mem, rtx val,
2048 rtx old_dst, rtx new_dst)
2049 {
2050 enum machine_mode mode = GET_MODE (mem);
2051 rtx old_reg, new_reg, cmp_reg, ar_ccv, label;
2052 enum insn_code icode;
2053
2054 /* Special case for using fetchadd. */
2055 if ((mode == SImode || mode == DImode)
2056 && (code == PLUS || code == MINUS)
2057 && fetchadd_operand (val, mode))
2058 {
2059 if (code == MINUS)
2060 val = GEN_INT (-INTVAL (val));
2061
2062 if (!old_dst)
2063 old_dst = gen_reg_rtx (mode);
2064
2065 emit_insn (gen_memory_barrier ());
2066
2067 if (mode == SImode)
2068 icode = CODE_FOR_fetchadd_acq_si;
2069 else
2070 icode = CODE_FOR_fetchadd_acq_di;
2071 emit_insn (GEN_FCN (icode) (old_dst, mem, val));
2072
2073 if (new_dst)
2074 {
2075 new_reg = expand_simple_binop (mode, PLUS, old_dst, val, new_dst,
2076 true, OPTAB_WIDEN);
2077 if (new_reg != new_dst)
2078 emit_move_insn (new_dst, new_reg);
2079 }
2080 return;
2081 }
2082
2083 /* Because of the volatile mem read, we get an ld.acq, which is the
2084 front half of the full barrier. The end half is the cmpxchg.rel. */
2085 gcc_assert (MEM_VOLATILE_P (mem));
2086
2087 old_reg = gen_reg_rtx (DImode);
2088 cmp_reg = gen_reg_rtx (DImode);
2089 label = gen_label_rtx ();
2090
2091 if (mode != DImode)
2092 {
2093 val = simplify_gen_subreg (DImode, val, mode, 0);
2094 emit_insn (gen_extend_insn (cmp_reg, mem, DImode, mode, 1));
2095 }
2096 else
2097 emit_move_insn (cmp_reg, mem);
2098
2099 emit_label (label);
2100
2101 ar_ccv = gen_rtx_REG (DImode, AR_CCV_REGNUM);
2102 emit_move_insn (old_reg, cmp_reg);
2103 emit_move_insn (ar_ccv, cmp_reg);
2104
2105 if (old_dst)
2106 emit_move_insn (old_dst, gen_lowpart (mode, cmp_reg));
2107
2108 new_reg = cmp_reg;
2109 if (code == NOT)
2110 {
2111 new_reg = expand_simple_unop (DImode, NOT, new_reg, NULL_RTX, true);
2112 code = AND;
2113 }
2114 new_reg = expand_simple_binop (DImode, code, new_reg, val, NULL_RTX,
2115 true, OPTAB_DIRECT);
2116
2117 if (mode != DImode)
2118 new_reg = gen_lowpart (mode, new_reg);
2119 if (new_dst)
2120 emit_move_insn (new_dst, new_reg);
2121
2122 switch (mode)
2123 {
2124 case QImode: icode = CODE_FOR_cmpxchg_rel_qi; break;
2125 case HImode: icode = CODE_FOR_cmpxchg_rel_hi; break;
2126 case SImode: icode = CODE_FOR_cmpxchg_rel_si; break;
2127 case DImode: icode = CODE_FOR_cmpxchg_rel_di; break;
2128 default:
2129 gcc_unreachable ();
2130 }
2131
2132 emit_insn (GEN_FCN (icode) (cmp_reg, mem, ar_ccv, new_reg));
2133
2134 emit_cmp_and_jump_insns (cmp_reg, old_reg, NE, NULL, DImode, true, label);
2135 }
2136 \f
2137 /* Begin the assembly file. */
2138
2139 static void
2140 ia64_file_start (void)
2141 {
2142 /* Variable tracking should be run after all optimizations which change order
2143 of insns. It also needs a valid CFG. This can't be done in
2144 ia64_override_options, because flag_var_tracking is finalized after
2145 that. */
2146 ia64_flag_var_tracking = flag_var_tracking;
2147 flag_var_tracking = 0;
2148
2149 default_file_start ();
2150 emit_safe_across_calls ();
2151 }
2152
2153 void
2154 emit_safe_across_calls (void)
2155 {
2156 unsigned int rs, re;
2157 int out_state;
2158
2159 rs = 1;
2160 out_state = 0;
2161 while (1)
2162 {
2163 while (rs < 64 && call_used_regs[PR_REG (rs)])
2164 rs++;
2165 if (rs >= 64)
2166 break;
2167 for (re = rs + 1; re < 64 && ! call_used_regs[PR_REG (re)]; re++)
2168 continue;
2169 if (out_state == 0)
2170 {
2171 fputs ("\t.pred.safe_across_calls ", asm_out_file);
2172 out_state = 1;
2173 }
2174 else
2175 fputc (',', asm_out_file);
2176 if (re == rs + 1)
2177 fprintf (asm_out_file, "p%u", rs);
2178 else
2179 fprintf (asm_out_file, "p%u-p%u", rs, re - 1);
2180 rs = re + 1;
2181 }
2182 if (out_state)
2183 fputc ('\n', asm_out_file);
2184 }
2185
2186 /* Globalize a declaration. */
2187
2188 static void
2189 ia64_globalize_decl_name (FILE * stream, tree decl)
2190 {
2191 const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
2192 tree version_attr = lookup_attribute ("version_id", DECL_ATTRIBUTES (decl));
2193 if (version_attr)
2194 {
2195 tree v = TREE_VALUE (TREE_VALUE (version_attr));
2196 const char *p = TREE_STRING_POINTER (v);
2197 fprintf (stream, "\t.alias %s#, \"%s{%s}\"\n", name, name, p);
2198 }
2199 targetm.asm_out.globalize_label (stream, name);
2200 if (TREE_CODE (decl) == FUNCTION_DECL)
2201 ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "function");
2202 }
2203
2204 /* Helper function for ia64_compute_frame_size: find an appropriate general
2205 register to spill some special register to. SPECIAL_SPILL_MASK contains
2206 bits in GR0 to GR31 that have already been allocated by this routine.
2207 TRY_LOCALS is true if we should attempt to locate a local regnum. */
2208
2209 static int
2210 find_gr_spill (enum ia64_frame_regs r, int try_locals)
2211 {
2212 int regno;
2213
2214 if (emitted_frame_related_regs[r] != 0)
2215 {
2216 regno = emitted_frame_related_regs[r];
2217 if (regno >= LOC_REG (0) && regno < LOC_REG (80 - frame_pointer_needed)
2218 && current_frame_info.n_local_regs < regno - LOC_REG (0) + 1)
2219 current_frame_info.n_local_regs = regno - LOC_REG (0) + 1;
2220 else if (current_function_is_leaf
2221 && regno >= GR_REG (1) && regno <= GR_REG (31))
2222 current_frame_info.gr_used_mask |= 1 << regno;
2223
2224 return regno;
2225 }
2226
2227 /* If this is a leaf function, first try an otherwise unused
2228 call-clobbered register. */
2229 if (current_function_is_leaf)
2230 {
2231 for (regno = GR_REG (1); regno <= GR_REG (31); regno++)
2232 if (! df_regs_ever_live_p (regno)
2233 && call_used_regs[regno]
2234 && ! fixed_regs[regno]
2235 && ! global_regs[regno]
2236 && ((current_frame_info.gr_used_mask >> regno) & 1) == 0
2237 && ! is_emitted (regno))
2238 {
2239 current_frame_info.gr_used_mask |= 1 << regno;
2240 return regno;
2241 }
2242 }
2243
2244 if (try_locals)
2245 {
2246 regno = current_frame_info.n_local_regs;
2247 /* If there is a frame pointer, then we can't use loc79, because
2248 that is HARD_FRAME_POINTER_REGNUM. In particular, see the
2249 reg_name switching code in ia64_expand_prologue. */
2250 while (regno < (80 - frame_pointer_needed))
2251 if (! is_emitted (LOC_REG (regno++)))
2252 {
2253 current_frame_info.n_local_regs = regno;
2254 return LOC_REG (regno - 1);
2255 }
2256 }
2257
2258 /* Failed to find a general register to spill to. Must use stack. */
2259 return 0;
2260 }
2261
2262 /* In order to make for nice schedules, we try to allocate every temporary
2263 to a different register. We must of course stay away from call-saved,
2264 fixed, and global registers. We must also stay away from registers
2265 allocated in current_frame_info.gr_used_mask, since those include regs
2266 used all through the prologue.
2267
2268 Any register allocated here must be used immediately. The idea is to
2269 aid scheduling, not to solve data flow problems. */
2270
2271 static int last_scratch_gr_reg;
2272
2273 static int
2274 next_scratch_gr_reg (void)
2275 {
2276 int i, regno;
2277
2278 for (i = 0; i < 32; ++i)
2279 {
2280 regno = (last_scratch_gr_reg + i + 1) & 31;
2281 if (call_used_regs[regno]
2282 && ! fixed_regs[regno]
2283 && ! global_regs[regno]
2284 && ((current_frame_info.gr_used_mask >> regno) & 1) == 0)
2285 {
2286 last_scratch_gr_reg = regno;
2287 return regno;
2288 }
2289 }
2290
2291 /* There must be _something_ available. */
2292 gcc_unreachable ();
2293 }
2294
2295 /* Helper function for ia64_compute_frame_size, called through
2296 diddle_return_value. Mark REG in current_frame_info.gr_used_mask. */
2297
2298 static void
2299 mark_reg_gr_used_mask (rtx reg, void *data ATTRIBUTE_UNUSED)
2300 {
2301 unsigned int regno = REGNO (reg);
2302 if (regno < 32)
2303 {
2304 unsigned int i, n = hard_regno_nregs[regno][GET_MODE (reg)];
2305 for (i = 0; i < n; ++i)
2306 current_frame_info.gr_used_mask |= 1 << (regno + i);
2307 }
2308 }
2309
2310
2311 /* Returns the number of bytes offset between the frame pointer and the stack
2312 pointer for the current function. SIZE is the number of bytes of space
2313 needed for local variables. */
2314
2315 static void
2316 ia64_compute_frame_size (HOST_WIDE_INT size)
2317 {
2318 HOST_WIDE_INT total_size;
2319 HOST_WIDE_INT spill_size = 0;
2320 HOST_WIDE_INT extra_spill_size = 0;
2321 HOST_WIDE_INT pretend_args_size;
2322 HARD_REG_SET mask;
2323 int n_spilled = 0;
2324 int spilled_gr_p = 0;
2325 int spilled_fr_p = 0;
2326 unsigned int regno;
2327 int min_regno;
2328 int max_regno;
2329 int i;
2330
2331 if (current_frame_info.initialized)
2332 return;
2333
2334 memset (&current_frame_info, 0, sizeof current_frame_info);
2335 CLEAR_HARD_REG_SET (mask);
2336
2337 /* Don't allocate scratches to the return register. */
2338 diddle_return_value (mark_reg_gr_used_mask, NULL);
2339
2340 /* Don't allocate scratches to the EH scratch registers. */
2341 if (cfun->machine->ia64_eh_epilogue_sp)
2342 mark_reg_gr_used_mask (cfun->machine->ia64_eh_epilogue_sp, NULL);
2343 if (cfun->machine->ia64_eh_epilogue_bsp)
2344 mark_reg_gr_used_mask (cfun->machine->ia64_eh_epilogue_bsp, NULL);
2345
2346 /* Find the size of the register stack frame. We have only 80 local
2347 registers, because we reserve 8 for the inputs and 8 for the
2348 outputs. */
2349
2350 /* Skip HARD_FRAME_POINTER_REGNUM (loc79) when frame_pointer_needed,
2351 since we'll be adjusting that down later. */
2352 regno = LOC_REG (78) + ! frame_pointer_needed;
2353 for (; regno >= LOC_REG (0); regno--)
2354 if (df_regs_ever_live_p (regno) && !is_emitted (regno))
2355 break;
2356 current_frame_info.n_local_regs = regno - LOC_REG (0) + 1;
2357
2358 /* For functions marked with the syscall_linkage attribute, we must mark
2359 all eight input registers as in use, so that locals aren't visible to
2360 the caller. */
2361
2362 if (cfun->machine->n_varargs > 0
2363 || lookup_attribute ("syscall_linkage",
2364 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2365 current_frame_info.n_input_regs = 8;
2366 else
2367 {
2368 for (regno = IN_REG (7); regno >= IN_REG (0); regno--)
2369 if (df_regs_ever_live_p (regno))
2370 break;
2371 current_frame_info.n_input_regs = regno - IN_REG (0) + 1;
2372 }
2373
2374 for (regno = OUT_REG (7); regno >= OUT_REG (0); regno--)
2375 if (df_regs_ever_live_p (regno))
2376 break;
2377 i = regno - OUT_REG (0) + 1;
2378
2379 #ifndef PROFILE_HOOK
2380 /* When -p profiling, we need one output register for the mcount argument.
2381 Likewise for -a profiling for the bb_init_func argument. For -ax
2382 profiling, we need two output registers for the two bb_init_trace_func
2383 arguments. */
2384 if (crtl->profile)
2385 i = MAX (i, 1);
2386 #endif
2387 current_frame_info.n_output_regs = i;
2388
2389 /* ??? No rotating register support yet. */
2390 current_frame_info.n_rotate_regs = 0;
2391
2392 /* Discover which registers need spilling, and how much room that
2393 will take. Begin with floating point and general registers,
2394 which will always wind up on the stack. */
2395
2396 for (regno = FR_REG (2); regno <= FR_REG (127); regno++)
2397 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2398 {
2399 SET_HARD_REG_BIT (mask, regno);
2400 spill_size += 16;
2401 n_spilled += 1;
2402 spilled_fr_p = 1;
2403 }
2404
2405 for (regno = GR_REG (1); regno <= GR_REG (31); regno++)
2406 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2407 {
2408 SET_HARD_REG_BIT (mask, regno);
2409 spill_size += 8;
2410 n_spilled += 1;
2411 spilled_gr_p = 1;
2412 }
2413
2414 for (regno = BR_REG (1); regno <= BR_REG (7); regno++)
2415 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2416 {
2417 SET_HARD_REG_BIT (mask, regno);
2418 spill_size += 8;
2419 n_spilled += 1;
2420 }
2421
2422 /* Now come all special registers that might get saved in other
2423 general registers. */
2424
2425 if (frame_pointer_needed)
2426 {
2427 current_frame_info.r[reg_fp] = find_gr_spill (reg_fp, 1);
2428 /* If we did not get a register, then we take LOC79. This is guaranteed
2429 to be free, even if regs_ever_live is already set, because this is
2430 HARD_FRAME_POINTER_REGNUM. This requires incrementing n_local_regs,
2431 as we don't count loc79 above. */
2432 if (current_frame_info.r[reg_fp] == 0)
2433 {
2434 current_frame_info.r[reg_fp] = LOC_REG (79);
2435 current_frame_info.n_local_regs = LOC_REG (79) - LOC_REG (0) + 1;
2436 }
2437 }
2438
2439 if (! current_function_is_leaf)
2440 {
2441 /* Emit a save of BR0 if we call other functions. Do this even
2442 if this function doesn't return, as EH depends on this to be
2443 able to unwind the stack. */
2444 SET_HARD_REG_BIT (mask, BR_REG (0));
2445
2446 current_frame_info.r[reg_save_b0] = find_gr_spill (reg_save_b0, 1);
2447 if (current_frame_info.r[reg_save_b0] == 0)
2448 {
2449 extra_spill_size += 8;
2450 n_spilled += 1;
2451 }
2452
2453 /* Similarly for ar.pfs. */
2454 SET_HARD_REG_BIT (mask, AR_PFS_REGNUM);
2455 current_frame_info.r[reg_save_ar_pfs] = find_gr_spill (reg_save_ar_pfs, 1);
2456 if (current_frame_info.r[reg_save_ar_pfs] == 0)
2457 {
2458 extra_spill_size += 8;
2459 n_spilled += 1;
2460 }
2461
2462 /* Similarly for gp. Note that if we're calling setjmp, the stacked
2463 registers are clobbered, so we fall back to the stack. */
2464 current_frame_info.r[reg_save_gp]
2465 = (cfun->calls_setjmp ? 0 : find_gr_spill (reg_save_gp, 1));
2466 if (current_frame_info.r[reg_save_gp] == 0)
2467 {
2468 SET_HARD_REG_BIT (mask, GR_REG (1));
2469 spill_size += 8;
2470 n_spilled += 1;
2471 }
2472 }
2473 else
2474 {
2475 if (df_regs_ever_live_p (BR_REG (0)) && ! call_used_regs[BR_REG (0)])
2476 {
2477 SET_HARD_REG_BIT (mask, BR_REG (0));
2478 extra_spill_size += 8;
2479 n_spilled += 1;
2480 }
2481
2482 if (df_regs_ever_live_p (AR_PFS_REGNUM))
2483 {
2484 SET_HARD_REG_BIT (mask, AR_PFS_REGNUM);
2485 current_frame_info.r[reg_save_ar_pfs]
2486 = find_gr_spill (reg_save_ar_pfs, 1);
2487 if (current_frame_info.r[reg_save_ar_pfs] == 0)
2488 {
2489 extra_spill_size += 8;
2490 n_spilled += 1;
2491 }
2492 }
2493 }
2494
2495 /* Unwind descriptor hackery: things are most efficient if we allocate
2496 consecutive GR save registers for RP, PFS, FP in that order. However,
2497 it is absolutely critical that FP get the only hard register that's
2498 guaranteed to be free, so we allocated it first. If all three did
2499 happen to be allocated hard regs, and are consecutive, rearrange them
2500 into the preferred order now.
2501
2502 If we have already emitted code for any of those registers,
2503 then it's already too late to change. */
2504 min_regno = MIN (current_frame_info.r[reg_fp],
2505 MIN (current_frame_info.r[reg_save_b0],
2506 current_frame_info.r[reg_save_ar_pfs]));
2507 max_regno = MAX (current_frame_info.r[reg_fp],
2508 MAX (current_frame_info.r[reg_save_b0],
2509 current_frame_info.r[reg_save_ar_pfs]));
2510 if (min_regno > 0
2511 && min_regno + 2 == max_regno
2512 && (current_frame_info.r[reg_fp] == min_regno + 1
2513 || current_frame_info.r[reg_save_b0] == min_regno + 1
2514 || current_frame_info.r[reg_save_ar_pfs] == min_regno + 1)
2515 && (emitted_frame_related_regs[reg_save_b0] == 0
2516 || emitted_frame_related_regs[reg_save_b0] == min_regno)
2517 && (emitted_frame_related_regs[reg_save_ar_pfs] == 0
2518 || emitted_frame_related_regs[reg_save_ar_pfs] == min_regno + 1)
2519 && (emitted_frame_related_regs[reg_fp] == 0
2520 || emitted_frame_related_regs[reg_fp] == min_regno + 2))
2521 {
2522 current_frame_info.r[reg_save_b0] = min_regno;
2523 current_frame_info.r[reg_save_ar_pfs] = min_regno + 1;
2524 current_frame_info.r[reg_fp] = min_regno + 2;
2525 }
2526
2527 /* See if we need to store the predicate register block. */
2528 for (regno = PR_REG (0); regno <= PR_REG (63); regno++)
2529 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2530 break;
2531 if (regno <= PR_REG (63))
2532 {
2533 SET_HARD_REG_BIT (mask, PR_REG (0));
2534 current_frame_info.r[reg_save_pr] = find_gr_spill (reg_save_pr, 1);
2535 if (current_frame_info.r[reg_save_pr] == 0)
2536 {
2537 extra_spill_size += 8;
2538 n_spilled += 1;
2539 }
2540
2541 /* ??? Mark them all as used so that register renaming and such
2542 are free to use them. */
2543 for (regno = PR_REG (0); regno <= PR_REG (63); regno++)
2544 df_set_regs_ever_live (regno, true);
2545 }
2546
2547 /* If we're forced to use st8.spill, we're forced to save and restore
2548 ar.unat as well. The check for existing liveness allows inline asm
2549 to touch ar.unat. */
2550 if (spilled_gr_p || cfun->machine->n_varargs
2551 || df_regs_ever_live_p (AR_UNAT_REGNUM))
2552 {
2553 df_set_regs_ever_live (AR_UNAT_REGNUM, true);
2554 SET_HARD_REG_BIT (mask, AR_UNAT_REGNUM);
2555 current_frame_info.r[reg_save_ar_unat]
2556 = find_gr_spill (reg_save_ar_unat, spill_size == 0);
2557 if (current_frame_info.r[reg_save_ar_unat] == 0)
2558 {
2559 extra_spill_size += 8;
2560 n_spilled += 1;
2561 }
2562 }
2563
2564 if (df_regs_ever_live_p (AR_LC_REGNUM))
2565 {
2566 SET_HARD_REG_BIT (mask, AR_LC_REGNUM);
2567 current_frame_info.r[reg_save_ar_lc]
2568 = find_gr_spill (reg_save_ar_lc, spill_size == 0);
2569 if (current_frame_info.r[reg_save_ar_lc] == 0)
2570 {
2571 extra_spill_size += 8;
2572 n_spilled += 1;
2573 }
2574 }
2575
2576 /* If we have an odd number of words of pretend arguments written to
2577 the stack, then the FR save area will be unaligned. We round the
2578 size of this area up to keep things 16 byte aligned. */
2579 if (spilled_fr_p)
2580 pretend_args_size = IA64_STACK_ALIGN (crtl->args.pretend_args_size);
2581 else
2582 pretend_args_size = crtl->args.pretend_args_size;
2583
2584 total_size = (spill_size + extra_spill_size + size + pretend_args_size
2585 + crtl->outgoing_args_size);
2586 total_size = IA64_STACK_ALIGN (total_size);
2587
2588 /* We always use the 16-byte scratch area provided by the caller, but
2589 if we are a leaf function, there's no one to which we need to provide
2590 a scratch area. */
2591 if (current_function_is_leaf)
2592 total_size = MAX (0, total_size - 16);
2593
2594 current_frame_info.total_size = total_size;
2595 current_frame_info.spill_cfa_off = pretend_args_size - 16;
2596 current_frame_info.spill_size = spill_size;
2597 current_frame_info.extra_spill_size = extra_spill_size;
2598 COPY_HARD_REG_SET (current_frame_info.mask, mask);
2599 current_frame_info.n_spilled = n_spilled;
2600 current_frame_info.initialized = reload_completed;
2601 }
2602
2603 /* Compute the initial difference between the specified pair of registers. */
2604
2605 HOST_WIDE_INT
2606 ia64_initial_elimination_offset (int from, int to)
2607 {
2608 HOST_WIDE_INT offset;
2609
2610 ia64_compute_frame_size (get_frame_size ());
2611 switch (from)
2612 {
2613 case FRAME_POINTER_REGNUM:
2614 switch (to)
2615 {
2616 case HARD_FRAME_POINTER_REGNUM:
2617 if (current_function_is_leaf)
2618 offset = -current_frame_info.total_size;
2619 else
2620 offset = -(current_frame_info.total_size
2621 - crtl->outgoing_args_size - 16);
2622 break;
2623
2624 case STACK_POINTER_REGNUM:
2625 if (current_function_is_leaf)
2626 offset = 0;
2627 else
2628 offset = 16 + crtl->outgoing_args_size;
2629 break;
2630
2631 default:
2632 gcc_unreachable ();
2633 }
2634 break;
2635
2636 case ARG_POINTER_REGNUM:
2637 /* Arguments start above the 16 byte save area, unless stdarg
2638 in which case we store through the 16 byte save area. */
2639 switch (to)
2640 {
2641 case HARD_FRAME_POINTER_REGNUM:
2642 offset = 16 - crtl->args.pretend_args_size;
2643 break;
2644
2645 case STACK_POINTER_REGNUM:
2646 offset = (current_frame_info.total_size
2647 + 16 - crtl->args.pretend_args_size);
2648 break;
2649
2650 default:
2651 gcc_unreachable ();
2652 }
2653 break;
2654
2655 default:
2656 gcc_unreachable ();
2657 }
2658
2659 return offset;
2660 }
2661
2662 /* If there are more than a trivial number of register spills, we use
2663 two interleaved iterators so that we can get two memory references
2664 per insn group.
2665
2666 In order to simplify things in the prologue and epilogue expanders,
2667 we use helper functions to fix up the memory references after the
2668 fact with the appropriate offsets to a POST_MODIFY memory mode.
2669 The following data structure tracks the state of the two iterators
2670 while insns are being emitted. */
2671
2672 struct spill_fill_data
2673 {
2674 rtx init_after; /* point at which to emit initializations */
2675 rtx init_reg[2]; /* initial base register */
2676 rtx iter_reg[2]; /* the iterator registers */
2677 rtx *prev_addr[2]; /* address of last memory use */
2678 rtx prev_insn[2]; /* the insn corresponding to prev_addr */
2679 HOST_WIDE_INT prev_off[2]; /* last offset */
2680 int n_iter; /* number of iterators in use */
2681 int next_iter; /* next iterator to use */
2682 unsigned int save_gr_used_mask;
2683 };
2684
2685 static struct spill_fill_data spill_fill_data;
2686
2687 static void
2688 setup_spill_pointers (int n_spills, rtx init_reg, HOST_WIDE_INT cfa_off)
2689 {
2690 int i;
2691
2692 spill_fill_data.init_after = get_last_insn ();
2693 spill_fill_data.init_reg[0] = init_reg;
2694 spill_fill_data.init_reg[1] = init_reg;
2695 spill_fill_data.prev_addr[0] = NULL;
2696 spill_fill_data.prev_addr[1] = NULL;
2697 spill_fill_data.prev_insn[0] = NULL;
2698 spill_fill_data.prev_insn[1] = NULL;
2699 spill_fill_data.prev_off[0] = cfa_off;
2700 spill_fill_data.prev_off[1] = cfa_off;
2701 spill_fill_data.next_iter = 0;
2702 spill_fill_data.save_gr_used_mask = current_frame_info.gr_used_mask;
2703
2704 spill_fill_data.n_iter = 1 + (n_spills > 2);
2705 for (i = 0; i < spill_fill_data.n_iter; ++i)
2706 {
2707 int regno = next_scratch_gr_reg ();
2708 spill_fill_data.iter_reg[i] = gen_rtx_REG (DImode, regno);
2709 current_frame_info.gr_used_mask |= 1 << regno;
2710 }
2711 }
2712
2713 static void
2714 finish_spill_pointers (void)
2715 {
2716 current_frame_info.gr_used_mask = spill_fill_data.save_gr_used_mask;
2717 }
2718
2719 static rtx
2720 spill_restore_mem (rtx reg, HOST_WIDE_INT cfa_off)
2721 {
2722 int iter = spill_fill_data.next_iter;
2723 HOST_WIDE_INT disp = spill_fill_data.prev_off[iter] - cfa_off;
2724 rtx disp_rtx = GEN_INT (disp);
2725 rtx mem;
2726
2727 if (spill_fill_data.prev_addr[iter])
2728 {
2729 if (satisfies_constraint_N (disp_rtx))
2730 {
2731 *spill_fill_data.prev_addr[iter]
2732 = gen_rtx_POST_MODIFY (DImode, spill_fill_data.iter_reg[iter],
2733 gen_rtx_PLUS (DImode,
2734 spill_fill_data.iter_reg[iter],
2735 disp_rtx));
2736 REG_NOTES (spill_fill_data.prev_insn[iter])
2737 = gen_rtx_EXPR_LIST (REG_INC, spill_fill_data.iter_reg[iter],
2738 REG_NOTES (spill_fill_data.prev_insn[iter]));
2739 }
2740 else
2741 {
2742 /* ??? Could use register post_modify for loads. */
2743 if (!satisfies_constraint_I (disp_rtx))
2744 {
2745 rtx tmp = gen_rtx_REG (DImode, next_scratch_gr_reg ());
2746 emit_move_insn (tmp, disp_rtx);
2747 disp_rtx = tmp;
2748 }
2749 emit_insn (gen_adddi3 (spill_fill_data.iter_reg[iter],
2750 spill_fill_data.iter_reg[iter], disp_rtx));
2751 }
2752 }
2753 /* Micro-optimization: if we've created a frame pointer, it's at
2754 CFA 0, which may allow the real iterator to be initialized lower,
2755 slightly increasing parallelism. Also, if there are few saves
2756 it may eliminate the iterator entirely. */
2757 else if (disp == 0
2758 && spill_fill_data.init_reg[iter] == stack_pointer_rtx
2759 && frame_pointer_needed)
2760 {
2761 mem = gen_rtx_MEM (GET_MODE (reg), hard_frame_pointer_rtx);
2762 set_mem_alias_set (mem, get_varargs_alias_set ());
2763 return mem;
2764 }
2765 else
2766 {
2767 rtx seq, insn;
2768
2769 if (disp == 0)
2770 seq = gen_movdi (spill_fill_data.iter_reg[iter],
2771 spill_fill_data.init_reg[iter]);
2772 else
2773 {
2774 start_sequence ();
2775
2776 if (!satisfies_constraint_I (disp_rtx))
2777 {
2778 rtx tmp = gen_rtx_REG (DImode, next_scratch_gr_reg ());
2779 emit_move_insn (tmp, disp_rtx);
2780 disp_rtx = tmp;
2781 }
2782
2783 emit_insn (gen_adddi3 (spill_fill_data.iter_reg[iter],
2784 spill_fill_data.init_reg[iter],
2785 disp_rtx));
2786
2787 seq = get_insns ();
2788 end_sequence ();
2789 }
2790
2791 /* Careful for being the first insn in a sequence. */
2792 if (spill_fill_data.init_after)
2793 insn = emit_insn_after (seq, spill_fill_data.init_after);
2794 else
2795 {
2796 rtx first = get_insns ();
2797 if (first)
2798 insn = emit_insn_before (seq, first);
2799 else
2800 insn = emit_insn (seq);
2801 }
2802 spill_fill_data.init_after = insn;
2803 }
2804
2805 mem = gen_rtx_MEM (GET_MODE (reg), spill_fill_data.iter_reg[iter]);
2806
2807 /* ??? Not all of the spills are for varargs, but some of them are.
2808 The rest of the spills belong in an alias set of their own. But
2809 it doesn't actually hurt to include them here. */
2810 set_mem_alias_set (mem, get_varargs_alias_set ());
2811
2812 spill_fill_data.prev_addr[iter] = &XEXP (mem, 0);
2813 spill_fill_data.prev_off[iter] = cfa_off;
2814
2815 if (++iter >= spill_fill_data.n_iter)
2816 iter = 0;
2817 spill_fill_data.next_iter = iter;
2818
2819 return mem;
2820 }
2821
2822 static void
2823 do_spill (rtx (*move_fn) (rtx, rtx, rtx), rtx reg, HOST_WIDE_INT cfa_off,
2824 rtx frame_reg)
2825 {
2826 int iter = spill_fill_data.next_iter;
2827 rtx mem, insn;
2828
2829 mem = spill_restore_mem (reg, cfa_off);
2830 insn = emit_insn ((*move_fn) (mem, reg, GEN_INT (cfa_off)));
2831 spill_fill_data.prev_insn[iter] = insn;
2832
2833 if (frame_reg)
2834 {
2835 rtx base;
2836 HOST_WIDE_INT off;
2837
2838 RTX_FRAME_RELATED_P (insn) = 1;
2839
2840 /* Don't even pretend that the unwind code can intuit its way
2841 through a pair of interleaved post_modify iterators. Just
2842 provide the correct answer. */
2843
2844 if (frame_pointer_needed)
2845 {
2846 base = hard_frame_pointer_rtx;
2847 off = - cfa_off;
2848 }
2849 else
2850 {
2851 base = stack_pointer_rtx;
2852 off = current_frame_info.total_size - cfa_off;
2853 }
2854
2855 REG_NOTES (insn)
2856 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
2857 gen_rtx_SET (VOIDmode,
2858 gen_rtx_MEM (GET_MODE (reg),
2859 plus_constant (base, off)),
2860 frame_reg),
2861 REG_NOTES (insn));
2862 }
2863 }
2864
2865 static void
2866 do_restore (rtx (*move_fn) (rtx, rtx, rtx), rtx reg, HOST_WIDE_INT cfa_off)
2867 {
2868 int iter = spill_fill_data.next_iter;
2869 rtx insn;
2870
2871 insn = emit_insn ((*move_fn) (reg, spill_restore_mem (reg, cfa_off),
2872 GEN_INT (cfa_off)));
2873 spill_fill_data.prev_insn[iter] = insn;
2874 }
2875
2876 /* Wrapper functions that discards the CONST_INT spill offset. These
2877 exist so that we can give gr_spill/gr_fill the offset they need and
2878 use a consistent function interface. */
2879
2880 static rtx
2881 gen_movdi_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
2882 {
2883 return gen_movdi (dest, src);
2884 }
2885
2886 static rtx
2887 gen_fr_spill_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
2888 {
2889 return gen_fr_spill (dest, src);
2890 }
2891
2892 static rtx
2893 gen_fr_restore_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
2894 {
2895 return gen_fr_restore (dest, src);
2896 }
2897
2898 /* Called after register allocation to add any instructions needed for the
2899 prologue. Using a prologue insn is favored compared to putting all of the
2900 instructions in output_function_prologue(), since it allows the scheduler
2901 to intermix instructions with the saves of the caller saved registers. In
2902 some cases, it might be necessary to emit a barrier instruction as the last
2903 insn to prevent such scheduling.
2904
2905 Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
2906 so that the debug info generation code can handle them properly.
2907
2908 The register save area is layed out like so:
2909 cfa+16
2910 [ varargs spill area ]
2911 [ fr register spill area ]
2912 [ br register spill area ]
2913 [ ar register spill area ]
2914 [ pr register spill area ]
2915 [ gr register spill area ] */
2916
2917 /* ??? Get inefficient code when the frame size is larger than can fit in an
2918 adds instruction. */
2919
2920 void
2921 ia64_expand_prologue (void)
2922 {
2923 rtx insn, ar_pfs_save_reg, ar_unat_save_reg;
2924 int i, epilogue_p, regno, alt_regno, cfa_off, n_varargs;
2925 rtx reg, alt_reg;
2926
2927 ia64_compute_frame_size (get_frame_size ());
2928 last_scratch_gr_reg = 15;
2929
2930 if (dump_file)
2931 {
2932 fprintf (dump_file, "ia64 frame related registers "
2933 "recorded in current_frame_info.r[]:\n");
2934 #define PRINTREG(a) if (current_frame_info.r[a]) \
2935 fprintf(dump_file, "%s = %d\n", #a, current_frame_info.r[a])
2936 PRINTREG(reg_fp);
2937 PRINTREG(reg_save_b0);
2938 PRINTREG(reg_save_pr);
2939 PRINTREG(reg_save_ar_pfs);
2940 PRINTREG(reg_save_ar_unat);
2941 PRINTREG(reg_save_ar_lc);
2942 PRINTREG(reg_save_gp);
2943 #undef PRINTREG
2944 }
2945
2946 /* If there is no epilogue, then we don't need some prologue insns.
2947 We need to avoid emitting the dead prologue insns, because flow
2948 will complain about them. */
2949 if (optimize)
2950 {
2951 edge e;
2952 edge_iterator ei;
2953
2954 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
2955 if ((e->flags & EDGE_FAKE) == 0
2956 && (e->flags & EDGE_FALLTHRU) != 0)
2957 break;
2958 epilogue_p = (e != NULL);
2959 }
2960 else
2961 epilogue_p = 1;
2962
2963 /* Set the local, input, and output register names. We need to do this
2964 for GNU libc, which creates crti.S/crtn.S by splitting initfini.c in
2965 half. If we use in/loc/out register names, then we get assembler errors
2966 in crtn.S because there is no alloc insn or regstk directive in there. */
2967 if (! TARGET_REG_NAMES)
2968 {
2969 int inputs = current_frame_info.n_input_regs;
2970 int locals = current_frame_info.n_local_regs;
2971 int outputs = current_frame_info.n_output_regs;
2972
2973 for (i = 0; i < inputs; i++)
2974 reg_names[IN_REG (i)] = ia64_reg_numbers[i];
2975 for (i = 0; i < locals; i++)
2976 reg_names[LOC_REG (i)] = ia64_reg_numbers[inputs + i];
2977 for (i = 0; i < outputs; i++)
2978 reg_names[OUT_REG (i)] = ia64_reg_numbers[inputs + locals + i];
2979 }
2980
2981 /* Set the frame pointer register name. The regnum is logically loc79,
2982 but of course we'll not have allocated that many locals. Rather than
2983 worrying about renumbering the existing rtxs, we adjust the name. */
2984 /* ??? This code means that we can never use one local register when
2985 there is a frame pointer. loc79 gets wasted in this case, as it is
2986 renamed to a register that will never be used. See also the try_locals
2987 code in find_gr_spill. */
2988 if (current_frame_info.r[reg_fp])
2989 {
2990 const char *tmp = reg_names[HARD_FRAME_POINTER_REGNUM];
2991 reg_names[HARD_FRAME_POINTER_REGNUM]
2992 = reg_names[current_frame_info.r[reg_fp]];
2993 reg_names[current_frame_info.r[reg_fp]] = tmp;
2994 }
2995
2996 /* We don't need an alloc instruction if we've used no outputs or locals. */
2997 if (current_frame_info.n_local_regs == 0
2998 && current_frame_info.n_output_regs == 0
2999 && current_frame_info.n_input_regs <= crtl->args.info.int_regs
3000 && !TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM))
3001 {
3002 /* If there is no alloc, but there are input registers used, then we
3003 need a .regstk directive. */
3004 current_frame_info.need_regstk = (TARGET_REG_NAMES != 0);
3005 ar_pfs_save_reg = NULL_RTX;
3006 }
3007 else
3008 {
3009 current_frame_info.need_regstk = 0;
3010
3011 if (current_frame_info.r[reg_save_ar_pfs])
3012 {
3013 regno = current_frame_info.r[reg_save_ar_pfs];
3014 reg_emitted (reg_save_ar_pfs);
3015 }
3016 else
3017 regno = next_scratch_gr_reg ();
3018 ar_pfs_save_reg = gen_rtx_REG (DImode, regno);
3019
3020 insn = emit_insn (gen_alloc (ar_pfs_save_reg,
3021 GEN_INT (current_frame_info.n_input_regs),
3022 GEN_INT (current_frame_info.n_local_regs),
3023 GEN_INT (current_frame_info.n_output_regs),
3024 GEN_INT (current_frame_info.n_rotate_regs)));
3025 RTX_FRAME_RELATED_P (insn) = (current_frame_info.r[reg_save_ar_pfs] != 0);
3026 }
3027
3028 /* Set up frame pointer, stack pointer, and spill iterators. */
3029
3030 n_varargs = cfun->machine->n_varargs;
3031 setup_spill_pointers (current_frame_info.n_spilled + n_varargs,
3032 stack_pointer_rtx, 0);
3033
3034 if (frame_pointer_needed)
3035 {
3036 insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
3037 RTX_FRAME_RELATED_P (insn) = 1;
3038 }
3039
3040 if (current_frame_info.total_size != 0)
3041 {
3042 rtx frame_size_rtx = GEN_INT (- current_frame_info.total_size);
3043 rtx offset;
3044
3045 if (satisfies_constraint_I (frame_size_rtx))
3046 offset = frame_size_rtx;
3047 else
3048 {
3049 regno = next_scratch_gr_reg ();
3050 offset = gen_rtx_REG (DImode, regno);
3051 emit_move_insn (offset, frame_size_rtx);
3052 }
3053
3054 insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
3055 stack_pointer_rtx, offset));
3056
3057 if (! frame_pointer_needed)
3058 {
3059 RTX_FRAME_RELATED_P (insn) = 1;
3060 if (GET_CODE (offset) != CONST_INT)
3061 {
3062 REG_NOTES (insn)
3063 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
3064 gen_rtx_SET (VOIDmode,
3065 stack_pointer_rtx,
3066 gen_rtx_PLUS (DImode,
3067 stack_pointer_rtx,
3068 frame_size_rtx)),
3069 REG_NOTES (insn));
3070 }
3071 }
3072
3073 /* ??? At this point we must generate a magic insn that appears to
3074 modify the stack pointer, the frame pointer, and all spill
3075 iterators. This would allow the most scheduling freedom. For
3076 now, just hard stop. */
3077 emit_insn (gen_blockage ());
3078 }
3079
3080 /* Must copy out ar.unat before doing any integer spills. */
3081 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
3082 {
3083 if (current_frame_info.r[reg_save_ar_unat])
3084 {
3085 ar_unat_save_reg
3086 = gen_rtx_REG (DImode, current_frame_info.r[reg_save_ar_unat]);
3087 reg_emitted (reg_save_ar_unat);
3088 }
3089 else
3090 {
3091 alt_regno = next_scratch_gr_reg ();
3092 ar_unat_save_reg = gen_rtx_REG (DImode, alt_regno);
3093 current_frame_info.gr_used_mask |= 1 << alt_regno;
3094 }
3095
3096 reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
3097 insn = emit_move_insn (ar_unat_save_reg, reg);
3098 RTX_FRAME_RELATED_P (insn) = (current_frame_info.r[reg_save_ar_unat] != 0);
3099
3100 /* Even if we're not going to generate an epilogue, we still
3101 need to save the register so that EH works. */
3102 if (! epilogue_p && current_frame_info.r[reg_save_ar_unat])
3103 emit_insn (gen_prologue_use (ar_unat_save_reg));
3104 }
3105 else
3106 ar_unat_save_reg = NULL_RTX;
3107
3108 /* Spill all varargs registers. Do this before spilling any GR registers,
3109 since we want the UNAT bits for the GR registers to override the UNAT
3110 bits from varargs, which we don't care about. */
3111
3112 cfa_off = -16;
3113 for (regno = GR_ARG_FIRST + 7; n_varargs > 0; --n_varargs, --regno)
3114 {
3115 reg = gen_rtx_REG (DImode, regno);
3116 do_spill (gen_gr_spill, reg, cfa_off += 8, NULL_RTX);
3117 }
3118
3119 /* Locate the bottom of the register save area. */
3120 cfa_off = (current_frame_info.spill_cfa_off
3121 + current_frame_info.spill_size
3122 + current_frame_info.extra_spill_size);
3123
3124 /* Save the predicate register block either in a register or in memory. */
3125 if (TEST_HARD_REG_BIT (current_frame_info.mask, PR_REG (0)))
3126 {
3127 reg = gen_rtx_REG (DImode, PR_REG (0));
3128 if (current_frame_info.r[reg_save_pr] != 0)
3129 {
3130 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_pr]);
3131 reg_emitted (reg_save_pr);
3132 insn = emit_move_insn (alt_reg, reg);
3133
3134 /* ??? Denote pr spill/fill by a DImode move that modifies all
3135 64 hard registers. */
3136 RTX_FRAME_RELATED_P (insn) = 1;
3137 REG_NOTES (insn)
3138 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
3139 gen_rtx_SET (VOIDmode, alt_reg, reg),
3140 REG_NOTES (insn));
3141
3142 /* Even if we're not going to generate an epilogue, we still
3143 need to save the register so that EH works. */
3144 if (! epilogue_p)
3145 emit_insn (gen_prologue_use (alt_reg));
3146 }
3147 else
3148 {
3149 alt_regno = next_scratch_gr_reg ();
3150 alt_reg = gen_rtx_REG (DImode, alt_regno);
3151 insn = emit_move_insn (alt_reg, reg);
3152 do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
3153 cfa_off -= 8;
3154 }
3155 }
3156
3157 /* Handle AR regs in numerical order. All of them get special handling. */
3158 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM)
3159 && current_frame_info.r[reg_save_ar_unat] == 0)
3160 {
3161 reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
3162 do_spill (gen_movdi_x, ar_unat_save_reg, cfa_off, reg);
3163 cfa_off -= 8;
3164 }
3165
3166 /* The alloc insn already copied ar.pfs into a general register. The
3167 only thing we have to do now is copy that register to a stack slot
3168 if we'd not allocated a local register for the job. */
3169 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM)
3170 && current_frame_info.r[reg_save_ar_pfs] == 0)
3171 {
3172 reg = gen_rtx_REG (DImode, AR_PFS_REGNUM);
3173 do_spill (gen_movdi_x, ar_pfs_save_reg, cfa_off, reg);
3174 cfa_off -= 8;
3175 }
3176
3177 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_LC_REGNUM))
3178 {
3179 reg = gen_rtx_REG (DImode, AR_LC_REGNUM);
3180 if (current_frame_info.r[reg_save_ar_lc] != 0)
3181 {
3182 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_ar_lc]);
3183 reg_emitted (reg_save_ar_lc);
3184 insn = emit_move_insn (alt_reg, reg);
3185 RTX_FRAME_RELATED_P (insn) = 1;
3186
3187 /* Even if we're not going to generate an epilogue, we still
3188 need to save the register so that EH works. */
3189 if (! epilogue_p)
3190 emit_insn (gen_prologue_use (alt_reg));
3191 }
3192 else
3193 {
3194 alt_regno = next_scratch_gr_reg ();
3195 alt_reg = gen_rtx_REG (DImode, alt_regno);
3196 emit_move_insn (alt_reg, reg);
3197 do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
3198 cfa_off -= 8;
3199 }
3200 }
3201
3202 /* Save the return pointer. */
3203 if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0)))
3204 {
3205 reg = gen_rtx_REG (DImode, BR_REG (0));
3206 if (current_frame_info.r[reg_save_b0] != 0)
3207 {
3208 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_b0]);
3209 reg_emitted (reg_save_b0);
3210 insn = emit_move_insn (alt_reg, reg);
3211 RTX_FRAME_RELATED_P (insn) = 1;
3212
3213 /* Even if we're not going to generate an epilogue, we still
3214 need to save the register so that EH works. */
3215 if (! epilogue_p)
3216 emit_insn (gen_prologue_use (alt_reg));
3217 }
3218 else
3219 {
3220 alt_regno = next_scratch_gr_reg ();
3221 alt_reg = gen_rtx_REG (DImode, alt_regno);
3222 emit_move_insn (alt_reg, reg);
3223 do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
3224 cfa_off -= 8;
3225 }
3226 }
3227
3228 if (current_frame_info.r[reg_save_gp])
3229 {
3230 reg_emitted (reg_save_gp);
3231 insn = emit_move_insn (gen_rtx_REG (DImode,
3232 current_frame_info.r[reg_save_gp]),
3233 pic_offset_table_rtx);
3234 }
3235
3236 /* We should now be at the base of the gr/br/fr spill area. */
3237 gcc_assert (cfa_off == (current_frame_info.spill_cfa_off
3238 + current_frame_info.spill_size));
3239
3240 /* Spill all general registers. */
3241 for (regno = GR_REG (1); regno <= GR_REG (31); ++regno)
3242 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3243 {
3244 reg = gen_rtx_REG (DImode, regno);
3245 do_spill (gen_gr_spill, reg, cfa_off, reg);
3246 cfa_off -= 8;
3247 }
3248
3249 /* Spill the rest of the BR registers. */
3250 for (regno = BR_REG (1); regno <= BR_REG (7); ++regno)
3251 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3252 {
3253 alt_regno = next_scratch_gr_reg ();
3254 alt_reg = gen_rtx_REG (DImode, alt_regno);
3255 reg = gen_rtx_REG (DImode, regno);
3256 emit_move_insn (alt_reg, reg);
3257 do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
3258 cfa_off -= 8;
3259 }
3260
3261 /* Align the frame and spill all FR registers. */
3262 for (regno = FR_REG (2); regno <= FR_REG (127); ++regno)
3263 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3264 {
3265 gcc_assert (!(cfa_off & 15));
3266 reg = gen_rtx_REG (XFmode, regno);
3267 do_spill (gen_fr_spill_x, reg, cfa_off, reg);
3268 cfa_off -= 16;
3269 }
3270
3271 gcc_assert (cfa_off == current_frame_info.spill_cfa_off);
3272
3273 finish_spill_pointers ();
3274 }
3275
3276 /* Called after register allocation to add any instructions needed for the
3277 epilogue. Using an epilogue insn is favored compared to putting all of the
3278 instructions in output_function_prologue(), since it allows the scheduler
3279 to intermix instructions with the saves of the caller saved registers. In
3280 some cases, it might be necessary to emit a barrier instruction as the last
3281 insn to prevent such scheduling. */
3282
3283 void
3284 ia64_expand_epilogue (int sibcall_p)
3285 {
3286 rtx insn, reg, alt_reg, ar_unat_save_reg;
3287 int regno, alt_regno, cfa_off;
3288
3289 ia64_compute_frame_size (get_frame_size ());
3290
3291 /* If there is a frame pointer, then we use it instead of the stack
3292 pointer, so that the stack pointer does not need to be valid when
3293 the epilogue starts. See EXIT_IGNORE_STACK. */
3294 if (frame_pointer_needed)
3295 setup_spill_pointers (current_frame_info.n_spilled,
3296 hard_frame_pointer_rtx, 0);
3297 else
3298 setup_spill_pointers (current_frame_info.n_spilled, stack_pointer_rtx,
3299 current_frame_info.total_size);
3300
3301 if (current_frame_info.total_size != 0)
3302 {
3303 /* ??? At this point we must generate a magic insn that appears to
3304 modify the spill iterators and the frame pointer. This would
3305 allow the most scheduling freedom. For now, just hard stop. */
3306 emit_insn (gen_blockage ());
3307 }
3308
3309 /* Locate the bottom of the register save area. */
3310 cfa_off = (current_frame_info.spill_cfa_off
3311 + current_frame_info.spill_size
3312 + current_frame_info.extra_spill_size);
3313
3314 /* Restore the predicate registers. */
3315 if (TEST_HARD_REG_BIT (current_frame_info.mask, PR_REG (0)))
3316 {
3317 if (current_frame_info.r[reg_save_pr] != 0)
3318 {
3319 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_pr]);
3320 reg_emitted (reg_save_pr);
3321 }
3322 else
3323 {
3324 alt_regno = next_scratch_gr_reg ();
3325 alt_reg = gen_rtx_REG (DImode, alt_regno);
3326 do_restore (gen_movdi_x, alt_reg, cfa_off);
3327 cfa_off -= 8;
3328 }
3329 reg = gen_rtx_REG (DImode, PR_REG (0));
3330 emit_move_insn (reg, alt_reg);
3331 }
3332
3333 /* Restore the application registers. */
3334
3335 /* Load the saved unat from the stack, but do not restore it until
3336 after the GRs have been restored. */
3337 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
3338 {
3339 if (current_frame_info.r[reg_save_ar_unat] != 0)
3340 {
3341 ar_unat_save_reg
3342 = gen_rtx_REG (DImode, current_frame_info.r[reg_save_ar_unat]);
3343 reg_emitted (reg_save_ar_unat);
3344 }
3345 else
3346 {
3347 alt_regno = next_scratch_gr_reg ();
3348 ar_unat_save_reg = gen_rtx_REG (DImode, alt_regno);
3349 current_frame_info.gr_used_mask |= 1 << alt_regno;
3350 do_restore (gen_movdi_x, ar_unat_save_reg, cfa_off);
3351 cfa_off -= 8;
3352 }
3353 }
3354 else
3355 ar_unat_save_reg = NULL_RTX;
3356
3357 if (current_frame_info.r[reg_save_ar_pfs] != 0)
3358 {
3359 reg_emitted (reg_save_ar_pfs);
3360 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_ar_pfs]);
3361 reg = gen_rtx_REG (DImode, AR_PFS_REGNUM);
3362 emit_move_insn (reg, alt_reg);
3363 }
3364 else if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM))
3365 {
3366 alt_regno = next_scratch_gr_reg ();
3367 alt_reg = gen_rtx_REG (DImode, alt_regno);
3368 do_restore (gen_movdi_x, alt_reg, cfa_off);
3369 cfa_off -= 8;
3370 reg = gen_rtx_REG (DImode, AR_PFS_REGNUM);
3371 emit_move_insn (reg, alt_reg);
3372 }
3373
3374 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_LC_REGNUM))
3375 {
3376 if (current_frame_info.r[reg_save_ar_lc] != 0)
3377 {
3378 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_ar_lc]);
3379 reg_emitted (reg_save_ar_lc);
3380 }
3381 else
3382 {
3383 alt_regno = next_scratch_gr_reg ();
3384 alt_reg = gen_rtx_REG (DImode, alt_regno);
3385 do_restore (gen_movdi_x, alt_reg, cfa_off);
3386 cfa_off -= 8;
3387 }
3388 reg = gen_rtx_REG (DImode, AR_LC_REGNUM);
3389 emit_move_insn (reg, alt_reg);
3390 }
3391
3392 /* Restore the return pointer. */
3393 if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0)))
3394 {
3395 if (current_frame_info.r[reg_save_b0] != 0)
3396 {
3397 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_b0]);
3398 reg_emitted (reg_save_b0);
3399 }
3400 else
3401 {
3402 alt_regno = next_scratch_gr_reg ();
3403 alt_reg = gen_rtx_REG (DImode, alt_regno);
3404 do_restore (gen_movdi_x, alt_reg, cfa_off);
3405 cfa_off -= 8;
3406 }
3407 reg = gen_rtx_REG (DImode, BR_REG (0));
3408 emit_move_insn (reg, alt_reg);
3409 }
3410
3411 /* We should now be at the base of the gr/br/fr spill area. */
3412 gcc_assert (cfa_off == (current_frame_info.spill_cfa_off
3413 + current_frame_info.spill_size));
3414
3415 /* The GP may be stored on the stack in the prologue, but it's
3416 never restored in the epilogue. Skip the stack slot. */
3417 if (TEST_HARD_REG_BIT (current_frame_info.mask, GR_REG (1)))
3418 cfa_off -= 8;
3419
3420 /* Restore all general registers. */
3421 for (regno = GR_REG (2); regno <= GR_REG (31); ++regno)
3422 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3423 {
3424 reg = gen_rtx_REG (DImode, regno);
3425 do_restore (gen_gr_restore, reg, cfa_off);
3426 cfa_off -= 8;
3427 }
3428
3429 /* Restore the branch registers. */
3430 for (regno = BR_REG (1); regno <= BR_REG (7); ++regno)
3431 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3432 {
3433 alt_regno = next_scratch_gr_reg ();
3434 alt_reg = gen_rtx_REG (DImode, alt_regno);
3435 do_restore (gen_movdi_x, alt_reg, cfa_off);
3436 cfa_off -= 8;
3437 reg = gen_rtx_REG (DImode, regno);
3438 emit_move_insn (reg, alt_reg);
3439 }
3440
3441 /* Restore floating point registers. */
3442 for (regno = FR_REG (2); regno <= FR_REG (127); ++regno)
3443 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3444 {
3445 gcc_assert (!(cfa_off & 15));
3446 reg = gen_rtx_REG (XFmode, regno);
3447 do_restore (gen_fr_restore_x, reg, cfa_off);
3448 cfa_off -= 16;
3449 }
3450
3451 /* Restore ar.unat for real. */
3452 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
3453 {
3454 reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
3455 emit_move_insn (reg, ar_unat_save_reg);
3456 }
3457
3458 gcc_assert (cfa_off == current_frame_info.spill_cfa_off);
3459
3460 finish_spill_pointers ();
3461
3462 if (current_frame_info.total_size
3463 || cfun->machine->ia64_eh_epilogue_sp
3464 || frame_pointer_needed)
3465 {
3466 /* ??? At this point we must generate a magic insn that appears to
3467 modify the spill iterators, the stack pointer, and the frame
3468 pointer. This would allow the most scheduling freedom. For now,
3469 just hard stop. */
3470 emit_insn (gen_blockage ());
3471 }
3472
3473 if (cfun->machine->ia64_eh_epilogue_sp)
3474 emit_move_insn (stack_pointer_rtx, cfun->machine->ia64_eh_epilogue_sp);
3475 else if (frame_pointer_needed)
3476 {
3477 insn = emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
3478 RTX_FRAME_RELATED_P (insn) = 1;
3479 }
3480 else if (current_frame_info.total_size)
3481 {
3482 rtx offset, frame_size_rtx;
3483
3484 frame_size_rtx = GEN_INT (current_frame_info.total_size);
3485 if (satisfies_constraint_I (frame_size_rtx))
3486 offset = frame_size_rtx;
3487 else
3488 {
3489 regno = next_scratch_gr_reg ();
3490 offset = gen_rtx_REG (DImode, regno);
3491 emit_move_insn (offset, frame_size_rtx);
3492 }
3493
3494 insn = emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
3495 offset));
3496
3497 RTX_FRAME_RELATED_P (insn) = 1;
3498 if (GET_CODE (offset) != CONST_INT)
3499 {
3500 REG_NOTES (insn)
3501 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
3502 gen_rtx_SET (VOIDmode,
3503 stack_pointer_rtx,
3504 gen_rtx_PLUS (DImode,
3505 stack_pointer_rtx,
3506 frame_size_rtx)),
3507 REG_NOTES (insn));
3508 }
3509 }
3510
3511 if (cfun->machine->ia64_eh_epilogue_bsp)
3512 emit_insn (gen_set_bsp (cfun->machine->ia64_eh_epilogue_bsp));
3513
3514 if (! sibcall_p)
3515 emit_jump_insn (gen_return_internal (gen_rtx_REG (DImode, BR_REG (0))));
3516 else
3517 {
3518 int fp = GR_REG (2);
3519 /* We need a throw away register here, r0 and r1 are reserved, so r2 is the
3520 first available call clobbered register. If there was a frame_pointer
3521 register, we may have swapped the names of r2 and HARD_FRAME_POINTER_REGNUM,
3522 so we have to make sure we're using the string "r2" when emitting
3523 the register name for the assembler. */
3524 if (current_frame_info.r[reg_fp]
3525 && current_frame_info.r[reg_fp] == GR_REG (2))
3526 fp = HARD_FRAME_POINTER_REGNUM;
3527
3528 /* We must emit an alloc to force the input registers to become output
3529 registers. Otherwise, if the callee tries to pass its parameters
3530 through to another call without an intervening alloc, then these
3531 values get lost. */
3532 /* ??? We don't need to preserve all input registers. We only need to
3533 preserve those input registers used as arguments to the sibling call.
3534 It is unclear how to compute that number here. */
3535 if (current_frame_info.n_input_regs != 0)
3536 {
3537 rtx n_inputs = GEN_INT (current_frame_info.n_input_regs);
3538 insn = emit_insn (gen_alloc (gen_rtx_REG (DImode, fp),
3539 const0_rtx, const0_rtx,
3540 n_inputs, const0_rtx));
3541 RTX_FRAME_RELATED_P (insn) = 1;
3542 }
3543 }
3544 }
3545
3546 /* Return 1 if br.ret can do all the work required to return from a
3547 function. */
3548
3549 int
3550 ia64_direct_return (void)
3551 {
3552 if (reload_completed && ! frame_pointer_needed)
3553 {
3554 ia64_compute_frame_size (get_frame_size ());
3555
3556 return (current_frame_info.total_size == 0
3557 && current_frame_info.n_spilled == 0
3558 && current_frame_info.r[reg_save_b0] == 0
3559 && current_frame_info.r[reg_save_pr] == 0
3560 && current_frame_info.r[reg_save_ar_pfs] == 0
3561 && current_frame_info.r[reg_save_ar_unat] == 0
3562 && current_frame_info.r[reg_save_ar_lc] == 0);
3563 }
3564 return 0;
3565 }
3566
3567 /* Return the magic cookie that we use to hold the return address
3568 during early compilation. */
3569
3570 rtx
3571 ia64_return_addr_rtx (HOST_WIDE_INT count, rtx frame ATTRIBUTE_UNUSED)
3572 {
3573 if (count != 0)
3574 return NULL;
3575 return gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_RET_ADDR);
3576 }
3577
3578 /* Split this value after reload, now that we know where the return
3579 address is saved. */
3580
3581 void
3582 ia64_split_return_addr_rtx (rtx dest)
3583 {
3584 rtx src;
3585
3586 if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0)))
3587 {
3588 if (current_frame_info.r[reg_save_b0] != 0)
3589 {
3590 src = gen_rtx_REG (DImode, current_frame_info.r[reg_save_b0]);
3591 reg_emitted (reg_save_b0);
3592 }
3593 else
3594 {
3595 HOST_WIDE_INT off;
3596 unsigned int regno;
3597 rtx off_r;
3598
3599 /* Compute offset from CFA for BR0. */
3600 /* ??? Must be kept in sync with ia64_expand_prologue. */
3601 off = (current_frame_info.spill_cfa_off
3602 + current_frame_info.spill_size);
3603 for (regno = GR_REG (1); regno <= GR_REG (31); ++regno)
3604 if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
3605 off -= 8;
3606
3607 /* Convert CFA offset to a register based offset. */
3608 if (frame_pointer_needed)
3609 src = hard_frame_pointer_rtx;
3610 else
3611 {
3612 src = stack_pointer_rtx;
3613 off += current_frame_info.total_size;
3614 }
3615
3616 /* Load address into scratch register. */
3617 off_r = GEN_INT (off);
3618 if (satisfies_constraint_I (off_r))
3619 emit_insn (gen_adddi3 (dest, src, off_r));
3620 else
3621 {
3622 emit_move_insn (dest, off_r);
3623 emit_insn (gen_adddi3 (dest, src, dest));
3624 }
3625
3626 src = gen_rtx_MEM (Pmode, dest);
3627 }
3628 }
3629 else
3630 src = gen_rtx_REG (DImode, BR_REG (0));
3631
3632 emit_move_insn (dest, src);
3633 }
3634
3635 int
3636 ia64_hard_regno_rename_ok (int from, int to)
3637 {
3638 /* Don't clobber any of the registers we reserved for the prologue. */
3639 enum ia64_frame_regs r;
3640
3641 for (r = reg_fp; r <= reg_save_ar_lc; r++)
3642 if (to == current_frame_info.r[r]
3643 || from == current_frame_info.r[r]
3644 || to == emitted_frame_related_regs[r]
3645 || from == emitted_frame_related_regs[r])
3646 return 0;
3647
3648 /* Don't use output registers outside the register frame. */
3649 if (OUT_REGNO_P (to) && to >= OUT_REG (current_frame_info.n_output_regs))
3650 return 0;
3651
3652 /* Retain even/oddness on predicate register pairs. */
3653 if (PR_REGNO_P (from) && PR_REGNO_P (to))
3654 return (from & 1) == (to & 1);
3655
3656 return 1;
3657 }
3658
3659 /* Target hook for assembling integer objects. Handle word-sized
3660 aligned objects and detect the cases when @fptr is needed. */
3661
3662 static bool
3663 ia64_assemble_integer (rtx x, unsigned int size, int aligned_p)
3664 {
3665 if (size == POINTER_SIZE / BITS_PER_UNIT
3666 && !(TARGET_NO_PIC || TARGET_AUTO_PIC)
3667 && GET_CODE (x) == SYMBOL_REF
3668 && SYMBOL_REF_FUNCTION_P (x))
3669 {
3670 static const char * const directive[2][2] = {
3671 /* 64-bit pointer */ /* 32-bit pointer */
3672 { "\tdata8.ua\t@fptr(", "\tdata4.ua\t@fptr("}, /* unaligned */
3673 { "\tdata8\t@fptr(", "\tdata4\t@fptr("} /* aligned */
3674 };
3675 fputs (directive[(aligned_p != 0)][POINTER_SIZE == 32], asm_out_file);
3676 output_addr_const (asm_out_file, x);
3677 fputs (")\n", asm_out_file);
3678 return true;
3679 }
3680 return default_assemble_integer (x, size, aligned_p);
3681 }
3682
3683 /* Emit the function prologue. */
3684
3685 static void
3686 ia64_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
3687 {
3688 int mask, grsave, grsave_prev;
3689
3690 if (current_frame_info.need_regstk)
3691 fprintf (file, "\t.regstk %d, %d, %d, %d\n",
3692 current_frame_info.n_input_regs,
3693 current_frame_info.n_local_regs,
3694 current_frame_info.n_output_regs,
3695 current_frame_info.n_rotate_regs);
3696
3697 if (!flag_unwind_tables && (!flag_exceptions || USING_SJLJ_EXCEPTIONS))
3698 return;
3699
3700 /* Emit the .prologue directive. */
3701
3702 mask = 0;
3703 grsave = grsave_prev = 0;
3704 if (current_frame_info.r[reg_save_b0] != 0)
3705 {
3706 mask |= 8;
3707 grsave = grsave_prev = current_frame_info.r[reg_save_b0];
3708 }
3709 if (current_frame_info.r[reg_save_ar_pfs] != 0
3710 && (grsave_prev == 0
3711 || current_frame_info.r[reg_save_ar_pfs] == grsave_prev + 1))
3712 {
3713 mask |= 4;
3714 if (grsave_prev == 0)
3715 grsave = current_frame_info.r[reg_save_ar_pfs];
3716 grsave_prev = current_frame_info.r[reg_save_ar_pfs];
3717 }
3718 if (current_frame_info.r[reg_fp] != 0
3719 && (grsave_prev == 0
3720 || current_frame_info.r[reg_fp] == grsave_prev + 1))
3721 {
3722 mask |= 2;
3723 if (grsave_prev == 0)
3724 grsave = HARD_FRAME_POINTER_REGNUM;
3725 grsave_prev = current_frame_info.r[reg_fp];
3726 }
3727 if (current_frame_info.r[reg_save_pr] != 0
3728 && (grsave_prev == 0
3729 || current_frame_info.r[reg_save_pr] == grsave_prev + 1))
3730 {
3731 mask |= 1;
3732 if (grsave_prev == 0)
3733 grsave = current_frame_info.r[reg_save_pr];
3734 }
3735
3736 if (mask && TARGET_GNU_AS)
3737 fprintf (file, "\t.prologue %d, %d\n", mask,
3738 ia64_dbx_register_number (grsave));
3739 else
3740 fputs ("\t.prologue\n", file);
3741
3742 /* Emit a .spill directive, if necessary, to relocate the base of
3743 the register spill area. */
3744 if (current_frame_info.spill_cfa_off != -16)
3745 fprintf (file, "\t.spill %ld\n",
3746 (long) (current_frame_info.spill_cfa_off
3747 + current_frame_info.spill_size));
3748 }
3749
3750 /* Emit the .body directive at the scheduled end of the prologue. */
3751
3752 static void
3753 ia64_output_function_end_prologue (FILE *file)
3754 {
3755 if (!flag_unwind_tables && (!flag_exceptions || USING_SJLJ_EXCEPTIONS))
3756 return;
3757
3758 fputs ("\t.body\n", file);
3759 }
3760
3761 /* Emit the function epilogue. */
3762
3763 static void
3764 ia64_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
3765 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
3766 {
3767 int i;
3768
3769 if (current_frame_info.r[reg_fp])
3770 {
3771 const char *tmp = reg_names[HARD_FRAME_POINTER_REGNUM];
3772 reg_names[HARD_FRAME_POINTER_REGNUM]
3773 = reg_names[current_frame_info.r[reg_fp]];
3774 reg_names[current_frame_info.r[reg_fp]] = tmp;
3775 reg_emitted (reg_fp);
3776 }
3777 if (! TARGET_REG_NAMES)
3778 {
3779 for (i = 0; i < current_frame_info.n_input_regs; i++)
3780 reg_names[IN_REG (i)] = ia64_input_reg_names[i];
3781 for (i = 0; i < current_frame_info.n_local_regs; i++)
3782 reg_names[LOC_REG (i)] = ia64_local_reg_names[i];
3783 for (i = 0; i < current_frame_info.n_output_regs; i++)
3784 reg_names[OUT_REG (i)] = ia64_output_reg_names[i];
3785 }
3786
3787 current_frame_info.initialized = 0;
3788 }
3789
3790 int
3791 ia64_dbx_register_number (int regno)
3792 {
3793 /* In ia64_expand_prologue we quite literally renamed the frame pointer
3794 from its home at loc79 to something inside the register frame. We
3795 must perform the same renumbering here for the debug info. */
3796 if (current_frame_info.r[reg_fp])
3797 {
3798 if (regno == HARD_FRAME_POINTER_REGNUM)
3799 regno = current_frame_info.r[reg_fp];
3800 else if (regno == current_frame_info.r[reg_fp])
3801 regno = HARD_FRAME_POINTER_REGNUM;
3802 }
3803
3804 if (IN_REGNO_P (regno))
3805 return 32 + regno - IN_REG (0);
3806 else if (LOC_REGNO_P (regno))
3807 return 32 + current_frame_info.n_input_regs + regno - LOC_REG (0);
3808 else if (OUT_REGNO_P (regno))
3809 return (32 + current_frame_info.n_input_regs
3810 + current_frame_info.n_local_regs + regno - OUT_REG (0));
3811 else
3812 return regno;
3813 }
3814
3815 void
3816 ia64_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain)
3817 {
3818 rtx addr_reg, eight = GEN_INT (8);
3819
3820 /* The Intel assembler requires that the global __ia64_trampoline symbol
3821 be declared explicitly */
3822 if (!TARGET_GNU_AS)
3823 {
3824 static bool declared_ia64_trampoline = false;
3825
3826 if (!declared_ia64_trampoline)
3827 {
3828 declared_ia64_trampoline = true;
3829 (*targetm.asm_out.globalize_label) (asm_out_file,
3830 "__ia64_trampoline");
3831 }
3832 }
3833
3834 /* Make sure addresses are Pmode even if we are in ILP32 mode. */
3835 addr = convert_memory_address (Pmode, addr);
3836 fnaddr = convert_memory_address (Pmode, fnaddr);
3837 static_chain = convert_memory_address (Pmode, static_chain);
3838
3839 /* Load up our iterator. */
3840 addr_reg = gen_reg_rtx (Pmode);
3841 emit_move_insn (addr_reg, addr);
3842
3843 /* The first two words are the fake descriptor:
3844 __ia64_trampoline, ADDR+16. */
3845 emit_move_insn (gen_rtx_MEM (Pmode, addr_reg),
3846 gen_rtx_SYMBOL_REF (Pmode, "__ia64_trampoline"));
3847 emit_insn (gen_adddi3 (addr_reg, addr_reg, eight));
3848
3849 emit_move_insn (gen_rtx_MEM (Pmode, addr_reg),
3850 copy_to_reg (plus_constant (addr, 16)));
3851 emit_insn (gen_adddi3 (addr_reg, addr_reg, eight));
3852
3853 /* The third word is the target descriptor. */
3854 emit_move_insn (gen_rtx_MEM (Pmode, addr_reg), fnaddr);
3855 emit_insn (gen_adddi3 (addr_reg, addr_reg, eight));
3856
3857 /* The fourth word is the static chain. */
3858 emit_move_insn (gen_rtx_MEM (Pmode, addr_reg), static_chain);
3859 }
3860 \f
3861 /* Do any needed setup for a variadic function. CUM has not been updated
3862 for the last named argument which has type TYPE and mode MODE.
3863
3864 We generate the actual spill instructions during prologue generation. */
3865
3866 static void
3867 ia64_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
3868 tree type, int * pretend_size,
3869 int second_time ATTRIBUTE_UNUSED)
3870 {
3871 CUMULATIVE_ARGS next_cum = *cum;
3872
3873 /* Skip the current argument. */
3874 ia64_function_arg_advance (&next_cum, mode, type, 1);
3875
3876 if (next_cum.words < MAX_ARGUMENT_SLOTS)
3877 {
3878 int n = MAX_ARGUMENT_SLOTS - next_cum.words;
3879 *pretend_size = n * UNITS_PER_WORD;
3880 cfun->machine->n_varargs = n;
3881 }
3882 }
3883
3884 /* Check whether TYPE is a homogeneous floating point aggregate. If
3885 it is, return the mode of the floating point type that appears
3886 in all leafs. If it is not, return VOIDmode.
3887
3888 An aggregate is a homogeneous floating point aggregate is if all
3889 fields/elements in it have the same floating point type (e.g,
3890 SFmode). 128-bit quad-precision floats are excluded.
3891
3892 Variable sized aggregates should never arrive here, since we should
3893 have already decided to pass them by reference. Top-level zero-sized
3894 aggregates are excluded because our parallels crash the middle-end. */
3895
3896 static enum machine_mode
3897 hfa_element_mode (const_tree type, bool nested)
3898 {
3899 enum machine_mode element_mode = VOIDmode;
3900 enum machine_mode mode;
3901 enum tree_code code = TREE_CODE (type);
3902 int know_element_mode = 0;
3903 tree t;
3904
3905 if (!nested && (!TYPE_SIZE (type) || integer_zerop (TYPE_SIZE (type))))
3906 return VOIDmode;
3907
3908 switch (code)
3909 {
3910 case VOID_TYPE: case INTEGER_TYPE: case ENUMERAL_TYPE:
3911 case BOOLEAN_TYPE: case POINTER_TYPE:
3912 case OFFSET_TYPE: case REFERENCE_TYPE: case METHOD_TYPE:
3913 case LANG_TYPE: case FUNCTION_TYPE:
3914 return VOIDmode;
3915
3916 /* Fortran complex types are supposed to be HFAs, so we need to handle
3917 gcc's COMPLEX_TYPEs as HFAs. We need to exclude the integral complex
3918 types though. */
3919 case COMPLEX_TYPE:
3920 if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT
3921 && TYPE_MODE (type) != TCmode)
3922 return GET_MODE_INNER (TYPE_MODE (type));
3923 else
3924 return VOIDmode;
3925
3926 case REAL_TYPE:
3927 /* We want to return VOIDmode for raw REAL_TYPEs, but the actual
3928 mode if this is contained within an aggregate. */
3929 if (nested && TYPE_MODE (type) != TFmode)
3930 return TYPE_MODE (type);
3931 else
3932 return VOIDmode;
3933
3934 case ARRAY_TYPE:
3935 return hfa_element_mode (TREE_TYPE (type), 1);
3936
3937 case RECORD_TYPE:
3938 case UNION_TYPE:
3939 case QUAL_UNION_TYPE:
3940 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
3941 {
3942 if (TREE_CODE (t) != FIELD_DECL)
3943 continue;
3944
3945 mode = hfa_element_mode (TREE_TYPE (t), 1);
3946 if (know_element_mode)
3947 {
3948 if (mode != element_mode)
3949 return VOIDmode;
3950 }
3951 else if (GET_MODE_CLASS (mode) != MODE_FLOAT)
3952 return VOIDmode;
3953 else
3954 {
3955 know_element_mode = 1;
3956 element_mode = mode;
3957 }
3958 }
3959 return element_mode;
3960
3961 default:
3962 /* If we reach here, we probably have some front-end specific type
3963 that the backend doesn't know about. This can happen via the
3964 aggregate_value_p call in init_function_start. All we can do is
3965 ignore unknown tree types. */
3966 return VOIDmode;
3967 }
3968
3969 return VOIDmode;
3970 }
3971
3972 /* Return the number of words required to hold a quantity of TYPE and MODE
3973 when passed as an argument. */
3974 static int
3975 ia64_function_arg_words (tree type, enum machine_mode mode)
3976 {
3977 int words;
3978
3979 if (mode == BLKmode)
3980 words = int_size_in_bytes (type);
3981 else
3982 words = GET_MODE_SIZE (mode);
3983
3984 return (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* round up */
3985 }
3986
3987 /* Return the number of registers that should be skipped so the current
3988 argument (described by TYPE and WORDS) will be properly aligned.
3989
3990 Integer and float arguments larger than 8 bytes start at the next
3991 even boundary. Aggregates larger than 8 bytes start at the next
3992 even boundary if the aggregate has 16 byte alignment. Note that
3993 in the 32-bit ABI, TImode and TFmode have only 8-byte alignment
3994 but are still to be aligned in registers.
3995
3996 ??? The ABI does not specify how to handle aggregates with
3997 alignment from 9 to 15 bytes, or greater than 16. We handle them
3998 all as if they had 16 byte alignment. Such aggregates can occur
3999 only if gcc extensions are used. */
4000 static int
4001 ia64_function_arg_offset (CUMULATIVE_ARGS *cum, tree type, int words)
4002 {
4003 if ((cum->words & 1) == 0)
4004 return 0;
4005
4006 if (type
4007 && TREE_CODE (type) != INTEGER_TYPE
4008 && TREE_CODE (type) != REAL_TYPE)
4009 return TYPE_ALIGN (type) > 8 * BITS_PER_UNIT;
4010 else
4011 return words > 1;
4012 }
4013
4014 /* Return rtx for register where argument is passed, or zero if it is passed
4015 on the stack. */
4016 /* ??? 128-bit quad-precision floats are always passed in general
4017 registers. */
4018
4019 rtx
4020 ia64_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
4021 int named, int incoming)
4022 {
4023 int basereg = (incoming ? GR_ARG_FIRST : AR_ARG_FIRST);
4024 int words = ia64_function_arg_words (type, mode);
4025 int offset = ia64_function_arg_offset (cum, type, words);
4026 enum machine_mode hfa_mode = VOIDmode;
4027
4028 /* If all argument slots are used, then it must go on the stack. */
4029 if (cum->words + offset >= MAX_ARGUMENT_SLOTS)
4030 return 0;
4031
4032 /* Check for and handle homogeneous FP aggregates. */
4033 if (type)
4034 hfa_mode = hfa_element_mode (type, 0);
4035
4036 /* Unnamed prototyped hfas are passed as usual. Named prototyped hfas
4037 and unprototyped hfas are passed specially. */
4038 if (hfa_mode != VOIDmode && (! cum->prototype || named))
4039 {
4040 rtx loc[16];
4041 int i = 0;
4042 int fp_regs = cum->fp_regs;
4043 int int_regs = cum->words + offset;
4044 int hfa_size = GET_MODE_SIZE (hfa_mode);
4045 int byte_size;
4046 int args_byte_size;
4047
4048 /* If prototyped, pass it in FR regs then GR regs.
4049 If not prototyped, pass it in both FR and GR regs.
4050
4051 If this is an SFmode aggregate, then it is possible to run out of
4052 FR regs while GR regs are still left. In that case, we pass the
4053 remaining part in the GR regs. */
4054
4055 /* Fill the FP regs. We do this always. We stop if we reach the end
4056 of the argument, the last FP register, or the last argument slot. */
4057
4058 byte_size = ((mode == BLKmode)
4059 ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
4060 args_byte_size = int_regs * UNITS_PER_WORD;
4061 offset = 0;
4062 for (; (offset < byte_size && fp_regs < MAX_ARGUMENT_SLOTS
4063 && args_byte_size < (MAX_ARGUMENT_SLOTS * UNITS_PER_WORD)); i++)
4064 {
4065 loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
4066 gen_rtx_REG (hfa_mode, (FR_ARG_FIRST
4067 + fp_regs)),
4068 GEN_INT (offset));
4069 offset += hfa_size;
4070 args_byte_size += hfa_size;
4071 fp_regs++;
4072 }
4073
4074 /* If no prototype, then the whole thing must go in GR regs. */
4075 if (! cum->prototype)
4076 offset = 0;
4077 /* If this is an SFmode aggregate, then we might have some left over
4078 that needs to go in GR regs. */
4079 else if (byte_size != offset)
4080 int_regs += offset / UNITS_PER_WORD;
4081
4082 /* Fill in the GR regs. We must use DImode here, not the hfa mode. */
4083
4084 for (; offset < byte_size && int_regs < MAX_ARGUMENT_SLOTS; i++)
4085 {
4086 enum machine_mode gr_mode = DImode;
4087 unsigned int gr_size;
4088
4089 /* If we have an odd 4 byte hunk because we ran out of FR regs,
4090 then this goes in a GR reg left adjusted/little endian, right
4091 adjusted/big endian. */
4092 /* ??? Currently this is handled wrong, because 4-byte hunks are
4093 always right adjusted/little endian. */
4094 if (offset & 0x4)
4095 gr_mode = SImode;
4096 /* If we have an even 4 byte hunk because the aggregate is a
4097 multiple of 4 bytes in size, then this goes in a GR reg right
4098 adjusted/little endian. */
4099 else if (byte_size - offset == 4)
4100 gr_mode = SImode;
4101
4102 loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
4103 gen_rtx_REG (gr_mode, (basereg
4104 + int_regs)),
4105 GEN_INT (offset));
4106
4107 gr_size = GET_MODE_SIZE (gr_mode);
4108 offset += gr_size;
4109 if (gr_size == UNITS_PER_WORD
4110 || (gr_size < UNITS_PER_WORD && offset % UNITS_PER_WORD == 0))
4111 int_regs++;
4112 else if (gr_size > UNITS_PER_WORD)
4113 int_regs += gr_size / UNITS_PER_WORD;
4114 }
4115 return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc));
4116 }
4117
4118 /* Integral and aggregates go in general registers. If we have run out of
4119 FR registers, then FP values must also go in general registers. This can
4120 happen when we have a SFmode HFA. */
4121 else if (mode == TFmode || mode == TCmode
4122 || (! FLOAT_MODE_P (mode) || cum->fp_regs == MAX_ARGUMENT_SLOTS))
4123 {
4124 int byte_size = ((mode == BLKmode)
4125 ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
4126 if (BYTES_BIG_ENDIAN
4127 && (mode == BLKmode || (type && AGGREGATE_TYPE_P (type)))
4128 && byte_size < UNITS_PER_WORD
4129 && byte_size > 0)
4130 {
4131 rtx gr_reg = gen_rtx_EXPR_LIST (VOIDmode,
4132 gen_rtx_REG (DImode,
4133 (basereg + cum->words
4134 + offset)),
4135 const0_rtx);
4136 return gen_rtx_PARALLEL (mode, gen_rtvec (1, gr_reg));
4137 }
4138 else
4139 return gen_rtx_REG (mode, basereg + cum->words + offset);
4140
4141 }
4142
4143 /* If there is a prototype, then FP values go in a FR register when
4144 named, and in a GR register when unnamed. */
4145 else if (cum->prototype)
4146 {
4147 if (named)
4148 return gen_rtx_REG (mode, FR_ARG_FIRST + cum->fp_regs);
4149 /* In big-endian mode, an anonymous SFmode value must be represented
4150 as (parallel:SF [(expr_list (reg:DI n) (const_int 0))]) to force
4151 the value into the high half of the general register. */
4152 else if (BYTES_BIG_ENDIAN && mode == SFmode)
4153 return gen_rtx_PARALLEL (mode,
4154 gen_rtvec (1,
4155 gen_rtx_EXPR_LIST (VOIDmode,
4156 gen_rtx_REG (DImode, basereg + cum->words + offset),
4157 const0_rtx)));
4158 else
4159 return gen_rtx_REG (mode, basereg + cum->words + offset);
4160 }
4161 /* If there is no prototype, then FP values go in both FR and GR
4162 registers. */
4163 else
4164 {
4165 /* See comment above. */
4166 enum machine_mode inner_mode =
4167 (BYTES_BIG_ENDIAN && mode == SFmode) ? DImode : mode;
4168
4169 rtx fp_reg = gen_rtx_EXPR_LIST (VOIDmode,
4170 gen_rtx_REG (mode, (FR_ARG_FIRST
4171 + cum->fp_regs)),
4172 const0_rtx);
4173 rtx gr_reg = gen_rtx_EXPR_LIST (VOIDmode,
4174 gen_rtx_REG (inner_mode,
4175 (basereg + cum->words
4176 + offset)),
4177 const0_rtx);
4178
4179 return gen_rtx_PARALLEL (mode, gen_rtvec (2, fp_reg, gr_reg));
4180 }
4181 }
4182
4183 /* Return number of bytes, at the beginning of the argument, that must be
4184 put in registers. 0 is the argument is entirely in registers or entirely
4185 in memory. */
4186
4187 static int
4188 ia64_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
4189 tree type, bool named ATTRIBUTE_UNUSED)
4190 {
4191 int words = ia64_function_arg_words (type, mode);
4192 int offset = ia64_function_arg_offset (cum, type, words);
4193
4194 /* If all argument slots are used, then it must go on the stack. */
4195 if (cum->words + offset >= MAX_ARGUMENT_SLOTS)
4196 return 0;
4197
4198 /* It doesn't matter whether the argument goes in FR or GR regs. If
4199 it fits within the 8 argument slots, then it goes entirely in
4200 registers. If it extends past the last argument slot, then the rest
4201 goes on the stack. */
4202
4203 if (words + cum->words + offset <= MAX_ARGUMENT_SLOTS)
4204 return 0;
4205
4206 return (MAX_ARGUMENT_SLOTS - cum->words - offset) * UNITS_PER_WORD;
4207 }
4208
4209 /* Update CUM to point after this argument. This is patterned after
4210 ia64_function_arg. */
4211
4212 void
4213 ia64_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
4214 tree type, int named)
4215 {
4216 int words = ia64_function_arg_words (type, mode);
4217 int offset = ia64_function_arg_offset (cum, type, words);
4218 enum machine_mode hfa_mode = VOIDmode;
4219
4220 /* If all arg slots are already full, then there is nothing to do. */
4221 if (cum->words >= MAX_ARGUMENT_SLOTS)
4222 return;
4223
4224 cum->words += words + offset;
4225
4226 /* Check for and handle homogeneous FP aggregates. */
4227 if (type)
4228 hfa_mode = hfa_element_mode (type, 0);
4229
4230 /* Unnamed prototyped hfas are passed as usual. Named prototyped hfas
4231 and unprototyped hfas are passed specially. */
4232 if (hfa_mode != VOIDmode && (! cum->prototype || named))
4233 {
4234 int fp_regs = cum->fp_regs;
4235 /* This is the original value of cum->words + offset. */
4236 int int_regs = cum->words - words;
4237 int hfa_size = GET_MODE_SIZE (hfa_mode);
4238 int byte_size;
4239 int args_byte_size;
4240
4241 /* If prototyped, pass it in FR regs then GR regs.
4242 If not prototyped, pass it in both FR and GR regs.
4243
4244 If this is an SFmode aggregate, then it is possible to run out of
4245 FR regs while GR regs are still left. In that case, we pass the
4246 remaining part in the GR regs. */
4247
4248 /* Fill the FP regs. We do this always. We stop if we reach the end
4249 of the argument, the last FP register, or the last argument slot. */
4250
4251 byte_size = ((mode == BLKmode)
4252 ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
4253 args_byte_size = int_regs * UNITS_PER_WORD;
4254 offset = 0;
4255 for (; (offset < byte_size && fp_regs < MAX_ARGUMENT_SLOTS
4256 && args_byte_size < (MAX_ARGUMENT_SLOTS * UNITS_PER_WORD));)
4257 {
4258 offset += hfa_size;
4259 args_byte_size += hfa_size;
4260 fp_regs++;
4261 }
4262
4263 cum->fp_regs = fp_regs;
4264 }
4265
4266 /* Integral and aggregates go in general registers. So do TFmode FP values.
4267 If we have run out of FR registers, then other FP values must also go in
4268 general registers. This can happen when we have a SFmode HFA. */
4269 else if (mode == TFmode || mode == TCmode
4270 || (! FLOAT_MODE_P (mode) || cum->fp_regs == MAX_ARGUMENT_SLOTS))
4271 cum->int_regs = cum->words;
4272
4273 /* If there is a prototype, then FP values go in a FR register when
4274 named, and in a GR register when unnamed. */
4275 else if (cum->prototype)
4276 {
4277 if (! named)
4278 cum->int_regs = cum->words;
4279 else
4280 /* ??? Complex types should not reach here. */
4281 cum->fp_regs += (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT ? 2 : 1);
4282 }
4283 /* If there is no prototype, then FP values go in both FR and GR
4284 registers. */
4285 else
4286 {
4287 /* ??? Complex types should not reach here. */
4288 cum->fp_regs += (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT ? 2 : 1);
4289 cum->int_regs = cum->words;
4290 }
4291 }
4292
4293 /* Arguments with alignment larger than 8 bytes start at the next even
4294 boundary. On ILP32 HPUX, TFmode arguments start on next even boundary
4295 even though their normal alignment is 8 bytes. See ia64_function_arg. */
4296
4297 int
4298 ia64_function_arg_boundary (enum machine_mode mode, tree type)
4299 {
4300
4301 if (mode == TFmode && TARGET_HPUX && TARGET_ILP32)
4302 return PARM_BOUNDARY * 2;
4303
4304 if (type)
4305 {
4306 if (TYPE_ALIGN (type) > PARM_BOUNDARY)
4307 return PARM_BOUNDARY * 2;
4308 else
4309 return PARM_BOUNDARY;
4310 }
4311
4312 if (GET_MODE_BITSIZE (mode) > PARM_BOUNDARY)
4313 return PARM_BOUNDARY * 2;
4314 else
4315 return PARM_BOUNDARY;
4316 }
4317
4318 /* True if it is OK to do sibling call optimization for the specified
4319 call expression EXP. DECL will be the called function, or NULL if
4320 this is an indirect call. */
4321 static bool
4322 ia64_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
4323 {
4324 /* We can't perform a sibcall if the current function has the syscall_linkage
4325 attribute. */
4326 if (lookup_attribute ("syscall_linkage",
4327 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
4328 return false;
4329
4330 /* We must always return with our current GP. This means we can
4331 only sibcall to functions defined in the current module. */
4332 return decl && (*targetm.binds_local_p) (decl);
4333 }
4334 \f
4335
4336 /* Implement va_arg. */
4337
4338 static tree
4339 ia64_gimplify_va_arg (tree valist, tree type, tree *pre_p, tree *post_p)
4340 {
4341 /* Variable sized types are passed by reference. */
4342 if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
4343 {
4344 tree ptrtype = build_pointer_type (type);
4345 tree addr = std_gimplify_va_arg_expr (valist, ptrtype, pre_p, post_p);
4346 return build_va_arg_indirect_ref (addr);
4347 }
4348
4349 /* Aggregate arguments with alignment larger than 8 bytes start at
4350 the next even boundary. Integer and floating point arguments
4351 do so if they are larger than 8 bytes, whether or not they are
4352 also aligned larger than 8 bytes. */
4353 if ((TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == INTEGER_TYPE)
4354 ? int_size_in_bytes (type) > 8 : TYPE_ALIGN (type) > 8 * BITS_PER_UNIT)
4355 {
4356 tree t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (valist), valist,
4357 size_int (2 * UNITS_PER_WORD - 1));
4358 t = fold_convert (sizetype, t);
4359 t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
4360 size_int (-2 * UNITS_PER_WORD));
4361 t = fold_convert (TREE_TYPE (valist), t);
4362 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (valist), valist, t);
4363 gimplify_and_add (t, pre_p);
4364 }
4365
4366 return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
4367 }
4368 \f
4369 /* Return 1 if function return value returned in memory. Return 0 if it is
4370 in a register. */
4371
4372 static bool
4373 ia64_return_in_memory (const_tree valtype, const_tree fntype ATTRIBUTE_UNUSED)
4374 {
4375 enum machine_mode mode;
4376 enum machine_mode hfa_mode;
4377 HOST_WIDE_INT byte_size;
4378
4379 mode = TYPE_MODE (valtype);
4380 byte_size = GET_MODE_SIZE (mode);
4381 if (mode == BLKmode)
4382 {
4383 byte_size = int_size_in_bytes (valtype);
4384 if (byte_size < 0)
4385 return true;
4386 }
4387
4388 /* Hfa's with up to 8 elements are returned in the FP argument registers. */
4389
4390 hfa_mode = hfa_element_mode (valtype, 0);
4391 if (hfa_mode != VOIDmode)
4392 {
4393 int hfa_size = GET_MODE_SIZE (hfa_mode);
4394
4395 if (byte_size / hfa_size > MAX_ARGUMENT_SLOTS)
4396 return true;
4397 else
4398 return false;
4399 }
4400 else if (byte_size > UNITS_PER_WORD * MAX_INT_RETURN_SLOTS)
4401 return true;
4402 else
4403 return false;
4404 }
4405
4406 /* Return rtx for register that holds the function return value. */
4407
4408 rtx
4409 ia64_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
4410 {
4411 enum machine_mode mode;
4412 enum machine_mode hfa_mode;
4413
4414 mode = TYPE_MODE (valtype);
4415 hfa_mode = hfa_element_mode (valtype, 0);
4416
4417 if (hfa_mode != VOIDmode)
4418 {
4419 rtx loc[8];
4420 int i;
4421 int hfa_size;
4422 int byte_size;
4423 int offset;
4424
4425 hfa_size = GET_MODE_SIZE (hfa_mode);
4426 byte_size = ((mode == BLKmode)
4427 ? int_size_in_bytes (valtype) : GET_MODE_SIZE (mode));
4428 offset = 0;
4429 for (i = 0; offset < byte_size; i++)
4430 {
4431 loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
4432 gen_rtx_REG (hfa_mode, FR_ARG_FIRST + i),
4433 GEN_INT (offset));
4434 offset += hfa_size;
4435 }
4436 return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc));
4437 }
4438 else if (FLOAT_TYPE_P (valtype) && mode != TFmode && mode != TCmode)
4439 return gen_rtx_REG (mode, FR_ARG_FIRST);
4440 else
4441 {
4442 bool need_parallel = false;
4443
4444 /* In big-endian mode, we need to manage the layout of aggregates
4445 in the registers so that we get the bits properly aligned in
4446 the highpart of the registers. */
4447 if (BYTES_BIG_ENDIAN
4448 && (mode == BLKmode || (valtype && AGGREGATE_TYPE_P (valtype))))
4449 need_parallel = true;
4450
4451 /* Something like struct S { long double x; char a[0] } is not an
4452 HFA structure, and therefore doesn't go in fp registers. But
4453 the middle-end will give it XFmode anyway, and XFmode values
4454 don't normally fit in integer registers. So we need to smuggle
4455 the value inside a parallel. */
4456 else if (mode == XFmode || mode == XCmode || mode == RFmode)
4457 need_parallel = true;
4458
4459 if (need_parallel)
4460 {
4461 rtx loc[8];
4462 int offset;
4463 int bytesize;
4464 int i;
4465
4466 offset = 0;
4467 bytesize = int_size_in_bytes (valtype);
4468 /* An empty PARALLEL is invalid here, but the return value
4469 doesn't matter for empty structs. */
4470 if (bytesize == 0)
4471 return gen_rtx_REG (mode, GR_RET_FIRST);
4472 for (i = 0; offset < bytesize; i++)
4473 {
4474 loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
4475 gen_rtx_REG (DImode,
4476 GR_RET_FIRST + i),
4477 GEN_INT (offset));
4478 offset += UNITS_PER_WORD;
4479 }
4480 return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc));
4481 }
4482
4483 return gen_rtx_REG (mode, GR_RET_FIRST);
4484 }
4485 }
4486
4487 /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
4488 We need to emit DTP-relative relocations. */
4489
4490 static void
4491 ia64_output_dwarf_dtprel (FILE *file, int size, rtx x)
4492 {
4493 gcc_assert (size == 4 || size == 8);
4494 if (size == 4)
4495 fputs ("\tdata4.ua\t@dtprel(", file);
4496 else
4497 fputs ("\tdata8.ua\t@dtprel(", file);
4498 output_addr_const (file, x);
4499 fputs (")", file);
4500 }
4501
4502 /* Print a memory address as an operand to reference that memory location. */
4503
4504 /* ??? Do we need this? It gets used only for 'a' operands. We could perhaps
4505 also call this from ia64_print_operand for memory addresses. */
4506
4507 void
4508 ia64_print_operand_address (FILE * stream ATTRIBUTE_UNUSED,
4509 rtx address ATTRIBUTE_UNUSED)
4510 {
4511 }
4512
4513 /* Print an operand to an assembler instruction.
4514 C Swap and print a comparison operator.
4515 D Print an FP comparison operator.
4516 E Print 32 - constant, for SImode shifts as extract.
4517 e Print 64 - constant, for DImode rotates.
4518 F A floating point constant 0.0 emitted as f0, or 1.0 emitted as f1, or
4519 a floating point register emitted normally.
4520 I Invert a predicate register by adding 1.
4521 J Select the proper predicate register for a condition.
4522 j Select the inverse predicate register for a condition.
4523 O Append .acq for volatile load.
4524 P Postincrement of a MEM.
4525 Q Append .rel for volatile store.
4526 R Print .s .d or nothing for a single, double or no truncation.
4527 S Shift amount for shladd instruction.
4528 T Print an 8-bit sign extended number (K) as a 32-bit unsigned number
4529 for Intel assembler.
4530 U Print an 8-bit sign extended number (K) as a 64-bit unsigned number
4531 for Intel assembler.
4532 X A pair of floating point registers.
4533 r Print register name, or constant 0 as r0. HP compatibility for
4534 Linux kernel.
4535 v Print vector constant value as an 8-byte integer value. */
4536
4537 void
4538 ia64_print_operand (FILE * file, rtx x, int code)
4539 {
4540 const char *str;
4541
4542 switch (code)
4543 {
4544 case 0:
4545 /* Handled below. */
4546 break;
4547
4548 case 'C':
4549 {
4550 enum rtx_code c = swap_condition (GET_CODE (x));
4551 fputs (GET_RTX_NAME (c), file);
4552 return;
4553 }
4554
4555 case 'D':
4556 switch (GET_CODE (x))
4557 {
4558 case NE:
4559 str = "neq";
4560 break;
4561 case UNORDERED:
4562 str = "unord";
4563 break;
4564 case ORDERED:
4565 str = "ord";
4566 break;
4567 case UNLT:
4568 str = "nge";
4569 break;
4570 case UNLE:
4571 str = "ngt";
4572 break;
4573 case UNGT:
4574 str = "nle";
4575 break;
4576 case UNGE:
4577 str = "nlt";
4578 break;
4579 default:
4580 str = GET_RTX_NAME (GET_CODE (x));
4581 break;
4582 }
4583 fputs (str, file);
4584 return;
4585
4586 case 'E':
4587 fprintf (file, HOST_WIDE_INT_PRINT_DEC, 32 - INTVAL (x));
4588 return;
4589
4590 case 'e':
4591 fprintf (file, HOST_WIDE_INT_PRINT_DEC, 64 - INTVAL (x));
4592 return;
4593
4594 case 'F':
4595 if (x == CONST0_RTX (GET_MODE (x)))
4596 str = reg_names [FR_REG (0)];
4597 else if (x == CONST1_RTX (GET_MODE (x)))
4598 str = reg_names [FR_REG (1)];
4599 else
4600 {
4601 gcc_assert (GET_CODE (x) == REG);
4602 str = reg_names [REGNO (x)];
4603 }
4604 fputs (str, file);
4605 return;
4606
4607 case 'I':
4608 fputs (reg_names [REGNO (x) + 1], file);
4609 return;
4610
4611 case 'J':
4612 case 'j':
4613 {
4614 unsigned int regno = REGNO (XEXP (x, 0));
4615 if (GET_CODE (x) == EQ)
4616 regno += 1;
4617 if (code == 'j')
4618 regno ^= 1;
4619 fputs (reg_names [regno], file);
4620 }
4621 return;
4622
4623 case 'O':
4624 if (MEM_VOLATILE_P (x))
4625 fputs(".acq", file);
4626 return;
4627
4628 case 'P':
4629 {
4630 HOST_WIDE_INT value;
4631
4632 switch (GET_CODE (XEXP (x, 0)))
4633 {
4634 default:
4635 return;
4636
4637 case POST_MODIFY:
4638 x = XEXP (XEXP (XEXP (x, 0), 1), 1);
4639 if (GET_CODE (x) == CONST_INT)
4640 value = INTVAL (x);
4641 else
4642 {
4643 gcc_assert (GET_CODE (x) == REG);
4644 fprintf (file, ", %s", reg_names[REGNO (x)]);
4645 return;
4646 }
4647 break;
4648
4649 case POST_INC:
4650 value = GET_MODE_SIZE (GET_MODE (x));
4651 break;
4652
4653 case POST_DEC:
4654 value = - (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (x));
4655 break;
4656 }
4657
4658 fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC, value);
4659 return;
4660 }
4661
4662 case 'Q':
4663 if (MEM_VOLATILE_P (x))
4664 fputs(".rel", file);
4665 return;
4666
4667 case 'R':
4668 if (x == CONST0_RTX (GET_MODE (x)))
4669 fputs(".s", file);
4670 else if (x == CONST1_RTX (GET_MODE (x)))
4671 fputs(".d", file);
4672 else if (x == CONST2_RTX (GET_MODE (x)))
4673 ;
4674 else
4675 output_operand_lossage ("invalid %%R value");
4676 return;
4677
4678 case 'S':
4679 fprintf (file, "%d", exact_log2 (INTVAL (x)));
4680 return;
4681
4682 case 'T':
4683 if (! TARGET_GNU_AS && GET_CODE (x) == CONST_INT)
4684 {
4685 fprintf (file, "0x%x", (int) INTVAL (x) & 0xffffffff);
4686 return;
4687 }
4688 break;
4689
4690 case 'U':
4691 if (! TARGET_GNU_AS && GET_CODE (x) == CONST_INT)
4692 {
4693 const char *prefix = "0x";
4694 if (INTVAL (x) & 0x80000000)
4695 {
4696 fprintf (file, "0xffffffff");
4697 prefix = "";
4698 }
4699 fprintf (file, "%s%x", prefix, (int) INTVAL (x) & 0xffffffff);
4700 return;
4701 }
4702 break;
4703
4704 case 'X':
4705 {
4706 unsigned int regno = REGNO (x);
4707 fprintf (file, "%s, %s", reg_names [regno], reg_names [regno + 1]);
4708 }
4709 return;
4710
4711 case 'r':
4712 /* If this operand is the constant zero, write it as register zero.
4713 Any register, zero, or CONST_INT value is OK here. */
4714 if (GET_CODE (x) == REG)
4715 fputs (reg_names[REGNO (x)], file);
4716 else if (x == CONST0_RTX (GET_MODE (x)))
4717 fputs ("r0", file);
4718 else if (GET_CODE (x) == CONST_INT)
4719 output_addr_const (file, x);
4720 else
4721 output_operand_lossage ("invalid %%r value");
4722 return;
4723
4724 case 'v':
4725 gcc_assert (GET_CODE (x) == CONST_VECTOR);
4726 x = simplify_subreg (DImode, x, GET_MODE (x), 0);
4727 break;
4728
4729 case '+':
4730 {
4731 const char *which;
4732
4733 /* For conditional branches, returns or calls, substitute
4734 sptk, dptk, dpnt, or spnt for %s. */
4735 x = find_reg_note (current_output_insn, REG_BR_PROB, 0);
4736 if (x)
4737 {
4738 int pred_val = INTVAL (XEXP (x, 0));
4739
4740 /* Guess top and bottom 10% statically predicted. */
4741 if (pred_val < REG_BR_PROB_BASE / 50
4742 && br_prob_note_reliable_p (x))
4743 which = ".spnt";
4744 else if (pred_val < REG_BR_PROB_BASE / 2)
4745 which = ".dpnt";
4746 else if (pred_val < REG_BR_PROB_BASE / 100 * 98
4747 || !br_prob_note_reliable_p (x))
4748 which = ".dptk";
4749 else
4750 which = ".sptk";
4751 }
4752 else if (GET_CODE (current_output_insn) == CALL_INSN)
4753 which = ".sptk";
4754 else
4755 which = ".dptk";
4756
4757 fputs (which, file);
4758 return;
4759 }
4760
4761 case ',':
4762 x = current_insn_predicate;
4763 if (x)
4764 {
4765 unsigned int regno = REGNO (XEXP (x, 0));
4766 if (GET_CODE (x) == EQ)
4767 regno += 1;
4768 fprintf (file, "(%s) ", reg_names [regno]);
4769 }
4770 return;
4771
4772 default:
4773 output_operand_lossage ("ia64_print_operand: unknown code");
4774 return;
4775 }
4776
4777 switch (GET_CODE (x))
4778 {
4779 /* This happens for the spill/restore instructions. */
4780 case POST_INC:
4781 case POST_DEC:
4782 case POST_MODIFY:
4783 x = XEXP (x, 0);
4784 /* ... fall through ... */
4785
4786 case REG:
4787 fputs (reg_names [REGNO (x)], file);
4788 break;
4789
4790 case MEM:
4791 {
4792 rtx addr = XEXP (x, 0);
4793 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
4794 addr = XEXP (addr, 0);
4795 fprintf (file, "[%s]", reg_names [REGNO (addr)]);
4796 break;
4797 }
4798
4799 default:
4800 output_addr_const (file, x);
4801 break;
4802 }
4803
4804 return;
4805 }
4806 \f
4807 /* Compute a (partial) cost for rtx X. Return true if the complete
4808 cost has been computed, and false if subexpressions should be
4809 scanned. In either case, *TOTAL contains the cost result. */
4810 /* ??? This is incomplete. */
4811
4812 static bool
4813 ia64_rtx_costs (rtx x, int code, int outer_code, int *total)
4814 {
4815 switch (code)
4816 {
4817 case CONST_INT:
4818 switch (outer_code)
4819 {
4820 case SET:
4821 *total = satisfies_constraint_J (x) ? 0 : COSTS_N_INSNS (1);
4822 return true;
4823 case PLUS:
4824 if (satisfies_constraint_I (x))
4825 *total = 0;
4826 else if (satisfies_constraint_J (x))
4827 *total = 1;
4828 else
4829 *total = COSTS_N_INSNS (1);
4830 return true;
4831 default:
4832 if (satisfies_constraint_K (x) || satisfies_constraint_L (x))
4833 *total = 0;
4834 else
4835 *total = COSTS_N_INSNS (1);
4836 return true;
4837 }
4838
4839 case CONST_DOUBLE:
4840 *total = COSTS_N_INSNS (1);
4841 return true;
4842
4843 case CONST:
4844 case SYMBOL_REF:
4845 case LABEL_REF:
4846 *total = COSTS_N_INSNS (3);
4847 return true;
4848
4849 case MULT:
4850 /* For multiplies wider than HImode, we have to go to the FPU,
4851 which normally involves copies. Plus there's the latency
4852 of the multiply itself, and the latency of the instructions to
4853 transfer integer regs to FP regs. */
4854 /* ??? Check for FP mode. */
4855 if (GET_MODE_SIZE (GET_MODE (x)) > 2)
4856 *total = COSTS_N_INSNS (10);
4857 else
4858 *total = COSTS_N_INSNS (2);
4859 return true;
4860
4861 case PLUS:
4862 case MINUS:
4863 case ASHIFT:
4864 case ASHIFTRT:
4865 case LSHIFTRT:
4866 *total = COSTS_N_INSNS (1);
4867 return true;
4868
4869 case DIV:
4870 case UDIV:
4871 case MOD:
4872 case UMOD:
4873 /* We make divide expensive, so that divide-by-constant will be
4874 optimized to a multiply. */
4875 *total = COSTS_N_INSNS (60);
4876 return true;
4877
4878 default:
4879 return false;
4880 }
4881 }
4882
4883 /* Calculate the cost of moving data from a register in class FROM to
4884 one in class TO, using MODE. */
4885
4886 int
4887 ia64_register_move_cost (enum machine_mode mode, enum reg_class from,
4888 enum reg_class to)
4889 {
4890 /* ADDL_REGS is the same as GR_REGS for movement purposes. */
4891 if (to == ADDL_REGS)
4892 to = GR_REGS;
4893 if (from == ADDL_REGS)
4894 from = GR_REGS;
4895
4896 /* All costs are symmetric, so reduce cases by putting the
4897 lower number class as the destination. */
4898 if (from < to)
4899 {
4900 enum reg_class tmp = to;
4901 to = from, from = tmp;
4902 }
4903
4904 /* Moving from FR<->GR in XFmode must be more expensive than 2,
4905 so that we get secondary memory reloads. Between FR_REGS,
4906 we have to make this at least as expensive as MEMORY_MOVE_COST
4907 to avoid spectacularly poor register class preferencing. */
4908 if (mode == XFmode || mode == RFmode)
4909 {
4910 if (to != GR_REGS || from != GR_REGS)
4911 return MEMORY_MOVE_COST (mode, to, 0);
4912 else
4913 return 3;
4914 }
4915
4916 switch (to)
4917 {
4918 case PR_REGS:
4919 /* Moving between PR registers takes two insns. */
4920 if (from == PR_REGS)
4921 return 3;
4922 /* Moving between PR and anything but GR is impossible. */
4923 if (from != GR_REGS)
4924 return MEMORY_MOVE_COST (mode, to, 0);
4925 break;
4926
4927 case BR_REGS:
4928 /* Moving between BR and anything but GR is impossible. */
4929 if (from != GR_REGS && from != GR_AND_BR_REGS)
4930 return MEMORY_MOVE_COST (mode, to, 0);
4931 break;
4932
4933 case AR_I_REGS:
4934 case AR_M_REGS:
4935 /* Moving between AR and anything but GR is impossible. */
4936 if (from != GR_REGS)
4937 return MEMORY_MOVE_COST (mode, to, 0);
4938 break;
4939
4940 case GR_REGS:
4941 case FR_REGS:
4942 case FP_REGS:
4943 case GR_AND_FR_REGS:
4944 case GR_AND_BR_REGS:
4945 case ALL_REGS:
4946 break;
4947
4948 default:
4949 gcc_unreachable ();
4950 }
4951
4952 return 2;
4953 }
4954
4955 /* Implement PREFERRED_RELOAD_CLASS. Place additional restrictions on CLASS
4956 to use when copying X into that class. */
4957
4958 enum reg_class
4959 ia64_preferred_reload_class (rtx x, enum reg_class class)
4960 {
4961 switch (class)
4962 {
4963 case FR_REGS:
4964 case FP_REGS:
4965 /* Don't allow volatile mem reloads into floating point registers.
4966 This is defined to force reload to choose the r/m case instead
4967 of the f/f case when reloading (set (reg fX) (mem/v)). */
4968 if (MEM_P (x) && MEM_VOLATILE_P (x))
4969 return NO_REGS;
4970
4971 /* Force all unrecognized constants into the constant pool. */
4972 if (CONSTANT_P (x))
4973 return NO_REGS;
4974 break;
4975
4976 case AR_M_REGS:
4977 case AR_I_REGS:
4978 if (!OBJECT_P (x))
4979 return NO_REGS;
4980 break;
4981
4982 default:
4983 break;
4984 }
4985
4986 return class;
4987 }
4988
4989 /* This function returns the register class required for a secondary
4990 register when copying between one of the registers in CLASS, and X,
4991 using MODE. A return value of NO_REGS means that no secondary register
4992 is required. */
4993
4994 enum reg_class
4995 ia64_secondary_reload_class (enum reg_class class,
4996 enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
4997 {
4998 int regno = -1;
4999
5000 if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
5001 regno = true_regnum (x);
5002
5003 switch (class)
5004 {
5005 case BR_REGS:
5006 case AR_M_REGS:
5007 case AR_I_REGS:
5008 /* ??? BR<->BR register copies can happen due to a bad gcse/cse/global
5009 interaction. We end up with two pseudos with overlapping lifetimes
5010 both of which are equiv to the same constant, and both which need
5011 to be in BR_REGS. This seems to be a cse bug. cse_basic_block_end
5012 changes depending on the path length, which means the qty_first_reg
5013 check in make_regs_eqv can give different answers at different times.
5014 At some point I'll probably need a reload_indi pattern to handle
5015 this.
5016
5017 We can also get GR_AND_FR_REGS to BR_REGS/AR_REGS copies, where we
5018 wound up with a FP register from GR_AND_FR_REGS. Extend that to all
5019 non-general registers for good measure. */
5020 if (regno >= 0 && ! GENERAL_REGNO_P (regno))
5021 return GR_REGS;
5022
5023 /* This is needed if a pseudo used as a call_operand gets spilled to a
5024 stack slot. */
5025 if (GET_CODE (x) == MEM)
5026 return GR_REGS;
5027 break;
5028
5029 case FR_REGS:
5030 case FP_REGS:
5031 /* Need to go through general registers to get to other class regs. */
5032 if (regno >= 0 && ! (FR_REGNO_P (regno) || GENERAL_REGNO_P (regno)))
5033 return GR_REGS;
5034
5035 /* This can happen when a paradoxical subreg is an operand to the
5036 muldi3 pattern. */
5037 /* ??? This shouldn't be necessary after instruction scheduling is
5038 enabled, because paradoxical subregs are not accepted by
5039 register_operand when INSN_SCHEDULING is defined. Or alternatively,
5040 stop the paradoxical subreg stupidity in the *_operand functions
5041 in recog.c. */
5042 if (GET_CODE (x) == MEM
5043 && (GET_MODE (x) == SImode || GET_MODE (x) == HImode
5044 || GET_MODE (x) == QImode))
5045 return GR_REGS;
5046
5047 /* This can happen because of the ior/and/etc patterns that accept FP
5048 registers as operands. If the third operand is a constant, then it
5049 needs to be reloaded into a FP register. */
5050 if (GET_CODE (x) == CONST_INT)
5051 return GR_REGS;
5052
5053 /* This can happen because of register elimination in a muldi3 insn.
5054 E.g. `26107 * (unsigned long)&u'. */
5055 if (GET_CODE (x) == PLUS)
5056 return GR_REGS;
5057 break;
5058
5059 case PR_REGS:
5060 /* ??? This happens if we cse/gcse a BImode value across a call,
5061 and the function has a nonlocal goto. This is because global
5062 does not allocate call crossing pseudos to hard registers when
5063 crtl->has_nonlocal_goto is true. This is relatively
5064 common for C++ programs that use exceptions. To reproduce,
5065 return NO_REGS and compile libstdc++. */
5066 if (GET_CODE (x) == MEM)
5067 return GR_REGS;
5068
5069 /* This can happen when we take a BImode subreg of a DImode value,
5070 and that DImode value winds up in some non-GR register. */
5071 if (regno >= 0 && ! GENERAL_REGNO_P (regno) && ! PR_REGNO_P (regno))
5072 return GR_REGS;
5073 break;
5074
5075 default:
5076 break;
5077 }
5078
5079 return NO_REGS;
5080 }
5081
5082 \f
5083 /* Implement targetm.unspec_may_trap_p hook. */
5084 static int
5085 ia64_unspec_may_trap_p (const_rtx x, unsigned flags)
5086 {
5087 if (GET_CODE (x) == UNSPEC)
5088 {
5089 switch (XINT (x, 1))
5090 {
5091 case UNSPEC_LDA:
5092 case UNSPEC_LDS:
5093 case UNSPEC_LDSA:
5094 case UNSPEC_LDCCLR:
5095 case UNSPEC_CHKACLR:
5096 case UNSPEC_CHKS:
5097 /* These unspecs are just wrappers. */
5098 return may_trap_p_1 (XVECEXP (x, 0, 0), flags);
5099 }
5100 }
5101
5102 return default_unspec_may_trap_p (x, flags);
5103 }
5104
5105 \f
5106 /* Parse the -mfixed-range= option string. */
5107
5108 static void
5109 fix_range (const char *const_str)
5110 {
5111 int i, first, last;
5112 char *str, *dash, *comma;
5113
5114 /* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
5115 REG2 are either register names or register numbers. The effect
5116 of this option is to mark the registers in the range from REG1 to
5117 REG2 as ``fixed'' so they won't be used by the compiler. This is
5118 used, e.g., to ensure that kernel mode code doesn't use f32-f127. */
5119
5120 i = strlen (const_str);
5121 str = (char *) alloca (i + 1);
5122 memcpy (str, const_str, i + 1);
5123
5124 while (1)
5125 {
5126 dash = strchr (str, '-');
5127 if (!dash)
5128 {
5129 warning (0, "value of -mfixed-range must have form REG1-REG2");
5130 return;
5131 }
5132 *dash = '\0';
5133
5134 comma = strchr (dash + 1, ',');
5135 if (comma)
5136 *comma = '\0';
5137
5138 first = decode_reg_name (str);
5139 if (first < 0)
5140 {
5141 warning (0, "unknown register name: %s", str);
5142 return;
5143 }
5144
5145 last = decode_reg_name (dash + 1);
5146 if (last < 0)
5147 {
5148 warning (0, "unknown register name: %s", dash + 1);
5149 return;
5150 }
5151
5152 *dash = '-';
5153
5154 if (first > last)
5155 {
5156 warning (0, "%s-%s is an empty range", str, dash + 1);
5157 return;
5158 }
5159
5160 for (i = first; i <= last; ++i)
5161 fixed_regs[i] = call_used_regs[i] = 1;
5162
5163 if (!comma)
5164 break;
5165
5166 *comma = ',';
5167 str = comma + 1;
5168 }
5169 }
5170
5171 /* Implement TARGET_HANDLE_OPTION. */
5172
5173 static bool
5174 ia64_handle_option (size_t code, const char *arg, int value)
5175 {
5176 switch (code)
5177 {
5178 case OPT_mfixed_range_:
5179 fix_range (arg);
5180 return true;
5181
5182 case OPT_mtls_size_:
5183 if (value != 14 && value != 22 && value != 64)
5184 error ("bad value %<%s%> for -mtls-size= switch", arg);
5185 return true;
5186
5187 case OPT_mtune_:
5188 {
5189 static struct pta
5190 {
5191 const char *name; /* processor name or nickname. */
5192 enum processor_type processor;
5193 }
5194 const processor_alias_table[] =
5195 {
5196 {"itanium", PROCESSOR_ITANIUM},
5197 {"itanium1", PROCESSOR_ITANIUM},
5198 {"merced", PROCESSOR_ITANIUM},
5199 {"itanium2", PROCESSOR_ITANIUM2},
5200 {"mckinley", PROCESSOR_ITANIUM2},
5201 };
5202 int const pta_size = ARRAY_SIZE (processor_alias_table);
5203 int i;
5204
5205 for (i = 0; i < pta_size; i++)
5206 if (!strcmp (arg, processor_alias_table[i].name))
5207 {
5208 ia64_tune = processor_alias_table[i].processor;
5209 break;
5210 }
5211 if (i == pta_size)
5212 error ("bad value %<%s%> for -mtune= switch", arg);
5213 return true;
5214 }
5215
5216 default:
5217 return true;
5218 }
5219 }
5220
5221 /* Implement OVERRIDE_OPTIONS. */
5222
5223 void
5224 ia64_override_options (void)
5225 {
5226 if (TARGET_AUTO_PIC)
5227 target_flags |= MASK_CONST_GP;
5228
5229 if (TARGET_INLINE_SQRT == INL_MIN_LAT)
5230 {
5231 warning (0, "not yet implemented: latency-optimized inline square root");
5232 TARGET_INLINE_SQRT = INL_MAX_THR;
5233 }
5234
5235 ia64_flag_schedule_insns2 = flag_schedule_insns_after_reload;
5236 flag_schedule_insns_after_reload = 0;
5237
5238 ia64_section_threshold = g_switch_set ? g_switch_value : IA64_DEFAULT_GVALUE;
5239
5240 init_machine_status = ia64_init_machine_status;
5241 }
5242
5243 /* Initialize the record of emitted frame related registers. */
5244
5245 void ia64_init_expanders (void)
5246 {
5247 memset (&emitted_frame_related_regs, 0, sizeof (emitted_frame_related_regs));
5248 }
5249
5250 static struct machine_function *
5251 ia64_init_machine_status (void)
5252 {
5253 return GGC_CNEW (struct machine_function);
5254 }
5255 \f
5256 static enum attr_itanium_class ia64_safe_itanium_class (rtx);
5257 static enum attr_type ia64_safe_type (rtx);
5258
5259 static enum attr_itanium_class
5260 ia64_safe_itanium_class (rtx insn)
5261 {
5262 if (recog_memoized (insn) >= 0)
5263 return get_attr_itanium_class (insn);
5264 else
5265 return ITANIUM_CLASS_UNKNOWN;
5266 }
5267
5268 static enum attr_type
5269 ia64_safe_type (rtx insn)
5270 {
5271 if (recog_memoized (insn) >= 0)
5272 return get_attr_type (insn);
5273 else
5274 return TYPE_UNKNOWN;
5275 }
5276 \f
5277 /* The following collection of routines emit instruction group stop bits as
5278 necessary to avoid dependencies. */
5279
5280 /* Need to track some additional registers as far as serialization is
5281 concerned so we can properly handle br.call and br.ret. We could
5282 make these registers visible to gcc, but since these registers are
5283 never explicitly used in gcc generated code, it seems wasteful to
5284 do so (plus it would make the call and return patterns needlessly
5285 complex). */
5286 #define REG_RP (BR_REG (0))
5287 #define REG_AR_CFM (FIRST_PSEUDO_REGISTER + 1)
5288 /* This is used for volatile asms which may require a stop bit immediately
5289 before and after them. */
5290 #define REG_VOLATILE (FIRST_PSEUDO_REGISTER + 2)
5291 #define AR_UNAT_BIT_0 (FIRST_PSEUDO_REGISTER + 3)
5292 #define NUM_REGS (AR_UNAT_BIT_0 + 64)
5293
5294 /* For each register, we keep track of how it has been written in the
5295 current instruction group.
5296
5297 If a register is written unconditionally (no qualifying predicate),
5298 WRITE_COUNT is set to 2 and FIRST_PRED is ignored.
5299
5300 If a register is written if its qualifying predicate P is true, we
5301 set WRITE_COUNT to 1 and FIRST_PRED to P. Later on, the same register
5302 may be written again by the complement of P (P^1) and when this happens,
5303 WRITE_COUNT gets set to 2.
5304
5305 The result of this is that whenever an insn attempts to write a register
5306 whose WRITE_COUNT is two, we need to issue an insn group barrier first.
5307
5308 If a predicate register is written by a floating-point insn, we set
5309 WRITTEN_BY_FP to true.
5310
5311 If a predicate register is written by an AND.ORCM we set WRITTEN_BY_AND
5312 to true; if it was written by an OR.ANDCM we set WRITTEN_BY_OR to true. */
5313
5314 #if GCC_VERSION >= 4000
5315 #define RWS_FIELD_TYPE __extension__ unsigned short
5316 #else
5317 #define RWS_FIELD_TYPE unsigned int
5318 #endif
5319 struct reg_write_state
5320 {
5321 RWS_FIELD_TYPE write_count : 2;
5322 RWS_FIELD_TYPE first_pred : 10;
5323 RWS_FIELD_TYPE written_by_fp : 1;
5324 RWS_FIELD_TYPE written_by_and : 1;
5325 RWS_FIELD_TYPE written_by_or : 1;
5326 };
5327
5328 /* Cumulative info for the current instruction group. */
5329 struct reg_write_state rws_sum[NUM_REGS];
5330 #ifdef ENABLE_CHECKING
5331 /* Bitmap whether a register has been written in the current insn. */
5332 HARD_REG_ELT_TYPE rws_insn[(NUM_REGS + HOST_BITS_PER_WIDEST_FAST_INT - 1)
5333 / HOST_BITS_PER_WIDEST_FAST_INT];
5334
5335 static inline void
5336 rws_insn_set (int regno)
5337 {
5338 gcc_assert (!TEST_HARD_REG_BIT (rws_insn, regno));
5339 SET_HARD_REG_BIT (rws_insn, regno);
5340 }
5341
5342 static inline int
5343 rws_insn_test (int regno)
5344 {
5345 return TEST_HARD_REG_BIT (rws_insn, regno);
5346 }
5347 #else
5348 /* When not checking, track just REG_AR_CFM and REG_VOLATILE. */
5349 unsigned char rws_insn[2];
5350
5351 static inline void
5352 rws_insn_set (int regno)
5353 {
5354 if (regno == REG_AR_CFM)
5355 rws_insn[0] = 1;
5356 else if (regno == REG_VOLATILE)
5357 rws_insn[1] = 1;
5358 }
5359
5360 static inline int
5361 rws_insn_test (int regno)
5362 {
5363 if (regno == REG_AR_CFM)
5364 return rws_insn[0];
5365 if (regno == REG_VOLATILE)
5366 return rws_insn[1];
5367 return 0;
5368 }
5369 #endif
5370
5371 /* Indicates whether this is the first instruction after a stop bit,
5372 in which case we don't need another stop bit. Without this,
5373 ia64_variable_issue will die when scheduling an alloc. */
5374 static int first_instruction;
5375
5376 /* Misc flags needed to compute RAW/WAW dependencies while we are traversing
5377 RTL for one instruction. */
5378 struct reg_flags
5379 {
5380 unsigned int is_write : 1; /* Is register being written? */
5381 unsigned int is_fp : 1; /* Is register used as part of an fp op? */
5382 unsigned int is_branch : 1; /* Is register used as part of a branch? */
5383 unsigned int is_and : 1; /* Is register used as part of and.orcm? */
5384 unsigned int is_or : 1; /* Is register used as part of or.andcm? */
5385 unsigned int is_sibcall : 1; /* Is this a sibling or normal call? */
5386 };
5387
5388 static void rws_update (int, struct reg_flags, int);
5389 static int rws_access_regno (int, struct reg_flags, int);
5390 static int rws_access_reg (rtx, struct reg_flags, int);
5391 static void update_set_flags (rtx, struct reg_flags *);
5392 static int set_src_needs_barrier (rtx, struct reg_flags, int);
5393 static int rtx_needs_barrier (rtx, struct reg_flags, int);
5394 static void init_insn_group_barriers (void);
5395 static int group_barrier_needed (rtx);
5396 static int safe_group_barrier_needed (rtx);
5397 static int in_safe_group_barrier;
5398
5399 /* Update *RWS for REGNO, which is being written by the current instruction,
5400 with predicate PRED, and associated register flags in FLAGS. */
5401
5402 static void
5403 rws_update (int regno, struct reg_flags flags, int pred)
5404 {
5405 if (pred)
5406 rws_sum[regno].write_count++;
5407 else
5408 rws_sum[regno].write_count = 2;
5409 rws_sum[regno].written_by_fp |= flags.is_fp;
5410 /* ??? Not tracking and/or across differing predicates. */
5411 rws_sum[regno].written_by_and = flags.is_and;
5412 rws_sum[regno].written_by_or = flags.is_or;
5413 rws_sum[regno].first_pred = pred;
5414 }
5415
5416 /* Handle an access to register REGNO of type FLAGS using predicate register
5417 PRED. Update rws_sum array. Return 1 if this access creates
5418 a dependency with an earlier instruction in the same group. */
5419
5420 static int
5421 rws_access_regno (int regno, struct reg_flags flags, int pred)
5422 {
5423 int need_barrier = 0;
5424
5425 gcc_assert (regno < NUM_REGS);
5426
5427 if (! PR_REGNO_P (regno))
5428 flags.is_and = flags.is_or = 0;
5429
5430 if (flags.is_write)
5431 {
5432 int write_count;
5433
5434 rws_insn_set (regno);
5435 write_count = rws_sum[regno].write_count;
5436
5437 switch (write_count)
5438 {
5439 case 0:
5440 /* The register has not been written yet. */
5441 if (!in_safe_group_barrier)
5442 rws_update (regno, flags, pred);
5443 break;
5444
5445 case 1:
5446 /* The register has been written via a predicate. If this is
5447 not a complementary predicate, then we need a barrier. */
5448 /* ??? This assumes that P and P+1 are always complementary
5449 predicates for P even. */
5450 if (flags.is_and && rws_sum[regno].written_by_and)
5451 ;
5452 else if (flags.is_or && rws_sum[regno].written_by_or)
5453 ;
5454 else if ((rws_sum[regno].first_pred ^ 1) != pred)
5455 need_barrier = 1;
5456 if (!in_safe_group_barrier)
5457 rws_update (regno, flags, pred);
5458 break;
5459
5460 case 2:
5461 /* The register has been unconditionally written already. We
5462 need a barrier. */
5463 if (flags.is_and && rws_sum[regno].written_by_and)
5464 ;
5465 else if (flags.is_or && rws_sum[regno].written_by_or)
5466 ;
5467 else
5468 need_barrier = 1;
5469 if (!in_safe_group_barrier)
5470 {
5471 rws_sum[regno].written_by_and = flags.is_and;
5472 rws_sum[regno].written_by_or = flags.is_or;
5473 }
5474 break;
5475
5476 default:
5477 gcc_unreachable ();
5478 }
5479 }
5480 else
5481 {
5482 if (flags.is_branch)
5483 {
5484 /* Branches have several RAW exceptions that allow to avoid
5485 barriers. */
5486
5487 if (REGNO_REG_CLASS (regno) == BR_REGS || regno == AR_PFS_REGNUM)
5488 /* RAW dependencies on branch regs are permissible as long
5489 as the writer is a non-branch instruction. Since we
5490 never generate code that uses a branch register written
5491 by a branch instruction, handling this case is
5492 easy. */
5493 return 0;
5494
5495 if (REGNO_REG_CLASS (regno) == PR_REGS
5496 && ! rws_sum[regno].written_by_fp)
5497 /* The predicates of a branch are available within the
5498 same insn group as long as the predicate was written by
5499 something other than a floating-point instruction. */
5500 return 0;
5501 }
5502
5503 if (flags.is_and && rws_sum[regno].written_by_and)
5504 return 0;
5505 if (flags.is_or && rws_sum[regno].written_by_or)
5506 return 0;
5507
5508 switch (rws_sum[regno].write_count)
5509 {
5510 case 0:
5511 /* The register has not been written yet. */
5512 break;
5513
5514 case 1:
5515 /* The register has been written via a predicate. If this is
5516 not a complementary predicate, then we need a barrier. */
5517 /* ??? This assumes that P and P+1 are always complementary
5518 predicates for P even. */
5519 if ((rws_sum[regno].first_pred ^ 1) != pred)
5520 need_barrier = 1;
5521 break;
5522
5523 case 2:
5524 /* The register has been unconditionally written already. We
5525 need a barrier. */
5526 need_barrier = 1;
5527 break;
5528
5529 default:
5530 gcc_unreachable ();
5531 }
5532 }
5533
5534 return need_barrier;
5535 }
5536
5537 static int
5538 rws_access_reg (rtx reg, struct reg_flags flags, int pred)
5539 {
5540 int regno = REGNO (reg);
5541 int n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
5542
5543 if (n == 1)
5544 return rws_access_regno (regno, flags, pred);
5545 else
5546 {
5547 int need_barrier = 0;
5548 while (--n >= 0)
5549 need_barrier |= rws_access_regno (regno + n, flags, pred);
5550 return need_barrier;
5551 }
5552 }
5553
5554 /* Examine X, which is a SET rtx, and update the flags, the predicate, and
5555 the condition, stored in *PFLAGS, *PPRED and *PCOND. */
5556
5557 static void
5558 update_set_flags (rtx x, struct reg_flags *pflags)
5559 {
5560 rtx src = SET_SRC (x);
5561
5562 switch (GET_CODE (src))
5563 {
5564 case CALL:
5565 return;
5566
5567 case IF_THEN_ELSE:
5568 /* There are four cases here:
5569 (1) The destination is (pc), in which case this is a branch,
5570 nothing here applies.
5571 (2) The destination is ar.lc, in which case this is a
5572 doloop_end_internal,
5573 (3) The destination is an fp register, in which case this is
5574 an fselect instruction.
5575 (4) The condition has (unspec [(reg)] UNSPEC_LDC), in which case
5576 this is a check load.
5577 In all cases, nothing we do in this function applies. */
5578 return;
5579
5580 default:
5581 if (COMPARISON_P (src)
5582 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (src, 0))))
5583 /* Set pflags->is_fp to 1 so that we know we're dealing
5584 with a floating point comparison when processing the
5585 destination of the SET. */
5586 pflags->is_fp = 1;
5587
5588 /* Discover if this is a parallel comparison. We only handle
5589 and.orcm and or.andcm at present, since we must retain a
5590 strict inverse on the predicate pair. */
5591 else if (GET_CODE (src) == AND)
5592 pflags->is_and = 1;
5593 else if (GET_CODE (src) == IOR)
5594 pflags->is_or = 1;
5595
5596 break;
5597 }
5598 }
5599
5600 /* Subroutine of rtx_needs_barrier; this function determines whether the
5601 source of a given SET rtx found in X needs a barrier. FLAGS and PRED
5602 are as in rtx_needs_barrier. COND is an rtx that holds the condition
5603 for this insn. */
5604
5605 static int
5606 set_src_needs_barrier (rtx x, struct reg_flags flags, int pred)
5607 {
5608 int need_barrier = 0;
5609 rtx dst;
5610 rtx src = SET_SRC (x);
5611
5612 if (GET_CODE (src) == CALL)
5613 /* We don't need to worry about the result registers that
5614 get written by subroutine call. */
5615 return rtx_needs_barrier (src, flags, pred);
5616 else if (SET_DEST (x) == pc_rtx)
5617 {
5618 /* X is a conditional branch. */
5619 /* ??? This seems redundant, as the caller sets this bit for
5620 all JUMP_INSNs. */
5621 if (!ia64_spec_check_src_p (src))
5622 flags.is_branch = 1;
5623 return rtx_needs_barrier (src, flags, pred);
5624 }
5625
5626 if (ia64_spec_check_src_p (src))
5627 /* Avoid checking one register twice (in condition
5628 and in 'then' section) for ldc pattern. */
5629 {
5630 gcc_assert (REG_P (XEXP (src, 2)));
5631 need_barrier = rtx_needs_barrier (XEXP (src, 2), flags, pred);
5632
5633 /* We process MEM below. */
5634 src = XEXP (src, 1);
5635 }
5636
5637 need_barrier |= rtx_needs_barrier (src, flags, pred);
5638
5639 dst = SET_DEST (x);
5640 if (GET_CODE (dst) == ZERO_EXTRACT)
5641 {
5642 need_barrier |= rtx_needs_barrier (XEXP (dst, 1), flags, pred);
5643 need_barrier |= rtx_needs_barrier (XEXP (dst, 2), flags, pred);
5644 }
5645 return need_barrier;
5646 }
5647
5648 /* Handle an access to rtx X of type FLAGS using predicate register
5649 PRED. Return 1 if this access creates a dependency with an earlier
5650 instruction in the same group. */
5651
5652 static int
5653 rtx_needs_barrier (rtx x, struct reg_flags flags, int pred)
5654 {
5655 int i, j;
5656 int is_complemented = 0;
5657 int need_barrier = 0;
5658 const char *format_ptr;
5659 struct reg_flags new_flags;
5660 rtx cond;
5661
5662 if (! x)
5663 return 0;
5664
5665 new_flags = flags;
5666
5667 switch (GET_CODE (x))
5668 {
5669 case SET:
5670 update_set_flags (x, &new_flags);
5671 need_barrier = set_src_needs_barrier (x, new_flags, pred);
5672 if (GET_CODE (SET_SRC (x)) != CALL)
5673 {
5674 new_flags.is_write = 1;
5675 need_barrier |= rtx_needs_barrier (SET_DEST (x), new_flags, pred);
5676 }
5677 break;
5678
5679 case CALL:
5680 new_flags.is_write = 0;
5681 need_barrier |= rws_access_regno (AR_EC_REGNUM, new_flags, pred);
5682
5683 /* Avoid multiple register writes, in case this is a pattern with
5684 multiple CALL rtx. This avoids a failure in rws_access_reg. */
5685 if (! flags.is_sibcall && ! rws_insn_test (REG_AR_CFM))
5686 {
5687 new_flags.is_write = 1;
5688 need_barrier |= rws_access_regno (REG_RP, new_flags, pred);
5689 need_barrier |= rws_access_regno (AR_PFS_REGNUM, new_flags, pred);
5690 need_barrier |= rws_access_regno (REG_AR_CFM, new_flags, pred);
5691 }
5692 break;
5693
5694 case COND_EXEC:
5695 /* X is a predicated instruction. */
5696
5697 cond = COND_EXEC_TEST (x);
5698 gcc_assert (!pred);
5699 need_barrier = rtx_needs_barrier (cond, flags, 0);
5700
5701 if (GET_CODE (cond) == EQ)
5702 is_complemented = 1;
5703 cond = XEXP (cond, 0);
5704 gcc_assert (GET_CODE (cond) == REG
5705 && REGNO_REG_CLASS (REGNO (cond)) == PR_REGS);
5706 pred = REGNO (cond);
5707 if (is_complemented)
5708 ++pred;
5709
5710 need_barrier |= rtx_needs_barrier (COND_EXEC_CODE (x), flags, pred);
5711 return need_barrier;
5712
5713 case CLOBBER:
5714 case USE:
5715 /* Clobber & use are for earlier compiler-phases only. */
5716 break;
5717
5718 case ASM_OPERANDS:
5719 case ASM_INPUT:
5720 /* We always emit stop bits for traditional asms. We emit stop bits
5721 for volatile extended asms if TARGET_VOL_ASM_STOP is true. */
5722 if (GET_CODE (x) != ASM_OPERANDS
5723 || (MEM_VOLATILE_P (x) && TARGET_VOL_ASM_STOP))
5724 {
5725 /* Avoid writing the register multiple times if we have multiple
5726 asm outputs. This avoids a failure in rws_access_reg. */
5727 if (! rws_insn_test (REG_VOLATILE))
5728 {
5729 new_flags.is_write = 1;
5730 rws_access_regno (REG_VOLATILE, new_flags, pred);
5731 }
5732 return 1;
5733 }
5734
5735 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
5736 We cannot just fall through here since then we would be confused
5737 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
5738 traditional asms unlike their normal usage. */
5739
5740 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; --i)
5741 if (rtx_needs_barrier (ASM_OPERANDS_INPUT (x, i), flags, pred))
5742 need_barrier = 1;
5743 break;
5744
5745 case PARALLEL:
5746 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
5747 {
5748 rtx pat = XVECEXP (x, 0, i);
5749 switch (GET_CODE (pat))
5750 {
5751 case SET:
5752 update_set_flags (pat, &new_flags);
5753 need_barrier |= set_src_needs_barrier (pat, new_flags, pred);
5754 break;
5755
5756 case USE:
5757 case CALL:
5758 case ASM_OPERANDS:
5759 need_barrier |= rtx_needs_barrier (pat, flags, pred);
5760 break;
5761
5762 case CLOBBER:
5763 case RETURN:
5764 break;
5765
5766 default:
5767 gcc_unreachable ();
5768 }
5769 }
5770 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
5771 {
5772 rtx pat = XVECEXP (x, 0, i);
5773 if (GET_CODE (pat) == SET)
5774 {
5775 if (GET_CODE (SET_SRC (pat)) != CALL)
5776 {
5777 new_flags.is_write = 1;
5778 need_barrier |= rtx_needs_barrier (SET_DEST (pat), new_flags,
5779 pred);
5780 }
5781 }
5782 else if (GET_CODE (pat) == CLOBBER || GET_CODE (pat) == RETURN)
5783 need_barrier |= rtx_needs_barrier (pat, flags, pred);
5784 }
5785 break;
5786
5787 case SUBREG:
5788 need_barrier |= rtx_needs_barrier (SUBREG_REG (x), flags, pred);
5789 break;
5790 case REG:
5791 if (REGNO (x) == AR_UNAT_REGNUM)
5792 {
5793 for (i = 0; i < 64; ++i)
5794 need_barrier |= rws_access_regno (AR_UNAT_BIT_0 + i, flags, pred);
5795 }
5796 else
5797 need_barrier = rws_access_reg (x, flags, pred);
5798 break;
5799
5800 case MEM:
5801 /* Find the regs used in memory address computation. */
5802 new_flags.is_write = 0;
5803 need_barrier = rtx_needs_barrier (XEXP (x, 0), new_flags, pred);
5804 break;
5805
5806 case CONST_INT: case CONST_DOUBLE: case CONST_VECTOR:
5807 case SYMBOL_REF: case LABEL_REF: case CONST:
5808 break;
5809
5810 /* Operators with side-effects. */
5811 case POST_INC: case POST_DEC:
5812 gcc_assert (GET_CODE (XEXP (x, 0)) == REG);
5813
5814 new_flags.is_write = 0;
5815 need_barrier = rws_access_reg (XEXP (x, 0), new_flags, pred);
5816 new_flags.is_write = 1;
5817 need_barrier |= rws_access_reg (XEXP (x, 0), new_flags, pred);
5818 break;
5819
5820 case POST_MODIFY:
5821 gcc_assert (GET_CODE (XEXP (x, 0)) == REG);
5822
5823 new_flags.is_write = 0;
5824 need_barrier = rws_access_reg (XEXP (x, 0), new_flags, pred);
5825 need_barrier |= rtx_needs_barrier (XEXP (x, 1), new_flags, pred);
5826 new_flags.is_write = 1;
5827 need_barrier |= rws_access_reg (XEXP (x, 0), new_flags, pred);
5828 break;
5829
5830 /* Handle common unary and binary ops for efficiency. */
5831 case COMPARE: case PLUS: case MINUS: case MULT: case DIV:
5832 case MOD: case UDIV: case UMOD: case AND: case IOR:
5833 case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT:
5834 case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX:
5835 case NE: case EQ: case GE: case GT: case LE:
5836 case LT: case GEU: case GTU: case LEU: case LTU:
5837 need_barrier = rtx_needs_barrier (XEXP (x, 0), new_flags, pred);
5838 need_barrier |= rtx_needs_barrier (XEXP (x, 1), new_flags, pred);
5839 break;
5840
5841 case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND:
5842 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT:
5843 case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS:
5844 case SQRT: case FFS: case POPCOUNT:
5845 need_barrier = rtx_needs_barrier (XEXP (x, 0), flags, pred);
5846 break;
5847
5848 case VEC_SELECT:
5849 /* VEC_SELECT's second argument is a PARALLEL with integers that
5850 describe the elements selected. On ia64, those integers are
5851 always constants. Avoid walking the PARALLEL so that we don't
5852 get confused with "normal" parallels and then die. */
5853 need_barrier = rtx_needs_barrier (XEXP (x, 0), flags, pred);
5854 break;
5855
5856 case UNSPEC:
5857 switch (XINT (x, 1))
5858 {
5859 case UNSPEC_LTOFF_DTPMOD:
5860 case UNSPEC_LTOFF_DTPREL:
5861 case UNSPEC_DTPREL:
5862 case UNSPEC_LTOFF_TPREL:
5863 case UNSPEC_TPREL:
5864 case UNSPEC_PRED_REL_MUTEX:
5865 case UNSPEC_PIC_CALL:
5866 case UNSPEC_MF:
5867 case UNSPEC_FETCHADD_ACQ:
5868 case UNSPEC_BSP_VALUE:
5869 case UNSPEC_FLUSHRS:
5870 case UNSPEC_BUNDLE_SELECTOR:
5871 break;
5872
5873 case UNSPEC_GR_SPILL:
5874 case UNSPEC_GR_RESTORE:
5875 {
5876 HOST_WIDE_INT offset = INTVAL (XVECEXP (x, 0, 1));
5877 HOST_WIDE_INT bit = (offset >> 3) & 63;
5878
5879 need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred);
5880 new_flags.is_write = (XINT (x, 1) == UNSPEC_GR_SPILL);
5881 need_barrier |= rws_access_regno (AR_UNAT_BIT_0 + bit,
5882 new_flags, pred);
5883 break;
5884 }
5885
5886 case UNSPEC_FR_SPILL:
5887 case UNSPEC_FR_RESTORE:
5888 case UNSPEC_GETF_EXP:
5889 case UNSPEC_SETF_EXP:
5890 case UNSPEC_ADDP4:
5891 case UNSPEC_FR_SQRT_RECIP_APPROX:
5892 case UNSPEC_FR_SQRT_RECIP_APPROX_RES:
5893 case UNSPEC_LDA:
5894 case UNSPEC_LDS:
5895 case UNSPEC_LDSA:
5896 case UNSPEC_CHKACLR:
5897 case UNSPEC_CHKS:
5898 need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred);
5899 break;
5900
5901 case UNSPEC_FR_RECIP_APPROX:
5902 case UNSPEC_SHRP:
5903 case UNSPEC_COPYSIGN:
5904 case UNSPEC_FR_RECIP_APPROX_RES:
5905 need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred);
5906 need_barrier |= rtx_needs_barrier (XVECEXP (x, 0, 1), flags, pred);
5907 break;
5908
5909 case UNSPEC_CMPXCHG_ACQ:
5910 need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 1), flags, pred);
5911 need_barrier |= rtx_needs_barrier (XVECEXP (x, 0, 2), flags, pred);
5912 break;
5913
5914 default:
5915 gcc_unreachable ();
5916 }
5917 break;
5918
5919 case UNSPEC_VOLATILE:
5920 switch (XINT (x, 1))
5921 {
5922 case UNSPECV_ALLOC:
5923 /* Alloc must always be the first instruction of a group.
5924 We force this by always returning true. */
5925 /* ??? We might get better scheduling if we explicitly check for
5926 input/local/output register dependencies, and modify the
5927 scheduler so that alloc is always reordered to the start of
5928 the current group. We could then eliminate all of the
5929 first_instruction code. */
5930 rws_access_regno (AR_PFS_REGNUM, flags, pred);
5931
5932 new_flags.is_write = 1;
5933 rws_access_regno (REG_AR_CFM, new_flags, pred);
5934 return 1;
5935
5936 case UNSPECV_SET_BSP:
5937 need_barrier = 1;
5938 break;
5939
5940 case UNSPECV_BLOCKAGE:
5941 case UNSPECV_INSN_GROUP_BARRIER:
5942 case UNSPECV_BREAK:
5943 case UNSPECV_PSAC_ALL:
5944 case UNSPECV_PSAC_NORMAL:
5945 return 0;
5946
5947 default:
5948 gcc_unreachable ();
5949 }
5950 break;
5951
5952 case RETURN:
5953 new_flags.is_write = 0;
5954 need_barrier = rws_access_regno (REG_RP, flags, pred);
5955 need_barrier |= rws_access_regno (AR_PFS_REGNUM, flags, pred);
5956
5957 new_flags.is_write = 1;
5958 need_barrier |= rws_access_regno (AR_EC_REGNUM, new_flags, pred);
5959 need_barrier |= rws_access_regno (REG_AR_CFM, new_flags, pred);
5960 break;
5961
5962 default:
5963 format_ptr = GET_RTX_FORMAT (GET_CODE (x));
5964 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5965 switch (format_ptr[i])
5966 {
5967 case '0': /* unused field */
5968 case 'i': /* integer */
5969 case 'n': /* note */
5970 case 'w': /* wide integer */
5971 case 's': /* pointer to string */
5972 case 'S': /* optional pointer to string */
5973 break;
5974
5975 case 'e':
5976 if (rtx_needs_barrier (XEXP (x, i), flags, pred))
5977 need_barrier = 1;
5978 break;
5979
5980 case 'E':
5981 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
5982 if (rtx_needs_barrier (XVECEXP (x, i, j), flags, pred))
5983 need_barrier = 1;
5984 break;
5985
5986 default:
5987 gcc_unreachable ();
5988 }
5989 break;
5990 }
5991 return need_barrier;
5992 }
5993
5994 /* Clear out the state for group_barrier_needed at the start of a
5995 sequence of insns. */
5996
5997 static void
5998 init_insn_group_barriers (void)
5999 {
6000 memset (rws_sum, 0, sizeof (rws_sum));
6001 first_instruction = 1;
6002 }
6003
6004 /* Given the current state, determine whether a group barrier (a stop bit) is
6005 necessary before INSN. Return nonzero if so. This modifies the state to
6006 include the effects of INSN as a side-effect. */
6007
6008 static int
6009 group_barrier_needed (rtx insn)
6010 {
6011 rtx pat;
6012 int need_barrier = 0;
6013 struct reg_flags flags;
6014
6015 memset (&flags, 0, sizeof (flags));
6016 switch (GET_CODE (insn))
6017 {
6018 case NOTE:
6019 break;
6020
6021 case BARRIER:
6022 /* A barrier doesn't imply an instruction group boundary. */
6023 break;
6024
6025 case CODE_LABEL:
6026 memset (rws_insn, 0, sizeof (rws_insn));
6027 return 1;
6028
6029 case CALL_INSN:
6030 flags.is_branch = 1;
6031 flags.is_sibcall = SIBLING_CALL_P (insn);
6032 memset (rws_insn, 0, sizeof (rws_insn));
6033
6034 /* Don't bundle a call following another call. */
6035 if ((pat = prev_active_insn (insn))
6036 && GET_CODE (pat) == CALL_INSN)
6037 {
6038 need_barrier = 1;
6039 break;
6040 }
6041
6042 need_barrier = rtx_needs_barrier (PATTERN (insn), flags, 0);
6043 break;
6044
6045 case JUMP_INSN:
6046 if (!ia64_spec_check_p (insn))
6047 flags.is_branch = 1;
6048
6049 /* Don't bundle a jump following a call. */
6050 if ((pat = prev_active_insn (insn))
6051 && GET_CODE (pat) == CALL_INSN)
6052 {
6053 need_barrier = 1;
6054 break;
6055 }
6056 /* FALLTHRU */
6057
6058 case INSN:
6059 if (GET_CODE (PATTERN (insn)) == USE
6060 || GET_CODE (PATTERN (insn)) == CLOBBER)
6061 /* Don't care about USE and CLOBBER "insns"---those are used to
6062 indicate to the optimizer that it shouldn't get rid of
6063 certain operations. */
6064 break;
6065
6066 pat = PATTERN (insn);
6067
6068 /* Ug. Hack hacks hacked elsewhere. */
6069 switch (recog_memoized (insn))
6070 {
6071 /* We play dependency tricks with the epilogue in order
6072 to get proper schedules. Undo this for dv analysis. */
6073 case CODE_FOR_epilogue_deallocate_stack:
6074 case CODE_FOR_prologue_allocate_stack:
6075 pat = XVECEXP (pat, 0, 0);
6076 break;
6077
6078 /* The pattern we use for br.cloop confuses the code above.
6079 The second element of the vector is representative. */
6080 case CODE_FOR_doloop_end_internal:
6081 pat = XVECEXP (pat, 0, 1);
6082 break;
6083
6084 /* Doesn't generate code. */
6085 case CODE_FOR_pred_rel_mutex:
6086 case CODE_FOR_prologue_use:
6087 return 0;
6088
6089 default:
6090 break;
6091 }
6092
6093 memset (rws_insn, 0, sizeof (rws_insn));
6094 need_barrier = rtx_needs_barrier (pat, flags, 0);
6095
6096 /* Check to see if the previous instruction was a volatile
6097 asm. */
6098 if (! need_barrier)
6099 need_barrier = rws_access_regno (REG_VOLATILE, flags, 0);
6100 break;
6101
6102 default:
6103 gcc_unreachable ();
6104 }
6105
6106 if (first_instruction && INSN_P (insn)
6107 && ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
6108 && GET_CODE (PATTERN (insn)) != USE
6109 && GET_CODE (PATTERN (insn)) != CLOBBER)
6110 {
6111 need_barrier = 0;
6112 first_instruction = 0;
6113 }
6114
6115 return need_barrier;
6116 }
6117
6118 /* Like group_barrier_needed, but do not clobber the current state. */
6119
6120 static int
6121 safe_group_barrier_needed (rtx insn)
6122 {
6123 int saved_first_instruction;
6124 int t;
6125
6126 saved_first_instruction = first_instruction;
6127 in_safe_group_barrier = 1;
6128
6129 t = group_barrier_needed (insn);
6130
6131 first_instruction = saved_first_instruction;
6132 in_safe_group_barrier = 0;
6133
6134 return t;
6135 }
6136
6137 /* Scan the current function and insert stop bits as necessary to
6138 eliminate dependencies. This function assumes that a final
6139 instruction scheduling pass has been run which has already
6140 inserted most of the necessary stop bits. This function only
6141 inserts new ones at basic block boundaries, since these are
6142 invisible to the scheduler. */
6143
6144 static void
6145 emit_insn_group_barriers (FILE *dump)
6146 {
6147 rtx insn;
6148 rtx last_label = 0;
6149 int insns_since_last_label = 0;
6150
6151 init_insn_group_barriers ();
6152
6153 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6154 {
6155 if (GET_CODE (insn) == CODE_LABEL)
6156 {
6157 if (insns_since_last_label)
6158 last_label = insn;
6159 insns_since_last_label = 0;
6160 }
6161 else if (GET_CODE (insn) == NOTE
6162 && NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK)
6163 {
6164 if (insns_since_last_label)
6165 last_label = insn;
6166 insns_since_last_label = 0;
6167 }
6168 else if (GET_CODE (insn) == INSN
6169 && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
6170 && XINT (PATTERN (insn), 1) == UNSPECV_INSN_GROUP_BARRIER)
6171 {
6172 init_insn_group_barriers ();
6173 last_label = 0;
6174 }
6175 else if (INSN_P (insn))
6176 {
6177 insns_since_last_label = 1;
6178
6179 if (group_barrier_needed (insn))
6180 {
6181 if (last_label)
6182 {
6183 if (dump)
6184 fprintf (dump, "Emitting stop before label %d\n",
6185 INSN_UID (last_label));
6186 emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), last_label);
6187 insn = last_label;
6188
6189 init_insn_group_barriers ();
6190 last_label = 0;
6191 }
6192 }
6193 }
6194 }
6195 }
6196
6197 /* Like emit_insn_group_barriers, but run if no final scheduling pass was run.
6198 This function has to emit all necessary group barriers. */
6199
6200 static void
6201 emit_all_insn_group_barriers (FILE *dump ATTRIBUTE_UNUSED)
6202 {
6203 rtx insn;
6204
6205 init_insn_group_barriers ();
6206
6207 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6208 {
6209 if (GET_CODE (insn) == BARRIER)
6210 {
6211 rtx last = prev_active_insn (insn);
6212
6213 if (! last)
6214 continue;
6215 if (GET_CODE (last) == JUMP_INSN
6216 && GET_CODE (PATTERN (last)) == ADDR_DIFF_VEC)
6217 last = prev_active_insn (last);
6218 if (recog_memoized (last) != CODE_FOR_insn_group_barrier)
6219 emit_insn_after (gen_insn_group_barrier (GEN_INT (3)), last);
6220
6221 init_insn_group_barriers ();
6222 }
6223 else if (INSN_P (insn))
6224 {
6225 if (recog_memoized (insn) == CODE_FOR_insn_group_barrier)
6226 init_insn_group_barriers ();
6227 else if (group_barrier_needed (insn))
6228 {
6229 emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), insn);
6230 init_insn_group_barriers ();
6231 group_barrier_needed (insn);
6232 }
6233 }
6234 }
6235 }
6236
6237 \f
6238
6239 /* Instruction scheduling support. */
6240
6241 #define NR_BUNDLES 10
6242
6243 /* A list of names of all available bundles. */
6244
6245 static const char *bundle_name [NR_BUNDLES] =
6246 {
6247 ".mii",
6248 ".mmi",
6249 ".mfi",
6250 ".mmf",
6251 #if NR_BUNDLES == 10
6252 ".bbb",
6253 ".mbb",
6254 #endif
6255 ".mib",
6256 ".mmb",
6257 ".mfb",
6258 ".mlx"
6259 };
6260
6261 /* Nonzero if we should insert stop bits into the schedule. */
6262
6263 int ia64_final_schedule = 0;
6264
6265 /* Codes of the corresponding queried units: */
6266
6267 static int _0mii_, _0mmi_, _0mfi_, _0mmf_;
6268 static int _0bbb_, _0mbb_, _0mib_, _0mmb_, _0mfb_, _0mlx_;
6269
6270 static int _1mii_, _1mmi_, _1mfi_, _1mmf_;
6271 static int _1bbb_, _1mbb_, _1mib_, _1mmb_, _1mfb_, _1mlx_;
6272
6273 static int pos_1, pos_2, pos_3, pos_4, pos_5, pos_6;
6274
6275 /* The following variable value is an insn group barrier. */
6276
6277 static rtx dfa_stop_insn;
6278
6279 /* The following variable value is the last issued insn. */
6280
6281 static rtx last_scheduled_insn;
6282
6283 /* The following variable value is size of the DFA state. */
6284
6285 static size_t dfa_state_size;
6286
6287 /* The following variable value is pointer to a DFA state used as
6288 temporary variable. */
6289
6290 static state_t temp_dfa_state = NULL;
6291
6292 /* The following variable value is DFA state after issuing the last
6293 insn. */
6294
6295 static state_t prev_cycle_state = NULL;
6296
6297 /* The following array element values are TRUE if the corresponding
6298 insn requires to add stop bits before it. */
6299
6300 static char *stops_p = NULL;
6301
6302 /* The following array element values are ZERO for non-speculative
6303 instructions and hold corresponding speculation check number for
6304 speculative instructions. */
6305 static int *spec_check_no = NULL;
6306
6307 /* Size of spec_check_no array. */
6308 static int max_uid = 0;
6309
6310 /* The following variable is used to set up the mentioned above array. */
6311
6312 static int stop_before_p = 0;
6313
6314 /* The following variable value is length of the arrays `clocks' and
6315 `add_cycles'. */
6316
6317 static int clocks_length;
6318
6319 /* The following array element values are cycles on which the
6320 corresponding insn will be issued. The array is used only for
6321 Itanium1. */
6322
6323 static int *clocks;
6324
6325 /* The following array element values are numbers of cycles should be
6326 added to improve insn scheduling for MM_insns for Itanium1. */
6327
6328 static int *add_cycles;
6329
6330 /* The following variable value is number of data speculations in progress. */
6331 static int pending_data_specs = 0;
6332
6333 static rtx ia64_single_set (rtx);
6334 static void ia64_emit_insn_before (rtx, rtx);
6335
6336 /* Map a bundle number to its pseudo-op. */
6337
6338 const char *
6339 get_bundle_name (int b)
6340 {
6341 return bundle_name[b];
6342 }
6343
6344
6345 /* Return the maximum number of instructions a cpu can issue. */
6346
6347 static int
6348 ia64_issue_rate (void)
6349 {
6350 return 6;
6351 }
6352
6353 /* Helper function - like single_set, but look inside COND_EXEC. */
6354
6355 static rtx
6356 ia64_single_set (rtx insn)
6357 {
6358 rtx x = PATTERN (insn), ret;
6359 if (GET_CODE (x) == COND_EXEC)
6360 x = COND_EXEC_CODE (x);
6361 if (GET_CODE (x) == SET)
6362 return x;
6363
6364 /* Special case here prologue_allocate_stack and epilogue_deallocate_stack.
6365 Although they are not classical single set, the second set is there just
6366 to protect it from moving past FP-relative stack accesses. */
6367 switch (recog_memoized (insn))
6368 {
6369 case CODE_FOR_prologue_allocate_stack:
6370 case CODE_FOR_epilogue_deallocate_stack:
6371 ret = XVECEXP (x, 0, 0);
6372 break;
6373
6374 default:
6375 ret = single_set_2 (insn, x);
6376 break;
6377 }
6378
6379 return ret;
6380 }
6381
6382 /* Adjust the cost of a scheduling dependency. Return the new cost of
6383 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
6384
6385 static int
6386 ia64_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
6387 {
6388 enum attr_itanium_class dep_class;
6389 enum attr_itanium_class insn_class;
6390
6391 if (REG_NOTE_KIND (link) != REG_DEP_OUTPUT)
6392 return cost;
6393
6394 insn_class = ia64_safe_itanium_class (insn);
6395 dep_class = ia64_safe_itanium_class (dep_insn);
6396 if (dep_class == ITANIUM_CLASS_ST || dep_class == ITANIUM_CLASS_STF
6397 || insn_class == ITANIUM_CLASS_ST || insn_class == ITANIUM_CLASS_STF)
6398 return 0;
6399
6400 return cost;
6401 }
6402
6403 /* Like emit_insn_before, but skip cycle_display notes.
6404 ??? When cycle display notes are implemented, update this. */
6405
6406 static void
6407 ia64_emit_insn_before (rtx insn, rtx before)
6408 {
6409 emit_insn_before (insn, before);
6410 }
6411
6412 /* The following function marks insns who produce addresses for load
6413 and store insns. Such insns will be placed into M slots because it
6414 decrease latency time for Itanium1 (see function
6415 `ia64_produce_address_p' and the DFA descriptions). */
6416
6417 static void
6418 ia64_dependencies_evaluation_hook (rtx head, rtx tail)
6419 {
6420 rtx insn, next, next_tail;
6421
6422 /* Before reload, which_alternative is not set, which means that
6423 ia64_safe_itanium_class will produce wrong results for (at least)
6424 move instructions. */
6425 if (!reload_completed)
6426 return;
6427
6428 next_tail = NEXT_INSN (tail);
6429 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6430 if (INSN_P (insn))
6431 insn->call = 0;
6432 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6433 if (INSN_P (insn)
6434 && ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IALU)
6435 {
6436 sd_iterator_def sd_it;
6437 dep_t dep;
6438 bool has_mem_op_consumer_p = false;
6439
6440 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
6441 {
6442 enum attr_itanium_class c;
6443
6444 if (DEP_TYPE (dep) != REG_DEP_TRUE)
6445 continue;
6446
6447 next = DEP_CON (dep);
6448 c = ia64_safe_itanium_class (next);
6449 if ((c == ITANIUM_CLASS_ST
6450 || c == ITANIUM_CLASS_STF)
6451 && ia64_st_address_bypass_p (insn, next))
6452 {
6453 has_mem_op_consumer_p = true;
6454 break;
6455 }
6456 else if ((c == ITANIUM_CLASS_LD
6457 || c == ITANIUM_CLASS_FLD
6458 || c == ITANIUM_CLASS_FLDP)
6459 && ia64_ld_address_bypass_p (insn, next))
6460 {
6461 has_mem_op_consumer_p = true;
6462 break;
6463 }
6464 }
6465
6466 insn->call = has_mem_op_consumer_p;
6467 }
6468 }
6469
6470 /* We're beginning a new block. Initialize data structures as necessary. */
6471
6472 static void
6473 ia64_sched_init (FILE *dump ATTRIBUTE_UNUSED,
6474 int sched_verbose ATTRIBUTE_UNUSED,
6475 int max_ready ATTRIBUTE_UNUSED)
6476 {
6477 #ifdef ENABLE_CHECKING
6478 rtx insn;
6479
6480 if (reload_completed)
6481 for (insn = NEXT_INSN (current_sched_info->prev_head);
6482 insn != current_sched_info->next_tail;
6483 insn = NEXT_INSN (insn))
6484 gcc_assert (!SCHED_GROUP_P (insn));
6485 #endif
6486 last_scheduled_insn = NULL_RTX;
6487 init_insn_group_barriers ();
6488 }
6489
6490 /* We're beginning a scheduling pass. Check assertion. */
6491
6492 static void
6493 ia64_sched_init_global (FILE *dump ATTRIBUTE_UNUSED,
6494 int sched_verbose ATTRIBUTE_UNUSED,
6495 int max_ready ATTRIBUTE_UNUSED)
6496 {
6497 gcc_assert (!pending_data_specs);
6498 }
6499
6500 /* Scheduling pass is now finished. Free/reset static variable. */
6501 static void
6502 ia64_sched_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6503 int sched_verbose ATTRIBUTE_UNUSED)
6504 {
6505 free (spec_check_no);
6506 spec_check_no = 0;
6507 max_uid = 0;
6508 }
6509
6510 /* We are about to being issuing insns for this clock cycle.
6511 Override the default sort algorithm to better slot instructions. */
6512
6513 static int
6514 ia64_dfa_sched_reorder (FILE *dump, int sched_verbose, rtx *ready,
6515 int *pn_ready, int clock_var ATTRIBUTE_UNUSED,
6516 int reorder_type)
6517 {
6518 int n_asms;
6519 int n_ready = *pn_ready;
6520 rtx *e_ready = ready + n_ready;
6521 rtx *insnp;
6522
6523 if (sched_verbose)
6524 fprintf (dump, "// ia64_dfa_sched_reorder (type %d):\n", reorder_type);
6525
6526 if (reorder_type == 0)
6527 {
6528 /* First, move all USEs, CLOBBERs and other crud out of the way. */
6529 n_asms = 0;
6530 for (insnp = ready; insnp < e_ready; insnp++)
6531 if (insnp < e_ready)
6532 {
6533 rtx insn = *insnp;
6534 enum attr_type t = ia64_safe_type (insn);
6535 if (t == TYPE_UNKNOWN)
6536 {
6537 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6538 || asm_noperands (PATTERN (insn)) >= 0)
6539 {
6540 rtx lowest = ready[n_asms];
6541 ready[n_asms] = insn;
6542 *insnp = lowest;
6543 n_asms++;
6544 }
6545 else
6546 {
6547 rtx highest = ready[n_ready - 1];
6548 ready[n_ready - 1] = insn;
6549 *insnp = highest;
6550 return 1;
6551 }
6552 }
6553 }
6554
6555 if (n_asms < n_ready)
6556 {
6557 /* Some normal insns to process. Skip the asms. */
6558 ready += n_asms;
6559 n_ready -= n_asms;
6560 }
6561 else if (n_ready > 0)
6562 return 1;
6563 }
6564
6565 if (ia64_final_schedule)
6566 {
6567 int deleted = 0;
6568 int nr_need_stop = 0;
6569
6570 for (insnp = ready; insnp < e_ready; insnp++)
6571 if (safe_group_barrier_needed (*insnp))
6572 nr_need_stop++;
6573
6574 if (reorder_type == 1 && n_ready == nr_need_stop)
6575 return 0;
6576 if (reorder_type == 0)
6577 return 1;
6578 insnp = e_ready;
6579 /* Move down everything that needs a stop bit, preserving
6580 relative order. */
6581 while (insnp-- > ready + deleted)
6582 while (insnp >= ready + deleted)
6583 {
6584 rtx insn = *insnp;
6585 if (! safe_group_barrier_needed (insn))
6586 break;
6587 memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
6588 *ready = insn;
6589 deleted++;
6590 }
6591 n_ready -= deleted;
6592 ready += deleted;
6593 }
6594
6595 return 1;
6596 }
6597
6598 /* We are about to being issuing insns for this clock cycle. Override
6599 the default sort algorithm to better slot instructions. */
6600
6601 static int
6602 ia64_sched_reorder (FILE *dump, int sched_verbose, rtx *ready, int *pn_ready,
6603 int clock_var)
6604 {
6605 return ia64_dfa_sched_reorder (dump, sched_verbose, ready,
6606 pn_ready, clock_var, 0);
6607 }
6608
6609 /* Like ia64_sched_reorder, but called after issuing each insn.
6610 Override the default sort algorithm to better slot instructions. */
6611
6612 static int
6613 ia64_sched_reorder2 (FILE *dump ATTRIBUTE_UNUSED,
6614 int sched_verbose ATTRIBUTE_UNUSED, rtx *ready,
6615 int *pn_ready, int clock_var)
6616 {
6617 if (ia64_tune == PROCESSOR_ITANIUM && reload_completed && last_scheduled_insn)
6618 clocks [INSN_UID (last_scheduled_insn)] = clock_var;
6619 return ia64_dfa_sched_reorder (dump, sched_verbose, ready, pn_ready,
6620 clock_var, 1);
6621 }
6622
6623 /* We are about to issue INSN. Return the number of insns left on the
6624 ready queue that can be issued this cycle. */
6625
6626 static int
6627 ia64_variable_issue (FILE *dump ATTRIBUTE_UNUSED,
6628 int sched_verbose ATTRIBUTE_UNUSED,
6629 rtx insn ATTRIBUTE_UNUSED,
6630 int can_issue_more ATTRIBUTE_UNUSED)
6631 {
6632 if (current_sched_info->flags & DO_SPECULATION)
6633 /* Modulo scheduling does not extend h_i_d when emitting
6634 new instructions. Deal with it. */
6635 {
6636 if (DONE_SPEC (insn) & BEGIN_DATA)
6637 pending_data_specs++;
6638 if (CHECK_SPEC (insn) & BEGIN_DATA)
6639 pending_data_specs--;
6640 }
6641
6642 last_scheduled_insn = insn;
6643 memcpy (prev_cycle_state, curr_state, dfa_state_size);
6644 if (reload_completed)
6645 {
6646 int needed = group_barrier_needed (insn);
6647
6648 gcc_assert (!needed);
6649 if (GET_CODE (insn) == CALL_INSN)
6650 init_insn_group_barriers ();
6651 stops_p [INSN_UID (insn)] = stop_before_p;
6652 stop_before_p = 0;
6653 }
6654 return 1;
6655 }
6656
6657 /* We are choosing insn from the ready queue. Return nonzero if INSN
6658 can be chosen. */
6659
6660 static int
6661 ia64_first_cycle_multipass_dfa_lookahead_guard (rtx insn)
6662 {
6663 gcc_assert (insn && INSN_P (insn));
6664 return ((!reload_completed
6665 || !safe_group_barrier_needed (insn))
6666 && ia64_first_cycle_multipass_dfa_lookahead_guard_spec (insn));
6667 }
6668
6669 /* We are choosing insn from the ready queue. Return nonzero if INSN
6670 can be chosen. */
6671
6672 static bool
6673 ia64_first_cycle_multipass_dfa_lookahead_guard_spec (const_rtx insn)
6674 {
6675 gcc_assert (insn && INSN_P (insn));
6676 /* Size of ALAT is 32. As far as we perform conservative data speculation,
6677 we keep ALAT half-empty. */
6678 return (pending_data_specs < 16
6679 || !(TODO_SPEC (insn) & BEGIN_DATA));
6680 }
6681
6682 /* The following variable value is pseudo-insn used by the DFA insn
6683 scheduler to change the DFA state when the simulated clock is
6684 increased. */
6685
6686 static rtx dfa_pre_cycle_insn;
6687
6688 /* We are about to being issuing INSN. Return nonzero if we cannot
6689 issue it on given cycle CLOCK and return zero if we should not sort
6690 the ready queue on the next clock start. */
6691
6692 static int
6693 ia64_dfa_new_cycle (FILE *dump, int verbose, rtx insn, int last_clock,
6694 int clock, int *sort_p)
6695 {
6696 int setup_clocks_p = FALSE;
6697
6698 gcc_assert (insn && INSN_P (insn));
6699 if ((reload_completed && safe_group_barrier_needed (insn))
6700 || (last_scheduled_insn
6701 && (GET_CODE (last_scheduled_insn) == CALL_INSN
6702 || GET_CODE (PATTERN (last_scheduled_insn)) == ASM_INPUT
6703 || asm_noperands (PATTERN (last_scheduled_insn)) >= 0)))
6704 {
6705 init_insn_group_barriers ();
6706 if (verbose && dump)
6707 fprintf (dump, "// Stop should be before %d%s\n", INSN_UID (insn),
6708 last_clock == clock ? " + cycle advance" : "");
6709 stop_before_p = 1;
6710 if (last_clock == clock)
6711 {
6712 state_transition (curr_state, dfa_stop_insn);
6713 if (TARGET_EARLY_STOP_BITS)
6714 *sort_p = (last_scheduled_insn == NULL_RTX
6715 || GET_CODE (last_scheduled_insn) != CALL_INSN);
6716 else
6717 *sort_p = 0;
6718 return 1;
6719 }
6720 else if (reload_completed)
6721 setup_clocks_p = TRUE;
6722 if (GET_CODE (PATTERN (last_scheduled_insn)) == ASM_INPUT
6723 || asm_noperands (PATTERN (last_scheduled_insn)) >= 0)
6724 state_reset (curr_state);
6725 else
6726 {
6727 memcpy (curr_state, prev_cycle_state, dfa_state_size);
6728 state_transition (curr_state, dfa_stop_insn);
6729 state_transition (curr_state, dfa_pre_cycle_insn);
6730 state_transition (curr_state, NULL);
6731 }
6732 }
6733 else if (reload_completed)
6734 setup_clocks_p = TRUE;
6735 if (setup_clocks_p && ia64_tune == PROCESSOR_ITANIUM
6736 && GET_CODE (PATTERN (insn)) != ASM_INPUT
6737 && asm_noperands (PATTERN (insn)) < 0)
6738 {
6739 enum attr_itanium_class c = ia64_safe_itanium_class (insn);
6740
6741 if (c != ITANIUM_CLASS_MMMUL && c != ITANIUM_CLASS_MMSHF)
6742 {
6743 sd_iterator_def sd_it;
6744 dep_t dep;
6745 int d = -1;
6746
6747 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
6748 if (DEP_TYPE (dep) == REG_DEP_TRUE)
6749 {
6750 enum attr_itanium_class dep_class;
6751 rtx dep_insn = DEP_PRO (dep);
6752
6753 dep_class = ia64_safe_itanium_class (dep_insn);
6754 if ((dep_class == ITANIUM_CLASS_MMMUL
6755 || dep_class == ITANIUM_CLASS_MMSHF)
6756 && last_clock - clocks [INSN_UID (dep_insn)] < 4
6757 && (d < 0
6758 || last_clock - clocks [INSN_UID (dep_insn)] < d))
6759 d = last_clock - clocks [INSN_UID (dep_insn)];
6760 }
6761 if (d >= 0)
6762 add_cycles [INSN_UID (insn)] = 3 - d;
6763 }
6764 }
6765 return 0;
6766 }
6767
6768 /* Implement targetm.sched.h_i_d_extended hook.
6769 Extend internal data structures. */
6770 static void
6771 ia64_h_i_d_extended (void)
6772 {
6773 if (current_sched_info->flags & DO_SPECULATION)
6774 {
6775 int new_max_uid = get_max_uid () + 1;
6776
6777 spec_check_no = (int *) xrecalloc (spec_check_no, new_max_uid,
6778 max_uid, sizeof (*spec_check_no));
6779 max_uid = new_max_uid;
6780 }
6781
6782 if (stops_p != NULL)
6783 {
6784 int new_clocks_length = get_max_uid () + 1;
6785
6786 stops_p = (char *) xrecalloc (stops_p, new_clocks_length, clocks_length, 1);
6787
6788 if (ia64_tune == PROCESSOR_ITANIUM)
6789 {
6790 clocks = (int *) xrecalloc (clocks, new_clocks_length, clocks_length,
6791 sizeof (int));
6792 add_cycles = (int *) xrecalloc (add_cycles, new_clocks_length,
6793 clocks_length, sizeof (int));
6794 }
6795
6796 clocks_length = new_clocks_length;
6797 }
6798 }
6799
6800 /* Constants that help mapping 'enum machine_mode' to int. */
6801 enum SPEC_MODES
6802 {
6803 SPEC_MODE_INVALID = -1,
6804 SPEC_MODE_FIRST = 0,
6805 SPEC_MODE_FOR_EXTEND_FIRST = 1,
6806 SPEC_MODE_FOR_EXTEND_LAST = 3,
6807 SPEC_MODE_LAST = 8
6808 };
6809
6810 /* Return index of the MODE. */
6811 static int
6812 ia64_mode_to_int (enum machine_mode mode)
6813 {
6814 switch (mode)
6815 {
6816 case BImode: return 0; /* SPEC_MODE_FIRST */
6817 case QImode: return 1; /* SPEC_MODE_FOR_EXTEND_FIRST */
6818 case HImode: return 2;
6819 case SImode: return 3; /* SPEC_MODE_FOR_EXTEND_LAST */
6820 case DImode: return 4;
6821 case SFmode: return 5;
6822 case DFmode: return 6;
6823 case XFmode: return 7;
6824 case TImode:
6825 /* ??? This mode needs testing. Bypasses for ldfp8 instruction are not
6826 mentioned in itanium[12].md. Predicate fp_register_operand also
6827 needs to be defined. Bottom line: better disable for now. */
6828 return SPEC_MODE_INVALID;
6829 default: return SPEC_MODE_INVALID;
6830 }
6831 }
6832
6833 /* Provide information about speculation capabilities. */
6834 static void
6835 ia64_set_sched_flags (spec_info_t spec_info)
6836 {
6837 unsigned int *flags = &(current_sched_info->flags);
6838
6839 if (*flags & SCHED_RGN
6840 || *flags & SCHED_EBB)
6841 {
6842 int mask = 0;
6843
6844 if ((mflag_sched_br_data_spec && !reload_completed && optimize > 0)
6845 || (mflag_sched_ar_data_spec && reload_completed))
6846 {
6847 mask |= BEGIN_DATA;
6848
6849 if ((mflag_sched_br_in_data_spec && !reload_completed)
6850 || (mflag_sched_ar_in_data_spec && reload_completed))
6851 mask |= BE_IN_DATA;
6852 }
6853
6854 if (mflag_sched_control_spec)
6855 {
6856 mask |= BEGIN_CONTROL;
6857
6858 if (mflag_sched_in_control_spec)
6859 mask |= BE_IN_CONTROL;
6860 }
6861
6862 if (mask)
6863 {
6864 *flags |= USE_DEPS_LIST | DO_SPECULATION;
6865
6866 if (mask & BE_IN_SPEC)
6867 *flags |= NEW_BBS;
6868
6869 spec_info->mask = mask;
6870 spec_info->flags = 0;
6871
6872 if ((mask & DATA_SPEC) && mflag_sched_prefer_non_data_spec_insns)
6873 spec_info->flags |= PREFER_NON_DATA_SPEC;
6874
6875 if ((mask & CONTROL_SPEC)
6876 && mflag_sched_prefer_non_control_spec_insns)
6877 spec_info->flags |= PREFER_NON_CONTROL_SPEC;
6878
6879 if (mflag_sched_spec_verbose)
6880 {
6881 if (sched_verbose >= 1)
6882 spec_info->dump = sched_dump;
6883 else
6884 spec_info->dump = stderr;
6885 }
6886 else
6887 spec_info->dump = 0;
6888
6889 if (mflag_sched_count_spec_in_critical_path)
6890 spec_info->flags |= COUNT_SPEC_IN_CRITICAL_PATH;
6891 }
6892 }
6893 }
6894
6895 /* Implement targetm.sched.speculate_insn hook.
6896 Check if the INSN can be TS speculative.
6897 If 'no' - return -1.
6898 If 'yes' - generate speculative pattern in the NEW_PAT and return 1.
6899 If current pattern of the INSN already provides TS speculation, return 0. */
6900 static int
6901 ia64_speculate_insn (rtx insn, ds_t ts, rtx *new_pat)
6902 {
6903 rtx pat, reg, mem, mem_reg;
6904 int mode_no, gen_p = 1;
6905 bool extend_p;
6906
6907 gcc_assert (!(ts & ~BEGIN_SPEC) && ts);
6908
6909 pat = PATTERN (insn);
6910
6911 if (GET_CODE (pat) == COND_EXEC)
6912 pat = COND_EXEC_CODE (pat);
6913
6914 /* This should be a SET ... */
6915 if (GET_CODE (pat) != SET)
6916 return -1;
6917
6918 reg = SET_DEST (pat);
6919 /* ... to the general/fp register ... */
6920 if (!REG_P (reg) || !(GR_REGNO_P (REGNO (reg)) || FP_REGNO_P (REGNO (reg))))
6921 return -1;
6922
6923 /* ... from the mem ... */
6924 mem = SET_SRC (pat);
6925
6926 /* ... that can, possibly, be a zero_extend ... */
6927 if (GET_CODE (mem) == ZERO_EXTEND)
6928 {
6929 mem = XEXP (mem, 0);
6930 extend_p = true;
6931 }
6932 else
6933 extend_p = false;
6934
6935 /* ... or a speculative load. */
6936 if (GET_CODE (mem) == UNSPEC)
6937 {
6938 int code;
6939
6940 code = XINT (mem, 1);
6941 if (code != UNSPEC_LDA && code != UNSPEC_LDS && code != UNSPEC_LDSA)
6942 return -1;
6943
6944 if ((code == UNSPEC_LDA && !(ts & BEGIN_CONTROL))
6945 || (code == UNSPEC_LDS && !(ts & BEGIN_DATA))
6946 || code == UNSPEC_LDSA)
6947 gen_p = 0;
6948
6949 mem = XVECEXP (mem, 0, 0);
6950 gcc_assert (MEM_P (mem));
6951 }
6952
6953 /* Source should be a mem ... */
6954 if (!MEM_P (mem))
6955 return -1;
6956
6957 /* ... addressed by a register. */
6958 mem_reg = XEXP (mem, 0);
6959 if (!REG_P (mem_reg))
6960 return -1;
6961
6962 /* We should use MEM's mode since REG's mode in presence of ZERO_EXTEND
6963 will always be DImode. */
6964 mode_no = ia64_mode_to_int (GET_MODE (mem));
6965
6966 if (mode_no == SPEC_MODE_INVALID
6967 || (extend_p
6968 && !(SPEC_MODE_FOR_EXTEND_FIRST <= mode_no
6969 && mode_no <= SPEC_MODE_FOR_EXTEND_LAST)))
6970 return -1;
6971
6972 extract_insn_cached (insn);
6973 gcc_assert (reg == recog_data.operand[0] && mem == recog_data.operand[1]);
6974
6975 *new_pat = ia64_gen_spec_insn (insn, ts, mode_no, gen_p != 0, extend_p);
6976
6977 return gen_p;
6978 }
6979
6980 enum
6981 {
6982 /* Offset to reach ZERO_EXTEND patterns. */
6983 SPEC_GEN_EXTEND_OFFSET = SPEC_MODE_LAST - SPEC_MODE_FOR_EXTEND_FIRST + 1,
6984 /* Number of patterns for each speculation mode. */
6985 SPEC_N = (SPEC_MODE_LAST
6986 + SPEC_MODE_FOR_EXTEND_LAST - SPEC_MODE_FOR_EXTEND_FIRST + 2)
6987 };
6988
6989 enum SPEC_GEN_LD_MAP
6990 {
6991 /* Offset to ld.a patterns. */
6992 SPEC_GEN_A = 0 * SPEC_N,
6993 /* Offset to ld.s patterns. */
6994 SPEC_GEN_S = 1 * SPEC_N,
6995 /* Offset to ld.sa patterns. */
6996 SPEC_GEN_SA = 2 * SPEC_N,
6997 /* Offset to ld.sa patterns. For this patterns corresponding ld.c will
6998 mutate to chk.s. */
6999 SPEC_GEN_SA_FOR_S = 3 * SPEC_N
7000 };
7001
7002 /* These offsets are used to get (4 * SPEC_N). */
7003 enum SPEC_GEN_CHECK_OFFSET
7004 {
7005 SPEC_GEN_CHKA_FOR_A_OFFSET = 4 * SPEC_N - SPEC_GEN_A,
7006 SPEC_GEN_CHKA_FOR_SA_OFFSET = 4 * SPEC_N - SPEC_GEN_SA
7007 };
7008
7009 /* If GEN_P is true, calculate the index of needed speculation check and return
7010 speculative pattern for INSN with speculative mode TS, machine mode
7011 MODE_NO and with ZERO_EXTEND (if EXTEND_P is true).
7012 If GEN_P is false, just calculate the index of needed speculation check. */
7013 static rtx
7014 ia64_gen_spec_insn (rtx insn, ds_t ts, int mode_no, bool gen_p, bool extend_p)
7015 {
7016 rtx pat, new_pat;
7017 int load_no;
7018 int shift = 0;
7019
7020 static rtx (* const gen_load[]) (rtx, rtx) = {
7021 gen_movbi_advanced,
7022 gen_movqi_advanced,
7023 gen_movhi_advanced,
7024 gen_movsi_advanced,
7025 gen_movdi_advanced,
7026 gen_movsf_advanced,
7027 gen_movdf_advanced,
7028 gen_movxf_advanced,
7029 gen_movti_advanced,
7030 gen_zero_extendqidi2_advanced,
7031 gen_zero_extendhidi2_advanced,
7032 gen_zero_extendsidi2_advanced,
7033
7034 gen_movbi_speculative,
7035 gen_movqi_speculative,
7036 gen_movhi_speculative,
7037 gen_movsi_speculative,
7038 gen_movdi_speculative,
7039 gen_movsf_speculative,
7040 gen_movdf_speculative,
7041 gen_movxf_speculative,
7042 gen_movti_speculative,
7043 gen_zero_extendqidi2_speculative,
7044 gen_zero_extendhidi2_speculative,
7045 gen_zero_extendsidi2_speculative,
7046
7047 gen_movbi_speculative_advanced,
7048 gen_movqi_speculative_advanced,
7049 gen_movhi_speculative_advanced,
7050 gen_movsi_speculative_advanced,
7051 gen_movdi_speculative_advanced,
7052 gen_movsf_speculative_advanced,
7053 gen_movdf_speculative_advanced,
7054 gen_movxf_speculative_advanced,
7055 gen_movti_speculative_advanced,
7056 gen_zero_extendqidi2_speculative_advanced,
7057 gen_zero_extendhidi2_speculative_advanced,
7058 gen_zero_extendsidi2_speculative_advanced,
7059
7060 gen_movbi_speculative_advanced,
7061 gen_movqi_speculative_advanced,
7062 gen_movhi_speculative_advanced,
7063 gen_movsi_speculative_advanced,
7064 gen_movdi_speculative_advanced,
7065 gen_movsf_speculative_advanced,
7066 gen_movdf_speculative_advanced,
7067 gen_movxf_speculative_advanced,
7068 gen_movti_speculative_advanced,
7069 gen_zero_extendqidi2_speculative_advanced,
7070 gen_zero_extendhidi2_speculative_advanced,
7071 gen_zero_extendsidi2_speculative_advanced
7072 };
7073
7074 load_no = extend_p ? mode_no + SPEC_GEN_EXTEND_OFFSET : mode_no;
7075
7076 if (ts & BEGIN_DATA)
7077 {
7078 /* We don't need recovery because even if this is ld.sa
7079 ALAT entry will be allocated only if NAT bit is set to zero.
7080 So it is enough to use ld.c here. */
7081
7082 if (ts & BEGIN_CONTROL)
7083 {
7084 load_no += SPEC_GEN_SA;
7085
7086 if (!mflag_sched_ldc)
7087 shift = SPEC_GEN_CHKA_FOR_SA_OFFSET;
7088 }
7089 else
7090 {
7091 load_no += SPEC_GEN_A;
7092
7093 if (!mflag_sched_ldc)
7094 shift = SPEC_GEN_CHKA_FOR_A_OFFSET;
7095 }
7096 }
7097 else if (ts & BEGIN_CONTROL)
7098 {
7099 /* ld.sa can be used instead of ld.s to avoid basic block splitting. */
7100 if (!mflag_control_ldc)
7101 load_no += SPEC_GEN_S;
7102 else
7103 {
7104 gcc_assert (mflag_sched_ldc);
7105 load_no += SPEC_GEN_SA_FOR_S;
7106 }
7107 }
7108 else
7109 gcc_unreachable ();
7110
7111 /* Set the desired check index. We add '1', because zero element in this
7112 array means, that instruction with such uid is non-speculative. */
7113 spec_check_no[INSN_UID (insn)] = load_no + shift + 1;
7114
7115 if (!gen_p)
7116 return 0;
7117
7118 new_pat = gen_load[load_no] (copy_rtx (recog_data.operand[0]),
7119 copy_rtx (recog_data.operand[1]));
7120
7121 pat = PATTERN (insn);
7122 if (GET_CODE (pat) == COND_EXEC)
7123 new_pat = gen_rtx_COND_EXEC (VOIDmode, copy_rtx
7124 (COND_EXEC_TEST (pat)), new_pat);
7125
7126 return new_pat;
7127 }
7128
7129 /* Offset to branchy checks. */
7130 enum { SPEC_GEN_CHECK_MUTATION_OFFSET = 5 * SPEC_N };
7131
7132 /* Return nonzero, if INSN needs branchy recovery check. */
7133 static bool
7134 ia64_needs_block_p (const_rtx insn)
7135 {
7136 int check_no;
7137
7138 check_no = spec_check_no[INSN_UID(insn)] - 1;
7139 gcc_assert (0 <= check_no && check_no < SPEC_GEN_CHECK_MUTATION_OFFSET);
7140
7141 return ((SPEC_GEN_S <= check_no && check_no < SPEC_GEN_S + SPEC_N)
7142 || (4 * SPEC_N <= check_no && check_no < 4 * SPEC_N + SPEC_N));
7143 }
7144
7145 /* Generate (or regenerate, if (MUTATE_P)) recovery check for INSN.
7146 If (LABEL != 0 || MUTATE_P), generate branchy recovery check.
7147 Otherwise, generate a simple check. */
7148 static rtx
7149 ia64_gen_check (rtx insn, rtx label, bool mutate_p)
7150 {
7151 rtx op1, pat, check_pat;
7152
7153 static rtx (* const gen_check[]) (rtx, rtx) = {
7154 gen_movbi_clr,
7155 gen_movqi_clr,
7156 gen_movhi_clr,
7157 gen_movsi_clr,
7158 gen_movdi_clr,
7159 gen_movsf_clr,
7160 gen_movdf_clr,
7161 gen_movxf_clr,
7162 gen_movti_clr,
7163 gen_zero_extendqidi2_clr,
7164 gen_zero_extendhidi2_clr,
7165 gen_zero_extendsidi2_clr,
7166
7167 gen_speculation_check_bi,
7168 gen_speculation_check_qi,
7169 gen_speculation_check_hi,
7170 gen_speculation_check_si,
7171 gen_speculation_check_di,
7172 gen_speculation_check_sf,
7173 gen_speculation_check_df,
7174 gen_speculation_check_xf,
7175 gen_speculation_check_ti,
7176 gen_speculation_check_di,
7177 gen_speculation_check_di,
7178 gen_speculation_check_di,
7179
7180 gen_movbi_clr,
7181 gen_movqi_clr,
7182 gen_movhi_clr,
7183 gen_movsi_clr,
7184 gen_movdi_clr,
7185 gen_movsf_clr,
7186 gen_movdf_clr,
7187 gen_movxf_clr,
7188 gen_movti_clr,
7189 gen_zero_extendqidi2_clr,
7190 gen_zero_extendhidi2_clr,
7191 gen_zero_extendsidi2_clr,
7192
7193 gen_movbi_clr,
7194 gen_movqi_clr,
7195 gen_movhi_clr,
7196 gen_movsi_clr,
7197 gen_movdi_clr,
7198 gen_movsf_clr,
7199 gen_movdf_clr,
7200 gen_movxf_clr,
7201 gen_movti_clr,
7202 gen_zero_extendqidi2_clr,
7203 gen_zero_extendhidi2_clr,
7204 gen_zero_extendsidi2_clr,
7205
7206 gen_advanced_load_check_clr_bi,
7207 gen_advanced_load_check_clr_qi,
7208 gen_advanced_load_check_clr_hi,
7209 gen_advanced_load_check_clr_si,
7210 gen_advanced_load_check_clr_di,
7211 gen_advanced_load_check_clr_sf,
7212 gen_advanced_load_check_clr_df,
7213 gen_advanced_load_check_clr_xf,
7214 gen_advanced_load_check_clr_ti,
7215 gen_advanced_load_check_clr_di,
7216 gen_advanced_load_check_clr_di,
7217 gen_advanced_load_check_clr_di,
7218
7219 /* Following checks are generated during mutation. */
7220 gen_advanced_load_check_clr_bi,
7221 gen_advanced_load_check_clr_qi,
7222 gen_advanced_load_check_clr_hi,
7223 gen_advanced_load_check_clr_si,
7224 gen_advanced_load_check_clr_di,
7225 gen_advanced_load_check_clr_sf,
7226 gen_advanced_load_check_clr_df,
7227 gen_advanced_load_check_clr_xf,
7228 gen_advanced_load_check_clr_ti,
7229 gen_advanced_load_check_clr_di,
7230 gen_advanced_load_check_clr_di,
7231 gen_advanced_load_check_clr_di,
7232
7233 0,0,0,0,0,0,0,0,0,0,0,0,
7234
7235 gen_advanced_load_check_clr_bi,
7236 gen_advanced_load_check_clr_qi,
7237 gen_advanced_load_check_clr_hi,
7238 gen_advanced_load_check_clr_si,
7239 gen_advanced_load_check_clr_di,
7240 gen_advanced_load_check_clr_sf,
7241 gen_advanced_load_check_clr_df,
7242 gen_advanced_load_check_clr_xf,
7243 gen_advanced_load_check_clr_ti,
7244 gen_advanced_load_check_clr_di,
7245 gen_advanced_load_check_clr_di,
7246 gen_advanced_load_check_clr_di,
7247
7248 gen_speculation_check_bi,
7249 gen_speculation_check_qi,
7250 gen_speculation_check_hi,
7251 gen_speculation_check_si,
7252 gen_speculation_check_di,
7253 gen_speculation_check_sf,
7254 gen_speculation_check_df,
7255 gen_speculation_check_xf,
7256 gen_speculation_check_ti,
7257 gen_speculation_check_di,
7258 gen_speculation_check_di,
7259 gen_speculation_check_di
7260 };
7261
7262 extract_insn_cached (insn);
7263
7264 if (label)
7265 {
7266 gcc_assert (mutate_p || ia64_needs_block_p (insn));
7267 op1 = label;
7268 }
7269 else
7270 {
7271 gcc_assert (!mutate_p && !ia64_needs_block_p (insn));
7272 op1 = copy_rtx (recog_data.operand[1]);
7273 }
7274
7275 if (mutate_p)
7276 /* INSN is ld.c.
7277 Find the speculation check number by searching for original
7278 speculative load in the RESOLVED_DEPS list of INSN.
7279 As long as patterns are unique for each instruction, this can be
7280 accomplished by matching ORIG_PAT fields. */
7281 {
7282 sd_iterator_def sd_it;
7283 dep_t dep;
7284 int check_no = 0;
7285 rtx orig_pat = ORIG_PAT (insn);
7286
7287 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
7288 {
7289 rtx x = DEP_PRO (dep);
7290
7291 if (ORIG_PAT (x) == orig_pat)
7292 check_no = spec_check_no[INSN_UID (x)];
7293 }
7294 gcc_assert (check_no);
7295
7296 spec_check_no[INSN_UID (insn)] = (check_no
7297 + SPEC_GEN_CHECK_MUTATION_OFFSET);
7298 }
7299
7300 check_pat = (gen_check[spec_check_no[INSN_UID (insn)] - 1]
7301 (copy_rtx (recog_data.operand[0]), op1));
7302
7303 pat = PATTERN (insn);
7304 if (GET_CODE (pat) == COND_EXEC)
7305 check_pat = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (COND_EXEC_TEST (pat)),
7306 check_pat);
7307
7308 return check_pat;
7309 }
7310
7311 /* Return nonzero, if X is branchy recovery check. */
7312 static int
7313 ia64_spec_check_p (rtx x)
7314 {
7315 x = PATTERN (x);
7316 if (GET_CODE (x) == COND_EXEC)
7317 x = COND_EXEC_CODE (x);
7318 if (GET_CODE (x) == SET)
7319 return ia64_spec_check_src_p (SET_SRC (x));
7320 return 0;
7321 }
7322
7323 /* Return nonzero, if SRC belongs to recovery check. */
7324 static int
7325 ia64_spec_check_src_p (rtx src)
7326 {
7327 if (GET_CODE (src) == IF_THEN_ELSE)
7328 {
7329 rtx t;
7330
7331 t = XEXP (src, 0);
7332 if (GET_CODE (t) == NE)
7333 {
7334 t = XEXP (t, 0);
7335
7336 if (GET_CODE (t) == UNSPEC)
7337 {
7338 int code;
7339
7340 code = XINT (t, 1);
7341
7342 if (code == UNSPEC_CHKACLR
7343 || code == UNSPEC_CHKS
7344 || code == UNSPEC_LDCCLR)
7345 {
7346 gcc_assert (code != 0);
7347 return code;
7348 }
7349 }
7350 }
7351 }
7352 return 0;
7353 }
7354 \f
7355
7356 /* The following page contains abstract data `bundle states' which are
7357 used for bundling insns (inserting nops and template generation). */
7358
7359 /* The following describes state of insn bundling. */
7360
7361 struct bundle_state
7362 {
7363 /* Unique bundle state number to identify them in the debugging
7364 output */
7365 int unique_num;
7366 rtx insn; /* corresponding insn, NULL for the 1st and the last state */
7367 /* number nops before and after the insn */
7368 short before_nops_num, after_nops_num;
7369 int insn_num; /* insn number (0 - for initial state, 1 - for the 1st
7370 insn */
7371 int cost; /* cost of the state in cycles */
7372 int accumulated_insns_num; /* number of all previous insns including
7373 nops. L is considered as 2 insns */
7374 int branch_deviation; /* deviation of previous branches from 3rd slots */
7375 struct bundle_state *next; /* next state with the same insn_num */
7376 struct bundle_state *originator; /* originator (previous insn state) */
7377 /* All bundle states are in the following chain. */
7378 struct bundle_state *allocated_states_chain;
7379 /* The DFA State after issuing the insn and the nops. */
7380 state_t dfa_state;
7381 };
7382
7383 /* The following is map insn number to the corresponding bundle state. */
7384
7385 static struct bundle_state **index_to_bundle_states;
7386
7387 /* The unique number of next bundle state. */
7388
7389 static int bundle_states_num;
7390
7391 /* All allocated bundle states are in the following chain. */
7392
7393 static struct bundle_state *allocated_bundle_states_chain;
7394
7395 /* All allocated but not used bundle states are in the following
7396 chain. */
7397
7398 static struct bundle_state *free_bundle_state_chain;
7399
7400
7401 /* The following function returns a free bundle state. */
7402
7403 static struct bundle_state *
7404 get_free_bundle_state (void)
7405 {
7406 struct bundle_state *result;
7407
7408 if (free_bundle_state_chain != NULL)
7409 {
7410 result = free_bundle_state_chain;
7411 free_bundle_state_chain = result->next;
7412 }
7413 else
7414 {
7415 result = XNEW (struct bundle_state);
7416 result->dfa_state = xmalloc (dfa_state_size);
7417 result->allocated_states_chain = allocated_bundle_states_chain;
7418 allocated_bundle_states_chain = result;
7419 }
7420 result->unique_num = bundle_states_num++;
7421 return result;
7422
7423 }
7424
7425 /* The following function frees given bundle state. */
7426
7427 static void
7428 free_bundle_state (struct bundle_state *state)
7429 {
7430 state->next = free_bundle_state_chain;
7431 free_bundle_state_chain = state;
7432 }
7433
7434 /* Start work with abstract data `bundle states'. */
7435
7436 static void
7437 initiate_bundle_states (void)
7438 {
7439 bundle_states_num = 0;
7440 free_bundle_state_chain = NULL;
7441 allocated_bundle_states_chain = NULL;
7442 }
7443
7444 /* Finish work with abstract data `bundle states'. */
7445
7446 static void
7447 finish_bundle_states (void)
7448 {
7449 struct bundle_state *curr_state, *next_state;
7450
7451 for (curr_state = allocated_bundle_states_chain;
7452 curr_state != NULL;
7453 curr_state = next_state)
7454 {
7455 next_state = curr_state->allocated_states_chain;
7456 free (curr_state->dfa_state);
7457 free (curr_state);
7458 }
7459 }
7460
7461 /* Hash table of the bundle states. The key is dfa_state and insn_num
7462 of the bundle states. */
7463
7464 static htab_t bundle_state_table;
7465
7466 /* The function returns hash of BUNDLE_STATE. */
7467
7468 static unsigned
7469 bundle_state_hash (const void *bundle_state)
7470 {
7471 const struct bundle_state *const state
7472 = (const struct bundle_state *) bundle_state;
7473 unsigned result, i;
7474
7475 for (result = i = 0; i < dfa_state_size; i++)
7476 result += (((unsigned char *) state->dfa_state) [i]
7477 << ((i % CHAR_BIT) * 3 + CHAR_BIT));
7478 return result + state->insn_num;
7479 }
7480
7481 /* The function returns nonzero if the bundle state keys are equal. */
7482
7483 static int
7484 bundle_state_eq_p (const void *bundle_state_1, const void *bundle_state_2)
7485 {
7486 const struct bundle_state *const state1
7487 = (const struct bundle_state *) bundle_state_1;
7488 const struct bundle_state *const state2
7489 = (const struct bundle_state *) bundle_state_2;
7490
7491 return (state1->insn_num == state2->insn_num
7492 && memcmp (state1->dfa_state, state2->dfa_state,
7493 dfa_state_size) == 0);
7494 }
7495
7496 /* The function inserts the BUNDLE_STATE into the hash table. The
7497 function returns nonzero if the bundle has been inserted into the
7498 table. The table contains the best bundle state with given key. */
7499
7500 static int
7501 insert_bundle_state (struct bundle_state *bundle_state)
7502 {
7503 void **entry_ptr;
7504
7505 entry_ptr = htab_find_slot (bundle_state_table, bundle_state, 1);
7506 if (*entry_ptr == NULL)
7507 {
7508 bundle_state->next = index_to_bundle_states [bundle_state->insn_num];
7509 index_to_bundle_states [bundle_state->insn_num] = bundle_state;
7510 *entry_ptr = (void *) bundle_state;
7511 return TRUE;
7512 }
7513 else if (bundle_state->cost < ((struct bundle_state *) *entry_ptr)->cost
7514 || (bundle_state->cost == ((struct bundle_state *) *entry_ptr)->cost
7515 && (((struct bundle_state *)*entry_ptr)->accumulated_insns_num
7516 > bundle_state->accumulated_insns_num
7517 || (((struct bundle_state *)
7518 *entry_ptr)->accumulated_insns_num
7519 == bundle_state->accumulated_insns_num
7520 && ((struct bundle_state *)
7521 *entry_ptr)->branch_deviation
7522 > bundle_state->branch_deviation))))
7523
7524 {
7525 struct bundle_state temp;
7526
7527 temp = *(struct bundle_state *) *entry_ptr;
7528 *(struct bundle_state *) *entry_ptr = *bundle_state;
7529 ((struct bundle_state *) *entry_ptr)->next = temp.next;
7530 *bundle_state = temp;
7531 }
7532 return FALSE;
7533 }
7534
7535 /* Start work with the hash table. */
7536
7537 static void
7538 initiate_bundle_state_table (void)
7539 {
7540 bundle_state_table = htab_create (50, bundle_state_hash, bundle_state_eq_p,
7541 (htab_del) 0);
7542 }
7543
7544 /* Finish work with the hash table. */
7545
7546 static void
7547 finish_bundle_state_table (void)
7548 {
7549 htab_delete (bundle_state_table);
7550 }
7551
7552 \f
7553
7554 /* The following variable is a insn `nop' used to check bundle states
7555 with different number of inserted nops. */
7556
7557 static rtx ia64_nop;
7558
7559 /* The following function tries to issue NOPS_NUM nops for the current
7560 state without advancing processor cycle. If it failed, the
7561 function returns FALSE and frees the current state. */
7562
7563 static int
7564 try_issue_nops (struct bundle_state *curr_state, int nops_num)
7565 {
7566 int i;
7567
7568 for (i = 0; i < nops_num; i++)
7569 if (state_transition (curr_state->dfa_state, ia64_nop) >= 0)
7570 {
7571 free_bundle_state (curr_state);
7572 return FALSE;
7573 }
7574 return TRUE;
7575 }
7576
7577 /* The following function tries to issue INSN for the current
7578 state without advancing processor cycle. If it failed, the
7579 function returns FALSE and frees the current state. */
7580
7581 static int
7582 try_issue_insn (struct bundle_state *curr_state, rtx insn)
7583 {
7584 if (insn && state_transition (curr_state->dfa_state, insn) >= 0)
7585 {
7586 free_bundle_state (curr_state);
7587 return FALSE;
7588 }
7589 return TRUE;
7590 }
7591
7592 /* The following function tries to issue BEFORE_NOPS_NUM nops and INSN
7593 starting with ORIGINATOR without advancing processor cycle. If
7594 TRY_BUNDLE_END_P is TRUE, the function also/only (if
7595 ONLY_BUNDLE_END_P is TRUE) tries to issue nops to fill all bundle.
7596 If it was successful, the function creates new bundle state and
7597 insert into the hash table and into `index_to_bundle_states'. */
7598
7599 static void
7600 issue_nops_and_insn (struct bundle_state *originator, int before_nops_num,
7601 rtx insn, int try_bundle_end_p, int only_bundle_end_p)
7602 {
7603 struct bundle_state *curr_state;
7604
7605 curr_state = get_free_bundle_state ();
7606 memcpy (curr_state->dfa_state, originator->dfa_state, dfa_state_size);
7607 curr_state->insn = insn;
7608 curr_state->insn_num = originator->insn_num + 1;
7609 curr_state->cost = originator->cost;
7610 curr_state->originator = originator;
7611 curr_state->before_nops_num = before_nops_num;
7612 curr_state->after_nops_num = 0;
7613 curr_state->accumulated_insns_num
7614 = originator->accumulated_insns_num + before_nops_num;
7615 curr_state->branch_deviation = originator->branch_deviation;
7616 gcc_assert (insn);
7617 if (INSN_CODE (insn) == CODE_FOR_insn_group_barrier)
7618 {
7619 gcc_assert (GET_MODE (insn) != TImode);
7620 if (!try_issue_nops (curr_state, before_nops_num))
7621 return;
7622 if (!try_issue_insn (curr_state, insn))
7623 return;
7624 memcpy (temp_dfa_state, curr_state->dfa_state, dfa_state_size);
7625 if (state_transition (temp_dfa_state, dfa_pre_cycle_insn) >= 0
7626 && curr_state->accumulated_insns_num % 3 != 0)
7627 {
7628 free_bundle_state (curr_state);
7629 return;
7630 }
7631 }
7632 else if (GET_MODE (insn) != TImode)
7633 {
7634 if (!try_issue_nops (curr_state, before_nops_num))
7635 return;
7636 if (!try_issue_insn (curr_state, insn))
7637 return;
7638 curr_state->accumulated_insns_num++;
7639 gcc_assert (GET_CODE (PATTERN (insn)) != ASM_INPUT
7640 && asm_noperands (PATTERN (insn)) < 0);
7641
7642 if (ia64_safe_type (insn) == TYPE_L)
7643 curr_state->accumulated_insns_num++;
7644 }
7645 else
7646 {
7647 /* If this is an insn that must be first in a group, then don't allow
7648 nops to be emitted before it. Currently, alloc is the only such
7649 supported instruction. */
7650 /* ??? The bundling automatons should handle this for us, but they do
7651 not yet have support for the first_insn attribute. */
7652 if (before_nops_num > 0 && get_attr_first_insn (insn) == FIRST_INSN_YES)
7653 {
7654 free_bundle_state (curr_state);
7655 return;
7656 }
7657
7658 state_transition (curr_state->dfa_state, dfa_pre_cycle_insn);
7659 state_transition (curr_state->dfa_state, NULL);
7660 curr_state->cost++;
7661 if (!try_issue_nops (curr_state, before_nops_num))
7662 return;
7663 if (!try_issue_insn (curr_state, insn))
7664 return;
7665 curr_state->accumulated_insns_num++;
7666 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
7667 || asm_noperands (PATTERN (insn)) >= 0)
7668 {
7669 /* Finish bundle containing asm insn. */
7670 curr_state->after_nops_num
7671 = 3 - curr_state->accumulated_insns_num % 3;
7672 curr_state->accumulated_insns_num
7673 += 3 - curr_state->accumulated_insns_num % 3;
7674 }
7675 else if (ia64_safe_type (insn) == TYPE_L)
7676 curr_state->accumulated_insns_num++;
7677 }
7678 if (ia64_safe_type (insn) == TYPE_B)
7679 curr_state->branch_deviation
7680 += 2 - (curr_state->accumulated_insns_num - 1) % 3;
7681 if (try_bundle_end_p && curr_state->accumulated_insns_num % 3 != 0)
7682 {
7683 if (!only_bundle_end_p && insert_bundle_state (curr_state))
7684 {
7685 state_t dfa_state;
7686 struct bundle_state *curr_state1;
7687 struct bundle_state *allocated_states_chain;
7688
7689 curr_state1 = get_free_bundle_state ();
7690 dfa_state = curr_state1->dfa_state;
7691 allocated_states_chain = curr_state1->allocated_states_chain;
7692 *curr_state1 = *curr_state;
7693 curr_state1->dfa_state = dfa_state;
7694 curr_state1->allocated_states_chain = allocated_states_chain;
7695 memcpy (curr_state1->dfa_state, curr_state->dfa_state,
7696 dfa_state_size);
7697 curr_state = curr_state1;
7698 }
7699 if (!try_issue_nops (curr_state,
7700 3 - curr_state->accumulated_insns_num % 3))
7701 return;
7702 curr_state->after_nops_num
7703 = 3 - curr_state->accumulated_insns_num % 3;
7704 curr_state->accumulated_insns_num
7705 += 3 - curr_state->accumulated_insns_num % 3;
7706 }
7707 if (!insert_bundle_state (curr_state))
7708 free_bundle_state (curr_state);
7709 return;
7710 }
7711
7712 /* The following function returns position in the two window bundle
7713 for given STATE. */
7714
7715 static int
7716 get_max_pos (state_t state)
7717 {
7718 if (cpu_unit_reservation_p (state, pos_6))
7719 return 6;
7720 else if (cpu_unit_reservation_p (state, pos_5))
7721 return 5;
7722 else if (cpu_unit_reservation_p (state, pos_4))
7723 return 4;
7724 else if (cpu_unit_reservation_p (state, pos_3))
7725 return 3;
7726 else if (cpu_unit_reservation_p (state, pos_2))
7727 return 2;
7728 else if (cpu_unit_reservation_p (state, pos_1))
7729 return 1;
7730 else
7731 return 0;
7732 }
7733
7734 /* The function returns code of a possible template for given position
7735 and state. The function should be called only with 2 values of
7736 position equal to 3 or 6. We avoid generating F NOPs by putting
7737 templates containing F insns at the end of the template search
7738 because undocumented anomaly in McKinley derived cores which can
7739 cause stalls if an F-unit insn (including a NOP) is issued within a
7740 six-cycle window after reading certain application registers (such
7741 as ar.bsp). Furthermore, power-considerations also argue against
7742 the use of F-unit instructions unless they're really needed. */
7743
7744 static int
7745 get_template (state_t state, int pos)
7746 {
7747 switch (pos)
7748 {
7749 case 3:
7750 if (cpu_unit_reservation_p (state, _0mmi_))
7751 return 1;
7752 else if (cpu_unit_reservation_p (state, _0mii_))
7753 return 0;
7754 else if (cpu_unit_reservation_p (state, _0mmb_))
7755 return 7;
7756 else if (cpu_unit_reservation_p (state, _0mib_))
7757 return 6;
7758 else if (cpu_unit_reservation_p (state, _0mbb_))
7759 return 5;
7760 else if (cpu_unit_reservation_p (state, _0bbb_))
7761 return 4;
7762 else if (cpu_unit_reservation_p (state, _0mmf_))
7763 return 3;
7764 else if (cpu_unit_reservation_p (state, _0mfi_))
7765 return 2;
7766 else if (cpu_unit_reservation_p (state, _0mfb_))
7767 return 8;
7768 else if (cpu_unit_reservation_p (state, _0mlx_))
7769 return 9;
7770 else
7771 gcc_unreachable ();
7772 case 6:
7773 if (cpu_unit_reservation_p (state, _1mmi_))
7774 return 1;
7775 else if (cpu_unit_reservation_p (state, _1mii_))
7776 return 0;
7777 else if (cpu_unit_reservation_p (state, _1mmb_))
7778 return 7;
7779 else if (cpu_unit_reservation_p (state, _1mib_))
7780 return 6;
7781 else if (cpu_unit_reservation_p (state, _1mbb_))
7782 return 5;
7783 else if (cpu_unit_reservation_p (state, _1bbb_))
7784 return 4;
7785 else if (_1mmf_ >= 0 && cpu_unit_reservation_p (state, _1mmf_))
7786 return 3;
7787 else if (cpu_unit_reservation_p (state, _1mfi_))
7788 return 2;
7789 else if (cpu_unit_reservation_p (state, _1mfb_))
7790 return 8;
7791 else if (cpu_unit_reservation_p (state, _1mlx_))
7792 return 9;
7793 else
7794 gcc_unreachable ();
7795 default:
7796 gcc_unreachable ();
7797 }
7798 }
7799
7800 /* The following function returns an insn important for insn bundling
7801 followed by INSN and before TAIL. */
7802
7803 static rtx
7804 get_next_important_insn (rtx insn, rtx tail)
7805 {
7806 for (; insn && insn != tail; insn = NEXT_INSN (insn))
7807 if (INSN_P (insn)
7808 && ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
7809 && GET_CODE (PATTERN (insn)) != USE
7810 && GET_CODE (PATTERN (insn)) != CLOBBER)
7811 return insn;
7812 return NULL_RTX;
7813 }
7814
7815 /* Add a bundle selector TEMPLATE0 before INSN. */
7816
7817 static void
7818 ia64_add_bundle_selector_before (int template0, rtx insn)
7819 {
7820 rtx b = gen_bundle_selector (GEN_INT (template0));
7821
7822 ia64_emit_insn_before (b, insn);
7823 #if NR_BUNDLES == 10
7824 if ((template0 == 4 || template0 == 5)
7825 && (flag_unwind_tables || (flag_exceptions && !USING_SJLJ_EXCEPTIONS)))
7826 {
7827 int i;
7828 rtx note = NULL_RTX;
7829
7830 /* In .mbb and .bbb bundles, check if CALL_INSN isn't in the
7831 first or second slot. If it is and has REG_EH_NOTE set, copy it
7832 to following nops, as br.call sets rp to the address of following
7833 bundle and therefore an EH region end must be on a bundle
7834 boundary. */
7835 insn = PREV_INSN (insn);
7836 for (i = 0; i < 3; i++)
7837 {
7838 do
7839 insn = next_active_insn (insn);
7840 while (GET_CODE (insn) == INSN
7841 && get_attr_empty (insn) == EMPTY_YES);
7842 if (GET_CODE (insn) == CALL_INSN)
7843 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
7844 else if (note)
7845 {
7846 int code;
7847
7848 gcc_assert ((code = recog_memoized (insn)) == CODE_FOR_nop
7849 || code == CODE_FOR_nop_b);
7850 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
7851 note = NULL_RTX;
7852 else
7853 REG_NOTES (insn)
7854 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0),
7855 REG_NOTES (insn));
7856 }
7857 }
7858 }
7859 #endif
7860 }
7861
7862 /* The following function does insn bundling. Bundling means
7863 inserting templates and nop insns to fit insn groups into permitted
7864 templates. Instruction scheduling uses NDFA (non-deterministic
7865 finite automata) encoding informations about the templates and the
7866 inserted nops. Nondeterminism of the automata permits follows
7867 all possible insn sequences very fast.
7868
7869 Unfortunately it is not possible to get information about inserting
7870 nop insns and used templates from the automata states. The
7871 automata only says that we can issue an insn possibly inserting
7872 some nops before it and using some template. Therefore insn
7873 bundling in this function is implemented by using DFA
7874 (deterministic finite automata). We follow all possible insn
7875 sequences by inserting 0-2 nops (that is what the NDFA describe for
7876 insn scheduling) before/after each insn being bundled. We know the
7877 start of simulated processor cycle from insn scheduling (insn
7878 starting a new cycle has TImode).
7879
7880 Simple implementation of insn bundling would create enormous
7881 number of possible insn sequences satisfying information about new
7882 cycle ticks taken from the insn scheduling. To make the algorithm
7883 practical we use dynamic programming. Each decision (about
7884 inserting nops and implicitly about previous decisions) is described
7885 by structure bundle_state (see above). If we generate the same
7886 bundle state (key is automaton state after issuing the insns and
7887 nops for it), we reuse already generated one. As consequence we
7888 reject some decisions which cannot improve the solution and
7889 reduce memory for the algorithm.
7890
7891 When we reach the end of EBB (extended basic block), we choose the
7892 best sequence and then, moving back in EBB, insert templates for
7893 the best alternative. The templates are taken from querying
7894 automaton state for each insn in chosen bundle states.
7895
7896 So the algorithm makes two (forward and backward) passes through
7897 EBB. There is an additional forward pass through EBB for Itanium1
7898 processor. This pass inserts more nops to make dependency between
7899 a producer insn and MMMUL/MMSHF at least 4 cycles long. */
7900
7901 static void
7902 bundling (FILE *dump, int verbose, rtx prev_head_insn, rtx tail)
7903 {
7904 struct bundle_state *curr_state, *next_state, *best_state;
7905 rtx insn, next_insn;
7906 int insn_num;
7907 int i, bundle_end_p, only_bundle_end_p, asm_p;
7908 int pos = 0, max_pos, template0, template1;
7909 rtx b;
7910 rtx nop;
7911 enum attr_type type;
7912
7913 insn_num = 0;
7914 /* Count insns in the EBB. */
7915 for (insn = NEXT_INSN (prev_head_insn);
7916 insn && insn != tail;
7917 insn = NEXT_INSN (insn))
7918 if (INSN_P (insn))
7919 insn_num++;
7920 if (insn_num == 0)
7921 return;
7922 bundling_p = 1;
7923 dfa_clean_insn_cache ();
7924 initiate_bundle_state_table ();
7925 index_to_bundle_states = XNEWVEC (struct bundle_state *, insn_num + 2);
7926 /* First (forward) pass -- generation of bundle states. */
7927 curr_state = get_free_bundle_state ();
7928 curr_state->insn = NULL;
7929 curr_state->before_nops_num = 0;
7930 curr_state->after_nops_num = 0;
7931 curr_state->insn_num = 0;
7932 curr_state->cost = 0;
7933 curr_state->accumulated_insns_num = 0;
7934 curr_state->branch_deviation = 0;
7935 curr_state->next = NULL;
7936 curr_state->originator = NULL;
7937 state_reset (curr_state->dfa_state);
7938 index_to_bundle_states [0] = curr_state;
7939 insn_num = 0;
7940 /* Shift cycle mark if it is put on insn which could be ignored. */
7941 for (insn = NEXT_INSN (prev_head_insn);
7942 insn != tail;
7943 insn = NEXT_INSN (insn))
7944 if (INSN_P (insn)
7945 && (ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IGNORE
7946 || GET_CODE (PATTERN (insn)) == USE
7947 || GET_CODE (PATTERN (insn)) == CLOBBER)
7948 && GET_MODE (insn) == TImode)
7949 {
7950 PUT_MODE (insn, VOIDmode);
7951 for (next_insn = NEXT_INSN (insn);
7952 next_insn != tail;
7953 next_insn = NEXT_INSN (next_insn))
7954 if (INSN_P (next_insn)
7955 && ia64_safe_itanium_class (next_insn) != ITANIUM_CLASS_IGNORE
7956 && GET_CODE (PATTERN (next_insn)) != USE
7957 && GET_CODE (PATTERN (next_insn)) != CLOBBER)
7958 {
7959 PUT_MODE (next_insn, TImode);
7960 break;
7961 }
7962 }
7963 /* Forward pass: generation of bundle states. */
7964 for (insn = get_next_important_insn (NEXT_INSN (prev_head_insn), tail);
7965 insn != NULL_RTX;
7966 insn = next_insn)
7967 {
7968 gcc_assert (INSN_P (insn)
7969 && ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
7970 && GET_CODE (PATTERN (insn)) != USE
7971 && GET_CODE (PATTERN (insn)) != CLOBBER);
7972 type = ia64_safe_type (insn);
7973 next_insn = get_next_important_insn (NEXT_INSN (insn), tail);
7974 insn_num++;
7975 index_to_bundle_states [insn_num] = NULL;
7976 for (curr_state = index_to_bundle_states [insn_num - 1];
7977 curr_state != NULL;
7978 curr_state = next_state)
7979 {
7980 pos = curr_state->accumulated_insns_num % 3;
7981 next_state = curr_state->next;
7982 /* We must fill up the current bundle in order to start a
7983 subsequent asm insn in a new bundle. Asm insn is always
7984 placed in a separate bundle. */
7985 only_bundle_end_p
7986 = (next_insn != NULL_RTX
7987 && INSN_CODE (insn) == CODE_FOR_insn_group_barrier
7988 && ia64_safe_type (next_insn) == TYPE_UNKNOWN);
7989 /* We may fill up the current bundle if it is the cycle end
7990 without a group barrier. */
7991 bundle_end_p
7992 = (only_bundle_end_p || next_insn == NULL_RTX
7993 || (GET_MODE (next_insn) == TImode
7994 && INSN_CODE (insn) != CODE_FOR_insn_group_barrier));
7995 if (type == TYPE_F || type == TYPE_B || type == TYPE_L
7996 || type == TYPE_S
7997 /* We need to insert 2 nops for cases like M_MII. To
7998 guarantee issuing all insns on the same cycle for
7999 Itanium 1, we need to issue 2 nops after the first M
8000 insn (MnnMII where n is a nop insn). */
8001 || ((type == TYPE_M || type == TYPE_A)
8002 && ia64_tune == PROCESSOR_ITANIUM
8003 && !bundle_end_p && pos == 1))
8004 issue_nops_and_insn (curr_state, 2, insn, bundle_end_p,
8005 only_bundle_end_p);
8006 issue_nops_and_insn (curr_state, 1, insn, bundle_end_p,
8007 only_bundle_end_p);
8008 issue_nops_and_insn (curr_state, 0, insn, bundle_end_p,
8009 only_bundle_end_p);
8010 }
8011 gcc_assert (index_to_bundle_states [insn_num]);
8012 for (curr_state = index_to_bundle_states [insn_num];
8013 curr_state != NULL;
8014 curr_state = curr_state->next)
8015 if (verbose >= 2 && dump)
8016 {
8017 /* This structure is taken from generated code of the
8018 pipeline hazard recognizer (see file insn-attrtab.c).
8019 Please don't forget to change the structure if a new
8020 automaton is added to .md file. */
8021 struct DFA_chip
8022 {
8023 unsigned short one_automaton_state;
8024 unsigned short oneb_automaton_state;
8025 unsigned short two_automaton_state;
8026 unsigned short twob_automaton_state;
8027 };
8028
8029 fprintf
8030 (dump,
8031 "// Bundle state %d (orig %d, cost %d, nops %d/%d, insns %d, branch %d, state %d) for %d\n",
8032 curr_state->unique_num,
8033 (curr_state->originator == NULL
8034 ? -1 : curr_state->originator->unique_num),
8035 curr_state->cost,
8036 curr_state->before_nops_num, curr_state->after_nops_num,
8037 curr_state->accumulated_insns_num, curr_state->branch_deviation,
8038 (ia64_tune == PROCESSOR_ITANIUM
8039 ? ((struct DFA_chip *) curr_state->dfa_state)->oneb_automaton_state
8040 : ((struct DFA_chip *) curr_state->dfa_state)->twob_automaton_state),
8041 INSN_UID (insn));
8042 }
8043 }
8044
8045 /* We should find a solution because the 2nd insn scheduling has
8046 found one. */
8047 gcc_assert (index_to_bundle_states [insn_num]);
8048 /* Find a state corresponding to the best insn sequence. */
8049 best_state = NULL;
8050 for (curr_state = index_to_bundle_states [insn_num];
8051 curr_state != NULL;
8052 curr_state = curr_state->next)
8053 /* We are just looking at the states with fully filled up last
8054 bundle. The first we prefer insn sequences with minimal cost
8055 then with minimal inserted nops and finally with branch insns
8056 placed in the 3rd slots. */
8057 if (curr_state->accumulated_insns_num % 3 == 0
8058 && (best_state == NULL || best_state->cost > curr_state->cost
8059 || (best_state->cost == curr_state->cost
8060 && (curr_state->accumulated_insns_num
8061 < best_state->accumulated_insns_num
8062 || (curr_state->accumulated_insns_num
8063 == best_state->accumulated_insns_num
8064 && curr_state->branch_deviation
8065 < best_state->branch_deviation)))))
8066 best_state = curr_state;
8067 /* Second (backward) pass: adding nops and templates. */
8068 insn_num = best_state->before_nops_num;
8069 template0 = template1 = -1;
8070 for (curr_state = best_state;
8071 curr_state->originator != NULL;
8072 curr_state = curr_state->originator)
8073 {
8074 insn = curr_state->insn;
8075 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
8076 || asm_noperands (PATTERN (insn)) >= 0);
8077 insn_num++;
8078 if (verbose >= 2 && dump)
8079 {
8080 struct DFA_chip
8081 {
8082 unsigned short one_automaton_state;
8083 unsigned short oneb_automaton_state;
8084 unsigned short two_automaton_state;
8085 unsigned short twob_automaton_state;
8086 };
8087
8088 fprintf
8089 (dump,
8090 "// Best %d (orig %d, cost %d, nops %d/%d, insns %d, branch %d, state %d) for %d\n",
8091 curr_state->unique_num,
8092 (curr_state->originator == NULL
8093 ? -1 : curr_state->originator->unique_num),
8094 curr_state->cost,
8095 curr_state->before_nops_num, curr_state->after_nops_num,
8096 curr_state->accumulated_insns_num, curr_state->branch_deviation,
8097 (ia64_tune == PROCESSOR_ITANIUM
8098 ? ((struct DFA_chip *) curr_state->dfa_state)->oneb_automaton_state
8099 : ((struct DFA_chip *) curr_state->dfa_state)->twob_automaton_state),
8100 INSN_UID (insn));
8101 }
8102 /* Find the position in the current bundle window. The window can
8103 contain at most two bundles. Two bundle window means that
8104 the processor will make two bundle rotation. */
8105 max_pos = get_max_pos (curr_state->dfa_state);
8106 if (max_pos == 6
8107 /* The following (negative template number) means that the
8108 processor did one bundle rotation. */
8109 || (max_pos == 3 && template0 < 0))
8110 {
8111 /* We are at the end of the window -- find template(s) for
8112 its bundle(s). */
8113 pos = max_pos;
8114 if (max_pos == 3)
8115 template0 = get_template (curr_state->dfa_state, 3);
8116 else
8117 {
8118 template1 = get_template (curr_state->dfa_state, 3);
8119 template0 = get_template (curr_state->dfa_state, 6);
8120 }
8121 }
8122 if (max_pos > 3 && template1 < 0)
8123 /* It may happen when we have the stop inside a bundle. */
8124 {
8125 gcc_assert (pos <= 3);
8126 template1 = get_template (curr_state->dfa_state, 3);
8127 pos += 3;
8128 }
8129 if (!asm_p)
8130 /* Emit nops after the current insn. */
8131 for (i = 0; i < curr_state->after_nops_num; i++)
8132 {
8133 nop = gen_nop ();
8134 emit_insn_after (nop, insn);
8135 pos--;
8136 gcc_assert (pos >= 0);
8137 if (pos % 3 == 0)
8138 {
8139 /* We are at the start of a bundle: emit the template
8140 (it should be defined). */
8141 gcc_assert (template0 >= 0);
8142 ia64_add_bundle_selector_before (template0, nop);
8143 /* If we have two bundle window, we make one bundle
8144 rotation. Otherwise template0 will be undefined
8145 (negative value). */
8146 template0 = template1;
8147 template1 = -1;
8148 }
8149 }
8150 /* Move the position backward in the window. Group barrier has
8151 no slot. Asm insn takes all bundle. */
8152 if (INSN_CODE (insn) != CODE_FOR_insn_group_barrier
8153 && GET_CODE (PATTERN (insn)) != ASM_INPUT
8154 && asm_noperands (PATTERN (insn)) < 0)
8155 pos--;
8156 /* Long insn takes 2 slots. */
8157 if (ia64_safe_type (insn) == TYPE_L)
8158 pos--;
8159 gcc_assert (pos >= 0);
8160 if (pos % 3 == 0
8161 && INSN_CODE (insn) != CODE_FOR_insn_group_barrier
8162 && GET_CODE (PATTERN (insn)) != ASM_INPUT
8163 && asm_noperands (PATTERN (insn)) < 0)
8164 {
8165 /* The current insn is at the bundle start: emit the
8166 template. */
8167 gcc_assert (template0 >= 0);
8168 ia64_add_bundle_selector_before (template0, insn);
8169 b = PREV_INSN (insn);
8170 insn = b;
8171 /* See comment above in analogous place for emitting nops
8172 after the insn. */
8173 template0 = template1;
8174 template1 = -1;
8175 }
8176 /* Emit nops after the current insn. */
8177 for (i = 0; i < curr_state->before_nops_num; i++)
8178 {
8179 nop = gen_nop ();
8180 ia64_emit_insn_before (nop, insn);
8181 nop = PREV_INSN (insn);
8182 insn = nop;
8183 pos--;
8184 gcc_assert (pos >= 0);
8185 if (pos % 3 == 0)
8186 {
8187 /* See comment above in analogous place for emitting nops
8188 after the insn. */
8189 gcc_assert (template0 >= 0);
8190 ia64_add_bundle_selector_before (template0, insn);
8191 b = PREV_INSN (insn);
8192 insn = b;
8193 template0 = template1;
8194 template1 = -1;
8195 }
8196 }
8197 }
8198 if (ia64_tune == PROCESSOR_ITANIUM)
8199 /* Insert additional cycles for MM-insns (MMMUL and MMSHF).
8200 Itanium1 has a strange design, if the distance between an insn
8201 and dependent MM-insn is less 4 then we have a 6 additional
8202 cycles stall. So we make the distance equal to 4 cycles if it
8203 is less. */
8204 for (insn = get_next_important_insn (NEXT_INSN (prev_head_insn), tail);
8205 insn != NULL_RTX;
8206 insn = next_insn)
8207 {
8208 gcc_assert (INSN_P (insn)
8209 && ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
8210 && GET_CODE (PATTERN (insn)) != USE
8211 && GET_CODE (PATTERN (insn)) != CLOBBER);
8212 next_insn = get_next_important_insn (NEXT_INSN (insn), tail);
8213 if (INSN_UID (insn) < clocks_length && add_cycles [INSN_UID (insn)])
8214 /* We found a MM-insn which needs additional cycles. */
8215 {
8216 rtx last;
8217 int i, j, n;
8218 int pred_stop_p;
8219
8220 /* Now we are searching for a template of the bundle in
8221 which the MM-insn is placed and the position of the
8222 insn in the bundle (0, 1, 2). Also we are searching
8223 for that there is a stop before the insn. */
8224 last = prev_active_insn (insn);
8225 pred_stop_p = recog_memoized (last) == CODE_FOR_insn_group_barrier;
8226 if (pred_stop_p)
8227 last = prev_active_insn (last);
8228 n = 0;
8229 for (;; last = prev_active_insn (last))
8230 if (recog_memoized (last) == CODE_FOR_bundle_selector)
8231 {
8232 template0 = XINT (XVECEXP (PATTERN (last), 0, 0), 0);
8233 if (template0 == 9)
8234 /* The insn is in MLX bundle. Change the template
8235 onto MFI because we will add nops before the
8236 insn. It simplifies subsequent code a lot. */
8237 PATTERN (last)
8238 = gen_bundle_selector (const2_rtx); /* -> MFI */
8239 break;
8240 }
8241 else if (recog_memoized (last) != CODE_FOR_insn_group_barrier
8242 && (ia64_safe_itanium_class (last)
8243 != ITANIUM_CLASS_IGNORE))
8244 n++;
8245 /* Some check of correctness: the stop is not at the
8246 bundle start, there are no more 3 insns in the bundle,
8247 and the MM-insn is not at the start of bundle with
8248 template MLX. */
8249 gcc_assert ((!pred_stop_p || n)
8250 && n <= 2
8251 && (template0 != 9 || !n));
8252 /* Put nops after the insn in the bundle. */
8253 for (j = 3 - n; j > 0; j --)
8254 ia64_emit_insn_before (gen_nop (), insn);
8255 /* It takes into account that we will add more N nops
8256 before the insn lately -- please see code below. */
8257 add_cycles [INSN_UID (insn)]--;
8258 if (!pred_stop_p || add_cycles [INSN_UID (insn)])
8259 ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
8260 insn);
8261 if (pred_stop_p)
8262 add_cycles [INSN_UID (insn)]--;
8263 for (i = add_cycles [INSN_UID (insn)]; i > 0; i--)
8264 {
8265 /* Insert "MII;" template. */
8266 ia64_emit_insn_before (gen_bundle_selector (const0_rtx),
8267 insn);
8268 ia64_emit_insn_before (gen_nop (), insn);
8269 ia64_emit_insn_before (gen_nop (), insn);
8270 if (i > 1)
8271 {
8272 /* To decrease code size, we use "MI;I;"
8273 template. */
8274 ia64_emit_insn_before
8275 (gen_insn_group_barrier (GEN_INT (3)), insn);
8276 i--;
8277 }
8278 ia64_emit_insn_before (gen_nop (), insn);
8279 ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
8280 insn);
8281 }
8282 /* Put the MM-insn in the same slot of a bundle with the
8283 same template as the original one. */
8284 ia64_add_bundle_selector_before (template0, insn);
8285 /* To put the insn in the same slot, add necessary number
8286 of nops. */
8287 for (j = n; j > 0; j --)
8288 ia64_emit_insn_before (gen_nop (), insn);
8289 /* Put the stop if the original bundle had it. */
8290 if (pred_stop_p)
8291 ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
8292 insn);
8293 }
8294 }
8295 free (index_to_bundle_states);
8296 finish_bundle_state_table ();
8297 bundling_p = 0;
8298 dfa_clean_insn_cache ();
8299 }
8300
8301 /* The following function is called at the end of scheduling BB or
8302 EBB. After reload, it inserts stop bits and does insn bundling. */
8303
8304 static void
8305 ia64_sched_finish (FILE *dump, int sched_verbose)
8306 {
8307 if (sched_verbose)
8308 fprintf (dump, "// Finishing schedule.\n");
8309 if (!reload_completed)
8310 return;
8311 if (reload_completed)
8312 {
8313 final_emit_insn_group_barriers (dump);
8314 bundling (dump, sched_verbose, current_sched_info->prev_head,
8315 current_sched_info->next_tail);
8316 if (sched_verbose && dump)
8317 fprintf (dump, "// finishing %d-%d\n",
8318 INSN_UID (NEXT_INSN (current_sched_info->prev_head)),
8319 INSN_UID (PREV_INSN (current_sched_info->next_tail)));
8320
8321 return;
8322 }
8323 }
8324
8325 /* The following function inserts stop bits in scheduled BB or EBB. */
8326
8327 static void
8328 final_emit_insn_group_barriers (FILE *dump ATTRIBUTE_UNUSED)
8329 {
8330 rtx insn;
8331 int need_barrier_p = 0;
8332 rtx prev_insn = NULL_RTX;
8333
8334 init_insn_group_barriers ();
8335
8336 for (insn = NEXT_INSN (current_sched_info->prev_head);
8337 insn != current_sched_info->next_tail;
8338 insn = NEXT_INSN (insn))
8339 {
8340 if (GET_CODE (insn) == BARRIER)
8341 {
8342 rtx last = prev_active_insn (insn);
8343
8344 if (! last)
8345 continue;
8346 if (GET_CODE (last) == JUMP_INSN
8347 && GET_CODE (PATTERN (last)) == ADDR_DIFF_VEC)
8348 last = prev_active_insn (last);
8349 if (recog_memoized (last) != CODE_FOR_insn_group_barrier)
8350 emit_insn_after (gen_insn_group_barrier (GEN_INT (3)), last);
8351
8352 init_insn_group_barriers ();
8353 need_barrier_p = 0;
8354 prev_insn = NULL_RTX;
8355 }
8356 else if (INSN_P (insn))
8357 {
8358 if (recog_memoized (insn) == CODE_FOR_insn_group_barrier)
8359 {
8360 init_insn_group_barriers ();
8361 need_barrier_p = 0;
8362 prev_insn = NULL_RTX;
8363 }
8364 else if (need_barrier_p || group_barrier_needed (insn))
8365 {
8366 if (TARGET_EARLY_STOP_BITS)
8367 {
8368 rtx last;
8369
8370 for (last = insn;
8371 last != current_sched_info->prev_head;
8372 last = PREV_INSN (last))
8373 if (INSN_P (last) && GET_MODE (last) == TImode
8374 && stops_p [INSN_UID (last)])
8375 break;
8376 if (last == current_sched_info->prev_head)
8377 last = insn;
8378 last = prev_active_insn (last);
8379 if (last
8380 && recog_memoized (last) != CODE_FOR_insn_group_barrier)
8381 emit_insn_after (gen_insn_group_barrier (GEN_INT (3)),
8382 last);
8383 init_insn_group_barriers ();
8384 for (last = NEXT_INSN (last);
8385 last != insn;
8386 last = NEXT_INSN (last))
8387 if (INSN_P (last))
8388 group_barrier_needed (last);
8389 }
8390 else
8391 {
8392 emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
8393 insn);
8394 init_insn_group_barriers ();
8395 }
8396 group_barrier_needed (insn);
8397 prev_insn = NULL_RTX;
8398 }
8399 else if (recog_memoized (insn) >= 0)
8400 prev_insn = insn;
8401 need_barrier_p = (GET_CODE (insn) == CALL_INSN
8402 || GET_CODE (PATTERN (insn)) == ASM_INPUT
8403 || asm_noperands (PATTERN (insn)) >= 0);
8404 }
8405 }
8406 }
8407
8408 \f
8409
8410 /* If the following function returns TRUE, we will use the DFA
8411 insn scheduler. */
8412
8413 static int
8414 ia64_first_cycle_multipass_dfa_lookahead (void)
8415 {
8416 return (reload_completed ? 6 : 4);
8417 }
8418
8419 /* The following function initiates variable `dfa_pre_cycle_insn'. */
8420
8421 static void
8422 ia64_init_dfa_pre_cycle_insn (void)
8423 {
8424 if (temp_dfa_state == NULL)
8425 {
8426 dfa_state_size = state_size ();
8427 temp_dfa_state = xmalloc (dfa_state_size);
8428 prev_cycle_state = xmalloc (dfa_state_size);
8429 }
8430 dfa_pre_cycle_insn = make_insn_raw (gen_pre_cycle ());
8431 PREV_INSN (dfa_pre_cycle_insn) = NEXT_INSN (dfa_pre_cycle_insn) = NULL_RTX;
8432 recog_memoized (dfa_pre_cycle_insn);
8433 dfa_stop_insn = make_insn_raw (gen_insn_group_barrier (GEN_INT (3)));
8434 PREV_INSN (dfa_stop_insn) = NEXT_INSN (dfa_stop_insn) = NULL_RTX;
8435 recog_memoized (dfa_stop_insn);
8436 }
8437
8438 /* The following function returns the pseudo insn DFA_PRE_CYCLE_INSN
8439 used by the DFA insn scheduler. */
8440
8441 static rtx
8442 ia64_dfa_pre_cycle_insn (void)
8443 {
8444 return dfa_pre_cycle_insn;
8445 }
8446
8447 /* The following function returns TRUE if PRODUCER (of type ilog or
8448 ld) produces address for CONSUMER (of type st or stf). */
8449
8450 int
8451 ia64_st_address_bypass_p (rtx producer, rtx consumer)
8452 {
8453 rtx dest, reg, mem;
8454
8455 gcc_assert (producer && consumer);
8456 dest = ia64_single_set (producer);
8457 gcc_assert (dest);
8458 reg = SET_DEST (dest);
8459 gcc_assert (reg);
8460 if (GET_CODE (reg) == SUBREG)
8461 reg = SUBREG_REG (reg);
8462 gcc_assert (GET_CODE (reg) == REG);
8463
8464 dest = ia64_single_set (consumer);
8465 gcc_assert (dest);
8466 mem = SET_DEST (dest);
8467 gcc_assert (mem && GET_CODE (mem) == MEM);
8468 return reg_mentioned_p (reg, mem);
8469 }
8470
8471 /* The following function returns TRUE if PRODUCER (of type ilog or
8472 ld) produces address for CONSUMER (of type ld or fld). */
8473
8474 int
8475 ia64_ld_address_bypass_p (rtx producer, rtx consumer)
8476 {
8477 rtx dest, src, reg, mem;
8478
8479 gcc_assert (producer && consumer);
8480 dest = ia64_single_set (producer);
8481 gcc_assert (dest);
8482 reg = SET_DEST (dest);
8483 gcc_assert (reg);
8484 if (GET_CODE (reg) == SUBREG)
8485 reg = SUBREG_REG (reg);
8486 gcc_assert (GET_CODE (reg) == REG);
8487
8488 src = ia64_single_set (consumer);
8489 gcc_assert (src);
8490 mem = SET_SRC (src);
8491 gcc_assert (mem);
8492
8493 if (GET_CODE (mem) == UNSPEC && XVECLEN (mem, 0) > 0)
8494 mem = XVECEXP (mem, 0, 0);
8495 else if (GET_CODE (mem) == IF_THEN_ELSE)
8496 /* ??? Is this bypass necessary for ld.c? */
8497 {
8498 gcc_assert (XINT (XEXP (XEXP (mem, 0), 0), 1) == UNSPEC_LDCCLR);
8499 mem = XEXP (mem, 1);
8500 }
8501
8502 while (GET_CODE (mem) == SUBREG || GET_CODE (mem) == ZERO_EXTEND)
8503 mem = XEXP (mem, 0);
8504
8505 if (GET_CODE (mem) == UNSPEC)
8506 {
8507 int c = XINT (mem, 1);
8508
8509 gcc_assert (c == UNSPEC_LDA || c == UNSPEC_LDS || c == UNSPEC_LDSA);
8510 mem = XVECEXP (mem, 0, 0);
8511 }
8512
8513 /* Note that LO_SUM is used for GOT loads. */
8514 gcc_assert (GET_CODE (mem) == LO_SUM || GET_CODE (mem) == MEM);
8515
8516 return reg_mentioned_p (reg, mem);
8517 }
8518
8519 /* The following function returns TRUE if INSN produces address for a
8520 load/store insn. We will place such insns into M slot because it
8521 decreases its latency time. */
8522
8523 int
8524 ia64_produce_address_p (rtx insn)
8525 {
8526 return insn->call;
8527 }
8528
8529 \f
8530 /* Emit pseudo-ops for the assembler to describe predicate relations.
8531 At present this assumes that we only consider predicate pairs to
8532 be mutex, and that the assembler can deduce proper values from
8533 straight-line code. */
8534
8535 static void
8536 emit_predicate_relation_info (void)
8537 {
8538 basic_block bb;
8539
8540 FOR_EACH_BB_REVERSE (bb)
8541 {
8542 int r;
8543 rtx head = BB_HEAD (bb);
8544
8545 /* We only need such notes at code labels. */
8546 if (GET_CODE (head) != CODE_LABEL)
8547 continue;
8548 if (NOTE_INSN_BASIC_BLOCK_P (NEXT_INSN (head)))
8549 head = NEXT_INSN (head);
8550
8551 /* Skip p0, which may be thought to be live due to (reg:DI p0)
8552 grabbing the entire block of predicate registers. */
8553 for (r = PR_REG (2); r < PR_REG (64); r += 2)
8554 if (REGNO_REG_SET_P (df_get_live_in (bb), r))
8555 {
8556 rtx p = gen_rtx_REG (BImode, r);
8557 rtx n = emit_insn_after (gen_pred_rel_mutex (p), head);
8558 if (head == BB_END (bb))
8559 BB_END (bb) = n;
8560 head = n;
8561 }
8562 }
8563
8564 /* Look for conditional calls that do not return, and protect predicate
8565 relations around them. Otherwise the assembler will assume the call
8566 returns, and complain about uses of call-clobbered predicates after
8567 the call. */
8568 FOR_EACH_BB_REVERSE (bb)
8569 {
8570 rtx insn = BB_HEAD (bb);
8571
8572 while (1)
8573 {
8574 if (GET_CODE (insn) == CALL_INSN
8575 && GET_CODE (PATTERN (insn)) == COND_EXEC
8576 && find_reg_note (insn, REG_NORETURN, NULL_RTX))
8577 {
8578 rtx b = emit_insn_before (gen_safe_across_calls_all (), insn);
8579 rtx a = emit_insn_after (gen_safe_across_calls_normal (), insn);
8580 if (BB_HEAD (bb) == insn)
8581 BB_HEAD (bb) = b;
8582 if (BB_END (bb) == insn)
8583 BB_END (bb) = a;
8584 }
8585
8586 if (insn == BB_END (bb))
8587 break;
8588 insn = NEXT_INSN (insn);
8589 }
8590 }
8591 }
8592
8593 /* Perform machine dependent operations on the rtl chain INSNS. */
8594
8595 static void
8596 ia64_reorg (void)
8597 {
8598 /* We are freeing block_for_insn in the toplev to keep compatibility
8599 with old MDEP_REORGS that are not CFG based. Recompute it now. */
8600 compute_bb_for_insn ();
8601
8602 /* If optimizing, we'll have split before scheduling. */
8603 if (optimize == 0)
8604 split_all_insns ();
8605
8606 if (optimize && ia64_flag_schedule_insns2 && dbg_cnt (ia64_sched2))
8607 {
8608 timevar_push (TV_SCHED2);
8609 ia64_final_schedule = 1;
8610
8611 initiate_bundle_states ();
8612 ia64_nop = make_insn_raw (gen_nop ());
8613 PREV_INSN (ia64_nop) = NEXT_INSN (ia64_nop) = NULL_RTX;
8614 recog_memoized (ia64_nop);
8615 clocks_length = get_max_uid () + 1;
8616 stops_p = XCNEWVEC (char, clocks_length);
8617 if (ia64_tune == PROCESSOR_ITANIUM)
8618 {
8619 clocks = XCNEWVEC (int, clocks_length);
8620 add_cycles = XCNEWVEC (int, clocks_length);
8621 }
8622 if (ia64_tune == PROCESSOR_ITANIUM2)
8623 {
8624 pos_1 = get_cpu_unit_code ("2_1");
8625 pos_2 = get_cpu_unit_code ("2_2");
8626 pos_3 = get_cpu_unit_code ("2_3");
8627 pos_4 = get_cpu_unit_code ("2_4");
8628 pos_5 = get_cpu_unit_code ("2_5");
8629 pos_6 = get_cpu_unit_code ("2_6");
8630 _0mii_ = get_cpu_unit_code ("2b_0mii.");
8631 _0mmi_ = get_cpu_unit_code ("2b_0mmi.");
8632 _0mfi_ = get_cpu_unit_code ("2b_0mfi.");
8633 _0mmf_ = get_cpu_unit_code ("2b_0mmf.");
8634 _0bbb_ = get_cpu_unit_code ("2b_0bbb.");
8635 _0mbb_ = get_cpu_unit_code ("2b_0mbb.");
8636 _0mib_ = get_cpu_unit_code ("2b_0mib.");
8637 _0mmb_ = get_cpu_unit_code ("2b_0mmb.");
8638 _0mfb_ = get_cpu_unit_code ("2b_0mfb.");
8639 _0mlx_ = get_cpu_unit_code ("2b_0mlx.");
8640 _1mii_ = get_cpu_unit_code ("2b_1mii.");
8641 _1mmi_ = get_cpu_unit_code ("2b_1mmi.");
8642 _1mfi_ = get_cpu_unit_code ("2b_1mfi.");
8643 _1mmf_ = get_cpu_unit_code ("2b_1mmf.");
8644 _1bbb_ = get_cpu_unit_code ("2b_1bbb.");
8645 _1mbb_ = get_cpu_unit_code ("2b_1mbb.");
8646 _1mib_ = get_cpu_unit_code ("2b_1mib.");
8647 _1mmb_ = get_cpu_unit_code ("2b_1mmb.");
8648 _1mfb_ = get_cpu_unit_code ("2b_1mfb.");
8649 _1mlx_ = get_cpu_unit_code ("2b_1mlx.");
8650 }
8651 else
8652 {
8653 pos_1 = get_cpu_unit_code ("1_1");
8654 pos_2 = get_cpu_unit_code ("1_2");
8655 pos_3 = get_cpu_unit_code ("1_3");
8656 pos_4 = get_cpu_unit_code ("1_4");
8657 pos_5 = get_cpu_unit_code ("1_5");
8658 pos_6 = get_cpu_unit_code ("1_6");
8659 _0mii_ = get_cpu_unit_code ("1b_0mii.");
8660 _0mmi_ = get_cpu_unit_code ("1b_0mmi.");
8661 _0mfi_ = get_cpu_unit_code ("1b_0mfi.");
8662 _0mmf_ = get_cpu_unit_code ("1b_0mmf.");
8663 _0bbb_ = get_cpu_unit_code ("1b_0bbb.");
8664 _0mbb_ = get_cpu_unit_code ("1b_0mbb.");
8665 _0mib_ = get_cpu_unit_code ("1b_0mib.");
8666 _0mmb_ = get_cpu_unit_code ("1b_0mmb.");
8667 _0mfb_ = get_cpu_unit_code ("1b_0mfb.");
8668 _0mlx_ = get_cpu_unit_code ("1b_0mlx.");
8669 _1mii_ = get_cpu_unit_code ("1b_1mii.");
8670 _1mmi_ = get_cpu_unit_code ("1b_1mmi.");
8671 _1mfi_ = get_cpu_unit_code ("1b_1mfi.");
8672 _1mmf_ = get_cpu_unit_code ("1b_1mmf.");
8673 _1bbb_ = get_cpu_unit_code ("1b_1bbb.");
8674 _1mbb_ = get_cpu_unit_code ("1b_1mbb.");
8675 _1mib_ = get_cpu_unit_code ("1b_1mib.");
8676 _1mmb_ = get_cpu_unit_code ("1b_1mmb.");
8677 _1mfb_ = get_cpu_unit_code ("1b_1mfb.");
8678 _1mlx_ = get_cpu_unit_code ("1b_1mlx.");
8679 }
8680 schedule_ebbs ();
8681 /* We cannot reuse this one because it has been corrupted by the
8682 evil glat. */
8683 finish_bundle_states ();
8684 if (ia64_tune == PROCESSOR_ITANIUM)
8685 {
8686 free (add_cycles);
8687 free (clocks);
8688 }
8689 free (stops_p);
8690 stops_p = NULL;
8691 emit_insn_group_barriers (dump_file);
8692
8693 ia64_final_schedule = 0;
8694 timevar_pop (TV_SCHED2);
8695 }
8696 else
8697 emit_all_insn_group_barriers (dump_file);
8698
8699 df_analyze ();
8700
8701 /* A call must not be the last instruction in a function, so that the
8702 return address is still within the function, so that unwinding works
8703 properly. Note that IA-64 differs from dwarf2 on this point. */
8704 if (flag_unwind_tables || (flag_exceptions && !USING_SJLJ_EXCEPTIONS))
8705 {
8706 rtx insn;
8707 int saw_stop = 0;
8708
8709 insn = get_last_insn ();
8710 if (! INSN_P (insn))
8711 insn = prev_active_insn (insn);
8712 /* Skip over insns that expand to nothing. */
8713 while (GET_CODE (insn) == INSN && get_attr_empty (insn) == EMPTY_YES)
8714 {
8715 if (GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
8716 && XINT (PATTERN (insn), 1) == UNSPECV_INSN_GROUP_BARRIER)
8717 saw_stop = 1;
8718 insn = prev_active_insn (insn);
8719 }
8720 if (GET_CODE (insn) == CALL_INSN)
8721 {
8722 if (! saw_stop)
8723 emit_insn (gen_insn_group_barrier (GEN_INT (3)));
8724 emit_insn (gen_break_f ());
8725 emit_insn (gen_insn_group_barrier (GEN_INT (3)));
8726 }
8727 }
8728
8729 emit_predicate_relation_info ();
8730
8731 if (ia64_flag_var_tracking)
8732 {
8733 timevar_push (TV_VAR_TRACKING);
8734 variable_tracking_main ();
8735 timevar_pop (TV_VAR_TRACKING);
8736 }
8737 df_finish_pass (false);
8738 }
8739 \f
8740 /* Return true if REGNO is used by the epilogue. */
8741
8742 int
8743 ia64_epilogue_uses (int regno)
8744 {
8745 switch (regno)
8746 {
8747 case R_GR (1):
8748 /* With a call to a function in another module, we will write a new
8749 value to "gp". After returning from such a call, we need to make
8750 sure the function restores the original gp-value, even if the
8751 function itself does not use the gp anymore. */
8752 return !(TARGET_AUTO_PIC || TARGET_NO_PIC);
8753
8754 case IN_REG (0): case IN_REG (1): case IN_REG (2): case IN_REG (3):
8755 case IN_REG (4): case IN_REG (5): case IN_REG (6): case IN_REG (7):
8756 /* For functions defined with the syscall_linkage attribute, all
8757 input registers are marked as live at all function exits. This
8758 prevents the register allocator from using the input registers,
8759 which in turn makes it possible to restart a system call after
8760 an interrupt without having to save/restore the input registers.
8761 This also prevents kernel data from leaking to application code. */
8762 return lookup_attribute ("syscall_linkage",
8763 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))) != NULL;
8764
8765 case R_BR (0):
8766 /* Conditional return patterns can't represent the use of `b0' as
8767 the return address, so we force the value live this way. */
8768 return 1;
8769
8770 case AR_PFS_REGNUM:
8771 /* Likewise for ar.pfs, which is used by br.ret. */
8772 return 1;
8773
8774 default:
8775 return 0;
8776 }
8777 }
8778
8779 /* Return true if REGNO is used by the frame unwinder. */
8780
8781 int
8782 ia64_eh_uses (int regno)
8783 {
8784 enum ia64_frame_regs r;
8785
8786 if (! reload_completed)
8787 return 0;
8788
8789 if (regno == 0)
8790 return 0;
8791
8792 for (r = reg_save_b0; r <= reg_save_ar_lc; r++)
8793 if (regno == current_frame_info.r[r]
8794 || regno == emitted_frame_related_regs[r])
8795 return 1;
8796
8797 return 0;
8798 }
8799 \f
8800 /* Return true if this goes in small data/bss. */
8801
8802 /* ??? We could also support own long data here. Generating movl/add/ld8
8803 instead of addl,ld8/ld8. This makes the code bigger, but should make the
8804 code faster because there is one less load. This also includes incomplete
8805 types which can't go in sdata/sbss. */
8806
8807 static bool
8808 ia64_in_small_data_p (const_tree exp)
8809 {
8810 if (TARGET_NO_SDATA)
8811 return false;
8812
8813 /* We want to merge strings, so we never consider them small data. */
8814 if (TREE_CODE (exp) == STRING_CST)
8815 return false;
8816
8817 /* Functions are never small data. */
8818 if (TREE_CODE (exp) == FUNCTION_DECL)
8819 return false;
8820
8821 if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
8822 {
8823 const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));
8824
8825 if (strcmp (section, ".sdata") == 0
8826 || strncmp (section, ".sdata.", 7) == 0
8827 || strncmp (section, ".gnu.linkonce.s.", 16) == 0
8828 || strcmp (section, ".sbss") == 0
8829 || strncmp (section, ".sbss.", 6) == 0
8830 || strncmp (section, ".gnu.linkonce.sb.", 17) == 0)
8831 return true;
8832 }
8833 else
8834 {
8835 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
8836
8837 /* If this is an incomplete type with size 0, then we can't put it
8838 in sdata because it might be too big when completed. */
8839 if (size > 0 && size <= ia64_section_threshold)
8840 return true;
8841 }
8842
8843 return false;
8844 }
8845 \f
8846 /* Output assembly directives for prologue regions. */
8847
8848 /* The current basic block number. */
8849
8850 static bool last_block;
8851
8852 /* True if we need a copy_state command at the start of the next block. */
8853
8854 static bool need_copy_state;
8855
8856 #ifndef MAX_ARTIFICIAL_LABEL_BYTES
8857 # define MAX_ARTIFICIAL_LABEL_BYTES 30
8858 #endif
8859
8860 /* Emit a debugging label after a call-frame-related insn. We'd
8861 rather output the label right away, but we'd have to output it
8862 after, not before, the instruction, and the instruction has not
8863 been output yet. So we emit the label after the insn, delete it to
8864 avoid introducing basic blocks, and mark it as preserved, such that
8865 it is still output, given that it is referenced in debug info. */
8866
8867 static const char *
8868 ia64_emit_deleted_label_after_insn (rtx insn)
8869 {
8870 char label[MAX_ARTIFICIAL_LABEL_BYTES];
8871 rtx lb = gen_label_rtx ();
8872 rtx label_insn = emit_label_after (lb, insn);
8873
8874 LABEL_PRESERVE_P (lb) = 1;
8875
8876 delete_insn (label_insn);
8877
8878 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (label_insn));
8879
8880 return xstrdup (label);
8881 }
8882
8883 /* Define the CFA after INSN with the steady-state definition. */
8884
8885 static void
8886 ia64_dwarf2out_def_steady_cfa (rtx insn)
8887 {
8888 rtx fp = frame_pointer_needed
8889 ? hard_frame_pointer_rtx
8890 : stack_pointer_rtx;
8891
8892 dwarf2out_def_cfa
8893 (ia64_emit_deleted_label_after_insn (insn),
8894 REGNO (fp),
8895 ia64_initial_elimination_offset
8896 (REGNO (arg_pointer_rtx), REGNO (fp))
8897 + ARG_POINTER_CFA_OFFSET (current_function_decl));
8898 }
8899
8900 /* The generic dwarf2 frame debug info generator does not define a
8901 separate region for the very end of the epilogue, so refrain from
8902 doing so in the IA64-specific code as well. */
8903
8904 #define IA64_CHANGE_CFA_IN_EPILOGUE 0
8905
8906 /* The function emits unwind directives for the start of an epilogue. */
8907
8908 static void
8909 process_epilogue (FILE *asm_out_file, rtx insn, bool unwind, bool frame)
8910 {
8911 /* If this isn't the last block of the function, then we need to label the
8912 current state, and copy it back in at the start of the next block. */
8913
8914 if (!last_block)
8915 {
8916 if (unwind)
8917 fprintf (asm_out_file, "\t.label_state %d\n",
8918 ++cfun->machine->state_num);
8919 need_copy_state = true;
8920 }
8921
8922 if (unwind)
8923 fprintf (asm_out_file, "\t.restore sp\n");
8924 if (IA64_CHANGE_CFA_IN_EPILOGUE && frame)
8925 dwarf2out_def_cfa (ia64_emit_deleted_label_after_insn (insn),
8926 STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
8927 }
8928
8929 /* This function processes a SET pattern looking for specific patterns
8930 which result in emitting an assembly directive required for unwinding. */
8931
8932 static int
8933 process_set (FILE *asm_out_file, rtx pat, rtx insn, bool unwind, bool frame)
8934 {
8935 rtx src = SET_SRC (pat);
8936 rtx dest = SET_DEST (pat);
8937 int src_regno, dest_regno;
8938
8939 /* Look for the ALLOC insn. */
8940 if (GET_CODE (src) == UNSPEC_VOLATILE
8941 && XINT (src, 1) == UNSPECV_ALLOC
8942 && GET_CODE (dest) == REG)
8943 {
8944 dest_regno = REGNO (dest);
8945
8946 /* If this is the final destination for ar.pfs, then this must
8947 be the alloc in the prologue. */
8948 if (dest_regno == current_frame_info.r[reg_save_ar_pfs])
8949 {
8950 if (unwind)
8951 fprintf (asm_out_file, "\t.save ar.pfs, r%d\n",
8952 ia64_dbx_register_number (dest_regno));
8953 }
8954 else
8955 {
8956 /* This must be an alloc before a sibcall. We must drop the
8957 old frame info. The easiest way to drop the old frame
8958 info is to ensure we had a ".restore sp" directive
8959 followed by a new prologue. If the procedure doesn't
8960 have a memory-stack frame, we'll issue a dummy ".restore
8961 sp" now. */
8962 if (current_frame_info.total_size == 0 && !frame_pointer_needed)
8963 /* if haven't done process_epilogue() yet, do it now */
8964 process_epilogue (asm_out_file, insn, unwind, frame);
8965 if (unwind)
8966 fprintf (asm_out_file, "\t.prologue\n");
8967 }
8968 return 1;
8969 }
8970
8971 /* Look for SP = .... */
8972 if (GET_CODE (dest) == REG && REGNO (dest) == STACK_POINTER_REGNUM)
8973 {
8974 if (GET_CODE (src) == PLUS)
8975 {
8976 rtx op0 = XEXP (src, 0);
8977 rtx op1 = XEXP (src, 1);
8978
8979 gcc_assert (op0 == dest && GET_CODE (op1) == CONST_INT);
8980
8981 if (INTVAL (op1) < 0)
8982 {
8983 gcc_assert (!frame_pointer_needed);
8984 if (unwind)
8985 fprintf (asm_out_file, "\t.fframe "HOST_WIDE_INT_PRINT_DEC"\n",
8986 -INTVAL (op1));
8987 if (frame)
8988 ia64_dwarf2out_def_steady_cfa (insn);
8989 }
8990 else
8991 process_epilogue (asm_out_file, insn, unwind, frame);
8992 }
8993 else
8994 {
8995 gcc_assert (GET_CODE (src) == REG
8996 && REGNO (src) == HARD_FRAME_POINTER_REGNUM);
8997 process_epilogue (asm_out_file, insn, unwind, frame);
8998 }
8999
9000 return 1;
9001 }
9002
9003 /* Register move we need to look at. */
9004 if (GET_CODE (dest) == REG && GET_CODE (src) == REG)
9005 {
9006 src_regno = REGNO (src);
9007 dest_regno = REGNO (dest);
9008
9009 switch (src_regno)
9010 {
9011 case BR_REG (0):
9012 /* Saving return address pointer. */
9013 gcc_assert (dest_regno == current_frame_info.r[reg_save_b0]);
9014 if (unwind)
9015 fprintf (asm_out_file, "\t.save rp, r%d\n",
9016 ia64_dbx_register_number (dest_regno));
9017 return 1;
9018
9019 case PR_REG (0):
9020 gcc_assert (dest_regno == current_frame_info.r[reg_save_pr]);
9021 if (unwind)
9022 fprintf (asm_out_file, "\t.save pr, r%d\n",
9023 ia64_dbx_register_number (dest_regno));
9024 return 1;
9025
9026 case AR_UNAT_REGNUM:
9027 gcc_assert (dest_regno == current_frame_info.r[reg_save_ar_unat]);
9028 if (unwind)
9029 fprintf (asm_out_file, "\t.save ar.unat, r%d\n",
9030 ia64_dbx_register_number (dest_regno));
9031 return 1;
9032
9033 case AR_LC_REGNUM:
9034 gcc_assert (dest_regno == current_frame_info.r[reg_save_ar_lc]);
9035 if (unwind)
9036 fprintf (asm_out_file, "\t.save ar.lc, r%d\n",
9037 ia64_dbx_register_number (dest_regno));
9038 return 1;
9039
9040 case STACK_POINTER_REGNUM:
9041 gcc_assert (dest_regno == HARD_FRAME_POINTER_REGNUM
9042 && frame_pointer_needed);
9043 if (unwind)
9044 fprintf (asm_out_file, "\t.vframe r%d\n",
9045 ia64_dbx_register_number (dest_regno));
9046 if (frame)
9047 ia64_dwarf2out_def_steady_cfa (insn);
9048 return 1;
9049
9050 default:
9051 /* Everything else should indicate being stored to memory. */
9052 gcc_unreachable ();
9053 }
9054 }
9055
9056 /* Memory store we need to look at. */
9057 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG)
9058 {
9059 long off;
9060 rtx base;
9061 const char *saveop;
9062
9063 if (GET_CODE (XEXP (dest, 0)) == REG)
9064 {
9065 base = XEXP (dest, 0);
9066 off = 0;
9067 }
9068 else
9069 {
9070 gcc_assert (GET_CODE (XEXP (dest, 0)) == PLUS
9071 && GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
9072 base = XEXP (XEXP (dest, 0), 0);
9073 off = INTVAL (XEXP (XEXP (dest, 0), 1));
9074 }
9075
9076 if (base == hard_frame_pointer_rtx)
9077 {
9078 saveop = ".savepsp";
9079 off = - off;
9080 }
9081 else
9082 {
9083 gcc_assert (base == stack_pointer_rtx);
9084 saveop = ".savesp";
9085 }
9086
9087 src_regno = REGNO (src);
9088 switch (src_regno)
9089 {
9090 case BR_REG (0):
9091 gcc_assert (!current_frame_info.r[reg_save_b0]);
9092 if (unwind)
9093 fprintf (asm_out_file, "\t%s rp, %ld\n", saveop, off);
9094 return 1;
9095
9096 case PR_REG (0):
9097 gcc_assert (!current_frame_info.r[reg_save_pr]);
9098 if (unwind)
9099 fprintf (asm_out_file, "\t%s pr, %ld\n", saveop, off);
9100 return 1;
9101
9102 case AR_LC_REGNUM:
9103 gcc_assert (!current_frame_info.r[reg_save_ar_lc]);
9104 if (unwind)
9105 fprintf (asm_out_file, "\t%s ar.lc, %ld\n", saveop, off);
9106 return 1;
9107
9108 case AR_PFS_REGNUM:
9109 gcc_assert (!current_frame_info.r[reg_save_ar_pfs]);
9110 if (unwind)
9111 fprintf (asm_out_file, "\t%s ar.pfs, %ld\n", saveop, off);
9112 return 1;
9113
9114 case AR_UNAT_REGNUM:
9115 gcc_assert (!current_frame_info.r[reg_save_ar_unat]);
9116 if (unwind)
9117 fprintf (asm_out_file, "\t%s ar.unat, %ld\n", saveop, off);
9118 return 1;
9119
9120 case GR_REG (4):
9121 case GR_REG (5):
9122 case GR_REG (6):
9123 case GR_REG (7):
9124 if (unwind)
9125 fprintf (asm_out_file, "\t.save.g 0x%x\n",
9126 1 << (src_regno - GR_REG (4)));
9127 return 1;
9128
9129 case BR_REG (1):
9130 case BR_REG (2):
9131 case BR_REG (3):
9132 case BR_REG (4):
9133 case BR_REG (5):
9134 if (unwind)
9135 fprintf (asm_out_file, "\t.save.b 0x%x\n",
9136 1 << (src_regno - BR_REG (1)));
9137 return 1;
9138
9139 case FR_REG (2):
9140 case FR_REG (3):
9141 case FR_REG (4):
9142 case FR_REG (5):
9143 if (unwind)
9144 fprintf (asm_out_file, "\t.save.f 0x%x\n",
9145 1 << (src_regno - FR_REG (2)));
9146 return 1;
9147
9148 case FR_REG (16): case FR_REG (17): case FR_REG (18): case FR_REG (19):
9149 case FR_REG (20): case FR_REG (21): case FR_REG (22): case FR_REG (23):
9150 case FR_REG (24): case FR_REG (25): case FR_REG (26): case FR_REG (27):
9151 case FR_REG (28): case FR_REG (29): case FR_REG (30): case FR_REG (31):
9152 if (unwind)
9153 fprintf (asm_out_file, "\t.save.gf 0x0, 0x%x\n",
9154 1 << (src_regno - FR_REG (12)));
9155 return 1;
9156
9157 default:
9158 return 0;
9159 }
9160 }
9161
9162 return 0;
9163 }
9164
9165
9166 /* This function looks at a single insn and emits any directives
9167 required to unwind this insn. */
9168 void
9169 process_for_unwind_directive (FILE *asm_out_file, rtx insn)
9170 {
9171 bool unwind = (flag_unwind_tables
9172 || (flag_exceptions && !USING_SJLJ_EXCEPTIONS));
9173 bool frame = dwarf2out_do_frame ();
9174
9175 if (unwind || frame)
9176 {
9177 rtx pat;
9178
9179 if (NOTE_INSN_BASIC_BLOCK_P (insn))
9180 {
9181 last_block = NOTE_BASIC_BLOCK (insn)->next_bb == EXIT_BLOCK_PTR;
9182
9183 /* Restore unwind state from immediately before the epilogue. */
9184 if (need_copy_state)
9185 {
9186 if (unwind)
9187 {
9188 fprintf (asm_out_file, "\t.body\n");
9189 fprintf (asm_out_file, "\t.copy_state %d\n",
9190 cfun->machine->state_num);
9191 }
9192 if (IA64_CHANGE_CFA_IN_EPILOGUE && frame)
9193 ia64_dwarf2out_def_steady_cfa (insn);
9194 need_copy_state = false;
9195 }
9196 }
9197
9198 if (GET_CODE (insn) == NOTE || ! RTX_FRAME_RELATED_P (insn))
9199 return;
9200
9201 pat = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
9202 if (pat)
9203 pat = XEXP (pat, 0);
9204 else
9205 pat = PATTERN (insn);
9206
9207 switch (GET_CODE (pat))
9208 {
9209 case SET:
9210 process_set (asm_out_file, pat, insn, unwind, frame);
9211 break;
9212
9213 case PARALLEL:
9214 {
9215 int par_index;
9216 int limit = XVECLEN (pat, 0);
9217 for (par_index = 0; par_index < limit; par_index++)
9218 {
9219 rtx x = XVECEXP (pat, 0, par_index);
9220 if (GET_CODE (x) == SET)
9221 process_set (asm_out_file, x, insn, unwind, frame);
9222 }
9223 break;
9224 }
9225
9226 default:
9227 gcc_unreachable ();
9228 }
9229 }
9230 }
9231
9232 \f
9233 enum ia64_builtins
9234 {
9235 IA64_BUILTIN_BSP,
9236 IA64_BUILTIN_FLUSHRS
9237 };
9238
9239 void
9240 ia64_init_builtins (void)
9241 {
9242 tree fpreg_type;
9243 tree float80_type;
9244
9245 /* The __fpreg type. */
9246 fpreg_type = make_node (REAL_TYPE);
9247 TYPE_PRECISION (fpreg_type) = 82;
9248 layout_type (fpreg_type);
9249 (*lang_hooks.types.register_builtin_type) (fpreg_type, "__fpreg");
9250
9251 /* The __float80 type. */
9252 float80_type = make_node (REAL_TYPE);
9253 TYPE_PRECISION (float80_type) = 80;
9254 layout_type (float80_type);
9255 (*lang_hooks.types.register_builtin_type) (float80_type, "__float80");
9256
9257 /* The __float128 type. */
9258 if (!TARGET_HPUX)
9259 {
9260 tree float128_type = make_node (REAL_TYPE);
9261 TYPE_PRECISION (float128_type) = 128;
9262 layout_type (float128_type);
9263 (*lang_hooks.types.register_builtin_type) (float128_type, "__float128");
9264 }
9265 else
9266 /* Under HPUX, this is a synonym for "long double". */
9267 (*lang_hooks.types.register_builtin_type) (long_double_type_node,
9268 "__float128");
9269
9270 #define def_builtin(name, type, code) \
9271 add_builtin_function ((name), (type), (code), BUILT_IN_MD, \
9272 NULL, NULL_TREE)
9273
9274 def_builtin ("__builtin_ia64_bsp",
9275 build_function_type (ptr_type_node, void_list_node),
9276 IA64_BUILTIN_BSP);
9277
9278 def_builtin ("__builtin_ia64_flushrs",
9279 build_function_type (void_type_node, void_list_node),
9280 IA64_BUILTIN_FLUSHRS);
9281
9282 #undef def_builtin
9283
9284 if (TARGET_HPUX)
9285 {
9286 if (built_in_decls [BUILT_IN_FINITE])
9287 set_user_assembler_name (built_in_decls [BUILT_IN_FINITE],
9288 "_Isfinite");
9289 if (built_in_decls [BUILT_IN_FINITEF])
9290 set_user_assembler_name (built_in_decls [BUILT_IN_FINITEF],
9291 "_Isfinitef");
9292 if (built_in_decls [BUILT_IN_FINITEL])
9293 set_user_assembler_name (built_in_decls [BUILT_IN_FINITEL],
9294 "_Isfinitef128");
9295 }
9296 }
9297
9298 rtx
9299 ia64_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
9300 enum machine_mode mode ATTRIBUTE_UNUSED,
9301 int ignore ATTRIBUTE_UNUSED)
9302 {
9303 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
9304 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
9305
9306 switch (fcode)
9307 {
9308 case IA64_BUILTIN_BSP:
9309 if (! target || ! register_operand (target, DImode))
9310 target = gen_reg_rtx (DImode);
9311 emit_insn (gen_bsp_value (target));
9312 #ifdef POINTERS_EXTEND_UNSIGNED
9313 target = convert_memory_address (ptr_mode, target);
9314 #endif
9315 return target;
9316
9317 case IA64_BUILTIN_FLUSHRS:
9318 emit_insn (gen_flushrs ());
9319 return const0_rtx;
9320
9321 default:
9322 break;
9323 }
9324
9325 return NULL_RTX;
9326 }
9327
9328 /* For the HP-UX IA64 aggregate parameters are passed stored in the
9329 most significant bits of the stack slot. */
9330
9331 enum direction
9332 ia64_hpux_function_arg_padding (enum machine_mode mode, const_tree type)
9333 {
9334 /* Exception to normal case for structures/unions/etc. */
9335
9336 if (type && AGGREGATE_TYPE_P (type)
9337 && int_size_in_bytes (type) < UNITS_PER_WORD)
9338 return upward;
9339
9340 /* Fall back to the default. */
9341 return DEFAULT_FUNCTION_ARG_PADDING (mode, type);
9342 }
9343
9344 /* Emit text to declare externally defined variables and functions, because
9345 the Intel assembler does not support undefined externals. */
9346
9347 void
9348 ia64_asm_output_external (FILE *file, tree decl, const char *name)
9349 {
9350 /* We output the name if and only if TREE_SYMBOL_REFERENCED is
9351 set in order to avoid putting out names that are never really
9352 used. */
9353 if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
9354 {
9355 /* maybe_assemble_visibility will return 1 if the assembler
9356 visibility directive is output. */
9357 int need_visibility = ((*targetm.binds_local_p) (decl)
9358 && maybe_assemble_visibility (decl));
9359
9360 /* GNU as does not need anything here, but the HP linker does
9361 need something for external functions. */
9362 if ((TARGET_HPUX_LD || !TARGET_GNU_AS)
9363 && TREE_CODE (decl) == FUNCTION_DECL)
9364 (*targetm.asm_out.globalize_decl_name) (file, decl);
9365 else if (need_visibility && !TARGET_GNU_AS)
9366 (*targetm.asm_out.globalize_label) (file, name);
9367 }
9368 }
9369
9370 /* Set SImode div/mod functions, init_integral_libfuncs only initializes
9371 modes of word_mode and larger. Rename the TFmode libfuncs using the
9372 HPUX conventions. __divtf3 is used for XFmode. We need to keep it for
9373 backward compatibility. */
9374
9375 static void
9376 ia64_init_libfuncs (void)
9377 {
9378 set_optab_libfunc (sdiv_optab, SImode, "__divsi3");
9379 set_optab_libfunc (udiv_optab, SImode, "__udivsi3");
9380 set_optab_libfunc (smod_optab, SImode, "__modsi3");
9381 set_optab_libfunc (umod_optab, SImode, "__umodsi3");
9382
9383 set_optab_libfunc (add_optab, TFmode, "_U_Qfadd");
9384 set_optab_libfunc (sub_optab, TFmode, "_U_Qfsub");
9385 set_optab_libfunc (smul_optab, TFmode, "_U_Qfmpy");
9386 set_optab_libfunc (sdiv_optab, TFmode, "_U_Qfdiv");
9387 set_optab_libfunc (neg_optab, TFmode, "_U_Qfneg");
9388
9389 set_conv_libfunc (sext_optab, TFmode, SFmode, "_U_Qfcnvff_sgl_to_quad");
9390 set_conv_libfunc (sext_optab, TFmode, DFmode, "_U_Qfcnvff_dbl_to_quad");
9391 set_conv_libfunc (sext_optab, TFmode, XFmode, "_U_Qfcnvff_f80_to_quad");
9392 set_conv_libfunc (trunc_optab, SFmode, TFmode, "_U_Qfcnvff_quad_to_sgl");
9393 set_conv_libfunc (trunc_optab, DFmode, TFmode, "_U_Qfcnvff_quad_to_dbl");
9394 set_conv_libfunc (trunc_optab, XFmode, TFmode, "_U_Qfcnvff_quad_to_f80");
9395
9396 set_conv_libfunc (sfix_optab, SImode, TFmode, "_U_Qfcnvfxt_quad_to_sgl");
9397 set_conv_libfunc (sfix_optab, DImode, TFmode, "_U_Qfcnvfxt_quad_to_dbl");
9398 set_conv_libfunc (sfix_optab, TImode, TFmode, "_U_Qfcnvfxt_quad_to_quad");
9399 set_conv_libfunc (ufix_optab, SImode, TFmode, "_U_Qfcnvfxut_quad_to_sgl");
9400 set_conv_libfunc (ufix_optab, DImode, TFmode, "_U_Qfcnvfxut_quad_to_dbl");
9401
9402 set_conv_libfunc (sfloat_optab, TFmode, SImode, "_U_Qfcnvxf_sgl_to_quad");
9403 set_conv_libfunc (sfloat_optab, TFmode, DImode, "_U_Qfcnvxf_dbl_to_quad");
9404 set_conv_libfunc (sfloat_optab, TFmode, TImode, "_U_Qfcnvxf_quad_to_quad");
9405 /* HP-UX 11.23 libc does not have a function for unsigned
9406 SImode-to-TFmode conversion. */
9407 set_conv_libfunc (ufloat_optab, TFmode, DImode, "_U_Qfcnvxuf_dbl_to_quad");
9408 }
9409
9410 /* Rename all the TFmode libfuncs using the HPUX conventions. */
9411
9412 static void
9413 ia64_hpux_init_libfuncs (void)
9414 {
9415 ia64_init_libfuncs ();
9416
9417 /* The HP SI millicode division and mod functions expect DI arguments.
9418 By turning them off completely we avoid using both libgcc and the
9419 non-standard millicode routines and use the HP DI millicode routines
9420 instead. */
9421
9422 set_optab_libfunc (sdiv_optab, SImode, 0);
9423 set_optab_libfunc (udiv_optab, SImode, 0);
9424 set_optab_libfunc (smod_optab, SImode, 0);
9425 set_optab_libfunc (umod_optab, SImode, 0);
9426
9427 set_optab_libfunc (sdiv_optab, DImode, "__milli_divI");
9428 set_optab_libfunc (udiv_optab, DImode, "__milli_divU");
9429 set_optab_libfunc (smod_optab, DImode, "__milli_remI");
9430 set_optab_libfunc (umod_optab, DImode, "__milli_remU");
9431
9432 /* HP-UX libc has TF min/max/abs routines in it. */
9433 set_optab_libfunc (smin_optab, TFmode, "_U_Qfmin");
9434 set_optab_libfunc (smax_optab, TFmode, "_U_Qfmax");
9435 set_optab_libfunc (abs_optab, TFmode, "_U_Qfabs");
9436
9437 /* ia64_expand_compare uses this. */
9438 cmptf_libfunc = init_one_libfunc ("_U_Qfcmp");
9439
9440 /* These should never be used. */
9441 set_optab_libfunc (eq_optab, TFmode, 0);
9442 set_optab_libfunc (ne_optab, TFmode, 0);
9443 set_optab_libfunc (gt_optab, TFmode, 0);
9444 set_optab_libfunc (ge_optab, TFmode, 0);
9445 set_optab_libfunc (lt_optab, TFmode, 0);
9446 set_optab_libfunc (le_optab, TFmode, 0);
9447 }
9448
9449 /* Rename the division and modulus functions in VMS. */
9450
9451 static void
9452 ia64_vms_init_libfuncs (void)
9453 {
9454 set_optab_libfunc (sdiv_optab, SImode, "OTS$DIV_I");
9455 set_optab_libfunc (sdiv_optab, DImode, "OTS$DIV_L");
9456 set_optab_libfunc (udiv_optab, SImode, "OTS$DIV_UI");
9457 set_optab_libfunc (udiv_optab, DImode, "OTS$DIV_UL");
9458 set_optab_libfunc (smod_optab, SImode, "OTS$REM_I");
9459 set_optab_libfunc (smod_optab, DImode, "OTS$REM_L");
9460 set_optab_libfunc (umod_optab, SImode, "OTS$REM_UI");
9461 set_optab_libfunc (umod_optab, DImode, "OTS$REM_UL");
9462 }
9463
9464 /* Rename the TFmode libfuncs available from soft-fp in glibc using
9465 the HPUX conventions. */
9466
9467 static void
9468 ia64_sysv4_init_libfuncs (void)
9469 {
9470 ia64_init_libfuncs ();
9471
9472 /* These functions are not part of the HPUX TFmode interface. We
9473 use them instead of _U_Qfcmp, which doesn't work the way we
9474 expect. */
9475 set_optab_libfunc (eq_optab, TFmode, "_U_Qfeq");
9476 set_optab_libfunc (ne_optab, TFmode, "_U_Qfne");
9477 set_optab_libfunc (gt_optab, TFmode, "_U_Qfgt");
9478 set_optab_libfunc (ge_optab, TFmode, "_U_Qfge");
9479 set_optab_libfunc (lt_optab, TFmode, "_U_Qflt");
9480 set_optab_libfunc (le_optab, TFmode, "_U_Qfle");
9481
9482 /* We leave out _U_Qfmin, _U_Qfmax and _U_Qfabs since soft-fp in
9483 glibc doesn't have them. */
9484 }
9485 \f
9486 /* For HPUX, it is illegal to have relocations in shared segments. */
9487
9488 static int
9489 ia64_hpux_reloc_rw_mask (void)
9490 {
9491 return 3;
9492 }
9493
9494 /* For others, relax this so that relocations to local data goes in
9495 read-only segments, but we still cannot allow global relocations
9496 in read-only segments. */
9497
9498 static int
9499 ia64_reloc_rw_mask (void)
9500 {
9501 return flag_pic ? 3 : 2;
9502 }
9503
9504 /* Return the section to use for X. The only special thing we do here
9505 is to honor small data. */
9506
9507 static section *
9508 ia64_select_rtx_section (enum machine_mode mode, rtx x,
9509 unsigned HOST_WIDE_INT align)
9510 {
9511 if (GET_MODE_SIZE (mode) > 0
9512 && GET_MODE_SIZE (mode) <= ia64_section_threshold
9513 && !TARGET_NO_SDATA)
9514 return sdata_section;
9515 else
9516 return default_elf_select_rtx_section (mode, x, align);
9517 }
9518
9519 static unsigned int
9520 ia64_section_type_flags (tree decl, const char *name, int reloc)
9521 {
9522 unsigned int flags = 0;
9523
9524 if (strcmp (name, ".sdata") == 0
9525 || strncmp (name, ".sdata.", 7) == 0
9526 || strncmp (name, ".gnu.linkonce.s.", 16) == 0
9527 || strncmp (name, ".sdata2.", 8) == 0
9528 || strncmp (name, ".gnu.linkonce.s2.", 17) == 0
9529 || strcmp (name, ".sbss") == 0
9530 || strncmp (name, ".sbss.", 6) == 0
9531 || strncmp (name, ".gnu.linkonce.sb.", 17) == 0)
9532 flags = SECTION_SMALL;
9533
9534 flags |= default_section_type_flags (decl, name, reloc);
9535 return flags;
9536 }
9537
9538 /* Returns true if FNTYPE (a FUNCTION_TYPE or a METHOD_TYPE) returns a
9539 structure type and that the address of that type should be passed
9540 in out0, rather than in r8. */
9541
9542 static bool
9543 ia64_struct_retval_addr_is_first_parm_p (tree fntype)
9544 {
9545 tree ret_type = TREE_TYPE (fntype);
9546
9547 /* The Itanium C++ ABI requires that out0, rather than r8, be used
9548 as the structure return address parameter, if the return value
9549 type has a non-trivial copy constructor or destructor. It is not
9550 clear if this same convention should be used for other
9551 programming languages. Until G++ 3.4, we incorrectly used r8 for
9552 these return values. */
9553 return (abi_version_at_least (2)
9554 && ret_type
9555 && TYPE_MODE (ret_type) == BLKmode
9556 && TREE_ADDRESSABLE (ret_type)
9557 && strcmp (lang_hooks.name, "GNU C++") == 0);
9558 }
9559
9560 /* Output the assembler code for a thunk function. THUNK_DECL is the
9561 declaration for the thunk function itself, FUNCTION is the decl for
9562 the target function. DELTA is an immediate constant offset to be
9563 added to THIS. If VCALL_OFFSET is nonzero, the word at
9564 *(*this + vcall_offset) should be added to THIS. */
9565
9566 static void
9567 ia64_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
9568 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
9569 tree function)
9570 {
9571 rtx this, insn, funexp;
9572 unsigned int this_parmno;
9573 unsigned int this_regno;
9574 rtx delta_rtx;
9575
9576 reload_completed = 1;
9577 epilogue_completed = 1;
9578
9579 /* Set things up as ia64_expand_prologue might. */
9580 last_scratch_gr_reg = 15;
9581
9582 memset (&current_frame_info, 0, sizeof (current_frame_info));
9583 current_frame_info.spill_cfa_off = -16;
9584 current_frame_info.n_input_regs = 1;
9585 current_frame_info.need_regstk = (TARGET_REG_NAMES != 0);
9586
9587 /* Mark the end of the (empty) prologue. */
9588 emit_note (NOTE_INSN_PROLOGUE_END);
9589
9590 /* Figure out whether "this" will be the first parameter (the
9591 typical case) or the second parameter (as happens when the
9592 virtual function returns certain class objects). */
9593 this_parmno
9594 = (ia64_struct_retval_addr_is_first_parm_p (TREE_TYPE (thunk))
9595 ? 1 : 0);
9596 this_regno = IN_REG (this_parmno);
9597 if (!TARGET_REG_NAMES)
9598 reg_names[this_regno] = ia64_reg_numbers[this_parmno];
9599
9600 this = gen_rtx_REG (Pmode, this_regno);
9601
9602 /* Apply the constant offset, if required. */
9603 delta_rtx = GEN_INT (delta);
9604 if (TARGET_ILP32)
9605 {
9606 rtx tmp = gen_rtx_REG (ptr_mode, this_regno);
9607 REG_POINTER (tmp) = 1;
9608 if (delta && satisfies_constraint_I (delta_rtx))
9609 {
9610 emit_insn (gen_ptr_extend_plus_imm (this, tmp, delta_rtx));
9611 delta = 0;
9612 }
9613 else
9614 emit_insn (gen_ptr_extend (this, tmp));
9615 }
9616 if (delta)
9617 {
9618 if (!satisfies_constraint_I (delta_rtx))
9619 {
9620 rtx tmp = gen_rtx_REG (Pmode, 2);
9621 emit_move_insn (tmp, delta_rtx);
9622 delta_rtx = tmp;
9623 }
9624 emit_insn (gen_adddi3 (this, this, delta_rtx));
9625 }
9626
9627 /* Apply the offset from the vtable, if required. */
9628 if (vcall_offset)
9629 {
9630 rtx vcall_offset_rtx = GEN_INT (vcall_offset);
9631 rtx tmp = gen_rtx_REG (Pmode, 2);
9632
9633 if (TARGET_ILP32)
9634 {
9635 rtx t = gen_rtx_REG (ptr_mode, 2);
9636 REG_POINTER (t) = 1;
9637 emit_move_insn (t, gen_rtx_MEM (ptr_mode, this));
9638 if (satisfies_constraint_I (vcall_offset_rtx))
9639 {
9640 emit_insn (gen_ptr_extend_plus_imm (tmp, t, vcall_offset_rtx));
9641 vcall_offset = 0;
9642 }
9643 else
9644 emit_insn (gen_ptr_extend (tmp, t));
9645 }
9646 else
9647 emit_move_insn (tmp, gen_rtx_MEM (Pmode, this));
9648
9649 if (vcall_offset)
9650 {
9651 if (!satisfies_constraint_J (vcall_offset_rtx))
9652 {
9653 rtx tmp2 = gen_rtx_REG (Pmode, next_scratch_gr_reg ());
9654 emit_move_insn (tmp2, vcall_offset_rtx);
9655 vcall_offset_rtx = tmp2;
9656 }
9657 emit_insn (gen_adddi3 (tmp, tmp, vcall_offset_rtx));
9658 }
9659
9660 if (TARGET_ILP32)
9661 emit_insn (gen_zero_extendsidi2 (tmp, gen_rtx_MEM (ptr_mode, tmp)));
9662 else
9663 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
9664
9665 emit_insn (gen_adddi3 (this, this, tmp));
9666 }
9667
9668 /* Generate a tail call to the target function. */
9669 if (! TREE_USED (function))
9670 {
9671 assemble_external (function);
9672 TREE_USED (function) = 1;
9673 }
9674 funexp = XEXP (DECL_RTL (function), 0);
9675 funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
9676 ia64_expand_call (NULL_RTX, funexp, NULL_RTX, 1);
9677 insn = get_last_insn ();
9678 SIBLING_CALL_P (insn) = 1;
9679
9680 /* Code generation for calls relies on splitting. */
9681 reload_completed = 1;
9682 epilogue_completed = 1;
9683 try_split (PATTERN (insn), insn, 0);
9684
9685 emit_barrier ();
9686
9687 /* Run just enough of rest_of_compilation to get the insns emitted.
9688 There's not really enough bulk here to make other passes such as
9689 instruction scheduling worth while. Note that use_thunk calls
9690 assemble_start_function and assemble_end_function. */
9691
9692 insn_locators_alloc ();
9693 emit_all_insn_group_barriers (NULL);
9694 insn = get_insns ();
9695 shorten_branches (insn);
9696 final_start_function (insn, file, 1);
9697 final (insn, file, 1);
9698 final_end_function ();
9699 free_after_compilation (cfun);
9700
9701 reload_completed = 0;
9702 epilogue_completed = 0;
9703 }
9704
9705 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
9706
9707 static rtx
9708 ia64_struct_value_rtx (tree fntype,
9709 int incoming ATTRIBUTE_UNUSED)
9710 {
9711 if (fntype && ia64_struct_retval_addr_is_first_parm_p (fntype))
9712 return NULL_RTX;
9713 return gen_rtx_REG (Pmode, GR_REG (8));
9714 }
9715
9716 static bool
9717 ia64_scalar_mode_supported_p (enum machine_mode mode)
9718 {
9719 switch (mode)
9720 {
9721 case QImode:
9722 case HImode:
9723 case SImode:
9724 case DImode:
9725 case TImode:
9726 return true;
9727
9728 case SFmode:
9729 case DFmode:
9730 case XFmode:
9731 case RFmode:
9732 return true;
9733
9734 case TFmode:
9735 return TARGET_HPUX;
9736
9737 default:
9738 return false;
9739 }
9740 }
9741
9742 static bool
9743 ia64_vector_mode_supported_p (enum machine_mode mode)
9744 {
9745 switch (mode)
9746 {
9747 case V8QImode:
9748 case V4HImode:
9749 case V2SImode:
9750 return true;
9751
9752 case V2SFmode:
9753 return true;
9754
9755 default:
9756 return false;
9757 }
9758 }
9759
9760 /* Implement the FUNCTION_PROFILER macro. */
9761
9762 void
9763 ia64_output_function_profiler (FILE *file, int labelno)
9764 {
9765 bool indirect_call;
9766
9767 /* If the function needs a static chain and the static chain
9768 register is r15, we use an indirect call so as to bypass
9769 the PLT stub in case the executable is dynamically linked,
9770 because the stub clobbers r15 as per 5.3.6 of the psABI.
9771 We don't need to do that in non canonical PIC mode. */
9772
9773 if (cfun->static_chain_decl && !TARGET_NO_PIC && !TARGET_AUTO_PIC)
9774 {
9775 gcc_assert (STATIC_CHAIN_REGNUM == 15);
9776 indirect_call = true;
9777 }
9778 else
9779 indirect_call = false;
9780
9781 if (TARGET_GNU_AS)
9782 fputs ("\t.prologue 4, r40\n", file);
9783 else
9784 fputs ("\t.prologue\n\t.save ar.pfs, r40\n", file);
9785 fputs ("\talloc out0 = ar.pfs, 8, 0, 4, 0\n", file);
9786
9787 if (NO_PROFILE_COUNTERS)
9788 fputs ("\tmov out3 = r0\n", file);
9789 else
9790 {
9791 char buf[20];
9792 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
9793
9794 if (TARGET_AUTO_PIC)
9795 fputs ("\tmovl out3 = @gprel(", file);
9796 else
9797 fputs ("\taddl out3 = @ltoff(", file);
9798 assemble_name (file, buf);
9799 if (TARGET_AUTO_PIC)
9800 fputs (")\n", file);
9801 else
9802 fputs ("), r1\n", file);
9803 }
9804
9805 if (indirect_call)
9806 fputs ("\taddl r14 = @ltoff(@fptr(_mcount)), r1\n", file);
9807 fputs ("\t;;\n", file);
9808
9809 fputs ("\t.save rp, r42\n", file);
9810 fputs ("\tmov out2 = b0\n", file);
9811 if (indirect_call)
9812 fputs ("\tld8 r14 = [r14]\n\t;;\n", file);
9813 fputs ("\t.body\n", file);
9814 fputs ("\tmov out1 = r1\n", file);
9815 if (indirect_call)
9816 {
9817 fputs ("\tld8 r16 = [r14], 8\n\t;;\n", file);
9818 fputs ("\tmov b6 = r16\n", file);
9819 fputs ("\tld8 r1 = [r14]\n", file);
9820 fputs ("\tbr.call.sptk.many b0 = b6\n\t;;\n", file);
9821 }
9822 else
9823 fputs ("\tbr.call.sptk.many b0 = _mcount\n\t;;\n", file);
9824 }
9825
9826 static GTY(()) rtx mcount_func_rtx;
9827 static rtx
9828 gen_mcount_func_rtx (void)
9829 {
9830 if (!mcount_func_rtx)
9831 mcount_func_rtx = init_one_libfunc ("_mcount");
9832 return mcount_func_rtx;
9833 }
9834
9835 void
9836 ia64_profile_hook (int labelno)
9837 {
9838 rtx label, ip;
9839
9840 if (NO_PROFILE_COUNTERS)
9841 label = const0_rtx;
9842 else
9843 {
9844 char buf[30];
9845 const char *label_name;
9846 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
9847 label_name = (*targetm.strip_name_encoding) (ggc_strdup (buf));
9848 label = gen_rtx_SYMBOL_REF (Pmode, label_name);
9849 SYMBOL_REF_FLAGS (label) = SYMBOL_FLAG_LOCAL;
9850 }
9851 ip = gen_reg_rtx (Pmode);
9852 emit_insn (gen_ip_value (ip));
9853 emit_library_call (gen_mcount_func_rtx (), LCT_NORMAL,
9854 VOIDmode, 3,
9855 gen_rtx_REG (Pmode, BR_REG (0)), Pmode,
9856 ip, Pmode,
9857 label, Pmode);
9858 }
9859
9860 /* Return the mangling of TYPE if it is an extended fundamental type. */
9861
9862 static const char *
9863 ia64_mangle_type (const_tree type)
9864 {
9865 type = TYPE_MAIN_VARIANT (type);
9866
9867 if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE
9868 && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
9869 return NULL;
9870
9871 /* On HP-UX, "long double" is mangled as "e" so __float128 is
9872 mangled as "e". */
9873 if (!TARGET_HPUX && TYPE_MODE (type) == TFmode)
9874 return "g";
9875 /* On HP-UX, "e" is not available as a mangling of __float80 so use
9876 an extended mangling. Elsewhere, "e" is available since long
9877 double is 80 bits. */
9878 if (TYPE_MODE (type) == XFmode)
9879 return TARGET_HPUX ? "u9__float80" : "e";
9880 if (TYPE_MODE (type) == RFmode)
9881 return "u7__fpreg";
9882 return NULL;
9883 }
9884
9885 /* Return the diagnostic message string if conversion from FROMTYPE to
9886 TOTYPE is not allowed, NULL otherwise. */
9887 static const char *
9888 ia64_invalid_conversion (const_tree fromtype, const_tree totype)
9889 {
9890 /* Reject nontrivial conversion to or from __fpreg. */
9891 if (TYPE_MODE (fromtype) == RFmode
9892 && TYPE_MODE (totype) != RFmode
9893 && TYPE_MODE (totype) != VOIDmode)
9894 return N_("invalid conversion from %<__fpreg%>");
9895 if (TYPE_MODE (totype) == RFmode
9896 && TYPE_MODE (fromtype) != RFmode)
9897 return N_("invalid conversion to %<__fpreg%>");
9898 return NULL;
9899 }
9900
9901 /* Return the diagnostic message string if the unary operation OP is
9902 not permitted on TYPE, NULL otherwise. */
9903 static const char *
9904 ia64_invalid_unary_op (int op, const_tree type)
9905 {
9906 /* Reject operations on __fpreg other than unary + or &. */
9907 if (TYPE_MODE (type) == RFmode
9908 && op != CONVERT_EXPR
9909 && op != ADDR_EXPR)
9910 return N_("invalid operation on %<__fpreg%>");
9911 return NULL;
9912 }
9913
9914 /* Return the diagnostic message string if the binary operation OP is
9915 not permitted on TYPE1 and TYPE2, NULL otherwise. */
9916 static const char *
9917 ia64_invalid_binary_op (int op ATTRIBUTE_UNUSED, const_tree type1, const_tree type2)
9918 {
9919 /* Reject operations on __fpreg. */
9920 if (TYPE_MODE (type1) == RFmode || TYPE_MODE (type2) == RFmode)
9921 return N_("invalid operation on %<__fpreg%>");
9922 return NULL;
9923 }
9924
9925 /* Implement overriding of the optimization options. */
9926 void
9927 ia64_optimization_options (int level ATTRIBUTE_UNUSED,
9928 int size ATTRIBUTE_UNUSED)
9929 {
9930 /* Let the scheduler form additional regions. */
9931 set_param_value ("max-sched-extend-regions-iters", 2);
9932
9933 /* Set the default values for cache-related parameters. */
9934 set_param_value ("simultaneous-prefetches", 6);
9935 set_param_value ("l1-cache-line-size", 32);
9936
9937 }
9938
9939 /* HP-UX version_id attribute.
9940 For object foo, if the version_id is set to 1234 put out an alias
9941 of '.alias foo "foo{1234}" We can't use "foo{1234}" in anything
9942 other than an alias statement because it is an illegal symbol name. */
9943
9944 static tree
9945 ia64_handle_version_id_attribute (tree *node ATTRIBUTE_UNUSED,
9946 tree name ATTRIBUTE_UNUSED,
9947 tree args,
9948 int flags ATTRIBUTE_UNUSED,
9949 bool *no_add_attrs)
9950 {
9951 tree arg = TREE_VALUE (args);
9952
9953 if (TREE_CODE (arg) != STRING_CST)
9954 {
9955 error("version attribute is not a string");
9956 *no_add_attrs = true;
9957 return NULL_TREE;
9958 }
9959 return NULL_TREE;
9960 }
9961
9962 /* Target hook for c_mode_for_suffix. */
9963
9964 static enum machine_mode
9965 ia64_c_mode_for_suffix (char suffix)
9966 {
9967 if (suffix == 'q')
9968 return TFmode;
9969 if (suffix == 'w')
9970 return XFmode;
9971
9972 return VOIDmode;
9973 }
9974
9975 #include "gt-ia64.h"