3bd66185c04b328c2d0fc2836ec09ecd4a4cf240
[gcc.git] / gcc / config / ia64 / ia64.h
1 /* Definitions of target machine GNU compiler. IA-64 version.
2 Copyright (C) 1999, 2000 Free Software Foundation, Inc.
3 Contributed by James E. Wilson <wilson@cygnus.com> and
4 David Mosberger <davidm@hpl.hp.com>.
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
25
26 /* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
28
29 /* ??? Add support for short data/bss sections. */
30
31 \f
32 /* Run-time target specifications */
33
34 /* Define this to be a string constant containing `-D' options to define the
35 predefined macros that identify this machine and system. These macros will
36 be predefined unless the `-ansi' option is specified. */
37 /* ??? This is undefed in svr4.h. */
38 #define CPP_PREDEFINES "-Dia64 -Amachine=ia64"
39
40 /* This declaration should be present. */
41 extern int target_flags;
42
43 /* This series of macros is to allow compiler command arguments to enable or
44 disable the use of optional features of the target machine. */
45
46 #define MASK_BIG_ENDIAN 0x00000001 /* Generate big endian code. */
47
48 #define MASK_GNU_AS 0x00000002 /* Generate code for GNU as. */
49
50 #define MASK_GNU_LD 0x00000004 /* Generate code for GNU ld. */
51
52 #define MASK_NO_PIC 0x00000008 /* Generate code without GP reg. */
53
54 #define MASK_VOL_ASM_STOP 0x00000010 /* Emit stop bits for vol ext asm. */
55
56 #define MASK_A_STEP 0x00000020 /* Emit code for Itanium A step. */
57
58 #define MASK_B_STEP 0x00000040 /* Emit code for Itanium B step. */
59
60 #define MASK_REG_NAMES 0x00000080 /* Use in/loc/out register names. */
61
62 #define MASK_NO_SDATA 0x00000100 /* Disable sdata/scommon/sbss. */
63
64 #define MASK_CONST_GP 0x00000200 /* treat gp as program-wide constant */
65
66 #define MASK_AUTO_PIC 0x00000400 /* generate automatically PIC */
67
68 #define MASK_INLINE_DIV_LAT 0x00000800 /* inline div, min latency. */
69
70 #define MASK_INLINE_DIV_THR 0x00001000 /* inline div, max throughput. */
71
72 #define MASK_DWARF2_ASM 0x40000000 /* test dwarf2 line info via gas. */
73
74 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
75
76 #define TARGET_GNU_AS (target_flags & MASK_GNU_AS)
77
78 #define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
79
80 #define TARGET_NO_PIC (target_flags & MASK_NO_PIC)
81
82 #define TARGET_VOL_ASM_STOP (target_flags & MASK_VOL_ASM_STOP)
83
84 #define TARGET_A_STEP (target_flags & MASK_A_STEP)
85
86 #define TARGET_B_STEP (target_flags & MASK_B_STEP)
87
88 #define TARGET_REG_NAMES (target_flags & MASK_REG_NAMES)
89
90 #define TARGET_NO_SDATA (target_flags & MASK_NO_SDATA)
91
92 #define TARGET_CONST_GP (target_flags & MASK_CONST_GP)
93
94 #define TARGET_AUTO_PIC (target_flags & MASK_AUTO_PIC)
95
96 #define TARGET_INLINE_DIV_LAT (target_flags & MASK_INLINE_DIV_LAT)
97
98 #define TARGET_INLINE_DIV_THR (target_flags & MASK_INLINE_DIV_THR)
99
100 #define TARGET_INLINE_DIV \
101 (target_flags & (MASK_INLINE_DIV_LAT | MASK_INLINE_DIV_THR))
102
103 #define TARGET_DWARF2_ASM (target_flags & MASK_DWARF2_ASM)
104
105 /* This macro defines names of command options to set and clear bits in
106 `target_flags'. Its definition is an initializer with a subgrouping for
107 each command option. */
108
109 #define TARGET_SWITCHES \
110 { \
111 { "big-endian", MASK_BIG_ENDIAN, \
112 N_("Generate big endian code") }, \
113 { "little-endian", -MASK_BIG_ENDIAN, \
114 N_("Generate little endian code") }, \
115 { "gnu-as", MASK_GNU_AS, \
116 N_("Generate code for GNU as") }, \
117 { "no-gnu-as", -MASK_GNU_AS, \
118 N_("Generate code for Intel as") }, \
119 { "gnu-ld", MASK_GNU_LD, \
120 N_("Generate code for GNU ld") }, \
121 { "no-gnu-ld", -MASK_GNU_LD, \
122 N_("Generate code for Intel ld") }, \
123 { "no-pic", MASK_NO_PIC, \
124 N_("Generate code without GP reg") }, \
125 { "volatile-asm-stop", MASK_VOL_ASM_STOP, \
126 N_("Emit stop bits before and after volatile extended asms") }, \
127 { "no-volatile-asm-stop", -MASK_VOL_ASM_STOP, \
128 N_("Don't emit stop bits before and after volatile extended asms") }, \
129 { "a-step", MASK_A_STEP, \
130 N_("Emit code for Itanium (TM) processor A step")}, \
131 { "b-step", MASK_B_STEP, \
132 N_("Emit code for Itanium (TM) processor B step")}, \
133 { "register-names", MASK_REG_NAMES, \
134 N_("Use in/loc/out register names")}, \
135 { "no-sdata", MASK_NO_SDATA, \
136 N_("Disable use of sdata/scommon/sbss")}, \
137 { "sdata", -MASK_NO_SDATA, \
138 N_("Enable use of sdata/scommon/sbss")}, \
139 { "constant-gp", MASK_CONST_GP, \
140 N_("gp is constant (but save/restore gp on indirect calls)") }, \
141 { "auto-pic", MASK_AUTO_PIC, \
142 N_("Generate self-relocatable code") }, \
143 { "inline-divide-min-latency", MASK_INLINE_DIV_LAT, \
144 N_("Generate inline division, optimize for latency") }, \
145 { "inline-divide-max-throughput", MASK_INLINE_DIV_THR, \
146 N_("Generate inline division, optimize for throughput") }, \
147 { "dwarf2-asm", MASK_DWARF2_ASM, \
148 N_("Enable Dwarf 2 line debug info via GNU as")}, \
149 { "no-dwarf2-asm", -MASK_DWARF2_ASM, \
150 N_("Disable Dwarf 2 line debug info via GNU as")}, \
151 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
152 NULL } \
153 }
154
155 /* Default target_flags if no switches are specified */
156
157 #ifndef TARGET_DEFAULT
158 #define TARGET_DEFAULT MASK_DWARF2_ASM
159 #endif
160
161 #ifndef TARGET_CPU_DEFAULT
162 #define TARGET_CPU_DEFAULT 0
163 #endif
164
165 /* This macro is similar to `TARGET_SWITCHES' but defines names of command
166 options that have values. Its definition is an initializer with a
167 subgrouping for each command option. */
168
169 extern const char *ia64_fixed_range_string;
170 #define TARGET_OPTIONS \
171 { \
172 { "fixed-range=", &ia64_fixed_range_string, \
173 N_("Specify range of registers to make fixed.")}, \
174 }
175
176 /* This macro is a C statement to print on `stderr' a string describing the
177 particular machine description choice. */
178
179 #define TARGET_VERSION fprintf (stderr, " (IA-64)");
180
181 /* Sometimes certain combinations of command options do not make sense on a
182 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
183 take account of this. This macro, if defined, is executed once just after
184 all the command options have been parsed. */
185
186 #define OVERRIDE_OPTIONS ia64_override_options ()
187
188 /* Some machines may desire to change what optimizations are performed for
189 various optimization levels. This macro, if defined, is executed once just
190 after the optimization level is determined and before the remainder of the
191 command options have been parsed. Values set in this macro are used as the
192 default values for the other command line options. */
193
194 /* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
195 \f
196 /* Driver configuration */
197
198 /* A C string constant that tells the GNU CC driver program options to pass to
199 CPP. It can also specify how to translate options you give to GNU CC into
200 options for GNU CC to pass to the CPP. */
201
202 /* ??? __LONG_MAX__ depends on LP64/ILP32 switch. */
203 /* ??? An alternative is to modify glimits.h to check for __LP64__ instead
204 of checked for CPU specific defines. We could also get rid of all LONG_MAX
205 defines in other tm.h files. */
206 #define CPP_SPEC \
207 "%{mcpu=itanium:-D__itanium__} %{mbig-endian:-D__BIG_ENDIAN__} \
208 -D__LONG_MAX__=9223372036854775807L"
209
210 /* If this macro is defined, the preprocessor will not define the builtin macro
211 `__SIZE_TYPE__'. The macro `__SIZE_TYPE__' must then be defined by
212 `CPP_SPEC' instead.
213
214 This should be defined if `SIZE_TYPE' depends on target dependent flags
215 which are not accessible to the preprocessor. Otherwise, it should not be
216 defined. */
217 /* ??? Needs to be defined for P64 code. */
218 /* #define NO_BUILTIN_SIZE_TYPE */
219
220 /* If this macro is defined, the preprocessor will not define the builtin macro
221 `__PTRDIFF_TYPE__'. The macro `__PTRDIFF_TYPE__' must then be defined by
222 `CPP_SPEC' instead.
223
224 This should be defined if `PTRDIFF_TYPE' depends on target dependent flags
225 which are not accessible to the preprocessor. Otherwise, it should not be
226 defined. */
227 /* ??? Needs to be defined for P64 code. */
228 /* #define NO_BUILTIN_PTRDIFF_TYPE */
229
230 /* A C string constant that tells the GNU CC driver program options to pass to
231 `cc1'. It can also specify how to translate options you give to GNU CC into
232 options for GNU CC to pass to the `cc1'. */
233
234 /* #define CC1_SPEC "" */
235
236 /* A C string constant that tells the GNU CC driver program options to pass to
237 `cc1plus'. It can also specify how to translate options you give to GNU CC
238 into options for GNU CC to pass to the `cc1plus'. */
239
240 /* #define CC1PLUS_SPEC "" */
241
242 /* A C string constant that tells the GNU CC driver program options to pass to
243 the assembler. It can also specify how to translate options you give to GNU
244 CC into options for GNU CC to pass to the assembler. */
245
246 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GNU_AS) != 0
247 /* GNU AS. */
248 #define ASM_SPEC \
249 "%{mno-gnu-as:-N so} %{!mno-gnu-as:-x} %{mconstant-gp} %{mauto-pic}"
250 #else
251 /* Intel ias. */
252 #define ASM_SPEC \
253 "%{!mgnu-as:-N so} %{mgnu-as:-x} %{mconstant-gp:-M const_gp}\
254 %{mauto-pic:-M no_plabel}"
255 #endif
256
257 /* A C string constant that tells the GNU CC driver program options to pass to
258 the linker. It can also specify how to translate options you give to GNU CC
259 into options for GNU CC to pass to the linker. */
260
261 /* The Intel linker does not support dynamic linking, so we need -dn.
262 The Intel linker gives annoying messages unless -N so is used. */
263 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GNU_LD) != 0
264 /* GNU LD. */
265 #define LINK_SPEC "%{mno-gnu-ld:-dn -N so}"
266 #else
267 /* Intel ild. */
268 #define LINK_SPEC "%{!mgnu-ld:-dn -N so}"
269 #endif
270
271 \f
272 /* Storage Layout */
273
274 /* Define this macro to have the value 1 if the most significant bit in a byte
275 has the lowest number; otherwise define it to have the value zero. */
276
277 #define BITS_BIG_ENDIAN 0
278
279 /* Define this macro to have the value 1 if the most significant byte in a word
280 has the lowest number. This macro need not be a constant. */
281
282 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
283
284 /* Define this macro to have the value 1 if, in a multiword object, the most
285 significant word has the lowest number. */
286
287 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
288
289 /* Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a
290 constant value with the same meaning as WORDS_BIG_ENDIAN, which will be used
291 only when compiling libgcc2.c. Typically the value will be set based on
292 preprocessor defines. */
293 #if defined(__BIG_ENDIAN__)
294 #define LIBGCC2_WORDS_BIG_ENDIAN 1
295 #else
296 #define LIBGCC2_WORDS_BIG_ENDIAN 0
297 #endif
298
299 /* Define this macro to be the number of bits in an addressable storage unit
300 (byte); normally 8. */
301 #define BITS_PER_UNIT 8
302
303 /* Number of bits in a word; normally 32. */
304 #define BITS_PER_WORD 64
305
306 /* Number of storage units in a word; normally 4. */
307 #define UNITS_PER_WORD 8
308
309 /* Width of a pointer, in bits. You must specify a value no wider than the
310 width of `Pmode'. If it is not equal to the width of `Pmode', you must
311 define `POINTERS_EXTEND_UNSIGNED'. */
312 /* ??? Implement optional 32 bit pointer size later? */
313 #define POINTER_SIZE 64
314
315 /* A C expression whose value is nonzero if pointers that need to be extended
316 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and zero if
317 they are zero-extended.
318
319 You need not define this macro if the `POINTER_SIZE' is equal to the width
320 of `Pmode'. */
321 /* ??? May need this for 32 bit pointers. */
322 /* #define POINTERS_EXTEND_UNSIGNED */
323
324 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
325 which has the specified mode and signedness is to be stored in a register.
326 This macro is only called when TYPE is a scalar type. */
327 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
328 do \
329 { \
330 if (GET_MODE_CLASS (MODE) == MODE_INT \
331 && GET_MODE_SIZE (MODE) < 4) \
332 (MODE) = SImode; \
333 } \
334 while (0)
335
336 /* Define this macro if the promotion described by `PROMOTE_MODE' should also
337 be done for outgoing function arguments. */
338 /* ??? ABI doesn't allow us to define this. */
339 /* #define PROMOTE_FUNCTION_ARGS */
340
341 /* Define this macro if the promotion described by `PROMOTE_MODE' should also
342 be done for the return value of functions.
343
344 If this macro is defined, `FUNCTION_VALUE' must perform the same promotions
345 done by `PROMOTE_MODE'. */
346 /* ??? ABI doesn't allow us to define this. */
347 /* #define PROMOTE_FUNCTION_RETURN */
348
349 /* Normal alignment required for function parameters on the stack, in bits.
350 All stack parameters receive at least this much alignment regardless of data
351 type. On most machines, this is the same as the size of an integer. */
352 #define PARM_BOUNDARY 64
353
354 /* Define this macro if you wish to preserve a certain alignment for the stack
355 pointer. The definition is a C expression for the desired alignment
356 (measured in bits). */
357
358 #define STACK_BOUNDARY 128
359
360 /* Align frames on double word boundaries */
361 #ifndef IA64_STACK_ALIGN
362 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
363 #endif
364
365 /* Alignment required for a function entry point, in bits. */
366 #define FUNCTION_BOUNDARY 128
367
368 /* Biggest alignment that any data type can require on this machine,
369 in bits. */
370 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
371 128 bit integers all require 128 bit alignment. */
372 #define BIGGEST_ALIGNMENT 128
373
374 /* If defined, a C expression to compute the alignment for a static variable.
375 TYPE is the data type, and ALIGN is the alignment that the object
376 would ordinarily have. The value of this macro is used instead of that
377 alignment to align the object. */
378
379 #define DATA_ALIGNMENT(TYPE, ALIGN) \
380 (TREE_CODE (TYPE) == ARRAY_TYPE \
381 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
382 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
383
384 /* If defined, a C expression to compute the alignment given to a constant that
385 is being placed in memory. CONSTANT is the constant and ALIGN is the
386 alignment that the object would ordinarily have. The value of this macro is
387 used instead of that alignment to align the object. */
388
389 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
390 (TREE_CODE (EXP) == STRING_CST \
391 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
392
393 /* Define this macro to be the value 1 if instructions will fail to work if
394 given data not on the nominal alignment. If instructions will merely go
395 slower in that case, define this macro as 0. */
396 #define STRICT_ALIGNMENT 1
397
398 /* Define this if you wish to imitate the way many other C compilers handle
399 alignment of bitfields and the structures that contain them.
400 The behavior is that the type written for a bitfield (`int', `short', or
401 other integer type) imposes an alignment for the entire structure, as if the
402 structure really did contain an ordinary field of that type. In addition,
403 the bitfield is placed within the structure so that it would fit within such
404 a field, not crossing a boundary for it. */
405 #define PCC_BITFIELD_TYPE_MATTERS 1
406
407 /* An integer expression for the size in bits of the largest integer machine
408 mode that should actually be used. */
409
410 /* Allow pairs of registers to be used, which is the intent of the default. */
411 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
412
413 /* A code distinguishing the floating point format of the target machine. */
414 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
415
416 /* GNU CC supports two ways of implementing C++ vtables: traditional or with
417 so-called "thunks". The flag `-fvtable-thunk' chooses between them. Define
418 this macro to be a C expression for the default value of that flag. If
419 `DEFAULT_VTABLE_THUNKS' is 0, GNU CC uses the traditional implementation by
420 default. The "thunk" implementation is more efficient (especially if you
421 have provided an implementation of `ASM_OUTPUT_MI_THUNK', but is not binary
422 compatible with code compiled using the traditional implementation. If you
423 are writing a new ports, define `DEFAULT_VTABLE_THUNKS' to 1.
424
425 If you do not define this macro, the default for `-fvtable-thunk' is 0. */
426 #define DEFAULT_VTABLE_THUNKS 1
427
428 \f
429 /* Layout of Source Language Data Types */
430
431 /* A C expression for the size in bits of the type `int' on the target machine.
432 If you don't define this, the default is one word. */
433 #define INT_TYPE_SIZE 32
434
435 /* A C expression for the size in bits of the type `short' on the target
436 machine. If you don't define this, the default is half a word. (If this
437 would be less than one storage unit, it is rounded up to one unit.) */
438 #define SHORT_TYPE_SIZE 16
439
440 /* A C expression for the size in bits of the type `long' on the target
441 machine. If you don't define this, the default is one word. */
442 /* ??? Should be 32 for ILP32 code. */
443 #define LONG_TYPE_SIZE 64
444
445 /* Maximum number for the size in bits of the type `long' on the target
446 machine. If this is undefined, the default is `LONG_TYPE_SIZE'. Otherwise,
447 it is the constant value that is the largest value that `LONG_TYPE_SIZE' can
448 have at run-time. This is used in `cpp'. */
449 /* ??? Should be 64 for ILP32 code. */
450 /* #define MAX_LONG_TYPE_SIZE */
451
452 /* A C expression for the size in bits of the type `long long' on the target
453 machine. If you don't define this, the default is two words. If you want
454 to support GNU Ada on your machine, the value of macro must be at least 64. */
455 #define LONG_LONG_TYPE_SIZE 64
456
457 /* A C expression for the size in bits of the type `char' on the target
458 machine. If you don't define this, the default is one quarter of a word.
459 (If this would be less than one storage unit, it is rounded up to one unit.) */
460 #define CHAR_TYPE_SIZE 8
461
462 /* A C expression for the size in bits of the type `float' on the target
463 machine. If you don't define this, the default is one word. */
464 #define FLOAT_TYPE_SIZE 32
465
466 /* A C expression for the size in bits of the type `double' on the target
467 machine. If you don't define this, the default is two words. */
468 #define DOUBLE_TYPE_SIZE 64
469
470 /* A C expression for the size in bits of the type `long double' on the target
471 machine. If you don't define this, the default is two words. */
472 #define LONG_DOUBLE_TYPE_SIZE 128
473
474 /* Tell real.c that this is the 80-bit Intel extended float format
475 packaged in a 128-bit entity. */
476 #define INTEL_EXTENDED_IEEE_FORMAT
477
478 /* An expression whose value is 1 or 0, according to whether the type `char'
479 should be signed or unsigned by default. The user can always override this
480 default with the options `-fsigned-char' and `-funsigned-char'. */
481 #define DEFAULT_SIGNED_CHAR 1
482
483 /* A C expression for a string describing the name of the data type to use for
484 size values. The typedef name `size_t' is defined using the contents of the
485 string. */
486 /* ??? Needs to be defined for P64 code. */
487 /* #define SIZE_TYPE */
488
489 /* A C expression for a string describing the name of the data type to use for
490 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
491 defined using the contents of the string. See `SIZE_TYPE' above for more
492 information. */
493 /* ??? Needs to be defined for P64 code. */
494 /* #define PTRDIFF_TYPE */
495
496 /* A C expression for a string describing the name of the data type to use for
497 wide characters. The typedef name `wchar_t' is defined using the contents
498 of the string. See `SIZE_TYPE' above for more information. */
499 /* #define WCHAR_TYPE */
500
501 /* A C expression for the size in bits of the data type for wide characters.
502 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
503 /* #define WCHAR_TYPE_SIZE */
504
505 /* Maximum number for the size in bits of the data type for wide characters.
506 If this is undefined, the default is `WCHAR_TYPE_SIZE'. Otherwise, it is
507 the constant value that is the largest value that `WCHAR_TYPE_SIZE' can have
508 at run-time. This is used in `cpp'. */
509 /* #define MAX_WCHAR_TYPE_SIZE */
510
511 /* A C constant expression for the integer value for escape sequence
512 `\a'. */
513 #define TARGET_BELL 0x7
514
515 /* C constant expressions for the integer values for escape sequences
516 `\b', `\t' and `\n'. */
517 #define TARGET_BS 0x8
518 #define TARGET_TAB 0x9
519 #define TARGET_NEWLINE 0xa
520
521 /* C constant expressions for the integer values for escape sequences
522 `\v', `\f' and `\r'. */
523 #define TARGET_VT 0xb
524 #define TARGET_FF 0xc
525 #define TARGET_CR 0xd
526
527 \f
528 /* Register Basics */
529
530 /* Number of hardware registers known to the compiler.
531 We have 128 general registers, 128 floating point registers,
532 64 predicate registers, 8 branch registers, one frame pointer,
533 and several "application" registers. */
534
535 #define FIRST_PSEUDO_REGISTER 335
536
537 /* Ranges for the various kinds of registers. */
538 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
539 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
540 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
541 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
542 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
543 #define GENERAL_REGNO_P(REGNO) \
544 (GR_REGNO_P (REGNO) \
545 || (REGNO) == FRAME_POINTER_REGNUM \
546 || (REGNO) == RETURN_ADDRESS_POINTER_REGNUM)
547
548 #define GR_REG(REGNO) ((REGNO) + 0)
549 #define FR_REG(REGNO) ((REGNO) + 128)
550 #define PR_REG(REGNO) ((REGNO) + 256)
551 #define BR_REG(REGNO) ((REGNO) + 320)
552 #define OUT_REG(REGNO) ((REGNO) + 120)
553 #define IN_REG(REGNO) ((REGNO) + 112)
554 #define LOC_REG(REGNO) ((REGNO) + 32)
555
556 #define AR_CCV_REGNUM 330
557 #define AR_UNAT_REGNUM 331
558 #define AR_PFS_REGNUM 332
559 #define AR_LC_REGNUM 333
560 #define AR_EC_REGNUM 334
561
562 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
563 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
564 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
565
566 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
567 || (REGNO) == AR_UNAT_REGNUM)
568 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
569 && (REGNO) < FIRST_PSEUDO_REGISTER)
570 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
571 && (REGNO) < FIRST_PSEUDO_REGISTER)
572
573
574 /* ??? Don't really need two sets of macros. I like this one better because
575 it is less typing. */
576 #define R_GR(REGNO) GR_REG (REGNO)
577 #define R_FR(REGNO) FR_REG (REGNO)
578 #define R_PR(REGNO) PR_REG (REGNO)
579 #define R_BR(REGNO) BR_REG (REGNO)
580
581 /* An initializer that says which registers are used for fixed purposes all
582 throughout the compiled code and are therefore not available for general
583 allocation.
584
585 r0: constant 0
586 r1: global pointer (gp)
587 r12: stack pointer (sp)
588 r13: thread pointer (tp)
589 f0: constant 0.0
590 f1: constant 1.0
591 p0: constant true
592 fp: eliminable frame pointer */
593
594 /* The last 16 stacked regs are reserved for the 8 input and 8 output
595 registers. */
596
597 #define FIXED_REGISTERS \
598 { /* General registers. */ \
599 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
600 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
601 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
602 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
603 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
604 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
605 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
606 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
607 /* Floating-point registers. */ \
608 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
609 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
610 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
611 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
612 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
613 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
614 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
615 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
616 /* Predicate registers. */ \
617 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
618 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
619 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
620 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
621 /* Branch registers. */ \
622 0, 0, 0, 0, 0, 0, 0, 0, \
623 /*FP RA CCV UNAT PFS LC EC */ \
624 1, 1, 1, 1, 1, 0, 1 \
625 }
626
627 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
628 (in general) by function calls as well as for fixed registers. This
629 macro therefore identifies the registers that are not available for
630 general allocation of values that must live across function calls. */
631
632 #define CALL_USED_REGISTERS \
633 { /* General registers. */ \
634 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
635 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
636 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
637 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
638 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
639 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
640 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
641 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
642 /* Floating-point registers. */ \
643 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
644 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
645 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
646 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
647 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
648 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
649 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
650 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
651 /* Predicate registers. */ \
652 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
653 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
654 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
655 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
656 /* Branch registers. */ \
657 1, 0, 0, 0, 0, 0, 1, 1, \
658 /*FP RA CCV UNAT PFS LC EC */ \
659 1, 1, 1, 1, 1, 0, 1 \
660 }
661
662 /* Define this macro if the target machine has register windows. This C
663 expression returns the register number as seen by the called function
664 corresponding to the register number OUT as seen by the calling function.
665 Return OUT if register number OUT is not an outbound register. */
666
667 #define INCOMING_REGNO(OUT) \
668 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
669
670 /* Define this macro if the target machine has register windows. This C
671 expression returns the register number as seen by the calling function
672 corresponding to the register number IN as seen by the called function.
673 Return IN if register number IN is not an inbound register. */
674
675 #define OUTGOING_REGNO(IN) \
676 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
677
678 /* Define this macro if the target machine has register windows. This
679 C expression returns true if the register is call-saved but is in the
680 register window. */
681
682 #define LOCAL_REGNO(REGNO) \
683 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
684
685 /* Add any extra modes needed to represent the condition code.
686
687 CCImode is used to mark a single predicate register instead
688 of a register pair. This is currently only used in reg_raw_mode
689 so that flow doesn't do something stupid. */
690
691 #define EXTRA_CC_MODES CC(CCImode, "CCI")
692
693 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
694 return the mode to be used for the comparison. Must be defined if
695 EXTRA_CC_MODES is defined. */
696
697 #define SELECT_CC_MODE(OP,X,Y) CCmode
698 \f
699 /* Order of allocation of registers */
700
701 /* If defined, an initializer for a vector of integers, containing the numbers
702 of hard registers in the order in which GNU CC should prefer to use them
703 (from most preferred to least).
704
705 If this macro is not defined, registers are used lowest numbered first (all
706 else being equal).
707
708 One use of this macro is on machines where the highest numbered registers
709 must always be saved and the save-multiple-registers instruction supports
710 only sequences of consecutive registers. On such machines, define
711 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
712 allocatable register first. */
713
714 /* ??? Should the GR return value registers come before or after the rest
715 of the caller-save GRs? */
716
717 #define REG_ALLOC_ORDER \
718 { \
719 /* Caller-saved general registers. */ \
720 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
721 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
722 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
723 R_GR (30), R_GR (31), \
724 /* Output registers. */ \
725 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
726 R_GR (126), R_GR (127), \
727 /* Caller-saved general registers, also used for return values. */ \
728 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
729 /* addl caller-saved general registers. */ \
730 R_GR (2), R_GR (3), \
731 /* Caller-saved FP registers. */ \
732 R_FR (6), R_FR (7), \
733 /* Caller-saved FP registers, used for parameters and return values. */ \
734 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
735 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
736 /* Rotating caller-saved FP registers. */ \
737 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
738 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
739 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
740 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
741 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
742 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
743 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
744 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
745 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
746 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
747 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
748 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
749 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
750 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
751 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
752 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
753 R_FR (126), R_FR (127), \
754 /* Caller-saved predicate registers. */ \
755 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
756 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
757 /* Rotating caller-saved predicate registers. */ \
758 R_PR (16), R_PR (17), \
759 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
760 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
761 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
762 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
763 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
764 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
765 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
766 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
767 /* Caller-saved branch registers. */ \
768 R_BR (6), R_BR (7), \
769 \
770 /* Stacked callee-saved general registers. */ \
771 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
772 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
773 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
774 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
775 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
776 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
777 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
778 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
779 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
780 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
781 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
782 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
783 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
784 R_GR (108), \
785 /* Input registers. */ \
786 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
787 R_GR (118), R_GR (119), \
788 /* Callee-saved general registers. */ \
789 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
790 /* Callee-saved FP registers. */ \
791 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
792 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
793 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
794 R_FR (30), R_FR (31), \
795 /* Callee-saved predicate registers. */ \
796 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
797 /* Callee-saved branch registers. */ \
798 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
799 \
800 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
801 R_GR (109), R_GR (110), R_GR (111), \
802 \
803 /* Special general registers. */ \
804 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
805 /* Special FP registers. */ \
806 R_FR (0), R_FR (1), \
807 /* Special predicate registers. */ \
808 R_PR (0), \
809 /* Special branch registers. */ \
810 R_BR (0), \
811 /* Other fixed registers. */ \
812 FRAME_POINTER_REGNUM, RETURN_ADDRESS_POINTER_REGNUM, \
813 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
814 AR_EC_REGNUM \
815 }
816 \f
817 /* How Values Fit in Registers */
818
819 /* A C expression for the number of consecutive hard registers, starting at
820 register number REGNO, required to hold a value of mode MODE. */
821
822 /* ??? We say that BImode PR values require two registers. This allows us to
823 easily store the normal and inverted values. We use CCImode to indicate
824 a single predicate register. */
825
826 #define HARD_REGNO_NREGS(REGNO, MODE) \
827 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
828 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
829 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
830 : FR_REGNO_P (REGNO) && (MODE) == TFmode ? 1 \
831 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
832
833 /* A C expression that is nonzero if it is permissible to store a value of mode
834 MODE in hard register number REGNO (or in several registers starting with
835 that one). */
836
837 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
838 (FR_REGNO_P (REGNO) ? \
839 GET_MODE_CLASS (MODE) != MODE_CC && (MODE) != TImode && (MODE) != BImode \
840 : PR_REGNO_P (REGNO) ? \
841 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
842 : GR_REGNO_P (REGNO) ? (MODE) != CCImode && (MODE) != TFmode \
843 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
844 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
845 : 0)
846
847 /* A C expression that is nonzero if it is desirable to choose register
848 allocation so as to avoid move instructions between a value of mode MODE1
849 and a value of mode MODE2.
850
851 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
852 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
853 zero. */
854 /* Don't tie integer and FP modes, as that causes us to get integer registers
855 allocated for FP instructions. TFmode only supported in FP registers so
856 we can't tie it with any other modes. */
857 #define MODES_TIEABLE_P(MODE1, MODE2) \
858 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
859 && (((MODE1) == TFmode) == ((MODE2) == TFmode)) \
860 && (((MODE1) == BImode) == ((MODE2) == BImode)))
861 \f
862 /* Handling Leaf Functions */
863
864 /* A C initializer for a vector, indexed by hard register number, which
865 contains 1 for a register that is allowable in a candidate for leaf function
866 treatment. */
867 /* ??? This might be useful. */
868 /* #define LEAF_REGISTERS */
869
870 /* A C expression whose value is the register number to which REGNO should be
871 renumbered, when a function is treated as a leaf function. */
872 /* ??? This might be useful. */
873 /* #define LEAF_REG_REMAP(REGNO) */
874
875 \f
876 /* Register Classes */
877
878 /* An enumeral type that must be defined with all the register class names as
879 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
880 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
881 which is not a register class but rather tells how many classes there
882 are. */
883 /* ??? When compiling without optimization, it is possible for the only use of
884 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
885 Regclass handles this case specially and does not assign any costs to the
886 pseudo. The pseudo then ends up using the last class before ALL_REGS.
887 Thus we must not let either PR_REGS or BR_REGS be the last class. The
888 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
889 enum reg_class
890 {
891 NO_REGS,
892 PR_REGS,
893 BR_REGS,
894 ADDL_REGS,
895 GR_REGS,
896 FR_REGS,
897 GR_AND_FR_REGS,
898 AR_M_REGS,
899 AR_I_REGS,
900 ALL_REGS,
901 LIM_REG_CLASSES
902 };
903
904 #define GENERAL_REGS GR_REGS
905
906 /* The number of distinct register classes. */
907 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
908
909 /* An initializer containing the names of the register classes as C string
910 constants. These names are used in writing some of the debugging dumps. */
911 #define REG_CLASS_NAMES \
912 { "NO_REGS", "PR_REGS", "BR_REGS", "ADDL_REGS", "GR_REGS", "FR_REGS", \
913 "GR_AND_FR_REGS", "AR_M_REGS", "AR_I_REGS", "ALL_REGS" }
914
915 /* An initializer containing the contents of the register classes, as integers
916 which are bit masks. The Nth integer specifies the contents of class N.
917 The way the integer MASK is interpreted is that register R is in the class
918 if `MASK & (1 << R)' is 1. */
919 #define REG_CLASS_CONTENTS \
920 { \
921 /* NO_REGS. */ \
922 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
923 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
924 0x00000000, 0x00000000, 0x0000 }, \
925 /* PR_REGS. */ \
926 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
927 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
928 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
929 /* BR_REGS. */ \
930 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
931 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
932 0x00000000, 0x00000000, 0x00FF }, \
933 /* ADDL_REGS. */ \
934 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
935 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
936 0x00000000, 0x00000000, 0x0000 }, \
937 /* GR_REGS. */ \
938 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
939 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
940 0x00000000, 0x00000000, 0x0300 }, \
941 /* FR_REGS. */ \
942 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
943 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
944 0x00000000, 0x00000000, 0x0000 }, \
945 /* GR_AND_FR_REGS. */ \
946 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
947 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
948 0x00000000, 0x00000000, 0x0300 }, \
949 /* AR_M_REGS. */ \
950 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
951 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
952 0x00000000, 0x00000000, 0x0C00 }, \
953 /* AR_I_REGS. */ \
954 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
955 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
956 0x00000000, 0x00000000, 0x7000 }, \
957 /* ALL_REGS. */ \
958 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
959 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
960 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFF }, \
961 }
962
963 /* A C expression whose value is a register class containing hard register
964 REGNO. In general there is more than one such class; choose a class which
965 is "minimal", meaning that no smaller class also contains the register. */
966 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
967 may call here with private (invalid) register numbers, such as
968 REG_VOLATILE. */
969 #define REGNO_REG_CLASS(REGNO) \
970 (ADDL_REGNO_P (REGNO) ? ADDL_REGS \
971 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
972 : FR_REGNO_P (REGNO) ? FR_REGS \
973 : PR_REGNO_P (REGNO) ? PR_REGS \
974 : BR_REGNO_P (REGNO) ? BR_REGS \
975 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
976 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
977 : NO_REGS)
978
979 /* A macro whose definition is the name of the class to which a valid base
980 register must belong. A base register is one used in an address which is
981 the register value plus a displacement. */
982 #define BASE_REG_CLASS GENERAL_REGS
983
984 /* A macro whose definition is the name of the class to which a valid index
985 register must belong. An index register is one used in an address where its
986 value is either multiplied by a scale factor or added to another register
987 (as well as added to a displacement). This is needed for POST_MODIFY. */
988 #define INDEX_REG_CLASS GENERAL_REGS
989
990 /* A C expression which defines the machine-dependent operand constraint
991 letters for register classes. If CHAR is such a letter, the value should be
992 the register class corresponding to it. Otherwise, the value should be
993 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
994 will not be passed to this macro; you do not need to handle it. */
995
996 #define REG_CLASS_FROM_LETTER(CHAR) \
997 ((CHAR) == 'f' ? FR_REGS \
998 : (CHAR) == 'a' ? ADDL_REGS \
999 : (CHAR) == 'b' ? BR_REGS \
1000 : (CHAR) == 'c' ? PR_REGS \
1001 : (CHAR) == 'd' ? AR_M_REGS \
1002 : (CHAR) == 'e' ? AR_I_REGS \
1003 : NO_REGS)
1004
1005 /* A C expression which is nonzero if register number NUM is suitable for use
1006 as a base register in operand addresses. It may be either a suitable hard
1007 register or a pseudo register that has been allocated such a hard reg. */
1008 #define REGNO_OK_FOR_BASE_P(REGNO) \
1009 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
1010
1011 /* A C expression which is nonzero if register number NUM is suitable for use
1012 as an index register in operand addresses. It may be either a suitable hard
1013 register or a pseudo register that has been allocated such a hard reg.
1014 This is needed for POST_MODIFY. */
1015 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
1016
1017 /* A C expression that places additional restrictions on the register class to
1018 use when it is necessary to copy value X into a register in class CLASS.
1019 The value is a register class; perhaps CLASS, or perhaps another, smaller
1020 class. */
1021
1022 /* Don't allow volatile mem reloads into floating point registers. This
1023 is defined to force reload to choose the r/m case instead of the f/f case
1024 when reloading (set (reg fX) (mem/v)).
1025
1026 Do not reload expressions into AR regs. */
1027
1028 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1029 (CLASS == FR_REGS && GET_CODE (X) == MEM && MEM_VOLATILE_P (X) ? NO_REGS \
1030 : CLASS == FR_REGS && GET_CODE (X) == CONST_DOUBLE ? NO_REGS \
1031 : GET_RTX_CLASS (GET_CODE (X)) != 'o' && CLASS > GR_AND_FR_REGS ? NO_REGS \
1032 : CLASS)
1033
1034 /* You should define this macro to indicate to the reload phase that it may
1035 need to allocate at least one register for a reload in addition to the
1036 register to contain the data. Specifically, if copying X to a register
1037 CLASS in MODE requires an intermediate register, you should define this
1038 to return the largest register class all of whose registers can be used
1039 as intermediate registers or scratch registers. */
1040
1041 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
1042 ia64_secondary_reload_class (CLASS, MODE, X)
1043
1044 /* Certain machines have the property that some registers cannot be copied to
1045 some other registers without using memory. Define this macro on those
1046 machines to be a C expression that is non-zero if objects of mode M in
1047 registers of CLASS1 can only be copied to registers of class CLASS2 by
1048 storing a register of CLASS1 into memory and loading that memory location
1049 into a register of CLASS2. */
1050
1051 #if 0
1052 /* ??? May need this, but since we've disallowed TFmode in GR_REGS,
1053 I'm not quite sure how it could be invoked. The normal problems
1054 with unions should be solved with the addressof fiddling done by
1055 movtf and friends. */
1056 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1057 ((MODE) == TFmode && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
1058 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
1059 #endif
1060
1061 /* A C expression for the maximum number of consecutive registers of
1062 class CLASS needed to hold a value of mode MODE.
1063 This is closely related to the macro `HARD_REGNO_NREGS'. */
1064
1065 #define CLASS_MAX_NREGS(CLASS, MODE) \
1066 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
1067 : ((CLASS) == FR_REGS && (MODE) == TFmode) ? 1 \
1068 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1069
1070 /* If defined, gives a class of registers that cannot be used as the
1071 operand of a SUBREG that changes the mode of the object illegally. */
1072
1073 #define CLASS_CANNOT_CHANGE_MODE FR_REGS
1074
1075 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.
1076 In FP regs, we can't change FP values to integer values and vice
1077 versa, but we can change e.g. DImode to SImode. */
1078
1079 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1080 (GET_MODE_CLASS (FROM) != GET_MODE_CLASS (TO))
1081
1082 /* A C expression that defines the machine-dependent operand constraint
1083 letters (`I', `J', `K', .. 'P') that specify particular ranges of
1084 integer values. */
1085
1086 /* 14 bit signed immediate for arithmetic instructions. */
1087 #define CONST_OK_FOR_I(VALUE) \
1088 ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
1089 /* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source. */
1090 #define CONST_OK_FOR_J(VALUE) \
1091 ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
1092 /* 8 bit signed immediate for logical instructions. */
1093 #define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
1094 /* 8 bit adjusted signed immediate for compare pseudo-ops. */
1095 #define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
1096 /* 6 bit unsigned immediate for shift counts. */
1097 #define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
1098 /* 9 bit signed immediate for load/store post-increments. */
1099 #define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
1100 /* 0 for r0. Used by Linux kernel, do not change. */
1101 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1102 /* 0 or -1 for dep instruction. */
1103 #define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
1104
1105 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1106 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1107 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1108 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1109 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1110 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1111 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1112 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1113 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1114 : 0)
1115
1116 /* A C expression that defines the machine-dependent operand constraint letters
1117 (`G', `H') that specify particular ranges of `const_double' values. */
1118
1119 /* 0.0 and 1.0 for fr0 and fr1. */
1120 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
1121 ((VALUE) == CONST0_RTX (GET_MODE (VALUE)) \
1122 || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
1123
1124 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1125 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) : 0)
1126
1127 /* A C expression that defines the optional machine-dependent constraint
1128 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1129 types of operands, usually memory references, for the target machine. */
1130
1131 /* Non-volatile memory for FP_REG loads/stores. */
1132 #define CONSTRAINT_OK_FOR_Q(VALUE) \
1133 (memory_operand((VALUE), VOIDmode) && ! MEM_VOLATILE_P (VALUE))
1134 /* 1..4 for shladd arguments. */
1135 #define CONSTRAINT_OK_FOR_R(VALUE) \
1136 (GET_CODE (VALUE) == CONST_INT && INTVAL (VALUE) >= 1 && INTVAL (VALUE) <= 4)
1137 /* Non-post-inc memory for asms and other unsavory creatures. */
1138 #define CONSTRAINT_OK_FOR_S(VALUE) \
1139 (GET_CODE (VALUE) == MEM \
1140 && GET_RTX_CLASS (GET_CODE (XEXP ((VALUE), 0))) != 'a' \
1141 && (reload_in_progress || memory_operand ((VALUE), VOIDmode)))
1142
1143 #define EXTRA_CONSTRAINT(VALUE, C) \
1144 ((C) == 'Q' ? CONSTRAINT_OK_FOR_Q (VALUE) \
1145 : (C) == 'R' ? CONSTRAINT_OK_FOR_R (VALUE) \
1146 : (C) == 'S' ? CONSTRAINT_OK_FOR_S (VALUE) \
1147 : 0)
1148 \f
1149 /* Basic Stack Layout */
1150
1151 /* Define this macro if pushing a word onto the stack moves the stack pointer
1152 to a smaller address. */
1153 #define STACK_GROWS_DOWNWARD 1
1154
1155 /* Define this macro if the addresses of local variable slots are at negative
1156 offsets from the frame pointer. */
1157 /* #define FRAME_GROWS_DOWNWARD */
1158
1159 /* Offset from the frame pointer to the first local variable slot to
1160 be allocated. */
1161 #define STARTING_FRAME_OFFSET 0
1162
1163 /* Offset from the stack pointer register to the first location at which
1164 outgoing arguments are placed. If not specified, the default value of zero
1165 is used. This is the proper value for most machines. */
1166 /* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
1167 #define STACK_POINTER_OFFSET 16
1168
1169 /* Offset from the argument pointer register to the first argument's address.
1170 On some machines it may depend on the data type of the function. */
1171 #define FIRST_PARM_OFFSET(FUNDECL) 0
1172
1173 /* A C expression whose value is RTL representing the value of the return
1174 address for the frame COUNT steps up from the current frame, after the
1175 prologue. */
1176
1177 /* ??? Frames other than zero would likely require interpreting the frame
1178 unwind info, so we don't try to support them. We would also need to define
1179 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
1180
1181 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1182 ((COUNT) == 0 ? return_address_pointer_rtx : const0_rtx)
1183
1184 /* A C expression whose value is RTL representing the location of the incoming
1185 return address at the beginning of any function, before the prologue. This
1186 RTL is either a `REG', indicating that the return value is saved in `REG',
1187 or a `MEM' representing a location in the stack. This enables DWARF2
1188 unwind info for C++ EH. */
1189 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
1190
1191 /* ??? This is not defined because of three problems.
1192 1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1193 The default value is FIRST_PSEUDO_REGISTER which doesn't. This can be
1194 worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1195 unused register number.
1196 2) dwarf2out_frame_debug core dumps while processing prologue insns. We
1197 need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1198 3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1199 to zero, despite what the documentation implies, because it is tested in
1200 a few places with #ifdef instead of #if. */
1201 #undef INCOMING_RETURN_ADDR_RTX
1202
1203 /* A C expression whose value is an integer giving the offset, in bytes, from
1204 the value of the stack pointer register to the top of the stack frame at the
1205 beginning of any function, before the prologue. The top of the frame is
1206 defined to be the value of the stack pointer in the previous frame, just
1207 before the call instruction. */
1208 #define INCOMING_FRAME_SP_OFFSET 0
1209
1210 \f
1211 /* Register That Address the Stack Frame. */
1212
1213 /* The register number of the stack pointer register, which must also be a
1214 fixed register according to `FIXED_REGISTERS'. On most machines, the
1215 hardware determines which register this is. */
1216
1217 #define STACK_POINTER_REGNUM 12
1218
1219 /* The register number of the frame pointer register, which is used to access
1220 automatic variables in the stack frame. On some machines, the hardware
1221 determines which register this is. On other machines, you can choose any
1222 register you wish for this purpose. */
1223
1224 #define FRAME_POINTER_REGNUM 328
1225
1226 /* Base register for access to local variables of the function. */
1227 #define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
1228
1229 /* The register number of the arg pointer register, which is used to access the
1230 function's argument list. */
1231 /* r0 won't otherwise be used, so put the always eliminated argument pointer
1232 in it. */
1233 #define ARG_POINTER_REGNUM R_GR(0)
1234
1235 /* The register number for the return address register. For IA-64, this
1236 is not actually a pointer as the name suggests, but that's a name that
1237 gen_rtx_REG already takes care to keep unique. We modify
1238 return_address_pointer_rtx in ia64_expand_prologue to reference the
1239 final output regnum. */
1240 #define RETURN_ADDRESS_POINTER_REGNUM 329
1241
1242 /* Register numbers used for passing a function's static chain pointer. */
1243 /* ??? The ABI sez the static chain should be passed as a normal parameter. */
1244 #define STATIC_CHAIN_REGNUM 15
1245 \f
1246 /* Eliminating the Frame Pointer and the Arg Pointer */
1247
1248 /* A C expression which is nonzero if a function must have and use a frame
1249 pointer. This expression is evaluated in the reload pass. If its value is
1250 nonzero the function will have a frame pointer. */
1251 #define FRAME_POINTER_REQUIRED 0
1252
1253 /* Show we can debug even without a frame pointer. */
1254 #define CAN_DEBUG_WITHOUT_FP
1255
1256 /* If defined, this macro specifies a table of register pairs used to eliminate
1257 unneeded registers that point into the stack frame. */
1258
1259 #define ELIMINABLE_REGS \
1260 { \
1261 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1262 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1263 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1264 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1265 {RETURN_ADDRESS_POINTER_REGNUM, BR_REG (0)}, \
1266 }
1267
1268 /* A C expression that returns non-zero if the compiler is allowed to try to
1269 replace register number FROM with register number TO. The frame pointer
1270 is automatically handled. */
1271
1272 #define CAN_ELIMINATE(FROM, TO) \
1273 (TO == BR_REG (0) ? current_function_is_leaf : 1)
1274
1275 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1276 specifies the initial difference between the specified pair of
1277 registers. This macro must be defined if `ELIMINABLE_REGS' is
1278 defined. */
1279 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1280 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1281 \f
1282 /* Passing Function Arguments on the Stack */
1283
1284 /* Define this macro if an argument declared in a prototype as an integral type
1285 smaller than `int' should actually be passed as an `int'. In addition to
1286 avoiding errors in certain cases of mismatch, it also makes for better code
1287 on certain machines. */
1288 /* ??? Investigate. */
1289 /* #define PROMOTE_PROTOTYPES */
1290
1291 /* If defined, the maximum amount of space required for outgoing arguments will
1292 be computed and placed into the variable
1293 `current_function_outgoing_args_size'. */
1294
1295 #define ACCUMULATE_OUTGOING_ARGS 1
1296
1297 /* A C expression that should indicate the number of bytes of its own arguments
1298 that a function pops on returning, or 0 if the function pops no arguments
1299 and the caller must therefore pop them all after the function returns. */
1300
1301 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1302
1303 \f
1304 /* Function Arguments in Registers */
1305
1306 #define MAX_ARGUMENT_SLOTS 8
1307 #define MAX_INT_RETURN_SLOTS 4
1308 #define GR_ARG_FIRST IN_REG (0)
1309 #define GR_RET_FIRST GR_REG (8)
1310 #define GR_RET_LAST GR_REG (11)
1311 #define FR_ARG_FIRST FR_REG (8)
1312 #define FR_RET_FIRST FR_REG (8)
1313 #define FR_RET_LAST FR_REG (15)
1314 #define AR_ARG_FIRST OUT_REG (0)
1315
1316 /* A C expression that controls whether a function argument is passed in a
1317 register, and which register. */
1318
1319 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1320 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1321
1322 /* Define this macro if the target machine has "register windows", so that the
1323 register in which a function sees an arguments is not necessarily the same
1324 as the one in which the caller passed the argument. */
1325
1326 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1327 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1328
1329 /* A C expression for the number of words, at the beginning of an argument,
1330 must be put in registers. The value must be zero for arguments that are
1331 passed entirely in registers or that are entirely pushed on the stack. */
1332
1333 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1334 ia64_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1335
1336 /* A C expression that indicates when an argument must be passed by reference.
1337 If nonzero for an argument, a copy of that argument is made in memory and a
1338 pointer to the argument is passed instead of the argument itself. The
1339 pointer is passed in whatever way is appropriate for passing a pointer to
1340 that type. */
1341
1342 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) 0
1343
1344 /* A C type for declaring a variable that is used as the first argument of
1345 `FUNCTION_ARG' and other related values. For some target machines, the type
1346 `int' suffices and can hold the number of bytes of argument so far. */
1347
1348 typedef struct ia64_args
1349 {
1350 int words; /* # words of arguments so far */
1351 int fp_regs; /* # FR registers used so far */
1352 int prototype; /* whether function prototyped */
1353 } CUMULATIVE_ARGS;
1354
1355 /* A C statement (sans semicolon) for initializing the variable CUM for the
1356 state at the beginning of the argument list. */
1357
1358 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1359 do { \
1360 (CUM).words = 0; \
1361 (CUM).fp_regs = 0; \
1362 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1363 } while (0)
1364
1365 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1366 arguments for the function being compiled. If this macro is undefined,
1367 `INIT_CUMULATIVE_ARGS' is used instead. */
1368
1369 /* We set prototype to true so that we never try to return a PARALLEL from
1370 function_arg. */
1371 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1372 do { \
1373 (CUM).words = 0; \
1374 (CUM).fp_regs = 0; \
1375 (CUM).prototype = 1; \
1376 } while (0)
1377
1378 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1379 advance past an argument in the argument list. The values MODE, TYPE and
1380 NAMED describe that argument. Once this is done, the variable CUM is
1381 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1382
1383 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1384 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1385
1386 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1387 argument with the specified mode and type. */
1388
1389 /* Arguments larger than 64 bits require 128 bit alignment. */
1390
1391 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1392 (((((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1393 + UNITS_PER_WORD - 1) / UNITS_PER_WORD) > 1 ? 128 : PARM_BOUNDARY)
1394
1395 /* A C expression that is nonzero if REGNO is the number of a hard register in
1396 which function arguments are sometimes passed. This does *not* include
1397 implicit arguments such as the static chain and the structure-value address.
1398 On many machines, no registers can be used for this purpose since all
1399 function arguments are pushed on the stack. */
1400 #define FUNCTION_ARG_REGNO_P(REGNO) \
1401 (((REGNO) >= GR_ARG_FIRST && (REGNO) < (GR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1402 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1403 \f
1404 /* Implement `va_start' for varargs and stdarg. */
1405 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1406 ia64_va_start (stdarg, valist, nextarg)
1407
1408 /* Implement `va_arg'. */
1409 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1410 ia64_va_arg (valist, type)
1411 \f
1412 /* How Scalar Function Values are Returned */
1413
1414 /* A C expression to create an RTX representing the place where a function
1415 returns a value of data type VALTYPE. */
1416
1417 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1418 ia64_function_value (VALTYPE, FUNC)
1419
1420 /* A C expression to create an RTX representing the place where a library
1421 function returns a value of mode MODE. */
1422
1423 #define LIBCALL_VALUE(MODE) \
1424 gen_rtx_REG (MODE, \
1425 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1426 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1427 ? FR_RET_FIRST : GR_RET_FIRST))
1428
1429 /* A C expression that is nonzero if REGNO is the number of a hard register in
1430 which the values of called function may come back. */
1431
1432 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1433 (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
1434 || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1435
1436 \f
1437 /* How Large Values are Returned */
1438
1439 /* A nonzero value says to return the function value in memory, just as large
1440 structures are always returned. */
1441
1442 #define RETURN_IN_MEMORY(TYPE) \
1443 ia64_return_in_memory (TYPE)
1444
1445 /* If you define this macro to be 0, then the conventions used for structure
1446 and union return values are decided by the `RETURN_IN_MEMORY' macro. */
1447
1448 #define DEFAULT_PCC_STRUCT_RETURN 0
1449
1450 /* If the structure value address is passed in a register, then
1451 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1452
1453 #define STRUCT_VALUE_REGNUM GR_REG (8)
1454
1455 \f
1456 /* Caller-Saves Register Allocation */
1457
1458 /* A C expression to determine whether it is worthwhile to consider placing a
1459 pseudo-register in a call-clobbered hard register and saving and restoring
1460 it around each function call. The expression should be 1 when this is worth
1461 doing, and 0 otherwise.
1462
1463 If you don't define this macro, a default is used which is good on most
1464 machines: `4 * CALLS < REFS'. */
1465 /* ??? Investigate. */
1466 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1467
1468 \f
1469 /* Function Entry and Exit */
1470
1471 /* A C compound statement that outputs the assembler code for entry to a
1472 function. */
1473
1474 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1475 ia64_function_prologue (FILE, SIZE)
1476
1477 /* This macro notes the end of the prologue. */
1478
1479 #define FUNCTION_END_PROLOGUE(FILE) ia64_output_end_prologue (FILE)
1480
1481 /* Define this macro as a C expression that is nonzero if the return
1482 instruction or the function epilogue ignores the value of the stack pointer;
1483 in other words, if it is safe to delete an instruction to adjust the stack
1484 pointer before a return from the function. */
1485
1486 #define EXIT_IGNORE_STACK 1
1487
1488 /* Define this macro as a C expression that is nonzero for registers
1489 used by the epilogue or the `return' pattern. */
1490
1491 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1492
1493 /* A C compound statement that outputs the assembler code for exit from a
1494 function. */
1495
1496 #define FUNCTION_EPILOGUE(FILE, SIZE) \
1497 ia64_function_epilogue (FILE, SIZE)
1498
1499 /* Output at beginning of assembler file. */
1500
1501 #define ASM_FILE_START(FILE) \
1502 emit_safe_across_calls (FILE)
1503
1504 /* A C compound statement that outputs the assembler code for a thunk function,
1505 used to implement C++ virtual function calls with multiple inheritance. */
1506
1507 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1508 do { \
1509 if (CONST_OK_FOR_I (DELTA)) \
1510 fprintf (FILE, "\tadds r32 = %d, r32\n", (DELTA)); \
1511 else \
1512 { \
1513 if (CONST_OK_FOR_J (DELTA)) \
1514 fprintf (FILE, "\taddl r2 = %d, r0\n", (DELTA)); \
1515 else \
1516 fprintf (FILE, "\tmovl r2 = %d\n", (DELTA)); \
1517 fprintf (FILE, "\t;;\n"); \
1518 fprintf (FILE, "\tadd r32 = r2, r32\n"); \
1519 } \
1520 fprintf (FILE, "\tbr "); \
1521 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1522 fprintf (FILE, "\n"); \
1523 } while (0)
1524
1525 \f
1526 /* Generating Code for Profiling. */
1527
1528 /* A C statement or compound statement to output to FILE some assembler code to
1529 call the profiling subroutine `mcount'. */
1530
1531 /* ??? Unclear if this will actually work. No way to test this currently. */
1532
1533 #define FUNCTION_PROFILER(FILE, LABELNO) \
1534 do { \
1535 char buf[20]; \
1536 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", LABELNO); \
1537 fputs ("\taddl r16 = @ltoff(", FILE); \
1538 assemble_name (FILE, buf); \
1539 fputs ("), gp\n", FILE); \
1540 fputs ("\tmov r17 = r1;;\n", FILE); \
1541 fputs ("\tld8 out0 = [r16]\n", FILE); \
1542 fputs ("\tmov r18 = b0\n", FILE); \
1543 fputs ("\tbr.call.sptk.many rp = mcount;;\n", FILE); \
1544 fputs ("\tmov b0 = r18\n", FILE); \
1545 fputs ("\tmov r1 = r17;;\n", FILE); \
1546 } while (0)
1547
1548 /* A C statement or compound statement to output to FILE some assembler code to
1549 initialize basic-block profiling for the current object module. */
1550
1551 /* ??? Unclear if this will actually work. No way to test this currently. */
1552
1553 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1554 do { \
1555 int labelno = LABELNO; \
1556 switch (profile_block_flag) \
1557 { \
1558 case 2: \
1559 fputs ("\taddl r16 = @ltoff(LPBX0), gp\n", FILE); \
1560 fprintf (FILE, "\tmov out1 = %d;;\n", labelno); \
1561 fputs ("\tld8 out0 = [r16]\n", FILE); \
1562 fputs ("\tmov r17 = r1\n", FILE); \
1563 fputs ("\tmov r18 = b0\n", FILE); \
1564 fputs ("\tbr.call.sptk.many rp = __bb_init_trace_func;;\n", FILE);\
1565 fputs ("\tmov r1 = r17\n", FILE); \
1566 fputs ("\tmov b0 = r18;;\n", FILE); \
1567 break; \
1568 default: \
1569 fputs ("\taddl r16 = @ltoff(LPBX0), gp;;\n", FILE); \
1570 fputs ("\tld8 out0 = [r16];;\n", FILE); \
1571 fputs ("\tld8 r17 = [out0];;\n", FILE); \
1572 fputs ("\tcmp.eq p6, p0 = r0, r17;;\n", FILE); \
1573 fputs ("(p6)\tmov r16 = r1\n", FILE); \
1574 fputs ("(p6)\tmov r17 = b0\n", FILE); \
1575 fputs ("(p6)\tbr.call.sptk.many rp = __bb_init_func;;\n", FILE); \
1576 fputs ("(p6)\tmov r1 = r16\n", FILE); \
1577 fputs ("(p6)\tmov b0 = r17;;\n", FILE); \
1578 break; \
1579 } \
1580 } while (0)
1581
1582 /* A C statement or compound statement to output to FILE some assembler code to
1583 increment the count associated with the basic block number BLOCKNO. */
1584
1585 /* ??? This can't work unless we mark some registers as fixed, so that we
1586 can use them as temporaries in this macro. We need two registers for -a
1587 profiling and 4 registers for -ax profiling. */
1588
1589 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1590 do { \
1591 int blockn = BLOCKNO; \
1592 switch (profile_block_flag) \
1593 { \
1594 case 2: \
1595 fputs ("\taddl r2 = @ltoff(__bb), gp\n", FILE); \
1596 fputs ("\taddl r3 = @ltoff(LPBX0), gp;;\n", FILE); \
1597 fprintf (FILE, "\tmov r9 = %d\n", blockn); \
1598 fputs ("\tld8 r2 = [r2]\n", FILE); \
1599 fputs ("\tld8 r3 = [r3];;\n", FILE); \
1600 fputs ("\tadd r8 = 8, r2\n", FILE); \
1601 fputs ("\tst8 [r2] = r9;;\n", FILE); \
1602 fputs ("\tst8 [r8] = r3\n", FILE); \
1603 fputs ("\tbr.call.sptk.many rp = __bb_trace_func\n", FILE); \
1604 break; \
1605 \
1606 default: \
1607 fputs ("\taddl r2 = @ltoff(LPBX2), gp;;\n", FILE); \
1608 fputs ("\tld8 r2 = [r2];;\n", FILE); \
1609 fprintf (FILE, "\taddl r2 = %d, r2;;\n", 8 * blockn); \
1610 fputs ("\tld8 r3 = [r2];;\n", FILE); \
1611 fputs ("\tadd r3 = 1, r3;;\n", FILE); \
1612 fputs ("\tst8 [r2] = r3;;\n", FILE); \
1613 break; \
1614 } \
1615 } while(0)
1616
1617 /* A C statement or compound statement to output to FILE assembler
1618 code to call function `__bb_trace_ret'. */
1619
1620 /* ??? Unclear if this will actually work. No way to test this currently. */
1621
1622 /* ??? This needs to be emitted into the epilogue. Perhaps rewrite to emit
1623 rtl and call from ia64_expand_epilogue? */
1624
1625 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1626 fputs ("\tbr.call.sptk.many rp = __bb_trace_ret\n", FILE);
1627 #undef FUNCTION_BLOCK_PROFILER_EXIT
1628
1629 /* A C statement or compound statement to save all registers, which may be
1630 clobbered by a function call, including condition codes. */
1631
1632 /* ??? We would have to save 20 GRs, 106 FRs, 10 PRs, 2 BRs, and possibly
1633 other things. This is not practical. Perhaps leave this feature (-ax)
1634 unsupported by undefining above macros? */
1635
1636 /* #define MACHINE_STATE_SAVE(ID) */
1637
1638 /* A C statement or compound statement to restore all registers, including
1639 condition codes, saved by `MACHINE_STATE_SAVE'. */
1640
1641 /* ??? We would have to restore 20 GRs, 106 FRs, 10 PRs, 2 BRs, and possibly
1642 other things. This is not practical. Perhaps leave this feature (-ax)
1643 unsupported by undefining above macros? */
1644
1645 /* #define MACHINE_STATE_RESTORE(ID) */
1646
1647 \f
1648 /* Implementing the Varargs Macros. */
1649
1650 /* Define this macro to store the anonymous register arguments into the stack
1651 so that all the arguments appear to have been passed consecutively on the
1652 stack. */
1653
1654 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
1655 ia64_setup_incoming_varargs (ARGS_SO_FAR, MODE, TYPE, & PRETEND_ARGS_SIZE, SECOND_TIME)
1656
1657 /* Define this macro if the location where a function argument is passed
1658 depends on whether or not it is a named argument. */
1659
1660 #define STRICT_ARGUMENT_NAMING 1
1661
1662 \f
1663 /* Trampolines for Nested Functions. */
1664
1665 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1666 the function containing a non-local goto target. */
1667
1668 #define STACK_SAVEAREA_MODE(LEVEL) \
1669 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1670
1671 /* Output assembler code for a block containing the constant parts of
1672 a trampoline, leaving space for the variable parts.
1673
1674 The trampoline should set the static chain pointer to value placed
1675 into the trampoline and should branch to the specified routine.
1676 To make the normal indirect-subroutine calling convention work,
1677 the trampoline must look like a function descriptor; the first
1678 word being the target address and the second being the target's
1679 global pointer.
1680
1681 We abuse the concept of a global pointer by arranging for it
1682 to point to the data we need to load. The complete trampoline
1683 has the following form:
1684
1685 +-------------------+ \
1686 TRAMP: | __ia64_trampoline | |
1687 +-------------------+ > fake function descriptor
1688 | TRAMP+16 | |
1689 +-------------------+ /
1690 | target descriptor |
1691 +-------------------+
1692 | static link |
1693 +-------------------+
1694 */
1695
1696 /* A C expression for the size in bytes of the trampoline, as an integer. */
1697
1698 #define TRAMPOLINE_SIZE 32
1699
1700 /* Alignment required for trampolines, in bits. */
1701
1702 #define TRAMPOLINE_ALIGNMENT 64
1703
1704 /* A C statement to initialize the variable parts of a trampoline. */
1705
1706 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1707 ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
1708 \f
1709 /* Implicit Calls to Library Routines */
1710
1711 /* ??? The ia64 linux kernel requires that we use the standard names for
1712 divide and modulo routines. However, if we aren't careful, lib1funcs.asm
1713 will be overridden by libgcc2.c. We avoid this by using different names
1714 for lib1funcs.asm modules, e.g. __divdi3 vs _divdi3. Since lib1funcs.asm
1715 goes into libgcc.a first, the linker will find it first. */
1716
1717 /* Define this macro if GNU CC should generate calls to the System V (and ANSI
1718 C) library functions `memcpy' and `memset' rather than the BSD functions
1719 `bcopy' and `bzero'. */
1720
1721 #define TARGET_MEM_FUNCTIONS
1722
1723 \f
1724 /* Addressing Modes */
1725
1726 /* Define this macro if the machine supports post-increment addressing. */
1727
1728 #define HAVE_POST_INCREMENT 1
1729 #define HAVE_POST_DECREMENT 1
1730 #define HAVE_POST_MODIFY_DISP 1
1731 #define HAVE_POST_MODIFY_REG 1
1732
1733 /* A C expression that is 1 if the RTX X is a constant which is a valid
1734 address. */
1735
1736 #define CONSTANT_ADDRESS_P(X) 0
1737
1738 /* The max number of registers that can appear in a valid memory address. */
1739
1740 #define MAX_REGS_PER_ADDRESS 2
1741
1742 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1743 RTX) is a legitimate memory address on the target machine for a memory
1744 operand of mode MODE. */
1745
1746 #define LEGITIMATE_ADDRESS_REG(X) \
1747 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1748 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1749 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1750
1751 #define LEGITIMATE_ADDRESS_DISP(R, X) \
1752 (GET_CODE (X) == PLUS \
1753 && rtx_equal_p (R, XEXP (X, 0)) \
1754 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
1755 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
1756 && INTVAL (XEXP (X, 1)) >= -256 \
1757 && INTVAL (XEXP (X, 1)) < 256)))
1758
1759 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1760 do { \
1761 if (LEGITIMATE_ADDRESS_REG (X)) \
1762 goto LABEL; \
1763 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1764 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1765 && XEXP (X, 0) != arg_pointer_rtx) \
1766 goto LABEL; \
1767 else if (GET_CODE (X) == POST_MODIFY \
1768 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1769 && XEXP (X, 0) != arg_pointer_rtx \
1770 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
1771 goto LABEL; \
1772 } while (0)
1773
1774 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1775 use as a base register. */
1776
1777 #ifdef REG_OK_STRICT
1778 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1779 #else
1780 #define REG_OK_FOR_BASE_P(X) \
1781 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1782 #endif
1783
1784 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1785 use as an index register. This is needed for POST_MODIFY. */
1786
1787 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1788
1789 /* A C compound statement that attempts to replace X with a valid memory
1790 address for an operand of mode MODE.
1791
1792 This must be present, but there is nothing useful to be done here. */
1793
1794 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1795
1796 /* A C statement or compound statement with a conditional `goto LABEL;'
1797 executed if memory address X (an RTX) can have different meanings depending
1798 on the machine mode of the memory reference it is used for or if the address
1799 is valid for some modes but not others. */
1800
1801 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1802 if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC) \
1803 goto LABEL;
1804
1805 /* A C expression that is nonzero if X is a legitimate constant for an
1806 immediate operand on the target machine. */
1807
1808 #define LEGITIMATE_CONSTANT_P(X) \
1809 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1810 || GET_MODE (X) == DImode || CONST_DOUBLE_OK_FOR_G (X)) \
1811
1812 \f
1813 /* Condition Code Status */
1814
1815 /* One some machines not all possible comparisons are defined, but you can
1816 convert an invalid comparison into a valid one. */
1817 /* ??? Investigate. See the alpha definition. */
1818 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1819
1820 \f
1821 /* Describing Relative Costs of Operations */
1822
1823 /* A part of a C `switch' statement that describes the relative costs of
1824 constant RTL expressions. */
1825
1826 /* ??? This is incomplete. */
1827
1828 #define CONST_COSTS(X, CODE, OUTER_CODE) \
1829 case CONST_INT: \
1830 if ((X) == const0_rtx) \
1831 return 0; \
1832 switch (OUTER_CODE) \
1833 { \
1834 case SET: \
1835 return CONST_OK_FOR_J (INTVAL (X)) ? 0 : COSTS_N_INSNS (1); \
1836 case PLUS: \
1837 if (CONST_OK_FOR_I (INTVAL (X))) \
1838 return 0; \
1839 if (CONST_OK_FOR_J (INTVAL (X))) \
1840 return 1; \
1841 return COSTS_N_INSNS (1); \
1842 default: \
1843 if (CONST_OK_FOR_K (INTVAL (X)) || CONST_OK_FOR_L (INTVAL (X))) \
1844 return 0; \
1845 return COSTS_N_INSNS (1); \
1846 } \
1847 case CONST_DOUBLE: \
1848 return COSTS_N_INSNS (1); \
1849 case CONST: \
1850 case SYMBOL_REF: \
1851 case LABEL_REF: \
1852 return COSTS_N_INSNS (2);
1853
1854 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions. */
1855
1856 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1857 case MULT: \
1858 /* For multiplies wider than HImode, we have to go to the FPU, \
1859 which normally involves copies. Plus there's the latency \
1860 of the multiply itself, and the latency of the instructions to \
1861 transfer integer regs to FP regs. */ \
1862 if (GET_MODE_SIZE (GET_MODE (X)) > 2) \
1863 return COSTS_N_INSNS (10); \
1864 return COSTS_N_INSNS (2); \
1865 case PLUS: \
1866 case MINUS: \
1867 case ASHIFT: \
1868 case ASHIFTRT: \
1869 case LSHIFTRT: \
1870 return COSTS_N_INSNS (1); \
1871 case DIV: \
1872 case UDIV: \
1873 case MOD: \
1874 case UMOD: \
1875 /* We make divide expensive, so that divide-by-constant will be \
1876 optimized to a multiply. */ \
1877 return COSTS_N_INSNS (60);
1878
1879 /* An expression giving the cost of an addressing mode that contains ADDRESS.
1880 If not defined, the cost is computed from the ADDRESS expression and the
1881 `CONST_COSTS' values. */
1882
1883 #define ADDRESS_COST(ADDRESS) 0
1884
1885 /* A C expression for the cost of moving data from a register in class FROM to
1886 one in class TO. */
1887
1888 #define REGISTER_MOVE_COST(FROM, TO) \
1889 ia64_register_move_cost((FROM), (TO))
1890
1891 /* A C expression for the cost of moving data of mode M between a
1892 register and memory. */
1893 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1894 ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS ? 4 : 10)
1895
1896 /* A C expression for the cost of a branch instruction. A value of 1 is the
1897 default; other values are interpreted relative to that. Used by the
1898 if-conversion code as max instruction count. */
1899 /* ??? This requires investigation. The primary effect might be how
1900 many additional insn groups we run into, vs how good the dynamic
1901 branch predictor is. */
1902
1903 #define BRANCH_COST 6
1904
1905 /* Define this macro as a C expression which is nonzero if accessing less than
1906 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1907 word of memory. */
1908
1909 #define SLOW_BYTE_ACCESS 1
1910
1911 /* Define this macro if it is as good or better to call a constant function
1912 address than to call an address kept in a register.
1913
1914 Indirect function calls are more expensive that direct function calls, so
1915 don't cse function addresses. */
1916
1917 #define NO_FUNCTION_CSE
1918
1919 /* A C statement (sans semicolon) to update the integer variable COST based on
1920 the relationship between INSN that is dependent on DEP_INSN through the
1921 dependence LINK. */
1922
1923 /* ??? Investigate. */
1924 /* #define ADJUST_COST(INSN, LINK, DEP_INSN, COST) */
1925
1926 /* A C statement (sans semicolon) to update the integer scheduling
1927 priority `INSN_PRIORITY(INSN)'. */
1928
1929 /* ??? Investigate. */
1930 /* #define ADJUST_PRIORITY (INSN) */
1931
1932 \f
1933 /* Dividing the output into sections. */
1934
1935 /* A C expression whose value is a string containing the assembler operation
1936 that should precede instructions and read-only data. */
1937
1938 #define TEXT_SECTION_ASM_OP "\t.text"
1939
1940 /* A C expression whose value is a string containing the assembler operation to
1941 identify the following data as writable initialized data. */
1942
1943 #define DATA_SECTION_ASM_OP "\t.data"
1944
1945 /* If defined, a C expression whose value is a string containing the assembler
1946 operation to identify the following data as uninitialized global data. */
1947
1948 #define BSS_SECTION_ASM_OP "\t.bss"
1949
1950 /* Define this macro if jump tables (for `tablejump' insns) should be output in
1951 the text section, along with the assembler instructions. */
1952
1953 /* ??? It is probably better for the jump tables to be in the rodata section,
1954 which is where they go by default. Unfortunately, that currently does not
1955 work, because of some problem with pcrelative relocations not getting
1956 resolved correctly. */
1957 /* ??? FIXME ??? rth says that we should use @gprel to solve this problem. */
1958 /* ??? If jump tables are in the text section, then we can use 4 byte
1959 entries instead of 8 byte entries. */
1960
1961 #define JUMP_TABLES_IN_TEXT_SECTION 1
1962
1963 /* Define this macro if references to a symbol must be treated differently
1964 depending on something about the variable or function named by the symbol
1965 (such as what section it is in). */
1966
1967 #define ENCODE_SECTION_INFO(DECL) ia64_encode_section_info (DECL)
1968
1969 /* If a variable is weakened, made one only or moved into a different
1970 section, it may be necessary to redo the section info to move the
1971 variable out of sdata. */
1972
1973 #define REDO_SECTION_INFO_P(DECL) \
1974 ((TREE_CODE (DECL) == VAR_DECL) \
1975 && (DECL_ONE_ONLY (DECL) || DECL_WEAK (DECL) || DECL_COMMON (DECL) \
1976 || DECL_SECTION_NAME (DECL) != 0))
1977
1978 #define SDATA_NAME_FLAG_CHAR '@'
1979
1980 #define IA64_DEFAULT_GVALUE 8
1981
1982 /* Decode SYM_NAME and store the real name part in VAR, sans the characters
1983 that encode section info. */
1984
1985 #define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
1986 (VAR) = (SYMBOL_NAME) + ((SYMBOL_NAME)[0] == SDATA_NAME_FLAG_CHAR)
1987
1988 \f
1989 /* Position Independent Code. */
1990
1991 /* The register number of the register used to address a table of static data
1992 addresses in memory. */
1993
1994 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1995 gen_rtx_REG (DImode, 1). */
1996
1997 /* ??? Should we set flag_pic? Probably need to define
1998 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1999
2000 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
2001
2002 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
2003 clobbered by calls. */
2004
2005 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
2006
2007 \f
2008 /* The Overall Framework of an Assembler File. */
2009
2010 /* A C string constant describing how to begin a comment in the target
2011 assembler language. The compiler assumes that the comment will end at the
2012 end of the line. */
2013
2014 #define ASM_COMMENT_START "//"
2015
2016 /* A C string constant for text to be output before each `asm' statement or
2017 group of consecutive ones. */
2018
2019 /* ??? This won't work with the Intel assembler, because it does not accept
2020 # as a comment start character. However, //APP does not work in gas, so we
2021 can't use that either. Same problem for ASM_APP_OFF below. */
2022
2023 #define ASM_APP_ON "#APP\n"
2024
2025 /* A C string constant for text to be output after each `asm' statement or
2026 group of consecutive ones. */
2027
2028 #define ASM_APP_OFF "#NO_APP\n"
2029
2030 \f
2031 /* Output of Data. */
2032
2033 /* A C statement to output to the stdio stream STREAM an assembler instruction
2034 to assemble a floating-point constant of `TFmode', `DFmode', `SFmode',
2035 respectively, whose value is VALUE. */
2036
2037 /* ??? Must reverse the word order for big-endian code? */
2038
2039 #define ASM_OUTPUT_LONG_DOUBLE(FILE, VALUE) \
2040 do { \
2041 long t[3]; \
2042 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, t); \
2043 fprintf (FILE, "\tdata4 0x%08lx, 0x%08lx, 0x%08lx, 0x%08lx\n", \
2044 t[0] & 0xffffffff, t[1] & 0xffffffff, t[2] & 0xffffffff, 0); \
2045 } while (0)
2046
2047 /* ??? Must reverse the word order for big-endian code? */
2048
2049 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2050 do { \
2051 long t[2]; \
2052 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, t); \
2053 fprintf (FILE, "\tdata8 0x%08lx%08lx\n", \
2054 t[1] & 0xffffffff, t[0] & 0xffffffff); \
2055 } while (0)
2056
2057 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2058 do { \
2059 long t; \
2060 REAL_VALUE_TO_TARGET_SINGLE (VALUE, t); \
2061 fprintf (FILE, "\tdata4 0x%lx\n", t & 0xffffffff); \
2062 } while (0)
2063
2064 /* A C statement to output to the stdio stream STREAM an assembler instruction
2065 to assemble an integer of 1, 2, 4, or 8 bytes, respectively, whose value
2066 is VALUE. */
2067
2068 /* This is how to output an assembler line defining a `char' constant. */
2069
2070 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
2071 do { \
2072 fprintf (FILE, "%s", ASM_BYTE_OP); \
2073 output_addr_const (FILE, (VALUE)); \
2074 fprintf (FILE, "\n"); \
2075 } while (0)
2076
2077 /* This is how to output an assembler line defining a `short' constant. */
2078
2079 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
2080 do { \
2081 fprintf (FILE, "\tdata2\t"); \
2082 output_addr_const (FILE, (VALUE)); \
2083 fprintf (FILE, "\n"); \
2084 } while (0)
2085
2086 /* This is how to output an assembler line defining an `int' constant.
2087 We also handle symbol output here. */
2088
2089 /* ??? For ILP32, also need to handle function addresses here. */
2090
2091 #define ASM_OUTPUT_INT(FILE, VALUE) \
2092 do { \
2093 fprintf (FILE, "\tdata4\t"); \
2094 output_addr_const (FILE, (VALUE)); \
2095 fprintf (FILE, "\n"); \
2096 } while (0)
2097
2098 /* This is how to output an assembler line defining a `long' constant.
2099 We also handle symbol output here. */
2100
2101 #define ASM_OUTPUT_DOUBLE_INT(FILE, VALUE) \
2102 do { \
2103 fprintf (FILE, "\tdata8\t"); \
2104 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) && SYMBOL_REF_FLAG (VALUE)) \
2105 fprintf (FILE, "@fptr("); \
2106 output_addr_const (FILE, (VALUE)); \
2107 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) && SYMBOL_REF_FLAG (VALUE)) \
2108 fprintf (FILE, ")"); \
2109 fprintf (FILE, "\n"); \
2110 } while (0)
2111
2112 /* This is how to output an assembler line defining a `char' constant
2113 to an xdata segment. */
2114
2115 #define ASM_OUTPUT_XDATA_CHAR(FILE, SECTION, VALUE) \
2116 do { \
2117 fprintf (FILE, "\t.xdata1\t\"%s\", ", SECTION); \
2118 output_addr_const (FILE, (VALUE)); \
2119 fprintf (FILE, "\n"); \
2120 } while (0)
2121
2122 /* This is how to output an assembler line defining a `short' constant
2123 to an xdata segment. */
2124
2125 #define ASM_OUTPUT_XDATA_SHORT(FILE, SECTION, VALUE) \
2126 do { \
2127 fprintf (FILE, "\t.xdata2\t\"%s\", ", SECTION); \
2128 output_addr_const (FILE, (VALUE)); \
2129 fprintf (FILE, "\n"); \
2130 } while (0)
2131
2132 /* This is how to output an assembler line defining an `int' constant
2133 to an xdata segment. We also handle symbol output here. */
2134
2135 /* ??? For ILP32, also need to handle function addresses here. */
2136
2137 #define ASM_OUTPUT_XDATA_INT(FILE, SECTION, VALUE) \
2138 do { \
2139 fprintf (FILE, "\t.xdata4\t\"%s\", ", SECTION); \
2140 output_addr_const (FILE, (VALUE)); \
2141 fprintf (FILE, "\n"); \
2142 } while (0)
2143
2144 /* This is how to output an assembler line defining a `long' constant
2145 to an xdata segment. We also handle symbol output here. */
2146
2147 #define ASM_OUTPUT_XDATA_DOUBLE_INT(FILE, SECTION, VALUE) \
2148 do { \
2149 int need_closing_paren = 0; \
2150 fprintf (FILE, "\t.xdata8\t\"%s\", ", SECTION); \
2151 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) \
2152 && GET_CODE (VALUE) == SYMBOL_REF) \
2153 { \
2154 fprintf (FILE, SYMBOL_REF_FLAG (VALUE) ? "@fptr(" : "@segrel("); \
2155 need_closing_paren = 1; \
2156 } \
2157 output_addr_const (FILE, VALUE); \
2158 if (need_closing_paren) \
2159 fprintf (FILE, ")"); \
2160 fprintf (FILE, "\n"); \
2161 } while (0)
2162
2163
2164 /* Output EH data to the unwind segment. */
2165 #define ASM_OUTPUT_EH_CHAR(FILE, VALUE) \
2166 ASM_OUTPUT_XDATA_CHAR(FILE, ".IA_64.unwind_info", VALUE)
2167
2168 #define ASM_OUTPUT_EH_SHORT(FILE, VALUE) \
2169 ASM_OUTPUT_XDATA_SHORT(FILE, ".IA_64.unwind_info", VALUE)
2170
2171 #define ASM_OUTPUT_EH_INT(FILE, VALUE) \
2172 ASM_OUTPUT_XDATA_INT(FILE, ".IA_64.unwind_info", VALUE)
2173
2174 #define ASM_OUTPUT_EH_DOUBLE_INT(FILE, VALUE) \
2175 ASM_OUTPUT_XDATA_DOUBLE_INT(FILE, ".IA_64.unwind_info", VALUE)
2176
2177 /* A C statement to output to the stdio stream STREAM an assembler instruction
2178 to assemble a single byte containing the number VALUE. */
2179
2180 #define ASM_OUTPUT_BYTE(STREAM, VALUE) \
2181 fprintf (STREAM, "%s0x%x\n", ASM_BYTE_OP, (int)(VALUE) & 0xff)
2182
2183 /* These macros are defined as C string constant, describing the syntax in the
2184 assembler for grouping arithmetic expressions. */
2185
2186 #define ASM_OPEN_PAREN "("
2187 #define ASM_CLOSE_PAREN ")"
2188
2189 \f
2190 /* Output of Uninitialized Variables. */
2191
2192 /* This is all handled by svr4.h. */
2193
2194 \f
2195 /* Output and Generation of Labels. */
2196
2197 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2198 assembler definition of a label named NAME. */
2199
2200 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
2201 why ia64_asm_output_label exists. */
2202
2203 extern int ia64_asm_output_label;
2204 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
2205 do { \
2206 ia64_asm_output_label = 1; \
2207 assemble_name (STREAM, NAME); \
2208 fputs (":\n", STREAM); \
2209 ia64_asm_output_label = 0; \
2210 } while (0)
2211
2212 /* A C statement (sans semicolon) to output to the stdio stream STREAM some
2213 commands that will make the label NAME global; that is, available for
2214 reference from other files. */
2215
2216 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
2217 do { \
2218 fputs ("\t.global ", STREAM); \
2219 assemble_name (STREAM, NAME); \
2220 fputs ("\n", STREAM); \
2221 } while (0)
2222
2223 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
2224 necessary for declaring the name of an external symbol named NAME which is
2225 referenced in this compilation but not defined. */
2226
2227 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2228 ia64_asm_output_external (FILE, DECL, NAME)
2229
2230 /* A C statement to store into the string STRING a label whose name is made
2231 from the string PREFIX and the number NUM. */
2232
2233 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
2234 do { \
2235 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
2236 } while (0)
2237
2238 /* A C expression to assign to OUTVAR (which is a variable of type `char *') a
2239 newly allocated string made from the string NAME and the number NUMBER, with
2240 some suitable punctuation added. */
2241
2242 /* ??? Not sure if using a ? in the name for Intel as is safe. */
2243
2244 #define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
2245 do { \
2246 (OUTVAR) = (char *) alloca (strlen (NAME) + 12); \
2247 sprintf (OUTVAR, "%s%c%ld", (NAME), (TARGET_GNU_AS ? '.' : '?'), \
2248 (long)(NUMBER)); \
2249 } while (0)
2250
2251 /* A C statement to output to the stdio stream STREAM assembler code which
2252 defines (equates) the symbol NAME to have the value VALUE. */
2253
2254 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
2255 do { \
2256 assemble_name (STREAM, NAME); \
2257 fputs (" = ", STREAM); \
2258 assemble_name (STREAM, VALUE); \
2259 fputc ('\n', STREAM); \
2260 } while (0)
2261
2262 \f
2263 /* Macros Controlling Initialization Routines. */
2264
2265 /* This is handled by svr4.h and sysv4.h. */
2266
2267 \f
2268 /* Output of Assembler Instructions. */
2269
2270 /* A C initializer containing the assembler's names for the machine registers,
2271 each one as a C string constant. */
2272
2273 #define REGISTER_NAMES \
2274 { \
2275 /* General registers. */ \
2276 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
2277 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
2278 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
2279 "r30", "r31", \
2280 /* Local registers. */ \
2281 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
2282 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
2283 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
2284 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
2285 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
2286 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
2287 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
2288 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
2289 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
2290 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
2291 /* Input registers. */ \
2292 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
2293 /* Output registers. */ \
2294 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
2295 /* Floating-point registers. */ \
2296 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
2297 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
2298 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
2299 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
2300 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
2301 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
2302 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
2303 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
2304 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
2305 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
2306 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
2307 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
2308 "f120","f121","f122","f123","f124","f125","f126","f127", \
2309 /* Predicate registers. */ \
2310 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
2311 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
2312 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
2313 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
2314 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
2315 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
2316 "p60", "p61", "p62", "p63", \
2317 /* Branch registers. */ \
2318 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
2319 /* Frame pointer. Return address. */ \
2320 "sfp", "retaddr", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
2321 }
2322
2323 /* If defined, a C initializer for an array of structures containing a name and
2324 a register number. This macro defines additional names for hard registers,
2325 thus allowing the `asm' option in declarations to refer to registers using
2326 alternate names. */
2327
2328 #define ADDITIONAL_REGISTER_NAMES \
2329 { \
2330 { "gp", R_GR (1) }, \
2331 { "sp", R_GR (12) }, \
2332 { "in0", IN_REG (0) }, \
2333 { "in1", IN_REG (1) }, \
2334 { "in2", IN_REG (2) }, \
2335 { "in3", IN_REG (3) }, \
2336 { "in4", IN_REG (4) }, \
2337 { "in5", IN_REG (5) }, \
2338 { "in6", IN_REG (6) }, \
2339 { "in7", IN_REG (7) }, \
2340 { "out0", OUT_REG (0) }, \
2341 { "out1", OUT_REG (1) }, \
2342 { "out2", OUT_REG (2) }, \
2343 { "out3", OUT_REG (3) }, \
2344 { "out4", OUT_REG (4) }, \
2345 { "out5", OUT_REG (5) }, \
2346 { "out6", OUT_REG (6) }, \
2347 { "out7", OUT_REG (7) }, \
2348 { "loc0", LOC_REG (0) }, \
2349 { "loc1", LOC_REG (1) }, \
2350 { "loc2", LOC_REG (2) }, \
2351 { "loc3", LOC_REG (3) }, \
2352 { "loc4", LOC_REG (4) }, \
2353 { "loc5", LOC_REG (5) }, \
2354 { "loc6", LOC_REG (6) }, \
2355 { "loc7", LOC_REG (7) }, \
2356 { "loc8", LOC_REG (8) }, \
2357 { "loc9", LOC_REG (9) }, \
2358 { "loc10", LOC_REG (10) }, \
2359 { "loc11", LOC_REG (11) }, \
2360 { "loc12", LOC_REG (12) }, \
2361 { "loc13", LOC_REG (13) }, \
2362 { "loc14", LOC_REG (14) }, \
2363 { "loc15", LOC_REG (15) }, \
2364 { "loc16", LOC_REG (16) }, \
2365 { "loc17", LOC_REG (17) }, \
2366 { "loc18", LOC_REG (18) }, \
2367 { "loc19", LOC_REG (19) }, \
2368 { "loc20", LOC_REG (20) }, \
2369 { "loc21", LOC_REG (21) }, \
2370 { "loc22", LOC_REG (22) }, \
2371 { "loc23", LOC_REG (23) }, \
2372 { "loc24", LOC_REG (24) }, \
2373 { "loc25", LOC_REG (25) }, \
2374 { "loc26", LOC_REG (26) }, \
2375 { "loc27", LOC_REG (27) }, \
2376 { "loc28", LOC_REG (28) }, \
2377 { "loc29", LOC_REG (29) }, \
2378 { "loc30", LOC_REG (30) }, \
2379 { "loc31", LOC_REG (31) }, \
2380 { "loc32", LOC_REG (32) }, \
2381 { "loc33", LOC_REG (33) }, \
2382 { "loc34", LOC_REG (34) }, \
2383 { "loc35", LOC_REG (35) }, \
2384 { "loc36", LOC_REG (36) }, \
2385 { "loc37", LOC_REG (37) }, \
2386 { "loc38", LOC_REG (38) }, \
2387 { "loc39", LOC_REG (39) }, \
2388 { "loc40", LOC_REG (40) }, \
2389 { "loc41", LOC_REG (41) }, \
2390 { "loc42", LOC_REG (42) }, \
2391 { "loc43", LOC_REG (43) }, \
2392 { "loc44", LOC_REG (44) }, \
2393 { "loc45", LOC_REG (45) }, \
2394 { "loc46", LOC_REG (46) }, \
2395 { "loc47", LOC_REG (47) }, \
2396 { "loc48", LOC_REG (48) }, \
2397 { "loc49", LOC_REG (49) }, \
2398 { "loc50", LOC_REG (50) }, \
2399 { "loc51", LOC_REG (51) }, \
2400 { "loc52", LOC_REG (52) }, \
2401 { "loc53", LOC_REG (53) }, \
2402 { "loc54", LOC_REG (54) }, \
2403 { "loc55", LOC_REG (55) }, \
2404 { "loc56", LOC_REG (56) }, \
2405 { "loc57", LOC_REG (57) }, \
2406 { "loc58", LOC_REG (58) }, \
2407 { "loc59", LOC_REG (59) }, \
2408 { "loc60", LOC_REG (60) }, \
2409 { "loc61", LOC_REG (61) }, \
2410 { "loc62", LOC_REG (62) }, \
2411 { "loc63", LOC_REG (63) }, \
2412 { "loc64", LOC_REG (64) }, \
2413 { "loc65", LOC_REG (65) }, \
2414 { "loc66", LOC_REG (66) }, \
2415 { "loc67", LOC_REG (67) }, \
2416 { "loc68", LOC_REG (68) }, \
2417 { "loc69", LOC_REG (69) }, \
2418 { "loc70", LOC_REG (70) }, \
2419 { "loc71", LOC_REG (71) }, \
2420 { "loc72", LOC_REG (72) }, \
2421 { "loc73", LOC_REG (73) }, \
2422 { "loc74", LOC_REG (74) }, \
2423 { "loc75", LOC_REG (75) }, \
2424 { "loc76", LOC_REG (76) }, \
2425 { "loc77", LOC_REG (77) }, \
2426 { "loc78", LOC_REG (78) }, \
2427 { "loc79", LOC_REG (79) }, \
2428 }
2429
2430 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2431 for an instruction operand X. X is an RTL expression. */
2432
2433 #define PRINT_OPERAND(STREAM, X, CODE) \
2434 ia64_print_operand (STREAM, X, CODE)
2435
2436 /* A C expression which evaluates to true if CODE is a valid punctuation
2437 character for use in the `PRINT_OPERAND' macro. */
2438
2439 /* ??? Keep this around for now, as we might need it later. */
2440
2441 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2442 ((CODE) == '+' || (CODE) == ',')
2443
2444 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2445 for an instruction operand that is a memory reference whose address is X. X
2446 is an RTL expression. */
2447
2448 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
2449 ia64_print_operand_address (STREAM, X)
2450
2451 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2452 `%I' options of `asm_fprintf' (see `final.c'). */
2453
2454 #define REGISTER_PREFIX ""
2455 #define LOCAL_LABEL_PREFIX "."
2456 #define USER_LABEL_PREFIX ""
2457 #define IMMEDIATE_PREFIX ""
2458
2459 \f
2460 /* Output of dispatch tables. */
2461
2462 /* This macro should be provided on machines where the addresses in a dispatch
2463 table are relative to the table's own address. */
2464
2465 /* ??? Depends on the pointer size. */
2466
2467 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2468 fprintf (STREAM, "\tdata8 .L%d-.L%d\n", VALUE, REL)
2469
2470 /* This is how to output an element of a case-vector that is absolute.
2471 (Ia64 does not use such vectors, but we must define this macro anyway.) */
2472
2473 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) abort ()
2474
2475 /* Define this if something special must be output at the end of a jump-table.
2476 We need to align back to a 16 byte boundary because offsets are smaller than
2477 instructions. */
2478
2479 #define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) ASM_OUTPUT_ALIGN (STREAM, 4)
2480
2481 /* Jump tables only need 8 byte alignment. */
2482
2483 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
2484
2485 \f
2486 /* Assembler Commands for Exception Regions. */
2487
2488 /* ??? This entire section of ia64.h needs to be implemented and then cleaned
2489 up. */
2490
2491 /* A C expression to output text to mark the start of an exception region.
2492
2493 This macro need not be defined on most platforms. */
2494 /* #define ASM_OUTPUT_EH_REGION_BEG() */
2495
2496 /* A C expression to output text to mark the end of an exception region.
2497
2498 This macro need not be defined on most platforms. */
2499 /* #define ASM_OUTPUT_EH_REGION_END() */
2500
2501 /* A C expression to switch to the section in which the main exception table is
2502 to be placed. The default is a section named `.gcc_except_table' on machines
2503 that support named sections via `ASM_OUTPUT_SECTION_NAME', otherwise if `-fpic'
2504 or `-fPIC' is in effect, the `data_section', otherwise the
2505 `readonly_data_section'. */
2506 /* #define EXCEPTION_SECTION() */
2507
2508 /* If defined, a C string constant for the assembler operation to switch to the
2509 section for exception handling frame unwind information. If not defined,
2510 GNU CC will provide a default definition if the target supports named
2511 sections. `crtstuff.c' uses this macro to switch to the appropriate
2512 section.
2513
2514 You should define this symbol if your target supports DWARF 2 frame unwind
2515 information and the default definition does not work. */
2516 #define EH_FRAME_SECTION_ASM_OP "\t.section\t.IA_64.unwind,\"aw\""
2517
2518 /* A C expression that is nonzero if the normal exception table output should
2519 be omitted.
2520
2521 This macro need not be defined on most platforms. */
2522 /* #define OMIT_EH_TABLE() */
2523
2524 /* Alternate runtime support for looking up an exception at runtime and finding
2525 the associated handler, if the default method won't work.
2526
2527 This macro need not be defined on most platforms. */
2528 /* #define EH_TABLE_LOOKUP() */
2529
2530 /* A C expression that decides whether or not the current function needs to
2531 have a function unwinder generated for it. See the file `except.c' for
2532 details on when to define this, and how. */
2533 /* #define DOESNT_NEED_UNWINDER */
2534
2535 /* An rtx used to mask the return address found via RETURN_ADDR_RTX, so that it
2536 does not contain any extraneous set bits in it. */
2537 /* #define MASK_RETURN_ADDR */
2538
2539 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
2540 information, but it does not yet work with exception handling. Otherwise,
2541 if your target supports this information (if it defines
2542 `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
2543 `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
2544
2545 If this macro is defined to 1, the DWARF 2 unwinder will be the default
2546 exception handling mechanism; otherwise, setjmp/longjmp will be used by
2547 default.
2548
2549 If this macro is defined to anything, the DWARF 2 unwinder will be used
2550 instead of inline unwinders and __unwind_function in the non-setjmp case. */
2551 /* #define DWARF2_UNWIND_INFO */
2552
2553 \f
2554 /* Assembler Commands for Alignment. */
2555
2556 /* The alignment (log base 2) to put in front of LABEL, which follows
2557 a BARRIER. */
2558
2559 /* ??? Investigate. */
2560
2561 /* ??? Emitting align directives increases the size of the line number debug
2562 info, because each .align forces use of an extended opcode. Perhaps try
2563 to fix this in the assembler? */
2564
2565 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
2566
2567 /* The desired alignment for the location counter at the beginning
2568 of a loop. */
2569
2570 /* ??? Investigate. */
2571 /* #define LOOP_ALIGN(LABEL) */
2572
2573 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
2574 section because it fails put zeros in the bytes that are skipped. */
2575
2576 #define ASM_NO_SKIP_IN_TEXT 1
2577
2578 /* A C statement to output to the stdio stream STREAM an assembler command to
2579 advance the location counter to a multiple of 2 to the POWER bytes. */
2580
2581 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2582 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
2583
2584 \f
2585 /* Macros Affecting all Debug Formats. */
2586
2587 /* This is handled in svr4.h and sysv4.h. */
2588
2589 \f
2590 /* Specific Options for DBX Output. */
2591
2592 /* This is handled by dbxelf.h which is included by svr4.h. */
2593
2594 \f
2595 /* Open ended Hooks for DBX Output. */
2596
2597 /* Likewise. */
2598
2599 \f
2600 /* File names in DBX format. */
2601
2602 /* Likewise. */
2603
2604 \f
2605 /* Macros for SDB and Dwarf Output. */
2606
2607 /* Define this macro if GNU CC should produce dwarf version 2 format debugging
2608 output in response to the `-g' option. */
2609
2610 #define DWARF2_DEBUGGING_INFO
2611
2612 /* Section names for DWARF2 debug info. */
2613
2614 #define DEBUG_INFO_SECTION ".debug_info, \"\", \"progbits\""
2615 #define ABBREV_SECTION ".debug_abbrev, \"\", \"progbits\""
2616 #define ARANGES_SECTION ".debug_aranges, \"\", \"progbits\""
2617 #define DEBUG_LINE_SECTION ".debug_line, \"\", \"progbits\""
2618 #define PUBNAMES_SECTION ".debug_pubnames, \"\", \"progbits\""
2619
2620 /* C string constants giving the pseudo-op to use for a sequence of
2621 2, 4, and 8 byte unaligned constants. dwarf2out.c needs these. */
2622
2623 #define UNALIGNED_SHORT_ASM_OP "\tdata2.ua\t"
2624 #define UNALIGNED_INT_ASM_OP "\tdata4.ua\t"
2625 #define UNALIGNED_DOUBLE_INT_ASM_OP "\tdata8.ua\t"
2626
2627 /* We need to override the default definition for this in dwarf2out.c so that
2628 we can emit the necessary # postfix. */
2629 #define ASM_NAME_TO_STRING(STR, NAME) \
2630 do { \
2631 if ((NAME)[0] == '*') \
2632 dyn_string_append (STR, NAME + 1); \
2633 else \
2634 { \
2635 char *newstr; \
2636 STRIP_NAME_ENCODING (newstr, NAME); \
2637 dyn_string_append (STR, user_label_prefix); \
2638 dyn_string_append (STR, newstr); \
2639 dyn_string_append (STR, "#"); \
2640 } \
2641 } \
2642 while (0)
2643
2644 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
2645
2646 /* Use tags for debug info labels, so that they don't break instruction
2647 bundles. This also avoids getting spurious DV warnings from the
2648 assembler. This is similar to ASM_OUTPUT_INTERNAL_LABEL, except that we
2649 add brackets around the label. */
2650
2651 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2652 do \
2653 { \
2654 fprintf (FILE, "[.%s%d:]\n", PREFIX, NUM); \
2655 } \
2656 while (0)
2657
2658 \f
2659 /* Cross Compilation and Floating Point. */
2660
2661 /* Define to enable software floating point emulation. */
2662 #define REAL_ARITHMETIC
2663
2664 \f
2665 /* Register Renaming Parameters. */
2666
2667 /* A C expression that is nonzero if hard register number REGNO2 can be
2668 considered for use as a rename register for REGNO1 */
2669
2670 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
2671 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
2672
2673 /* Define this macro if the compiler should use extended basic blocks
2674 when renaming registers. Define this macro if the target has predicate
2675 registers. */
2676
2677 #define RENAME_EXTENDED_BLOCKS
2678
2679 \f
2680 /* Miscellaneous Parameters. */
2681
2682 /* Define this if you have defined special-purpose predicates in the file
2683 `MACHINE.c'. For each predicate, list all rtl codes that can be in
2684 expressions matched by the predicate. */
2685
2686 #define PREDICATE_CODES \
2687 { "call_operand", {SUBREG, REG, SYMBOL_REF}}, \
2688 { "got_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2689 { "sdata_symbolic_operand", {SYMBOL_REF, CONST}}, \
2690 { "symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2691 { "function_operand", {SYMBOL_REF}}, \
2692 { "setjmp_operand", {SYMBOL_REF}}, \
2693 { "destination_operand", {SUBREG, REG, MEM}}, \
2694 { "not_postinc_memory_operand", {MEM}}, \
2695 { "move_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2696 CONSTANT_P_RTX, SYMBOL_REF, CONST, LABEL_REF}}, \
2697 { "gr_register_operand", {SUBREG, REG}}, \
2698 { "fr_register_operand", {SUBREG, REG}}, \
2699 { "grfr_register_operand", {SUBREG, REG}}, \
2700 { "gr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2701 { "fr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2702 { "grfr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2703 { "gr_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2704 { "gr_reg_or_5bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2705 { "gr_reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2706 { "gr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2707 { "grfr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2708 { "gr_reg_or_8bit_adjusted_operand", {SUBREG, REG, CONST_INT, \
2709 CONSTANT_P_RTX}}, \
2710 { "gr_reg_or_8bit_and_adjusted_operand", {SUBREG, REG, CONST_INT, \
2711 CONSTANT_P_RTX}}, \
2712 { "gr_reg_or_14bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2713 { "gr_reg_or_22bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2714 { "shift_count_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2715 { "shift_32bit_count_operand", {SUBREG, REG, CONST_INT, \
2716 CONSTANT_P_RTX}}, \
2717 { "shladd_operand", {CONST_INT}}, \
2718 { "fetchadd_operand", {CONST_INT}}, \
2719 { "fr_reg_or_fp01_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2720 { "normal_comparison_operator", {EQ, NE, GT, LE, GTU, LEU}}, \
2721 { "adjusted_comparison_operator", {LT, GE, LTU, GEU}}, \
2722 { "signed_inequality_operator", {GE, GT, LE, LT}}, \
2723 { "predicate_operator", {NE, EQ}}, \
2724 { "ar_lc_reg_operand", {REG}}, \
2725 { "ar_ccv_reg_operand", {REG}}, \
2726 { "general_tfmode_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
2727 { "destination_tfmode_operand", {SUBREG, REG, MEM}}, \
2728 { "tfreg_or_fp01_operand", {REG, CONST_DOUBLE}},
2729
2730 /* An alias for a machine mode name. This is the machine mode that elements of
2731 a jump-table should have. */
2732
2733 #define CASE_VECTOR_MODE Pmode
2734
2735 /* Define as C expression which evaluates to nonzero if the tablejump
2736 instruction expects the table to contain offsets from the address of the
2737 table. */
2738
2739 #define CASE_VECTOR_PC_RELATIVE 1
2740
2741 /* Define this macro if operations between registers with integral mode smaller
2742 than a word are always performed on the entire register. */
2743
2744 #define WORD_REGISTER_OPERATIONS
2745
2746 /* Define this macro to be a C expression indicating when insns that read
2747 memory in MODE, an integral mode narrower than a word, set the bits outside
2748 of MODE to be either the sign-extension or the zero-extension of the data
2749 read. */
2750
2751 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2752
2753 /* An alias for a tree code that should be used by default for conversion of
2754 floating point values to fixed point. */
2755
2756 /* ??? Looks like this macro is obsolete and should be deleted everywhere. */
2757
2758 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2759
2760 /* An alias for a tree code that is the easiest kind of division to compile
2761 code for in the general case. */
2762
2763 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2764
2765 /* The maximum number of bytes that a single instruction can move quickly from
2766 memory to memory. */
2767 #define MOVE_MAX 8
2768
2769 /* A C expression which is nonzero if on this machine it is safe to "convert"
2770 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2771 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
2772
2773 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2774
2775 /* A C expression describing the value returned by a comparison operator with
2776 an integral mode and stored by a store-flag instruction (`sCOND') when the
2777 condition is true. */
2778
2779 /* ??? Investigate using -1 instead of 1. */
2780
2781 #define STORE_FLAG_VALUE 1
2782
2783 /* An alias for the machine mode for pointers. */
2784
2785 /* ??? This would change if we had ILP32 support. */
2786
2787 #define Pmode DImode
2788
2789 /* An alias for the machine mode used for memory references to functions being
2790 called, in `call' RTL expressions. */
2791
2792 #define FUNCTION_MODE Pmode
2793
2794 /* Define this macro to handle System V style pragmas: #pragma pack and
2795 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2796 defined. */
2797
2798 #define HANDLE_SYSV_PRAGMA
2799
2800 /* If defined, a C expression whose value is nonzero if IDENTIFIER with
2801 arguments ARGS is a valid machine specific attribute for TYPE. The
2802 attributes in ATTRIBUTES have previously been assigned to TYPE. */
2803
2804 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, IDENTIFIER, ARGS) \
2805 ia64_valid_type_attribute (TYPE, ATTRIBUTES, IDENTIFIER, ARGS)
2806
2807 /* In rare cases, correct code generation requires extra machine dependent
2808 processing between the second jump optimization pass and delayed branch
2809 scheduling. On those machines, define this macro as a C statement to act on
2810 the code starting at INSN. */
2811
2812 #define MACHINE_DEPENDENT_REORG(INSN) ia64_reorg (INSN)
2813
2814 /* A C expression for the maximum number of instructions to execute via
2815 conditional execution instructions instead of a branch. A value of
2816 BRANCH_COST+1 is the default if the machine does not use
2817 cc0, and 1 if it does use cc0. */
2818 /* ??? Investigate. */
2819 /* #define MAX_CONDITIONAL_EXECUTE */
2820
2821 /* Indicate how many instructions can be issued at the same time. */
2822
2823 /* ??? For now, we just schedule to fill bundles. */
2824
2825 #define ISSUE_RATE 3
2826
2827 #define IA64_UNWIND_INFO 1
2828 #define HANDLER_SECTION fprintf (asm_out_file, "\t.personality\t__ia64_personality_v1\n\t.handlerdata\n");
2829 #define IA64_UNWIND_EMIT(f,i) process_for_unwind_directive (f,i)
2830
2831 /* This function contains machine specific function data. */
2832 struct machine_function
2833 {
2834 /* The new stack pointer when unwinding from EH. */
2835 struct rtx_def* ia64_eh_epilogue_sp;
2836
2837 /* The new bsp value when unwinding from EH. */
2838 struct rtx_def* ia64_eh_epilogue_bsp;
2839
2840 /* The GP value save register. */
2841 struct rtx_def* ia64_gp_save;
2842
2843 /* The number of varargs registers to save. */
2844 int n_varargs;
2845 };
2846
2847
2848 enum ia64_builtins
2849 {
2850 IA64_BUILTIN_SYNCHRONIZE,
2851
2852 IA64_BUILTIN_FETCH_AND_ADD_SI,
2853 IA64_BUILTIN_FETCH_AND_SUB_SI,
2854 IA64_BUILTIN_FETCH_AND_OR_SI,
2855 IA64_BUILTIN_FETCH_AND_AND_SI,
2856 IA64_BUILTIN_FETCH_AND_XOR_SI,
2857 IA64_BUILTIN_FETCH_AND_NAND_SI,
2858
2859 IA64_BUILTIN_ADD_AND_FETCH_SI,
2860 IA64_BUILTIN_SUB_AND_FETCH_SI,
2861 IA64_BUILTIN_OR_AND_FETCH_SI,
2862 IA64_BUILTIN_AND_AND_FETCH_SI,
2863 IA64_BUILTIN_XOR_AND_FETCH_SI,
2864 IA64_BUILTIN_NAND_AND_FETCH_SI,
2865
2866 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI,
2867 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI,
2868
2869 IA64_BUILTIN_SYNCHRONIZE_SI,
2870
2871 IA64_BUILTIN_LOCK_TEST_AND_SET_SI,
2872
2873 IA64_BUILTIN_LOCK_RELEASE_SI,
2874
2875 IA64_BUILTIN_FETCH_AND_ADD_DI,
2876 IA64_BUILTIN_FETCH_AND_SUB_DI,
2877 IA64_BUILTIN_FETCH_AND_OR_DI,
2878 IA64_BUILTIN_FETCH_AND_AND_DI,
2879 IA64_BUILTIN_FETCH_AND_XOR_DI,
2880 IA64_BUILTIN_FETCH_AND_NAND_DI,
2881
2882 IA64_BUILTIN_ADD_AND_FETCH_DI,
2883 IA64_BUILTIN_SUB_AND_FETCH_DI,
2884 IA64_BUILTIN_OR_AND_FETCH_DI,
2885 IA64_BUILTIN_AND_AND_FETCH_DI,
2886 IA64_BUILTIN_XOR_AND_FETCH_DI,
2887 IA64_BUILTIN_NAND_AND_FETCH_DI,
2888
2889 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI,
2890 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI,
2891
2892 IA64_BUILTIN_SYNCHRONIZE_DI,
2893
2894 IA64_BUILTIN_LOCK_TEST_AND_SET_DI,
2895
2896 IA64_BUILTIN_LOCK_RELEASE_DI,
2897
2898 IA64_BUILTIN_BSP,
2899 IA64_BUILTIN_FLUSHRS
2900 };
2901
2902 /* Codes for expand_compare_and_swap and expand_swap_and_compare. */
2903 enum fetchop_code {
2904 IA64_ADD_OP, IA64_SUB_OP, IA64_OR_OP, IA64_AND_OP, IA64_XOR_OP, IA64_NAND_OP
2905 };
2906
2907 #define MD_INIT_BUILTINS do { \
2908 ia64_init_builtins (); \
2909 } while (0)
2910
2911 #define MD_EXPAND_BUILTIN(EXP, TARGET, SUBTARGET, MODE, IGNORE) \
2912 ia64_expand_builtin ((EXP), (TARGET), (SUBTARGET), (MODE), (IGNORE))
2913
2914 /* End of ia64.h */