arc.c (output_shift): Use stdio instead of asm_fprintf.
[gcc.git] / gcc / config / m68hc11 / m68hc11.h
1 /* Definitions of target machine for GNU compiler.
2 Motorola 68HC11 and 68HC12.
3 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA.
22
23 Note:
24 A first 68HC11 port was made by Otto Lind (otto@coactive.com)
25 on gcc 2.6.3. I have used it as a starting point for this port.
26 However, this new port is a complete re-write. Its internal
27 design is completely different. The generated code is not
28 compatible with the gcc 2.6.3 port.
29
30 The gcc 2.6.3 port is available at:
31
32 ftp.unina.it/pub/electronics/motorola/68hc11/gcc/gcc-6811-fsf.tar.gz
33
34 */
35
36 /*****************************************************************************
37 **
38 ** Controlling the Compilation Driver, `gcc'
39 **
40 *****************************************************************************/
41
42 #undef ENDFILE_SPEC
43
44 /* Compile and assemble for a 68hc11 unless there is a -m68hc12 option. */
45 #ifndef ASM_SPEC
46 #define ASM_SPEC "%{m68hc12:-m68hc12}%{!m68hc12:-m68hc11}"
47 #endif
48
49 /* We need to tell the linker the target elf format. Just pass an
50 emulation option. This can be overriden by -Wl option of gcc. */
51 #ifndef LINK_SPEC
52 #define LINK_SPEC "%{m68hc12:-m m68hc12elf}%{!m68hc12:-m m68hc11elf} %{mrelax:-relax}"
53 #endif
54
55 #ifndef LIB_SPEC
56 #define LIB_SPEC ""
57 #endif
58
59 #ifndef CC1_SPEC
60 #define CC1_SPEC ""
61 #endif
62
63 #ifndef CPP_SPEC
64 #define CPP_SPEC \
65 "%{mshort:-D__HAVE_SHORT_INT__ -D__INT__=16}\
66 %{!mshort:-D__INT__=32}\
67 %{m68hc12:-Dmc6812 -DMC6812 -Dmc68hc12}\
68 %{!m68hc12:-Dmc6811 -DMC6811 -Dmc68hc11}\
69 %{fshort-double:-D__HAVE_SHORT_DOUBLE__}\
70 %{mlong-calls:-D__USE_RTC__}"
71 #endif
72
73 #undef STARTFILE_SPEC
74 #define STARTFILE_SPEC "crt1%O%s"
75
76 /* Names to predefine in the preprocessor for this target machine. */
77 #define CPP_PREDEFINES "-Dmc68hc1x"
78
79 /* As an embedded target, we have no libc. */
80 #define inhibit_libc
81
82 /* Forward type declaration for prototypes definitions.
83 rtx_ptr is equivalent to rtx. Can't use the same name. */
84 struct rtx_def;
85 typedef struct rtx_def *rtx_ptr;
86
87 union tree_node;
88 typedef union tree_node *tree_ptr;
89
90 /* We can't declare enum machine_mode forward nor include 'machmode.h' here.
91 Prototypes defined here will use an int instead. It's better than no
92 prototype at all. */
93 typedef int enum_machine_mode;
94
95 /*****************************************************************************
96 **
97 ** Run-time Target Specification
98 **
99 *****************************************************************************/
100
101 /* Run-time compilation parameters selecting different hardware subsets. */
102
103 extern int target_flags;
104
105 extern short *reg_renumber; /* def in local_alloc.c */
106
107 /* Macros used in the machine description to test the flags. */
108
109 /* 6811 specific options
110 *
111 * For 68HC12, the auto inc/dec mode is disabled by default. The reason
112 * is that for most programs, the reload pass will fail because it needs
113 * more registers to save the value of the indexed register after the
114 * memory access. For simple programs, you can enable this
115 * with -mauto-incdec.
116 */
117
118 #define MASK_SHORT 0002 /* Compile with 16-bit `int' */
119 #define MASK_AUTO_INC_DEC 0004
120 #define MASK_M6811 0010
121 #define MASK_M6812 0020
122 #define MASK_NO_DIRECT_MODE 0040
123 #define MASK_MIN_MAX 0100
124 #define MASK_LONG_CALLS 0200
125
126 #define TARGET_OP_TIME (optimize && optimize_size == 0)
127 #define TARGET_SHORT (target_flags & MASK_SHORT)
128 #define TARGET_M6811 (target_flags & MASK_M6811)
129 #define TARGET_M6812 (target_flags & MASK_M6812)
130 #define TARGET_AUTO_INC_DEC (target_flags & MASK_AUTO_INC_DEC)
131 #define TARGET_MIN_MAX (target_flags & MASK_MIN_MAX)
132 #define TARGET_NO_DIRECT_MODE (target_flags & MASK_NO_DIRECT_MODE)
133 #define TARGET_RELAX (TARGET_NO_DIRECT_MODE)
134 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
135
136 /* Default target_flags if no switches specified. */
137 #ifndef TARGET_DEFAULT
138 # define TARGET_DEFAULT (MASK_M6811)
139 #endif
140
141 /* Define this macro as a C expression for the initializer of an
142 array of string to tell the driver program which options are
143 defaults for this target and thus do not need to be handled
144 specially when using `MULTILIB_OPTIONS'. */
145 #ifndef MULTILIB_DEFAULTS
146 # if TARGET_DEFAULT & MASK_M6811
147 # define MULTILIB_DEFAULTS { "m68hc11" }
148 # else
149 # define MULTILIB_DEFAULTS { "m68hc12" }
150 # endif
151 #endif
152
153 /* Macro to define tables used to set the flags. This is a list in braces of
154 pairs in braces, each pair being { "NAME", VALUE } where VALUE is the bits
155 to set or minus the bits to clear. An empty string NAME is used to
156 identify the default VALUE. */
157
158 #define TARGET_SWITCHES \
159 { { "short", MASK_SHORT, \
160 N_("Compile with 16-bit integer mode")}, \
161 { "noshort", - MASK_SHORT, \
162 N_("Compile with 32-bit integer mode")}, \
163 { "auto-incdec", MASK_AUTO_INC_DEC, \
164 N_("Auto pre/post decrement increment allowed")}, \
165 { "noauto-incdec", - MASK_AUTO_INC_DEC, \
166 N_("Auto pre/post decrement increment not allowed")}, \
167 { "inmax", MASK_MIN_MAX, \
168 N_("Min/max instructions allowed")}, \
169 { "nominmax", MASK_MIN_MAX, \
170 N_("Min/max instructions not allowed")}, \
171 { "long-calls", MASK_LONG_CALLS, \
172 N_("Use call and rtc for function calls and returns")}, \
173 { "nolong-calls", - MASK_LONG_CALLS, \
174 N_("Use jsr and rts for function calls and returns")}, \
175 { "relax", MASK_NO_DIRECT_MODE, \
176 N_("Do not use direct addressing mode for soft registers")},\
177 { "68hc11", MASK_M6811, \
178 N_("Compile for a 68HC11")}, \
179 { "68hc12", MASK_M6812, \
180 N_("Compile for a 68HC12")}, \
181 { "6811", MASK_M6811, \
182 N_("Compile for a 68HC11")}, \
183 { "6812", MASK_M6812, \
184 N_("Compile for a 68HC12")}, \
185 { "", TARGET_DEFAULT, 0 }}
186
187 /* This macro is similar to `TARGET_SWITCHES' but defines names of
188 command options that have values. Its definition is an
189 initializer with a subgrouping for each command option.
190
191 Each subgrouping contains a string constant, that defines the
192 fixed part of the option name, and the address of a variable. The
193 variable, type `char *', is set to the variable part of the given
194 option if the fixed part matches. The actual option name is made
195 by appending `-m' to the specified name. */
196 #define TARGET_OPTIONS \
197 { { "reg-alloc=", &m68hc11_reg_alloc_order, \
198 N_("Specify the register allocation order")}, \
199 { "soft-reg-count=", &m68hc11_soft_reg_count, \
200 N_("Indicate the number of soft registers available") }, \
201 SUBTARGET_OPTIONS \
202 }
203
204 /* These are meant to be redefined in the host dependent files */
205 #define SUBTARGET_SWITCHES
206 #define SUBTARGET_OPTIONS
207
208 extern const char *m68hc11_regparm_string;
209 extern const char *m68hc11_reg_alloc_order;
210 extern const char *m68hc11_soft_reg_count;
211
212 #ifndef TARGET_M68HC12
213 # define TARGET_M68HC11 1
214 #endif
215
216 /* Print subsidiary information on the compiler version in use. */
217 #define TARGET_VERSION fprintf (stderr, " (MC68HC11/MC68HC12)")
218
219 /* Sometimes certain combinations of command options do not make
220 sense on a particular target machine. You can define a macro
221 `OVERRIDE_OPTIONS' to take account of this. This macro, if
222 defined, is executed once just after all the command options have
223 been parsed.
224
225 Don't use this macro to turn on various extra optimizations for
226 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
227
228 #define OVERRIDE_OPTIONS m68hc11_override_options ();
229
230 \f
231 /* Define cost parameters for a given processor variant. */
232 struct processor_costs {
233 const int add; /* cost of an add instruction */
234 const int logical; /* cost of a logical instruction */
235 const int shift_var;
236 const int shiftQI_const[8];
237 const int shiftHI_const[16];
238 const int multQI;
239 const int multHI;
240 const int multSI;
241 const int divQI;
242 const int divHI;
243 const int divSI;
244 };
245
246 /* Costs for the current processor. */
247 extern const struct processor_costs *m68hc11_cost;
248 \f
249
250 /* target machine storage layout */
251
252 /* Define this if most significant byte of a word is the lowest numbered. */
253 #define BYTES_BIG_ENDIAN 1
254
255 /* Define this if most significant bit is lowest numbered
256 in instructions that operate on numbered bit-fields. */
257 #define BITS_BIG_ENDIAN 0
258
259 /* Define this if most significant word of a multiword number is numbered. */
260 #define WORDS_BIG_ENDIAN 1
261
262 /* Width of a word, in units (bytes). */
263 #define UNITS_PER_WORD 2
264
265 /* Definition of size_t. This is really an unsigned short as the
266 68hc11 only handles a 64K address space. */
267 #define SIZE_TYPE "short unsigned int"
268
269 /* A C expression for a string describing the name of the data type
270 to use for the result of subtracting two pointers. The typedef
271 name `ptrdiff_t' is defined using the contents of the string.
272 The 68hc11 only has a 64K address space. */
273 #define PTRDIFF_TYPE "short int"
274
275 /* Allocation boundary (bits) for storing pointers in memory. */
276 #define POINTER_BOUNDARY 8
277
278 /* Normal alignment required for function parameters on the stack, in bits.
279 This can't be less than BITS_PER_WORD */
280 #define PARM_BOUNDARY (BITS_PER_WORD)
281
282 /* Boundary (bits) on which stack pointer should be aligned. */
283 #define STACK_BOUNDARY 8
284
285 /* Allocation boundary (bits) for the code of a function. */
286 #define FUNCTION_BOUNDARY 8
287
288 #define BIGGEST_ALIGNMENT 8
289
290 /* Alignment of field after `int : 0' in a structure. */
291 #define EMPTY_FIELD_BOUNDARY 8
292
293 /* Every structure's size must be a multiple of this. */
294 #define STRUCTURE_SIZE_BOUNDARY 8
295
296 /* Define this if instructions will fail to work if given data not
297 on the nominal alignment. If instructions will merely go slower
298 in that case, do not define this macro. */
299 #define STRICT_ALIGNMENT 0
300
301 /* An integer expression for the size in bits of the largest integer
302 machine mode that should actually be used. All integer machine modes of
303 this size or smaller can be used for structures and unions with the
304 appropriate sizes. */
305 #define MAX_FIXED_MODE_SIZE 64
306
307 /* Floats are checked in a generic way. */
308 /* #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) */
309
310
311 \f
312 /* target machine storage layout */
313
314 /* Size (bits) of the type "int" on target machine
315 (If undefined, default is BITS_PER_WORD). */
316 #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
317
318 /* Size (bits) of the type "short" on target machine */
319 #define SHORT_TYPE_SIZE 16
320
321 /* Size (bits) of the type "long" on target machine */
322 #define LONG_TYPE_SIZE 32
323
324 /* Size (bits) of the type "long long" on target machine */
325 #define LONG_LONG_TYPE_SIZE 64
326
327 /* A C expression for the size in bits of the type `float' on the
328 target machine. If you don't define this, the default is one word.
329 Don't use default: a word is only 16. */
330 #define FLOAT_TYPE_SIZE 32
331
332 /* A C expression for the size in bits of the type double on the target
333 machine. If you don't define this, the default is two words.
334 Be IEEE compliant. */
335 #define DOUBLE_TYPE_SIZE 64
336
337 #define LONG_DOUBLE_TYPE_SIZE 64
338
339 /* Define this as 1 if `char' should by default be signed; else as 0. */
340 #define DEFAULT_SIGNED_CHAR 0
341
342 /* Define these to avoid dependence on meaning of `int'.
343 Note that WCHAR_TYPE_SIZE is used in cexp.y,
344 where TARGET_SHORT is not available. */
345 #define WCHAR_TYPE "short int"
346 #define WCHAR_TYPE_SIZE 16
347 \f
348
349 /* Standard register usage. */
350
351 #define HARD_REG_SIZE (UNITS_PER_WORD)
352
353 /* Assign names to real MC68HC11 registers.
354 A and B registers are not really used (A+B = D)
355 X register is first so that GCC allocates X+D for 32-bit integers and
356 the lowpart of that integer will be D. Having the lower part in D is
357 better for 32<->16bit conversions and for many arithmetic operations. */
358 #define HARD_X_REGNUM 0
359 #define HARD_D_REGNUM 1
360 #define HARD_Y_REGNUM 2
361 #define HARD_SP_REGNUM 3
362 #define HARD_PC_REGNUM 4
363 #define HARD_A_REGNUM 5
364 #define HARD_B_REGNUM 6
365 #define HARD_CCR_REGNUM 7
366
367 /* The Z register does not really exist in the 68HC11. This a fake register
368 for GCC. It is treated exactly as an index register (X or Y). It is only
369 in the A_REGS class, which is the BASE_REG_CLASS for GCC. Defining this
370 register helps the reload pass of GCC. Otherwise, the reload often aborts
371 with register spill failures.
372
373 The Z register is replaced by either X or Y during the machine specific
374 reorg (m68hc11_reorg). It is saved in the SOFT_Z_REGNUM soft-register
375 when this is necessary.
376
377 It's possible to tell GCC not to use this register with -ffixed-z. */
378 #define HARD_Z_REGNUM 8
379
380 /* The frame pointer is a soft-register. It's treated as such by GCC:
381 it is not and must not be part of the BASE_REG_CLASS. */
382 #define DEFAULT_HARD_FP_REGNUM (9)
383 #define HARD_FP_REGNUM (9)
384 #define HARD_AP_REGNUM (HARD_FP_REGNUM)
385
386 /* Temporary soft-register used in some cases when an operand came
387 up into a bad register class (D, X, Y, SP) and gcc failed to
388 recognize this. This register is never allocated by GCC. */
389 #define SOFT_TMP_REGNUM 10
390
391 /* The soft-register which is used to save the Z register
392 (see Z register replacement notes in m68hc11.c). */
393 #define SOFT_Z_REGNUM 11
394
395 /* The soft-register which is used to save either X or Y. */
396 #define SOFT_SAVED_XY_REGNUM 12
397
398 /* A fake clobber register for 68HC12 patterns. */
399 #define FAKE_CLOBBER_REGNUM (13)
400
401 /* Define 32 soft-registers of 16-bit each. By default,
402 only 12 of them are enabled and can be used by GCC. The
403 -msoft-reg-count=<n> option allows to control the number of valid
404 soft-registers. GCC can put 32-bit values in them
405 by allocating consecutive registers. The first 3 soft-registers
406 are never allocated by GCC. They are used in case the insn template needs
407 a temporary register, or for the Z register replacement. */
408
409 #define MAX_SOFT_REG_COUNT (32)
410 #define SOFT_REG_FIXED 0, 0, 0, 0, 0, 0, 0, 0, \
411 0, 0, 0, 0, 1, 1, 1, 1, \
412 1, 1, 1, 1, 1, 1, 1, 1, \
413 1, 1, 1, 1, 1, 1, 1, 1
414 #define SOFT_REG_USED 0, 0, 0, 0, 0, 0, 0, 0, \
415 0, 0, 0, 0, 1, 1, 1, 1, \
416 1, 1, 1, 1, 1, 1, 1, 1, \
417 1, 1, 1, 1, 1, 1, 1, 1
418 #define SOFT_REG_ORDER \
419 SOFT_REG_FIRST, SOFT_REG_FIRST+1,SOFT_REG_FIRST+2,SOFT_REG_FIRST+3,\
420 SOFT_REG_FIRST+4, SOFT_REG_FIRST+5,SOFT_REG_FIRST+6,SOFT_REG_FIRST+7,\
421 SOFT_REG_FIRST+8, SOFT_REG_FIRST+9,SOFT_REG_FIRST+10,SOFT_REG_FIRST+11,\
422 SOFT_REG_FIRST+12, SOFT_REG_FIRST+13,SOFT_REG_FIRST+14,SOFT_REG_FIRST+15,\
423 SOFT_REG_FIRST+16, SOFT_REG_FIRST+17,SOFT_REG_FIRST+18,SOFT_REG_FIRST+19,\
424 SOFT_REG_FIRST+20, SOFT_REG_FIRST+21,SOFT_REG_FIRST+22,SOFT_REG_FIRST+23,\
425 SOFT_REG_FIRST+24, SOFT_REG_FIRST+25,SOFT_REG_FIRST+26,SOFT_REG_FIRST+27,\
426 SOFT_REG_FIRST+28, SOFT_REG_FIRST+29,SOFT_REG_FIRST+30,SOFT_REG_FIRST+31
427
428 #define SOFT_REG_NAMES \
429 "*_.d1", "*_.d2", "*_.d3", "*_.d4", \
430 "*_.d5", "*_.d6", "*_.d7", "*_.d8", \
431 "*_.d9", "*_.d10", "*_.d11", "*_.d12", \
432 "*_.d13", "*_.d14", "*_.d15", "*_.d16", \
433 "*_.d17", "*_.d18", "*_.d19", "*_.d20", \
434 "*_.d21", "*_.d22", "*_.d23", "*_.d24", \
435 "*_.d25", "*_.d26", "*_.d27", "*_.d28", \
436 "*_.d29", "*_.d30", "*_.d31", "*_.d32"
437
438 /* First available soft-register for GCC. */
439 #define SOFT_REG_FIRST (SOFT_SAVED_XY_REGNUM+2)
440
441 /* Last available soft-register for GCC. */
442 #define SOFT_REG_LAST (SOFT_REG_FIRST+MAX_SOFT_REG_COUNT)
443 #define SOFT_FP_REGNUM (SOFT_REG_LAST)
444 #define SOFT_AP_REGNUM (SOFT_FP_REGNUM+1)
445
446 /* Number of actual hardware registers. The hardware registers are assigned
447 numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER.
448 All registers that the compiler knows about must be given numbers, even
449 those that are not normally considered general registers. */
450 #define FIRST_PSEUDO_REGISTER (SOFT_REG_LAST+2)
451
452 /* 1 for registers that have pervasive standard uses and are not available
453 for the register allocator. */
454 #define FIXED_REGISTERS \
455 {0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,1, 1, SOFT_REG_FIXED, 1, 1}
456 /* X, D, Y, SP,PC,A, B, CCR, Z, FP,ZTMP,ZR,XYR, FK, D1 - D32, SOFT-FP, AP */
457
458 /* 1 for registers not available across function calls. For our pseudo
459 registers, all are available. */
460 #define CALL_USED_REGISTERS \
461 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, SOFT_REG_USED, 1, 1}
462 /* X, D, Y, SP,PC,A, B, CCR, Z, FP, ZTMP,ZR,XYR, D1 - 32, SOFT-FP, AP */
463
464
465 /* Define this macro to change register usage conditional on target flags.
466
467 The soft-registers are disabled or enabled according to the
468 -msoft-reg-count=<n> option. */
469
470
471 #define CONDITIONAL_REGISTER_USAGE (m68hc11_conditional_register_usage ())
472
473 /* List the order in which to allocate registers. Each register must be
474 listed once, even those in FIXED_REGISTERS. */
475 #define REG_ALLOC_ORDER \
476 { HARD_D_REGNUM, HARD_X_REGNUM, HARD_Y_REGNUM, \
477 SOFT_REG_ORDER, HARD_Z_REGNUM, HARD_PC_REGNUM, HARD_A_REGNUM, \
478 HARD_B_REGNUM, HARD_CCR_REGNUM, HARD_FP_REGNUM, SOFT_FP_REGNUM, \
479 HARD_SP_REGNUM, SOFT_TMP_REGNUM, SOFT_Z_REGNUM, SOFT_SAVED_XY_REGNUM, \
480 SOFT_AP_REGNUM, FAKE_CLOBBER_REGNUM }
481
482 /* A C expression for the number of consecutive hard registers,
483 starting at register number REGNO, required to hold a value of
484 mode MODE. */
485 #define HARD_REGNO_NREGS(REGNO, MODE) \
486 ((Q_REGNO_P (REGNO)) ? (GET_MODE_SIZE (MODE)) : \
487 ((GET_MODE_SIZE (MODE) + HARD_REG_SIZE - 1) / HARD_REG_SIZE))
488
489 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
490 - 8 bit values are stored anywhere (except the SP register).
491 - 16 bit values can be stored in any register whose mode is 16
492 - 32 bit values can be stored in D, X registers or in a soft register
493 (except the last one because we need 2 soft registers)
494 - Values whose size is > 32 bit are not stored in real hard
495 registers. They may be stored in soft registers if there are
496 enough of them. */
497 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
498 hard_regno_mode_ok (REGNO,MODE)
499
500 /* Value is 1 if it is a good idea to tie two pseudo registers when one has
501 mode MODE1 and one has mode MODE2. If HARD_REGNO_MODE_OK could produce
502 different values for MODE1 and MODE2, for any hard reg, then this must be
503 0 for correct output.
504
505 All modes are tieable except QImode. */
506 #define MODES_TIEABLE_P(MODE1, MODE2) \
507 (((MODE1) == (MODE2)) \
508 || ((MODE1) != QImode && (MODE2) != QImode))
509 \f
510
511 /* Define the classes of registers for register constraints in the
512 machine description. Also define ranges of constants.
513
514 One of the classes must always be named ALL_REGS and include all hard regs.
515 If there is more than one class, another class must be named NO_REGS
516 and contain no registers.
517
518 The name GENERAL_REGS must be the name of a class (or an alias for
519 another name such as ALL_REGS). This is the class of registers
520 that is allowed by "g" or "r" in a register constraint.
521 Also, registers outside this class are allocated only when
522 instructions express preferences for them.
523
524 The classes must be numbered in nondecreasing order; that is,
525 a larger-numbered class must never be contained completely
526 in a smaller-numbered class.
527
528 For any two classes, it is very desirable that there be another
529 class that represents their union. */
530
531 /* The M68hc11 has so fiew registers that it's not possible for GCC to
532 do any register allocation without breaking. We extend the processor
533 registers by having soft registers. These registers are treated as
534 hard registers by GCC but they are located in memory and accessed by page0
535 accesses (IND mode). */
536 enum reg_class
537 {
538 NO_REGS,
539 D_REGS, /* 16-bit data register */
540 X_REGS, /* 16-bit X register */
541 Y_REGS, /* 16-bit Y register */
542 SP_REGS, /* 16 bit stack pointer */
543 DA_REGS, /* 8-bit A reg. */
544 DB_REGS, /* 8-bit B reg. */
545 Z_REGS, /* 16-bit fake Z register */
546 D8_REGS, /* 8-bit A or B reg. */
547 Q_REGS, /* 8-bit (byte (QI)) data (A, B or D) */
548 D_OR_X_REGS, /* D or X register */
549 D_OR_Y_REGS, /* D or Y register */
550 D_OR_SP_REGS, /* D or SP register */
551 X_OR_Y_REGS, /* IX or Y register */
552 A_REGS, /* 16-bit address register (X, Y, Z) */
553 X_OR_SP_REGS, /* X or SP register */
554 Y_OR_SP_REGS, /* Y or SP register */
555 X_OR_Y_OR_D_REGS, /* X, Y or D */
556 A_OR_D_REGS, /* X, Y, Z or D */
557 A_OR_SP_REGS, /* X, Y, Z or SP */
558 H_REGS, /* 16-bit hard register (D, X, Y, Z, SP) */
559 S_REGS, /* 16-bit soft register */
560 D_OR_S_REGS, /* 16-bit soft register or D register */
561 X_OR_S_REGS, /* 16-bit soft register or X register */
562 Y_OR_S_REGS, /* 16-bit soft register or Y register */
563 SP_OR_S_REGS, /* 16-bit soft register or SP register */
564 D_OR_X_OR_S_REGS, /* 16-bit soft register or D or X register */
565 D_OR_Y_OR_S_REGS, /* 16-bit soft register or D or Y register */
566 D_OR_SP_OR_S_REGS, /* 16-bit soft register or D or SP register */
567 A_OR_S_REGS, /* 16-bit soft register or X, Y registers */
568 D_OR_A_OR_S_REGS, /* 16-bit soft register or D, X, Y registers */
569 TMP_REGS, /* 16 bit fake scratch register */
570 D_OR_A_OR_TMP_REGS, /* General scratch register */
571 G_REGS, /* 16-bit general register
572 (H_REGS + soft registers) */
573 ALL_REGS,
574 LIM_REG_CLASSES
575 };
576
577 /* alias GENERAL_REGS to G_REGS. */
578 #define GENERAL_REGS G_REGS
579
580 #define N_REG_CLASSES (int) LIM_REG_CLASSES
581
582 /* Give names of register classes as strings for dump file. */
583 #define REG_CLASS_NAMES \
584 { "NO_REGS", \
585 "D_REGS", \
586 "X_REGS", \
587 "Y_REGS", \
588 "SP_REGS", \
589 "DA_REGS", \
590 "DB_REGS", \
591 "D8_REGS", \
592 "Z_REGS", \
593 "Q_REGS", \
594 "D_OR_X_REGS", \
595 "D_OR_Y_REGS", \
596 "D_OR_SP_REGS", \
597 "X_OR_Y_REGS", \
598 "A_REGS", \
599 "X_OR_SP_REGS", \
600 "Y_OR_SP_REGS", \
601 "X_OR_Y_OR_D_REGS", \
602 "A_OR_D_REGS", \
603 "A_OR_SP_REGS", \
604 "H_REGS", \
605 "S_REGS", \
606 "D_OR_S_REGS", \
607 "X_OR_S_REGS", \
608 "Y_OR_S_REGS", \
609 "SP_OR_S_REGS", \
610 "D_OR_X_OR_S_REGS", \
611 "D_OR_Y_OR_S_REGS", \
612 "D_OR_SP_OR_S_REGS", \
613 "A_OR_S_REGS", \
614 "D_OR_A_OR_S_REGS", \
615 "TMP_REGS", \
616 "D_OR_A_OR_TMP_REGS", \
617 "G_REGS", \
618 "ALL_REGS" }
619
620 /* An initializer containing the contents of the register classes,
621 as integers which are bit masks. The Nth integer specifies the
622 contents of class N. The way the integer MASK is interpreted is
623 that register R is in the class if `MASK & (1 << R)' is 1. */
624
625 /*--------------------------------------------------------------
626 X 0x00000001
627 D 0x00000002
628 Y 0x00000004
629 SP 0x00000008
630 PC 0x00000010
631 A 0x00000020
632 B 0x00000040
633 CCR 0x00000080
634 Z 0x00000100
635 FRAME 0x00000200
636 ZTMP 0x00000400
637 ZREG 0x00000800
638 XYREG 0x00001000
639 FAKE 0x00002000
640 Di 0xFFFFc000, 0x03FFF
641 SFRAME 0x00000000, 0x04000
642 AP 0x00000000, 0x08000
643
644 D_OR_X_REGS represents D+X. It is used for 32-bits numbers.
645 A_REGS represents a valid base register for indexing. It represents
646 X,Y and the Z register.
647 S_REGS represents the soft-registers. This includes the hard frame
648 and soft frame registers.
649 --------------------------------------------------------------*/
650
651 #define REG_CLASS_CONTENTS \
652 /* NO_REGS */ {{ 0x00000000, 0x00000000 }, \
653 /* D_REGS */ { 0x00000002, 0x00000000 }, /* D */ \
654 /* X_REGS */ { 0x00000001, 0x00000000 }, /* X */ \
655 /* Y_REGS */ { 0x00000004, 0x00000000 }, /* Y */ \
656 /* SP_REGS */ { 0x00000008, 0x00000000 }, /* SP */ \
657 /* DA_REGS */ { 0x00000020, 0x00000000 }, /* A */ \
658 /* DB_REGS */ { 0x00000040, 0x00000000 }, /* B */ \
659 /* Z_REGS */ { 0x00000100, 0x00000000 }, /* Z */ \
660 /* D8_REGS */ { 0x00000060, 0x00000000 }, /* A B */ \
661 /* Q_REGS */ { 0x00000062, 0x00000000 }, /* A B D */ \
662 /* D_OR_X_REGS */ { 0x00000003, 0x00000000 }, /* D X */ \
663 /* D_OR_Y_REGS */ { 0x00000006, 0x00000000 }, /* D Y */ \
664 /* D_OR_SP_REGS */ { 0x0000000A, 0x00000000 }, /* D SP */ \
665 /* X_OR_Y_REGS */ { 0x00000005, 0x00000000 }, /* X Y */ \
666 /* A_REGS */ { 0x00000105, 0x00000000 }, /* X Y Z */ \
667 /* X_OR_SP_REGS */ { 0x00000009, 0x00000000 }, /* X SP */ \
668 /* Y_OR_SP_REGS */ { 0x0000000C, 0x00000000 }, /* Y SP */ \
669 /* X_OR_Y_OR_D_REGS */ { 0x00000007, 0x00000000 }, /* D X Y */ \
670 /* A_OR_D_REGS */ { 0x00000107, 0x00000000 }, /* D X Y Z */ \
671 /* A_OR_SP_REGS */ { 0x0000010D, 0x00000000 }, /* X Y SP */ \
672 /* H_REGS */ { 0x0000010F, 0x00000000 }, /* D X Y SP */ \
673 /* S_REGS */ { 0xFFFFDE00, 0x00007FFF }, /* _.D,..,FP,Z* */ \
674 /* D_OR_S_REGS */ { 0xFFFFDE02, 0x00007FFF }, /* D _.D */ \
675 /* X_OR_S_REGS */ { 0xFFFFDE01, 0x00007FFF }, /* X _.D */ \
676 /* Y_OR_S_REGS */ { 0xFFFFDE04, 0x00007FFF }, /* Y _.D */ \
677 /* SP_OR_S_REGS */ { 0xFFFFDE08, 0x00007FFF }, /* SP _.D */ \
678 /* D_OR_X_OR_S_REGS */ { 0xFFFFDE03, 0x00007FFF }, /* D X _.D */ \
679 /* D_OR_Y_OR_S_REGS */ { 0xFFFFDE06, 0x00007FFF }, /* D Y _.D */ \
680 /* D_OR_SP_OR_S_REGS */ { 0xFFFFDE0A, 0x00007FFF }, /* D SP _.D */ \
681 /* A_OR_S_REGS */ { 0xFFFFDF05, 0x00007FFF }, /* X Y _.D */ \
682 /* D_OR_A_OR_S_REGS */ { 0xFFFFDF07, 0x00007FFF }, /* D X Y _.D */ \
683 /* TMP_REGS */ { 0x00002000, 0x00000000 }, /* FAKE */ \
684 /* D_OR_A_OR_TMP_REGS*/ { 0x00002107, 0x00000000 }, /* D X Y Z Fake */ \
685 /* G_REGS */ { 0xFFFFFF1F, 0x00007FFF }, /* ? _.D D X Y */ \
686 /* ALL_REGS*/ { 0xFFFFFFFF, 0x00007FFF }}
687
688
689 /* set up a C expression whose value is a register class containing hard
690 register REGNO */
691 #define Q_REGNO_P(REGNO) ((REGNO) == HARD_A_REGNUM \
692 || (REGNO) == HARD_B_REGNUM)
693 #define Q_REG_P(X) (REG_P (X) && Q_REGNO_P (REGNO (X)))
694
695 #define D_REGNO_P(REGNO) ((REGNO) == HARD_D_REGNUM)
696 #define D_REG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
697
698 #define DB_REGNO_P(REGNO) ((REGNO) == HARD_B_REGNUM)
699 #define DB_REG_P(X) (REG_P (X) && DB_REGNO_P (REGNO (X)))
700 #define DA_REGNO_P(REGNO) ((REGNO) == HARD_A_REGNUM)
701 #define DA_REG_P(X) (REG_P (X) && DA_REGNO_P (REGNO (X)))
702
703 #define X_REGNO_P(REGNO) ((REGNO) == HARD_X_REGNUM)
704 #define X_REG_P(X) (REG_P (X) && X_REGNO_P (REGNO (X)))
705
706 #define Y_REGNO_P(REGNO) ((REGNO) == HARD_Y_REGNUM)
707 #define Y_REG_P(X) (REG_P (X) && Y_REGNO_P (REGNO (X)))
708
709 #define Z_REGNO_P(REGNO) ((REGNO) == HARD_Z_REGNUM)
710 #define Z_REG_P(X) (REG_P (X) && Z_REGNO_P (REGNO (X)))
711
712 #define SP_REGNO_P(REGNO) ((REGNO) == HARD_SP_REGNUM)
713 #define SP_REG_P(X) (REG_P (X) && SP_REGNO_P (REGNO (X)))
714
715 /* Address register. */
716 #define A_REGNO_P(REGNO) ((REGNO) == HARD_X_REGNUM \
717 || (REGNO) == HARD_Y_REGNUM \
718 || (REGNO) == HARD_Z_REGNUM)
719 #define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
720
721 /* M68hc11 hard registers. */
722 #define H_REGNO_P(REGNO) (D_REGNO_P (REGNO) || A_REGNO_P (REGNO) \
723 || SP_REGNO_P (REGNO) || Q_REGNO_P (REGNO))
724 #define H_REG_P(X) (REG_P (X) && H_REGNO_P (REGNO (X)))
725
726 #define FAKE_REGNO_P(REGNO) ((REGNO) == FAKE_CLOBBER_REGNUM)
727 #define FAKE_REG_P(X) (REG_P (X) && FAKE_REGNO_P (REGNO (X)))
728
729 /* Soft registers (or register emulation for gcc). The temporary register
730 used by insn template must be part of the S_REGS class so that it
731 matches the 'u' constraint. */
732 #define S_REGNO_P(REGNO) ((REGNO) >= SOFT_TMP_REGNUM \
733 && (REGNO) <= SOFT_REG_LAST \
734 && (REGNO) != FAKE_CLOBBER_REGNUM)
735 #define S_REG_P(X) (REG_P (X) && S_REGNO_P (REGNO (X)))
736
737 #define Z_REGNO_P(REGNO) ((REGNO) == HARD_Z_REGNUM)
738 #define Z_REG_P(X) (REG_P (X) && Z_REGNO_P (REGNO (X)))
739
740 /* General register. */
741 #define G_REGNO_P(REGNO) (H_REGNO_P (REGNO) || S_REGNO_P (REGNO) \
742 || ((REGNO) == HARD_PC_REGNUM) \
743 || ((REGNO) == HARD_FP_REGNUM) \
744 || ((REGNO) == SOFT_FP_REGNUM) \
745 || ((REGNO) == FAKE_CLOBBER_REGNUM) \
746 || ((REGNO) == SOFT_AP_REGNUM))
747
748 #define G_REG_P(X) (REG_P (X) && G_REGNO_P (REGNO (X)))
749
750 #define REGNO_REG_CLASS(REGNO) \
751 (D_REGNO_P (REGNO) ? D_REGS : \
752 (X_REGNO_P (REGNO) ? X_REGS : \
753 (Y_REGNO_P (REGNO) ? Y_REGS : \
754 (SP_REGNO_P (REGNO) ? SP_REGS : \
755 (Z_REGNO_P (REGNO) ? Z_REGS : \
756 (H_REGNO_P (REGNO) ? H_REGS : \
757 (FAKE_REGNO_P (REGNO) ? TMP_REGS : \
758 (S_REGNO_P (REGNO) ? S_REGS : \
759 (DA_REGNO_P (REGNO) ? DA_REGS: \
760 (DB_REGNO_P (REGNO) ? DB_REGS: \
761 (G_REGNO_P (REGNO) ? G_REGS : ALL_REGS)))))))))))
762
763
764 /* Get reg_class from a letter in the machine description. */
765
766 extern enum reg_class m68hc11_tmp_regs_class;
767 #define REG_CLASS_FROM_LETTER(C) \
768 ((C) == 'a' ? DA_REGS : \
769 (C) == 'A' ? A_REGS : \
770 (C) == 'b' ? DB_REGS : \
771 (C) == 'B' ? X_OR_Y_REGS : \
772 (C) == 'd' ? D_REGS : \
773 (C) == 'D' ? D_OR_X_REGS : \
774 (C) == 'q' ? Q_REGS : \
775 (C) == 'h' ? H_REGS : \
776 (C) == 't' ? TMP_REGS : \
777 (C) == 'u' ? S_REGS : \
778 (C) == 'v' ? m68hc11_tmp_regs_class : \
779 (C) == 'w' ? SP_REGS : \
780 (C) == 'x' ? X_REGS : \
781 (C) == 'y' ? Y_REGS : \
782 (C) == 'z' ? Z_REGS : NO_REGS)
783
784 #define PREFERRED_RELOAD_CLASS(X,CLASS) preferred_reload_class(X,CLASS)
785
786 #define SMALL_REGISTER_CLASSES 1
787
788 /* A C expression whose value is nonzero if pseudos that have been
789 assigned to registers of class CLASS would likely be spilled
790 because registers of CLASS are needed for spill registers.
791
792 The default value of this macro returns 1 if CLASS has exactly one
793 register and zero otherwise. On most machines, this default
794 should be used. Only define this macro to some other expression
795 if pseudo allocated by `local-alloc.c' end up in memory because
796 their hard registers were needed for spill registers. If this
797 macro returns nonzero for those classes, those pseudos will only
798 be allocated by `global.c', which knows how to reallocate the
799 pseudo to another register. If there would not be another
800 register available for reallocation, you should not change the
801 definition of this macro since the only effect of such a
802 definition would be to slow down register allocation. */
803
804 #define CLASS_LIKELY_SPILLED_P(CLASS) \
805 (((CLASS) == D_REGS) \
806 || ((CLASS) == X_REGS) \
807 || ((CLASS) == Y_REGS) \
808 || ((CLASS) == A_REGS) \
809 || ((CLASS) == SP_REGS) \
810 || ((CLASS) == D_OR_X_REGS) \
811 || ((CLASS) == D_OR_Y_REGS) \
812 || ((CLASS) == X_OR_SP_REGS) \
813 || ((CLASS) == Y_OR_SP_REGS) \
814 || ((CLASS) == D_OR_SP_REGS))
815
816 /* Return the maximum number of consecutive registers needed to represent
817 mode MODE in a register of class CLASS. */
818 #define CLASS_MAX_NREGS(CLASS, MODE) \
819 (((CLASS) == DA_REGS || (CLASS) == DB_REGS \
820 || (CLASS) == D8_REGS || (CLASS) == Q_REGS) ? GET_MODE_SIZE (MODE) \
821 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
822
823 /* The letters I, J, K, L and M in a register constraint string
824 can be used to stand for particular ranges of immediate operands.
825 This macro defines what the ranges are.
826 C is the letter, and VALUE is a constant value.
827 Return 1 if VALUE is in the range specified by C.
828
829 `K' is for 0.
830 `L' is for range -65536 to 65536
831 `M' is for values whose 16-bit low part is 0
832 'N' is for +1 or -1.
833 'O' is for 16 (for rotate using swap).
834 'P' is for range -8 to 2 (used by addhi_sp)
835
836 'I', 'J' are not used. */
837
838 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
839 ((C) == 'K' ? (VALUE) == 0 : \
840 (C) == 'L' ? ((VALUE) >= -65536 && (VALUE) <= 65535) : \
841 (C) == 'M' ? ((VALUE) & 0x0ffffL) == 0 : \
842 (C) == 'N' ? ((VALUE) == 1 || (VALUE) == -1) : \
843 (C) == 'O' ? (VALUE) == 16 : \
844 (C) == 'P' ? ((VALUE) <= 2 && (VALUE) >= -8) : 0)
845
846 /* Similar, but for floating constants, and defining letters G and H.
847
848 `G' is for 0.0. */
849 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
850 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
851 && VALUE == CONST0_RTX (GET_MODE (VALUE))) : 0)
852
853 /* 'U' represents certain kind of memory indexed operand for 68HC12.
854 and any memory operand for 68HC11. */
855 #define EXTRA_CONSTRAINT(OP, C) \
856 ((C) == 'U' ? m68hc11_small_indexed_indirect_p (OP, GET_MODE (OP)) \
857 : (C) == 'Q' ? m68hc11_symbolic_p (OP, GET_MODE (OP)) \
858 : (C) == 'R' ? m68hc11_indirect_p (OP, GET_MODE (OP)) \
859 : (C) == 'S' ? (memory_operand (OP, GET_MODE (OP)) \
860 && non_push_operand (OP, GET_MODE (OP))) : 0)
861
862 \f
863 /* Stack layout; function entry, exit and calling. */
864
865 /* Define this if pushing a word on the stack
866 makes the stack pointer a smaller address. */
867 #define STACK_GROWS_DOWNWARD
868
869 /* Define this if the nominal address of the stack frame
870 is at the high-address end of the local variables;
871 that is, each additional local variable allocated
872 goes at a more negative offset in the frame.
873
874 Don't define for 68HC11, the frame pointer is the bottom
875 of local variables. */
876 /* #define FRAME_GROWS_DOWNWARD */
877
878 /* Define this if successive arguments to a function occupy decreasing
879 addresses in the stack. */
880 /* #define ARGS_GROW_DOWNWARD */
881
882 /* Offset within stack frame to start allocating local variables at.
883 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
884 first local allocated. Otherwise, it is the offset to the BEGINNING
885 of the first local allocated. */
886 #define STARTING_FRAME_OFFSET 0
887
888 /* Offset of first parameter from the argument pointer register value. */
889
890 #define FIRST_PARM_OFFSET(FNDECL) 2
891
892 /* After the prologue, RA is at 0(AP) in the current frame. */
893 #define RETURN_ADDR_RTX(COUNT, FRAME) \
894 ((COUNT) == 0 \
895 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
896 : 0)
897
898 /* Before the prologue, the top of the frame is at 2(sp). */
899 #define INCOMING_FRAME_SP_OFFSET 2
900
901 /* Define this if functions should assume that stack space has been
902 allocated for arguments even when their values are passed in
903 registers.
904
905 The value of this macro is the size, in bytes, of the area reserved for
906 arguments passed in registers.
907
908 This space can either be allocated by the caller or be a part of the
909 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
910 says which. */
911 /* #define REG_PARM_STACK_SPACE(FNDECL) 2 */
912
913 /* Define this macro if REG_PARM_STACK_SPACE is defined but stack
914 parameters don't skip the area specified by REG_PARM_STACK_SPACE.
915 Normally, when a parameter is not passed in registers, it is placed on
916 the stack beyond the REG_PARM_STACK_SPACE area. Defining this macro
917 suppresses this behavior and causes the parameter to be passed on the
918 stack in its natural location. */
919 /* #define STACK_PARMS_IN_REG_PARM_AREA */
920
921 /* Register to use for pushing function arguments. */
922 #define STACK_POINTER_REGNUM HARD_SP_REGNUM
923
924 /* Base register for access to local variables of the function. */
925 #define FRAME_POINTER_REGNUM SOFT_FP_REGNUM
926
927 #define HARD_FRAME_POINTER_REGNUM HARD_FP_REGNUM
928
929 /* Base register for access to arguments of the function. */
930 #define ARG_POINTER_REGNUM SOFT_AP_REGNUM
931
932 /* Register in which static-chain is passed to a function. */
933 #define STATIC_CHAIN_REGNUM SOFT_Z_REGNUM
934
935 \f
936 /* Definitions for register eliminations.
937
938 This is an array of structures. Each structure initializes one pair
939 of eliminable registers. The "from" register number is given first,
940 followed by "to". Eliminations of the same "from" register are listed
941 in order of preference.
942
943 We have two registers that are eliminated on the 6811. The psuedo arg
944 pointer and pseudo frame pointer registers can always be eliminated;
945 they are replaced with either the stack or the real frame pointer. */
946
947 #define ELIMINABLE_REGS \
948 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
949 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
950 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
951 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
952
953 /* Value should be nonzero if functions must have frame pointers.
954 Zero means the frame pointer need not be set up (and parms may be
955 accessed via the stack pointer) in functions that seem suitable.
956 This is computed in `reload', in reload1.c. */
957 #define FRAME_POINTER_REQUIRED 0
958
959 /* Given FROM and TO register numbers, say whether this elimination is allowed.
960 Frame pointer elimination is automatically handled.
961
962 All other eliminations are valid. */
963
964 #define CAN_ELIMINATE(FROM, TO) \
965 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
966 ? ! frame_pointer_needed \
967 : 1)
968
969
970 /* Define the offset between two registers, one to be eliminated, and the other
971 its replacement, at the start of a routine. */
972
973 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
974 { OFFSET = m68hc11_initial_elimination_offset (FROM, TO); }
975
976 \f
977 /* Passing Function Arguments on the Stack. */
978
979 /* When a prototype says `char' or `short', really pass an `int'. */
980 /* #define PROMOTE_PROTOTYPES */
981
982 /* If we generate an insn to push BYTES bytes, this says how many the
983 stack pointer really advances by. No rounding or alignment needed
984 for MC6811. */
985 #define PUSH_ROUNDING(BYTES) (BYTES)
986
987 /* Value is 1 if returning from a function call automatically pops the
988 arguments described by the number-of-args field in the call. FUNTYPE is
989 the data type of the function (as a tree), or for a library call it is
990 an identifier node for the subroutine name.
991
992 The standard MC6811 call, with arg count word, includes popping the
993 args as part of the call template. */
994 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
995
996 /* Nonzero if type TYPE should be returned in memory.
997 Blocks and data types largers than 4 bytes cannot be returned
998 in the register (D + X = 4). */
999 #define RETURN_IN_MEMORY(TYPE) \
1000 ((TYPE_MODE (TYPE) == BLKmode) \
1001 ? (int_size_in_bytes (TYPE) > 4) \
1002 : (GET_MODE_SIZE (TYPE_MODE (TYPE)) > 4))
1003
1004 \f
1005 /* Passing Arguments in Registers. */
1006
1007 /* Define a data type for recording info about an argument list
1008 during the scan of that argument list. This data type should
1009 hold all necessary information about the function itself
1010 and about the args processed so far, enough to enable macros
1011 such as FUNCTION_ARG to determine where the next arg should go. */
1012
1013 typedef struct m68hc11_args
1014 {
1015 int words;
1016 int nregs;
1017 } CUMULATIVE_ARGS;
1018
1019 /* A C expression that indicates when an argument must be passed by reference.
1020 If nonzero for an argument, a copy of that argument is made in memory and a
1021 pointer to the argument is passed instead of the argument itself.
1022 The pointer is passed in whatever way is appropriate for passing a pointer
1023 to that type.
1024
1025 64-bit numbers are passed by reference. */
1026 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1027 m68hc11_function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1028
1029
1030 /* If defined, a C expression which determines whether, and in which direction,
1031 to pad out an argument with extra space. The value should be of type
1032 `enum direction': either `upward' to pad above the argument,
1033 `downward' to pad below, or `none' to inhibit padding.
1034
1035 Structures are stored left shifted in their argument slot. */
1036 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1037 m68hc11_function_arg_padding ((MODE), (TYPE))
1038
1039 /* A C expression that indicates when it is the called function's
1040 responsibility to make a copy of arguments passed by invisible
1041 reference. Normally, the caller makes a copy and passes the
1042 address of the copy to the routine being called. When
1043 FUNCTION_ARG_CALLEE_COPIES is defined and is nonzero, the caller
1044 does not make a copy. Instead, it passes a pointer to the "live"
1045 value. The called function must not modify this value. If it can
1046 be determined that the value won't be modified, it need not make a
1047 copy; otherwise a copy must be made. */
1048 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
1049 ((NAMED) && FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED))
1050
1051 /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a
1052 function whose data type is FNTYPE. For a library call, FNTYPE is 0. */
1053 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1054 (m68hc11_init_cumulative_args (&CUM, FNTYPE, LIBNAME))
1055
1056 /* Update the data in CUM to advance over an argument of mode MODE and data
1057 type TYPE. (TYPE is null for libcalls where that information may not be
1058 available.) */
1059 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1060 (m68hc11_function_arg_advance (&CUM, MODE, TYPE, NAMED))
1061
1062 /* Define where to put the arguments to a function.
1063 Value is zero to push the argument on the stack,
1064 or a hard register in which to store the argument.
1065
1066 MODE is the argument's machine mode.
1067 TYPE is the data type of the argument (as a tree).
1068 This is null for libcalls where that information may
1069 not be available.
1070 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1071 the preceding args and about the function being called.
1072 NAMED is nonzero if this argument is a named parameter
1073 (otherwise it is an extra parameter matching an ellipsis). */
1074 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1075 (m68hc11_function_arg (&CUM, MODE, TYPE, NAMED))
1076
1077 /* Define the profitability of saving registers around calls.
1078
1079 Disable this because the saving instructions generated by
1080 caller-save need a reload and the way it is implemented,
1081 it forbids all spill registers at that point. Enabling
1082 caller saving results in spill failure. */
1083 #define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
1084
1085 /* Implement `va_arg'. */
1086 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1087 m68hc11_va_arg (valist, type)
1088
1089 /* For an arg passed partly in registers and partly in memory,
1090 this is the number of registers used.
1091 For args passed entirely in registers or entirely in memory, zero.
1092
1093 Passing an arg partly in register and memory does not work at all.
1094 Don't do that. */
1095 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
1096
1097 /* 1 if N is a possible register number for function argument passing.
1098 D is for 16-bit values, X is for 32-bit (X+D). */
1099 #define FUNCTION_ARG_REGNO_P(N) \
1100 (((N) == HARD_D_REGNUM) || ((N) == HARD_X_REGNUM))
1101
1102 /* All return values are in the D or X+D registers:
1103 - 8 and 16-bit values are returned in D.
1104 BLKmode are passed in D as pointer.
1105 - 32-bit values are returned in X + D.
1106 The high part is passed in X and the low part in D.
1107 For GCC, the register number must be HARD_X_REGNUM. */
1108 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1109 gen_rtx (REG, TYPE_MODE (VALTYPE), \
1110 ((TYPE_MODE (VALTYPE) == BLKmode \
1111 || GET_MODE_SIZE (TYPE_MODE (VALTYPE)) <= 2) \
1112 ? HARD_D_REGNUM : HARD_X_REGNUM))
1113
1114 #define LIBCALL_VALUE(MODE) \
1115 gen_rtx (REG, MODE, \
1116 (((MODE) == BLKmode || GET_MODE_SIZE (MODE) <= 2) \
1117 ? HARD_D_REGNUM : HARD_X_REGNUM))
1118
1119 /* 1 if N is a possible register number for a function value. */
1120 #define FUNCTION_VALUE_REGNO_P(N) \
1121 ((N) == HARD_D_REGNUM || (N) == HARD_X_REGNUM)
1122
1123 /* Register in which address to store a structure value is passed to a
1124 function. */
1125 #define STRUCT_VALUE_REGNUM HARD_D_REGNUM
1126
1127 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1128 the stack pointer does not matter. The value is tested only in functions
1129 that have frame pointers. No definition is equivalent to always zero. */
1130 #define EXIT_IGNORE_STACK 0
1131
1132 \f
1133 /* Generating Code for Profiling. */
1134
1135 /* Output assembler code to FILE to increment profiler label # LABELNO
1136 for profiling a function entry. */
1137 #define FUNCTION_PROFILER(FILE, LABELNO) \
1138 fprintf (FILE, "\tldy\t.LP%d\n\tjsr mcount\n", (LABELNO))
1139 /* Length in units of the trampoline for entering a nested function. */
1140 #define TRAMPOLINE_SIZE (TARGET_M6811 ? 11 : 9)
1141
1142 /* A C statement to initialize the variable parts of a trampoline.
1143 ADDR is an RTX for the address of the trampoline; FNADDR is an
1144 RTX for the address of the nested function; STATIC_CHAIN is an
1145 RTX for the static chain value that should be passed to the
1146 function when it is called. */
1147 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1148 m68hc11_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1149
1150 \f
1151 /* `INIT_TARGET_OPTABS'
1152 Define this macro as a C statement that declares additional library
1153 routines renames existing ones. `init_optabs' calls this macro
1154 after initializing all the normal library routines.
1155
1156 Overrides the memcpy */
1157
1158 #define INIT_TARGET_OPTABS \
1159 do \
1160 { \
1161 memcpy_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__memcpy"); \
1162 memcmp_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__memcmp"); \
1163 memset_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__memset"); \
1164 } \
1165 while (0)
1166
1167 \f
1168 /* Addressing modes, and classification of registers for them. */
1169
1170 /* The 68HC12 has all the post/pre increment/decrement modes. */
1171 #define HAVE_POST_INCREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
1172 #define HAVE_PRE_INCREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
1173 #define HAVE_POST_DECREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
1174 #define HAVE_PRE_DECREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
1175
1176 /* The class value for base registers. This depends on the target:
1177 A_REGS for 68HC11 and A_OR_SP_REGS for 68HC12. The class value
1178 is stored at init time. */
1179 extern enum reg_class m68hc11_base_reg_class;
1180 #define BASE_REG_CLASS m68hc11_base_reg_class
1181
1182 /* The class value for index registers. This is NO_REGS for 68HC11. */
1183
1184 extern enum reg_class m68hc11_index_reg_class;
1185 #define INDEX_REG_CLASS m68hc11_index_reg_class
1186
1187 /* These assume that REGNO is a hard or pseudo reg number. They give nonzero
1188 only if REGNO is a hard reg of the suitable class or a pseudo reg currently
1189 allocated to a suitable hard reg. Since they use reg_renumber, they are
1190 safe only once reg_renumber has been allocated, which happens in
1191 local-alloc.c. */
1192
1193
1194 /* Internal macro, return 1 if REGNO is a valid base register. */
1195 #define REG_VALID_P(REGNO) (1) /* ? */
1196
1197 extern unsigned char m68hc11_reg_valid_for_base[FIRST_PSEUDO_REGISTER];
1198 #define REG_VALID_FOR_BASE_P(REGNO) \
1199 (REG_VALID_P (REGNO) && (REGNO) < FIRST_PSEUDO_REGISTER \
1200 && m68hc11_reg_valid_for_base[REGNO])
1201
1202 /* Internal macro, return 1 if REGNO is a valid index register. */
1203 extern unsigned char m68hc11_reg_valid_for_index[FIRST_PSEUDO_REGISTER];
1204 #define REG_VALID_FOR_INDEX_P(REGNO) \
1205 (REG_VALID_P (REGNO) >= 0 && (REGNO) < FIRST_PSEUDO_REGISTER \
1206 && m68hc11_reg_valid_for_index[REGNO])
1207
1208 /* Internal macro, the nonstrict definition for REGNO_OK_FOR_BASE_P. */
1209 #define REGNO_OK_FOR_BASE_NONSTRICT_P(REGNO) \
1210 ((REGNO) >= FIRST_PSEUDO_REGISTER \
1211 || REG_VALID_FOR_BASE_P (REGNO) \
1212 || (REGNO) == FRAME_POINTER_REGNUM \
1213 || (REGNO) == HARD_FRAME_POINTER_REGNUM \
1214 || (REGNO) == ARG_POINTER_REGNUM \
1215 || (reg_renumber && REG_VALID_FOR_BASE_P (reg_renumber[REGNO])))
1216
1217 /* Internal macro, the nonstrict definition for REGNO_OK_FOR_INDEX_P. */
1218 #define REGNO_OK_FOR_INDEX_NONSTRICT_P(REGNO) \
1219 (TARGET_M6812 \
1220 && ((REGNO) >= FIRST_PSEUDO_REGISTER \
1221 || REG_VALID_FOR_INDEX_P (REGNO) \
1222 || (reg_renumber && REG_VALID_FOR_INDEX_P (reg_renumber[REGNO]))))
1223
1224 /* Internal macro, the strict definition for REGNO_OK_FOR_BASE_P. */
1225 #define REGNO_OK_FOR_BASE_STRICT_P(REGNO) \
1226 ((REGNO) < FIRST_PSEUDO_REGISTER ? REG_VALID_FOR_BASE_P (REGNO) \
1227 : (reg_renumber && REG_VALID_FOR_BASE_P (reg_renumber[REGNO])))
1228
1229 /* Internal macro, the strict definition for REGNO_OK_FOR_INDEX_P. */
1230 #define REGNO_OK_FOR_INDEX_STRICT_P(REGNO) \
1231 (TARGET_M6812 \
1232 && ((REGNO) < FIRST_PSEUDO_REGISTER ? REG_VALID_FOR_INDEX_P (REGNO) \
1233 : (reg_renumber && REG_VALID_FOR_INDEX_P (reg_renumber[REGNO]))))
1234
1235 #define REGNO_OK_FOR_BASE_P2(REGNO,STRICT) \
1236 ((STRICT) ? (REGNO_OK_FOR_BASE_STRICT_P (REGNO)) \
1237 : (REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO)))
1238
1239 #define REGNO_OK_FOR_INDEX_P2(REGNO,STRICT) \
1240 ((STRICT) ? (REGNO_OK_FOR_INDEX_STRICT_P (REGNO)) \
1241 : (REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO)))
1242
1243 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_BASE_STRICT_P (REGNO)
1244 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_INDEX_STRICT_P (REGNO)
1245
1246 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_STRICT_P (REGNO (X))
1247 #define REG_OK_FOR_BASE_NONSTRICT_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (X))
1248 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_STRICT_P (REGNO (X))
1249 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (X))
1250
1251 /* see PUSH_POP_ADDRESS_P() below for an explanation of this. */
1252 #define IS_STACK_PUSH(operand) \
1253 ((GET_CODE (operand) == MEM) \
1254 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC) \
1255 && (SP_REG_P (XEXP (XEXP (operand, 0), 0))))
1256
1257 #define IS_STACK_POP(operand) \
1258 ((GET_CODE (operand) == MEM) \
1259 && (GET_CODE (XEXP (operand, 0)) == POST_INC) \
1260 && (SP_REG_P (XEXP (XEXP (operand, 0), 0))))
1261
1262 /* 1 if X is an rtx for a constant that is a valid address. */
1263 #define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
1264
1265 /* Maximum number of registers that can appear in a valid memory address */
1266 #define MAX_REGS_PER_ADDRESS 2
1267
1268 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1269 valid memory address for an instruction. The MODE argument is the
1270 machine mode for the MEM expression that wants to use this address. */
1271
1272 /*--------------------------------------------------------------
1273 Valid addresses are either direct or indirect (MEM) versions
1274 of the following forms:
1275 constant N
1276 register ,X
1277 indexed N,X
1278 --------------------------------------------------------------*/
1279
1280 /* The range of index that is allowed by indirect addressing. */
1281
1282 #define VALID_MIN_OFFSET m68hc11_min_offset
1283 #define VALID_MAX_OFFSET m68hc11_max_offset
1284
1285 /* The offset values which are allowed by the n,x and n,y addressing modes.
1286 Take into account the size of the mode because we may have to add
1287 a mode offset to access the lowest part of the data.
1288 (For example, for an SImode, the last valid offset is 252.) */
1289 #define VALID_CONSTANT_OFFSET_P(X,MODE) \
1290 (((GET_CODE (X) == CONST_INT) && \
1291 ((INTVAL (X) >= VALID_MIN_OFFSET) \
1292 && ((INTVAL (X) <= VALID_MAX_OFFSET \
1293 - (HOST_WIDE_INT) (GET_MODE_SIZE (MODE) + 1))))) \
1294 || (TARGET_M6812 \
1295 && ((GET_CODE (X) == SYMBOL_REF) \
1296 || GET_CODE (X) == LABEL_REF \
1297 || GET_CODE (X) == CONST)))
1298
1299 /* This is included to allow stack push/pop operations. Special hacks in the
1300 md and m6811.c files exist to support this. */
1301 #define PUSH_POP_ADDRESS_P(X) \
1302 (((GET_CODE (X) == PRE_DEC) || (GET_CODE (X) == POST_INC)) \
1303 && SP_REG_P (XEXP (X, 0)))
1304
1305 /* Go to ADDR if X is a valid address. */
1306 #ifndef REG_OK_STRICT
1307 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1308 { \
1309 if (m68hc11_go_if_legitimate_address ((X), (MODE), 0)) goto ADDR; \
1310 }
1311 #else
1312 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1313 { \
1314 if (m68hc11_go_if_legitimate_address ((X), (MODE), 1)) goto ADDR; \
1315 }
1316 #endif
1317
1318 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its
1319 validity for a certain class. We have two alternate definitions for each
1320 of them. The usual definition accepts all pseudo regs; the other rejects
1321 them unless they have been allocated suitable hard regs. The symbol
1322 REG_OK_STRICT causes the latter definition to be used.
1323
1324 Most source files want to accept pseudo regs in the hope that they will
1325 get allocated to the class that the insn wants them to be in. Source files
1326 for reload pass need to be strict. After reload, it makes no difference,
1327 since pseudo regs have been eliminated by then. */
1328
1329 #ifndef REG_OK_STRICT
1330 /* Nonzero if X is a hard reg that can be used as a base reg. */
1331 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1332
1333 /* Nonzero if X is a hard reg that can be used as an index. */
1334 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1335 #else
1336 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1337 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1338 #endif
1339
1340
1341 /* Try machine-dependent ways of modifying an illegitimate address
1342 to be legitimate. If we find one, return the new, valid address.
1343 This macro is used in only one place: `memory_address' in explow.c.
1344
1345 OLDX is the address as it was before break_out_memory_refs was called.
1346 In some cases it is useful to look at this to decide what needs to be done.
1347
1348 MODE and WIN are passed so that this macro can use
1349 GO_IF_LEGITIMATE_ADDRESS.
1350
1351 It is always safe for this macro to do nothing.
1352 It exists to recognize opportunities to optimize the output. */
1353
1354 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1355 { rtx operand = (X); \
1356 if (m68hc11_legitimize_address (&operand, (OLDX), (MODE))) \
1357 { \
1358 (X) = operand; \
1359 GO_IF_LEGITIMATE_ADDRESS (MODE,X,WIN); \
1360 } \
1361 }
1362
1363 /* Go to LABEL if ADDR (a legitimate address expression)
1364 has an effect that depends on the machine mode it is used for. */
1365 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1366 { \
1367 if (GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC \
1368 || GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC) \
1369 goto LABEL; \
1370 }
1371
1372 /* Nonzero if the constant value X is a legitimate general operand.
1373 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1374
1375 #define LEGITIMATE_CONSTANT_P(X) 1
1376
1377 \f
1378 /* Tell final.c how to eliminate redundant test instructions. */
1379
1380 #define NOTICE_UPDATE_CC(EXP, INSN) \
1381 m68hc11_notice_update_cc ((EXP), (INSN))
1382
1383 /* Compute the cost of computing a constant rtl expression RTX whose rtx-code
1384 is CODE. The body of this macro is a portion of a switch statement. If
1385 the code is computed here, return it with a return statement. Otherwise,
1386 break from the switch.
1387
1388 Constants are cheap. Moving them in registers must be avoided
1389 because most instructions do not handle two register operands. */
1390 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1391 case CONST_INT: \
1392 /* Logical and arithmetic operations with a constant */ \
1393 /* operand are better because they are not supported */ \
1394 /* with two registers. */ \
1395 /* 'clr' is slow */ \
1396 if ((OUTER_CODE) == SET && (RTX) == const0_rtx) \
1397 /* After reload, the reload_cse pass checks the cost */ \
1398 /* to change a SET into a PLUS. Make const0 cheap. */ \
1399 return 1 - reload_completed; \
1400 else \
1401 return 0; \
1402 case CONST: \
1403 case LABEL_REF: \
1404 case SYMBOL_REF: \
1405 if ((OUTER_CODE) == SET) \
1406 return 1 - reload_completed; \
1407 return 0; \
1408 case CONST_DOUBLE: \
1409 return 0;
1410
1411 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1412 case ROTATE: \
1413 case ROTATERT: \
1414 case ASHIFT: \
1415 case LSHIFTRT: \
1416 case ASHIFTRT: \
1417 case MINUS: \
1418 case PLUS: \
1419 case AND: \
1420 case XOR: \
1421 case IOR: \
1422 case UDIV: \
1423 case DIV: \
1424 case MOD: \
1425 case MULT: \
1426 case NEG: \
1427 case SIGN_EXTEND: \
1428 case NOT: \
1429 case COMPARE: \
1430 case ZERO_EXTEND: \
1431 case IF_THEN_ELSE: \
1432 return m68hc11_rtx_costs (X, CODE, OUTER_CODE);
1433
1434 /* An expression giving the cost of an addressing mode that contains
1435 ADDRESS. If not defined, the cost is computed from the ADDRESS
1436 expression and the `CONST_COSTS' values. */
1437
1438 #define ADDRESS_COST(RTX) m68hc11_address_cost (RTX)
1439
1440 /* Move costs between classes of registers */
1441 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1442 (m68hc11_register_move_cost (MODE, CLASS1, CLASS2))
1443
1444 /* Move cost between register and memory.
1445 - Move to a 16-bit register is reasonable,
1446 - Move to a soft register can be expensive. */
1447 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1448 m68hc11_memory_move_cost ((MODE),(CLASS),(IN))
1449
1450 /* A C expression for the cost of a branch instruction. A value of 1
1451 is the default; other values are interpreted relative to that.
1452
1453 Pretend branches are cheap because GCC generates sub-optimal code
1454 for the default value. */
1455 #define BRANCH_COST 0
1456
1457 /* Nonzero if access to memory by bytes is slow and undesirable. */
1458 #define SLOW_BYTE_ACCESS 0
1459
1460 /* It is as good to call a constant function address as to call an address
1461 kept in a register. */
1462 #define NO_FUNCTION_CSE
1463
1464 /* Try a machine-dependent way of reloading an illegitimate address
1465 operand. If we find one, push the reload and jump to WIN. This
1466 macro is used in only one place: `find_reloads_address' in reload.c.
1467
1468 For M68HC11, we handle large displacements of a base register
1469 by splitting the addend accors an addhi3 insn.
1470
1471 For M68HC12, the 64K offset range is available.
1472 */
1473
1474 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1475 do { \
1476 /* We must recognize output that we have already generated ourselves. */ \
1477 if (GET_CODE (X) == PLUS \
1478 && GET_CODE (XEXP (X, 0)) == PLUS \
1479 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1480 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1481 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1482 { \
1483 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
1484 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1485 OPNUM, TYPE); \
1486 goto WIN; \
1487 } \
1488 if (GET_CODE (X) == PLUS \
1489 && GET_CODE (XEXP (X, 0)) == REG \
1490 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1491 && !VALID_CONSTANT_OFFSET_P (XEXP (X, 1), MODE)) \
1492 { \
1493 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1494 HOST_WIDE_INT low, high; \
1495 high = val & (~0x0FF); \
1496 low = val & 0x00FF; \
1497 if (low >= 256-15) { high += 16; low -= 16; } \
1498 /* Reload the high part into a base reg; leave the low part \
1499 in the mem directly. */ \
1500 \
1501 X = gen_rtx_PLUS (Pmode, \
1502 gen_rtx_PLUS (Pmode, XEXP (X, 0), \
1503 GEN_INT (high)), \
1504 GEN_INT (low)); \
1505 \
1506 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
1507 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1508 OPNUM, TYPE); \
1509 goto WIN; \
1510 } \
1511 } while (0)
1512
1513 \f
1514 /* Defining the Output Assembler Language. */
1515
1516 /* A default list of other sections which we might be "in" at any given
1517 time. For targets that use additional sections (e.g. .tdesc) you
1518 should override this definition in the target-specific file which
1519 includes this file. */
1520
1521 /* Output before read-only data. */
1522 #define TEXT_SECTION_ASM_OP ("\t.sect\t.text")
1523
1524 /* Output before writable data. */
1525 #define DATA_SECTION_ASM_OP ("\t.sect\t.data")
1526
1527 /* Output before uninitialized data. */
1528 #define BSS_SECTION_ASM_OP ("\t.sect\t.bss")
1529
1530 /* Define the pseudo-ops used to switch to the .ctors and .dtors sections.
1531
1532 Same as config/elfos.h but don't mark these section SHF_WRITE since
1533 there is no shared library problem. */
1534 #undef CTORS_SECTION_ASM_OP
1535 #define CTORS_SECTION_ASM_OP "\t.section\t.ctors,\"a\""
1536
1537 #undef DTORS_SECTION_ASM_OP
1538 #define DTORS_SECTION_ASM_OP "\t.section\t.dtors,\"a\""
1539
1540 #define TARGET_ASM_CONSTRUCTOR m68hc11_asm_out_constructor
1541 #define TARGET_ASM_DESTRUCTOR m68hc11_asm_out_destructor
1542
1543 /* This is how to begin an assembly language file. Most svr4 assemblers want
1544 at least a .file directive to come first, and some want to see a .version
1545 directive come right after that. Here we just establish a default
1546 which generates only the .file directive. If you need a .version
1547 directive for any specific target, you should override this definition
1548 in the target-specific file which includes this one. */
1549
1550 #undef ASM_FILE_START
1551 #define ASM_FILE_START(FILE) \
1552 m68hc11_asm_file_start ((FILE), main_input_filename)
1553
1554 /* Comment character */
1555 #define ASM_COMMENT_START ";"
1556
1557 /* Output to assembler file text saying following lines
1558 may contain character constants, extra white space, comments, etc. */
1559 #define ASM_APP_ON "; Begin inline assembler code\n#APP\n"
1560
1561 /* Output to assembler file text saying following lines
1562 no longer contain unusual constructs. */
1563 #define ASM_APP_OFF "; End of inline assembler code\n#NO_APP\n"
1564
1565 /* Write the extra assembler code needed to declare a function properly.
1566 Some svr4 assemblers need to also have something extra said about the
1567 function's return value. We allow for that here.
1568
1569 For 68HC12 we mark functions that return with 'rtc'. The linker
1570 will ensure that a 'call' is really made (instead of 'jsr').
1571 The debugger needs this information to correctly compute the stack frame.
1572
1573 For 68HC11/68HC12 we also mark interrupt handlers for gdb to
1574 compute the correct stack frame. */
1575
1576 #undef ASM_DECLARE_FUNCTION_NAME
1577 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1578 do \
1579 { \
1580 fprintf (FILE, "%s", TYPE_ASM_OP); \
1581 assemble_name (FILE, NAME); \
1582 putc (',', FILE); \
1583 fprintf (FILE, TYPE_OPERAND_FMT, "function"); \
1584 putc ('\n', FILE); \
1585 \
1586 if (TARGET_M6812 && current_function_far) \
1587 { \
1588 fprintf (FILE, "\t.far\t"); \
1589 assemble_name (FILE, NAME); \
1590 putc ('\n', FILE); \
1591 } \
1592 else if (current_function_interrupt \
1593 || current_function_trap) \
1594 { \
1595 fprintf (FILE, "\t.interrupt\t"); \
1596 assemble_name (FILE, NAME); \
1597 putc ('\b', FILE); \
1598 } \
1599 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
1600 ASM_OUTPUT_LABEL(FILE, NAME); \
1601 } \
1602 while (0)
1603
1604 /* Output #ident as a .ident. */
1605
1606 /* output external reference */
1607 #define ASM_OUTPUT_EXTERNAL(FILE,DECL,NAME) \
1608 {fputs ("\t; extern\t", FILE); \
1609 assemble_name (FILE, NAME); \
1610 fputs ("\n", FILE);}
1611
1612
1613
1614 /* Store in OUTPUT a string (made with alloca) containing
1615 an assembler-name for a local static variable named NAME.
1616 LABELNO is an integer which is different for each call. */
1617
1618 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1619 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1620 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1621
1622 /* How to refer to registers in assembler output. This sequence is indexed
1623 by compiler's hard-register-number (see above). */
1624 #define REGISTER_NAMES \
1625 { "x", "d", "y", "sp", "pc", "a", "b", "ccr", "z", \
1626 "*_.frame", "*_.tmp", "*_.z", "*_.xy", "*fake clobber", \
1627 SOFT_REG_NAMES, "*sframe", "*ap"}
1628
1629 /* Print an instruction operand X on file FILE. CODE is the code from the
1630 %-spec for printing this operand. If `%z3' was used to print operand
1631 3, then CODE is 'z'. */
1632
1633 #define PRINT_OPERAND(FILE, X, CODE) \
1634 print_operand (FILE, X, CODE)
1635
1636 /* Print a memory operand whose address is X, on file FILE. */
1637 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1638 print_operand_address (FILE, ADDR)
1639
1640 /* This is how to output an insn to push/pop a register on the stack.
1641 It need not be very fast code.
1642
1643 Don't define because we don't know how to handle that with
1644 the STATIC_CHAIN_REGNUM (soft register). Saving the static
1645 chain must be made inside FUNCTION_PROFILER. */
1646
1647 #undef ASM_OUTPUT_REG_PUSH
1648 #undef ASM_OUTPUT_REG_POP
1649
1650 /* This is how to output an element of a case-vector that is relative. */
1651
1652 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1653 fprintf (FILE, "\t%s\tL%d-L%d\n", integer_asm_op (2, TRUE), VALUE, REL)
1654
1655 /* This is how to output an element of a case-vector that is absolute. */
1656 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1657 fprintf (FILE, "\t%s\t.L%d\n", integer_asm_op (2, TRUE), VALUE)
1658
1659 /* This is how to output an assembler line that says to advance the
1660 location counter to a multiple of 2**LOG bytes. */
1661 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1662 do { \
1663 if ((LOG) > 1) \
1664 fprintf ((FILE), "%s\n", ALIGN_ASM_OP); \
1665 } while (0)
1666
1667 \f
1668 /* Assembler Commands for Exception Regions. */
1669
1670 /* Default values provided by GCC should be ok. Assumming that DWARF-2
1671 frame unwind info is ok for this platform. */
1672
1673 #undef PREFERRED_DEBUGGING_TYPE
1674 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1675
1676 /* The prefix for local labels. You should be able to define this as
1677 an empty string, or any arbitrary string (such as ".", ".L%", etc)
1678 without having to make any other changes to account for the specific
1679 definition. Note it is a string literal, not interpreted by printf
1680 and friends. */
1681 #define LOCAL_LABEL_PREFIX "."
1682
1683 /* The prefix for immediate operands. */
1684 #define IMMEDIATE_PREFIX "#"
1685 #define GLOBAL_ASM_OP "\t.globl\t"
1686
1687 \f
1688 /* Miscellaneous Parameters. */
1689
1690 /* Define the codes that are matched by predicates in m68hc11.c. */
1691 #define PREDICATE_CODES \
1692 {"stack_register_operand", {SUBREG, REG}}, \
1693 {"d_register_operand", {SUBREG, REG}}, \
1694 {"hard_addr_reg_operand", {SUBREG, REG}}, \
1695 {"hard_reg_operand", {SUBREG, REG}}, \
1696 {"m68hc11_logical_operator", {AND, IOR, XOR}}, \
1697 {"m68hc11_arith_operator", {AND, IOR, XOR, PLUS, MINUS, \
1698 ASHIFT, ASHIFTRT, LSHIFTRT, \
1699 ROTATE, ROTATERT }}, \
1700 {"m68hc11_non_shift_operator", {AND, IOR, XOR, PLUS, MINUS}}, \
1701 {"m68hc11_unary_operator", {NEG, NOT, SIGN_EXTEND, ZERO_EXTEND}}, \
1702 {"non_push_operand", {SUBREG, REG, MEM}}, \
1703 {"reg_or_some_mem_operand", {SUBREG, REG, MEM}}, \
1704 {"tst_operand", {SUBREG, REG, MEM}}, \
1705 {"cmp_operand", {SUBREG, REG, MEM, SYMBOL_REF, LABEL_REF, \
1706 CONST_INT, CONST_DOUBLE}},
1707
1708 /* Specify the machine mode that this machine uses
1709 for the index in the tablejump instruction. */
1710 #define CASE_VECTOR_MODE Pmode
1711
1712 /* This flag, if defined, says the same insns that convert to a signed fixnum
1713 also convert validly to an unsigned one. */
1714 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1715
1716 /* Max number of bytes we can move from memory to memory in one
1717 reasonably fast instruction. */
1718 #define MOVE_MAX 2
1719
1720 /* MOVE_RATIO is the number of move instructions that is better than a
1721 block move. Make this small on 6811, since the code size grows very
1722 large with each move. */
1723 #define MOVE_RATIO 3
1724
1725 /* Define if shifts truncate the shift count which implies one can omit
1726 a sign-extension or zero-extension of a shift count. */
1727 #define SHIFT_COUNT_TRUNCATED 1
1728
1729 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1730 is done just by pretending it is already truncated. */
1731 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1732
1733 /* Specify the machine mode that pointers have. After generation of rtl, the
1734 compiler makes no further distinction between pointers and any other
1735 objects of this machine mode. */
1736 #define Pmode HImode
1737
1738 /* A function address in a call instruction is a byte address (for indexing
1739 purposes) so give the MEM rtx a byte's mode. */
1740 #define FUNCTION_MODE QImode
1741
1742 /* Allow $ in identifiers */
1743 #define DOLLARS_IN_IDENTIFIERS 1
1744
1745 /* Machine-dependent reorg pass.
1746 Specific optimizations are defined here:
1747 - this pass changes the Z register into either X or Y
1748 (it preserves X/Y previous values in a memory slot in page0).
1749
1750 When this pass is finished, the global variable
1751 'z_replacement_completed' is set to 2. */
1752 #define MACHINE_DEPENDENT_REORG(X) m68hc11_reorg (X)
1753
1754 extern int debug_m6811;
1755 extern int z_replacement_completed;
1756 extern int current_function_interrupt;
1757 extern int current_function_trap;
1758 extern int current_function_far;