86463b4e02964bd715fe1fc7fc89eba50fc67317
[gcc.git] / gcc / config / ia64 / ia64.h
1 /* Definitions of target machine GNU compiler. IA-64 version.
2 Copyright (C) 1999, 2000 Free Software Foundation, Inc.
3 Contributed by James E. Wilson <wilson@cygnus.com> and
4 David Mosberger <davidm@hpl.hp.com>.
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
25
26 /* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
28
29 /* ??? Add support for short data/bss sections. */
30
31 \f
32 /* Run-time target specifications */
33
34 /* Define this to be a string constant containing `-D' options to define the
35 predefined macros that identify this machine and system. These macros will
36 be predefined unless the `-ansi' option is specified. */
37 /* ??? This is undefed in svr4.h. */
38 #define CPP_PREDEFINES "-Dia64 -Amachine(ia64)"
39
40 /* This declaration should be present. */
41 extern int target_flags;
42
43 /* This series of macros is to allow compiler command arguments to enable or
44 disable the use of optional features of the target machine. */
45
46 #define MASK_BIG_ENDIAN 0x00000001 /* Generate big endian code. */
47
48 #define MASK_GNU_AS 0x00000002 /* Generate code for GNU as. */
49
50 #define MASK_GNU_LD 0x00000004 /* Generate code for GNU ld. */
51
52 #define MASK_NO_PIC 0x00000008 /* Generate code without GP reg. */
53
54 #define MASK_VOL_ASM_STOP 0x00000010 /* Emit stop bits for vol ext asm. */
55
56 #define MASK_A_STEP 0x00000020 /* Emit code for Itanium A step. */
57
58 #define MASK_REG_NAMES 0x00000040 /* Use in/loc/out register names. */
59
60 #define MASK_NO_SDATA 0x00000080 /* Disable sdata/scommon/sbss. */
61
62 #define MASK_CONST_GP 0x00000100 /* treat gp as program-wide constant */
63
64 #define MASK_AUTO_PIC 0x00000200 /* generate automatically PIC */
65
66 #define MASK_DWARF2_ASM 0x40000000 /* test dwarf2 line info via gas. */
67
68 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
69
70 #define TARGET_GNU_AS (target_flags & MASK_GNU_AS)
71
72 #define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
73
74 #define TARGET_NO_PIC (target_flags & MASK_NO_PIC)
75
76 #define TARGET_VOL_ASM_STOP (target_flags & MASK_VOL_ASM_STOP)
77
78 #define TARGET_A_STEP (target_flags & MASK_A_STEP)
79
80 #define TARGET_REG_NAMES (target_flags & MASK_REG_NAMES)
81
82 #define TARGET_NO_SDATA (target_flags & MASK_NO_SDATA)
83
84 #define TARGET_CONST_GP (target_flags & MASK_CONST_GP)
85
86 #define TARGET_AUTO_PIC (target_flags & MASK_AUTO_PIC)
87
88 #define TARGET_DWARF2_ASM (target_flags & MASK_DWARF2_ASM)
89
90 /* This macro defines names of command options to set and clear bits in
91 `target_flags'. Its definition is an initializer with a subgrouping for
92 each command option. */
93
94 #define TARGET_SWITCHES \
95 { \
96 { "big-endian", MASK_BIG_ENDIAN, \
97 N_("Generate big endian code") }, \
98 { "little-endian", -MASK_BIG_ENDIAN, \
99 N_("Generate little endian code") }, \
100 { "gnu-as", MASK_GNU_AS, \
101 N_("Generate code for GNU as") }, \
102 { "no-gnu-as", -MASK_GNU_AS, \
103 N_("Generate code for Intel as") }, \
104 { "gnu-ld", MASK_GNU_LD, \
105 N_("Generate code for GNU ld") }, \
106 { "no-gnu-ld", -MASK_GNU_LD, \
107 N_("Generate code for Intel ld") }, \
108 { "no-pic", MASK_NO_PIC, \
109 N_("Generate code without GP reg") }, \
110 { "volatile-asm-stop", MASK_VOL_ASM_STOP, \
111 N_("Emit stop bits before and after volatile extended asms") }, \
112 { "no-volatile-asm-stop", -MASK_VOL_ASM_STOP, \
113 N_("Don't emit stop bits before and after volatile extended asms") }, \
114 { "a-step", MASK_A_STEP, \
115 N_("Emit code for Itanium (TM) processor A step")}, \
116 { "register-names", MASK_REG_NAMES, \
117 N_("Use in/loc/out register names")}, \
118 { "no-sdata", MASK_NO_SDATA, \
119 N_("Disable use of sdata/scommon/sbss")}, \
120 { "sdata", -MASK_NO_SDATA, \
121 N_("Enable use of sdata/scommon/sbss")}, \
122 { "constant-gp", MASK_CONST_GP, \
123 N_("gp is constant (but save/restore gp on indirect calls)") }, \
124 { "auto-pic", MASK_AUTO_PIC, \
125 N_("Generate self-relocatable code") }, \
126 { "dwarf2-asm", MASK_DWARF2_ASM, \
127 N_("Enable Dwarf 2 line debug info via GNU as")}, \
128 { "no-dwarf2-asm", -MASK_DWARF2_ASM, \
129 N_("Disable Dwarf 2 line debug info via GNU as")}, \
130 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
131 NULL } \
132 }
133
134 /* Default target_flags if no switches are specified */
135
136 #ifndef TARGET_DEFAULT
137 #define TARGET_DEFAULT MASK_DWARF2_ASM
138 #endif
139
140 #ifndef TARGET_CPU_DEFAULT
141 #define TARGET_CPU_DEFAULT 0
142 #endif
143
144 /* This macro is similar to `TARGET_SWITCHES' but defines names of command
145 options that have values. Its definition is an initializer with a
146 subgrouping for each command option. */
147
148 extern const char *ia64_fixed_range_string;
149 #define TARGET_OPTIONS \
150 { \
151 { "fixed-range=", &ia64_fixed_range_string, \
152 N_("Specify range of registers to make fixed.")}, \
153 }
154
155 /* This macro is a C statement to print on `stderr' a string describing the
156 particular machine description choice. */
157
158 #define TARGET_VERSION fprintf (stderr, " (IA-64)");
159
160 /* Sometimes certain combinations of command options do not make sense on a
161 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
162 take account of this. This macro, if defined, is executed once just after
163 all the command options have been parsed. */
164
165 #define OVERRIDE_OPTIONS ia64_override_options ()
166
167 /* Some machines may desire to change what optimizations are performed for
168 various optimization levels. This macro, if defined, is executed once just
169 after the optimization level is determined and before the remainder of the
170 command options have been parsed. Values set in this macro are used as the
171 default values for the other command line options. */
172
173 /* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
174 \f
175 /* Driver configuration */
176
177 /* A C string constant that tells the GNU CC driver program options to pass to
178 CPP. It can also specify how to translate options you give to GNU CC into
179 options for GNU CC to pass to the CPP. */
180
181 /* ??? __LONG_MAX__ depends on LP64/ILP32 switch. */
182 /* ??? An alternative is to modify glimits.h to check for __LP64__ instead
183 of checked for CPU specific defines. We could also get rid of all LONG_MAX
184 defines in other tm.h files. */
185 #define CPP_SPEC \
186 "%{mcpu=itanium:-D__itanium__} %{mbig-endian:-D__BIG_ENDIAN__} \
187 -D__LONG_MAX__=9223372036854775807L"
188
189 /* If this macro is defined, the preprocessor will not define the builtin macro
190 `__SIZE_TYPE__'. The macro `__SIZE_TYPE__' must then be defined by
191 `CPP_SPEC' instead.
192
193 This should be defined if `SIZE_TYPE' depends on target dependent flags
194 which are not accessible to the preprocessor. Otherwise, it should not be
195 defined. */
196 /* ??? Needs to be defined for P64 code. */
197 /* #define NO_BUILTIN_SIZE_TYPE */
198
199 /* If this macro is defined, the preprocessor will not define the builtin macro
200 `__PTRDIFF_TYPE__'. The macro `__PTRDIFF_TYPE__' must then be defined by
201 `CPP_SPEC' instead.
202
203 This should be defined if `PTRDIFF_TYPE' depends on target dependent flags
204 which are not accessible to the preprocessor. Otherwise, it should not be
205 defined. */
206 /* ??? Needs to be defined for P64 code. */
207 /* #define NO_BUILTIN_PTRDIFF_TYPE */
208
209 /* A C string constant that tells the GNU CC driver program options to pass to
210 `cc1'. It can also specify how to translate options you give to GNU CC into
211 options for GNU CC to pass to the `cc1'. */
212
213 /* #define CC1_SPEC "" */
214
215 /* A C string constant that tells the GNU CC driver program options to pass to
216 `cc1plus'. It can also specify how to translate options you give to GNU CC
217 into options for GNU CC to pass to the `cc1plus'. */
218
219 /* #define CC1PLUS_SPEC "" */
220
221 /* A C string constant that tells the GNU CC driver program options to pass to
222 the assembler. It can also specify how to translate options you give to GNU
223 CC into options for GNU CC to pass to the assembler. */
224
225 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GNU_AS) != 0
226 /* GNU AS. */
227 #define ASM_SPEC \
228 "%{mno-gnu-as:-N so} %{!mno-gnu-as:-x} %{mconstant-gp} %{mauto-pic}"
229 #else
230 /* Intel ias. */
231 #define ASM_SPEC \
232 "%{!mgnu-as:-N so} %{mgnu-as:-x} %{mconstant-gp:-M const_gp}\
233 %{mauto-pic:-M no_plabel}"
234 #endif
235
236 /* A C string constant that tells the GNU CC driver program options to pass to
237 the linker. It can also specify how to translate options you give to GNU CC
238 into options for GNU CC to pass to the linker. */
239
240 /* The Intel linker does not support dynamic linking, so we need -dn.
241 The Intel linker gives annoying messages unless -N so is used. */
242 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GNU_LD) != 0
243 /* GNU LD. */
244 #define LINK_SPEC "%{mno-gnu-ld:-dn -N so}"
245 #else
246 /* Intel ild. */
247 #define LINK_SPEC "%{!mgnu-ld:-dn -N so}"
248 #endif
249
250 \f
251 /* Storage Layout */
252
253 /* Define this macro to have the value 1 if the most significant bit in a byte
254 has the lowest number; otherwise define it to have the value zero. */
255
256 #define BITS_BIG_ENDIAN 0
257
258 /* Define this macro to have the value 1 if the most significant byte in a word
259 has the lowest number. This macro need not be a constant. */
260
261 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
262
263 /* Define this macro to have the value 1 if, in a multiword object, the most
264 significant word has the lowest number. */
265
266 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
267
268 /* Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a
269 constant value with the same meaning as WORDS_BIG_ENDIAN, which will be used
270 only when compiling libgcc2.c. Typically the value will be set based on
271 preprocessor defines. */
272 #if defined(__BIG_ENDIAN__)
273 #define LIBGCC2_WORDS_BIG_ENDIAN 1
274 #else
275 #define LIBGCC2_WORDS_BIG_ENDIAN 0
276 #endif
277
278 /* Define this macro to be the number of bits in an addressable storage unit
279 (byte); normally 8. */
280 #define BITS_PER_UNIT 8
281
282 /* Number of bits in a word; normally 32. */
283 #define BITS_PER_WORD 64
284
285 /* Number of storage units in a word; normally 4. */
286 #define UNITS_PER_WORD 8
287
288 /* Width of a pointer, in bits. You must specify a value no wider than the
289 width of `Pmode'. If it is not equal to the width of `Pmode', you must
290 define `POINTERS_EXTEND_UNSIGNED'. */
291 /* ??? Implement optional 32 bit pointer size later? */
292 #define POINTER_SIZE 64
293
294 /* A C expression whose value is nonzero if pointers that need to be extended
295 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and zero if
296 they are zero-extended.
297
298 You need not define this macro if the `POINTER_SIZE' is equal to the width
299 of `Pmode'. */
300 /* ??? May need this for 32 bit pointers. */
301 /* #define POINTERS_EXTEND_UNSIGNED */
302
303 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
304 which has the specified mode and signedness is to be stored in a register.
305 This macro is only called when TYPE is a scalar type. */
306 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
307 do \
308 { \
309 if (GET_MODE_CLASS (MODE) == MODE_INT \
310 && GET_MODE_SIZE (MODE) < 4) \
311 (MODE) = SImode; \
312 } \
313 while (0)
314
315 /* Define this macro if the promotion described by `PROMOTE_MODE' should also
316 be done for outgoing function arguments. */
317 /* ??? ABI doesn't allow us to define this. */
318 /* #define PROMOTE_FUNCTION_ARGS */
319
320 /* Define this macro if the promotion described by `PROMOTE_MODE' should also
321 be done for the return value of functions.
322
323 If this macro is defined, `FUNCTION_VALUE' must perform the same promotions
324 done by `PROMOTE_MODE'. */
325 /* ??? ABI doesn't allow us to define this. */
326 /* #define PROMOTE_FUNCTION_RETURN */
327
328 /* Normal alignment required for function parameters on the stack, in bits.
329 All stack parameters receive at least this much alignment regardless of data
330 type. On most machines, this is the same as the size of an integer. */
331 #define PARM_BOUNDARY 64
332
333 /* Define this macro if you wish to preserve a certain alignment for the stack
334 pointer. The definition is a C expression for the desired alignment
335 (measured in bits). */
336
337 #define STACK_BOUNDARY 128
338
339 /* Align frames on double word boundaries */
340 #ifndef IA64_STACK_ALIGN
341 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
342 #endif
343
344 /* Alignment required for a function entry point, in bits. */
345 #define FUNCTION_BOUNDARY 128
346
347 /* Biggest alignment that any data type can require on this machine,
348 in bits. */
349 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
350 128 bit integers all require 128 bit alignment. */
351 #define BIGGEST_ALIGNMENT 128
352
353 /* If defined, a C expression to compute the alignment for a static variable.
354 TYPE is the data type, and ALIGN is the alignment that the object
355 would ordinarily have. The value of this macro is used instead of that
356 alignment to align the object. */
357
358 #define DATA_ALIGNMENT(TYPE, ALIGN) \
359 (TREE_CODE (TYPE) == ARRAY_TYPE \
360 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
361 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
362
363 /* If defined, a C expression to compute the alignment given to a constant that
364 is being placed in memory. CONSTANT is the constant and ALIGN is the
365 alignment that the object would ordinarily have. The value of this macro is
366 used instead of that alignment to align the object. */
367
368 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
369 (TREE_CODE (EXP) == STRING_CST \
370 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
371
372 /* Define this macro to be the value 1 if instructions will fail to work if
373 given data not on the nominal alignment. If instructions will merely go
374 slower in that case, define this macro as 0. */
375 #define STRICT_ALIGNMENT 1
376
377 /* Define this if you wish to imitate the way many other C compilers handle
378 alignment of bitfields and the structures that contain them.
379 The behavior is that the type written for a bitfield (`int', `short', or
380 other integer type) imposes an alignment for the entire structure, as if the
381 structure really did contain an ordinary field of that type. In addition,
382 the bitfield is placed within the structure so that it would fit within such
383 a field, not crossing a boundary for it. */
384 #define PCC_BITFIELD_TYPE_MATTERS 1
385
386 /* An integer expression for the size in bits of the largest integer machine
387 mode that should actually be used. */
388
389 /* Allow pairs of registers to be used, which is the intent of the default. */
390 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
391
392 /* A code distinguishing the floating point format of the target machine. */
393 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
394
395 /* GNU CC supports two ways of implementing C++ vtables: traditional or with
396 so-called "thunks". The flag `-fvtable-thunk' chooses between them. Define
397 this macro to be a C expression for the default value of that flag. If
398 `DEFAULT_VTABLE_THUNKS' is 0, GNU CC uses the traditional implementation by
399 default. The "thunk" implementation is more efficient (especially if you
400 have provided an implementation of `ASM_OUTPUT_MI_THUNK', but is not binary
401 compatible with code compiled using the traditional implementation. If you
402 are writing a new ports, define `DEFAULT_VTABLE_THUNKS' to 1.
403
404 If you do not define this macro, the default for `-fvtable-thunk' is 0. */
405 #define DEFAULT_VTABLE_THUNKS 1
406
407 \f
408 /* Layout of Source Language Data Types */
409
410 /* A C expression for the size in bits of the type `int' on the target machine.
411 If you don't define this, the default is one word. */
412 #define INT_TYPE_SIZE 32
413
414 /* A C expression for the size in bits of the type `short' on the target
415 machine. If you don't define this, the default is half a word. (If this
416 would be less than one storage unit, it is rounded up to one unit.) */
417 #define SHORT_TYPE_SIZE 16
418
419 /* A C expression for the size in bits of the type `long' on the target
420 machine. If you don't define this, the default is one word. */
421 /* ??? Should be 32 for ILP32 code. */
422 #define LONG_TYPE_SIZE 64
423
424 /* Maximum number for the size in bits of the type `long' on the target
425 machine. If this is undefined, the default is `LONG_TYPE_SIZE'. Otherwise,
426 it is the constant value that is the largest value that `LONG_TYPE_SIZE' can
427 have at run-time. This is used in `cpp'. */
428 /* ??? Should be 64 for ILP32 code. */
429 /* #define MAX_LONG_TYPE_SIZE */
430
431 /* A C expression for the size in bits of the type `long long' on the target
432 machine. If you don't define this, the default is two words. If you want
433 to support GNU Ada on your machine, the value of macro must be at least 64. */
434 #define LONG_LONG_TYPE_SIZE 64
435
436 /* A C expression for the size in bits of the type `char' on the target
437 machine. If you don't define this, the default is one quarter of a word.
438 (If this would be less than one storage unit, it is rounded up to one unit.) */
439 #define CHAR_TYPE_SIZE 8
440
441 /* A C expression for the size in bits of the type `float' on the target
442 machine. If you don't define this, the default is one word. */
443 #define FLOAT_TYPE_SIZE 32
444
445 /* A C expression for the size in bits of the type `double' on the target
446 machine. If you don't define this, the default is two words. */
447 #define DOUBLE_TYPE_SIZE 64
448
449 /* A C expression for the size in bits of the type `long double' on the target
450 machine. If you don't define this, the default is two words. */
451 #define LONG_DOUBLE_TYPE_SIZE 128
452
453 /* Tell real.c that this is the 80-bit Intel extended float format
454 packaged in a 128-bit entity. */
455 #define INTEL_EXTENDED_IEEE_FORMAT
456
457 /* An expression whose value is 1 or 0, according to whether the type `char'
458 should be signed or unsigned by default. The user can always override this
459 default with the options `-fsigned-char' and `-funsigned-char'. */
460 #define DEFAULT_SIGNED_CHAR 1
461
462 /* A C expression for a string describing the name of the data type to use for
463 size values. The typedef name `size_t' is defined using the contents of the
464 string. */
465 /* ??? Needs to be defined for P64 code. */
466 /* #define SIZE_TYPE */
467
468 /* A C expression for a string describing the name of the data type to use for
469 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
470 defined using the contents of the string. See `SIZE_TYPE' above for more
471 information. */
472 /* ??? Needs to be defined for P64 code. */
473 /* #define PTRDIFF_TYPE */
474
475 /* A C expression for a string describing the name of the data type to use for
476 wide characters. The typedef name `wchar_t' is defined using the contents
477 of the string. See `SIZE_TYPE' above for more information. */
478 /* #define WCHAR_TYPE */
479
480 /* A C expression for the size in bits of the data type for wide characters.
481 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
482 /* #define WCHAR_TYPE_SIZE */
483
484 /* Maximum number for the size in bits of the data type for wide characters.
485 If this is undefined, the default is `WCHAR_TYPE_SIZE'. Otherwise, it is
486 the constant value that is the largest value that `WCHAR_TYPE_SIZE' can have
487 at run-time. This is used in `cpp'. */
488 /* #define MAX_WCHAR_TYPE_SIZE */
489
490 /* A C constant expression for the integer value for escape sequence
491 `\a'. */
492 #define TARGET_BELL 0x7
493
494 /* C constant expressions for the integer values for escape sequences
495 `\b', `\t' and `\n'. */
496 #define TARGET_BS 0x8
497 #define TARGET_TAB 0x9
498 #define TARGET_NEWLINE 0xa
499
500 /* C constant expressions for the integer values for escape sequences
501 `\v', `\f' and `\r'. */
502 #define TARGET_VT 0xb
503 #define TARGET_FF 0xc
504 #define TARGET_CR 0xd
505
506 \f
507 /* Register Basics */
508
509 /* Number of hardware registers known to the compiler.
510 We have 128 general registers, 128 floating point registers,
511 64 predicate registers, 8 branch registers, one frame pointer,
512 and several "application" registers. */
513
514 #define FIRST_PSEUDO_REGISTER 335
515
516 /* Ranges for the various kinds of registers. */
517 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
518 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
519 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
520 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
521 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
522 #define GENERAL_REGNO_P(REGNO) \
523 (GR_REGNO_P (REGNO) \
524 || (REGNO) == FRAME_POINTER_REGNUM \
525 || (REGNO) == RETURN_ADDRESS_POINTER_REGNUM)
526
527 #define GR_REG(REGNO) ((REGNO) + 0)
528 #define FR_REG(REGNO) ((REGNO) + 128)
529 #define PR_REG(REGNO) ((REGNO) + 256)
530 #define BR_REG(REGNO) ((REGNO) + 320)
531 #define OUT_REG(REGNO) ((REGNO) + 120)
532 #define IN_REG(REGNO) ((REGNO) + 112)
533 #define LOC_REG(REGNO) ((REGNO) + 32)
534
535 #define AR_CCV_REGNUM 330
536 #define AR_UNAT_REGNUM 331
537 #define AR_PFS_REGNUM 332
538 #define AR_LC_REGNUM 333
539 #define AR_EC_REGNUM 334
540
541 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
542 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
543 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
544
545 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
546 || (REGNO) == AR_UNAT_REGNUM)
547 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
548 && (REGNO) < FIRST_PSEUDO_REGISTER)
549 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
550 && (REGNO) < FIRST_PSEUDO_REGISTER)
551
552
553 /* ??? Don't really need two sets of macros. I like this one better because
554 it is less typing. */
555 #define R_GR(REGNO) GR_REG (REGNO)
556 #define R_FR(REGNO) FR_REG (REGNO)
557 #define R_PR(REGNO) PR_REG (REGNO)
558 #define R_BR(REGNO) BR_REG (REGNO)
559
560 /* An initializer that says which registers are used for fixed purposes all
561 throughout the compiled code and are therefore not available for general
562 allocation.
563
564 r0: constant 0
565 r1: global pointer (gp)
566 r12: stack pointer (sp)
567 r13: thread pointer (tp)
568 f0: constant 0.0
569 f1: constant 1.0
570 p0: constant true
571 fp: eliminable frame pointer */
572
573 /* The last 16 stacked regs are reserved for the 8 input and 8 output
574 registers. */
575
576 #define FIXED_REGISTERS \
577 { /* General registers. */ \
578 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
579 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
580 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
581 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
582 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
583 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
584 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
585 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
586 /* Floating-point registers. */ \
587 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
588 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
589 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
590 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
591 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
592 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
593 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
594 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
595 /* Predicate registers. */ \
596 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
597 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
598 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
599 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
600 /* Branch registers. */ \
601 0, 0, 0, 0, 0, 0, 0, 0, \
602 /*FP RA CCV UNAT PFS LC EC */ \
603 1, 1, 1, 1, 1, 0, 1 \
604 }
605
606 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
607 (in general) by function calls as well as for fixed registers. This
608 macro therefore identifies the registers that are not available for
609 general allocation of values that must live across function calls. */
610
611 #define CALL_USED_REGISTERS \
612 { /* General registers. */ \
613 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
614 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
615 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
616 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
617 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
618 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
619 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
620 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
621 /* Floating-point registers. */ \
622 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
623 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
624 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
625 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
626 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
627 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
628 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
629 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
630 /* Predicate registers. */ \
631 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
632 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
633 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
634 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
635 /* Branch registers. */ \
636 1, 0, 0, 0, 0, 0, 1, 1, \
637 /*FP RA CCV UNAT PFS LC EC */ \
638 1, 1, 1, 1, 1, 0, 1 \
639 }
640
641 /* Define this macro if the target machine has register windows. This C
642 expression returns the register number as seen by the called function
643 corresponding to the register number OUT as seen by the calling function.
644 Return OUT if register number OUT is not an outbound register. */
645
646 #define INCOMING_REGNO(OUT) \
647 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
648
649 /* Define this macro if the target machine has register windows. This C
650 expression returns the register number as seen by the calling function
651 corresponding to the register number IN as seen by the called function.
652 Return IN if register number IN is not an inbound register. */
653
654 #define OUTGOING_REGNO(IN) \
655 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
656
657 /* Define this macro if the target machine has register windows. This
658 C expression returns true if the register is call-saved but is in the
659 register window. */
660
661 #define LOCAL_REGNO(REGNO) \
662 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
663
664 /* Add any extra modes needed to represent the condition code.
665
666 CCImode is used to mark a single predicate register instead
667 of a register pair. This is currently only used in reg_raw_mode
668 so that flow doesn't do something stupid. */
669
670 #define EXTRA_CC_MODES CC(CCImode, "CCI")
671
672 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
673 return the mode to be used for the comparison. Must be defined if
674 EXTRA_CC_MODES is defined. */
675
676 #define SELECT_CC_MODE(OP,X,Y) CCmode
677 \f
678 /* Order of allocation of registers */
679
680 /* If defined, an initializer for a vector of integers, containing the numbers
681 of hard registers in the order in which GNU CC should prefer to use them
682 (from most preferred to least).
683
684 If this macro is not defined, registers are used lowest numbered first (all
685 else being equal).
686
687 One use of this macro is on machines where the highest numbered registers
688 must always be saved and the save-multiple-registers instruction supports
689 only sequences of consecutive registers. On such machines, define
690 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
691 allocatable register first. */
692
693 /* ??? Should the GR return value registers come before or after the rest
694 of the caller-save GRs? */
695
696 #define REG_ALLOC_ORDER \
697 { \
698 /* Caller-saved general registers. */ \
699 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
700 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
701 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
702 R_GR (30), R_GR (31), \
703 /* Output registers. */ \
704 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
705 R_GR (126), R_GR (127), \
706 /* Caller-saved general registers, also used for return values. */ \
707 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
708 /* addl caller-saved general registers. */ \
709 R_GR (2), R_GR (3), \
710 /* Caller-saved FP registers. */ \
711 R_FR (6), R_FR (7), \
712 /* Caller-saved FP registers, used for parameters and return values. */ \
713 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
714 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
715 /* Rotating caller-saved FP registers. */ \
716 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
717 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
718 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
719 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
720 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
721 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
722 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
723 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
724 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
725 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
726 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
727 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
728 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
729 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
730 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
731 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
732 R_FR (126), R_FR (127), \
733 /* Caller-saved predicate registers. */ \
734 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
735 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
736 /* Rotating caller-saved predicate registers. */ \
737 R_PR (16), R_PR (17), \
738 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
739 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
740 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
741 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
742 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
743 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
744 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
745 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
746 /* Caller-saved branch registers. */ \
747 R_BR (6), R_BR (7), \
748 \
749 /* Stacked callee-saved general registers. */ \
750 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
751 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
752 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
753 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
754 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
755 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
756 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
757 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
758 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
759 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
760 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
761 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
762 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
763 R_GR (108), \
764 /* Input registers. */ \
765 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
766 R_GR (118), R_GR (119), \
767 /* Callee-saved general registers. */ \
768 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
769 /* Callee-saved FP registers. */ \
770 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
771 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
772 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
773 R_FR (30), R_FR (31), \
774 /* Callee-saved predicate registers. */ \
775 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
776 /* Callee-saved branch registers. */ \
777 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
778 \
779 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
780 R_GR (109), R_GR (110), R_GR (111), \
781 \
782 /* Special general registers. */ \
783 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
784 /* Special FP registers. */ \
785 R_FR (0), R_FR (1), \
786 /* Special predicate registers. */ \
787 R_PR (0), \
788 /* Special branch registers. */ \
789 R_BR (0), \
790 /* Other fixed registers. */ \
791 FRAME_POINTER_REGNUM, RETURN_ADDRESS_POINTER_REGNUM, \
792 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
793 AR_EC_REGNUM \
794 }
795 \f
796 /* How Values Fit in Registers */
797
798 /* A C expression for the number of consecutive hard registers, starting at
799 register number REGNO, required to hold a value of mode MODE. */
800
801 /* ??? We say that CCmode values require two registers. This allows us to
802 easily store the normal and inverted values. We use CCImode to indicate
803 a single predicate register. */
804
805 #define HARD_REGNO_NREGS(REGNO, MODE) \
806 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
807 : PR_REGNO_P (REGNO) && (MODE) == CCmode ? 2 \
808 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
809 : FR_REGNO_P (REGNO) && (MODE) == TFmode ? 1 \
810 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
811
812 /* A C expression that is nonzero if it is permissible to store a value of mode
813 MODE in hard register number REGNO (or in several registers starting with
814 that one). */
815
816 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
817 (FR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) != MODE_CC && (MODE) != TImode \
818 : PR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
819 : GR_REGNO_P (REGNO) ? (MODE) != CCImode && (MODE) != TFmode \
820 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
821 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
822 : 0)
823
824 /* A C expression that is nonzero if it is desirable to choose register
825 allocation so as to avoid move instructions between a value of mode MODE1
826 and a value of mode MODE2.
827
828 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
829 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
830 zero. */
831 /* ??? If the comments are true, then this must be zero if one mode is CCmode,
832 INTEGRAL_MODE_P or FLOAT_MODE_P and the other is not. Otherwise, it is
833 true. */
834 /* Don't tie integer and FP modes, as that causes us to get integer registers
835 allocated for FP instructions. TFmode only supported in FP registers so
836 we can't tie it with any other modes. */
837 #define MODES_TIEABLE_P(MODE1, MODE2) \
838 ((GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)) \
839 && (((MODE1) == TFmode) == ((MODE2) == TFmode)))
840
841 /* Define this macro if the compiler should avoid copies to/from CCmode
842 registers. You should only define this macro if support fo copying to/from
843 CCmode is incomplete. */
844 /* ??? CCmode copies are very expensive, so we might want this defined. */
845 /* #define AVOID_CCMODE_COPIES */
846
847 \f
848 /* Handling Leaf Functions */
849
850 /* A C initializer for a vector, indexed by hard register number, which
851 contains 1 for a register that is allowable in a candidate for leaf function
852 treatment. */
853 /* ??? This might be useful. */
854 /* #define LEAF_REGISTERS */
855
856 /* A C expression whose value is the register number to which REGNO should be
857 renumbered, when a function is treated as a leaf function. */
858 /* ??? This might be useful. */
859 /* #define LEAF_REG_REMAP(REGNO) */
860
861 \f
862 /* Register Classes */
863
864 /* An enumeral type that must be defined with all the register class names as
865 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
866 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
867 which is not a register class but rather tells how many classes there
868 are. */
869 /* ??? When compiling without optimization, it is possible for the only use of
870 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
871 Regclass handles this case specially and does not assign any costs to the
872 pseudo. The pseudo then ends up using the last class before ALL_REGS.
873 Thus we must not let either PR_REGS or BR_REGS be the last class. The
874 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
875 enum reg_class
876 {
877 NO_REGS,
878 PR_REGS,
879 BR_REGS,
880 ADDL_REGS,
881 GR_REGS,
882 FR_REGS,
883 GR_AND_FR_REGS,
884 AR_M_REGS,
885 AR_I_REGS,
886 ALL_REGS,
887 LIM_REG_CLASSES
888 };
889
890 #define GENERAL_REGS GR_REGS
891
892 /* The number of distinct register classes. */
893 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
894
895 /* An initializer containing the names of the register classes as C string
896 constants. These names are used in writing some of the debugging dumps. */
897 #define REG_CLASS_NAMES \
898 { "NO_REGS", "PR_REGS", "BR_REGS", "ADDL_REGS", "GR_REGS", \
899 "FR_REGS", "GR_AND_FR_REGS", "AR_M_REGS", "AR_I_REGS", \
900 "ALL_REGS" }
901
902 /* An initializer containing the contents of the register classes, as integers
903 which are bit masks. The Nth integer specifies the contents of class N.
904 The way the integer MASK is interpreted is that register R is in the class
905 if `MASK & (1 << R)' is 1. */
906 #define REG_CLASS_CONTENTS \
907 { \
908 /* NO_REGS. */ \
909 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
910 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
911 0x00000000, 0x00000000, 0x0000 }, \
912 /* PR_REGS. */ \
913 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
914 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
915 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
916 /* BR_REGS. */ \
917 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
918 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
919 0x00000000, 0x00000000, 0x00FF }, \
920 /* ADDL_REGS. */ \
921 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
922 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
923 0x00000000, 0x00000000, 0x0000 }, \
924 /* GR_REGS. */ \
925 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
926 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
927 0x00000000, 0x00000000, 0x0300 }, \
928 /* FR_REGS. */ \
929 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
930 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
931 0x00000000, 0x00000000, 0x0000 }, \
932 /* GR_AND_FR_REGS. */ \
933 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
934 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
935 0x00000000, 0x00000000, 0x0300 }, \
936 /* AR_M_REGS. */ \
937 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
938 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
939 0x00000000, 0x00000000, 0x0C00 }, \
940 /* AR_I_REGS. */ \
941 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
942 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
943 0x00000000, 0x00000000, 0x7000 }, \
944 /* ALL_REGS. */ \
945 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
946 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
947 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFF }, \
948 }
949
950 /* A C expression whose value is a register class containing hard register
951 REGNO. In general there is more than one such class; choose a class which
952 is "minimal", meaning that no smaller class also contains the register. */
953 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
954 may call here with private (invalid) register numbers, such as
955 REG_VOLATILE. */
956 #define REGNO_REG_CLASS(REGNO) \
957 (ADDL_REGNO_P (REGNO) ? ADDL_REGS \
958 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
959 : FR_REGNO_P (REGNO) ? FR_REGS \
960 : PR_REGNO_P (REGNO) ? PR_REGS \
961 : BR_REGNO_P (REGNO) ? BR_REGS \
962 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
963 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
964 : NO_REGS)
965
966 /* A macro whose definition is the name of the class to which a valid base
967 register must belong. A base register is one used in an address which is
968 the register value plus a displacement. */
969 #define BASE_REG_CLASS GENERAL_REGS
970
971 /* A macro whose definition is the name of the class to which a valid index
972 register must belong. An index register is one used in an address where its
973 value is either multiplied by a scale factor or added to another register
974 (as well as added to a displacement). */
975 #define INDEX_REG_CLASS NO_REGS
976
977 /* A C expression which defines the machine-dependent operand constraint
978 letters for register classes. If CHAR is such a letter, the value should be
979 the register class corresponding to it. Otherwise, the value should be
980 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
981 will not be passed to this macro; you do not need to handle it. */
982
983 #define REG_CLASS_FROM_LETTER(CHAR) \
984 ((CHAR) == 'f' ? FR_REGS \
985 : (CHAR) == 'a' ? ADDL_REGS \
986 : (CHAR) == 'b' ? BR_REGS \
987 : (CHAR) == 'c' ? PR_REGS \
988 : (CHAR) == 'd' ? AR_M_REGS \
989 : (CHAR) == 'e' ? AR_I_REGS \
990 : NO_REGS)
991
992 /* A C expression which is nonzero if register number NUM is suitable for use
993 as a base register in operand addresses. It may be either a suitable hard
994 register or a pseudo register that has been allocated such a hard reg. */
995 #define REGNO_OK_FOR_BASE_P(REGNO) \
996 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
997
998 /* A C expression which is nonzero if register number NUM is suitable for use
999 as an index register in operand addresses. It may be either a suitable hard
1000 register or a pseudo register that has been allocated such a hard reg. */
1001 #define REGNO_OK_FOR_INDEX_P(NUM) 0
1002
1003 /* A C expression that places additional restrictions on the register class to
1004 use when it is necessary to copy value X into a register in class CLASS.
1005 The value is a register class; perhaps CLASS, or perhaps another, smaller
1006 class. */
1007
1008 /* Don't allow volatile mem reloads into floating point registers. This
1009 is defined to force reload to choose the r/m case instead of the f/f case
1010 when reloading (set (reg fX) (mem/v)). */
1011
1012 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1013 ((CLASS == FR_REGS && GET_CODE (X) == MEM && MEM_VOLATILE_P (X)) \
1014 ? NO_REGS \
1015 : CLASS)
1016
1017 /* You should define this macro to indicate to the reload phase that it may
1018 need to allocate at least one register for a reload in addition to the
1019 register to contain the data. Specifically, if copying X to a register
1020 CLASS in MODE requires an intermediate register, you should define this
1021 to return the largest register class all of whose registers can be used
1022 as intermediate registers or scratch registers. */
1023
1024 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
1025 ia64_secondary_reload_class (CLASS, MODE, X)
1026
1027 /* Certain machines have the property that some registers cannot be copied to
1028 some other registers without using memory. Define this macro on those
1029 machines to be a C expression that is non-zero if objects of mode M in
1030 registers of CLASS1 can only be copied to registers of class CLASS2 by
1031 storing a register of CLASS1 into memory and loading that memory location
1032 into a register of CLASS2. */
1033
1034 #if 0
1035 /* ??? May need this, but since we've disallowed TFmode in GR_REGS,
1036 I'm not quite sure how it could be invoked. The normal problems
1037 with unions should be solved with the addressof fiddling done by
1038 movtf and friends. */
1039 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1040 ((MODE) == TFmode && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
1041 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
1042 #endif
1043
1044 /* A C expression for the maximum number of consecutive registers of
1045 class CLASS needed to hold a value of mode MODE.
1046 This is closely related to the macro `HARD_REGNO_NREGS'. */
1047
1048 #define CLASS_MAX_NREGS(CLASS, MODE) \
1049 ((MODE) == CCmode && (CLASS) == PR_REGS ? 2 \
1050 : ((CLASS) == FR_REGS && (MODE) == TFmode) ? 1 \
1051 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1052
1053 /* If defined, gives a class of registers that cannot be used as the
1054 operand of a SUBREG that changes the mode of the object illegally. */
1055
1056 #define CLASS_CANNOT_CHANGE_MODE FR_REGS
1057
1058 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.
1059 In FP regs, we can't change FP values to integer values and vice
1060 versa, but we can change e.g. DImode to SImode. */
1061
1062 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1063 (GET_MODE_CLASS (FROM) != GET_MODE_CLASS (TO))
1064
1065 /* A C expression that defines the machine-dependent operand constraint
1066 letters (`I', `J', `K', .. 'P') that specify particular ranges of
1067 integer values. */
1068
1069 /* 14 bit signed immediate for arithmetic instructions. */
1070 #define CONST_OK_FOR_I(VALUE) \
1071 ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
1072 /* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source. */
1073 #define CONST_OK_FOR_J(VALUE) \
1074 ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
1075 /* 8 bit signed immediate for logical instructions. */
1076 #define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
1077 /* 8 bit adjusted signed immediate for compare pseudo-ops. */
1078 #define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
1079 /* 6 bit unsigned immediate for shift counts. */
1080 #define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
1081 /* 9 bit signed immediate for load/store post-increments. */
1082 #define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
1083 /* 0 for r0. Used by Linux kernel, do not change. */
1084 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1085 /* 0 or -1 for dep instruction. */
1086 #define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
1087
1088 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1089 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1090 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1091 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1092 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1093 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1094 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1095 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1096 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1097 : 0)
1098
1099 /* A C expression that defines the machine-dependent operand constraint letters
1100 (`G', `H') that specify particular ranges of `const_double' values. */
1101
1102 /* 0.0 and 1.0 for fr0 and fr1. */
1103 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
1104 ((VALUE) == CONST0_RTX (GET_MODE (VALUE)) \
1105 || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
1106
1107 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1108 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) : 0)
1109
1110 /* A C expression that defines the optional machine-dependent constraint
1111 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1112 types of operands, usually memory references, for the target machine. */
1113
1114 /* Non-volatile memory for FP_REG loads/stores. */
1115 #define CONSTRAINT_OK_FOR_Q(VALUE) \
1116 (memory_operand((VALUE), VOIDmode) && ! MEM_VOLATILE_P (VALUE))
1117 /* 1..4 for shladd arguments. */
1118 #define CONSTRAINT_OK_FOR_R(VALUE) \
1119 (GET_CODE (VALUE) == CONST_INT && INTVAL (VALUE) >= 1 && INTVAL (VALUE) <= 4)
1120 /* Non-post-inc memory for asms and other unsavory creatures. */
1121 #define CONSTRAINT_OK_FOR_S(VALUE) \
1122 (GET_CODE (VALUE) == MEM \
1123 && GET_RTX_CLASS (GET_CODE (XEXP ((VALUE), 0))) != 'a' \
1124 && (reload_in_progress || memory_operand ((VALUE), VOIDmode)))
1125
1126 #define EXTRA_CONSTRAINT(VALUE, C) \
1127 ((C) == 'Q' ? CONSTRAINT_OK_FOR_Q (VALUE) \
1128 : (C) == 'R' ? CONSTRAINT_OK_FOR_R (VALUE) \
1129 : (C) == 'S' ? CONSTRAINT_OK_FOR_S (VALUE) \
1130 : 0)
1131 \f
1132 /* Basic Stack Layout */
1133
1134 /* Define this macro if pushing a word onto the stack moves the stack pointer
1135 to a smaller address. */
1136 #define STACK_GROWS_DOWNWARD 1
1137
1138 /* Define this macro if the addresses of local variable slots are at negative
1139 offsets from the frame pointer. */
1140 /* #define FRAME_GROWS_DOWNWARD */
1141
1142 /* Offset from the frame pointer to the first local variable slot to
1143 be allocated. */
1144 #define STARTING_FRAME_OFFSET 0
1145
1146 /* Offset from the stack pointer register to the first location at which
1147 outgoing arguments are placed. If not specified, the default value of zero
1148 is used. This is the proper value for most machines. */
1149 /* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
1150 #define STACK_POINTER_OFFSET 16
1151
1152 /* Offset from the argument pointer register to the first argument's address.
1153 On some machines it may depend on the data type of the function. */
1154 #define FIRST_PARM_OFFSET(FUNDECL) 0
1155
1156 /* A C expression whose value is RTL representing the value of the return
1157 address for the frame COUNT steps up from the current frame, after the
1158 prologue. */
1159
1160 /* ??? Frames other than zero would likely require interpreting the frame
1161 unwind info, so we don't try to support them. We would also need to define
1162 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
1163
1164 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1165 ((COUNT) == 0 ? return_address_pointer_rtx : const0_rtx)
1166
1167 /* A C expression whose value is RTL representing the location of the incoming
1168 return address at the beginning of any function, before the prologue. This
1169 RTL is either a `REG', indicating that the return value is saved in `REG',
1170 or a `MEM' representing a location in the stack. This enables DWARF2
1171 unwind info for C++ EH. */
1172 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
1173
1174 /* ??? This is not defined because of three problems.
1175 1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1176 The default value is FIRST_PSEUDO_REGISTER which doesn't. This can be
1177 worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1178 unused register number.
1179 2) dwarf2out_frame_debug core dumps while processing prologue insns. We
1180 need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1181 3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1182 to zero, despite what the documentation implies, because it is tested in
1183 a few places with #ifdef instead of #if. */
1184 #undef INCOMING_RETURN_ADDR_RTX
1185
1186 /* A C expression whose value is an integer giving the offset, in bytes, from
1187 the value of the stack pointer register to the top of the stack frame at the
1188 beginning of any function, before the prologue. The top of the frame is
1189 defined to be the value of the stack pointer in the previous frame, just
1190 before the call instruction. */
1191 #define INCOMING_FRAME_SP_OFFSET 0
1192
1193 \f
1194 /* Register That Address the Stack Frame. */
1195
1196 /* The register number of the stack pointer register, which must also be a
1197 fixed register according to `FIXED_REGISTERS'. On most machines, the
1198 hardware determines which register this is. */
1199
1200 #define STACK_POINTER_REGNUM 12
1201
1202 /* The register number of the frame pointer register, which is used to access
1203 automatic variables in the stack frame. On some machines, the hardware
1204 determines which register this is. On other machines, you can choose any
1205 register you wish for this purpose. */
1206
1207 #define FRAME_POINTER_REGNUM 328
1208
1209 /* Base register for access to local variables of the function. */
1210 #define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
1211
1212 /* The register number of the arg pointer register, which is used to access the
1213 function's argument list. */
1214 /* r0 won't otherwise be used, so put the always eliminated argument pointer
1215 in it. */
1216 #define ARG_POINTER_REGNUM R_GR(0)
1217
1218 /* The register number for the return address register. For IA-64, this
1219 is not actually a pointer as the name suggests, but that's a name that
1220 gen_rtx_REG already takes care to keep unique. We modify
1221 return_address_pointer_rtx in ia64_expand_prologue to reference the
1222 final output regnum. */
1223 #define RETURN_ADDRESS_POINTER_REGNUM 329
1224
1225 /* Register numbers used for passing a function's static chain pointer. */
1226 /* ??? The ABI sez the static chain should be passed as a normal parameter. */
1227 #define STATIC_CHAIN_REGNUM 15
1228 \f
1229 /* Eliminating the Frame Pointer and the Arg Pointer */
1230
1231 /* A C expression which is nonzero if a function must have and use a frame
1232 pointer. This expression is evaluated in the reload pass. If its value is
1233 nonzero the function will have a frame pointer. */
1234 #define FRAME_POINTER_REQUIRED 0
1235
1236 /* Show we can debug even without a frame pointer. */
1237 #define CAN_DEBUG_WITHOUT_FP
1238
1239 /* If defined, this macro specifies a table of register pairs used to eliminate
1240 unneeded registers that point into the stack frame. */
1241
1242 #define ELIMINABLE_REGS \
1243 { \
1244 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1245 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1246 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1247 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1248 {RETURN_ADDRESS_POINTER_REGNUM, BR_REG (0)}, \
1249 }
1250
1251 /* A C expression that returns non-zero if the compiler is allowed to try to
1252 replace register number FROM with register number TO. The frame pointer
1253 is automatically handled. */
1254
1255 #define CAN_ELIMINATE(FROM, TO) \
1256 (TO == BR_REG (0) ? current_function_is_leaf : 1)
1257
1258 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1259 specifies the initial difference between the specified pair of
1260 registers. This macro must be defined if `ELIMINABLE_REGS' is
1261 defined. */
1262 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1263 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1264 \f
1265 /* Passing Function Arguments on the Stack */
1266
1267 /* Define this macro if an argument declared in a prototype as an integral type
1268 smaller than `int' should actually be passed as an `int'. In addition to
1269 avoiding errors in certain cases of mismatch, it also makes for better code
1270 on certain machines. */
1271 /* ??? Investigate. */
1272 /* #define PROMOTE_PROTOTYPES */
1273
1274 /* If defined, the maximum amount of space required for outgoing arguments will
1275 be computed and placed into the variable
1276 `current_function_outgoing_args_size'. */
1277
1278 #define ACCUMULATE_OUTGOING_ARGS 1
1279
1280 /* A C expression that should indicate the number of bytes of its own arguments
1281 that a function pops on returning, or 0 if the function pops no arguments
1282 and the caller must therefore pop them all after the function returns. */
1283
1284 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1285
1286 \f
1287 /* Function Arguments in Registers */
1288
1289 #define MAX_ARGUMENT_SLOTS 8
1290 #define MAX_INT_RETURN_SLOTS 4
1291 #define GR_ARG_FIRST IN_REG (0)
1292 #define GR_RET_FIRST GR_REG (8)
1293 #define GR_RET_LAST GR_REG (11)
1294 #define FR_ARG_FIRST FR_REG (8)
1295 #define FR_RET_FIRST FR_REG (8)
1296 #define FR_RET_LAST FR_REG (15)
1297 #define AR_ARG_FIRST OUT_REG (0)
1298
1299 /* A C expression that controls whether a function argument is passed in a
1300 register, and which register. */
1301
1302 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1303 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1304
1305 /* Define this macro if the target machine has "register windows", so that the
1306 register in which a function sees an arguments is not necessarily the same
1307 as the one in which the caller passed the argument. */
1308
1309 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1310 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1311
1312 /* A C expression for the number of words, at the beginning of an argument,
1313 must be put in registers. The value must be zero for arguments that are
1314 passed entirely in registers or that are entirely pushed on the stack. */
1315
1316 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1317 ia64_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1318
1319 /* A C expression that indicates when an argument must be passed by reference.
1320 If nonzero for an argument, a copy of that argument is made in memory and a
1321 pointer to the argument is passed instead of the argument itself. The
1322 pointer is passed in whatever way is appropriate for passing a pointer to
1323 that type. */
1324
1325 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) 0
1326
1327 /* A C type for declaring a variable that is used as the first argument of
1328 `FUNCTION_ARG' and other related values. For some target machines, the type
1329 `int' suffices and can hold the number of bytes of argument so far. */
1330
1331 typedef struct ia64_args
1332 {
1333 int words; /* # words of arguments so far */
1334 int fp_regs; /* # FR registers used so far */
1335 int prototype; /* whether function prototyped */
1336 } CUMULATIVE_ARGS;
1337
1338 /* A C statement (sans semicolon) for initializing the variable CUM for the
1339 state at the beginning of the argument list. */
1340
1341 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1342 do { \
1343 (CUM).words = 0; \
1344 (CUM).fp_regs = 0; \
1345 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1346 } while (0)
1347
1348 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1349 arguments for the function being compiled. If this macro is undefined,
1350 `INIT_CUMULATIVE_ARGS' is used instead. */
1351
1352 /* We set prototype to true so that we never try to return a PARALLEL from
1353 function_arg. */
1354 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1355 do { \
1356 (CUM).words = 0; \
1357 (CUM).fp_regs = 0; \
1358 (CUM).prototype = 1; \
1359 } while (0)
1360
1361 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1362 advance past an argument in the argument list. The values MODE, TYPE and
1363 NAMED describe that argument. Once this is done, the variable CUM is
1364 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1365
1366 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1367 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1368
1369 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1370 argument with the specified mode and type. */
1371
1372 /* Arguments larger than 64 bits require 128 bit alignment. */
1373
1374 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1375 (((((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1376 + UNITS_PER_WORD - 1) / UNITS_PER_WORD) > 1 ? 128 : PARM_BOUNDARY)
1377
1378 /* A C expression that is nonzero if REGNO is the number of a hard register in
1379 which function arguments are sometimes passed. This does *not* include
1380 implicit arguments such as the static chain and the structure-value address.
1381 On many machines, no registers can be used for this purpose since all
1382 function arguments are pushed on the stack. */
1383 #define FUNCTION_ARG_REGNO_P(REGNO) \
1384 (((REGNO) >= GR_ARG_FIRST && (REGNO) < (GR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1385 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1386 \f
1387 /* Implement `va_start' for varargs and stdarg. */
1388 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1389 ia64_va_start (stdarg, valist, nextarg)
1390
1391 /* Implement `va_arg'. */
1392 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1393 ia64_va_arg (valist, type)
1394 \f
1395 /* How Scalar Function Values are Returned */
1396
1397 /* A C expression to create an RTX representing the place where a function
1398 returns a value of data type VALTYPE. */
1399
1400 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1401 ia64_function_value (VALTYPE, FUNC)
1402
1403 /* A C expression to create an RTX representing the place where a library
1404 function returns a value of mode MODE. */
1405
1406 #define LIBCALL_VALUE(MODE) \
1407 gen_rtx_REG (MODE, \
1408 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1409 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1410 ? FR_RET_FIRST : GR_RET_FIRST))
1411
1412 /* A C expression that is nonzero if REGNO is the number of a hard register in
1413 which the values of called function may come back. */
1414
1415 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1416 (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
1417 || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1418
1419 \f
1420 /* How Large Values are Returned */
1421
1422 /* A nonzero value says to return the function value in memory, just as large
1423 structures are always returned. */
1424
1425 #define RETURN_IN_MEMORY(TYPE) \
1426 ia64_return_in_memory (TYPE)
1427
1428 /* If you define this macro to be 0, then the conventions used for structure
1429 and union return values are decided by the `RETURN_IN_MEMORY' macro. */
1430
1431 #define DEFAULT_PCC_STRUCT_RETURN 0
1432
1433 /* If the structure value address is passed in a register, then
1434 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1435
1436 #define STRUCT_VALUE_REGNUM GR_REG (8)
1437
1438 \f
1439 /* Caller-Saves Register Allocation */
1440
1441 /* A C expression to determine whether it is worthwhile to consider placing a
1442 pseudo-register in a call-clobbered hard register and saving and restoring
1443 it around each function call. The expression should be 1 when this is worth
1444 doing, and 0 otherwise.
1445
1446 If you don't define this macro, a default is used which is good on most
1447 machines: `4 * CALLS < REFS'. */
1448 /* ??? Investigate. */
1449 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1450
1451 \f
1452 /* Function Entry and Exit */
1453
1454 /* A C compound statement that outputs the assembler code for entry to a
1455 function. */
1456
1457 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1458 ia64_function_prologue (FILE, SIZE)
1459
1460 /* This macro notes the end of the prologue. */
1461
1462 #define FUNCTION_END_PROLOGUE(FILE) ia64_output_end_prologue (FILE)
1463
1464 /* Define this macro as a C expression that is nonzero if the return
1465 instruction or the function epilogue ignores the value of the stack pointer;
1466 in other words, if it is safe to delete an instruction to adjust the stack
1467 pointer before a return from the function. */
1468
1469 #define EXIT_IGNORE_STACK 1
1470
1471 /* Define this macro as a C expression that is nonzero for registers
1472 used by the epilogue or the `return' pattern. */
1473
1474 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1475
1476 /* A C compound statement that outputs the assembler code for exit from a
1477 function. */
1478
1479 #define FUNCTION_EPILOGUE(FILE, SIZE) \
1480 ia64_function_epilogue (FILE, SIZE)
1481
1482 /* Output at beginning of assembler file. */
1483
1484 #define ASM_FILE_START(FILE) \
1485 emit_safe_across_calls (FILE)
1486
1487 /* A C compound statement that outputs the assembler code for a thunk function,
1488 used to implement C++ virtual function calls with multiple inheritance. */
1489
1490 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1491 do { \
1492 if (CONST_OK_FOR_I (DELTA)) \
1493 fprintf (FILE, "\tadds r32 = %d, r32\n", (DELTA)); \
1494 else \
1495 { \
1496 if (CONST_OK_FOR_J (DELTA)) \
1497 fprintf (FILE, "\taddl r2 = %d, r0\n", (DELTA)); \
1498 else \
1499 fprintf (FILE, "\tmovl r2 = %d\n", (DELTA)); \
1500 fprintf (FILE, "\t;;\n"); \
1501 fprintf (FILE, "\tadd r32 = r2, r32\n"); \
1502 } \
1503 fprintf (FILE, "\tbr "); \
1504 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1505 fprintf (FILE, "\n"); \
1506 } while (0)
1507
1508 \f
1509 /* Generating Code for Profiling. */
1510
1511 /* A C statement or compound statement to output to FILE some assembler code to
1512 call the profiling subroutine `mcount'. */
1513
1514 /* ??? Unclear if this will actually work. No way to test this currently. */
1515
1516 #define FUNCTION_PROFILER(FILE, LABELNO) \
1517 do { \
1518 char buf[20]; \
1519 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", LABELNO); \
1520 fputs ("\taddl r16 = @ltoff(", FILE); \
1521 assemble_name (FILE, buf); \
1522 fputs ("), gp\n", FILE); \
1523 fputs ("\tmov r17 = r1;;\n", FILE); \
1524 fputs ("\tld8 out0 = [r16]\n", FILE); \
1525 fputs ("\tmov r18 = b0\n", FILE); \
1526 fputs ("\tbr.call.sptk.many rp = mcount;;\n", FILE); \
1527 fputs ("\tmov b0 = r18\n", FILE); \
1528 fputs ("\tmov r1 = r17;;\n", FILE); \
1529 } while (0)
1530
1531 /* A C statement or compound statement to output to FILE some assembler code to
1532 initialize basic-block profiling for the current object module. */
1533
1534 /* ??? Unclear if this will actually work. No way to test this currently. */
1535
1536 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1537 do { \
1538 int labelno = LABELNO; \
1539 switch (profile_block_flag) \
1540 { \
1541 case 2: \
1542 fputs ("\taddl r16 = @ltoff(LPBX0), gp\n", FILE); \
1543 fprintf (FILE, "\tmov out1 = %d;;\n", labelno); \
1544 fputs ("\tld8 out0 = [r16]\n", FILE); \
1545 fputs ("\tmov r17 = r1\n", FILE); \
1546 fputs ("\tmov r18 = b0\n", FILE); \
1547 fputs ("\tbr.call.sptk.many rp = __bb_init_trace_func;;\n", FILE);\
1548 fputs ("\tmov r1 = r17\n", FILE); \
1549 fputs ("\tmov b0 = r18;;\n", FILE); \
1550 break; \
1551 default: \
1552 fputs ("\taddl r16 = @ltoff(LPBX0), gp;;\n", FILE); \
1553 fputs ("\tld8 out0 = [r16];;\n", FILE); \
1554 fputs ("\tld8 r17 = [out0];;\n", FILE); \
1555 fputs ("\tcmp.eq p6, p0 = r0, r17;;\n", FILE); \
1556 fputs ("(p6)\tmov r16 = r1\n", FILE); \
1557 fputs ("(p6)\tmov r17 = b0\n", FILE); \
1558 fputs ("(p6)\tbr.call.sptk.many rp = __bb_init_func;;\n", FILE); \
1559 fputs ("(p6)\tmov r1 = r16\n", FILE); \
1560 fputs ("(p6)\tmov b0 = r17;;\n", FILE); \
1561 break; \
1562 } \
1563 } while (0)
1564
1565 /* A C statement or compound statement to output to FILE some assembler code to
1566 increment the count associated with the basic block number BLOCKNO. */
1567
1568 /* ??? This can't work unless we mark some registers as fixed, so that we
1569 can use them as temporaries in this macro. We need two registers for -a
1570 profiling and 4 registers for -ax profiling. */
1571
1572 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1573 do { \
1574 int blockn = BLOCKNO; \
1575 switch (profile_block_flag) \
1576 { \
1577 case 2: \
1578 fputs ("\taddl r2 = @ltoff(__bb), gp\n", FILE); \
1579 fputs ("\taddl r3 = @ltoff(LPBX0), gp;;\n", FILE); \
1580 fprintf (FILE, "\tmov r9 = %d\n", blockn); \
1581 fputs ("\tld8 r2 = [r2]\n", FILE); \
1582 fputs ("\tld8 r3 = [r3];;\n", FILE); \
1583 fputs ("\tadd r8 = 8, r2\n", FILE); \
1584 fputs ("\tst8 [r2] = r9;;\n", FILE); \
1585 fputs ("\tst8 [r8] = r3\n", FILE); \
1586 fputs ("\tbr.call.sptk.many rp = __bb_trace_func\n", FILE); \
1587 break; \
1588 \
1589 default: \
1590 fputs ("\taddl r2 = @ltoff(LPBX2), gp;;\n", FILE); \
1591 fputs ("\tld8 r2 = [r2];;\n", FILE); \
1592 fprintf (FILE, "\taddl r2 = %d, r2;;\n", 8 * blockn); \
1593 fputs ("\tld8 r3 = [r2];;\n", FILE); \
1594 fputs ("\tadd r3 = 1, r3;;\n", FILE); \
1595 fputs ("\tst8 [r2] = r3;;\n", FILE); \
1596 break; \
1597 } \
1598 } while(0)
1599
1600 /* A C statement or compound statement to output to FILE assembler
1601 code to call function `__bb_trace_ret'. */
1602
1603 /* ??? Unclear if this will actually work. No way to test this currently. */
1604
1605 /* ??? This needs to be emitted into the epilogue. Perhaps rewrite to emit
1606 rtl and call from ia64_expand_epilogue? */
1607
1608 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1609 fputs ("\tbr.call.sptk.many rp = __bb_trace_ret\n", FILE);
1610 #undef FUNCTION_BLOCK_PROFILER_EXIT
1611
1612 /* A C statement or compound statement to save all registers, which may be
1613 clobbered by a function call, including condition codes. */
1614
1615 /* ??? We would have to save 20 GRs, 106 FRs, 10 PRs, 2 BRs, and possibly
1616 other things. This is not practical. Perhaps leave this feature (-ax)
1617 unsupported by undefining above macros? */
1618
1619 /* #define MACHINE_STATE_SAVE(ID) */
1620
1621 /* A C statement or compound statement to restore all registers, including
1622 condition codes, saved by `MACHINE_STATE_SAVE'. */
1623
1624 /* ??? We would have to restore 20 GRs, 106 FRs, 10 PRs, 2 BRs, and possibly
1625 other things. This is not practical. Perhaps leave this feature (-ax)
1626 unsupported by undefining above macros? */
1627
1628 /* #define MACHINE_STATE_RESTORE(ID) */
1629
1630 \f
1631 /* Implementing the Varargs Macros. */
1632
1633 /* Define this macro to store the anonymous register arguments into the stack
1634 so that all the arguments appear to have been passed consecutively on the
1635 stack. */
1636
1637 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
1638 ia64_setup_incoming_varargs (ARGS_SO_FAR, MODE, TYPE, & PRETEND_ARGS_SIZE, SECOND_TIME)
1639
1640 /* Define this macro if the location where a function argument is passed
1641 depends on whether or not it is a named argument. */
1642
1643 #define STRICT_ARGUMENT_NAMING 1
1644
1645 \f
1646 /* Trampolines for Nested Functions. */
1647
1648 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1649 the function containing a non-local goto target. */
1650
1651 #define STACK_SAVEAREA_MODE(LEVEL) \
1652 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1653
1654 /* Output assembler code for a block containing the constant parts of
1655 a trampoline, leaving space for the variable parts.
1656
1657 The trampoline should set the static chain pointer to value placed
1658 into the trampoline and should branch to the specified routine.
1659 To make the normal indirect-subroutine calling convention work,
1660 the trampoline must look like a function descriptor; the first
1661 word being the target address and the second being the target's
1662 global pointer.
1663
1664 We abuse the concept of a global pointer by arranging for it
1665 to point to the data we need to load. The complete trampoline
1666 has the following form:
1667
1668 +-------------------+ \
1669 TRAMP: | __ia64_trampoline | |
1670 +-------------------+ > fake function descriptor
1671 | TRAMP+16 | |
1672 +-------------------+ /
1673 | target descriptor |
1674 +-------------------+
1675 | static link |
1676 +-------------------+
1677 */
1678
1679 /* A C expression for the size in bytes of the trampoline, as an integer. */
1680
1681 #define TRAMPOLINE_SIZE 32
1682
1683 /* Alignment required for trampolines, in bits. */
1684
1685 #define TRAMPOLINE_ALIGNMENT 64
1686
1687 /* A C statement to initialize the variable parts of a trampoline. */
1688
1689 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1690 ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
1691 \f
1692 /* Implicit Calls to Library Routines */
1693
1694 /* ??? The ia64 linux kernel requires that we use the standard names for
1695 divide and modulo routines. However, if we aren't careful, lib1funcs.asm
1696 will be overridden by libgcc2.c. We avoid this by using different names
1697 for lib1funcs.asm modules, e.g. __divdi3 vs _divdi3. Since lib1funcs.asm
1698 goes into libgcc.a first, the linker will find it first. */
1699
1700 /* Define this macro if GNU CC should generate calls to the System V (and ANSI
1701 C) library functions `memcpy' and `memset' rather than the BSD functions
1702 `bcopy' and `bzero'. */
1703
1704 #define TARGET_MEM_FUNCTIONS
1705
1706 \f
1707 /* Addressing Modes */
1708
1709 /* Define this macro if the machine supports post-increment addressing. */
1710
1711 #define HAVE_POST_INCREMENT 1
1712 #define HAVE_POST_DECREMENT 1
1713 #define HAVE_POST_MODIFY_DISP 1
1714 #define HAVE_POST_MODIFY_REG 1
1715
1716 /* A C expression that is 1 if the RTX X is a constant which is a valid
1717 address. */
1718
1719 #define CONSTANT_ADDRESS_P(X) 0
1720
1721 /* The max number of registers that can appear in a valid memory address. */
1722
1723 #define MAX_REGS_PER_ADDRESS 2
1724
1725 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1726 RTX) is a legitimate memory address on the target machine for a memory
1727 operand of mode MODE. */
1728
1729 #define LEGITIMATE_ADDRESS_REG(X) \
1730 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1731 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1732 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1733
1734 #define LEGITIMATE_ADDRESS_DISP(R, X) \
1735 (GET_CODE (X) == PLUS \
1736 && rtx_equal_p (R, XEXP (X, 0)) \
1737 && (GET_CODE (XEXP (X, 1)) == REG \
1738 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
1739 && INTVAL (XEXP (X, 1)) >= -256 \
1740 && INTVAL (XEXP (X, 1)) < 256)))
1741
1742 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1743 do { \
1744 if (LEGITIMATE_ADDRESS_REG (X)) \
1745 goto LABEL; \
1746 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1747 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1748 && XEXP (X, 0) != arg_pointer_rtx) \
1749 goto LABEL; \
1750 else if (GET_CODE (X) == POST_MODIFY \
1751 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1752 && XEXP (X, 0) != arg_pointer_rtx \
1753 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
1754 goto LABEL; \
1755 } while (0)
1756
1757 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1758 use as a base register. */
1759
1760 #ifdef REG_OK_STRICT
1761 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1762 #else
1763 #define REG_OK_FOR_BASE_P(X) \
1764 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1765 #endif
1766
1767 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1768 use as an index register. */
1769
1770 #define REG_OK_FOR_INDEX_P(X) 0
1771
1772 /* A C compound statement that attempts to replace X with a valid memory
1773 address for an operand of mode MODE.
1774
1775 This must be present, but there is nothing useful to be done here. */
1776
1777 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1778
1779 /* A C statement or compound statement with a conditional `goto LABEL;'
1780 executed if memory address X (an RTX) can have different meanings depending
1781 on the machine mode of the memory reference it is used for or if the address
1782 is valid for some modes but not others. */
1783
1784 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1785 if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC) \
1786 goto LABEL;
1787
1788 /* A C expression that is nonzero if X is a legitimate constant for an
1789 immediate operand on the target machine. */
1790
1791 #define LEGITIMATE_CONSTANT_P(X) \
1792 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1793 || GET_MODE (X) == DImode || CONST_DOUBLE_OK_FOR_G (X)) \
1794
1795 \f
1796 /* Condition Code Status */
1797
1798 /* One some machines not all possible comparisons are defined, but you can
1799 convert an invalid comparison into a valid one. */
1800 /* ??? Investigate. See the alpha definition. */
1801 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1802
1803 \f
1804 /* Describing Relative Costs of Operations */
1805
1806 /* A part of a C `switch' statement that describes the relative costs of
1807 constant RTL expressions. */
1808
1809 /* ??? This is incomplete. */
1810
1811 #define CONST_COSTS(X, CODE, OUTER_CODE) \
1812 case CONST_INT: \
1813 if ((X) == const0_rtx) \
1814 return 0; \
1815 case CONST_DOUBLE: \
1816 case CONST: \
1817 case SYMBOL_REF: \
1818 case LABEL_REF: \
1819 return COSTS_N_INSNS (1);
1820
1821 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions. */
1822
1823 /* ??? Should define this to get better optimized code. */
1824
1825 /* We make divide expensive, so that divide-by-constant will be optimized to
1826 a multiply. */
1827
1828 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1829 case DIV: \
1830 case UDIV: \
1831 case MOD: \
1832 case UMOD: \
1833 return COSTS_N_INSNS (20);
1834
1835 /* An expression giving the cost of an addressing mode that contains ADDRESS.
1836 If not defined, the cost is computed from the ADDRESS expression and the
1837 `CONST_COSTS' values. */
1838
1839 #define ADDRESS_COST(ADDRESS) 0
1840
1841 /* A C expression for the cost of moving data from a register in class FROM to
1842 one in class TO. */
1843
1844 #define REGISTER_MOVE_COST(FROM, TO) \
1845 ia64_register_move_cost((FROM), (TO))
1846
1847 /* A C expression for the cost of moving data of mode M between a register and
1848 memory. */
1849 /* ??? Investigate. Might get better code by defining this. */
1850 /* #define MEMORY_MOVE_COST(M,C,I) */
1851
1852 /* A C expression for the cost of a branch instruction. A value of 1 is the
1853 default; other values are interpreted relative to that. Used by the
1854 if-conversion code as max instruction count. */
1855 /* ??? This requires investigation. The primary effect might be how
1856 many additional insn groups we run into, vs how good the dynamic
1857 branch predictor is. */
1858
1859 #define BRANCH_COST 6
1860
1861 /* Define this macro as a C expression which is nonzero if accessing less than
1862 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1863 word of memory. */
1864
1865 #define SLOW_BYTE_ACCESS 1
1866
1867 /* Define this macro if it is as good or better to call a constant function
1868 address than to call an address kept in a register.
1869
1870 Indirect function calls are more expensive that direct function calls, so
1871 don't cse function addresses. */
1872
1873 #define NO_FUNCTION_CSE
1874
1875 /* A C statement (sans semicolon) to update the integer variable COST based on
1876 the relationship between INSN that is dependent on DEP_INSN through the
1877 dependence LINK. */
1878
1879 /* ??? Investigate. */
1880 /* #define ADJUST_COST(INSN, LINK, DEP_INSN, COST) */
1881
1882 /* A C statement (sans semicolon) to update the integer scheduling
1883 priority `INSN_PRIORITY(INSN)'. */
1884
1885 /* ??? Investigate. */
1886 /* #define ADJUST_PRIORITY (INSN) */
1887
1888 \f
1889 /* Dividing the output into sections. */
1890
1891 /* A C expression whose value is a string containing the assembler operation
1892 that should precede instructions and read-only data. */
1893
1894 #define TEXT_SECTION_ASM_OP ".text"
1895
1896 /* A C expression whose value is a string containing the assembler operation to
1897 identify the following data as writable initialized data. */
1898
1899 #define DATA_SECTION_ASM_OP ".data"
1900
1901 /* If defined, a C expression whose value is a string containing the assembler
1902 operation to identify the following data as uninitialized global data. */
1903
1904 #define BSS_SECTION_ASM_OP ".bss"
1905
1906 /* Define this macro if jump tables (for `tablejump' insns) should be output in
1907 the text section, along with the assembler instructions. */
1908
1909 /* ??? It is probably better for the jump tables to be in the rodata section,
1910 which is where they go by default. Unfortunately, that currently does not
1911 work, because of some problem with pcrelative relocations not getting
1912 resolved correctly. */
1913 /* ??? FIXME ??? rth says that we should use @gprel to solve this problem. */
1914 /* ??? If jump tables are in the text section, then we can use 4 byte
1915 entries instead of 8 byte entries. */
1916
1917 #define JUMP_TABLES_IN_TEXT_SECTION 1
1918
1919 /* Define this macro if references to a symbol must be treated differently
1920 depending on something about the variable or function named by the symbol
1921 (such as what section it is in). */
1922
1923 #define ENCODE_SECTION_INFO(DECL) ia64_encode_section_info (DECL)
1924
1925 /* If a variable is weakened, made one only or moved into a different
1926 section, it may be necessary to redo the section info to move the
1927 variable out of sdata. */
1928
1929 #define REDO_SECTION_INFO_P(DECL) \
1930 ((TREE_CODE (DECL) == VAR_DECL) \
1931 && (DECL_ONE_ONLY (DECL) || DECL_WEAK (DECL) || DECL_COMMON (DECL) \
1932 || DECL_SECTION_NAME (DECL) != 0))
1933
1934 #define SDATA_NAME_FLAG_CHAR '@'
1935
1936 #define IA64_DEFAULT_GVALUE 8
1937
1938 /* Decode SYM_NAME and store the real name part in VAR, sans the characters
1939 that encode section info. */
1940
1941 #define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
1942 (VAR) = (SYMBOL_NAME) + ((SYMBOL_NAME)[0] == SDATA_NAME_FLAG_CHAR)
1943
1944 \f
1945 /* Position Independent Code. */
1946
1947 /* The register number of the register used to address a table of static data
1948 addresses in memory. */
1949
1950 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1951 gen_rtx_REG (DImode, 1). */
1952
1953 /* ??? Should we set flag_pic? Probably need to define
1954 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1955
1956 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1957
1958 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1959 clobbered by calls. */
1960
1961 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1962
1963 \f
1964 /* The Overall Framework of an Assembler File. */
1965
1966 /* A C string constant describing how to begin a comment in the target
1967 assembler language. The compiler assumes that the comment will end at the
1968 end of the line. */
1969
1970 #define ASM_COMMENT_START "//"
1971
1972 /* A C string constant for text to be output before each `asm' statement or
1973 group of consecutive ones. */
1974
1975 /* ??? This won't work with the Intel assembler, because it does not accept
1976 # as a comment start character. However, //APP does not work in gas, so we
1977 can't use that either. Same problem for ASM_APP_OFF below. */
1978
1979 #define ASM_APP_ON "#APP\n"
1980
1981 /* A C string constant for text to be output after each `asm' statement or
1982 group of consecutive ones. */
1983
1984 #define ASM_APP_OFF "#NO_APP\n"
1985
1986 \f
1987 /* Output of Data. */
1988
1989 /* A C statement to output to the stdio stream STREAM an assembler instruction
1990 to assemble a floating-point constant of `TFmode', `DFmode', `SFmode',
1991 respectively, whose value is VALUE. */
1992
1993 /* ??? Must reverse the word order for big-endian code? */
1994
1995 #define ASM_OUTPUT_LONG_DOUBLE(FILE, VALUE) \
1996 do { \
1997 long t[3]; \
1998 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, t); \
1999 fprintf (FILE, "\tdata4 0x%08lx, 0x%08lx, 0x%08lx, 0x%08lx\n", \
2000 t[0] & 0xffffffff, t[1] & 0xffffffff, t[2] & 0xffffffff, 0); \
2001 } while (0)
2002
2003 /* ??? Must reverse the word order for big-endian code? */
2004
2005 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2006 do { \
2007 long t[2]; \
2008 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, t); \
2009 fprintf (FILE, "\tdata8 0x%08lx%08lx\n", \
2010 t[1] & 0xffffffff, t[0] & 0xffffffff); \
2011 } while (0)
2012
2013 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2014 do { \
2015 long t; \
2016 REAL_VALUE_TO_TARGET_SINGLE (VALUE, t); \
2017 fprintf (FILE, "\tdata4 0x%lx\n", t & 0xffffffff); \
2018 } while (0)
2019
2020 /* A C statement to output to the stdio stream STREAM an assembler instruction
2021 to assemble an integer of 1, 2, 4, or 8 bytes, respectively, whose value
2022 is VALUE. */
2023
2024 /* This is how to output an assembler line defining a `char' constant. */
2025
2026 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
2027 do { \
2028 fprintf (FILE, "\t%s\t", ASM_BYTE_OP); \
2029 output_addr_const (FILE, (VALUE)); \
2030 fprintf (FILE, "\n"); \
2031 } while (0)
2032
2033 /* This is how to output an assembler line defining a `short' constant. */
2034
2035 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
2036 do { \
2037 fprintf (FILE, "\tdata2\t"); \
2038 output_addr_const (FILE, (VALUE)); \
2039 fprintf (FILE, "\n"); \
2040 } while (0)
2041
2042 /* This is how to output an assembler line defining an `int' constant.
2043 We also handle symbol output here. */
2044
2045 /* ??? For ILP32, also need to handle function addresses here. */
2046
2047 #define ASM_OUTPUT_INT(FILE, VALUE) \
2048 do { \
2049 fprintf (FILE, "\tdata4\t"); \
2050 output_addr_const (FILE, (VALUE)); \
2051 fprintf (FILE, "\n"); \
2052 } while (0)
2053
2054 /* This is how to output an assembler line defining a `long' constant.
2055 We also handle symbol output here. */
2056
2057 #define ASM_OUTPUT_DOUBLE_INT(FILE, VALUE) \
2058 do { \
2059 fprintf (FILE, "\tdata8\t"); \
2060 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) && SYMBOL_REF_FLAG (VALUE)) \
2061 fprintf (FILE, "@fptr("); \
2062 output_addr_const (FILE, (VALUE)); \
2063 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) && SYMBOL_REF_FLAG (VALUE)) \
2064 fprintf (FILE, ")"); \
2065 fprintf (FILE, "\n"); \
2066 } while (0)
2067
2068 /* This is how to output an assembler line defining a `char' constant
2069 to an xdata segment. */
2070
2071 #define ASM_OUTPUT_XDATA_CHAR(FILE, SECTION, VALUE) \
2072 do { \
2073 fprintf (FILE, "\t.xdata1\t\"%s\", ", SECTION); \
2074 output_addr_const (FILE, (VALUE)); \
2075 fprintf (FILE, "\n"); \
2076 } while (0)
2077
2078 /* This is how to output an assembler line defining a `short' constant
2079 to an xdata segment. */
2080
2081 #define ASM_OUTPUT_XDATA_SHORT(FILE, SECTION, VALUE) \
2082 do { \
2083 fprintf (FILE, "\t.xdata2\t\"%s\", ", SECTION); \
2084 output_addr_const (FILE, (VALUE)); \
2085 fprintf (FILE, "\n"); \
2086 } while (0)
2087
2088 /* This is how to output an assembler line defining an `int' constant
2089 to an xdata segment. We also handle symbol output here. */
2090
2091 /* ??? For ILP32, also need to handle function addresses here. */
2092
2093 #define ASM_OUTPUT_XDATA_INT(FILE, SECTION, VALUE) \
2094 do { \
2095 fprintf (FILE, "\t.xdata4\t\"%s\", ", SECTION); \
2096 output_addr_const (FILE, (VALUE)); \
2097 fprintf (FILE, "\n"); \
2098 } while (0)
2099
2100 /* This is how to output an assembler line defining a `long' constant
2101 to an xdata segment. We also handle symbol output here. */
2102
2103 #define ASM_OUTPUT_XDATA_DOUBLE_INT(FILE, SECTION, VALUE) \
2104 do { \
2105 int need_closing_paren = 0; \
2106 fprintf (FILE, "\t.xdata8\t\"%s\", ", SECTION); \
2107 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) \
2108 && GET_CODE (VALUE) == SYMBOL_REF) \
2109 { \
2110 fprintf (FILE, SYMBOL_REF_FLAG (VALUE) ? "@fptr(" : "@segrel("); \
2111 need_closing_paren = 1; \
2112 } \
2113 output_addr_const (FILE, VALUE); \
2114 if (need_closing_paren) \
2115 fprintf (FILE, ")"); \
2116 fprintf (FILE, "\n"); \
2117 } while (0)
2118
2119
2120 /* Output EH data to the unwind segment. */
2121 #define ASM_OUTPUT_EH_CHAR(FILE, VALUE) \
2122 ASM_OUTPUT_XDATA_CHAR(FILE, ".IA_64.unwind_info", VALUE)
2123
2124 #define ASM_OUTPUT_EH_SHORT(FILE, VALUE) \
2125 ASM_OUTPUT_XDATA_SHORT(FILE, ".IA_64.unwind_info", VALUE)
2126
2127 #define ASM_OUTPUT_EH_INT(FILE, VALUE) \
2128 ASM_OUTPUT_XDATA_INT(FILE, ".IA_64.unwind_info", VALUE)
2129
2130 #define ASM_OUTPUT_EH_DOUBLE_INT(FILE, VALUE) \
2131 ASM_OUTPUT_XDATA_DOUBLE_INT(FILE, ".IA_64.unwind_info", VALUE)
2132
2133 /* A C statement to output to the stdio stream STREAM an assembler instruction
2134 to assemble a single byte containing the number VALUE. */
2135
2136 #define ASM_OUTPUT_BYTE(STREAM, VALUE) \
2137 fprintf (STREAM, "\t%s\t0x%x\n", ASM_BYTE_OP, (int)(VALUE) & 0xff)
2138
2139 /* These macros are defined as C string constant, describing the syntax in the
2140 assembler for grouping arithmetic expressions. */
2141
2142 #define ASM_OPEN_PAREN "("
2143 #define ASM_CLOSE_PAREN ")"
2144
2145 \f
2146 /* Output of Uninitialized Variables. */
2147
2148 /* This is all handled by svr4.h. */
2149
2150 \f
2151 /* Output and Generation of Labels. */
2152
2153 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2154 assembler definition of a label named NAME. */
2155
2156 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
2157 why ia64_asm_output_label exists. */
2158
2159 extern int ia64_asm_output_label;
2160 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
2161 do { \
2162 ia64_asm_output_label = 1; \
2163 assemble_name (STREAM, NAME); \
2164 fputs (":\n", STREAM); \
2165 ia64_asm_output_label = 0; \
2166 } while (0)
2167
2168 /* A C statement (sans semicolon) to output to the stdio stream STREAM some
2169 commands that will make the label NAME global; that is, available for
2170 reference from other files. */
2171
2172 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
2173 do { \
2174 fputs ("\t.global ", STREAM); \
2175 assemble_name (STREAM, NAME); \
2176 fputs ("\n", STREAM); \
2177 } while (0)
2178
2179 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
2180 necessary for declaring the name of an external symbol named NAME which is
2181 referenced in this compilation but not defined. */
2182
2183 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2184 ia64_asm_output_external (FILE, DECL, NAME)
2185
2186 /* A C statement to store into the string STRING a label whose name is made
2187 from the string PREFIX and the number NUM. */
2188
2189 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
2190 do { \
2191 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
2192 } while (0)
2193
2194 /* A C expression to assign to OUTVAR (which is a variable of type `char *') a
2195 newly allocated string made from the string NAME and the number NUMBER, with
2196 some suitable punctuation added. */
2197
2198 /* ??? Not sure if using a ? in the name for Intel as is safe. */
2199
2200 #define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
2201 do { \
2202 (OUTVAR) = (char *) alloca (strlen (NAME) + 12); \
2203 sprintf (OUTVAR, "%s%c%ld", (NAME), (TARGET_GNU_AS ? '.' : '?'), \
2204 (long)(NUMBER)); \
2205 } while (0)
2206
2207 /* A C statement to output to the stdio stream STREAM assembler code which
2208 defines (equates) the symbol NAME to have the value VALUE. */
2209
2210 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
2211 do { \
2212 assemble_name (STREAM, NAME); \
2213 fputs (" = ", STREAM); \
2214 assemble_name (STREAM, VALUE); \
2215 fputc ('\n', STREAM); \
2216 } while (0)
2217
2218 \f
2219 /* Macros Controlling Initialization Routines. */
2220
2221 /* This is handled by svr4.h and sysv4.h. */
2222
2223 \f
2224 /* Output of Assembler Instructions. */
2225
2226 /* A C initializer containing the assembler's names for the machine registers,
2227 each one as a C string constant. */
2228
2229 #define REGISTER_NAMES \
2230 { \
2231 /* General registers. */ \
2232 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
2233 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
2234 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
2235 "r30", "r31", \
2236 /* Local registers. */ \
2237 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
2238 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
2239 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
2240 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
2241 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
2242 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
2243 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
2244 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
2245 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
2246 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
2247 /* Input registers. */ \
2248 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
2249 /* Output registers. */ \
2250 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
2251 /* Floating-point registers. */ \
2252 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
2253 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
2254 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
2255 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
2256 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
2257 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
2258 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
2259 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
2260 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
2261 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
2262 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
2263 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
2264 "f120","f121","f122","f123","f124","f125","f126","f127", \
2265 /* Predicate registers. */ \
2266 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
2267 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
2268 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
2269 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
2270 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
2271 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
2272 "p60", "p61", "p62", "p63", \
2273 /* Branch registers. */ \
2274 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
2275 /* Frame pointer. Return address. */ \
2276 "sfp", "retaddr", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
2277 }
2278
2279 /* If defined, a C initializer for an array of structures containing a name and
2280 a register number. This macro defines additional names for hard registers,
2281 thus allowing the `asm' option in declarations to refer to registers using
2282 alternate names. */
2283
2284 #define ADDITIONAL_REGISTER_NAMES \
2285 { \
2286 { "gp", R_GR (1) }, \
2287 { "sp", R_GR (12) }, \
2288 { "in0", IN_REG (0) }, \
2289 { "in1", IN_REG (1) }, \
2290 { "in2", IN_REG (2) }, \
2291 { "in3", IN_REG (3) }, \
2292 { "in4", IN_REG (4) }, \
2293 { "in5", IN_REG (5) }, \
2294 { "in6", IN_REG (6) }, \
2295 { "in7", IN_REG (7) }, \
2296 { "out0", OUT_REG (0) }, \
2297 { "out1", OUT_REG (1) }, \
2298 { "out2", OUT_REG (2) }, \
2299 { "out3", OUT_REG (3) }, \
2300 { "out4", OUT_REG (4) }, \
2301 { "out5", OUT_REG (5) }, \
2302 { "out6", OUT_REG (6) }, \
2303 { "out7", OUT_REG (7) }, \
2304 { "loc0", LOC_REG (0) }, \
2305 { "loc1", LOC_REG (1) }, \
2306 { "loc2", LOC_REG (2) }, \
2307 { "loc3", LOC_REG (3) }, \
2308 { "loc4", LOC_REG (4) }, \
2309 { "loc5", LOC_REG (5) }, \
2310 { "loc6", LOC_REG (6) }, \
2311 { "loc7", LOC_REG (7) }, \
2312 { "loc8", LOC_REG (8) }, \
2313 { "loc9", LOC_REG (9) }, \
2314 { "loc10", LOC_REG (10) }, \
2315 { "loc11", LOC_REG (11) }, \
2316 { "loc12", LOC_REG (12) }, \
2317 { "loc13", LOC_REG (13) }, \
2318 { "loc14", LOC_REG (14) }, \
2319 { "loc15", LOC_REG (15) }, \
2320 { "loc16", LOC_REG (16) }, \
2321 { "loc17", LOC_REG (17) }, \
2322 { "loc18", LOC_REG (18) }, \
2323 { "loc19", LOC_REG (19) }, \
2324 { "loc20", LOC_REG (20) }, \
2325 { "loc21", LOC_REG (21) }, \
2326 { "loc22", LOC_REG (22) }, \
2327 { "loc23", LOC_REG (23) }, \
2328 { "loc24", LOC_REG (24) }, \
2329 { "loc25", LOC_REG (25) }, \
2330 { "loc26", LOC_REG (26) }, \
2331 { "loc27", LOC_REG (27) }, \
2332 { "loc28", LOC_REG (28) }, \
2333 { "loc29", LOC_REG (29) }, \
2334 { "loc30", LOC_REG (30) }, \
2335 { "loc31", LOC_REG (31) }, \
2336 { "loc32", LOC_REG (32) }, \
2337 { "loc33", LOC_REG (33) }, \
2338 { "loc34", LOC_REG (34) }, \
2339 { "loc35", LOC_REG (35) }, \
2340 { "loc36", LOC_REG (36) }, \
2341 { "loc37", LOC_REG (37) }, \
2342 { "loc38", LOC_REG (38) }, \
2343 { "loc39", LOC_REG (39) }, \
2344 { "loc40", LOC_REG (40) }, \
2345 { "loc41", LOC_REG (41) }, \
2346 { "loc42", LOC_REG (42) }, \
2347 { "loc43", LOC_REG (43) }, \
2348 { "loc44", LOC_REG (44) }, \
2349 { "loc45", LOC_REG (45) }, \
2350 { "loc46", LOC_REG (46) }, \
2351 { "loc47", LOC_REG (47) }, \
2352 { "loc48", LOC_REG (48) }, \
2353 { "loc49", LOC_REG (49) }, \
2354 { "loc50", LOC_REG (50) }, \
2355 { "loc51", LOC_REG (51) }, \
2356 { "loc52", LOC_REG (52) }, \
2357 { "loc53", LOC_REG (53) }, \
2358 { "loc54", LOC_REG (54) }, \
2359 { "loc55", LOC_REG (55) }, \
2360 { "loc56", LOC_REG (56) }, \
2361 { "loc57", LOC_REG (57) }, \
2362 { "loc58", LOC_REG (58) }, \
2363 { "loc59", LOC_REG (59) }, \
2364 { "loc60", LOC_REG (60) }, \
2365 { "loc61", LOC_REG (61) }, \
2366 { "loc62", LOC_REG (62) }, \
2367 { "loc63", LOC_REG (63) }, \
2368 { "loc64", LOC_REG (64) }, \
2369 { "loc65", LOC_REG (65) }, \
2370 { "loc66", LOC_REG (66) }, \
2371 { "loc67", LOC_REG (67) }, \
2372 { "loc68", LOC_REG (68) }, \
2373 { "loc69", LOC_REG (69) }, \
2374 { "loc70", LOC_REG (70) }, \
2375 { "loc71", LOC_REG (71) }, \
2376 { "loc72", LOC_REG (72) }, \
2377 { "loc73", LOC_REG (73) }, \
2378 { "loc74", LOC_REG (74) }, \
2379 { "loc75", LOC_REG (75) }, \
2380 { "loc76", LOC_REG (76) }, \
2381 { "loc77", LOC_REG (77) }, \
2382 { "loc78", LOC_REG (78) }, \
2383 { "loc79", LOC_REG (79) }, \
2384 }
2385
2386 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2387 for an instruction operand X. X is an RTL expression. */
2388
2389 #define PRINT_OPERAND(STREAM, X, CODE) \
2390 ia64_print_operand (STREAM, X, CODE)
2391
2392 /* A C expression which evaluates to true if CODE is a valid punctuation
2393 character for use in the `PRINT_OPERAND' macro. */
2394
2395 /* ??? Keep this around for now, as we might need it later. */
2396
2397 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2398 ((CODE) == '+' || (CODE) == ',')
2399
2400 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2401 for an instruction operand that is a memory reference whose address is X. X
2402 is an RTL expression. */
2403
2404 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
2405 ia64_print_operand_address (STREAM, X)
2406
2407 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2408 `%I' options of `asm_fprintf' (see `final.c'). */
2409
2410 #define REGISTER_PREFIX ""
2411 #define LOCAL_LABEL_PREFIX "."
2412 #define USER_LABEL_PREFIX ""
2413 #define IMMEDIATE_PREFIX ""
2414
2415 \f
2416 /* Output of dispatch tables. */
2417
2418 /* This macro should be provided on machines where the addresses in a dispatch
2419 table are relative to the table's own address. */
2420
2421 /* ??? Depends on the pointer size. */
2422
2423 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2424 fprintf (STREAM, "\tdata8 .L%d-.L%d\n", VALUE, REL)
2425
2426 /* This is how to output an element of a case-vector that is absolute.
2427 (Ia64 does not use such vectors, but we must define this macro anyway.) */
2428
2429 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) abort ()
2430
2431 /* Define this if something special must be output at the end of a jump-table.
2432 We need to align back to a 16 byte boundary because offsets are smaller than
2433 instructions. */
2434
2435 #define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) ASM_OUTPUT_ALIGN (STREAM, 4)
2436
2437 /* Jump tables only need 8 byte alignment. */
2438
2439 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
2440
2441 \f
2442 /* Assembler Commands for Exception Regions. */
2443
2444 /* ??? This entire section of ia64.h needs to be implemented and then cleaned
2445 up. */
2446
2447 /* A C expression to output text to mark the start of an exception region.
2448
2449 This macro need not be defined on most platforms. */
2450 /* #define ASM_OUTPUT_EH_REGION_BEG() */
2451
2452 /* A C expression to output text to mark the end of an exception region.
2453
2454 This macro need not be defined on most platforms. */
2455 /* #define ASM_OUTPUT_EH_REGION_END() */
2456
2457 /* A C expression to switch to the section in which the main exception table is
2458 to be placed. The default is a section named `.gcc_except_table' on machines
2459 that support named sections via `ASM_OUTPUT_SECTION_NAME', otherwise if `-fpic'
2460 or `-fPIC' is in effect, the `data_section', otherwise the
2461 `readonly_data_section'. */
2462 /* #define EXCEPTION_SECTION() */
2463
2464 /* If defined, a C string constant for the assembler operation to switch to the
2465 section for exception handling frame unwind information. If not defined,
2466 GNU CC will provide a default definition if the target supports named
2467 sections. `crtstuff.c' uses this macro to switch to the appropriate
2468 section.
2469
2470 You should define this symbol if your target supports DWARF 2 frame unwind
2471 information and the default definition does not work. */
2472 #define EH_FRAME_SECTION_ASM_OP ".section\t.IA_64.unwind,\"aw\""
2473
2474 /* A C expression that is nonzero if the normal exception table output should
2475 be omitted.
2476
2477 This macro need not be defined on most platforms. */
2478 /* #define OMIT_EH_TABLE() */
2479
2480 /* Alternate runtime support for looking up an exception at runtime and finding
2481 the associated handler, if the default method won't work.
2482
2483 This macro need not be defined on most platforms. */
2484 /* #define EH_TABLE_LOOKUP() */
2485
2486 /* A C expression that decides whether or not the current function needs to
2487 have a function unwinder generated for it. See the file `except.c' for
2488 details on when to define this, and how. */
2489 /* #define DOESNT_NEED_UNWINDER */
2490
2491 /* An rtx used to mask the return address found via RETURN_ADDR_RTX, so that it
2492 does not contain any extraneous set bits in it. */
2493 /* #define MASK_RETURN_ADDR */
2494
2495 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
2496 information, but it does not yet work with exception handling. Otherwise,
2497 if your target supports this information (if it defines
2498 `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
2499 `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
2500
2501 If this macro is defined to 1, the DWARF 2 unwinder will be the default
2502 exception handling mechanism; otherwise, setjmp/longjmp will be used by
2503 default.
2504
2505 If this macro is defined to anything, the DWARF 2 unwinder will be used
2506 instead of inline unwinders and __unwind_function in the non-setjmp case. */
2507 /* #define DWARF2_UNWIND_INFO */
2508
2509 \f
2510 /* Assembler Commands for Alignment. */
2511
2512 /* The alignment (log base 2) to put in front of LABEL, which follows
2513 a BARRIER. */
2514
2515 /* ??? Investigate. */
2516
2517 /* ??? Emitting align directives increases the size of the line number debug
2518 info, because each .align forces use of an extended opcode. Perhaps try
2519 to fix this in the assembler? */
2520
2521 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
2522
2523 /* The desired alignment for the location counter at the beginning
2524 of a loop. */
2525
2526 /* ??? Investigate. */
2527 /* #define LOOP_ALIGN(LABEL) */
2528
2529 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
2530 section because it fails put zeros in the bytes that are skipped. */
2531
2532 #define ASM_NO_SKIP_IN_TEXT 1
2533
2534 /* A C statement to output to the stdio stream STREAM an assembler command to
2535 advance the location counter to a multiple of 2 to the POWER bytes. */
2536
2537 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2538 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
2539
2540 \f
2541 /* Macros Affecting all Debug Formats. */
2542
2543 /* This is handled in svr4.h and sysv4.h. */
2544
2545 \f
2546 /* Specific Options for DBX Output. */
2547
2548 /* This is handled by dbxelf.h which is included by svr4.h. */
2549
2550 \f
2551 /* Open ended Hooks for DBX Output. */
2552
2553 /* Likewise. */
2554
2555 \f
2556 /* File names in DBX format. */
2557
2558 /* Likewise. */
2559
2560 \f
2561 /* Macros for SDB and Dwarf Output. */
2562
2563 /* Define this macro if GNU CC should produce dwarf version 2 format debugging
2564 output in response to the `-g' option. */
2565
2566 #define DWARF2_DEBUGGING_INFO
2567
2568 /* Section names for DWARF2 debug info. */
2569
2570 #define DEBUG_INFO_SECTION ".debug_info, \"\", \"progbits\""
2571 #define ABBREV_SECTION ".debug_abbrev, \"\", \"progbits\""
2572 #define ARANGES_SECTION ".debug_aranges, \"\", \"progbits\""
2573 #define DEBUG_LINE_SECTION ".debug_line, \"\", \"progbits\""
2574 #define PUBNAMES_SECTION ".debug_pubnames, \"\", \"progbits\""
2575
2576 /* C string constants giving the pseudo-op to use for a sequence of
2577 2, 4, and 8 byte unaligned constants. dwarf2out.c needs these. */
2578
2579 #define UNALIGNED_SHORT_ASM_OP "data2.ua"
2580 #define UNALIGNED_INT_ASM_OP "data4.ua"
2581 #define UNALIGNED_DOUBLE_INT_ASM_OP "data8.ua"
2582
2583 /* We need to override the default definition for this in dwarf2out.c so that
2584 we can emit the necessary # postfix. */
2585 #define ASM_NAME_TO_STRING(STR, NAME) \
2586 do { \
2587 if ((NAME)[0] == '*') \
2588 dyn_string_append (STR, NAME + 1); \
2589 else \
2590 { \
2591 char *newstr; \
2592 STRIP_NAME_ENCODING (newstr, NAME); \
2593 dyn_string_append (STR, user_label_prefix); \
2594 dyn_string_append (STR, newstr); \
2595 dyn_string_append (STR, "#"); \
2596 } \
2597 } \
2598 while (0)
2599
2600 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
2601
2602 \f
2603 /* Cross Compilation and Floating Point. */
2604
2605 /* Define to enable software floating point emulation. */
2606 #define REAL_ARITHMETIC
2607
2608 \f
2609 /* Register Renaming Parameters. */
2610
2611 /* A C expression that is nonzero if hard register number REGNO2 can be
2612 considered for use as a rename register for REGNO1 */
2613
2614 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
2615 ((! PR_REGNO_P (REGNO1) && ! PR_REGNO_P (REGNO2)) \
2616 ? (!call_fixed_regs [REGNO1] && !call_fixed_regs [REGNO2]) \
2617 ? 1 : 0 \
2618 : ((REGNO2) > 256 && ((REGNO2 & 1) == 0)) \
2619 ? 1 : 0)
2620
2621 /* Define this macro if the compiler should use extended basic blocks
2622 when renaming registers. Define this macro if the target has predicate
2623 registers. */
2624
2625 #define RENAME_EXTENDED_BLOCKS
2626
2627 \f
2628 /* Miscellaneous Parameters. */
2629
2630 /* Define this if you have defined special-purpose predicates in the file
2631 `MACHINE.c'. For each predicate, list all rtl codes that can be in
2632 expressions matched by the predicate. */
2633
2634 #define PREDICATE_CODES \
2635 { "call_operand", {SUBREG, REG, SYMBOL_REF}}, \
2636 { "got_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2637 { "sdata_symbolic_operand", {SYMBOL_REF, CONST}}, \
2638 { "symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2639 { "function_operand", {SYMBOL_REF}}, \
2640 { "setjmp_operand", {SYMBOL_REF}}, \
2641 { "destination_operand", {SUBREG, REG, MEM}}, \
2642 { "not_postinc_memory_operand", {MEM}}, \
2643 { "move_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2644 CONSTANT_P_RTX, SYMBOL_REF, CONST, LABEL_REF}}, \
2645 { "gr_register_operand", {SUBREG, REG}}, \
2646 { "fr_register_operand", {SUBREG, REG}}, \
2647 { "grfr_register_operand", {SUBREG, REG}}, \
2648 { "gr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2649 { "grfr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2650 { "gr_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2651 { "gr_reg_or_5bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2652 { "gr_reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2653 { "gr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2654 { "grfr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2655 { "gr_reg_or_8bit_adjusted_operand", {SUBREG, REG, CONST_INT, \
2656 CONSTANT_P_RTX}}, \
2657 { "gr_reg_or_8bit_and_adjusted_operand", {SUBREG, REG, CONST_INT, \
2658 CONSTANT_P_RTX}}, \
2659 { "gr_reg_or_14bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2660 { "gr_reg_or_22bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2661 { "shift_count_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2662 { "shift_32bit_count_operand", {SUBREG, REG, CONST_INT, \
2663 CONSTANT_P_RTX}}, \
2664 { "shladd_operand", {CONST_INT}}, \
2665 { "fetchadd_operand", {CONST_INT}}, \
2666 { "fr_reg_or_fp01_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2667 { "normal_comparison_operator", {EQ, NE, GT, LE, GTU, LEU}}, \
2668 { "adjusted_comparison_operator", {LT, GE, LTU, GEU}}, \
2669 { "call_multiple_values_operation", {PARALLEL}}, \
2670 { "predicate_operator", {NE, EQ}}, \
2671 { "ar_lc_reg_operand", {REG}}, \
2672 { "ar_ccv_reg_operand", {REG}}, \
2673 { "general_tfmode_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
2674 { "destination_tfmode_operand", {SUBREG, REG, MEM}}, \
2675 { "tfreg_or_fp01_operand", {REG, CONST_DOUBLE}},
2676
2677 /* An alias for a machine mode name. This is the machine mode that elements of
2678 a jump-table should have. */
2679
2680 #define CASE_VECTOR_MODE Pmode
2681
2682 /* Define as C expression which evaluates to nonzero if the tablejump
2683 instruction expects the table to contain offsets from the address of the
2684 table. */
2685
2686 #define CASE_VECTOR_PC_RELATIVE 1
2687
2688 /* Define this macro if operations between registers with integral mode smaller
2689 than a word are always performed on the entire register. */
2690
2691 #define WORD_REGISTER_OPERATIONS
2692
2693 /* Define this macro to be a C expression indicating when insns that read
2694 memory in MODE, an integral mode narrower than a word, set the bits outside
2695 of MODE to be either the sign-extension or the zero-extension of the data
2696 read. */
2697
2698 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2699
2700 /* An alias for a tree code that should be used by default for conversion of
2701 floating point values to fixed point. */
2702
2703 /* ??? Looks like this macro is obsolete and should be deleted everywhere. */
2704
2705 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2706
2707 /* An alias for a tree code that is the easiest kind of division to compile
2708 code for in the general case. */
2709
2710 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2711
2712 /* The maximum number of bytes that a single instruction can move quickly from
2713 memory to memory. */
2714 #define MOVE_MAX 8
2715
2716 /* A C expression which is nonzero if on this machine it is safe to "convert"
2717 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2718 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
2719
2720 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2721
2722 /* A C expression describing the value returned by a comparison operator with
2723 an integral mode and stored by a store-flag instruction (`sCOND') when the
2724 condition is true. */
2725
2726 /* ??? Investigate using -1 instead of 1. */
2727
2728 #define STORE_FLAG_VALUE 1
2729
2730 /* An alias for the machine mode for pointers. */
2731
2732 /* ??? This would change if we had ILP32 support. */
2733
2734 #define Pmode DImode
2735
2736 /* An alias for the machine mode used for memory references to functions being
2737 called, in `call' RTL expressions. */
2738
2739 #define FUNCTION_MODE Pmode
2740
2741 /* Define this macro to handle System V style pragmas: #pragma pack and
2742 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2743 defined. */
2744
2745 #define HANDLE_SYSV_PRAGMA
2746
2747 /* If defined, a C expression whose value is nonzero if IDENTIFIER with
2748 arguments ARGS is a valid machine specific attribute for TYPE. The
2749 attributes in ATTRIBUTES have previously been assigned to TYPE. */
2750
2751 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, IDENTIFIER, ARGS) \
2752 ia64_valid_type_attribute (TYPE, ATTRIBUTES, IDENTIFIER, ARGS)
2753
2754 /* In rare cases, correct code generation requires extra machine dependent
2755 processing between the second jump optimization pass and delayed branch
2756 scheduling. On those machines, define this macro as a C statement to act on
2757 the code starting at INSN. */
2758
2759 #define MACHINE_DEPENDENT_REORG(INSN) ia64_reorg (INSN)
2760
2761 /* A C expression for the maximum number of instructions to execute via
2762 conditional execution instructions instead of a branch. A value of
2763 BRANCH_COST+1 is the default if the machine does not use
2764 cc0, and 1 if it does use cc0. */
2765 /* ??? Investigate. */
2766 /* #define MAX_CONDITIONAL_EXECUTE */
2767
2768 /* Indicate how many instructions can be issued at the same time. */
2769
2770 /* ??? For now, we just schedule to fill bundles. */
2771
2772 #define ISSUE_RATE 3
2773
2774 #define IA64_UNWIND_INFO 1
2775 #define HANDLER_SECTION fprintf (asm_out_file, "\t.personality\t__ia64_personality_v1\n\t.handlerdata\n");
2776 #define IA64_UNWIND_EMIT(f,i) process_for_unwind_directive (f,i)
2777
2778 /* This function contains machine specific function data. */
2779 struct machine_function
2780 {
2781 /* The new stack pointer when unwinding from EH. */
2782 struct rtx_def* ia64_eh_epilogue_sp;
2783
2784 /* The new bsp value when unwinding from EH. */
2785 struct rtx_def* ia64_eh_epilogue_bsp;
2786
2787 /* The GP value save register. */
2788 struct rtx_def* ia64_gp_save;
2789
2790 /* The number of varargs registers to save. */
2791 int n_varargs;
2792 };
2793
2794
2795 enum ia64_builtins
2796 {
2797 IA64_BUILTIN_SYNCHRONIZE,
2798
2799 IA64_BUILTIN_FETCH_AND_ADD_SI,
2800 IA64_BUILTIN_FETCH_AND_SUB_SI,
2801 IA64_BUILTIN_FETCH_AND_OR_SI,
2802 IA64_BUILTIN_FETCH_AND_AND_SI,
2803 IA64_BUILTIN_FETCH_AND_XOR_SI,
2804 IA64_BUILTIN_FETCH_AND_NAND_SI,
2805
2806 IA64_BUILTIN_ADD_AND_FETCH_SI,
2807 IA64_BUILTIN_SUB_AND_FETCH_SI,
2808 IA64_BUILTIN_OR_AND_FETCH_SI,
2809 IA64_BUILTIN_AND_AND_FETCH_SI,
2810 IA64_BUILTIN_XOR_AND_FETCH_SI,
2811 IA64_BUILTIN_NAND_AND_FETCH_SI,
2812
2813 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI,
2814 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI,
2815
2816 IA64_BUILTIN_SYNCHRONIZE_SI,
2817
2818 IA64_BUILTIN_LOCK_TEST_AND_SET_SI,
2819
2820 IA64_BUILTIN_LOCK_RELEASE_SI,
2821
2822 IA64_BUILTIN_FETCH_AND_ADD_DI,
2823 IA64_BUILTIN_FETCH_AND_SUB_DI,
2824 IA64_BUILTIN_FETCH_AND_OR_DI,
2825 IA64_BUILTIN_FETCH_AND_AND_DI,
2826 IA64_BUILTIN_FETCH_AND_XOR_DI,
2827 IA64_BUILTIN_FETCH_AND_NAND_DI,
2828
2829 IA64_BUILTIN_ADD_AND_FETCH_DI,
2830 IA64_BUILTIN_SUB_AND_FETCH_DI,
2831 IA64_BUILTIN_OR_AND_FETCH_DI,
2832 IA64_BUILTIN_AND_AND_FETCH_DI,
2833 IA64_BUILTIN_XOR_AND_FETCH_DI,
2834 IA64_BUILTIN_NAND_AND_FETCH_DI,
2835
2836 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI,
2837 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI,
2838
2839 IA64_BUILTIN_SYNCHRONIZE_DI,
2840
2841 IA64_BUILTIN_LOCK_TEST_AND_SET_DI,
2842
2843 IA64_BUILTIN_LOCK_RELEASE_DI,
2844
2845 IA64_BUILTIN_BSP,
2846 IA64_BUILTIN_FLUSHRS
2847 };
2848
2849 /* Codes for expand_compare_and_swap and expand_swap_and_compare. */
2850 enum fetchop_code {
2851 IA64_ADD_OP, IA64_SUB_OP, IA64_OR_OP, IA64_AND_OP, IA64_XOR_OP, IA64_NAND_OP
2852 };
2853
2854 #define MD_INIT_BUILTINS do { \
2855 ia64_init_builtins (); \
2856 } while (0)
2857
2858 #define MD_EXPAND_BUILTIN(EXP, TARGET, SUBTARGET, MODE, IGNORE) \
2859 ia64_expand_builtin ((EXP), (TARGET), (SUBTARGET), (MODE), (IGNORE))
2860
2861 /* End of ia64.h */