3c71ea4839fb54705afae87062f2f66f5f960aad
[gcc.git] / gcc / config / ia64 / ia64.h
1 /* Definitions of target machine GNU compiler. IA-64 version.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by James E. Wilson <wilson@cygnus.com> and
4 David Mosberger <davidm@hpl.hp.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
25
26 /* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
28
29 /* ??? Add support for short data/bss sections. */
30
31 \f
32 /* Run-time target specifications */
33
34 /* Target CPU builtins. */
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do { \
37 builtin_assert("cpu=ia64"); \
38 builtin_assert("machine=ia64"); \
39 builtin_define("__ia64"); \
40 builtin_define("__ia64__"); \
41 builtin_define("__itanium__"); \
42 builtin_define("__ELF__"); \
43 if (TARGET_BIG_ENDIAN) \
44 builtin_define("__BIG_ENDIAN__"); \
45 } while (0)
46
47 #define EXTRA_SPECS \
48 { "asm_extra", ASM_EXTRA_SPEC },
49
50 #define CC1_SPEC "%(cc1_cpu) "
51
52 #define ASM_EXTRA_SPEC ""
53
54
55 /* This declaration should be present. */
56 extern int target_flags;
57
58 /* This series of macros is to allow compiler command arguments to enable or
59 disable the use of optional features of the target machine. */
60
61 #define MASK_BIG_ENDIAN 0x00000001 /* Generate big endian code. */
62
63 #define MASK_GNU_AS 0x00000002 /* Generate code for GNU as. */
64
65 #define MASK_GNU_LD 0x00000004 /* Generate code for GNU ld. */
66
67 #define MASK_NO_PIC 0x00000008 /* Generate code without GP reg. */
68
69 #define MASK_VOL_ASM_STOP 0x00000010 /* Emit stop bits for vol ext asm. */
70
71 #define MASK_ILP32 0x00000020 /* Generate ILP32 code. */
72
73 #define MASK_B_STEP 0x00000040 /* Emit code for Itanium B step. */
74
75 #define MASK_REG_NAMES 0x00000080 /* Use in/loc/out register names. */
76
77 #define MASK_NO_SDATA 0x00000100 /* Disable sdata/scommon/sbss. */
78
79 #define MASK_CONST_GP 0x00000200 /* treat gp as program-wide constant */
80
81 #define MASK_AUTO_PIC 0x00000400 /* generate automatically PIC */
82
83 #define MASK_INLINE_FLOAT_DIV_LAT 0x00000800 /* inline div, min latency. */
84
85 #define MASK_INLINE_FLOAT_DIV_THR 0x00001000 /* inline div, max throughput. */
86
87 #define MASK_INLINE_INT_DIV_LAT 0x00000800 /* inline div, min latency. */
88
89 #define MASK_INLINE_INT_DIV_THR 0x00001000 /* inline div, max throughput. */
90
91 #define MASK_DWARF2_ASM 0x40000000 /* test dwarf2 line info via gas. */
92
93 #define MASK_EARLY_STOP_BITS 0x00002000 /* tune stop bits for the model. */
94
95 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
96
97 #define TARGET_GNU_AS (target_flags & MASK_GNU_AS)
98
99 #define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
100
101 #define TARGET_NO_PIC (target_flags & MASK_NO_PIC)
102
103 #define TARGET_VOL_ASM_STOP (target_flags & MASK_VOL_ASM_STOP)
104
105 #define TARGET_ILP32 (target_flags & MASK_ILP32)
106
107 #define TARGET_B_STEP (target_flags & MASK_B_STEP)
108
109 #define TARGET_REG_NAMES (target_flags & MASK_REG_NAMES)
110
111 #define TARGET_NO_SDATA (target_flags & MASK_NO_SDATA)
112
113 #define TARGET_CONST_GP (target_flags & MASK_CONST_GP)
114
115 #define TARGET_AUTO_PIC (target_flags & MASK_AUTO_PIC)
116
117 #define TARGET_INLINE_FLOAT_DIV_LAT (target_flags & MASK_INLINE_FLOAT_DIV_LAT)
118
119 #define TARGET_INLINE_FLOAT_DIV_THR (target_flags & MASK_INLINE_FLOAT_DIV_THR)
120
121 #define TARGET_INLINE_INT_DIV_LAT (target_flags & MASK_INLINE_INT_DIV_LAT)
122
123 #define TARGET_INLINE_INT_DIV_THR (target_flags & MASK_INLINE_INT_DIV_THR)
124
125 #define TARGET_INLINE_FLOAT_DIV \
126 (target_flags & (MASK_INLINE_FLOAT_DIV_LAT | MASK_INLINE_FLOAT_DIV_THR))
127
128 #define TARGET_INLINE_INT_DIV \
129 (target_flags & (MASK_INLINE_INT_DIV_LAT | MASK_INLINE_INT_DIV_THR))
130
131 #define TARGET_DWARF2_ASM (target_flags & MASK_DWARF2_ASM)
132
133 extern int ia64_tls_size;
134 #define TARGET_TLS14 (ia64_tls_size == 14)
135 #define TARGET_TLS22 (ia64_tls_size == 22)
136 #define TARGET_TLS64 (ia64_tls_size == 64)
137 #define TARGET_EARLY_STOP_BITS (target_flags & MASK_EARLY_STOP_BITS)
138
139 #define TARGET_HPUX_LD 0
140
141 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
142 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
143 #endif
144
145 /* This macro defines names of command options to set and clear bits in
146 `target_flags'. Its definition is an initializer with a subgrouping for
147 each command option. */
148
149 #define TARGET_SWITCHES \
150 { \
151 { "big-endian", MASK_BIG_ENDIAN, \
152 N_("Generate big endian code") }, \
153 { "little-endian", -MASK_BIG_ENDIAN, \
154 N_("Generate little endian code") }, \
155 { "gnu-as", MASK_GNU_AS, \
156 N_("Generate code for GNU as") }, \
157 { "no-gnu-as", -MASK_GNU_AS, \
158 N_("Generate code for Intel as") }, \
159 { "gnu-ld", MASK_GNU_LD, \
160 N_("Generate code for GNU ld") }, \
161 { "no-gnu-ld", -MASK_GNU_LD, \
162 N_("Generate code for Intel ld") }, \
163 { "no-pic", MASK_NO_PIC, \
164 N_("Generate code without GP reg") }, \
165 { "volatile-asm-stop", MASK_VOL_ASM_STOP, \
166 N_("Emit stop bits before and after volatile extended asms") }, \
167 { "no-volatile-asm-stop", -MASK_VOL_ASM_STOP, \
168 N_("Don't emit stop bits before and after volatile extended asms") }, \
169 { "b-step", MASK_B_STEP, \
170 N_("Emit code for Itanium (TM) processor B step")}, \
171 { "register-names", MASK_REG_NAMES, \
172 N_("Use in/loc/out register names")}, \
173 { "no-sdata", MASK_NO_SDATA, \
174 N_("Disable use of sdata/scommon/sbss")}, \
175 { "sdata", -MASK_NO_SDATA, \
176 N_("Enable use of sdata/scommon/sbss")}, \
177 { "constant-gp", MASK_CONST_GP, \
178 N_("gp is constant (but save/restore gp on indirect calls)") }, \
179 { "auto-pic", MASK_AUTO_PIC, \
180 N_("Generate self-relocatable code") }, \
181 { "inline-float-divide-min-latency", MASK_INLINE_FLOAT_DIV_LAT, \
182 N_("Generate inline floating point division, optimize for latency") },\
183 { "inline-float-divide-max-throughput", MASK_INLINE_FLOAT_DIV_THR, \
184 N_("Generate inline floating point division, optimize for throughput") },\
185 { "inline-int-divide-min-latency", MASK_INLINE_INT_DIV_LAT, \
186 N_("Generate inline integer division, optimize for latency") }, \
187 { "inline-int-divide-max-throughput", MASK_INLINE_INT_DIV_THR, \
188 N_("Generate inline integer division, optimize for throughput") },\
189 { "dwarf2-asm", MASK_DWARF2_ASM, \
190 N_("Enable Dwarf 2 line debug info via GNU as")}, \
191 { "no-dwarf2-asm", -MASK_DWARF2_ASM, \
192 N_("Disable Dwarf 2 line debug info via GNU as")}, \
193 { "early-stop-bits", MASK_EARLY_STOP_BITS, \
194 N_("Enable earlier placing stop bits for better scheduling")}, \
195 { "no-early-stop-bits", -MASK_EARLY_STOP_BITS, \
196 N_("Disable earlier placing stop bits")}, \
197 SUBTARGET_SWITCHES \
198 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
199 NULL } \
200 }
201
202 /* Default target_flags if no switches are specified */
203
204 #ifndef TARGET_DEFAULT
205 #define TARGET_DEFAULT MASK_DWARF2_ASM
206 #endif
207
208 #ifndef TARGET_CPU_DEFAULT
209 #define TARGET_CPU_DEFAULT 0
210 #endif
211
212 #ifndef SUBTARGET_SWITCHES
213 #define SUBTARGET_SWITCHES
214 #endif
215
216 /* This macro is similar to `TARGET_SWITCHES' but defines names of command
217 options that have values. Its definition is an initializer with a
218 subgrouping for each command option. */
219
220 extern const char *ia64_fixed_range_string;
221 extern const char *ia64_tls_size_string;
222
223 /* Which processor to schedule for. The cpu attribute defines a list
224 that mirrors this list, so changes to i64.md must be made at the
225 same time. */
226
227 enum processor_type
228 {
229 PROCESSOR_ITANIUM, /* Original Itanium. */
230 PROCESSOR_ITANIUM2,
231 PROCESSOR_max
232 };
233
234 extern enum processor_type ia64_tune;
235
236 extern const char *ia64_tune_string;
237
238 #define TARGET_OPTIONS \
239 { \
240 { "fixed-range=", &ia64_fixed_range_string, \
241 N_("Specify range of registers to make fixed")}, \
242 { "tls-size=", &ia64_tls_size_string, \
243 N_("Specify bit size of immediate TLS offsets")}, \
244 { "tune=", &ia64_tune_string, \
245 N_("Schedule code for given CPU")}, \
246 }
247
248 /* Sometimes certain combinations of command options do not make sense on a
249 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
250 take account of this. This macro, if defined, is executed once just after
251 all the command options have been parsed. */
252
253 #define OVERRIDE_OPTIONS ia64_override_options ()
254
255 /* Some machines may desire to change what optimizations are performed for
256 various optimization levels. This macro, if defined, is executed once just
257 after the optimization level is determined and before the remainder of the
258 command options have been parsed. Values set in this macro are used as the
259 default values for the other command line options. */
260
261 /* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
262 \f
263 /* Driver configuration */
264
265 /* A C string constant that tells the GNU CC driver program options to pass to
266 `cc1'. It can also specify how to translate options you give to GNU CC into
267 options for GNU CC to pass to the `cc1'. */
268
269 #undef CC1_SPEC
270 #define CC1_SPEC "%{G*}"
271
272 /* A C string constant that tells the GNU CC driver program options to pass to
273 `cc1plus'. It can also specify how to translate options you give to GNU CC
274 into options for GNU CC to pass to the `cc1plus'. */
275
276 /* #define CC1PLUS_SPEC "" */
277 \f
278 /* Storage Layout */
279
280 /* Define this macro to have the value 1 if the most significant bit in a byte
281 has the lowest number; otherwise define it to have the value zero. */
282
283 #define BITS_BIG_ENDIAN 0
284
285 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
286
287 /* Define this macro to have the value 1 if, in a multiword object, the most
288 significant word has the lowest number. */
289
290 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
291
292 #if defined(__BIG_ENDIAN__)
293 #define LIBGCC2_WORDS_BIG_ENDIAN 1
294 #else
295 #define LIBGCC2_WORDS_BIG_ENDIAN 0
296 #endif
297
298 #define UNITS_PER_WORD 8
299
300 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
301
302 /* A C expression whose value is zero if pointers that need to be extended
303 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
304 they are zero-extended and negative one if there is a ptr_extend operation.
305
306 You need not define this macro if the `POINTER_SIZE' is equal to the width
307 of `Pmode'. */
308 /* Need this for 32 bit pointers, see hpux.h for setting it. */
309 /* #define POINTERS_EXTEND_UNSIGNED */
310
311 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
312 which has the specified mode and signedness is to be stored in a register.
313 This macro is only called when TYPE is a scalar type. */
314 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
315 do \
316 { \
317 if (GET_MODE_CLASS (MODE) == MODE_INT \
318 && GET_MODE_SIZE (MODE) < 4) \
319 (MODE) = SImode; \
320 } \
321 while (0)
322
323 /* ??? ABI doesn't allow us to define this. */
324 /* #define PROMOTE_FUNCTION_ARGS */
325
326 /* ??? ABI doesn't allow us to define this. */
327 /* #define PROMOTE_FUNCTION_RETURN */
328
329 #define PARM_BOUNDARY 64
330
331 /* Define this macro if you wish to preserve a certain alignment for the stack
332 pointer. The definition is a C expression for the desired alignment
333 (measured in bits). */
334
335 #define STACK_BOUNDARY 128
336
337 /* Align frames on double word boundaries */
338 #ifndef IA64_STACK_ALIGN
339 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
340 #endif
341
342 #define FUNCTION_BOUNDARY 128
343
344 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
345 128 bit integers all require 128 bit alignment. */
346 #define BIGGEST_ALIGNMENT 128
347
348 /* If defined, a C expression to compute the alignment for a static variable.
349 TYPE is the data type, and ALIGN is the alignment that the object
350 would ordinarily have. The value of this macro is used instead of that
351 alignment to align the object. */
352
353 #define DATA_ALIGNMENT(TYPE, ALIGN) \
354 (TREE_CODE (TYPE) == ARRAY_TYPE \
355 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
356 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
357
358 /* If defined, a C expression to compute the alignment given to a constant that
359 is being placed in memory. CONSTANT is the constant and ALIGN is the
360 alignment that the object would ordinarily have. The value of this macro is
361 used instead of that alignment to align the object. */
362
363 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
364 (TREE_CODE (EXP) == STRING_CST \
365 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
366
367 #define STRICT_ALIGNMENT 1
368
369 /* Define this if you wish to imitate the way many other C compilers handle
370 alignment of bitfields and the structures that contain them.
371 The behavior is that the type written for a bit-field (`int', `short', or
372 other integer type) imposes an alignment for the entire structure, as if the
373 structure really did contain an ordinary field of that type. In addition,
374 the bit-field is placed within the structure so that it would fit within such
375 a field, not crossing a boundary for it. */
376 #define PCC_BITFIELD_TYPE_MATTERS 1
377
378 /* An integer expression for the size in bits of the largest integer machine
379 mode that should actually be used. */
380
381 /* Allow pairs of registers to be used, which is the intent of the default. */
382 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
383
384 /* By default, the C++ compiler will use function addresses in the
385 vtable entries. Setting this nonzero tells the compiler to use
386 function descriptors instead. The value of this macro says how
387 many words wide the descriptor is (normally 2). It is assumed
388 that the address of a function descriptor may be treated as a
389 pointer to a function.
390
391 For reasons known only to HP, the vtable entries (as opposed to
392 normal function descriptors) are 16 bytes wide in 32-bit mode as
393 well, even though the 3rd and 4th words are unused. */
394 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
395
396 /* Due to silliness in the HPUX linker, vtable entries must be
397 8-byte aligned even in 32-bit mode. Rather than create multiple
398 ABIs, force this restriction on everyone else too. */
399 #define TARGET_VTABLE_ENTRY_ALIGN 64
400
401 /* Due to the above, we need extra padding for the data entries below 0
402 to retain the alignment of the descriptors. */
403 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
404 \f
405 /* Layout of Source Language Data Types */
406
407 #define INT_TYPE_SIZE 32
408
409 #define SHORT_TYPE_SIZE 16
410
411 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
412
413 #define MAX_LONG_TYPE_SIZE 64
414
415 #define LONG_LONG_TYPE_SIZE 64
416
417 #define FLOAT_TYPE_SIZE 32
418
419 #define DOUBLE_TYPE_SIZE 64
420
421 #define LONG_DOUBLE_TYPE_SIZE 128
422
423 /* By default we use the 80-bit Intel extended float format packaged
424 in a 128-bit entity. */
425 #define INTEL_EXTENDED_IEEE_FORMAT 1
426
427 #define DEFAULT_SIGNED_CHAR 1
428
429 /* A C expression for a string describing the name of the data type to use for
430 size values. The typedef name `size_t' is defined using the contents of the
431 string. */
432 /* ??? Needs to be defined for P64 code. */
433 /* #define SIZE_TYPE */
434
435 /* A C expression for a string describing the name of the data type to use for
436 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
437 defined using the contents of the string. See `SIZE_TYPE' above for more
438 information. */
439 /* ??? Needs to be defined for P64 code. */
440 /* #define PTRDIFF_TYPE */
441
442 /* A C expression for a string describing the name of the data type to use for
443 wide characters. The typedef name `wchar_t' is defined using the contents
444 of the string. See `SIZE_TYPE' above for more information. */
445 /* #define WCHAR_TYPE */
446
447 /* A C expression for the size in bits of the data type for wide characters.
448 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
449 /* #define WCHAR_TYPE_SIZE */
450
451 \f
452 /* Register Basics */
453
454 /* Number of hardware registers known to the compiler.
455 We have 128 general registers, 128 floating point registers,
456 64 predicate registers, 8 branch registers, one frame pointer,
457 and several "application" registers. */
458
459 #define FIRST_PSEUDO_REGISTER 335
460
461 /* Ranges for the various kinds of registers. */
462 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
463 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
464 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
465 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
466 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
467 #define GENERAL_REGNO_P(REGNO) \
468 (GR_REGNO_P (REGNO) \
469 || (REGNO) == FRAME_POINTER_REGNUM \
470 || (REGNO) == RETURN_ADDRESS_POINTER_REGNUM)
471
472 #define GR_REG(REGNO) ((REGNO) + 0)
473 #define FR_REG(REGNO) ((REGNO) + 128)
474 #define PR_REG(REGNO) ((REGNO) + 256)
475 #define BR_REG(REGNO) ((REGNO) + 320)
476 #define OUT_REG(REGNO) ((REGNO) + 120)
477 #define IN_REG(REGNO) ((REGNO) + 112)
478 #define LOC_REG(REGNO) ((REGNO) + 32)
479
480 #define AR_CCV_REGNUM 330
481 #define AR_UNAT_REGNUM 331
482 #define AR_PFS_REGNUM 332
483 #define AR_LC_REGNUM 333
484 #define AR_EC_REGNUM 334
485
486 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
487 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
488 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
489
490 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
491 || (REGNO) == AR_UNAT_REGNUM)
492 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
493 && (REGNO) < FIRST_PSEUDO_REGISTER)
494 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
495 && (REGNO) < FIRST_PSEUDO_REGISTER)
496
497
498 /* ??? Don't really need two sets of macros. I like this one better because
499 it is less typing. */
500 #define R_GR(REGNO) GR_REG (REGNO)
501 #define R_FR(REGNO) FR_REG (REGNO)
502 #define R_PR(REGNO) PR_REG (REGNO)
503 #define R_BR(REGNO) BR_REG (REGNO)
504
505 /* An initializer that says which registers are used for fixed purposes all
506 throughout the compiled code and are therefore not available for general
507 allocation.
508
509 r0: constant 0
510 r1: global pointer (gp)
511 r12: stack pointer (sp)
512 r13: thread pointer (tp)
513 f0: constant 0.0
514 f1: constant 1.0
515 p0: constant true
516 fp: eliminable frame pointer */
517
518 /* The last 16 stacked regs are reserved for the 8 input and 8 output
519 registers. */
520
521 #define FIXED_REGISTERS \
522 { /* General registers. */ \
523 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
524 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
525 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
526 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
527 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
528 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
529 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
530 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
531 /* Floating-point registers. */ \
532 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
533 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
534 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
535 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
536 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
537 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
538 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
539 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
540 /* Predicate registers. */ \
541 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
542 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
543 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
544 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
545 /* Branch registers. */ \
546 0, 0, 0, 0, 0, 0, 0, 0, \
547 /*FP RA CCV UNAT PFS LC EC */ \
548 1, 1, 1, 1, 1, 0, 1 \
549 }
550
551 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
552 (in general) by function calls as well as for fixed registers. This
553 macro therefore identifies the registers that are not available for
554 general allocation of values that must live across function calls. */
555
556 #define CALL_USED_REGISTERS \
557 { /* General registers. */ \
558 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
559 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
560 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
561 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
562 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
563 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
564 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
565 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
566 /* Floating-point registers. */ \
567 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
568 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
569 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
570 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
571 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
572 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
573 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
574 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
575 /* Predicate registers. */ \
576 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
577 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
578 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
579 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
580 /* Branch registers. */ \
581 1, 0, 0, 0, 0, 0, 1, 1, \
582 /*FP RA CCV UNAT PFS LC EC */ \
583 1, 1, 1, 1, 1, 0, 1 \
584 }
585
586 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
587 problem which makes CALL_USED_REGISTERS *always* include
588 all the FIXED_REGISTERS. Until this problem has been
589 resolved this macro can be used to overcome this situation.
590 In particular, block_propagate() requires this list
591 be accurate, or we can remove registers which should be live.
592 This macro is used in regs_invalidated_by_call. */
593
594 #define CALL_REALLY_USED_REGISTERS \
595 { /* General registers. */ \
596 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, \
597 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
598 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
599 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
600 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
601 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
602 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
603 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
604 /* Floating-point registers. */ \
605 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
606 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
607 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
608 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
609 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
610 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
611 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
612 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
613 /* Predicate registers. */ \
614 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
615 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
616 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
617 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
618 /* Branch registers. */ \
619 1, 0, 0, 0, 0, 0, 1, 1, \
620 /*FP RA CCV UNAT PFS LC EC */ \
621 0, 0, 1, 0, 1, 0, 0 \
622 }
623
624
625 /* Define this macro if the target machine has register windows. This C
626 expression returns the register number as seen by the called function
627 corresponding to the register number OUT as seen by the calling function.
628 Return OUT if register number OUT is not an outbound register. */
629
630 #define INCOMING_REGNO(OUT) \
631 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
632
633 /* Define this macro if the target machine has register windows. This C
634 expression returns the register number as seen by the calling function
635 corresponding to the register number IN as seen by the called function.
636 Return IN if register number IN is not an inbound register. */
637
638 #define OUTGOING_REGNO(IN) \
639 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
640
641 /* Define this macro if the target machine has register windows. This
642 C expression returns true if the register is call-saved but is in the
643 register window. */
644
645 #define LOCAL_REGNO(REGNO) \
646 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
647
648 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
649 return the mode to be used for the comparison. Must be defined if
650 EXTRA_CC_MODES is defined. */
651
652 #define SELECT_CC_MODE(OP,X,Y) CCmode
653 \f
654 /* Order of allocation of registers */
655
656 /* If defined, an initializer for a vector of integers, containing the numbers
657 of hard registers in the order in which GNU CC should prefer to use them
658 (from most preferred to least).
659
660 If this macro is not defined, registers are used lowest numbered first (all
661 else being equal).
662
663 One use of this macro is on machines where the highest numbered registers
664 must always be saved and the save-multiple-registers instruction supports
665 only sequences of consecutive registers. On such machines, define
666 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
667 allocatable register first. */
668
669 /* ??? Should the GR return value registers come before or after the rest
670 of the caller-save GRs? */
671
672 #define REG_ALLOC_ORDER \
673 { \
674 /* Caller-saved general registers. */ \
675 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
676 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
677 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
678 R_GR (30), R_GR (31), \
679 /* Output registers. */ \
680 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
681 R_GR (126), R_GR (127), \
682 /* Caller-saved general registers, also used for return values. */ \
683 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
684 /* addl caller-saved general registers. */ \
685 R_GR (2), R_GR (3), \
686 /* Caller-saved FP registers. */ \
687 R_FR (6), R_FR (7), \
688 /* Caller-saved FP registers, used for parameters and return values. */ \
689 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
690 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
691 /* Rotating caller-saved FP registers. */ \
692 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
693 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
694 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
695 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
696 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
697 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
698 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
699 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
700 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
701 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
702 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
703 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
704 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
705 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
706 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
707 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
708 R_FR (126), R_FR (127), \
709 /* Caller-saved predicate registers. */ \
710 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
711 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
712 /* Rotating caller-saved predicate registers. */ \
713 R_PR (16), R_PR (17), \
714 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
715 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
716 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
717 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
718 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
719 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
720 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
721 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
722 /* Caller-saved branch registers. */ \
723 R_BR (6), R_BR (7), \
724 \
725 /* Stacked callee-saved general registers. */ \
726 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
727 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
728 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
729 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
730 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
731 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
732 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
733 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
734 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
735 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
736 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
737 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
738 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
739 R_GR (108), \
740 /* Input registers. */ \
741 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
742 R_GR (118), R_GR (119), \
743 /* Callee-saved general registers. */ \
744 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
745 /* Callee-saved FP registers. */ \
746 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
747 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
748 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
749 R_FR (30), R_FR (31), \
750 /* Callee-saved predicate registers. */ \
751 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
752 /* Callee-saved branch registers. */ \
753 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
754 \
755 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
756 R_GR (109), R_GR (110), R_GR (111), \
757 \
758 /* Special general registers. */ \
759 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
760 /* Special FP registers. */ \
761 R_FR (0), R_FR (1), \
762 /* Special predicate registers. */ \
763 R_PR (0), \
764 /* Special branch registers. */ \
765 R_BR (0), \
766 /* Other fixed registers. */ \
767 FRAME_POINTER_REGNUM, RETURN_ADDRESS_POINTER_REGNUM, \
768 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
769 AR_EC_REGNUM \
770 }
771 \f
772 /* How Values Fit in Registers */
773
774 /* A C expression for the number of consecutive hard registers, starting at
775 register number REGNO, required to hold a value of mode MODE. */
776
777 /* ??? We say that BImode PR values require two registers. This allows us to
778 easily store the normal and inverted values. We use CCImode to indicate
779 a single predicate register. */
780
781 #define HARD_REGNO_NREGS(REGNO, MODE) \
782 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
783 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
784 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
785 : FR_REGNO_P (REGNO) && (MODE) == TFmode && INTEL_EXTENDED_IEEE_FORMAT ? 1 \
786 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
787
788 /* A C expression that is nonzero if it is permissible to store a value of mode
789 MODE in hard register number REGNO (or in several registers starting with
790 that one). */
791
792 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
793 (FR_REGNO_P (REGNO) ? \
794 GET_MODE_CLASS (MODE) != MODE_CC && \
795 (MODE) != TImode && \
796 (MODE) != BImode && \
797 ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT) \
798 : PR_REGNO_P (REGNO) ? \
799 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
800 : GR_REGNO_P (REGNO) ? (MODE) != CCImode && (MODE) != TFmode \
801 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
802 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
803 : 0)
804
805 /* A C expression that is nonzero if it is desirable to choose register
806 allocation so as to avoid move instructions between a value of mode MODE1
807 and a value of mode MODE2.
808
809 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
810 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
811 zero. */
812 /* Don't tie integer and FP modes, as that causes us to get integer registers
813 allocated for FP instructions. TFmode only supported in FP registers so
814 we can't tie it with any other modes. */
815 #define MODES_TIEABLE_P(MODE1, MODE2) \
816 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
817 && (((MODE1) == TFmode) == ((MODE2) == TFmode)) \
818 && (((MODE1) == BImode) == ((MODE2) == BImode)))
819 \f
820 /* Handling Leaf Functions */
821
822 /* A C initializer for a vector, indexed by hard register number, which
823 contains 1 for a register that is allowable in a candidate for leaf function
824 treatment. */
825 /* ??? This might be useful. */
826 /* #define LEAF_REGISTERS */
827
828 /* A C expression whose value is the register number to which REGNO should be
829 renumbered, when a function is treated as a leaf function. */
830 /* ??? This might be useful. */
831 /* #define LEAF_REG_REMAP(REGNO) */
832
833 \f
834 /* Register Classes */
835
836 /* An enumeral type that must be defined with all the register class names as
837 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
838 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
839 which is not a register class but rather tells how many classes there
840 are. */
841 /* ??? When compiling without optimization, it is possible for the only use of
842 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
843 Regclass handles this case specially and does not assign any costs to the
844 pseudo. The pseudo then ends up using the last class before ALL_REGS.
845 Thus we must not let either PR_REGS or BR_REGS be the last class. The
846 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
847 enum reg_class
848 {
849 NO_REGS,
850 PR_REGS,
851 BR_REGS,
852 AR_M_REGS,
853 AR_I_REGS,
854 ADDL_REGS,
855 GR_REGS,
856 FR_REGS,
857 GR_AND_BR_REGS,
858 GR_AND_FR_REGS,
859 ALL_REGS,
860 LIM_REG_CLASSES
861 };
862
863 #define GENERAL_REGS GR_REGS
864
865 /* The number of distinct register classes. */
866 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
867
868 /* An initializer containing the names of the register classes as C string
869 constants. These names are used in writing some of the debugging dumps. */
870 #define REG_CLASS_NAMES \
871 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
872 "ADDL_REGS", "GR_REGS", "FR_REGS", \
873 "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
874
875 /* An initializer containing the contents of the register classes, as integers
876 which are bit masks. The Nth integer specifies the contents of class N.
877 The way the integer MASK is interpreted is that register R is in the class
878 if `MASK & (1 << R)' is 1. */
879 #define REG_CLASS_CONTENTS \
880 { \
881 /* NO_REGS. */ \
882 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
883 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
884 0x00000000, 0x00000000, 0x0000 }, \
885 /* PR_REGS. */ \
886 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
887 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
888 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
889 /* BR_REGS. */ \
890 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
891 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
892 0x00000000, 0x00000000, 0x00FF }, \
893 /* AR_M_REGS. */ \
894 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
895 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
896 0x00000000, 0x00000000, 0x0C00 }, \
897 /* AR_I_REGS. */ \
898 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
899 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
900 0x00000000, 0x00000000, 0x7000 }, \
901 /* ADDL_REGS. */ \
902 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
903 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
904 0x00000000, 0x00000000, 0x0000 }, \
905 /* GR_REGS. */ \
906 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
907 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
908 0x00000000, 0x00000000, 0x0300 }, \
909 /* FR_REGS. */ \
910 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
911 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
912 0x00000000, 0x00000000, 0x0000 }, \
913 /* GR_AND_BR_REGS. */ \
914 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
915 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
916 0x00000000, 0x00000000, 0x03FF }, \
917 /* GR_AND_FR_REGS. */ \
918 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
919 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
920 0x00000000, 0x00000000, 0x0300 }, \
921 /* ALL_REGS. */ \
922 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
923 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
924 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFF }, \
925 }
926
927 /* A C expression whose value is a register class containing hard register
928 REGNO. In general there is more than one such class; choose a class which
929 is "minimal", meaning that no smaller class also contains the register. */
930 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
931 may call here with private (invalid) register numbers, such as
932 REG_VOLATILE. */
933 #define REGNO_REG_CLASS(REGNO) \
934 (ADDL_REGNO_P (REGNO) ? ADDL_REGS \
935 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
936 : FR_REGNO_P (REGNO) ? FR_REGS \
937 : PR_REGNO_P (REGNO) ? PR_REGS \
938 : BR_REGNO_P (REGNO) ? BR_REGS \
939 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
940 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
941 : NO_REGS)
942
943 /* A macro whose definition is the name of the class to which a valid base
944 register must belong. A base register is one used in an address which is
945 the register value plus a displacement. */
946 #define BASE_REG_CLASS GENERAL_REGS
947
948 /* A macro whose definition is the name of the class to which a valid index
949 register must belong. An index register is one used in an address where its
950 value is either multiplied by a scale factor or added to another register
951 (as well as added to a displacement). This is needed for POST_MODIFY. */
952 #define INDEX_REG_CLASS GENERAL_REGS
953
954 /* A C expression which defines the machine-dependent operand constraint
955 letters for register classes. If CHAR is such a letter, the value should be
956 the register class corresponding to it. Otherwise, the value should be
957 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
958 will not be passed to this macro; you do not need to handle it. */
959
960 #define REG_CLASS_FROM_LETTER(CHAR) \
961 ((CHAR) == 'f' ? FR_REGS \
962 : (CHAR) == 'a' ? ADDL_REGS \
963 : (CHAR) == 'b' ? BR_REGS \
964 : (CHAR) == 'c' ? PR_REGS \
965 : (CHAR) == 'd' ? AR_M_REGS \
966 : (CHAR) == 'e' ? AR_I_REGS \
967 : NO_REGS)
968
969 /* A C expression which is nonzero if register number NUM is suitable for use
970 as a base register in operand addresses. It may be either a suitable hard
971 register or a pseudo register that has been allocated such a hard reg. */
972 #define REGNO_OK_FOR_BASE_P(REGNO) \
973 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
974
975 /* A C expression which is nonzero if register number NUM is suitable for use
976 as an index register in operand addresses. It may be either a suitable hard
977 register or a pseudo register that has been allocated such a hard reg.
978 This is needed for POST_MODIFY. */
979 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
980
981 /* A C expression that places additional restrictions on the register class to
982 use when it is necessary to copy value X into a register in class CLASS.
983 The value is a register class; perhaps CLASS, or perhaps another, smaller
984 class. */
985
986 /* Don't allow volatile mem reloads into floating point registers. This
987 is defined to force reload to choose the r/m case instead of the f/f case
988 when reloading (set (reg fX) (mem/v)).
989
990 Do not reload expressions into AR regs. */
991
992 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
993 (CLASS == FR_REGS && GET_CODE (X) == MEM && MEM_VOLATILE_P (X) ? NO_REGS \
994 : CLASS == FR_REGS && GET_CODE (X) == CONST_DOUBLE ? NO_REGS \
995 : GET_RTX_CLASS (GET_CODE (X)) != 'o' \
996 && (CLASS == AR_M_REGS || CLASS == AR_I_REGS) ? NO_REGS \
997 : CLASS)
998
999 /* You should define this macro to indicate to the reload phase that it may
1000 need to allocate at least one register for a reload in addition to the
1001 register to contain the data. Specifically, if copying X to a register
1002 CLASS in MODE requires an intermediate register, you should define this
1003 to return the largest register class all of whose registers can be used
1004 as intermediate registers or scratch registers. */
1005
1006 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
1007 ia64_secondary_reload_class (CLASS, MODE, X)
1008
1009 /* Certain machines have the property that some registers cannot be copied to
1010 some other registers without using memory. Define this macro on those
1011 machines to be a C expression that is nonzero if objects of mode M in
1012 registers of CLASS1 can only be copied to registers of class CLASS2 by
1013 storing a register of CLASS1 into memory and loading that memory location
1014 into a register of CLASS2. */
1015
1016 #if 0
1017 /* ??? May need this, but since we've disallowed TFmode in GR_REGS,
1018 I'm not quite sure how it could be invoked. The normal problems
1019 with unions should be solved with the addressof fiddling done by
1020 movtf and friends. */
1021 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1022 ((MODE) == TFmode && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
1023 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
1024 #endif
1025
1026 /* A C expression for the maximum number of consecutive registers of
1027 class CLASS needed to hold a value of mode MODE.
1028 This is closely related to the macro `HARD_REGNO_NREGS'. */
1029
1030 #define CLASS_MAX_NREGS(CLASS, MODE) \
1031 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
1032 : ((CLASS) == FR_REGS && (MODE) == TFmode) ? 1 \
1033 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1034
1035 /* In FP regs, we can't change FP values to integer values and vice
1036 versa, but we can change e.g. DImode to SImode. */
1037
1038 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1039 (GET_MODE_CLASS (FROM) != GET_MODE_CLASS (TO) \
1040 ? reg_classes_intersect_p (CLASS, FR_REGS) : 0)
1041
1042 /* A C expression that defines the machine-dependent operand constraint
1043 letters (`I', `J', `K', .. 'P') that specify particular ranges of
1044 integer values. */
1045
1046 /* 14 bit signed immediate for arithmetic instructions. */
1047 #define CONST_OK_FOR_I(VALUE) \
1048 ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
1049 /* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source. */
1050 #define CONST_OK_FOR_J(VALUE) \
1051 ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
1052 /* 8 bit signed immediate for logical instructions. */
1053 #define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
1054 /* 8 bit adjusted signed immediate for compare pseudo-ops. */
1055 #define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
1056 /* 6 bit unsigned immediate for shift counts. */
1057 #define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
1058 /* 9 bit signed immediate for load/store post-increments. */
1059 #define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
1060 /* 0 for r0. Used by Linux kernel, do not change. */
1061 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1062 /* 0 or -1 for dep instruction. */
1063 #define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
1064
1065 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1066 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1067 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1068 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1069 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1070 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1071 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1072 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1073 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1074 : 0)
1075
1076 /* A C expression that defines the machine-dependent operand constraint letters
1077 (`G', `H') that specify particular ranges of `const_double' values. */
1078
1079 /* 0.0 and 1.0 for fr0 and fr1. */
1080 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
1081 ((VALUE) == CONST0_RTX (GET_MODE (VALUE)) \
1082 || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
1083
1084 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1085 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) : 0)
1086
1087 /* A C expression that defines the optional machine-dependent constraint
1088 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1089 types of operands, usually memory references, for the target machine. */
1090
1091 /* Non-volatile memory for FP_REG loads/stores. */
1092 #define CONSTRAINT_OK_FOR_Q(VALUE) \
1093 (memory_operand((VALUE), VOIDmode) && ! MEM_VOLATILE_P (VALUE))
1094 /* 1..4 for shladd arguments. */
1095 #define CONSTRAINT_OK_FOR_R(VALUE) \
1096 (GET_CODE (VALUE) == CONST_INT && INTVAL (VALUE) >= 1 && INTVAL (VALUE) <= 4)
1097 /* Non-post-inc memory for asms and other unsavory creatures. */
1098 #define CONSTRAINT_OK_FOR_S(VALUE) \
1099 (GET_CODE (VALUE) == MEM \
1100 && GET_RTX_CLASS (GET_CODE (XEXP ((VALUE), 0))) != 'a' \
1101 && (reload_in_progress || memory_operand ((VALUE), VOIDmode)))
1102
1103 #define EXTRA_CONSTRAINT(VALUE, C) \
1104 ((C) == 'Q' ? CONSTRAINT_OK_FOR_Q (VALUE) \
1105 : (C) == 'R' ? CONSTRAINT_OK_FOR_R (VALUE) \
1106 : (C) == 'S' ? CONSTRAINT_OK_FOR_S (VALUE) \
1107 : 0)
1108 \f
1109 /* Basic Stack Layout */
1110
1111 /* Define this macro if pushing a word onto the stack moves the stack pointer
1112 to a smaller address. */
1113 #define STACK_GROWS_DOWNWARD 1
1114
1115 /* Define this macro if the addresses of local variable slots are at negative
1116 offsets from the frame pointer. */
1117 /* #define FRAME_GROWS_DOWNWARD */
1118
1119 /* Offset from the frame pointer to the first local variable slot to
1120 be allocated. */
1121 #define STARTING_FRAME_OFFSET 0
1122
1123 /* Offset from the stack pointer register to the first location at which
1124 outgoing arguments are placed. If not specified, the default value of zero
1125 is used. This is the proper value for most machines. */
1126 /* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
1127 #define STACK_POINTER_OFFSET 16
1128
1129 /* Offset from the argument pointer register to the first argument's address.
1130 On some machines it may depend on the data type of the function. */
1131 #define FIRST_PARM_OFFSET(FUNDECL) 0
1132
1133 /* A C expression whose value is RTL representing the value of the return
1134 address for the frame COUNT steps up from the current frame, after the
1135 prologue. */
1136
1137 /* ??? Frames other than zero would likely require interpreting the frame
1138 unwind info, so we don't try to support them. We would also need to define
1139 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
1140
1141 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1142 ((COUNT) == 0 ? return_address_pointer_rtx : const0_rtx)
1143
1144 /* A C expression whose value is RTL representing the location of the incoming
1145 return address at the beginning of any function, before the prologue. This
1146 RTL is either a `REG', indicating that the return value is saved in `REG',
1147 or a `MEM' representing a location in the stack. This enables DWARF2
1148 unwind info for C++ EH. */
1149 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
1150
1151 /* ??? This is not defined because of three problems.
1152 1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1153 The default value is FIRST_PSEUDO_REGISTER which doesn't. This can be
1154 worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1155 unused register number.
1156 2) dwarf2out_frame_debug core dumps while processing prologue insns. We
1157 need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1158 3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1159 to zero, despite what the documentation implies, because it is tested in
1160 a few places with #ifdef instead of #if. */
1161 #undef INCOMING_RETURN_ADDR_RTX
1162
1163 /* A C expression whose value is an integer giving the offset, in bytes, from
1164 the value of the stack pointer register to the top of the stack frame at the
1165 beginning of any function, before the prologue. The top of the frame is
1166 defined to be the value of the stack pointer in the previous frame, just
1167 before the call instruction. */
1168 #define INCOMING_FRAME_SP_OFFSET 0
1169
1170 \f
1171 /* Register That Address the Stack Frame. */
1172
1173 /* The register number of the stack pointer register, which must also be a
1174 fixed register according to `FIXED_REGISTERS'. On most machines, the
1175 hardware determines which register this is. */
1176
1177 #define STACK_POINTER_REGNUM 12
1178
1179 /* The register number of the frame pointer register, which is used to access
1180 automatic variables in the stack frame. On some machines, the hardware
1181 determines which register this is. On other machines, you can choose any
1182 register you wish for this purpose. */
1183
1184 #define FRAME_POINTER_REGNUM 328
1185
1186 /* Base register for access to local variables of the function. */
1187 #define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
1188
1189 /* The register number of the arg pointer register, which is used to access the
1190 function's argument list. */
1191 /* r0 won't otherwise be used, so put the always eliminated argument pointer
1192 in it. */
1193 #define ARG_POINTER_REGNUM R_GR(0)
1194
1195 /* Due to the way varargs and argument spilling happens, the argument
1196 pointer is not 16-byte aligned like the stack pointer. */
1197 #define INIT_EXPANDERS \
1198 do { \
1199 if (cfun && cfun->emit->regno_pointer_align) \
1200 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64; \
1201 } while (0)
1202
1203 /* The register number for the return address register. For IA-64, this
1204 is not actually a pointer as the name suggests, but that's a name that
1205 gen_rtx_REG already takes care to keep unique. We modify
1206 return_address_pointer_rtx in ia64_expand_prologue to reference the
1207 final output regnum. */
1208 #define RETURN_ADDRESS_POINTER_REGNUM 329
1209
1210 /* Register numbers used for passing a function's static chain pointer. */
1211 /* ??? The ABI sez the static chain should be passed as a normal parameter. */
1212 #define STATIC_CHAIN_REGNUM 15
1213 \f
1214 /* Eliminating the Frame Pointer and the Arg Pointer */
1215
1216 /* A C expression which is nonzero if a function must have and use a frame
1217 pointer. This expression is evaluated in the reload pass. If its value is
1218 nonzero the function will have a frame pointer. */
1219 #define FRAME_POINTER_REQUIRED 0
1220
1221 /* Show we can debug even without a frame pointer. */
1222 #define CAN_DEBUG_WITHOUT_FP
1223
1224 /* If defined, this macro specifies a table of register pairs used to eliminate
1225 unneeded registers that point into the stack frame. */
1226
1227 #define ELIMINABLE_REGS \
1228 { \
1229 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1230 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1231 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1232 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1233 {RETURN_ADDRESS_POINTER_REGNUM, BR_REG (0)}, \
1234 }
1235
1236 /* A C expression that returns nonzero if the compiler is allowed to try to
1237 replace register number FROM with register number TO. The frame pointer
1238 is automatically handled. */
1239
1240 #define CAN_ELIMINATE(FROM, TO) \
1241 (TO == BR_REG (0) ? current_function_is_leaf : 1)
1242
1243 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1244 specifies the initial difference between the specified pair of
1245 registers. This macro must be defined if `ELIMINABLE_REGS' is
1246 defined. */
1247 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1248 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1249 \f
1250 /* Passing Function Arguments on the Stack */
1251
1252 /* Define this macro if an argument declared in a prototype as an integral type
1253 smaller than `int' should actually be passed as an `int'. In addition to
1254 avoiding errors in certain cases of mismatch, it also makes for better code
1255 on certain machines. */
1256 /* ??? Investigate. */
1257 /* #define PROMOTE_PROTOTYPES */
1258
1259 /* If defined, the maximum amount of space required for outgoing arguments will
1260 be computed and placed into the variable
1261 `current_function_outgoing_args_size'. */
1262
1263 #define ACCUMULATE_OUTGOING_ARGS 1
1264
1265 /* A C expression that should indicate the number of bytes of its own arguments
1266 that a function pops on returning, or 0 if the function pops no arguments
1267 and the caller must therefore pop them all after the function returns. */
1268
1269 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1270
1271 \f
1272 /* Function Arguments in Registers */
1273
1274 #define MAX_ARGUMENT_SLOTS 8
1275 #define MAX_INT_RETURN_SLOTS 4
1276 #define GR_ARG_FIRST IN_REG (0)
1277 #define GR_RET_FIRST GR_REG (8)
1278 #define GR_RET_LAST GR_REG (11)
1279 #define FR_ARG_FIRST FR_REG (8)
1280 #define FR_RET_FIRST FR_REG (8)
1281 #define FR_RET_LAST FR_REG (15)
1282 #define AR_ARG_FIRST OUT_REG (0)
1283
1284 /* A C expression that controls whether a function argument is passed in a
1285 register, and which register. */
1286
1287 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1288 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1289
1290 /* Define this macro if the target machine has "register windows", so that the
1291 register in which a function sees an arguments is not necessarily the same
1292 as the one in which the caller passed the argument. */
1293
1294 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1295 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1296
1297 /* A C expression for the number of words, at the beginning of an argument,
1298 must be put in registers. The value must be zero for arguments that are
1299 passed entirely in registers or that are entirely pushed on the stack. */
1300
1301 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1302 ia64_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1303
1304 /* A C expression that indicates when an argument must be passed by reference.
1305 If nonzero for an argument, a copy of that argument is made in memory and a
1306 pointer to the argument is passed instead of the argument itself. The
1307 pointer is passed in whatever way is appropriate for passing a pointer to
1308 that type. */
1309
1310 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1311 ia64_function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
1312
1313 /* A C type for declaring a variable that is used as the first argument of
1314 `FUNCTION_ARG' and other related values. For some target machines, the type
1315 `int' suffices and can hold the number of bytes of argument so far. */
1316
1317 typedef struct ia64_args
1318 {
1319 int words; /* # words of arguments so far */
1320 int int_regs; /* # GR registers used so far */
1321 int fp_regs; /* # FR registers used so far */
1322 int prototype; /* whether function prototyped */
1323 } CUMULATIVE_ARGS;
1324
1325 /* A C statement (sans semicolon) for initializing the variable CUM for the
1326 state at the beginning of the argument list. */
1327
1328 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1329 do { \
1330 (CUM).words = 0; \
1331 (CUM).int_regs = 0; \
1332 (CUM).fp_regs = 0; \
1333 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1334 } while (0)
1335
1336 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1337 arguments for the function being compiled. If this macro is undefined,
1338 `INIT_CUMULATIVE_ARGS' is used instead. */
1339
1340 /* We set prototype to true so that we never try to return a PARALLEL from
1341 function_arg. */
1342 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1343 do { \
1344 (CUM).words = 0; \
1345 (CUM).int_regs = 0; \
1346 (CUM).fp_regs = 0; \
1347 (CUM).prototype = 1; \
1348 } while (0)
1349
1350 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1351 advance past an argument in the argument list. The values MODE, TYPE and
1352 NAMED describe that argument. Once this is done, the variable CUM is
1353 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1354
1355 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1356 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1357
1358 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1359 argument with the specified mode and type. */
1360
1361 /* Arguments with alignment larger than 8 bytes start at the next even
1362 boundary. See ia64_function_arg. */
1363
1364 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1365 (((TYPE) ? (TYPE_ALIGN (TYPE) > 8 * BITS_PER_UNIT) \
1366 : (((((MODE) == BLKmode \
1367 ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1368 + UNITS_PER_WORD - 1) / UNITS_PER_WORD) > 1)) \
1369 ? 128 : PARM_BOUNDARY)
1370
1371 /* A C expression that is nonzero if REGNO is the number of a hard register in
1372 which function arguments are sometimes passed. This does *not* include
1373 implicit arguments such as the static chain and the structure-value address.
1374 On many machines, no registers can be used for this purpose since all
1375 function arguments are pushed on the stack. */
1376 #define FUNCTION_ARG_REGNO_P(REGNO) \
1377 (((REGNO) >= GR_ARG_FIRST && (REGNO) < (GR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1378 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1379 \f
1380 /* Implement `va_arg'. */
1381 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1382 ia64_va_arg (valist, type)
1383 \f
1384 /* How Scalar Function Values are Returned */
1385
1386 /* A C expression to create an RTX representing the place where a function
1387 returns a value of data type VALTYPE. */
1388
1389 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1390 ia64_function_value (VALTYPE, FUNC)
1391
1392 /* A C expression to create an RTX representing the place where a library
1393 function returns a value of mode MODE. */
1394
1395 #define LIBCALL_VALUE(MODE) \
1396 gen_rtx_REG (MODE, \
1397 (((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1398 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) && \
1399 ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT)) \
1400 ? FR_RET_FIRST : GR_RET_FIRST))
1401
1402 /* A C expression that is nonzero if REGNO is the number of a hard register in
1403 which the values of called function may come back. */
1404
1405 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1406 (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
1407 || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1408
1409 \f
1410 /* How Large Values are Returned */
1411
1412 /* A nonzero value says to return the function value in memory, just as large
1413 structures are always returned. */
1414
1415 #define RETURN_IN_MEMORY(TYPE) \
1416 ia64_return_in_memory (TYPE)
1417
1418 /* If you define this macro to be 0, then the conventions used for structure
1419 and union return values are decided by the `RETURN_IN_MEMORY' macro. */
1420
1421 #define DEFAULT_PCC_STRUCT_RETURN 0
1422
1423 /* If the structure value address is passed in a register, then
1424 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1425
1426 #define STRUCT_VALUE_REGNUM GR_REG (8)
1427
1428 \f
1429 /* Caller-Saves Register Allocation */
1430
1431 /* A C expression to determine whether it is worthwhile to consider placing a
1432 pseudo-register in a call-clobbered hard register and saving and restoring
1433 it around each function call. The expression should be 1 when this is worth
1434 doing, and 0 otherwise.
1435
1436 If you don't define this macro, a default is used which is good on most
1437 machines: `4 * CALLS < REFS'. */
1438 /* ??? Investigate. */
1439 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1440
1441 \f
1442 /* Function Entry and Exit */
1443
1444 /* Define this macro as a C expression that is nonzero if the return
1445 instruction or the function epilogue ignores the value of the stack pointer;
1446 in other words, if it is safe to delete an instruction to adjust the stack
1447 pointer before a return from the function. */
1448
1449 #define EXIT_IGNORE_STACK 1
1450
1451 /* Define this macro as a C expression that is nonzero for registers
1452 used by the epilogue or the `return' pattern. */
1453
1454 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1455
1456 /* Nonzero for registers used by the exception handling mechanism. */
1457
1458 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1459
1460 /* Output at beginning of assembler file. */
1461
1462 #define ASM_FILE_START(FILE) \
1463 emit_safe_across_calls (FILE)
1464
1465 /* Output part N of a function descriptor for DECL. For ia64, both
1466 words are emitted with a single relocation, so ignore N > 0. */
1467 #define ASM_OUTPUT_FDESC(FILE, DECL, PART) \
1468 do { \
1469 if ((PART) == 0) \
1470 { \
1471 if (TARGET_ILP32) \
1472 fputs ("\tdata8.ua @iplt(", FILE); \
1473 else \
1474 fputs ("\tdata16.ua @iplt(", FILE); \
1475 assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0)); \
1476 fputs (")\n", FILE); \
1477 if (TARGET_ILP32) \
1478 fputs ("\tdata8.ua 0\n", FILE); \
1479 } \
1480 } while (0)
1481 \f
1482 /* Generating Code for Profiling. */
1483
1484 /* A C statement or compound statement to output to FILE some assembler code to
1485 call the profiling subroutine `mcount'. */
1486
1487 #undef FUNCTION_PROFILER
1488 #define FUNCTION_PROFILER(FILE, LABELNO) \
1489 do { \
1490 char buf[20]; \
1491 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", LABELNO); \
1492 fputs ("\talloc out0 = ar.pfs, 8, 0, 4, 0\n", FILE); \
1493 if (TARGET_AUTO_PIC) \
1494 fputs ("\tmovl out3 = @gprel(", FILE); \
1495 else \
1496 fputs ("\taddl out3 = @ltoff(", FILE); \
1497 assemble_name (FILE, buf); \
1498 if (TARGET_AUTO_PIC) \
1499 fputs (");;\n", FILE); \
1500 else \
1501 fputs ("), r1;;\n", FILE); \
1502 fputs ("\tmov out1 = r1\n", FILE); \
1503 fputs ("\tmov out2 = b0\n", FILE); \
1504 fputs ("\tbr.call.sptk.many b0 = _mcount;;\n", FILE); \
1505 } while (0)
1506 \f
1507 /* Implementing the Varargs Macros. */
1508
1509 /* Define this macro to store the anonymous register arguments into the stack
1510 so that all the arguments appear to have been passed consecutively on the
1511 stack. */
1512
1513 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
1514 ia64_setup_incoming_varargs (ARGS_SO_FAR, MODE, TYPE, & PRETEND_ARGS_SIZE, SECOND_TIME)
1515
1516 /* Define this macro if the location where a function argument is passed
1517 depends on whether or not it is a named argument. */
1518
1519 #define STRICT_ARGUMENT_NAMING 1
1520
1521 \f
1522 /* Trampolines for Nested Functions. */
1523
1524 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1525 the function containing a non-local goto target. */
1526
1527 #define STACK_SAVEAREA_MODE(LEVEL) \
1528 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1529
1530 /* Output assembler code for a block containing the constant parts of
1531 a trampoline, leaving space for the variable parts.
1532
1533 The trampoline should set the static chain pointer to value placed
1534 into the trampoline and should branch to the specified routine.
1535 To make the normal indirect-subroutine calling convention work,
1536 the trampoline must look like a function descriptor; the first
1537 word being the target address and the second being the target's
1538 global pointer.
1539
1540 We abuse the concept of a global pointer by arranging for it
1541 to point to the data we need to load. The complete trampoline
1542 has the following form:
1543
1544 +-------------------+ \
1545 TRAMP: | __ia64_trampoline | |
1546 +-------------------+ > fake function descriptor
1547 | TRAMP+16 | |
1548 +-------------------+ /
1549 | target descriptor |
1550 +-------------------+
1551 | static link |
1552 +-------------------+
1553 */
1554
1555 /* A C expression for the size in bytes of the trampoline, as an integer. */
1556
1557 #define TRAMPOLINE_SIZE 32
1558
1559 /* Alignment required for trampolines, in bits. */
1560
1561 #define TRAMPOLINE_ALIGNMENT 64
1562
1563 /* A C statement to initialize the variable parts of a trampoline. */
1564
1565 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1566 ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
1567 \f
1568 /* Implicit Calls to Library Routines */
1569
1570 /* Define this macro if GNU CC should generate calls to the System V (and ANSI
1571 C) library functions `memcpy' and `memset' rather than the BSD functions
1572 `bcopy' and `bzero'. */
1573
1574 #define TARGET_MEM_FUNCTIONS
1575
1576 \f
1577 /* Addressing Modes */
1578
1579 /* Define this macro if the machine supports post-increment addressing. */
1580
1581 #define HAVE_POST_INCREMENT 1
1582 #define HAVE_POST_DECREMENT 1
1583 #define HAVE_POST_MODIFY_DISP 1
1584 #define HAVE_POST_MODIFY_REG 1
1585
1586 /* A C expression that is 1 if the RTX X is a constant which is a valid
1587 address. */
1588
1589 #define CONSTANT_ADDRESS_P(X) 0
1590
1591 /* The max number of registers that can appear in a valid memory address. */
1592
1593 #define MAX_REGS_PER_ADDRESS 2
1594
1595 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1596 RTX) is a legitimate memory address on the target machine for a memory
1597 operand of mode MODE. */
1598
1599 #define LEGITIMATE_ADDRESS_REG(X) \
1600 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1601 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1602 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1603
1604 #define LEGITIMATE_ADDRESS_DISP(R, X) \
1605 (GET_CODE (X) == PLUS \
1606 && rtx_equal_p (R, XEXP (X, 0)) \
1607 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
1608 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
1609 && INTVAL (XEXP (X, 1)) >= -256 \
1610 && INTVAL (XEXP (X, 1)) < 256)))
1611
1612 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1613 do { \
1614 if (LEGITIMATE_ADDRESS_REG (X)) \
1615 goto LABEL; \
1616 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1617 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1618 && XEXP (X, 0) != arg_pointer_rtx) \
1619 goto LABEL; \
1620 else if (GET_CODE (X) == POST_MODIFY \
1621 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1622 && XEXP (X, 0) != arg_pointer_rtx \
1623 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
1624 goto LABEL; \
1625 } while (0)
1626
1627 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1628 use as a base register. */
1629
1630 #ifdef REG_OK_STRICT
1631 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1632 #else
1633 #define REG_OK_FOR_BASE_P(X) \
1634 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1635 #endif
1636
1637 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1638 use as an index register. This is needed for POST_MODIFY. */
1639
1640 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1641
1642 /* A C compound statement that attempts to replace X with a valid memory
1643 address for an operand of mode MODE.
1644
1645 This must be present, but there is nothing useful to be done here. */
1646
1647 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1648
1649 /* A C statement or compound statement with a conditional `goto LABEL;'
1650 executed if memory address X (an RTX) can have different meanings depending
1651 on the machine mode of the memory reference it is used for or if the address
1652 is valid for some modes but not others. */
1653
1654 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1655 if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC) \
1656 goto LABEL;
1657
1658 /* A C expression that is nonzero if X is a legitimate constant for an
1659 immediate operand on the target machine. */
1660
1661 #define LEGITIMATE_CONSTANT_P(X) \
1662 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1663 || GET_MODE (X) == DImode || CONST_DOUBLE_OK_FOR_G (X)) \
1664
1665 \f
1666 /* Condition Code Status */
1667
1668 /* One some machines not all possible comparisons are defined, but you can
1669 convert an invalid comparison into a valid one. */
1670 /* ??? Investigate. See the alpha definition. */
1671 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1672
1673 \f
1674 /* Describing Relative Costs of Operations */
1675
1676 /* A C expression for the cost of moving data from a register in class FROM to
1677 one in class TO, using MODE. */
1678
1679 #define REGISTER_MOVE_COST ia64_register_move_cost
1680
1681 /* A C expression for the cost of moving data of mode M between a
1682 register and memory. */
1683 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1684 ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS \
1685 || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
1686
1687 /* A C expression for the cost of a branch instruction. A value of 1 is the
1688 default; other values are interpreted relative to that. Used by the
1689 if-conversion code as max instruction count. */
1690 /* ??? This requires investigation. The primary effect might be how
1691 many additional insn groups we run into, vs how good the dynamic
1692 branch predictor is. */
1693
1694 #define BRANCH_COST 6
1695
1696 /* Define this macro as a C expression which is nonzero if accessing less than
1697 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1698 word of memory. */
1699
1700 #define SLOW_BYTE_ACCESS 1
1701
1702 /* Define this macro if it is as good or better to call a constant function
1703 address than to call an address kept in a register.
1704
1705 Indirect function calls are more expensive that direct function calls, so
1706 don't cse function addresses. */
1707
1708 #define NO_FUNCTION_CSE
1709
1710 \f
1711 /* Dividing the output into sections. */
1712
1713 /* A C expression whose value is a string containing the assembler operation
1714 that should precede instructions and read-only data. */
1715
1716 #define TEXT_SECTION_ASM_OP "\t.text"
1717
1718 /* A C expression whose value is a string containing the assembler operation to
1719 identify the following data as writable initialized data. */
1720
1721 #define DATA_SECTION_ASM_OP "\t.data"
1722
1723 /* If defined, a C expression whose value is a string containing the assembler
1724 operation to identify the following data as uninitialized global data. */
1725
1726 #define BSS_SECTION_ASM_OP "\t.bss"
1727
1728 #define ENCODE_SECTION_INFO_CHAR '@'
1729
1730 #define IA64_DEFAULT_GVALUE 8
1731 \f
1732 /* Position Independent Code. */
1733
1734 /* The register number of the register used to address a table of static data
1735 addresses in memory. */
1736
1737 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1738 gen_rtx_REG (DImode, 1). */
1739
1740 /* ??? Should we set flag_pic? Probably need to define
1741 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1742
1743 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1744
1745 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1746 clobbered by calls. */
1747
1748 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1749
1750 \f
1751 /* The Overall Framework of an Assembler File. */
1752
1753 /* A C string constant describing how to begin a comment in the target
1754 assembler language. The compiler assumes that the comment will end at the
1755 end of the line. */
1756
1757 #define ASM_COMMENT_START "//"
1758
1759 /* A C string constant for text to be output before each `asm' statement or
1760 group of consecutive ones. */
1761
1762 /* ??? This won't work with the Intel assembler, because it does not accept
1763 # as a comment start character. However, //APP does not work in gas, so we
1764 can't use that either. Same problem for ASM_APP_OFF below. */
1765
1766 #define ASM_APP_ON "#APP\n"
1767
1768 /* A C string constant for text to be output after each `asm' statement or
1769 group of consecutive ones. */
1770
1771 #define ASM_APP_OFF "#NO_APP\n"
1772
1773 \f
1774 /* Output of Uninitialized Variables. */
1775
1776 /* This is all handled by svr4.h. */
1777
1778 \f
1779 /* Output and Generation of Labels. */
1780
1781 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1782 assembler definition of a label named NAME. */
1783
1784 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1785 why ia64_asm_output_label exists. */
1786
1787 extern int ia64_asm_output_label;
1788 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
1789 do { \
1790 ia64_asm_output_label = 1; \
1791 assemble_name (STREAM, NAME); \
1792 fputs (":\n", STREAM); \
1793 ia64_asm_output_label = 0; \
1794 } while (0)
1795
1796 /* Globalizing directive for a label. */
1797 #define GLOBAL_ASM_OP "\t.global "
1798
1799 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1800 necessary for declaring the name of an external symbol named NAME which is
1801 referenced in this compilation but not defined. */
1802
1803 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1804 ia64_asm_output_external (FILE, DECL, NAME)
1805
1806 /* A C statement to store into the string STRING a label whose name is made
1807 from the string PREFIX and the number NUM. */
1808
1809 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1810 do { \
1811 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
1812 } while (0)
1813
1814 /* ??? Not sure if using a ? in the name for Intel as is safe. */
1815
1816 #define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1817
1818 /* A C statement to output to the stdio stream STREAM assembler code which
1819 defines (equates) the symbol NAME to have the value VALUE. */
1820
1821 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1822 do { \
1823 assemble_name (STREAM, NAME); \
1824 fputs (" = ", STREAM); \
1825 assemble_name (STREAM, VALUE); \
1826 fputc ('\n', STREAM); \
1827 } while (0)
1828
1829 \f
1830 /* Macros Controlling Initialization Routines. */
1831
1832 /* This is handled by svr4.h and sysv4.h. */
1833
1834 \f
1835 /* Output of Assembler Instructions. */
1836
1837 /* A C initializer containing the assembler's names for the machine registers,
1838 each one as a C string constant. */
1839
1840 #define REGISTER_NAMES \
1841 { \
1842 /* General registers. */ \
1843 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1844 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1845 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1846 "r30", "r31", \
1847 /* Local registers. */ \
1848 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
1849 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
1850 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
1851 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
1852 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
1853 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
1854 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
1855 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
1856 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
1857 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
1858 /* Input registers. */ \
1859 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
1860 /* Output registers. */ \
1861 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
1862 /* Floating-point registers. */ \
1863 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
1864 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
1865 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
1866 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
1867 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
1868 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
1869 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
1870 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
1871 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
1872 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
1873 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1874 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1875 "f120","f121","f122","f123","f124","f125","f126","f127", \
1876 /* Predicate registers. */ \
1877 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
1878 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
1879 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
1880 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
1881 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
1882 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
1883 "p60", "p61", "p62", "p63", \
1884 /* Branch registers. */ \
1885 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
1886 /* Frame pointer. Return address. */ \
1887 "sfp", "retaddr", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
1888 }
1889
1890 /* If defined, a C initializer for an array of structures containing a name and
1891 a register number. This macro defines additional names for hard registers,
1892 thus allowing the `asm' option in declarations to refer to registers using
1893 alternate names. */
1894
1895 #define ADDITIONAL_REGISTER_NAMES \
1896 { \
1897 { "gp", R_GR (1) }, \
1898 { "sp", R_GR (12) }, \
1899 { "in0", IN_REG (0) }, \
1900 { "in1", IN_REG (1) }, \
1901 { "in2", IN_REG (2) }, \
1902 { "in3", IN_REG (3) }, \
1903 { "in4", IN_REG (4) }, \
1904 { "in5", IN_REG (5) }, \
1905 { "in6", IN_REG (6) }, \
1906 { "in7", IN_REG (7) }, \
1907 { "out0", OUT_REG (0) }, \
1908 { "out1", OUT_REG (1) }, \
1909 { "out2", OUT_REG (2) }, \
1910 { "out3", OUT_REG (3) }, \
1911 { "out4", OUT_REG (4) }, \
1912 { "out5", OUT_REG (5) }, \
1913 { "out6", OUT_REG (6) }, \
1914 { "out7", OUT_REG (7) }, \
1915 { "loc0", LOC_REG (0) }, \
1916 { "loc1", LOC_REG (1) }, \
1917 { "loc2", LOC_REG (2) }, \
1918 { "loc3", LOC_REG (3) }, \
1919 { "loc4", LOC_REG (4) }, \
1920 { "loc5", LOC_REG (5) }, \
1921 { "loc6", LOC_REG (6) }, \
1922 { "loc7", LOC_REG (7) }, \
1923 { "loc8", LOC_REG (8) }, \
1924 { "loc9", LOC_REG (9) }, \
1925 { "loc10", LOC_REG (10) }, \
1926 { "loc11", LOC_REG (11) }, \
1927 { "loc12", LOC_REG (12) }, \
1928 { "loc13", LOC_REG (13) }, \
1929 { "loc14", LOC_REG (14) }, \
1930 { "loc15", LOC_REG (15) }, \
1931 { "loc16", LOC_REG (16) }, \
1932 { "loc17", LOC_REG (17) }, \
1933 { "loc18", LOC_REG (18) }, \
1934 { "loc19", LOC_REG (19) }, \
1935 { "loc20", LOC_REG (20) }, \
1936 { "loc21", LOC_REG (21) }, \
1937 { "loc22", LOC_REG (22) }, \
1938 { "loc23", LOC_REG (23) }, \
1939 { "loc24", LOC_REG (24) }, \
1940 { "loc25", LOC_REG (25) }, \
1941 { "loc26", LOC_REG (26) }, \
1942 { "loc27", LOC_REG (27) }, \
1943 { "loc28", LOC_REG (28) }, \
1944 { "loc29", LOC_REG (29) }, \
1945 { "loc30", LOC_REG (30) }, \
1946 { "loc31", LOC_REG (31) }, \
1947 { "loc32", LOC_REG (32) }, \
1948 { "loc33", LOC_REG (33) }, \
1949 { "loc34", LOC_REG (34) }, \
1950 { "loc35", LOC_REG (35) }, \
1951 { "loc36", LOC_REG (36) }, \
1952 { "loc37", LOC_REG (37) }, \
1953 { "loc38", LOC_REG (38) }, \
1954 { "loc39", LOC_REG (39) }, \
1955 { "loc40", LOC_REG (40) }, \
1956 { "loc41", LOC_REG (41) }, \
1957 { "loc42", LOC_REG (42) }, \
1958 { "loc43", LOC_REG (43) }, \
1959 { "loc44", LOC_REG (44) }, \
1960 { "loc45", LOC_REG (45) }, \
1961 { "loc46", LOC_REG (46) }, \
1962 { "loc47", LOC_REG (47) }, \
1963 { "loc48", LOC_REG (48) }, \
1964 { "loc49", LOC_REG (49) }, \
1965 { "loc50", LOC_REG (50) }, \
1966 { "loc51", LOC_REG (51) }, \
1967 { "loc52", LOC_REG (52) }, \
1968 { "loc53", LOC_REG (53) }, \
1969 { "loc54", LOC_REG (54) }, \
1970 { "loc55", LOC_REG (55) }, \
1971 { "loc56", LOC_REG (56) }, \
1972 { "loc57", LOC_REG (57) }, \
1973 { "loc58", LOC_REG (58) }, \
1974 { "loc59", LOC_REG (59) }, \
1975 { "loc60", LOC_REG (60) }, \
1976 { "loc61", LOC_REG (61) }, \
1977 { "loc62", LOC_REG (62) }, \
1978 { "loc63", LOC_REG (63) }, \
1979 { "loc64", LOC_REG (64) }, \
1980 { "loc65", LOC_REG (65) }, \
1981 { "loc66", LOC_REG (66) }, \
1982 { "loc67", LOC_REG (67) }, \
1983 { "loc68", LOC_REG (68) }, \
1984 { "loc69", LOC_REG (69) }, \
1985 { "loc70", LOC_REG (70) }, \
1986 { "loc71", LOC_REG (71) }, \
1987 { "loc72", LOC_REG (72) }, \
1988 { "loc73", LOC_REG (73) }, \
1989 { "loc74", LOC_REG (74) }, \
1990 { "loc75", LOC_REG (75) }, \
1991 { "loc76", LOC_REG (76) }, \
1992 { "loc77", LOC_REG (77) }, \
1993 { "loc78", LOC_REG (78) }, \
1994 { "loc79", LOC_REG (79) }, \
1995 }
1996
1997 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1998 for an instruction operand X. X is an RTL expression. */
1999
2000 #define PRINT_OPERAND(STREAM, X, CODE) \
2001 ia64_print_operand (STREAM, X, CODE)
2002
2003 /* A C expression which evaluates to true if CODE is a valid punctuation
2004 character for use in the `PRINT_OPERAND' macro. */
2005
2006 /* ??? Keep this around for now, as we might need it later. */
2007
2008 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2009 ((CODE) == '+' || (CODE) == ',')
2010
2011 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2012 for an instruction operand that is a memory reference whose address is X. X
2013 is an RTL expression. */
2014
2015 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
2016 ia64_print_operand_address (STREAM, X)
2017
2018 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2019 `%I' options of `asm_fprintf' (see `final.c'). */
2020
2021 #define REGISTER_PREFIX ""
2022 #define LOCAL_LABEL_PREFIX "."
2023 #define USER_LABEL_PREFIX ""
2024 #define IMMEDIATE_PREFIX ""
2025
2026 \f
2027 /* Output of dispatch tables. */
2028
2029 /* This macro should be provided on machines where the addresses in a dispatch
2030 table are relative to the table's own address. */
2031
2032 /* ??? Depends on the pointer size. */
2033
2034 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2035 do { \
2036 if (TARGET_ILP32) \
2037 fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE); \
2038 else \
2039 fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE); \
2040 } while (0)
2041
2042 /* This is how to output an element of a case-vector that is absolute.
2043 (Ia64 does not use such vectors, but we must define this macro anyway.) */
2044
2045 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) abort ()
2046
2047 /* Jump tables only need 8 byte alignment. */
2048
2049 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
2050
2051 \f
2052 /* Assembler Commands for Exception Regions. */
2053
2054 /* Select a format to encode pointers in exception handling data. CODE
2055 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2056 true if the symbol may be affected by dynamic relocations. */
2057 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2058 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
2059 | ((GLOBAL) ? DW_EH_PE_indirect : 0) \
2060 | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
2061
2062 /* Handle special EH pointer encodings. Absolute, pc-relative, and
2063 indirect are handled automatically. */
2064 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
2065 do { \
2066 const char *reltag = NULL; \
2067 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
2068 reltag = "@segrel("; \
2069 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
2070 reltag = "@gprel("; \
2071 if (reltag) \
2072 { \
2073 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2074 fputs (reltag, FILE); \
2075 assemble_name (FILE, XSTR (ADDR, 0)); \
2076 fputc (')', FILE); \
2077 goto DONE; \
2078 } \
2079 } while (0)
2080
2081 \f
2082 /* Assembler Commands for Alignment. */
2083
2084 /* ??? Investigate. */
2085
2086 /* The alignment (log base 2) to put in front of LABEL, which follows
2087 a BARRIER. */
2088
2089 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
2090
2091 /* The desired alignment for the location counter at the beginning
2092 of a loop. */
2093
2094 /* #define LOOP_ALIGN(LABEL) */
2095
2096 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
2097 section because it fails put zeros in the bytes that are skipped. */
2098
2099 #define ASM_NO_SKIP_IN_TEXT 1
2100
2101 /* A C statement to output to the stdio stream STREAM an assembler command to
2102 advance the location counter to a multiple of 2 to the POWER bytes. */
2103
2104 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2105 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
2106
2107 \f
2108 /* Macros Affecting all Debug Formats. */
2109
2110 /* This is handled in svr4.h and sysv4.h. */
2111
2112 \f
2113 /* Specific Options for DBX Output. */
2114
2115 /* This is handled by dbxelf.h which is included by svr4.h. */
2116
2117 \f
2118 /* Open ended Hooks for DBX Output. */
2119
2120 /* Likewise. */
2121
2122 \f
2123 /* File names in DBX format. */
2124
2125 /* Likewise. */
2126
2127 \f
2128 /* Macros for SDB and Dwarf Output. */
2129
2130 /* Define this macro if GNU CC should produce dwarf version 2 format debugging
2131 output in response to the `-g' option. */
2132
2133 #define DWARF2_DEBUGGING_INFO 1
2134
2135 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
2136
2137 /* Use tags for debug info labels, so that they don't break instruction
2138 bundles. This also avoids getting spurious DV warnings from the
2139 assembler. This is similar to (*targetm.asm_out.internal_label), except that we
2140 add brackets around the label. */
2141
2142 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2143 fprintf (FILE, "[.%s%d:]\n", PREFIX, NUM)
2144
2145 /* Use section-relative relocations for debugging offsets. Unlike other
2146 targets that fake this by putting the section VMA at 0, IA-64 has
2147 proper relocations for them. */
2148 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL) \
2149 do { \
2150 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2151 fputs ("@secrel(", FILE); \
2152 assemble_name (FILE, LABEL); \
2153 fputc (')', FILE); \
2154 } while (0)
2155
2156 /* Emit a PC-relative relocation. */
2157 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2158 do { \
2159 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2160 fputs ("@pcrel(", FILE); \
2161 assemble_name (FILE, LABEL); \
2162 fputc (')', FILE); \
2163 } while (0)
2164 \f
2165 /* Register Renaming Parameters. */
2166
2167 /* A C expression that is nonzero if hard register number REGNO2 can be
2168 considered for use as a rename register for REGNO1 */
2169
2170 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
2171 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
2172
2173 \f
2174 /* Miscellaneous Parameters. */
2175
2176 /* Define this if you have defined special-purpose predicates in the file
2177 `MACHINE.c'. For each predicate, list all rtl codes that can be in
2178 expressions matched by the predicate. */
2179
2180 #define PREDICATE_CODES \
2181 { "call_operand", {SUBREG, REG, SYMBOL_REF}}, \
2182 { "got_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2183 { "sdata_symbolic_operand", {SYMBOL_REF, CONST}}, \
2184 { "symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2185 { "function_operand", {SYMBOL_REF}}, \
2186 { "setjmp_operand", {SYMBOL_REF}}, \
2187 { "destination_operand", {SUBREG, REG, MEM}}, \
2188 { "not_postinc_memory_operand", {MEM}}, \
2189 { "move_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2190 CONSTANT_P_RTX, SYMBOL_REF, CONST, LABEL_REF}}, \
2191 { "gr_register_operand", {SUBREG, REG}}, \
2192 { "fr_register_operand", {SUBREG, REG}}, \
2193 { "grfr_register_operand", {SUBREG, REG}}, \
2194 { "gr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2195 { "fr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2196 { "grfr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2197 { "gr_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2198 { "gr_reg_or_5bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2199 { "gr_reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2200 { "gr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2201 { "grfr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2202 { "gr_reg_or_8bit_adjusted_operand", {SUBREG, REG, CONST_INT, \
2203 CONSTANT_P_RTX}}, \
2204 { "gr_reg_or_8bit_and_adjusted_operand", {SUBREG, REG, CONST_INT, \
2205 CONSTANT_P_RTX}}, \
2206 { "gr_reg_or_14bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2207 { "gr_reg_or_22bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2208 { "shift_count_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2209 { "shift_32bit_count_operand", {SUBREG, REG, CONST_INT, \
2210 CONSTANT_P_RTX}}, \
2211 { "shladd_operand", {CONST_INT}}, \
2212 { "fetchadd_operand", {CONST_INT}}, \
2213 { "fr_reg_or_fp01_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2214 { "normal_comparison_operator", {EQ, NE, GT, LE, GTU, LEU}}, \
2215 { "adjusted_comparison_operator", {LT, GE, LTU, GEU}}, \
2216 { "signed_inequality_operator", {GE, GT, LE, LT}}, \
2217 { "predicate_operator", {NE, EQ}}, \
2218 { "condop_operator", {PLUS, MINUS, IOR, XOR, AND}}, \
2219 { "ar_lc_reg_operand", {REG}}, \
2220 { "ar_ccv_reg_operand", {REG}}, \
2221 { "ar_pfs_reg_operand", {REG}}, \
2222 { "general_tfmode_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
2223 { "destination_tfmode_operand", {SUBREG, REG, MEM}}, \
2224 { "tfreg_or_fp01_operand", {REG, CONST_DOUBLE}}, \
2225 { "basereg_operand", {SUBREG, REG}},
2226
2227 /* An alias for a machine mode name. This is the machine mode that elements of
2228 a jump-table should have. */
2229
2230 #define CASE_VECTOR_MODE ptr_mode
2231
2232 /* Define as C expression which evaluates to nonzero if the tablejump
2233 instruction expects the table to contain offsets from the address of the
2234 table. */
2235
2236 #define CASE_VECTOR_PC_RELATIVE 1
2237
2238 /* Define this macro if operations between registers with integral mode smaller
2239 than a word are always performed on the entire register. */
2240
2241 #define WORD_REGISTER_OPERATIONS
2242
2243 /* Define this macro to be a C expression indicating when insns that read
2244 memory in MODE, an integral mode narrower than a word, set the bits outside
2245 of MODE to be either the sign-extension or the zero-extension of the data
2246 read. */
2247
2248 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2249
2250 /* The maximum number of bytes that a single instruction can move quickly from
2251 memory to memory. */
2252 #define MOVE_MAX 8
2253
2254 /* A C expression which is nonzero if on this machine it is safe to "convert"
2255 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2256 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
2257
2258 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2259
2260 /* A C expression describing the value returned by a comparison operator with
2261 an integral mode and stored by a store-flag instruction (`sCOND') when the
2262 condition is true. */
2263
2264 /* ??? Investigate using -1 instead of 1. */
2265
2266 #define STORE_FLAG_VALUE 1
2267
2268 /* An alias for the machine mode for pointers. */
2269
2270 /* ??? This would change if we had ILP32 support. */
2271
2272 #define Pmode DImode
2273
2274 /* An alias for the machine mode used for memory references to functions being
2275 called, in `call' RTL expressions. */
2276
2277 #define FUNCTION_MODE Pmode
2278
2279 /* Define this macro to handle System V style pragmas: #pragma pack and
2280 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2281 defined. */
2282
2283 /* If this architecture supports prefetch, define this to be the number of
2284 prefetch commands that can be executed in parallel.
2285
2286 ??? This number is bogus and needs to be replaced before the value is
2287 actually used in optimizations. */
2288
2289 #define SIMULTANEOUS_PREFETCHES 6
2290
2291 /* If this architecture supports prefetch, define this to be the size of
2292 the cache line that is prefetched. */
2293
2294 #define PREFETCH_BLOCK 32
2295
2296 #define HANDLE_SYSV_PRAGMA 1
2297
2298 /* In rare cases, correct code generation requires extra machine dependent
2299 processing between the second jump optimization pass and delayed branch
2300 scheduling. On those machines, define this macro as a C statement to act on
2301 the code starting at INSN. */
2302
2303 #define MACHINE_DEPENDENT_REORG(INSN) ia64_reorg (INSN)
2304
2305 /* A C expression for the maximum number of instructions to execute via
2306 conditional execution instructions instead of a branch. A value of
2307 BRANCH_COST+1 is the default if the machine does not use
2308 cc0, and 1 if it does use cc0. */
2309 /* ??? Investigate. */
2310 #define MAX_CONDITIONAL_EXECUTE 12
2311
2312 extern int ia64_final_schedule;
2313
2314 #define IA64_UNWIND_INFO 1
2315 #define IA64_UNWIND_EMIT(f,i) process_for_unwind_directive (f,i)
2316
2317 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
2318
2319 /* This function contains machine specific function data. */
2320 struct machine_function GTY(())
2321 {
2322 /* The new stack pointer when unwinding from EH. */
2323 rtx ia64_eh_epilogue_sp;
2324
2325 /* The new bsp value when unwinding from EH. */
2326 rtx ia64_eh_epilogue_bsp;
2327
2328 /* The GP value save register. */
2329 rtx ia64_gp_save;
2330
2331 /* The number of varargs registers to save. */
2332 int n_varargs;
2333 };
2334
2335
2336 enum ia64_builtins
2337 {
2338 IA64_BUILTIN_SYNCHRONIZE,
2339
2340 IA64_BUILTIN_FETCH_AND_ADD_SI,
2341 IA64_BUILTIN_FETCH_AND_SUB_SI,
2342 IA64_BUILTIN_FETCH_AND_OR_SI,
2343 IA64_BUILTIN_FETCH_AND_AND_SI,
2344 IA64_BUILTIN_FETCH_AND_XOR_SI,
2345 IA64_BUILTIN_FETCH_AND_NAND_SI,
2346
2347 IA64_BUILTIN_ADD_AND_FETCH_SI,
2348 IA64_BUILTIN_SUB_AND_FETCH_SI,
2349 IA64_BUILTIN_OR_AND_FETCH_SI,
2350 IA64_BUILTIN_AND_AND_FETCH_SI,
2351 IA64_BUILTIN_XOR_AND_FETCH_SI,
2352 IA64_BUILTIN_NAND_AND_FETCH_SI,
2353
2354 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI,
2355 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI,
2356
2357 IA64_BUILTIN_SYNCHRONIZE_SI,
2358
2359 IA64_BUILTIN_LOCK_TEST_AND_SET_SI,
2360
2361 IA64_BUILTIN_LOCK_RELEASE_SI,
2362
2363 IA64_BUILTIN_FETCH_AND_ADD_DI,
2364 IA64_BUILTIN_FETCH_AND_SUB_DI,
2365 IA64_BUILTIN_FETCH_AND_OR_DI,
2366 IA64_BUILTIN_FETCH_AND_AND_DI,
2367 IA64_BUILTIN_FETCH_AND_XOR_DI,
2368 IA64_BUILTIN_FETCH_AND_NAND_DI,
2369
2370 IA64_BUILTIN_ADD_AND_FETCH_DI,
2371 IA64_BUILTIN_SUB_AND_FETCH_DI,
2372 IA64_BUILTIN_OR_AND_FETCH_DI,
2373 IA64_BUILTIN_AND_AND_FETCH_DI,
2374 IA64_BUILTIN_XOR_AND_FETCH_DI,
2375 IA64_BUILTIN_NAND_AND_FETCH_DI,
2376
2377 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI,
2378 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI,
2379
2380 IA64_BUILTIN_SYNCHRONIZE_DI,
2381
2382 IA64_BUILTIN_LOCK_TEST_AND_SET_DI,
2383
2384 IA64_BUILTIN_LOCK_RELEASE_DI,
2385
2386 IA64_BUILTIN_BSP,
2387 IA64_BUILTIN_FLUSHRS
2388 };
2389
2390 /* Codes for expand_compare_and_swap and expand_swap_and_compare. */
2391 enum fetchop_code {
2392 IA64_ADD_OP, IA64_SUB_OP, IA64_OR_OP, IA64_AND_OP, IA64_XOR_OP, IA64_NAND_OP
2393 };
2394
2395 #define DONT_USE_BUILTIN_SETJMP
2396
2397 /* Output any profiling code before the prologue. */
2398
2399 #undef PROFILE_BEFORE_PROLOGUE
2400 #define PROFILE_BEFORE_PROLOGUE 1
2401
2402 \f
2403
2404 /* Switch on code for querying unit reservations. */
2405 #define CPU_UNITS_QUERY 1
2406
2407 /* End of ia64.h */