f631cee23c00c98e85229906c7e3eec463dbf35c
[gcc.git] / gcc / config / ia64 / ia64.h
1 /* Definitions of target machine GNU compiler. IA-64 version.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010 Free Software Foundation, Inc.
4 Contributed by James E. Wilson <wilson@cygnus.com> and
5 David Mosberger <davidm@hpl.hp.com>.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
25
26 /* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
28
29 \f
30 /* Run-time target specifications */
31
32 /* Target CPU builtins. */
33 #define TARGET_CPU_CPP_BUILTINS() \
34 do { \
35 builtin_assert("cpu=ia64"); \
36 builtin_assert("machine=ia64"); \
37 builtin_define("__ia64"); \
38 builtin_define("__ia64__"); \
39 builtin_define("__itanium__"); \
40 if (TARGET_BIG_ENDIAN) \
41 builtin_define("__BIG_ENDIAN__"); \
42 } while (0)
43
44 #ifndef SUBTARGET_EXTRA_SPECS
45 #define SUBTARGET_EXTRA_SPECS
46 #endif
47
48 #define EXTRA_SPECS \
49 { "asm_extra", ASM_EXTRA_SPEC }, \
50 SUBTARGET_EXTRA_SPECS
51
52 #define CC1_SPEC "%(cc1_cpu) "
53
54 #define ASM_EXTRA_SPEC ""
55
56 /* Variables which are this size or smaller are put in the sdata/sbss
57 sections. */
58 extern unsigned int ia64_section_threshold;
59
60 /* If the assembler supports thread-local storage, assume that the
61 system does as well. If a particular target system has an
62 assembler that supports TLS -- but the rest of the system does not
63 support TLS -- that system should explicit define TARGET_HAVE_TLS
64 to false in its own configuration file. */
65 #if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
66 #define TARGET_HAVE_TLS true
67 #endif
68
69 #define TARGET_TLS14 (ia64_tls_size == 14)
70 #define TARGET_TLS22 (ia64_tls_size == 22)
71 #define TARGET_TLS64 (ia64_tls_size == 64)
72
73 #define TARGET_HPUX 0
74 #define TARGET_HPUX_LD 0
75
76 #define TARGET_ABI_OPEN_VMS 0
77
78 #ifndef TARGET_ILP32
79 #define TARGET_ILP32 0
80 #endif
81
82 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
83 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
84 #endif
85
86 /* Values for TARGET_INLINE_FLOAT_DIV, TARGET_INLINE_INT_DIV, and
87 TARGET_INLINE_SQRT. */
88
89 enum ia64_inline_type
90 {
91 INL_NO = 0,
92 INL_MIN_LAT = 1,
93 INL_MAX_THR = 2
94 };
95
96 /* Default target_flags if no switches are specified */
97
98 #ifndef TARGET_DEFAULT
99 #define TARGET_DEFAULT (MASK_DWARF2_ASM | MASK_FUSED_MADD)
100 #endif
101
102 #ifndef TARGET_CPU_DEFAULT
103 #define TARGET_CPU_DEFAULT 0
104 #endif
105
106 /* Which processor to schedule for. The cpu attribute defines a list
107 that mirrors this list, so changes to ia64.md must be made at the
108 same time. */
109
110 enum processor_type
111 {
112 PROCESSOR_ITANIUM, /* Original Itanium. */
113 PROCESSOR_ITANIUM2,
114 PROCESSOR_max
115 };
116
117 extern enum processor_type ia64_tune;
118
119 /* Sometimes certain combinations of command options do not make sense on a
120 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
121 take account of this. This macro, if defined, is executed once just after
122 all the command options have been parsed. */
123
124 #define OVERRIDE_OPTIONS ia64_override_options ()
125
126 /* Some machines may desire to change what optimizations are performed for
127 various optimization levels. This macro, if defined, is executed once just
128 after the optimization level is determined and before the remainder of the
129 command options have been parsed. Values set in this macro are used as the
130 default values for the other command line options. */
131
132 /* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
133 \f
134 /* Driver configuration */
135
136 /* A C string constant that tells the GCC driver program options to pass to
137 `cc1'. It can also specify how to translate options you give to GCC into
138 options for GCC to pass to the `cc1'. */
139
140 #undef CC1_SPEC
141 #define CC1_SPEC "%{G*}"
142
143 /* A C string constant that tells the GCC driver program options to pass to
144 `cc1plus'. It can also specify how to translate options you give to GCC
145 into options for GCC to pass to the `cc1plus'. */
146
147 /* #define CC1PLUS_SPEC "" */
148 \f
149 /* Storage Layout */
150
151 /* Define this macro to have the value 1 if the most significant bit in a byte
152 has the lowest number; otherwise define it to have the value zero. */
153
154 #define BITS_BIG_ENDIAN 0
155
156 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
157
158 /* Define this macro to have the value 1 if, in a multiword object, the most
159 significant word has the lowest number. */
160
161 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
162
163 #if defined(__BIG_ENDIAN__)
164 #define LIBGCC2_WORDS_BIG_ENDIAN 1
165 #else
166 #define LIBGCC2_WORDS_BIG_ENDIAN 0
167 #endif
168
169 #define UNITS_PER_WORD 8
170
171 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
172
173 /* A C expression whose value is zero if pointers that need to be extended
174 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
175 they are zero-extended and negative one if there is a ptr_extend operation.
176
177 You need not define this macro if the `POINTER_SIZE' is equal to the width
178 of `Pmode'. */
179 /* Need this for 32-bit pointers, see hpux.h for setting it. */
180 /* #define POINTERS_EXTEND_UNSIGNED */
181
182 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
183 which has the specified mode and signedness is to be stored in a register.
184 This macro is only called when TYPE is a scalar type. */
185 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
186 do \
187 { \
188 if (GET_MODE_CLASS (MODE) == MODE_INT \
189 && GET_MODE_SIZE (MODE) < 4) \
190 (MODE) = SImode; \
191 } \
192 while (0)
193
194 #define PARM_BOUNDARY 64
195
196 /* Define this macro if you wish to preserve a certain alignment for the stack
197 pointer. The definition is a C expression for the desired alignment
198 (measured in bits). */
199
200 #define STACK_BOUNDARY 128
201
202 /* Align frames on double word boundaries */
203 #ifndef IA64_STACK_ALIGN
204 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
205 #endif
206
207 #define FUNCTION_BOUNDARY 128
208
209 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
210 128-bit integers all require 128-bit alignment. */
211 #define BIGGEST_ALIGNMENT 128
212
213 /* If defined, a C expression to compute the alignment for a static variable.
214 TYPE is the data type, and ALIGN is the alignment that the object
215 would ordinarily have. The value of this macro is used instead of that
216 alignment to align the object. */
217
218 #define DATA_ALIGNMENT(TYPE, ALIGN) \
219 (TREE_CODE (TYPE) == ARRAY_TYPE \
220 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
221 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
222
223 /* If defined, a C expression to compute the alignment given to a constant that
224 is being placed in memory. CONSTANT is the constant and ALIGN is the
225 alignment that the object would ordinarily have. The value of this macro is
226 used instead of that alignment to align the object. */
227
228 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
229 (TREE_CODE (EXP) == STRING_CST \
230 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
231
232 #define STRICT_ALIGNMENT 1
233
234 /* Define this if you wish to imitate the way many other C compilers handle
235 alignment of bitfields and the structures that contain them.
236 The behavior is that the type written for a bit-field (`int', `short', or
237 other integer type) imposes an alignment for the entire structure, as if the
238 structure really did contain an ordinary field of that type. In addition,
239 the bit-field is placed within the structure so that it would fit within such
240 a field, not crossing a boundary for it. */
241 #define PCC_BITFIELD_TYPE_MATTERS 1
242
243 /* An integer expression for the size in bits of the largest integer machine
244 mode that should actually be used. */
245
246 /* Allow pairs of registers to be used, which is the intent of the default. */
247 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
248
249 /* By default, the C++ compiler will use function addresses in the
250 vtable entries. Setting this nonzero tells the compiler to use
251 function descriptors instead. The value of this macro says how
252 many words wide the descriptor is (normally 2). It is assumed
253 that the address of a function descriptor may be treated as a
254 pointer to a function.
255
256 For reasons known only to HP, the vtable entries (as opposed to
257 normal function descriptors) are 16 bytes wide in 32-bit mode as
258 well, even though the 3rd and 4th words are unused. */
259 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
260
261 /* Due to silliness in the HPUX linker, vtable entries must be
262 8-byte aligned even in 32-bit mode. Rather than create multiple
263 ABIs, force this restriction on everyone else too. */
264 #define TARGET_VTABLE_ENTRY_ALIGN 64
265
266 /* Due to the above, we need extra padding for the data entries below 0
267 to retain the alignment of the descriptors. */
268 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
269 \f
270 /* Layout of Source Language Data Types */
271
272 #define INT_TYPE_SIZE 32
273
274 #define SHORT_TYPE_SIZE 16
275
276 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
277
278 #define LONG_LONG_TYPE_SIZE 64
279
280 #define FLOAT_TYPE_SIZE 32
281
282 #define DOUBLE_TYPE_SIZE 64
283
284 /* long double is XFmode normally, and TFmode for HPUX. It should be
285 TFmode for VMS as well but we only support up to DFmode now. */
286 #define LONG_DOUBLE_TYPE_SIZE \
287 (TARGET_HPUX ? 128 \
288 : TARGET_ABI_OPEN_VMS ? 64 \
289 : 80)
290
291 /* We always want the XFmode operations from libgcc2.c, except on VMS
292 where this yields references to unimplemented "insns". */
293 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE (TARGET_ABI_OPEN_VMS ? 64 : 80)
294
295
296 /* On HP-UX, we use the l suffix for TFmode in libgcc2.c. */
297 #define LIBGCC2_TF_CEXT l
298
299 #define DEFAULT_SIGNED_CHAR 1
300
301 /* A C expression for a string describing the name of the data type to use for
302 size values. The typedef name `size_t' is defined using the contents of the
303 string. */
304 /* ??? Needs to be defined for P64 code. */
305 /* #define SIZE_TYPE */
306
307 /* A C expression for a string describing the name of the data type to use for
308 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
309 defined using the contents of the string. See `SIZE_TYPE' above for more
310 information. */
311 /* ??? Needs to be defined for P64 code. */
312 /* #define PTRDIFF_TYPE */
313
314 /* A C expression for a string describing the name of the data type to use for
315 wide characters. The typedef name `wchar_t' is defined using the contents
316 of the string. See `SIZE_TYPE' above for more information. */
317 /* #define WCHAR_TYPE */
318
319 /* A C expression for the size in bits of the data type for wide characters.
320 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
321 /* #define WCHAR_TYPE_SIZE */
322
323 \f
324 /* Register Basics */
325
326 /* Number of hardware registers known to the compiler.
327 We have 128 general registers, 128 floating point registers,
328 64 predicate registers, 8 branch registers, one frame pointer,
329 and several "application" registers. */
330
331 #define FIRST_PSEUDO_REGISTER 334
332
333 /* Ranges for the various kinds of registers. */
334 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
335 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
336 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
337 #define FP_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 254 && (REGNO) != 159)
338 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
339 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
340 #define GENERAL_REGNO_P(REGNO) \
341 (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
342
343 #define GR_REG(REGNO) ((REGNO) + 0)
344 #define FR_REG(REGNO) ((REGNO) + 128)
345 #define PR_REG(REGNO) ((REGNO) + 256)
346 #define BR_REG(REGNO) ((REGNO) + 320)
347 #define OUT_REG(REGNO) ((REGNO) + 120)
348 #define IN_REG(REGNO) ((REGNO) + 112)
349 #define LOC_REG(REGNO) ((REGNO) + 32)
350
351 #define AR_CCV_REGNUM 329
352 #define AR_UNAT_REGNUM 330
353 #define AR_PFS_REGNUM 331
354 #define AR_LC_REGNUM 332
355 #define AR_EC_REGNUM 333
356
357 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
358 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
359 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
360
361 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
362 || (REGNO) == AR_UNAT_REGNUM)
363 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
364 && (REGNO) < FIRST_PSEUDO_REGISTER)
365 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
366 && (REGNO) < FIRST_PSEUDO_REGISTER)
367
368
369 /* ??? Don't really need two sets of macros. I like this one better because
370 it is less typing. */
371 #define R_GR(REGNO) GR_REG (REGNO)
372 #define R_FR(REGNO) FR_REG (REGNO)
373 #define R_PR(REGNO) PR_REG (REGNO)
374 #define R_BR(REGNO) BR_REG (REGNO)
375
376 /* An initializer that says which registers are used for fixed purposes all
377 throughout the compiled code and are therefore not available for general
378 allocation.
379
380 r0: constant 0
381 r1: global pointer (gp)
382 r12: stack pointer (sp)
383 r13: thread pointer (tp)
384 f0: constant 0.0
385 f1: constant 1.0
386 p0: constant true
387 fp: eliminable frame pointer */
388
389 /* The last 16 stacked regs are reserved for the 8 input and 8 output
390 registers. */
391
392 #define FIXED_REGISTERS \
393 { /* General registers. */ \
394 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
395 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
396 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
397 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
398 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
399 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
400 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
401 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
402 /* Floating-point registers. */ \
403 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
404 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
405 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
406 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
407 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
408 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
409 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
410 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
411 /* Predicate registers. */ \
412 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
413 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
414 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
415 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
416 /* Branch registers. */ \
417 0, 0, 0, 0, 0, 0, 0, 0, \
418 /*FP CCV UNAT PFS LC EC */ \
419 1, 1, 1, 1, 1, 1 \
420 }
421
422 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
423 (in general) by function calls as well as for fixed registers. This
424 macro therefore identifies the registers that are not available for
425 general allocation of values that must live across function calls. */
426
427 #define CALL_USED_REGISTERS \
428 { /* General registers. */ \
429 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
430 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
431 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
432 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
433 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
434 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
435 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
436 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
437 /* Floating-point registers. */ \
438 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
439 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
440 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
441 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
442 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
443 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
444 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
445 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
446 /* Predicate registers. */ \
447 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
448 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
449 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
450 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
451 /* Branch registers. */ \
452 1, 0, 0, 0, 0, 0, 1, 1, \
453 /*FP CCV UNAT PFS LC EC */ \
454 1, 1, 1, 1, 1, 1 \
455 }
456
457 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
458 problem which makes CALL_USED_REGISTERS *always* include
459 all the FIXED_REGISTERS. Until this problem has been
460 resolved this macro can be used to overcome this situation.
461 In particular, block_propagate() requires this list
462 be accurate, or we can remove registers which should be live.
463 This macro is used in regs_invalidated_by_call. */
464
465 #define CALL_REALLY_USED_REGISTERS \
466 { /* General registers. */ \
467 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, \
468 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
469 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
470 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
471 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
472 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
473 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
474 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
475 /* Floating-point registers. */ \
476 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
477 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
478 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
479 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
480 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
481 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
482 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
483 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
484 /* Predicate registers. */ \
485 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
486 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
487 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
488 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
489 /* Branch registers. */ \
490 1, 0, 0, 0, 0, 0, 1, 1, \
491 /*FP CCV UNAT PFS LC EC */ \
492 0, 1, 0, 1, 0, 0 \
493 }
494
495
496 /* Define this macro if the target machine has register windows. This C
497 expression returns the register number as seen by the called function
498 corresponding to the register number OUT as seen by the calling function.
499 Return OUT if register number OUT is not an outbound register. */
500
501 #define INCOMING_REGNO(OUT) \
502 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
503
504 /* Define this macro if the target machine has register windows. This C
505 expression returns the register number as seen by the calling function
506 corresponding to the register number IN as seen by the called function.
507 Return IN if register number IN is not an inbound register. */
508
509 #define OUTGOING_REGNO(IN) \
510 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
511
512 /* Define this macro if the target machine has register windows. This
513 C expression returns true if the register is call-saved but is in the
514 register window. */
515
516 #define LOCAL_REGNO(REGNO) \
517 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
518
519 /* We define CCImode in ia64-modes.def so we need a selector. */
520
521 #define SELECT_CC_MODE(OP,X,Y) CCmode
522 \f
523 /* Order of allocation of registers */
524
525 /* If defined, an initializer for a vector of integers, containing the numbers
526 of hard registers in the order in which GCC should prefer to use them
527 (from most preferred to least).
528
529 If this macro is not defined, registers are used lowest numbered first (all
530 else being equal).
531
532 One use of this macro is on machines where the highest numbered registers
533 must always be saved and the save-multiple-registers instruction supports
534 only sequences of consecutive registers. On such machines, define
535 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
536 allocatable register first. */
537
538 /* ??? Should the GR return value registers come before or after the rest
539 of the caller-save GRs? */
540
541 #define REG_ALLOC_ORDER \
542 { \
543 /* Caller-saved general registers. */ \
544 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
545 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
546 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
547 R_GR (30), R_GR (31), \
548 /* Output registers. */ \
549 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
550 R_GR (126), R_GR (127), \
551 /* Caller-saved general registers, also used for return values. */ \
552 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
553 /* addl caller-saved general registers. */ \
554 R_GR (2), R_GR (3), \
555 /* Caller-saved FP registers. */ \
556 R_FR (6), R_FR (7), \
557 /* Caller-saved FP registers, used for parameters and return values. */ \
558 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
559 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
560 /* Rotating caller-saved FP registers. */ \
561 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
562 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
563 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
564 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
565 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
566 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
567 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
568 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
569 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
570 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
571 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
572 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
573 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
574 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
575 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
576 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
577 R_FR (126), R_FR (127), \
578 /* Caller-saved predicate registers. */ \
579 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
580 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
581 /* Rotating caller-saved predicate registers. */ \
582 R_PR (16), R_PR (17), \
583 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
584 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
585 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
586 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
587 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
588 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
589 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
590 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
591 /* Caller-saved branch registers. */ \
592 R_BR (6), R_BR (7), \
593 \
594 /* Stacked callee-saved general registers. */ \
595 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
596 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
597 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
598 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
599 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
600 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
601 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
602 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
603 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
604 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
605 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
606 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
607 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
608 R_GR (108), \
609 /* Input registers. */ \
610 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
611 R_GR (118), R_GR (119), \
612 /* Callee-saved general registers. */ \
613 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
614 /* Callee-saved FP registers. */ \
615 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
616 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
617 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
618 R_FR (30), R_FR (31), \
619 /* Callee-saved predicate registers. */ \
620 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
621 /* Callee-saved branch registers. */ \
622 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
623 \
624 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
625 R_GR (109), R_GR (110), R_GR (111), \
626 \
627 /* Special general registers. */ \
628 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
629 /* Special FP registers. */ \
630 R_FR (0), R_FR (1), \
631 /* Special predicate registers. */ \
632 R_PR (0), \
633 /* Special branch registers. */ \
634 R_BR (0), \
635 /* Other fixed registers. */ \
636 FRAME_POINTER_REGNUM, \
637 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
638 AR_EC_REGNUM \
639 }
640 \f
641 /* How Values Fit in Registers */
642
643 /* A C expression for the number of consecutive hard registers, starting at
644 register number REGNO, required to hold a value of mode MODE. */
645
646 /* ??? We say that BImode PR values require two registers. This allows us to
647 easily store the normal and inverted values. We use CCImode to indicate
648 a single predicate register. */
649
650 #define HARD_REGNO_NREGS(REGNO, MODE) \
651 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
652 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
653 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
654 : FR_REGNO_P (REGNO) && (MODE) == XFmode ? 1 \
655 : FR_REGNO_P (REGNO) && (MODE) == RFmode ? 1 \
656 : FR_REGNO_P (REGNO) && (MODE) == XCmode ? 2 \
657 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
658
659 /* A C expression that is nonzero if it is permissible to store a value of mode
660 MODE in hard register number REGNO (or in several registers starting with
661 that one). */
662
663 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
664 (FR_REGNO_P (REGNO) ? \
665 GET_MODE_CLASS (MODE) != MODE_CC && \
666 (MODE) != BImode && \
667 (MODE) != TFmode \
668 : PR_REGNO_P (REGNO) ? \
669 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
670 : GR_REGNO_P (REGNO) ? \
671 (MODE) != CCImode && (MODE) != XFmode && (MODE) != XCmode && (MODE) != RFmode \
672 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
673 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
674 : 0)
675
676 /* A C expression that is nonzero if it is desirable to choose register
677 allocation so as to avoid move instructions between a value of mode MODE1
678 and a value of mode MODE2.
679
680 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
681 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
682 zero. */
683 /* Don't tie integer and FP modes, as that causes us to get integer registers
684 allocated for FP instructions. XFmode only supported in FP registers so
685 we can't tie it with any other modes. */
686 #define MODES_TIEABLE_P(MODE1, MODE2) \
687 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
688 && ((((MODE1) == XFmode) || ((MODE1) == XCmode) || ((MODE1) == RFmode)) \
689 == (((MODE2) == XFmode) || ((MODE2) == XCmode) || ((MODE2) == RFmode))) \
690 && (((MODE1) == BImode) == ((MODE2) == BImode)))
691
692 /* Specify the modes required to caller save a given hard regno.
693 We need to ensure floating pt regs are not saved as DImode. */
694
695 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
696 ((FR_REGNO_P (REGNO) && (NREGS) == 1) ? RFmode \
697 : choose_hard_reg_mode ((REGNO), (NREGS), false))
698 \f
699 /* Handling Leaf Functions */
700
701 /* A C initializer for a vector, indexed by hard register number, which
702 contains 1 for a register that is allowable in a candidate for leaf function
703 treatment. */
704 /* ??? This might be useful. */
705 /* #define LEAF_REGISTERS */
706
707 /* A C expression whose value is the register number to which REGNO should be
708 renumbered, when a function is treated as a leaf function. */
709 /* ??? This might be useful. */
710 /* #define LEAF_REG_REMAP(REGNO) */
711
712 \f
713 /* Register Classes */
714
715 /* An enumeral type that must be defined with all the register class names as
716 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
717 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
718 which is not a register class but rather tells how many classes there
719 are. */
720 /* ??? When compiling without optimization, it is possible for the only use of
721 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
722 Regclass handles this case specially and does not assign any costs to the
723 pseudo. The pseudo then ends up using the last class before ALL_REGS.
724 Thus we must not let either PR_REGS or BR_REGS be the last class. The
725 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
726 enum reg_class
727 {
728 NO_REGS,
729 PR_REGS,
730 BR_REGS,
731 AR_M_REGS,
732 AR_I_REGS,
733 ADDL_REGS,
734 GR_REGS,
735 FP_REGS,
736 FR_REGS,
737 GR_AND_BR_REGS,
738 GR_AND_FR_REGS,
739 ALL_REGS,
740 LIM_REG_CLASSES
741 };
742
743 #define GENERAL_REGS GR_REGS
744
745 /* The number of distinct register classes. */
746 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
747
748 /* An initializer containing the names of the register classes as C string
749 constants. These names are used in writing some of the debugging dumps. */
750 #define REG_CLASS_NAMES \
751 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
752 "ADDL_REGS", "GR_REGS", "FP_REGS", "FR_REGS", \
753 "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
754
755 /* An initializer containing the contents of the register classes, as integers
756 which are bit masks. The Nth integer specifies the contents of class N.
757 The way the integer MASK is interpreted is that register R is in the class
758 if `MASK & (1 << R)' is 1. */
759 #define REG_CLASS_CONTENTS \
760 { \
761 /* NO_REGS. */ \
762 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
763 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
764 0x00000000, 0x00000000, 0x0000 }, \
765 /* PR_REGS. */ \
766 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
767 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
768 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
769 /* BR_REGS. */ \
770 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
771 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
772 0x00000000, 0x00000000, 0x00FF }, \
773 /* AR_M_REGS. */ \
774 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
775 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
776 0x00000000, 0x00000000, 0x0600 }, \
777 /* AR_I_REGS. */ \
778 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
779 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
780 0x00000000, 0x00000000, 0x3800 }, \
781 /* ADDL_REGS. */ \
782 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
783 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
784 0x00000000, 0x00000000, 0x0000 }, \
785 /* GR_REGS. */ \
786 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
787 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
788 0x00000000, 0x00000000, 0x0100 }, \
789 /* FP_REGS. */ \
790 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
791 0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF, \
792 0x00000000, 0x00000000, 0x0000 }, \
793 /* FR_REGS. */ \
794 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
795 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
796 0x00000000, 0x00000000, 0x0000 }, \
797 /* GR_AND_BR_REGS. */ \
798 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
799 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
800 0x00000000, 0x00000000, 0x01FF }, \
801 /* GR_AND_FR_REGS. */ \
802 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
803 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
804 0x00000000, 0x00000000, 0x0100 }, \
805 /* ALL_REGS. */ \
806 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
807 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
808 0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF }, \
809 }
810
811 /* The following macro defines cover classes for Integrated Register
812 Allocator. Cover classes is a set of non-intersected register
813 classes covering all hard registers used for register allocation
814 purpose. Any move between two registers of a cover class should be
815 cheaper than load or store of the registers. The macro value is
816 array of register classes with LIM_REG_CLASSES used as the end
817 marker. */
818
819 #define IRA_COVER_CLASSES \
820 { \
821 PR_REGS, BR_REGS, AR_M_REGS, AR_I_REGS, GR_REGS, FR_REGS, LIM_REG_CLASSES \
822 }
823
824 /* A C expression whose value is a register class containing hard register
825 REGNO. In general there is more than one such class; choose a class which
826 is "minimal", meaning that no smaller class also contains the register. */
827 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
828 may call here with private (invalid) register numbers, such as
829 REG_VOLATILE. */
830 #define REGNO_REG_CLASS(REGNO) \
831 (ADDL_REGNO_P (REGNO) ? ADDL_REGS \
832 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
833 : FR_REGNO_P (REGNO) ? (REGNO) != R_FR (31) \
834 && (REGNO) != R_FR(127) ? FP_REGS : FR_REGS \
835 : PR_REGNO_P (REGNO) ? PR_REGS \
836 : BR_REGNO_P (REGNO) ? BR_REGS \
837 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
838 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
839 : NO_REGS)
840
841 /* A macro whose definition is the name of the class to which a valid base
842 register must belong. A base register is one used in an address which is
843 the register value plus a displacement. */
844 #define BASE_REG_CLASS GENERAL_REGS
845
846 /* A macro whose definition is the name of the class to which a valid index
847 register must belong. An index register is one used in an address where its
848 value is either multiplied by a scale factor or added to another register
849 (as well as added to a displacement). This is needed for POST_MODIFY. */
850 #define INDEX_REG_CLASS GENERAL_REGS
851
852 /* A C expression which is nonzero if register number NUM is suitable for use
853 as a base register in operand addresses. It may be either a suitable hard
854 register or a pseudo register that has been allocated such a hard reg. */
855 #define REGNO_OK_FOR_BASE_P(REGNO) \
856 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
857
858 /* A C expression which is nonzero if register number NUM is suitable for use
859 as an index register in operand addresses. It may be either a suitable hard
860 register or a pseudo register that has been allocated such a hard reg.
861 This is needed for POST_MODIFY. */
862 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
863
864 /* A C expression that places additional restrictions on the register class to
865 use when it is necessary to copy value X into a register in class CLASS.
866 The value is a register class; perhaps CLASS, or perhaps another, smaller
867 class. */
868
869 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
870 ia64_preferred_reload_class (X, CLASS)
871
872 /* You should define this macro to indicate to the reload phase that it may
873 need to allocate at least one register for a reload in addition to the
874 register to contain the data. Specifically, if copying X to a register
875 CLASS in MODE requires an intermediate register, you should define this
876 to return the largest register class all of whose registers can be used
877 as intermediate registers or scratch registers. */
878
879 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
880 ia64_secondary_reload_class (CLASS, MODE, X)
881
882 /* Certain machines have the property that some registers cannot be copied to
883 some other registers without using memory. Define this macro on those
884 machines to be a C expression that is nonzero if objects of mode M in
885 registers of CLASS1 can only be copied to registers of class CLASS2 by
886 storing a register of CLASS1 into memory and loading that memory location
887 into a register of CLASS2. */
888
889 #if 0
890 /* ??? May need this, but since we've disallowed XFmode in GR_REGS,
891 I'm not quite sure how it could be invoked. The normal problems
892 with unions should be solved with the addressof fiddling done by
893 movxf and friends. */
894 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
895 (((MODE) == XFmode || (MODE) == XCmode) \
896 && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
897 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
898 #endif
899
900 /* A C expression for the maximum number of consecutive registers of
901 class CLASS needed to hold a value of mode MODE.
902 This is closely related to the macro `HARD_REGNO_NREGS'. */
903
904 #define CLASS_MAX_NREGS(CLASS, MODE) \
905 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
906 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XFmode) ? 1 \
907 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == RFmode) ? 1 \
908 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XCmode) ? 2 \
909 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
910
911 /* In BR regs, we can't change the DImode at all.
912 In FP regs, we can't change FP values to integer values and vice versa,
913 but we can change e.g. DImode to SImode, and V2SFmode into DImode. */
914
915 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
916 (reg_classes_intersect_p (CLASS, BR_REGS) \
917 ? (FROM) != (TO) \
918 : (SCALAR_FLOAT_MODE_P (FROM) != SCALAR_FLOAT_MODE_P (TO) \
919 ? reg_classes_intersect_p (CLASS, FR_REGS) \
920 : 0))
921 \f
922 /* Basic Stack Layout */
923
924 /* Define this macro if pushing a word onto the stack moves the stack pointer
925 to a smaller address. */
926 #define STACK_GROWS_DOWNWARD 1
927
928 /* Define this macro to nonzero if the addresses of local variable slots
929 are at negative offsets from the frame pointer. */
930 #define FRAME_GROWS_DOWNWARD 0
931
932 /* Offset from the frame pointer to the first local variable slot to
933 be allocated. */
934 #define STARTING_FRAME_OFFSET 0
935
936 /* Offset from the stack pointer register to the first location at which
937 outgoing arguments are placed. If not specified, the default value of zero
938 is used. This is the proper value for most machines. */
939 /* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
940 #define STACK_POINTER_OFFSET 16
941
942 /* Offset from the argument pointer register to the first argument's address.
943 On some machines it may depend on the data type of the function. */
944 #define FIRST_PARM_OFFSET(FUNDECL) 0
945
946 /* A C expression whose value is RTL representing the value of the return
947 address for the frame COUNT steps up from the current frame, after the
948 prologue. */
949
950 /* ??? Frames other than zero would likely require interpreting the frame
951 unwind info, so we don't try to support them. We would also need to define
952 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
953
954 #define RETURN_ADDR_RTX(COUNT, FRAME) \
955 ia64_return_addr_rtx (COUNT, FRAME)
956
957 /* A C expression whose value is RTL representing the location of the incoming
958 return address at the beginning of any function, before the prologue. This
959 RTL is either a `REG', indicating that the return value is saved in `REG',
960 or a `MEM' representing a location in the stack. This enables DWARF2
961 unwind info for C++ EH. */
962 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
963
964 /* A C expression whose value is an integer giving the offset, in bytes, from
965 the value of the stack pointer register to the top of the stack frame at the
966 beginning of any function, before the prologue. The top of the frame is
967 defined to be the value of the stack pointer in the previous frame, just
968 before the call instruction. */
969 /* The CFA is past the red zone, not at the entry-point stack
970 pointer. */
971 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
972
973 /* We shorten debug info by using CFA-16 as DW_AT_frame_base. */
974 #define CFA_FRAME_BASE_OFFSET(FUNDECL) (-INCOMING_FRAME_SP_OFFSET)
975
976 \f
977 /* Register That Address the Stack Frame. */
978
979 /* The register number of the stack pointer register, which must also be a
980 fixed register according to `FIXED_REGISTERS'. On most machines, the
981 hardware determines which register this is. */
982
983 #define STACK_POINTER_REGNUM 12
984
985 /* The register number of the frame pointer register, which is used to access
986 automatic variables in the stack frame. On some machines, the hardware
987 determines which register this is. On other machines, you can choose any
988 register you wish for this purpose. */
989
990 #define FRAME_POINTER_REGNUM 328
991
992 /* Base register for access to local variables of the function. */
993 #define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
994
995 /* The register number of the arg pointer register, which is used to access the
996 function's argument list. */
997 /* r0 won't otherwise be used, so put the always eliminated argument pointer
998 in it. */
999 #define ARG_POINTER_REGNUM R_GR(0)
1000
1001 /* Due to the way varargs and argument spilling happens, the argument
1002 pointer is not 16-byte aligned like the stack pointer. */
1003 #define INIT_EXPANDERS \
1004 do { \
1005 ia64_init_expanders (); \
1006 if (crtl->emit.regno_pointer_align) \
1007 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64; \
1008 } while (0)
1009
1010 /* Register numbers used for passing a function's static chain pointer. */
1011 /* ??? The ABI sez the static chain should be passed as a normal parameter. */
1012 #define STATIC_CHAIN_REGNUM 15
1013 \f
1014 /* Eliminating the Frame Pointer and the Arg Pointer */
1015
1016 /* Show we can debug even without a frame pointer. */
1017 #define CAN_DEBUG_WITHOUT_FP
1018
1019 /* If defined, this macro specifies a table of register pairs used to eliminate
1020 unneeded registers that point into the stack frame. */
1021
1022 #define ELIMINABLE_REGS \
1023 { \
1024 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1025 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1026 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1027 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1028 }
1029
1030 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1031 specifies the initial difference between the specified pair of
1032 registers. This macro must be defined if `ELIMINABLE_REGS' is
1033 defined. */
1034 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1035 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1036 \f
1037 /* Passing Function Arguments on the Stack */
1038
1039 /* If defined, the maximum amount of space required for outgoing arguments will
1040 be computed and placed into the variable
1041 `crtl->outgoing_args_size'. */
1042
1043 #define ACCUMULATE_OUTGOING_ARGS 1
1044
1045 \f
1046 /* Function Arguments in Registers */
1047
1048 #define MAX_ARGUMENT_SLOTS 8
1049 #define MAX_INT_RETURN_SLOTS 4
1050 #define GR_ARG_FIRST IN_REG (0)
1051 #define GR_RET_FIRST GR_REG (8)
1052 #define GR_RET_LAST GR_REG (11)
1053 #define FR_ARG_FIRST FR_REG (8)
1054 #define FR_RET_FIRST FR_REG (8)
1055 #define FR_RET_LAST FR_REG (15)
1056 #define AR_ARG_FIRST OUT_REG (0)
1057
1058 /* A C expression that controls whether a function argument is passed in a
1059 register, and which register. */
1060
1061 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1062 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1063
1064 /* Define this macro if the target machine has "register windows", so that the
1065 register in which a function sees an arguments is not necessarily the same
1066 as the one in which the caller passed the argument. */
1067
1068 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1069 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1070
1071 /* A C type for declaring a variable that is used as the first argument of
1072 `FUNCTION_ARG' and other related values. For some target machines, the type
1073 `int' suffices and can hold the number of bytes of argument so far. */
1074
1075 enum ivms_arg_type {I64, FF, FD, FG, FS, FT};
1076 /* VMS floating point formats VAX F, VAX D, VAX G, IEEE S, IEEE T. */
1077
1078 typedef struct ia64_args
1079 {
1080 int words; /* # words of arguments so far */
1081 int int_regs; /* # GR registers used so far */
1082 int fp_regs; /* # FR registers used so far */
1083 int prototype; /* whether function prototyped */
1084 enum ivms_arg_type atypes[8]; /* which VMS float type or if not float */
1085 } CUMULATIVE_ARGS;
1086
1087 /* A C statement (sans semicolon) for initializing the variable CUM for the
1088 state at the beginning of the argument list. */
1089
1090 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1091 do { \
1092 (CUM).words = 0; \
1093 (CUM).int_regs = 0; \
1094 (CUM).fp_regs = 0; \
1095 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1096 (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64; \
1097 (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64; \
1098 (CUM).atypes[6] = (CUM).atypes[7] = I64; \
1099 } while (0)
1100
1101 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1102 arguments for the function being compiled. If this macro is undefined,
1103 `INIT_CUMULATIVE_ARGS' is used instead. */
1104
1105 /* We set prototype to true so that we never try to return a PARALLEL from
1106 function_arg. */
1107 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1108 do { \
1109 (CUM).words = 0; \
1110 (CUM).int_regs = 0; \
1111 (CUM).fp_regs = 0; \
1112 (CUM).prototype = 1; \
1113 (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64; \
1114 (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64; \
1115 (CUM).atypes[6] = (CUM).atypes[7] = I64; \
1116 } while (0)
1117
1118 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1119 advance past an argument in the argument list. The values MODE, TYPE and
1120 NAMED describe that argument. Once this is done, the variable CUM is
1121 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1122
1123 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1124 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1125
1126 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1127 argument with the specified mode and type. */
1128
1129 /* Return the alignment boundary in bits for an argument with a specified
1130 mode and type. */
1131
1132 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1133 ia64_function_arg_boundary (MODE, TYPE)
1134
1135 /* A C expression that is nonzero if REGNO is the number of a hard register in
1136 which function arguments are sometimes passed. This does *not* include
1137 implicit arguments such as the static chain and the structure-value address.
1138 On many machines, no registers can be used for this purpose since all
1139 function arguments are pushed on the stack. */
1140 #define FUNCTION_ARG_REGNO_P(REGNO) \
1141 (((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1142 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1143
1144 \f
1145 /* How Large Values are Returned */
1146
1147 #define DEFAULT_PCC_STRUCT_RETURN 0
1148
1149 \f
1150 /* Caller-Saves Register Allocation */
1151
1152 /* A C expression to determine whether it is worthwhile to consider placing a
1153 pseudo-register in a call-clobbered hard register and saving and restoring
1154 it around each function call. The expression should be 1 when this is worth
1155 doing, and 0 otherwise.
1156
1157 If you don't define this macro, a default is used which is good on most
1158 machines: `4 * CALLS < REFS'. */
1159 /* ??? Investigate. */
1160 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1161
1162 \f
1163 /* Function Entry and Exit */
1164
1165 /* Define this macro as a C expression that is nonzero if the return
1166 instruction or the function epilogue ignores the value of the stack pointer;
1167 in other words, if it is safe to delete an instruction to adjust the stack
1168 pointer before a return from the function. */
1169
1170 #define EXIT_IGNORE_STACK 1
1171
1172 /* Define this macro as a C expression that is nonzero for registers
1173 used by the epilogue or the `return' pattern. */
1174
1175 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1176
1177 /* Nonzero for registers used by the exception handling mechanism. */
1178
1179 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1180
1181 /* Output part N of a function descriptor for DECL. For ia64, both
1182 words are emitted with a single relocation, so ignore N > 0. */
1183 #define ASM_OUTPUT_FDESC(FILE, DECL, PART) \
1184 do { \
1185 if ((PART) == 0) \
1186 { \
1187 if (TARGET_ILP32) \
1188 fputs ("\tdata8.ua @iplt(", FILE); \
1189 else \
1190 fputs ("\tdata16.ua @iplt(", FILE); \
1191 mark_decl_referenced (DECL); \
1192 assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0)); \
1193 fputs (")\n", FILE); \
1194 if (TARGET_ILP32) \
1195 fputs ("\tdata8.ua 0\n", FILE); \
1196 } \
1197 } while (0)
1198 \f
1199 /* Generating Code for Profiling. */
1200
1201 /* A C statement or compound statement to output to FILE some assembler code to
1202 call the profiling subroutine `mcount'. */
1203
1204 #undef FUNCTION_PROFILER
1205 #define FUNCTION_PROFILER(FILE, LABELNO) \
1206 ia64_output_function_profiler(FILE, LABELNO)
1207
1208 /* Neither hpux nor linux use profile counters. */
1209 #define NO_PROFILE_COUNTERS 1
1210 \f
1211 /* Trampolines for Nested Functions. */
1212
1213 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1214 the function containing a non-local goto target. */
1215
1216 #define STACK_SAVEAREA_MODE(LEVEL) \
1217 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1218
1219 /* A C expression for the size in bytes of the trampoline, as an integer. */
1220
1221 #define TRAMPOLINE_SIZE 32
1222
1223 /* Alignment required for trampolines, in bits. */
1224
1225 #define TRAMPOLINE_ALIGNMENT 64
1226 \f
1227 /* Addressing Modes */
1228
1229 /* Define this macro if the machine supports post-increment addressing. */
1230
1231 #define HAVE_POST_INCREMENT 1
1232 #define HAVE_POST_DECREMENT 1
1233 #define HAVE_POST_MODIFY_DISP 1
1234 #define HAVE_POST_MODIFY_REG 1
1235
1236 /* A C expression that is 1 if the RTX X is a constant which is a valid
1237 address. */
1238
1239 #define CONSTANT_ADDRESS_P(X) 0
1240
1241 /* The max number of registers that can appear in a valid memory address. */
1242
1243 #define MAX_REGS_PER_ADDRESS 2
1244
1245 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1246 RTX) is a legitimate memory address on the target machine for a memory
1247 operand of mode MODE. */
1248
1249 #define LEGITIMATE_ADDRESS_REG(X) \
1250 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1251 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1252 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1253
1254 #define LEGITIMATE_ADDRESS_DISP(R, X) \
1255 (GET_CODE (X) == PLUS \
1256 && rtx_equal_p (R, XEXP (X, 0)) \
1257 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
1258 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
1259 && INTVAL (XEXP (X, 1)) >= -256 \
1260 && INTVAL (XEXP (X, 1)) < 256)))
1261
1262 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1263 do { \
1264 if (LEGITIMATE_ADDRESS_REG (X)) \
1265 goto LABEL; \
1266 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1267 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1268 && XEXP (X, 0) != arg_pointer_rtx) \
1269 goto LABEL; \
1270 else if (GET_CODE (X) == POST_MODIFY \
1271 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1272 && XEXP (X, 0) != arg_pointer_rtx \
1273 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
1274 goto LABEL; \
1275 } while (0)
1276
1277 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1278 use as a base register. */
1279
1280 #ifdef REG_OK_STRICT
1281 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1282 #else
1283 #define REG_OK_FOR_BASE_P(X) \
1284 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1285 #endif
1286
1287 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1288 use as an index register. This is needed for POST_MODIFY. */
1289
1290 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1291
1292 /* A C expression that is nonzero if X is a legitimate constant for an
1293 immediate operand on the target machine. */
1294
1295 #define LEGITIMATE_CONSTANT_P(X) ia64_legitimate_constant_p (X)
1296 \f
1297 /* Condition Code Status */
1298
1299 /* One some machines not all possible comparisons are defined, but you can
1300 convert an invalid comparison into a valid one. */
1301 /* ??? Investigate. See the alpha definition. */
1302 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1303
1304 \f
1305 /* Describing Relative Costs of Operations */
1306
1307 /* A C expression for the cost of a branch instruction. A value of 1 is the
1308 default; other values are interpreted relative to that. Used by the
1309 if-conversion code as max instruction count. */
1310 /* ??? This requires investigation. The primary effect might be how
1311 many additional insn groups we run into, vs how good the dynamic
1312 branch predictor is. */
1313
1314 #define BRANCH_COST(speed_p, predictable_p) 6
1315
1316 /* Define this macro as a C expression which is nonzero if accessing less than
1317 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1318 word of memory. */
1319
1320 #define SLOW_BYTE_ACCESS 1
1321
1322 /* Define this macro if it is as good or better to call a constant function
1323 address than to call an address kept in a register.
1324
1325 Indirect function calls are more expensive that direct function calls, so
1326 don't cse function addresses. */
1327
1328 #define NO_FUNCTION_CSE
1329
1330 \f
1331 /* Dividing the output into sections. */
1332
1333 /* A C expression whose value is a string containing the assembler operation
1334 that should precede instructions and read-only data. */
1335
1336 #define TEXT_SECTION_ASM_OP "\t.text"
1337
1338 /* A C expression whose value is a string containing the assembler operation to
1339 identify the following data as writable initialized data. */
1340
1341 #define DATA_SECTION_ASM_OP "\t.data"
1342
1343 /* If defined, a C expression whose value is a string containing the assembler
1344 operation to identify the following data as uninitialized global data. */
1345
1346 #define BSS_SECTION_ASM_OP "\t.bss"
1347
1348 #define IA64_DEFAULT_GVALUE 8
1349 \f
1350 /* Position Independent Code. */
1351
1352 /* The register number of the register used to address a table of static data
1353 addresses in memory. */
1354
1355 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1356 gen_rtx_REG (DImode, 1). */
1357
1358 /* ??? Should we set flag_pic? Probably need to define
1359 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1360
1361 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1362
1363 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1364 clobbered by calls. */
1365
1366 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1367
1368 \f
1369 /* The Overall Framework of an Assembler File. */
1370
1371 /* A C string constant describing how to begin a comment in the target
1372 assembler language. The compiler assumes that the comment will end at the
1373 end of the line. */
1374
1375 #define ASM_COMMENT_START "//"
1376
1377 /* A C string constant for text to be output before each `asm' statement or
1378 group of consecutive ones. */
1379
1380 #define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1381
1382 /* A C string constant for text to be output after each `asm' statement or
1383 group of consecutive ones. */
1384
1385 #define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1386 \f
1387 /* Output of Uninitialized Variables. */
1388
1389 /* This is all handled by svr4.h. */
1390
1391 \f
1392 /* Output and Generation of Labels. */
1393
1394 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1395 assembler definition of a label named NAME. */
1396
1397 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1398 why ia64_asm_output_label exists. */
1399
1400 extern int ia64_asm_output_label;
1401 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
1402 do { \
1403 ia64_asm_output_label = 1; \
1404 assemble_name (STREAM, NAME); \
1405 fputs (":\n", STREAM); \
1406 ia64_asm_output_label = 0; \
1407 } while (0)
1408
1409 /* Globalizing directive for a label. */
1410 #define GLOBAL_ASM_OP "\t.global "
1411
1412 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1413 necessary for declaring the name of an external symbol named NAME which is
1414 referenced in this compilation but not defined. */
1415
1416 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1417 ia64_asm_output_external (FILE, DECL, NAME)
1418
1419 /* A C statement to store into the string STRING a label whose name is made
1420 from the string PREFIX and the number NUM. */
1421
1422 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1423 do { \
1424 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
1425 } while (0)
1426
1427 /* ??? Not sure if using a ? in the name for Intel as is safe. */
1428
1429 #define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1430
1431 /* A C statement to output to the stdio stream STREAM assembler code which
1432 defines (equates) the symbol NAME to have the value VALUE. */
1433
1434 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1435 do { \
1436 assemble_name (STREAM, NAME); \
1437 fputs (" = ", STREAM); \
1438 if (ISDIGIT (*VALUE)) \
1439 ia64_asm_output_label = 1; \
1440 assemble_name (STREAM, VALUE); \
1441 fputc ('\n', STREAM); \
1442 ia64_asm_output_label = 0; \
1443 } while (0)
1444
1445 \f
1446 /* Macros Controlling Initialization Routines. */
1447
1448 /* This is handled by svr4.h and sysv4.h. */
1449
1450 \f
1451 /* Output of Assembler Instructions. */
1452
1453 /* A C initializer containing the assembler's names for the machine registers,
1454 each one as a C string constant. */
1455
1456 #define REGISTER_NAMES \
1457 { \
1458 /* General registers. */ \
1459 "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1460 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1461 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1462 "r30", "r31", \
1463 /* Local registers. */ \
1464 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
1465 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
1466 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
1467 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
1468 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
1469 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
1470 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
1471 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
1472 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
1473 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
1474 /* Input registers. */ \
1475 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
1476 /* Output registers. */ \
1477 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
1478 /* Floating-point registers. */ \
1479 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
1480 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
1481 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
1482 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
1483 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
1484 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
1485 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
1486 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
1487 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
1488 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
1489 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1490 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1491 "f120","f121","f122","f123","f124","f125","f126","f127", \
1492 /* Predicate registers. */ \
1493 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
1494 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
1495 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
1496 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
1497 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
1498 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
1499 "p60", "p61", "p62", "p63", \
1500 /* Branch registers. */ \
1501 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
1502 /* Frame pointer. Application registers. */ \
1503 "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
1504 }
1505
1506 /* If defined, a C initializer for an array of structures containing a name and
1507 a register number. This macro defines additional names for hard registers,
1508 thus allowing the `asm' option in declarations to refer to registers using
1509 alternate names. */
1510
1511 #define ADDITIONAL_REGISTER_NAMES \
1512 { \
1513 { "gp", R_GR (1) }, \
1514 { "sp", R_GR (12) }, \
1515 { "in0", IN_REG (0) }, \
1516 { "in1", IN_REG (1) }, \
1517 { "in2", IN_REG (2) }, \
1518 { "in3", IN_REG (3) }, \
1519 { "in4", IN_REG (4) }, \
1520 { "in5", IN_REG (5) }, \
1521 { "in6", IN_REG (6) }, \
1522 { "in7", IN_REG (7) }, \
1523 { "out0", OUT_REG (0) }, \
1524 { "out1", OUT_REG (1) }, \
1525 { "out2", OUT_REG (2) }, \
1526 { "out3", OUT_REG (3) }, \
1527 { "out4", OUT_REG (4) }, \
1528 { "out5", OUT_REG (5) }, \
1529 { "out6", OUT_REG (6) }, \
1530 { "out7", OUT_REG (7) }, \
1531 { "loc0", LOC_REG (0) }, \
1532 { "loc1", LOC_REG (1) }, \
1533 { "loc2", LOC_REG (2) }, \
1534 { "loc3", LOC_REG (3) }, \
1535 { "loc4", LOC_REG (4) }, \
1536 { "loc5", LOC_REG (5) }, \
1537 { "loc6", LOC_REG (6) }, \
1538 { "loc7", LOC_REG (7) }, \
1539 { "loc8", LOC_REG (8) }, \
1540 { "loc9", LOC_REG (9) }, \
1541 { "loc10", LOC_REG (10) }, \
1542 { "loc11", LOC_REG (11) }, \
1543 { "loc12", LOC_REG (12) }, \
1544 { "loc13", LOC_REG (13) }, \
1545 { "loc14", LOC_REG (14) }, \
1546 { "loc15", LOC_REG (15) }, \
1547 { "loc16", LOC_REG (16) }, \
1548 { "loc17", LOC_REG (17) }, \
1549 { "loc18", LOC_REG (18) }, \
1550 { "loc19", LOC_REG (19) }, \
1551 { "loc20", LOC_REG (20) }, \
1552 { "loc21", LOC_REG (21) }, \
1553 { "loc22", LOC_REG (22) }, \
1554 { "loc23", LOC_REG (23) }, \
1555 { "loc24", LOC_REG (24) }, \
1556 { "loc25", LOC_REG (25) }, \
1557 { "loc26", LOC_REG (26) }, \
1558 { "loc27", LOC_REG (27) }, \
1559 { "loc28", LOC_REG (28) }, \
1560 { "loc29", LOC_REG (29) }, \
1561 { "loc30", LOC_REG (30) }, \
1562 { "loc31", LOC_REG (31) }, \
1563 { "loc32", LOC_REG (32) }, \
1564 { "loc33", LOC_REG (33) }, \
1565 { "loc34", LOC_REG (34) }, \
1566 { "loc35", LOC_REG (35) }, \
1567 { "loc36", LOC_REG (36) }, \
1568 { "loc37", LOC_REG (37) }, \
1569 { "loc38", LOC_REG (38) }, \
1570 { "loc39", LOC_REG (39) }, \
1571 { "loc40", LOC_REG (40) }, \
1572 { "loc41", LOC_REG (41) }, \
1573 { "loc42", LOC_REG (42) }, \
1574 { "loc43", LOC_REG (43) }, \
1575 { "loc44", LOC_REG (44) }, \
1576 { "loc45", LOC_REG (45) }, \
1577 { "loc46", LOC_REG (46) }, \
1578 { "loc47", LOC_REG (47) }, \
1579 { "loc48", LOC_REG (48) }, \
1580 { "loc49", LOC_REG (49) }, \
1581 { "loc50", LOC_REG (50) }, \
1582 { "loc51", LOC_REG (51) }, \
1583 { "loc52", LOC_REG (52) }, \
1584 { "loc53", LOC_REG (53) }, \
1585 { "loc54", LOC_REG (54) }, \
1586 { "loc55", LOC_REG (55) }, \
1587 { "loc56", LOC_REG (56) }, \
1588 { "loc57", LOC_REG (57) }, \
1589 { "loc58", LOC_REG (58) }, \
1590 { "loc59", LOC_REG (59) }, \
1591 { "loc60", LOC_REG (60) }, \
1592 { "loc61", LOC_REG (61) }, \
1593 { "loc62", LOC_REG (62) }, \
1594 { "loc63", LOC_REG (63) }, \
1595 { "loc64", LOC_REG (64) }, \
1596 { "loc65", LOC_REG (65) }, \
1597 { "loc66", LOC_REG (66) }, \
1598 { "loc67", LOC_REG (67) }, \
1599 { "loc68", LOC_REG (68) }, \
1600 { "loc69", LOC_REG (69) }, \
1601 { "loc70", LOC_REG (70) }, \
1602 { "loc71", LOC_REG (71) }, \
1603 { "loc72", LOC_REG (72) }, \
1604 { "loc73", LOC_REG (73) }, \
1605 { "loc74", LOC_REG (74) }, \
1606 { "loc75", LOC_REG (75) }, \
1607 { "loc76", LOC_REG (76) }, \
1608 { "loc77", LOC_REG (77) }, \
1609 { "loc78", LOC_REG (78) }, \
1610 { "loc79", LOC_REG (79) }, \
1611 }
1612
1613 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1614 for an instruction operand X. X is an RTL expression. */
1615
1616 #define PRINT_OPERAND(STREAM, X, CODE) \
1617 ia64_print_operand (STREAM, X, CODE)
1618
1619 /* A C expression which evaluates to true if CODE is a valid punctuation
1620 character for use in the `PRINT_OPERAND' macro. */
1621
1622 /* ??? Keep this around for now, as we might need it later. */
1623
1624 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1625 ((CODE) == '+' || (CODE) == ',')
1626
1627 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1628 for an instruction operand that is a memory reference whose address is X. X
1629 is an RTL expression. */
1630
1631 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
1632 ia64_print_operand_address (STREAM, X)
1633
1634 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
1635 `%I' options of `asm_fprintf' (see `final.c'). */
1636
1637 #define REGISTER_PREFIX ""
1638 #define LOCAL_LABEL_PREFIX "."
1639 #define USER_LABEL_PREFIX ""
1640 #define IMMEDIATE_PREFIX ""
1641
1642 \f
1643 /* Output of dispatch tables. */
1644
1645 /* This macro should be provided on machines where the addresses in a dispatch
1646 table are relative to the table's own address. */
1647
1648 /* ??? Depends on the pointer size. */
1649
1650 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1651 do { \
1652 if (TARGET_ILP32) \
1653 fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE); \
1654 else \
1655 fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE); \
1656 } while (0)
1657
1658 /* Jump tables only need 8 byte alignment. */
1659
1660 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
1661
1662 \f
1663 /* Assembler Commands for Exception Regions. */
1664
1665 /* Select a format to encode pointers in exception handling data. CODE
1666 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1667 true if the symbol may be affected by dynamic relocations. */
1668 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1669 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
1670 | ((GLOBAL) ? DW_EH_PE_indirect : 0) \
1671 | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
1672
1673 /* Handle special EH pointer encodings. Absolute, pc-relative, and
1674 indirect are handled automatically. */
1675 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1676 do { \
1677 const char *reltag = NULL; \
1678 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
1679 reltag = "@segrel("; \
1680 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
1681 reltag = "@gprel("; \
1682 if (reltag) \
1683 { \
1684 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1685 fputs (reltag, FILE); \
1686 assemble_name (FILE, XSTR (ADDR, 0)); \
1687 fputc (')', FILE); \
1688 goto DONE; \
1689 } \
1690 } while (0)
1691
1692 \f
1693 /* Assembler Commands for Alignment. */
1694
1695 /* ??? Investigate. */
1696
1697 /* The alignment (log base 2) to put in front of LABEL, which follows
1698 a BARRIER. */
1699
1700 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
1701
1702 /* The desired alignment for the location counter at the beginning
1703 of a loop. */
1704
1705 /* #define LOOP_ALIGN(LABEL) */
1706
1707 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
1708 section because it fails put zeros in the bytes that are skipped. */
1709
1710 #define ASM_NO_SKIP_IN_TEXT 1
1711
1712 /* A C statement to output to the stdio stream STREAM an assembler command to
1713 advance the location counter to a multiple of 2 to the POWER bytes. */
1714
1715 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1716 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
1717
1718 \f
1719 /* Macros Affecting all Debug Formats. */
1720
1721 /* This is handled in svr4.h and sysv4.h. */
1722
1723 \f
1724 /* Specific Options for DBX Output. */
1725
1726 /* This is handled by dbxelf.h which is included by svr4.h. */
1727
1728 \f
1729 /* Open ended Hooks for DBX Output. */
1730
1731 /* Likewise. */
1732
1733 \f
1734 /* File names in DBX format. */
1735
1736 /* Likewise. */
1737
1738 \f
1739 /* Macros for SDB and Dwarf Output. */
1740
1741 /* Define this macro if GCC should produce dwarf version 2 format debugging
1742 output in response to the `-g' option. */
1743
1744 #define DWARF2_DEBUGGING_INFO 1
1745
1746 /* We do not want call-frame info to be output, since debuggers are
1747 supposed to use the target unwind info. Leave this undefined it
1748 TARGET_UNWIND_INFO might ever be false. */
1749
1750 #define DWARF2_FRAME_INFO 0
1751
1752 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
1753
1754 /* Use tags for debug info labels, so that they don't break instruction
1755 bundles. This also avoids getting spurious DV warnings from the
1756 assembler. This is similar to (*targetm.asm_out.internal_label), except that we
1757 add brackets around the label. */
1758
1759 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
1760 fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
1761
1762 /* Use section-relative relocations for debugging offsets. Unlike other
1763 targets that fake this by putting the section VMA at 0, IA-64 has
1764 proper relocations for them. */
1765 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL, SECTION) \
1766 do { \
1767 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1768 fputs ("@secrel(", FILE); \
1769 assemble_name (FILE, LABEL); \
1770 fputc (')', FILE); \
1771 } while (0)
1772
1773 /* Emit a PC-relative relocation. */
1774 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1775 do { \
1776 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1777 fputs ("@pcrel(", FILE); \
1778 assemble_name (FILE, LABEL); \
1779 fputc (')', FILE); \
1780 } while (0)
1781 \f
1782 /* Register Renaming Parameters. */
1783
1784 /* A C expression that is nonzero if hard register number REGNO2 can be
1785 considered for use as a rename register for REGNO1 */
1786
1787 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
1788 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
1789
1790 \f
1791 /* Miscellaneous Parameters. */
1792
1793 /* Flag to mark data that is in the small address area (addressable
1794 via "addl", that is, within a 2MByte offset of 0. */
1795 #define SYMBOL_FLAG_SMALL_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
1796 #define SYMBOL_REF_SMALL_ADDR_P(X) \
1797 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
1798
1799 /* An alias for a machine mode name. This is the machine mode that elements of
1800 a jump-table should have. */
1801
1802 #define CASE_VECTOR_MODE ptr_mode
1803
1804 /* Define as C expression which evaluates to nonzero if the tablejump
1805 instruction expects the table to contain offsets from the address of the
1806 table. */
1807
1808 #define CASE_VECTOR_PC_RELATIVE 1
1809
1810 /* Define this macro if operations between registers with integral mode smaller
1811 than a word are always performed on the entire register. */
1812
1813 #define WORD_REGISTER_OPERATIONS
1814
1815 /* Define this macro to be a C expression indicating when insns that read
1816 memory in MODE, an integral mode narrower than a word, set the bits outside
1817 of MODE to be either the sign-extension or the zero-extension of the data
1818 read. */
1819
1820 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1821
1822 /* The maximum number of bytes that a single instruction can move quickly from
1823 memory to memory. */
1824 #define MOVE_MAX 8
1825
1826 /* A C expression which is nonzero if on this machine it is safe to "convert"
1827 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1828 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
1829
1830 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1831
1832 /* A C expression describing the value returned by a comparison operator with
1833 an integral mode and stored by a store-flag instruction (`sCOND') when the
1834 condition is true. */
1835
1836 /* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1. */
1837
1838 /* An alias for the machine mode for pointers. */
1839
1840 /* ??? This would change if we had ILP32 support. */
1841
1842 #define Pmode DImode
1843
1844 /* An alias for the machine mode used for memory references to functions being
1845 called, in `call' RTL expressions. */
1846
1847 #define FUNCTION_MODE Pmode
1848
1849 /* Define this macro to handle System V style pragmas: #pragma pack and
1850 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
1851 defined. */
1852
1853 #define HANDLE_SYSV_PRAGMA 1
1854
1855 /* A C expression for the maximum number of instructions to execute via
1856 conditional execution instructions instead of a branch. A value of
1857 BRANCH_COST+1 is the default if the machine does not use
1858 cc0, and 1 if it does use cc0. */
1859 /* ??? Investigate. */
1860 #define MAX_CONDITIONAL_EXECUTE 12
1861
1862 extern int ia64_final_schedule;
1863
1864 #define TARGET_UNWIND_INFO 1
1865
1866 #define TARGET_UNWIND_TABLES_DEFAULT true
1867
1868 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
1869
1870 /* This function contains machine specific function data. */
1871 struct GTY(()) machine_function
1872 {
1873 /* The new stack pointer when unwinding from EH. */
1874 rtx ia64_eh_epilogue_sp;
1875
1876 /* The new bsp value when unwinding from EH. */
1877 rtx ia64_eh_epilogue_bsp;
1878
1879 /* The GP value save register. */
1880 rtx ia64_gp_save;
1881
1882 /* The number of varargs registers to save. */
1883 int n_varargs;
1884
1885 /* The number of the next unwind state to copy. */
1886 int state_num;
1887 };
1888
1889 #define DONT_USE_BUILTIN_SETJMP
1890
1891 /* Output any profiling code before the prologue. */
1892
1893 #undef PROFILE_BEFORE_PROLOGUE
1894 #define PROFILE_BEFORE_PROLOGUE 1
1895
1896 /* Initialize library function table. */
1897 #undef TARGET_INIT_LIBFUNCS
1898 #define TARGET_INIT_LIBFUNCS ia64_init_libfuncs
1899 \f
1900
1901 /* Switch on code for querying unit reservations. */
1902 #define CPU_UNITS_QUERY 1
1903
1904 /* Define this to change the optimizations performed by default. */
1905 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
1906 ia64_optimization_options ((LEVEL), (SIZE))
1907
1908 /* End of ia64.h */