re PR target/11535 (__builtin_return_address may not work on ia64)
[gcc.git] / gcc / config / ia64 / ia64.h
1 /* Definitions of target machine GNU compiler. IA-64 version.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by James E. Wilson <wilson@cygnus.com> and
4 David Mosberger <davidm@hpl.hp.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
25
26 /* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
28
29 /* ??? Add support for short data/bss sections. */
30
31 \f
32 /* Run-time target specifications */
33
34 /* Target CPU builtins. */
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do { \
37 builtin_assert("cpu=ia64"); \
38 builtin_assert("machine=ia64"); \
39 builtin_define("__ia64"); \
40 builtin_define("__ia64__"); \
41 builtin_define("__itanium__"); \
42 if (TARGET_BIG_ENDIAN) \
43 builtin_define("__BIG_ENDIAN__"); \
44 } while (0)
45
46 #define EXTRA_SPECS \
47 { "asm_extra", ASM_EXTRA_SPEC },
48
49 #define CC1_SPEC "%(cc1_cpu) "
50
51 #define ASM_EXTRA_SPEC ""
52
53
54 /* This declaration should be present. */
55 extern int target_flags;
56
57 /* This series of macros is to allow compiler command arguments to enable or
58 disable the use of optional features of the target machine. */
59
60 #define MASK_BIG_ENDIAN 0x00000001 /* Generate big endian code. */
61
62 #define MASK_GNU_AS 0x00000002 /* Generate code for GNU as. */
63
64 #define MASK_GNU_LD 0x00000004 /* Generate code for GNU ld. */
65
66 #define MASK_NO_PIC 0x00000008 /* Generate code without GP reg. */
67
68 #define MASK_VOL_ASM_STOP 0x00000010 /* Emit stop bits for vol ext asm. */
69
70 #define MASK_ILP32 0x00000020 /* Generate ILP32 code. */
71
72 #define MASK_B_STEP 0x00000040 /* Emit code for Itanium B step. */
73
74 #define MASK_REG_NAMES 0x00000080 /* Use in/loc/out register names. */
75
76 #define MASK_NO_SDATA 0x00000100 /* Disable sdata/scommon/sbss. */
77
78 #define MASK_CONST_GP 0x00000200 /* treat gp as program-wide constant */
79
80 #define MASK_AUTO_PIC 0x00000400 /* generate automatically PIC */
81
82 #define MASK_INLINE_FLOAT_DIV_LAT 0x00000800 /* inline div, min latency. */
83
84 #define MASK_INLINE_FLOAT_DIV_THR 0x00001000 /* inline div, max throughput. */
85
86 #define MASK_INLINE_INT_DIV_LAT 0x00000800 /* inline div, min latency. */
87
88 #define MASK_INLINE_INT_DIV_THR 0x00001000 /* inline div, max throughput. */
89
90 #define MASK_DWARF2_ASM 0x40000000 /* test dwarf2 line info via gas. */
91
92 #define MASK_EARLY_STOP_BITS 0x00002000 /* tune stop bits for the model. */
93
94 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
95
96 #define TARGET_GNU_AS (target_flags & MASK_GNU_AS)
97
98 #define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
99
100 #define TARGET_NO_PIC (target_flags & MASK_NO_PIC)
101
102 #define TARGET_VOL_ASM_STOP (target_flags & MASK_VOL_ASM_STOP)
103
104 #define TARGET_ILP32 (target_flags & MASK_ILP32)
105
106 #define TARGET_B_STEP (target_flags & MASK_B_STEP)
107
108 #define TARGET_REG_NAMES (target_flags & MASK_REG_NAMES)
109
110 #define TARGET_NO_SDATA (target_flags & MASK_NO_SDATA)
111
112 #define TARGET_CONST_GP (target_flags & MASK_CONST_GP)
113
114 #define TARGET_AUTO_PIC (target_flags & MASK_AUTO_PIC)
115
116 #define TARGET_INLINE_FLOAT_DIV_LAT (target_flags & MASK_INLINE_FLOAT_DIV_LAT)
117
118 #define TARGET_INLINE_FLOAT_DIV_THR (target_flags & MASK_INLINE_FLOAT_DIV_THR)
119
120 #define TARGET_INLINE_INT_DIV_LAT (target_flags & MASK_INLINE_INT_DIV_LAT)
121
122 #define TARGET_INLINE_INT_DIV_THR (target_flags & MASK_INLINE_INT_DIV_THR)
123
124 #define TARGET_INLINE_FLOAT_DIV \
125 (target_flags & (MASK_INLINE_FLOAT_DIV_LAT | MASK_INLINE_FLOAT_DIV_THR))
126
127 #define TARGET_INLINE_INT_DIV \
128 (target_flags & (MASK_INLINE_INT_DIV_LAT | MASK_INLINE_INT_DIV_THR))
129
130 #define TARGET_DWARF2_ASM (target_flags & MASK_DWARF2_ASM)
131
132 extern int ia64_tls_size;
133 #define TARGET_TLS14 (ia64_tls_size == 14)
134 #define TARGET_TLS22 (ia64_tls_size == 22)
135 #define TARGET_TLS64 (ia64_tls_size == 64)
136 #define TARGET_EARLY_STOP_BITS (target_flags & MASK_EARLY_STOP_BITS)
137
138 #define TARGET_HPUX_LD 0
139
140 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
141 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
142 #endif
143
144 /* This macro defines names of command options to set and clear bits in
145 `target_flags'. Its definition is an initializer with a subgrouping for
146 each command option. */
147
148 #define TARGET_SWITCHES \
149 { \
150 { "big-endian", MASK_BIG_ENDIAN, \
151 N_("Generate big endian code") }, \
152 { "little-endian", -MASK_BIG_ENDIAN, \
153 N_("Generate little endian code") }, \
154 { "gnu-as", MASK_GNU_AS, \
155 N_("Generate code for GNU as") }, \
156 { "no-gnu-as", -MASK_GNU_AS, \
157 N_("Generate code for Intel as") }, \
158 { "gnu-ld", MASK_GNU_LD, \
159 N_("Generate code for GNU ld") }, \
160 { "no-gnu-ld", -MASK_GNU_LD, \
161 N_("Generate code for Intel ld") }, \
162 { "no-pic", MASK_NO_PIC, \
163 N_("Generate code without GP reg") }, \
164 { "volatile-asm-stop", MASK_VOL_ASM_STOP, \
165 N_("Emit stop bits before and after volatile extended asms") }, \
166 { "no-volatile-asm-stop", -MASK_VOL_ASM_STOP, \
167 N_("Don't emit stop bits before and after volatile extended asms") }, \
168 { "b-step", MASK_B_STEP, \
169 N_("Emit code for Itanium (TM) processor B step")}, \
170 { "register-names", MASK_REG_NAMES, \
171 N_("Use in/loc/out register names")}, \
172 { "no-sdata", MASK_NO_SDATA, \
173 N_("Disable use of sdata/scommon/sbss")}, \
174 { "sdata", -MASK_NO_SDATA, \
175 N_("Enable use of sdata/scommon/sbss")}, \
176 { "constant-gp", MASK_CONST_GP, \
177 N_("gp is constant (but save/restore gp on indirect calls)") }, \
178 { "auto-pic", MASK_AUTO_PIC, \
179 N_("Generate self-relocatable code") }, \
180 { "inline-float-divide-min-latency", MASK_INLINE_FLOAT_DIV_LAT, \
181 N_("Generate inline floating point division, optimize for latency") },\
182 { "inline-float-divide-max-throughput", MASK_INLINE_FLOAT_DIV_THR, \
183 N_("Generate inline floating point division, optimize for throughput") },\
184 { "inline-int-divide-min-latency", MASK_INLINE_INT_DIV_LAT, \
185 N_("Generate inline integer division, optimize for latency") }, \
186 { "inline-int-divide-max-throughput", MASK_INLINE_INT_DIV_THR, \
187 N_("Generate inline integer division, optimize for throughput") },\
188 { "dwarf2-asm", MASK_DWARF2_ASM, \
189 N_("Enable Dwarf 2 line debug info via GNU as")}, \
190 { "no-dwarf2-asm", -MASK_DWARF2_ASM, \
191 N_("Disable Dwarf 2 line debug info via GNU as")}, \
192 { "early-stop-bits", MASK_EARLY_STOP_BITS, \
193 N_("Enable earlier placing stop bits for better scheduling")}, \
194 { "no-early-stop-bits", -MASK_EARLY_STOP_BITS, \
195 N_("Disable earlier placing stop bits")}, \
196 SUBTARGET_SWITCHES \
197 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
198 NULL } \
199 }
200
201 /* Default target_flags if no switches are specified */
202
203 #ifndef TARGET_DEFAULT
204 #define TARGET_DEFAULT MASK_DWARF2_ASM
205 #endif
206
207 #ifndef TARGET_CPU_DEFAULT
208 #define TARGET_CPU_DEFAULT 0
209 #endif
210
211 #ifndef SUBTARGET_SWITCHES
212 #define SUBTARGET_SWITCHES
213 #endif
214
215 /* This macro is similar to `TARGET_SWITCHES' but defines names of command
216 options that have values. Its definition is an initializer with a
217 subgrouping for each command option. */
218
219 extern const char *ia64_fixed_range_string;
220 extern const char *ia64_tls_size_string;
221
222 /* Which processor to schedule for. The cpu attribute defines a list
223 that mirrors this list, so changes to i64.md must be made at the
224 same time. */
225
226 enum processor_type
227 {
228 PROCESSOR_ITANIUM, /* Original Itanium. */
229 PROCESSOR_ITANIUM2,
230 PROCESSOR_max
231 };
232
233 extern enum processor_type ia64_tune;
234
235 extern const char *ia64_tune_string;
236
237 #define TARGET_OPTIONS \
238 { \
239 { "fixed-range=", &ia64_fixed_range_string, \
240 N_("Specify range of registers to make fixed"), 0}, \
241 { "tls-size=", &ia64_tls_size_string, \
242 N_("Specify bit size of immediate TLS offsets"), 0}, \
243 { "tune=", &ia64_tune_string, \
244 N_("Schedule code for given CPU"), 0}, \
245 }
246
247 /* Sometimes certain combinations of command options do not make sense on a
248 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
249 take account of this. This macro, if defined, is executed once just after
250 all the command options have been parsed. */
251
252 #define OVERRIDE_OPTIONS ia64_override_options ()
253
254 /* Some machines may desire to change what optimizations are performed for
255 various optimization levels. This macro, if defined, is executed once just
256 after the optimization level is determined and before the remainder of the
257 command options have been parsed. Values set in this macro are used as the
258 default values for the other command line options. */
259
260 /* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
261 \f
262 /* Driver configuration */
263
264 /* A C string constant that tells the GNU CC driver program options to pass to
265 `cc1'. It can also specify how to translate options you give to GNU CC into
266 options for GNU CC to pass to the `cc1'. */
267
268 #undef CC1_SPEC
269 #define CC1_SPEC "%{G*}"
270
271 /* A C string constant that tells the GNU CC driver program options to pass to
272 `cc1plus'. It can also specify how to translate options you give to GNU CC
273 into options for GNU CC to pass to the `cc1plus'. */
274
275 /* #define CC1PLUS_SPEC "" */
276 \f
277 /* Storage Layout */
278
279 /* Define this macro to have the value 1 if the most significant bit in a byte
280 has the lowest number; otherwise define it to have the value zero. */
281
282 #define BITS_BIG_ENDIAN 0
283
284 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
285
286 /* Define this macro to have the value 1 if, in a multiword object, the most
287 significant word has the lowest number. */
288
289 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
290
291 #if defined(__BIG_ENDIAN__)
292 #define LIBGCC2_WORDS_BIG_ENDIAN 1
293 #else
294 #define LIBGCC2_WORDS_BIG_ENDIAN 0
295 #endif
296
297 #define UNITS_PER_WORD 8
298
299 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
300
301 /* A C expression whose value is zero if pointers that need to be extended
302 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
303 they are zero-extended and negative one if there is a ptr_extend operation.
304
305 You need not define this macro if the `POINTER_SIZE' is equal to the width
306 of `Pmode'. */
307 /* Need this for 32 bit pointers, see hpux.h for setting it. */
308 /* #define POINTERS_EXTEND_UNSIGNED */
309
310 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
311 which has the specified mode and signedness is to be stored in a register.
312 This macro is only called when TYPE is a scalar type. */
313 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
314 do \
315 { \
316 if (GET_MODE_CLASS (MODE) == MODE_INT \
317 && GET_MODE_SIZE (MODE) < 4) \
318 (MODE) = SImode; \
319 } \
320 while (0)
321
322 /* ??? ABI doesn't allow us to define this. */
323 /* #define PROMOTE_FUNCTION_ARGS */
324
325 /* ??? ABI doesn't allow us to define this. */
326 /* #define PROMOTE_FUNCTION_RETURN */
327
328 #define PARM_BOUNDARY 64
329
330 /* Define this macro if you wish to preserve a certain alignment for the stack
331 pointer. The definition is a C expression for the desired alignment
332 (measured in bits). */
333
334 #define STACK_BOUNDARY 128
335
336 /* Align frames on double word boundaries */
337 #ifndef IA64_STACK_ALIGN
338 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
339 #endif
340
341 #define FUNCTION_BOUNDARY 128
342
343 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
344 128 bit integers all require 128 bit alignment. */
345 #define BIGGEST_ALIGNMENT 128
346
347 /* If defined, a C expression to compute the alignment for a static variable.
348 TYPE is the data type, and ALIGN is the alignment that the object
349 would ordinarily have. The value of this macro is used instead of that
350 alignment to align the object. */
351
352 #define DATA_ALIGNMENT(TYPE, ALIGN) \
353 (TREE_CODE (TYPE) == ARRAY_TYPE \
354 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
355 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
356
357 /* If defined, a C expression to compute the alignment given to a constant that
358 is being placed in memory. CONSTANT is the constant and ALIGN is the
359 alignment that the object would ordinarily have. The value of this macro is
360 used instead of that alignment to align the object. */
361
362 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
363 (TREE_CODE (EXP) == STRING_CST \
364 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
365
366 #define STRICT_ALIGNMENT 1
367
368 /* Define this if you wish to imitate the way many other C compilers handle
369 alignment of bitfields and the structures that contain them.
370 The behavior is that the type written for a bit-field (`int', `short', or
371 other integer type) imposes an alignment for the entire structure, as if the
372 structure really did contain an ordinary field of that type. In addition,
373 the bit-field is placed within the structure so that it would fit within such
374 a field, not crossing a boundary for it. */
375 #define PCC_BITFIELD_TYPE_MATTERS 1
376
377 /* An integer expression for the size in bits of the largest integer machine
378 mode that should actually be used. */
379
380 /* Allow pairs of registers to be used, which is the intent of the default. */
381 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
382
383 /* By default, the C++ compiler will use function addresses in the
384 vtable entries. Setting this nonzero tells the compiler to use
385 function descriptors instead. The value of this macro says how
386 many words wide the descriptor is (normally 2). It is assumed
387 that the address of a function descriptor may be treated as a
388 pointer to a function.
389
390 For reasons known only to HP, the vtable entries (as opposed to
391 normal function descriptors) are 16 bytes wide in 32-bit mode as
392 well, even though the 3rd and 4th words are unused. */
393 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
394
395 /* Due to silliness in the HPUX linker, vtable entries must be
396 8-byte aligned even in 32-bit mode. Rather than create multiple
397 ABIs, force this restriction on everyone else too. */
398 #define TARGET_VTABLE_ENTRY_ALIGN 64
399
400 /* Due to the above, we need extra padding for the data entries below 0
401 to retain the alignment of the descriptors. */
402 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
403 \f
404 /* Layout of Source Language Data Types */
405
406 #define INT_TYPE_SIZE 32
407
408 #define SHORT_TYPE_SIZE 16
409
410 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
411
412 #define MAX_LONG_TYPE_SIZE 64
413
414 #define LONG_LONG_TYPE_SIZE 64
415
416 #define FLOAT_TYPE_SIZE 32
417
418 #define DOUBLE_TYPE_SIZE 64
419
420 #define LONG_DOUBLE_TYPE_SIZE 128
421
422 /* By default we use the 80-bit Intel extended float format packaged
423 in a 128-bit entity. */
424 #define INTEL_EXTENDED_IEEE_FORMAT 1
425
426 #define DEFAULT_SIGNED_CHAR 1
427
428 /* A C expression for a string describing the name of the data type to use for
429 size values. The typedef name `size_t' is defined using the contents of the
430 string. */
431 /* ??? Needs to be defined for P64 code. */
432 /* #define SIZE_TYPE */
433
434 /* A C expression for a string describing the name of the data type to use for
435 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
436 defined using the contents of the string. See `SIZE_TYPE' above for more
437 information. */
438 /* ??? Needs to be defined for P64 code. */
439 /* #define PTRDIFF_TYPE */
440
441 /* A C expression for a string describing the name of the data type to use for
442 wide characters. The typedef name `wchar_t' is defined using the contents
443 of the string. See `SIZE_TYPE' above for more information. */
444 /* #define WCHAR_TYPE */
445
446 /* A C expression for the size in bits of the data type for wide characters.
447 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
448 /* #define WCHAR_TYPE_SIZE */
449
450 \f
451 /* Register Basics */
452
453 /* Number of hardware registers known to the compiler.
454 We have 128 general registers, 128 floating point registers,
455 64 predicate registers, 8 branch registers, one frame pointer,
456 and several "application" registers. */
457
458 #define FIRST_PSEUDO_REGISTER 334
459
460 /* Ranges for the various kinds of registers. */
461 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
462 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
463 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
464 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
465 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
466 #define GENERAL_REGNO_P(REGNO) \
467 (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
468
469 #define GR_REG(REGNO) ((REGNO) + 0)
470 #define FR_REG(REGNO) ((REGNO) + 128)
471 #define PR_REG(REGNO) ((REGNO) + 256)
472 #define BR_REG(REGNO) ((REGNO) + 320)
473 #define OUT_REG(REGNO) ((REGNO) + 120)
474 #define IN_REG(REGNO) ((REGNO) + 112)
475 #define LOC_REG(REGNO) ((REGNO) + 32)
476
477 #define AR_CCV_REGNUM 329
478 #define AR_UNAT_REGNUM 330
479 #define AR_PFS_REGNUM 331
480 #define AR_LC_REGNUM 332
481 #define AR_EC_REGNUM 333
482
483 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
484 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
485 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
486
487 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
488 || (REGNO) == AR_UNAT_REGNUM)
489 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
490 && (REGNO) < FIRST_PSEUDO_REGISTER)
491 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
492 && (REGNO) < FIRST_PSEUDO_REGISTER)
493
494
495 /* ??? Don't really need two sets of macros. I like this one better because
496 it is less typing. */
497 #define R_GR(REGNO) GR_REG (REGNO)
498 #define R_FR(REGNO) FR_REG (REGNO)
499 #define R_PR(REGNO) PR_REG (REGNO)
500 #define R_BR(REGNO) BR_REG (REGNO)
501
502 /* An initializer that says which registers are used for fixed purposes all
503 throughout the compiled code and are therefore not available for general
504 allocation.
505
506 r0: constant 0
507 r1: global pointer (gp)
508 r12: stack pointer (sp)
509 r13: thread pointer (tp)
510 f0: constant 0.0
511 f1: constant 1.0
512 p0: constant true
513 fp: eliminable frame pointer */
514
515 /* The last 16 stacked regs are reserved for the 8 input and 8 output
516 registers. */
517
518 #define FIXED_REGISTERS \
519 { /* General registers. */ \
520 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
521 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
522 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
523 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
524 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
525 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
526 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
527 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
528 /* Floating-point registers. */ \
529 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
530 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
531 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
532 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
533 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
534 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
535 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
536 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
537 /* Predicate registers. */ \
538 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
539 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
540 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
541 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
542 /* Branch registers. */ \
543 0, 0, 0, 0, 0, 0, 0, 0, \
544 /*FP CCV UNAT PFS LC EC */ \
545 1, 1, 1, 1, 0, 1 \
546 }
547
548 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
549 (in general) by function calls as well as for fixed registers. This
550 macro therefore identifies the registers that are not available for
551 general allocation of values that must live across function calls. */
552
553 #define CALL_USED_REGISTERS \
554 { /* General registers. */ \
555 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
556 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
557 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
558 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
559 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
560 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
561 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
562 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
563 /* Floating-point registers. */ \
564 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
565 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
566 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
567 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
568 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
569 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
570 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
571 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
572 /* Predicate registers. */ \
573 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
574 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
575 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
576 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
577 /* Branch registers. */ \
578 1, 0, 0, 0, 0, 0, 1, 1, \
579 /*FP CCV UNAT PFS LC EC */ \
580 1, 1, 1, 1, 0, 1 \
581 }
582
583 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
584 problem which makes CALL_USED_REGISTERS *always* include
585 all the FIXED_REGISTERS. Until this problem has been
586 resolved this macro can be used to overcome this situation.
587 In particular, block_propagate() requires this list
588 be accurate, or we can remove registers which should be live.
589 This macro is used in regs_invalidated_by_call. */
590
591 #define CALL_REALLY_USED_REGISTERS \
592 { /* General registers. */ \
593 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, \
594 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
595 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
596 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
597 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
598 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
599 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
600 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
601 /* Floating-point registers. */ \
602 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
603 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
604 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
605 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
606 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
607 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
608 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
609 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
610 /* Predicate registers. */ \
611 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
612 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
613 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
614 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
615 /* Branch registers. */ \
616 1, 0, 0, 0, 0, 0, 1, 1, \
617 /*FP CCV UNAT PFS LC EC */ \
618 0, 1, 0, 1, 0, 0 \
619 }
620
621
622 /* Define this macro if the target machine has register windows. This C
623 expression returns the register number as seen by the called function
624 corresponding to the register number OUT as seen by the calling function.
625 Return OUT if register number OUT is not an outbound register. */
626
627 #define INCOMING_REGNO(OUT) \
628 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
629
630 /* Define this macro if the target machine has register windows. This C
631 expression returns the register number as seen by the calling function
632 corresponding to the register number IN as seen by the called function.
633 Return IN if register number IN is not an inbound register. */
634
635 #define OUTGOING_REGNO(IN) \
636 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
637
638 /* Define this macro if the target machine has register windows. This
639 C expression returns true if the register is call-saved but is in the
640 register window. */
641
642 #define LOCAL_REGNO(REGNO) \
643 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
644
645 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
646 return the mode to be used for the comparison. Must be defined if
647 EXTRA_CC_MODES is defined. */
648
649 #define SELECT_CC_MODE(OP,X,Y) CCmode
650 \f
651 /* Order of allocation of registers */
652
653 /* If defined, an initializer for a vector of integers, containing the numbers
654 of hard registers in the order in which GNU CC should prefer to use them
655 (from most preferred to least).
656
657 If this macro is not defined, registers are used lowest numbered first (all
658 else being equal).
659
660 One use of this macro is on machines where the highest numbered registers
661 must always be saved and the save-multiple-registers instruction supports
662 only sequences of consecutive registers. On such machines, define
663 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
664 allocatable register first. */
665
666 /* ??? Should the GR return value registers come before or after the rest
667 of the caller-save GRs? */
668
669 #define REG_ALLOC_ORDER \
670 { \
671 /* Caller-saved general registers. */ \
672 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
673 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
674 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
675 R_GR (30), R_GR (31), \
676 /* Output registers. */ \
677 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
678 R_GR (126), R_GR (127), \
679 /* Caller-saved general registers, also used for return values. */ \
680 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
681 /* addl caller-saved general registers. */ \
682 R_GR (2), R_GR (3), \
683 /* Caller-saved FP registers. */ \
684 R_FR (6), R_FR (7), \
685 /* Caller-saved FP registers, used for parameters and return values. */ \
686 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
687 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
688 /* Rotating caller-saved FP registers. */ \
689 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
690 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
691 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
692 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
693 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
694 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
695 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
696 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
697 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
698 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
699 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
700 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
701 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
702 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
703 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
704 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
705 R_FR (126), R_FR (127), \
706 /* Caller-saved predicate registers. */ \
707 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
708 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
709 /* Rotating caller-saved predicate registers. */ \
710 R_PR (16), R_PR (17), \
711 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
712 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
713 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
714 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
715 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
716 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
717 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
718 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
719 /* Caller-saved branch registers. */ \
720 R_BR (6), R_BR (7), \
721 \
722 /* Stacked callee-saved general registers. */ \
723 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
724 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
725 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
726 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
727 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
728 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
729 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
730 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
731 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
732 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
733 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
734 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
735 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
736 R_GR (108), \
737 /* Input registers. */ \
738 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
739 R_GR (118), R_GR (119), \
740 /* Callee-saved general registers. */ \
741 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
742 /* Callee-saved FP registers. */ \
743 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
744 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
745 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
746 R_FR (30), R_FR (31), \
747 /* Callee-saved predicate registers. */ \
748 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
749 /* Callee-saved branch registers. */ \
750 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
751 \
752 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
753 R_GR (109), R_GR (110), R_GR (111), \
754 \
755 /* Special general registers. */ \
756 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
757 /* Special FP registers. */ \
758 R_FR (0), R_FR (1), \
759 /* Special predicate registers. */ \
760 R_PR (0), \
761 /* Special branch registers. */ \
762 R_BR (0), \
763 /* Other fixed registers. */ \
764 FRAME_POINTER_REGNUM, \
765 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
766 AR_EC_REGNUM \
767 }
768 \f
769 /* How Values Fit in Registers */
770
771 /* A C expression for the number of consecutive hard registers, starting at
772 register number REGNO, required to hold a value of mode MODE. */
773
774 /* ??? We say that BImode PR values require two registers. This allows us to
775 easily store the normal and inverted values. We use CCImode to indicate
776 a single predicate register. */
777
778 #define HARD_REGNO_NREGS(REGNO, MODE) \
779 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
780 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
781 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
782 : FR_REGNO_P (REGNO) && (MODE) == TFmode && INTEL_EXTENDED_IEEE_FORMAT ? 1 \
783 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
784
785 /* A C expression that is nonzero if it is permissible to store a value of mode
786 MODE in hard register number REGNO (or in several registers starting with
787 that one). */
788
789 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
790 (FR_REGNO_P (REGNO) ? \
791 GET_MODE_CLASS (MODE) != MODE_CC && \
792 (MODE) != TImode && \
793 (MODE) != BImode && \
794 ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT) \
795 : PR_REGNO_P (REGNO) ? \
796 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
797 : GR_REGNO_P (REGNO) ? (MODE) != CCImode && (MODE) != TFmode \
798 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
799 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
800 : 0)
801
802 /* A C expression that is nonzero if it is desirable to choose register
803 allocation so as to avoid move instructions between a value of mode MODE1
804 and a value of mode MODE2.
805
806 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
807 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
808 zero. */
809 /* Don't tie integer and FP modes, as that causes us to get integer registers
810 allocated for FP instructions. TFmode only supported in FP registers so
811 we can't tie it with any other modes. */
812 #define MODES_TIEABLE_P(MODE1, MODE2) \
813 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
814 && (((MODE1) == TFmode) == ((MODE2) == TFmode)) \
815 && (((MODE1) == BImode) == ((MODE2) == BImode)))
816 \f
817 /* Handling Leaf Functions */
818
819 /* A C initializer for a vector, indexed by hard register number, which
820 contains 1 for a register that is allowable in a candidate for leaf function
821 treatment. */
822 /* ??? This might be useful. */
823 /* #define LEAF_REGISTERS */
824
825 /* A C expression whose value is the register number to which REGNO should be
826 renumbered, when a function is treated as a leaf function. */
827 /* ??? This might be useful. */
828 /* #define LEAF_REG_REMAP(REGNO) */
829
830 \f
831 /* Register Classes */
832
833 /* An enumeral type that must be defined with all the register class names as
834 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
835 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
836 which is not a register class but rather tells how many classes there
837 are. */
838 /* ??? When compiling without optimization, it is possible for the only use of
839 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
840 Regclass handles this case specially and does not assign any costs to the
841 pseudo. The pseudo then ends up using the last class before ALL_REGS.
842 Thus we must not let either PR_REGS or BR_REGS be the last class. The
843 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
844 enum reg_class
845 {
846 NO_REGS,
847 PR_REGS,
848 BR_REGS,
849 AR_M_REGS,
850 AR_I_REGS,
851 ADDL_REGS,
852 GR_REGS,
853 FR_REGS,
854 GR_AND_BR_REGS,
855 GR_AND_FR_REGS,
856 ALL_REGS,
857 LIM_REG_CLASSES
858 };
859
860 #define GENERAL_REGS GR_REGS
861
862 /* The number of distinct register classes. */
863 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
864
865 /* An initializer containing the names of the register classes as C string
866 constants. These names are used in writing some of the debugging dumps. */
867 #define REG_CLASS_NAMES \
868 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
869 "ADDL_REGS", "GR_REGS", "FR_REGS", \
870 "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
871
872 /* An initializer containing the contents of the register classes, as integers
873 which are bit masks. The Nth integer specifies the contents of class N.
874 The way the integer MASK is interpreted is that register R is in the class
875 if `MASK & (1 << R)' is 1. */
876 #define REG_CLASS_CONTENTS \
877 { \
878 /* NO_REGS. */ \
879 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
880 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
881 0x00000000, 0x00000000, 0x0000 }, \
882 /* PR_REGS. */ \
883 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
884 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
885 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
886 /* BR_REGS. */ \
887 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
888 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
889 0x00000000, 0x00000000, 0x00FF }, \
890 /* AR_M_REGS. */ \
891 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
892 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
893 0x00000000, 0x00000000, 0x0600 }, \
894 /* AR_I_REGS. */ \
895 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
896 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
897 0x00000000, 0x00000000, 0x3800 }, \
898 /* ADDL_REGS. */ \
899 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
900 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
901 0x00000000, 0x00000000, 0x0000 }, \
902 /* GR_REGS. */ \
903 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
904 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
905 0x00000000, 0x00000000, 0x0100 }, \
906 /* FR_REGS. */ \
907 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
908 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
909 0x00000000, 0x00000000, 0x0000 }, \
910 /* GR_AND_BR_REGS. */ \
911 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
912 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
913 0x00000000, 0x00000000, 0x01FF }, \
914 /* GR_AND_FR_REGS. */ \
915 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
916 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
917 0x00000000, 0x00000000, 0x0100 }, \
918 /* ALL_REGS. */ \
919 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
920 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
921 0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF }, \
922 }
923
924 /* A C expression whose value is a register class containing hard register
925 REGNO. In general there is more than one such class; choose a class which
926 is "minimal", meaning that no smaller class also contains the register. */
927 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
928 may call here with private (invalid) register numbers, such as
929 REG_VOLATILE. */
930 #define REGNO_REG_CLASS(REGNO) \
931 (ADDL_REGNO_P (REGNO) ? ADDL_REGS \
932 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
933 : FR_REGNO_P (REGNO) ? FR_REGS \
934 : PR_REGNO_P (REGNO) ? PR_REGS \
935 : BR_REGNO_P (REGNO) ? BR_REGS \
936 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
937 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
938 : NO_REGS)
939
940 /* A macro whose definition is the name of the class to which a valid base
941 register must belong. A base register is one used in an address which is
942 the register value plus a displacement. */
943 #define BASE_REG_CLASS GENERAL_REGS
944
945 /* A macro whose definition is the name of the class to which a valid index
946 register must belong. An index register is one used in an address where its
947 value is either multiplied by a scale factor or added to another register
948 (as well as added to a displacement). This is needed for POST_MODIFY. */
949 #define INDEX_REG_CLASS GENERAL_REGS
950
951 /* A C expression which defines the machine-dependent operand constraint
952 letters for register classes. If CHAR is such a letter, the value should be
953 the register class corresponding to it. Otherwise, the value should be
954 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
955 will not be passed to this macro; you do not need to handle it. */
956
957 #define REG_CLASS_FROM_LETTER(CHAR) \
958 ((CHAR) == 'f' ? FR_REGS \
959 : (CHAR) == 'a' ? ADDL_REGS \
960 : (CHAR) == 'b' ? BR_REGS \
961 : (CHAR) == 'c' ? PR_REGS \
962 : (CHAR) == 'd' ? AR_M_REGS \
963 : (CHAR) == 'e' ? AR_I_REGS \
964 : NO_REGS)
965
966 /* A C expression which is nonzero if register number NUM is suitable for use
967 as a base register in operand addresses. It may be either a suitable hard
968 register or a pseudo register that has been allocated such a hard reg. */
969 #define REGNO_OK_FOR_BASE_P(REGNO) \
970 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
971
972 /* A C expression which is nonzero if register number NUM is suitable for use
973 as an index register in operand addresses. It may be either a suitable hard
974 register or a pseudo register that has been allocated such a hard reg.
975 This is needed for POST_MODIFY. */
976 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
977
978 /* A C expression that places additional restrictions on the register class to
979 use when it is necessary to copy value X into a register in class CLASS.
980 The value is a register class; perhaps CLASS, or perhaps another, smaller
981 class. */
982
983 /* Don't allow volatile mem reloads into floating point registers. This
984 is defined to force reload to choose the r/m case instead of the f/f case
985 when reloading (set (reg fX) (mem/v)).
986
987 Do not reload expressions into AR regs. */
988
989 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
990 (CLASS == FR_REGS && GET_CODE (X) == MEM && MEM_VOLATILE_P (X) ? NO_REGS \
991 : CLASS == FR_REGS && GET_CODE (X) == CONST_DOUBLE ? NO_REGS \
992 : GET_RTX_CLASS (GET_CODE (X)) != 'o' \
993 && (CLASS == AR_M_REGS || CLASS == AR_I_REGS) ? NO_REGS \
994 : CLASS)
995
996 /* You should define this macro to indicate to the reload phase that it may
997 need to allocate at least one register for a reload in addition to the
998 register to contain the data. Specifically, if copying X to a register
999 CLASS in MODE requires an intermediate register, you should define this
1000 to return the largest register class all of whose registers can be used
1001 as intermediate registers or scratch registers. */
1002
1003 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
1004 ia64_secondary_reload_class (CLASS, MODE, X)
1005
1006 /* Certain machines have the property that some registers cannot be copied to
1007 some other registers without using memory. Define this macro on those
1008 machines to be a C expression that is nonzero if objects of mode M in
1009 registers of CLASS1 can only be copied to registers of class CLASS2 by
1010 storing a register of CLASS1 into memory and loading that memory location
1011 into a register of CLASS2. */
1012
1013 #if 0
1014 /* ??? May need this, but since we've disallowed TFmode in GR_REGS,
1015 I'm not quite sure how it could be invoked. The normal problems
1016 with unions should be solved with the addressof fiddling done by
1017 movtf and friends. */
1018 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1019 ((MODE) == TFmode && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
1020 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
1021 #endif
1022
1023 /* A C expression for the maximum number of consecutive registers of
1024 class CLASS needed to hold a value of mode MODE.
1025 This is closely related to the macro `HARD_REGNO_NREGS'. */
1026
1027 #define CLASS_MAX_NREGS(CLASS, MODE) \
1028 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
1029 : ((CLASS) == FR_REGS && (MODE) == TFmode) ? 1 \
1030 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1031
1032 /* In FP regs, we can't change FP values to integer values and vice
1033 versa, but we can change e.g. DImode to SImode. */
1034
1035 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1036 (GET_MODE_CLASS (FROM) != GET_MODE_CLASS (TO) \
1037 ? reg_classes_intersect_p (CLASS, FR_REGS) : 0)
1038
1039 /* A C expression that defines the machine-dependent operand constraint
1040 letters (`I', `J', `K', .. 'P') that specify particular ranges of
1041 integer values. */
1042
1043 /* 14 bit signed immediate for arithmetic instructions. */
1044 #define CONST_OK_FOR_I(VALUE) \
1045 ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
1046 /* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source. */
1047 #define CONST_OK_FOR_J(VALUE) \
1048 ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
1049 /* 8 bit signed immediate for logical instructions. */
1050 #define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
1051 /* 8 bit adjusted signed immediate for compare pseudo-ops. */
1052 #define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
1053 /* 6 bit unsigned immediate for shift counts. */
1054 #define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
1055 /* 9 bit signed immediate for load/store post-increments. */
1056 #define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
1057 /* 0 for r0. Used by Linux kernel, do not change. */
1058 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1059 /* 0 or -1 for dep instruction. */
1060 #define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
1061
1062 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1063 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1064 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1065 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1066 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1067 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1068 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1069 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1070 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1071 : 0)
1072
1073 /* A C expression that defines the machine-dependent operand constraint letters
1074 (`G', `H') that specify particular ranges of `const_double' values. */
1075
1076 /* 0.0 and 1.0 for fr0 and fr1. */
1077 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
1078 ((VALUE) == CONST0_RTX (GET_MODE (VALUE)) \
1079 || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
1080
1081 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1082 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) : 0)
1083
1084 /* A C expression that defines the optional machine-dependent constraint
1085 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1086 types of operands, usually memory references, for the target machine. */
1087
1088 /* Non-volatile memory for FP_REG loads/stores. */
1089 #define CONSTRAINT_OK_FOR_Q(VALUE) \
1090 (memory_operand((VALUE), VOIDmode) && ! MEM_VOLATILE_P (VALUE))
1091 /* 1..4 for shladd arguments. */
1092 #define CONSTRAINT_OK_FOR_R(VALUE) \
1093 (GET_CODE (VALUE) == CONST_INT && INTVAL (VALUE) >= 1 && INTVAL (VALUE) <= 4)
1094 /* Non-post-inc memory for asms and other unsavory creatures. */
1095 #define CONSTRAINT_OK_FOR_S(VALUE) \
1096 (GET_CODE (VALUE) == MEM \
1097 && GET_RTX_CLASS (GET_CODE (XEXP ((VALUE), 0))) != 'a' \
1098 && (reload_in_progress || memory_operand ((VALUE), VOIDmode)))
1099 /* Symbol ref to small-address-area: */
1100 #define CONSTRAINT_OK_FOR_T(VALUE) \
1101 (GET_CODE (VALUE) == SYMBOL_REF && SYMBOL_REF_SMALL_ADDR_P (VALUE))
1102
1103 #define EXTRA_CONSTRAINT(VALUE, C) \
1104 ((C) == 'Q' ? CONSTRAINT_OK_FOR_Q (VALUE) \
1105 : (C) == 'R' ? CONSTRAINT_OK_FOR_R (VALUE) \
1106 : (C) == 'S' ? CONSTRAINT_OK_FOR_S (VALUE) \
1107 : (C) == 'T' ? CONSTRAINT_OK_FOR_T (VALUE) \
1108 : 0)
1109 \f
1110 /* Basic Stack Layout */
1111
1112 /* Define this macro if pushing a word onto the stack moves the stack pointer
1113 to a smaller address. */
1114 #define STACK_GROWS_DOWNWARD 1
1115
1116 /* Define this macro if the addresses of local variable slots are at negative
1117 offsets from the frame pointer. */
1118 /* #define FRAME_GROWS_DOWNWARD */
1119
1120 /* Offset from the frame pointer to the first local variable slot to
1121 be allocated. */
1122 #define STARTING_FRAME_OFFSET 0
1123
1124 /* Offset from the stack pointer register to the first location at which
1125 outgoing arguments are placed. If not specified, the default value of zero
1126 is used. This is the proper value for most machines. */
1127 /* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
1128 #define STACK_POINTER_OFFSET 16
1129
1130 /* Offset from the argument pointer register to the first argument's address.
1131 On some machines it may depend on the data type of the function. */
1132 #define FIRST_PARM_OFFSET(FUNDECL) 0
1133
1134 /* A C expression whose value is RTL representing the value of the return
1135 address for the frame COUNT steps up from the current frame, after the
1136 prologue. */
1137
1138 /* ??? Frames other than zero would likely require interpreting the frame
1139 unwind info, so we don't try to support them. We would also need to define
1140 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
1141
1142 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1143 ia64_return_addr_rtx (COUNT, FRAME)
1144
1145 /* A C expression whose value is RTL representing the location of the incoming
1146 return address at the beginning of any function, before the prologue. This
1147 RTL is either a `REG', indicating that the return value is saved in `REG',
1148 or a `MEM' representing a location in the stack. This enables DWARF2
1149 unwind info for C++ EH. */
1150 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
1151
1152 /* ??? This is not defined because of three problems.
1153 1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1154 The default value is FIRST_PSEUDO_REGISTER which doesn't. This can be
1155 worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1156 unused register number.
1157 2) dwarf2out_frame_debug core dumps while processing prologue insns. We
1158 need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1159 3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1160 to zero, despite what the documentation implies, because it is tested in
1161 a few places with #ifdef instead of #if. */
1162 #undef INCOMING_RETURN_ADDR_RTX
1163
1164 /* A C expression whose value is an integer giving the offset, in bytes, from
1165 the value of the stack pointer register to the top of the stack frame at the
1166 beginning of any function, before the prologue. The top of the frame is
1167 defined to be the value of the stack pointer in the previous frame, just
1168 before the call instruction. */
1169 #define INCOMING_FRAME_SP_OFFSET 0
1170
1171 \f
1172 /* Register That Address the Stack Frame. */
1173
1174 /* The register number of the stack pointer register, which must also be a
1175 fixed register according to `FIXED_REGISTERS'. On most machines, the
1176 hardware determines which register this is. */
1177
1178 #define STACK_POINTER_REGNUM 12
1179
1180 /* The register number of the frame pointer register, which is used to access
1181 automatic variables in the stack frame. On some machines, the hardware
1182 determines which register this is. On other machines, you can choose any
1183 register you wish for this purpose. */
1184
1185 #define FRAME_POINTER_REGNUM 328
1186
1187 /* Base register for access to local variables of the function. */
1188 #define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
1189
1190 /* The register number of the arg pointer register, which is used to access the
1191 function's argument list. */
1192 /* r0 won't otherwise be used, so put the always eliminated argument pointer
1193 in it. */
1194 #define ARG_POINTER_REGNUM R_GR(0)
1195
1196 /* Due to the way varargs and argument spilling happens, the argument
1197 pointer is not 16-byte aligned like the stack pointer. */
1198 #define INIT_EXPANDERS \
1199 do { \
1200 if (cfun && cfun->emit->regno_pointer_align) \
1201 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64; \
1202 } while (0)
1203
1204 /* Register numbers used for passing a function's static chain pointer. */
1205 /* ??? The ABI sez the static chain should be passed as a normal parameter. */
1206 #define STATIC_CHAIN_REGNUM 15
1207 \f
1208 /* Eliminating the Frame Pointer and the Arg Pointer */
1209
1210 /* A C expression which is nonzero if a function must have and use a frame
1211 pointer. This expression is evaluated in the reload pass. If its value is
1212 nonzero the function will have a frame pointer. */
1213 #define FRAME_POINTER_REQUIRED 0
1214
1215 /* Show we can debug even without a frame pointer. */
1216 #define CAN_DEBUG_WITHOUT_FP
1217
1218 /* If defined, this macro specifies a table of register pairs used to eliminate
1219 unneeded registers that point into the stack frame. */
1220
1221 #define ELIMINABLE_REGS \
1222 { \
1223 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1224 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1225 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1226 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1227 }
1228
1229 /* A C expression that returns nonzero if the compiler is allowed to try to
1230 replace register number FROM with register number TO. The frame pointer
1231 is automatically handled. */
1232
1233 #define CAN_ELIMINATE(FROM, TO) \
1234 (TO == BR_REG (0) ? current_function_is_leaf : 1)
1235
1236 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1237 specifies the initial difference between the specified pair of
1238 registers. This macro must be defined if `ELIMINABLE_REGS' is
1239 defined. */
1240 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1241 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1242 \f
1243 /* Passing Function Arguments on the Stack */
1244
1245 /* Define this macro if an argument declared in a prototype as an integral type
1246 smaller than `int' should actually be passed as an `int'. In addition to
1247 avoiding errors in certain cases of mismatch, it also makes for better code
1248 on certain machines. */
1249 /* ??? Investigate. */
1250 /* #define PROMOTE_PROTOTYPES */
1251
1252 /* If defined, the maximum amount of space required for outgoing arguments will
1253 be computed and placed into the variable
1254 `current_function_outgoing_args_size'. */
1255
1256 #define ACCUMULATE_OUTGOING_ARGS 1
1257
1258 /* A C expression that should indicate the number of bytes of its own arguments
1259 that a function pops on returning, or 0 if the function pops no arguments
1260 and the caller must therefore pop them all after the function returns. */
1261
1262 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1263
1264 \f
1265 /* Function Arguments in Registers */
1266
1267 #define MAX_ARGUMENT_SLOTS 8
1268 #define MAX_INT_RETURN_SLOTS 4
1269 #define GR_ARG_FIRST IN_REG (0)
1270 #define GR_RET_FIRST GR_REG (8)
1271 #define GR_RET_LAST GR_REG (11)
1272 #define FR_ARG_FIRST FR_REG (8)
1273 #define FR_RET_FIRST FR_REG (8)
1274 #define FR_RET_LAST FR_REG (15)
1275 #define AR_ARG_FIRST OUT_REG (0)
1276
1277 /* A C expression that controls whether a function argument is passed in a
1278 register, and which register. */
1279
1280 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1281 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1282
1283 /* Define this macro if the target machine has "register windows", so that the
1284 register in which a function sees an arguments is not necessarily the same
1285 as the one in which the caller passed the argument. */
1286
1287 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1288 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1289
1290 /* A C expression for the number of words, at the beginning of an argument,
1291 must be put in registers. The value must be zero for arguments that are
1292 passed entirely in registers or that are entirely pushed on the stack. */
1293
1294 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1295 ia64_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1296
1297 /* A C expression that indicates when an argument must be passed by reference.
1298 If nonzero for an argument, a copy of that argument is made in memory and a
1299 pointer to the argument is passed instead of the argument itself. The
1300 pointer is passed in whatever way is appropriate for passing a pointer to
1301 that type. */
1302
1303 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1304 ia64_function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
1305
1306 /* A C type for declaring a variable that is used as the first argument of
1307 `FUNCTION_ARG' and other related values. For some target machines, the type
1308 `int' suffices and can hold the number of bytes of argument so far. */
1309
1310 typedef struct ia64_args
1311 {
1312 int words; /* # words of arguments so far */
1313 int int_regs; /* # GR registers used so far */
1314 int fp_regs; /* # FR registers used so far */
1315 int prototype; /* whether function prototyped */
1316 } CUMULATIVE_ARGS;
1317
1318 /* A C statement (sans semicolon) for initializing the variable CUM for the
1319 state at the beginning of the argument list. */
1320
1321 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1322 do { \
1323 (CUM).words = 0; \
1324 (CUM).int_regs = 0; \
1325 (CUM).fp_regs = 0; \
1326 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1327 } while (0)
1328
1329 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1330 arguments for the function being compiled. If this macro is undefined,
1331 `INIT_CUMULATIVE_ARGS' is used instead. */
1332
1333 /* We set prototype to true so that we never try to return a PARALLEL from
1334 function_arg. */
1335 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1336 do { \
1337 (CUM).words = 0; \
1338 (CUM).int_regs = 0; \
1339 (CUM).fp_regs = 0; \
1340 (CUM).prototype = 1; \
1341 } while (0)
1342
1343 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1344 advance past an argument in the argument list. The values MODE, TYPE and
1345 NAMED describe that argument. Once this is done, the variable CUM is
1346 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1347
1348 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1349 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1350
1351 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1352 argument with the specified mode and type. */
1353
1354 /* Arguments with alignment larger than 8 bytes start at the next even
1355 boundary. See ia64_function_arg. */
1356
1357 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1358 (((TYPE) ? (TYPE_ALIGN (TYPE) > 8 * BITS_PER_UNIT) \
1359 : (((((MODE) == BLKmode \
1360 ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1361 + UNITS_PER_WORD - 1) / UNITS_PER_WORD) > 1)) \
1362 ? 128 : PARM_BOUNDARY)
1363
1364 /* A C expression that is nonzero if REGNO is the number of a hard register in
1365 which function arguments are sometimes passed. This does *not* include
1366 implicit arguments such as the static chain and the structure-value address.
1367 On many machines, no registers can be used for this purpose since all
1368 function arguments are pushed on the stack. */
1369 #define FUNCTION_ARG_REGNO_P(REGNO) \
1370 (((REGNO) >= GR_ARG_FIRST && (REGNO) < (GR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1371 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1372 \f
1373 /* Implement `va_arg'. */
1374 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1375 ia64_va_arg (valist, type)
1376 \f
1377 /* How Scalar Function Values are Returned */
1378
1379 /* A C expression to create an RTX representing the place where a function
1380 returns a value of data type VALTYPE. */
1381
1382 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1383 ia64_function_value (VALTYPE, FUNC)
1384
1385 /* A C expression to create an RTX representing the place where a library
1386 function returns a value of mode MODE. */
1387
1388 #define LIBCALL_VALUE(MODE) \
1389 gen_rtx_REG (MODE, \
1390 (((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1391 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) && \
1392 ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT)) \
1393 ? FR_RET_FIRST : GR_RET_FIRST))
1394
1395 /* A C expression that is nonzero if REGNO is the number of a hard register in
1396 which the values of called function may come back. */
1397
1398 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1399 (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
1400 || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1401
1402 \f
1403 /* How Large Values are Returned */
1404
1405 /* A nonzero value says to return the function value in memory, just as large
1406 structures are always returned. */
1407
1408 #define RETURN_IN_MEMORY(TYPE) \
1409 ia64_return_in_memory (TYPE)
1410
1411 /* If you define this macro to be 0, then the conventions used for structure
1412 and union return values are decided by the `RETURN_IN_MEMORY' macro. */
1413
1414 #define DEFAULT_PCC_STRUCT_RETURN 0
1415
1416 /* If the structure value address is passed in a register, then
1417 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1418
1419 #define STRUCT_VALUE_REGNUM GR_REG (8)
1420
1421 \f
1422 /* Caller-Saves Register Allocation */
1423
1424 /* A C expression to determine whether it is worthwhile to consider placing a
1425 pseudo-register in a call-clobbered hard register and saving and restoring
1426 it around each function call. The expression should be 1 when this is worth
1427 doing, and 0 otherwise.
1428
1429 If you don't define this macro, a default is used which is good on most
1430 machines: `4 * CALLS < REFS'. */
1431 /* ??? Investigate. */
1432 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1433
1434 \f
1435 /* Function Entry and Exit */
1436
1437 /* Define this macro as a C expression that is nonzero if the return
1438 instruction or the function epilogue ignores the value of the stack pointer;
1439 in other words, if it is safe to delete an instruction to adjust the stack
1440 pointer before a return from the function. */
1441
1442 #define EXIT_IGNORE_STACK 1
1443
1444 /* Define this macro as a C expression that is nonzero for registers
1445 used by the epilogue or the `return' pattern. */
1446
1447 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1448
1449 /* Nonzero for registers used by the exception handling mechanism. */
1450
1451 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1452
1453 /* Output part N of a function descriptor for DECL. For ia64, both
1454 words are emitted with a single relocation, so ignore N > 0. */
1455 #define ASM_OUTPUT_FDESC(FILE, DECL, PART) \
1456 do { \
1457 if ((PART) == 0) \
1458 { \
1459 if (TARGET_ILP32) \
1460 fputs ("\tdata8.ua @iplt(", FILE); \
1461 else \
1462 fputs ("\tdata16.ua @iplt(", FILE); \
1463 assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0)); \
1464 fputs (")\n", FILE); \
1465 if (TARGET_ILP32) \
1466 fputs ("\tdata8.ua 0\n", FILE); \
1467 } \
1468 } while (0)
1469 \f
1470 /* Generating Code for Profiling. */
1471
1472 /* A C statement or compound statement to output to FILE some assembler code to
1473 call the profiling subroutine `mcount'. */
1474
1475 #undef FUNCTION_PROFILER
1476 #define FUNCTION_PROFILER(FILE, LABELNO) \
1477 do { \
1478 char buf[20]; \
1479 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", LABELNO); \
1480 fputs ("\talloc out0 = ar.pfs, 8, 0, 4, 0\n", FILE); \
1481 if (TARGET_AUTO_PIC) \
1482 fputs ("\tmovl out3 = @gprel(", FILE); \
1483 else \
1484 fputs ("\taddl out3 = @ltoff(", FILE); \
1485 assemble_name (FILE, buf); \
1486 if (TARGET_AUTO_PIC) \
1487 fputs (");;\n", FILE); \
1488 else \
1489 fputs ("), r1;;\n", FILE); \
1490 fputs ("\tmov out1 = r1\n", FILE); \
1491 fputs ("\tmov out2 = b0\n", FILE); \
1492 fputs ("\tbr.call.sptk.many b0 = _mcount;;\n", FILE); \
1493 } while (0)
1494 \f
1495 /* Implementing the Varargs Macros. */
1496
1497 /* Define this macro to store the anonymous register arguments into the stack
1498 so that all the arguments appear to have been passed consecutively on the
1499 stack. */
1500
1501 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
1502 ia64_setup_incoming_varargs (ARGS_SO_FAR, MODE, TYPE, & PRETEND_ARGS_SIZE, SECOND_TIME)
1503
1504 /* Define this macro if the location where a function argument is passed
1505 depends on whether or not it is a named argument. */
1506
1507 #define STRICT_ARGUMENT_NAMING 1
1508
1509 \f
1510 /* Trampolines for Nested Functions. */
1511
1512 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1513 the function containing a non-local goto target. */
1514
1515 #define STACK_SAVEAREA_MODE(LEVEL) \
1516 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1517
1518 /* Output assembler code for a block containing the constant parts of
1519 a trampoline, leaving space for the variable parts.
1520
1521 The trampoline should set the static chain pointer to value placed
1522 into the trampoline and should branch to the specified routine.
1523 To make the normal indirect-subroutine calling convention work,
1524 the trampoline must look like a function descriptor; the first
1525 word being the target address and the second being the target's
1526 global pointer.
1527
1528 We abuse the concept of a global pointer by arranging for it
1529 to point to the data we need to load. The complete trampoline
1530 has the following form:
1531
1532 +-------------------+ \
1533 TRAMP: | __ia64_trampoline | |
1534 +-------------------+ > fake function descriptor
1535 | TRAMP+16 | |
1536 +-------------------+ /
1537 | target descriptor |
1538 +-------------------+
1539 | static link |
1540 +-------------------+
1541 */
1542
1543 /* A C expression for the size in bytes of the trampoline, as an integer. */
1544
1545 #define TRAMPOLINE_SIZE 32
1546
1547 /* Alignment required for trampolines, in bits. */
1548
1549 #define TRAMPOLINE_ALIGNMENT 64
1550
1551 /* A C statement to initialize the variable parts of a trampoline. */
1552
1553 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1554 ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
1555 \f
1556 /* Implicit Calls to Library Routines */
1557
1558 /* Define this macro if GNU CC should generate calls to the System V (and ANSI
1559 C) library functions `memcpy' and `memset' rather than the BSD functions
1560 `bcopy' and `bzero'. */
1561
1562 #define TARGET_MEM_FUNCTIONS
1563
1564 \f
1565 /* Addressing Modes */
1566
1567 /* Define this macro if the machine supports post-increment addressing. */
1568
1569 #define HAVE_POST_INCREMENT 1
1570 #define HAVE_POST_DECREMENT 1
1571 #define HAVE_POST_MODIFY_DISP 1
1572 #define HAVE_POST_MODIFY_REG 1
1573
1574 /* A C expression that is 1 if the RTX X is a constant which is a valid
1575 address. */
1576
1577 #define CONSTANT_ADDRESS_P(X) 0
1578
1579 /* The max number of registers that can appear in a valid memory address. */
1580
1581 #define MAX_REGS_PER_ADDRESS 2
1582
1583 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1584 RTX) is a legitimate memory address on the target machine for a memory
1585 operand of mode MODE. */
1586
1587 #define LEGITIMATE_ADDRESS_REG(X) \
1588 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1589 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1590 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1591
1592 #define LEGITIMATE_ADDRESS_DISP(R, X) \
1593 (GET_CODE (X) == PLUS \
1594 && rtx_equal_p (R, XEXP (X, 0)) \
1595 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
1596 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
1597 && INTVAL (XEXP (X, 1)) >= -256 \
1598 && INTVAL (XEXP (X, 1)) < 256)))
1599
1600 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1601 do { \
1602 if (LEGITIMATE_ADDRESS_REG (X)) \
1603 goto LABEL; \
1604 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1605 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1606 && XEXP (X, 0) != arg_pointer_rtx) \
1607 goto LABEL; \
1608 else if (GET_CODE (X) == POST_MODIFY \
1609 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1610 && XEXP (X, 0) != arg_pointer_rtx \
1611 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
1612 goto LABEL; \
1613 } while (0)
1614
1615 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1616 use as a base register. */
1617
1618 #ifdef REG_OK_STRICT
1619 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1620 #else
1621 #define REG_OK_FOR_BASE_P(X) \
1622 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1623 #endif
1624
1625 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1626 use as an index register. This is needed for POST_MODIFY. */
1627
1628 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1629
1630 /* A C compound statement that attempts to replace X with a valid memory
1631 address for an operand of mode MODE.
1632
1633 This must be present, but there is nothing useful to be done here. */
1634
1635 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1636
1637 /* A C statement or compound statement with a conditional `goto LABEL;'
1638 executed if memory address X (an RTX) can have different meanings depending
1639 on the machine mode of the memory reference it is used for or if the address
1640 is valid for some modes but not others. */
1641
1642 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1643 if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC) \
1644 goto LABEL;
1645
1646 /* A C expression that is nonzero if X is a legitimate constant for an
1647 immediate operand on the target machine. */
1648
1649 #define LEGITIMATE_CONSTANT_P(X) \
1650 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1651 || GET_MODE (X) == DImode || CONST_DOUBLE_OK_FOR_G (X)) \
1652
1653 \f
1654 /* Condition Code Status */
1655
1656 /* One some machines not all possible comparisons are defined, but you can
1657 convert an invalid comparison into a valid one. */
1658 /* ??? Investigate. See the alpha definition. */
1659 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1660
1661 \f
1662 /* Describing Relative Costs of Operations */
1663
1664 /* A C expression for the cost of moving data from a register in class FROM to
1665 one in class TO, using MODE. */
1666
1667 #define REGISTER_MOVE_COST ia64_register_move_cost
1668
1669 /* A C expression for the cost of moving data of mode M between a
1670 register and memory. */
1671 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1672 ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS \
1673 || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
1674
1675 /* A C expression for the cost of a branch instruction. A value of 1 is the
1676 default; other values are interpreted relative to that. Used by the
1677 if-conversion code as max instruction count. */
1678 /* ??? This requires investigation. The primary effect might be how
1679 many additional insn groups we run into, vs how good the dynamic
1680 branch predictor is. */
1681
1682 #define BRANCH_COST 6
1683
1684 /* Define this macro as a C expression which is nonzero if accessing less than
1685 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1686 word of memory. */
1687
1688 #define SLOW_BYTE_ACCESS 1
1689
1690 /* Define this macro if it is as good or better to call a constant function
1691 address than to call an address kept in a register.
1692
1693 Indirect function calls are more expensive that direct function calls, so
1694 don't cse function addresses. */
1695
1696 #define NO_FUNCTION_CSE
1697
1698 \f
1699 /* Dividing the output into sections. */
1700
1701 /* A C expression whose value is a string containing the assembler operation
1702 that should precede instructions and read-only data. */
1703
1704 #define TEXT_SECTION_ASM_OP "\t.text"
1705
1706 /* A C expression whose value is a string containing the assembler operation to
1707 identify the following data as writable initialized data. */
1708
1709 #define DATA_SECTION_ASM_OP "\t.data"
1710
1711 /* If defined, a C expression whose value is a string containing the assembler
1712 operation to identify the following data as uninitialized global data. */
1713
1714 #define BSS_SECTION_ASM_OP "\t.bss"
1715
1716 #define IA64_DEFAULT_GVALUE 8
1717 \f
1718 /* Position Independent Code. */
1719
1720 /* The register number of the register used to address a table of static data
1721 addresses in memory. */
1722
1723 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1724 gen_rtx_REG (DImode, 1). */
1725
1726 /* ??? Should we set flag_pic? Probably need to define
1727 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1728
1729 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1730
1731 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1732 clobbered by calls. */
1733
1734 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1735
1736 \f
1737 /* The Overall Framework of an Assembler File. */
1738
1739 /* A C string constant describing how to begin a comment in the target
1740 assembler language. The compiler assumes that the comment will end at the
1741 end of the line. */
1742
1743 #define ASM_COMMENT_START "//"
1744
1745 /* A C string constant for text to be output before each `asm' statement or
1746 group of consecutive ones. */
1747
1748 /* ??? This won't work with the Intel assembler, because it does not accept
1749 # as a comment start character. However, //APP does not work in gas, so we
1750 can't use that either. Same problem for ASM_APP_OFF below. */
1751
1752 #define ASM_APP_ON "#APP\n"
1753
1754 /* A C string constant for text to be output after each `asm' statement or
1755 group of consecutive ones. */
1756
1757 #define ASM_APP_OFF "#NO_APP\n"
1758
1759 \f
1760 /* Output of Uninitialized Variables. */
1761
1762 /* This is all handled by svr4.h. */
1763
1764 \f
1765 /* Output and Generation of Labels. */
1766
1767 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1768 assembler definition of a label named NAME. */
1769
1770 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1771 why ia64_asm_output_label exists. */
1772
1773 extern int ia64_asm_output_label;
1774 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
1775 do { \
1776 ia64_asm_output_label = 1; \
1777 assemble_name (STREAM, NAME); \
1778 fputs (":\n", STREAM); \
1779 ia64_asm_output_label = 0; \
1780 } while (0)
1781
1782 /* Globalizing directive for a label. */
1783 #define GLOBAL_ASM_OP "\t.global "
1784
1785 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1786 necessary for declaring the name of an external symbol named NAME which is
1787 referenced in this compilation but not defined. */
1788
1789 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1790 ia64_asm_output_external (FILE, DECL, NAME)
1791
1792 /* A C statement to store into the string STRING a label whose name is made
1793 from the string PREFIX and the number NUM. */
1794
1795 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1796 do { \
1797 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
1798 } while (0)
1799
1800 /* ??? Not sure if using a ? in the name for Intel as is safe. */
1801
1802 #define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1803
1804 /* A C statement to output to the stdio stream STREAM assembler code which
1805 defines (equates) the symbol NAME to have the value VALUE. */
1806
1807 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1808 do { \
1809 assemble_name (STREAM, NAME); \
1810 fputs (" = ", STREAM); \
1811 assemble_name (STREAM, VALUE); \
1812 fputc ('\n', STREAM); \
1813 } while (0)
1814
1815 \f
1816 /* Macros Controlling Initialization Routines. */
1817
1818 /* This is handled by svr4.h and sysv4.h. */
1819
1820 \f
1821 /* Output of Assembler Instructions. */
1822
1823 /* A C initializer containing the assembler's names for the machine registers,
1824 each one as a C string constant. */
1825
1826 #define REGISTER_NAMES \
1827 { \
1828 /* General registers. */ \
1829 "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1830 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1831 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1832 "r30", "r31", \
1833 /* Local registers. */ \
1834 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
1835 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
1836 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
1837 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
1838 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
1839 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
1840 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
1841 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
1842 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
1843 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
1844 /* Input registers. */ \
1845 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
1846 /* Output registers. */ \
1847 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
1848 /* Floating-point registers. */ \
1849 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
1850 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
1851 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
1852 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
1853 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
1854 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
1855 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
1856 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
1857 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
1858 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
1859 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1860 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1861 "f120","f121","f122","f123","f124","f125","f126","f127", \
1862 /* Predicate registers. */ \
1863 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
1864 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
1865 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
1866 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
1867 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
1868 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
1869 "p60", "p61", "p62", "p63", \
1870 /* Branch registers. */ \
1871 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
1872 /* Frame pointer. Application registers. */ \
1873 "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
1874 }
1875
1876 /* If defined, a C initializer for an array of structures containing a name and
1877 a register number. This macro defines additional names for hard registers,
1878 thus allowing the `asm' option in declarations to refer to registers using
1879 alternate names. */
1880
1881 #define ADDITIONAL_REGISTER_NAMES \
1882 { \
1883 { "gp", R_GR (1) }, \
1884 { "sp", R_GR (12) }, \
1885 { "in0", IN_REG (0) }, \
1886 { "in1", IN_REG (1) }, \
1887 { "in2", IN_REG (2) }, \
1888 { "in3", IN_REG (3) }, \
1889 { "in4", IN_REG (4) }, \
1890 { "in5", IN_REG (5) }, \
1891 { "in6", IN_REG (6) }, \
1892 { "in7", IN_REG (7) }, \
1893 { "out0", OUT_REG (0) }, \
1894 { "out1", OUT_REG (1) }, \
1895 { "out2", OUT_REG (2) }, \
1896 { "out3", OUT_REG (3) }, \
1897 { "out4", OUT_REG (4) }, \
1898 { "out5", OUT_REG (5) }, \
1899 { "out6", OUT_REG (6) }, \
1900 { "out7", OUT_REG (7) }, \
1901 { "loc0", LOC_REG (0) }, \
1902 { "loc1", LOC_REG (1) }, \
1903 { "loc2", LOC_REG (2) }, \
1904 { "loc3", LOC_REG (3) }, \
1905 { "loc4", LOC_REG (4) }, \
1906 { "loc5", LOC_REG (5) }, \
1907 { "loc6", LOC_REG (6) }, \
1908 { "loc7", LOC_REG (7) }, \
1909 { "loc8", LOC_REG (8) }, \
1910 { "loc9", LOC_REG (9) }, \
1911 { "loc10", LOC_REG (10) }, \
1912 { "loc11", LOC_REG (11) }, \
1913 { "loc12", LOC_REG (12) }, \
1914 { "loc13", LOC_REG (13) }, \
1915 { "loc14", LOC_REG (14) }, \
1916 { "loc15", LOC_REG (15) }, \
1917 { "loc16", LOC_REG (16) }, \
1918 { "loc17", LOC_REG (17) }, \
1919 { "loc18", LOC_REG (18) }, \
1920 { "loc19", LOC_REG (19) }, \
1921 { "loc20", LOC_REG (20) }, \
1922 { "loc21", LOC_REG (21) }, \
1923 { "loc22", LOC_REG (22) }, \
1924 { "loc23", LOC_REG (23) }, \
1925 { "loc24", LOC_REG (24) }, \
1926 { "loc25", LOC_REG (25) }, \
1927 { "loc26", LOC_REG (26) }, \
1928 { "loc27", LOC_REG (27) }, \
1929 { "loc28", LOC_REG (28) }, \
1930 { "loc29", LOC_REG (29) }, \
1931 { "loc30", LOC_REG (30) }, \
1932 { "loc31", LOC_REG (31) }, \
1933 { "loc32", LOC_REG (32) }, \
1934 { "loc33", LOC_REG (33) }, \
1935 { "loc34", LOC_REG (34) }, \
1936 { "loc35", LOC_REG (35) }, \
1937 { "loc36", LOC_REG (36) }, \
1938 { "loc37", LOC_REG (37) }, \
1939 { "loc38", LOC_REG (38) }, \
1940 { "loc39", LOC_REG (39) }, \
1941 { "loc40", LOC_REG (40) }, \
1942 { "loc41", LOC_REG (41) }, \
1943 { "loc42", LOC_REG (42) }, \
1944 { "loc43", LOC_REG (43) }, \
1945 { "loc44", LOC_REG (44) }, \
1946 { "loc45", LOC_REG (45) }, \
1947 { "loc46", LOC_REG (46) }, \
1948 { "loc47", LOC_REG (47) }, \
1949 { "loc48", LOC_REG (48) }, \
1950 { "loc49", LOC_REG (49) }, \
1951 { "loc50", LOC_REG (50) }, \
1952 { "loc51", LOC_REG (51) }, \
1953 { "loc52", LOC_REG (52) }, \
1954 { "loc53", LOC_REG (53) }, \
1955 { "loc54", LOC_REG (54) }, \
1956 { "loc55", LOC_REG (55) }, \
1957 { "loc56", LOC_REG (56) }, \
1958 { "loc57", LOC_REG (57) }, \
1959 { "loc58", LOC_REG (58) }, \
1960 { "loc59", LOC_REG (59) }, \
1961 { "loc60", LOC_REG (60) }, \
1962 { "loc61", LOC_REG (61) }, \
1963 { "loc62", LOC_REG (62) }, \
1964 { "loc63", LOC_REG (63) }, \
1965 { "loc64", LOC_REG (64) }, \
1966 { "loc65", LOC_REG (65) }, \
1967 { "loc66", LOC_REG (66) }, \
1968 { "loc67", LOC_REG (67) }, \
1969 { "loc68", LOC_REG (68) }, \
1970 { "loc69", LOC_REG (69) }, \
1971 { "loc70", LOC_REG (70) }, \
1972 { "loc71", LOC_REG (71) }, \
1973 { "loc72", LOC_REG (72) }, \
1974 { "loc73", LOC_REG (73) }, \
1975 { "loc74", LOC_REG (74) }, \
1976 { "loc75", LOC_REG (75) }, \
1977 { "loc76", LOC_REG (76) }, \
1978 { "loc77", LOC_REG (77) }, \
1979 { "loc78", LOC_REG (78) }, \
1980 { "loc79", LOC_REG (79) }, \
1981 }
1982
1983 /* Emit a dtp-relative reference to a TLS variable. */
1984
1985 #ifdef HAVE_AS_TLS
1986 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
1987 ia64_output_dwarf_dtprel (FILE, SIZE, X)
1988 #endif
1989
1990 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1991 for an instruction operand X. X is an RTL expression. */
1992
1993 #define PRINT_OPERAND(STREAM, X, CODE) \
1994 ia64_print_operand (STREAM, X, CODE)
1995
1996 /* A C expression which evaluates to true if CODE is a valid punctuation
1997 character for use in the `PRINT_OPERAND' macro. */
1998
1999 /* ??? Keep this around for now, as we might need it later. */
2000
2001 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2002 ((CODE) == '+' || (CODE) == ',')
2003
2004 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2005 for an instruction operand that is a memory reference whose address is X. X
2006 is an RTL expression. */
2007
2008 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
2009 ia64_print_operand_address (STREAM, X)
2010
2011 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2012 `%I' options of `asm_fprintf' (see `final.c'). */
2013
2014 #define REGISTER_PREFIX ""
2015 #define LOCAL_LABEL_PREFIX "."
2016 #define USER_LABEL_PREFIX ""
2017 #define IMMEDIATE_PREFIX ""
2018
2019 \f
2020 /* Output of dispatch tables. */
2021
2022 /* This macro should be provided on machines where the addresses in a dispatch
2023 table are relative to the table's own address. */
2024
2025 /* ??? Depends on the pointer size. */
2026
2027 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2028 do { \
2029 if (TARGET_ILP32) \
2030 fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE); \
2031 else \
2032 fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE); \
2033 } while (0)
2034
2035 /* This is how to output an element of a case-vector that is absolute.
2036 (Ia64 does not use such vectors, but we must define this macro anyway.) */
2037
2038 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) abort ()
2039
2040 /* Jump tables only need 8 byte alignment. */
2041
2042 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
2043
2044 \f
2045 /* Assembler Commands for Exception Regions. */
2046
2047 /* Select a format to encode pointers in exception handling data. CODE
2048 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2049 true if the symbol may be affected by dynamic relocations. */
2050 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2051 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
2052 | ((GLOBAL) ? DW_EH_PE_indirect : 0) \
2053 | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
2054
2055 /* Handle special EH pointer encodings. Absolute, pc-relative, and
2056 indirect are handled automatically. */
2057 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
2058 do { \
2059 const char *reltag = NULL; \
2060 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
2061 reltag = "@segrel("; \
2062 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
2063 reltag = "@gprel("; \
2064 if (reltag) \
2065 { \
2066 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2067 fputs (reltag, FILE); \
2068 assemble_name (FILE, XSTR (ADDR, 0)); \
2069 fputc (')', FILE); \
2070 goto DONE; \
2071 } \
2072 } while (0)
2073
2074 \f
2075 /* Assembler Commands for Alignment. */
2076
2077 /* ??? Investigate. */
2078
2079 /* The alignment (log base 2) to put in front of LABEL, which follows
2080 a BARRIER. */
2081
2082 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
2083
2084 /* The desired alignment for the location counter at the beginning
2085 of a loop. */
2086
2087 /* #define LOOP_ALIGN(LABEL) */
2088
2089 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
2090 section because it fails put zeros in the bytes that are skipped. */
2091
2092 #define ASM_NO_SKIP_IN_TEXT 1
2093
2094 /* A C statement to output to the stdio stream STREAM an assembler command to
2095 advance the location counter to a multiple of 2 to the POWER bytes. */
2096
2097 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2098 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
2099
2100 \f
2101 /* Macros Affecting all Debug Formats. */
2102
2103 /* This is handled in svr4.h and sysv4.h. */
2104
2105 \f
2106 /* Specific Options for DBX Output. */
2107
2108 /* This is handled by dbxelf.h which is included by svr4.h. */
2109
2110 \f
2111 /* Open ended Hooks for DBX Output. */
2112
2113 /* Likewise. */
2114
2115 \f
2116 /* File names in DBX format. */
2117
2118 /* Likewise. */
2119
2120 \f
2121 /* Macros for SDB and Dwarf Output. */
2122
2123 /* Define this macro if GNU CC should produce dwarf version 2 format debugging
2124 output in response to the `-g' option. */
2125
2126 #define DWARF2_DEBUGGING_INFO 1
2127
2128 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
2129
2130 /* Use tags for debug info labels, so that they don't break instruction
2131 bundles. This also avoids getting spurious DV warnings from the
2132 assembler. This is similar to (*targetm.asm_out.internal_label), except that we
2133 add brackets around the label. */
2134
2135 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2136 fprintf (FILE, "[.%s%d:]\n", PREFIX, NUM)
2137
2138 /* Use section-relative relocations for debugging offsets. Unlike other
2139 targets that fake this by putting the section VMA at 0, IA-64 has
2140 proper relocations for them. */
2141 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL) \
2142 do { \
2143 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2144 fputs ("@secrel(", FILE); \
2145 assemble_name (FILE, LABEL); \
2146 fputc (')', FILE); \
2147 } while (0)
2148
2149 /* Emit a PC-relative relocation. */
2150 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2151 do { \
2152 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2153 fputs ("@pcrel(", FILE); \
2154 assemble_name (FILE, LABEL); \
2155 fputc (')', FILE); \
2156 } while (0)
2157 \f
2158 /* Register Renaming Parameters. */
2159
2160 /* A C expression that is nonzero if hard register number REGNO2 can be
2161 considered for use as a rename register for REGNO1 */
2162
2163 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
2164 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
2165
2166 \f
2167 /* Miscellaneous Parameters. */
2168
2169 /* Flag to mark data that is in the small address area (addressable
2170 via "addl", that is, within a 2MByte offset of 0. */
2171 #define SYMBOL_FLAG_SMALL_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2172 #define SYMBOL_REF_SMALL_ADDR_P(X) \
2173 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
2174
2175 /* Define this if you have defined special-purpose predicates in the file
2176 `MACHINE.c'. For each predicate, list all rtl codes that can be in
2177 expressions matched by the predicate. */
2178
2179 #define PREDICATE_CODES \
2180 { "call_operand", {SUBREG, REG, SYMBOL_REF}}, \
2181 { "got_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2182 { "sdata_symbolic_operand", {SYMBOL_REF, CONST}}, \
2183 { "small_addr_symbolic_operand", {SYMBOL_REF}}, \
2184 { "symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2185 { "function_operand", {SYMBOL_REF}}, \
2186 { "setjmp_operand", {SYMBOL_REF}}, \
2187 { "destination_operand", {SUBREG, REG, MEM}}, \
2188 { "not_postinc_memory_operand", {MEM}}, \
2189 { "move_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2190 CONSTANT_P_RTX, SYMBOL_REF, CONST, LABEL_REF}}, \
2191 { "gr_register_operand", {SUBREG, REG}}, \
2192 { "fr_register_operand", {SUBREG, REG}}, \
2193 { "grfr_register_operand", {SUBREG, REG}}, \
2194 { "gr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2195 { "fr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2196 { "grfr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2197 { "gr_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2198 { "gr_reg_or_5bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2199 { "gr_reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2200 { "gr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2201 { "grfr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2202 { "gr_reg_or_8bit_adjusted_operand", {SUBREG, REG, CONST_INT, \
2203 CONSTANT_P_RTX}}, \
2204 { "gr_reg_or_8bit_and_adjusted_operand", {SUBREG, REG, CONST_INT, \
2205 CONSTANT_P_RTX}}, \
2206 { "gr_reg_or_14bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2207 { "gr_reg_or_22bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2208 { "shift_count_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2209 { "shift_32bit_count_operand", {SUBREG, REG, CONST_INT, \
2210 CONSTANT_P_RTX}}, \
2211 { "shladd_operand", {CONST_INT}}, \
2212 { "fetchadd_operand", {CONST_INT}}, \
2213 { "fr_reg_or_fp01_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2214 { "normal_comparison_operator", {EQ, NE, GT, LE, GTU, LEU}}, \
2215 { "adjusted_comparison_operator", {LT, GE, LTU, GEU}}, \
2216 { "signed_inequality_operator", {GE, GT, LE, LT}}, \
2217 { "predicate_operator", {NE, EQ}}, \
2218 { "condop_operator", {PLUS, MINUS, IOR, XOR, AND}}, \
2219 { "ar_lc_reg_operand", {REG}}, \
2220 { "ar_ccv_reg_operand", {REG}}, \
2221 { "ar_pfs_reg_operand", {REG}}, \
2222 { "general_tfmode_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
2223 { "destination_tfmode_operand", {SUBREG, REG, MEM}}, \
2224 { "tfreg_or_fp01_operand", {REG, CONST_DOUBLE}}, \
2225 { "basereg_operand", {SUBREG, REG}},
2226
2227 /* An alias for a machine mode name. This is the machine mode that elements of
2228 a jump-table should have. */
2229
2230 #define CASE_VECTOR_MODE ptr_mode
2231
2232 /* Define as C expression which evaluates to nonzero if the tablejump
2233 instruction expects the table to contain offsets from the address of the
2234 table. */
2235
2236 #define CASE_VECTOR_PC_RELATIVE 1
2237
2238 /* Define this macro if operations between registers with integral mode smaller
2239 than a word are always performed on the entire register. */
2240
2241 #define WORD_REGISTER_OPERATIONS
2242
2243 /* Define this macro to be a C expression indicating when insns that read
2244 memory in MODE, an integral mode narrower than a word, set the bits outside
2245 of MODE to be either the sign-extension or the zero-extension of the data
2246 read. */
2247
2248 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2249
2250 /* The maximum number of bytes that a single instruction can move quickly from
2251 memory to memory. */
2252 #define MOVE_MAX 8
2253
2254 /* A C expression which is nonzero if on this machine it is safe to "convert"
2255 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2256 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
2257
2258 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2259
2260 /* A C expression describing the value returned by a comparison operator with
2261 an integral mode and stored by a store-flag instruction (`sCOND') when the
2262 condition is true. */
2263
2264 /* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1. */
2265
2266 /* An alias for the machine mode for pointers. */
2267
2268 /* ??? This would change if we had ILP32 support. */
2269
2270 #define Pmode DImode
2271
2272 /* An alias for the machine mode used for memory references to functions being
2273 called, in `call' RTL expressions. */
2274
2275 #define FUNCTION_MODE Pmode
2276
2277 /* Define this macro to handle System V style pragmas: #pragma pack and
2278 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2279 defined. */
2280
2281 /* If this architecture supports prefetch, define this to be the number of
2282 prefetch commands that can be executed in parallel.
2283
2284 ??? This number is bogus and needs to be replaced before the value is
2285 actually used in optimizations. */
2286
2287 #define SIMULTANEOUS_PREFETCHES 6
2288
2289 /* If this architecture supports prefetch, define this to be the size of
2290 the cache line that is prefetched. */
2291
2292 #define PREFETCH_BLOCK 32
2293
2294 #define HANDLE_SYSV_PRAGMA 1
2295
2296 /* A C expression for the maximum number of instructions to execute via
2297 conditional execution instructions instead of a branch. A value of
2298 BRANCH_COST+1 is the default if the machine does not use
2299 cc0, and 1 if it does use cc0. */
2300 /* ??? Investigate. */
2301 #define MAX_CONDITIONAL_EXECUTE 12
2302
2303 extern int ia64_final_schedule;
2304
2305 #define IA64_UNWIND_INFO 1
2306 #define IA64_UNWIND_EMIT(f,i) process_for_unwind_directive (f,i)
2307
2308 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
2309
2310 /* This function contains machine specific function data. */
2311 struct machine_function GTY(())
2312 {
2313 /* The new stack pointer when unwinding from EH. */
2314 rtx ia64_eh_epilogue_sp;
2315
2316 /* The new bsp value when unwinding from EH. */
2317 rtx ia64_eh_epilogue_bsp;
2318
2319 /* The GP value save register. */
2320 rtx ia64_gp_save;
2321
2322 /* The number of varargs registers to save. */
2323 int n_varargs;
2324 };
2325
2326
2327 enum ia64_builtins
2328 {
2329 IA64_BUILTIN_SYNCHRONIZE,
2330
2331 IA64_BUILTIN_FETCH_AND_ADD_SI,
2332 IA64_BUILTIN_FETCH_AND_SUB_SI,
2333 IA64_BUILTIN_FETCH_AND_OR_SI,
2334 IA64_BUILTIN_FETCH_AND_AND_SI,
2335 IA64_BUILTIN_FETCH_AND_XOR_SI,
2336 IA64_BUILTIN_FETCH_AND_NAND_SI,
2337
2338 IA64_BUILTIN_ADD_AND_FETCH_SI,
2339 IA64_BUILTIN_SUB_AND_FETCH_SI,
2340 IA64_BUILTIN_OR_AND_FETCH_SI,
2341 IA64_BUILTIN_AND_AND_FETCH_SI,
2342 IA64_BUILTIN_XOR_AND_FETCH_SI,
2343 IA64_BUILTIN_NAND_AND_FETCH_SI,
2344
2345 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI,
2346 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI,
2347
2348 IA64_BUILTIN_SYNCHRONIZE_SI,
2349
2350 IA64_BUILTIN_LOCK_TEST_AND_SET_SI,
2351
2352 IA64_BUILTIN_LOCK_RELEASE_SI,
2353
2354 IA64_BUILTIN_FETCH_AND_ADD_DI,
2355 IA64_BUILTIN_FETCH_AND_SUB_DI,
2356 IA64_BUILTIN_FETCH_AND_OR_DI,
2357 IA64_BUILTIN_FETCH_AND_AND_DI,
2358 IA64_BUILTIN_FETCH_AND_XOR_DI,
2359 IA64_BUILTIN_FETCH_AND_NAND_DI,
2360
2361 IA64_BUILTIN_ADD_AND_FETCH_DI,
2362 IA64_BUILTIN_SUB_AND_FETCH_DI,
2363 IA64_BUILTIN_OR_AND_FETCH_DI,
2364 IA64_BUILTIN_AND_AND_FETCH_DI,
2365 IA64_BUILTIN_XOR_AND_FETCH_DI,
2366 IA64_BUILTIN_NAND_AND_FETCH_DI,
2367
2368 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI,
2369 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI,
2370
2371 IA64_BUILTIN_SYNCHRONIZE_DI,
2372
2373 IA64_BUILTIN_LOCK_TEST_AND_SET_DI,
2374
2375 IA64_BUILTIN_LOCK_RELEASE_DI,
2376
2377 IA64_BUILTIN_BSP,
2378 IA64_BUILTIN_FLUSHRS
2379 };
2380
2381 /* Codes for expand_compare_and_swap and expand_swap_and_compare. */
2382 enum fetchop_code {
2383 IA64_ADD_OP, IA64_SUB_OP, IA64_OR_OP, IA64_AND_OP, IA64_XOR_OP, IA64_NAND_OP
2384 };
2385
2386 #define DONT_USE_BUILTIN_SETJMP
2387
2388 /* Output any profiling code before the prologue. */
2389
2390 #undef PROFILE_BEFORE_PROLOGUE
2391 #define PROFILE_BEFORE_PROLOGUE 1
2392
2393 \f
2394
2395 /* Switch on code for querying unit reservations. */
2396 #define CPU_UNITS_QUERY 1
2397
2398 /* End of ia64.h */