m68hc11.h (ASM_SPEC): Handle -m68hcs12...
[gcc.git] / gcc / config / m68hc11 / m68hc11.h
1 /* Definitions of target machine for GNU compiler.
2 Motorola 68HC11 and 68HC12.
3 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA.
22
23 Note:
24 A first 68HC11 port was made by Otto Lind (otto@coactive.com)
25 on gcc 2.6.3. I have used it as a starting point for this port.
26 However, this new port is a complete re-write. Its internal
27 design is completely different. The generated code is not
28 compatible with the gcc 2.6.3 port.
29
30 The gcc 2.6.3 port is available at:
31
32 ftp.unina.it/pub/electronics/motorola/68hc11/gcc/gcc-6811-fsf.tar.gz
33
34 */
35
36 /*****************************************************************************
37 **
38 ** Controlling the Compilation Driver, `gcc'
39 **
40 *****************************************************************************/
41
42 #undef ENDFILE_SPEC
43
44 /* Compile and assemble for a 68hc11 unless there is a -m68hc12 option. */
45 #ifndef ASM_SPEC
46 #define ASM_SPEC \
47 "%{m68hc12:-m68hc12}" \
48 "%{m68hcs12:-m68hcs12}" \
49 "%{!m68hc12:%{!m68hcs12:-m68hc11}} " \
50 "%{mshort:-mshort}%{!mshort:-mlong} " \
51 "%{fshort-double:-mshort-double}%{!fshort-double:-mlong-double}"
52 #endif
53
54 /* We need to tell the linker the target elf format. Just pass an
55 emulation option. This can be overridden by -Wl option of gcc. */
56 #ifndef LINK_SPEC
57 #define LINK_SPEC \
58 "%{m68hc12:-m m68hc12elf}" \
59 "%{m68hcs12:-m m68hc12elf}" \
60 "%{!m68hc12:%{!m68hcs12:-m m68hc11elf}} " \
61 "%{!mnorelax:%{!m68hc12:%{!m68hcs12:-relax}}}"
62 #endif
63
64 #ifndef LIB_SPEC
65 #define LIB_SPEC ""
66 #endif
67
68 #ifndef CC1_SPEC
69 #define CC1_SPEC ""
70 #endif
71
72 #ifndef CPP_SPEC
73 #define CPP_SPEC \
74 "%{mshort:-D__HAVE_SHORT_INT__ -D__INT__=16}\
75 %{!mshort:-D__INT__=32}\
76 %{m68hc12:-Dmc6812 -DMC6812 -Dmc68hc12}\
77 %{m68hcs12:-Dmc6812 -DMC6812 -Dmc68hcs12}\
78 %{!m68hc12:%{!m68hcs12:-Dmc6811 -DMC6811 -Dmc68hc11}}\
79 %{fshort-double:-D__HAVE_SHORT_DOUBLE__}\
80 %{mlong-calls:-D__USE_RTC__}"
81 #endif
82
83 #undef STARTFILE_SPEC
84 #define STARTFILE_SPEC "crt1%O%s"
85
86 /* Names to predefine in the preprocessor for this target machine. */
87 #define CPP_PREDEFINES "-Dmc68hc1x"
88
89 /* As an embedded target, we have no libc. */
90 #define inhibit_libc
91
92 /* Forward type declaration for prototypes definitions.
93 rtx_ptr is equivalent to rtx. Can't use the same name. */
94 struct rtx_def;
95 typedef struct rtx_def *rtx_ptr;
96
97 union tree_node;
98 typedef union tree_node *tree_ptr;
99
100 /* We can't declare enum machine_mode forward nor include 'machmode.h' here.
101 Prototypes defined here will use an int instead. It's better than no
102 prototype at all. */
103 typedef int enum_machine_mode;
104
105 /*****************************************************************************
106 **
107 ** Run-time Target Specification
108 **
109 *****************************************************************************/
110
111 /* Run-time compilation parameters selecting different hardware subsets. */
112
113 extern int target_flags;
114
115 extern short *reg_renumber; /* def in local_alloc.c */
116
117 /* Macros used in the machine description to test the flags. */
118
119 /* 6811 specific options
120 *
121 * For 68HC12, the auto inc/dec mode is disabled by default. The reason
122 * is that for most programs, the reload pass will fail because it needs
123 * more registers to save the value of the indexed register after the
124 * memory access. For simple programs, you can enable this
125 * with -mauto-incdec.
126 */
127
128 #define MASK_SHORT 0002 /* Compile with 16-bit `int' */
129 #define MASK_AUTO_INC_DEC 0004
130 #define MASK_M6811 0010
131 #define MASK_M68S12 0040
132 #define MASK_NO_DIRECT_MODE 0100
133 #define MASK_MIN_MAX 0200
134 #define MASK_LONG_CALLS 0400
135
136 #define TARGET_OP_TIME (optimize && optimize_size == 0)
137 #define TARGET_SHORT (target_flags & MASK_SHORT)
138 #define TARGET_M6811 (target_flags & MASK_M6811)
139 #define TARGET_M6812 (target_flags & MASK_M6812)
140 #define TARGET_M68S12 (target_flags & MASK_M68S12)
141 #define TARGET_AUTO_INC_DEC (target_flags & MASK_AUTO_INC_DEC)
142 #define TARGET_MIN_MAX (target_flags & MASK_MIN_MAX)
143 #define TARGET_NO_DIRECT_MODE (target_flags & MASK_NO_DIRECT_MODE)
144 #define TARGET_RELAX (TARGET_NO_DIRECT_MODE)
145 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
146
147 /* Default target_flags if no switches specified. */
148 #ifndef TARGET_DEFAULT
149 # define TARGET_DEFAULT (MASK_M6811)
150 #endif
151
152 /* Define this macro as a C expression for the initializer of an
153 array of string to tell the driver program which options are
154 defaults for this target and thus do not need to be handled
155 specially when using `MULTILIB_OPTIONS'. */
156 #ifndef MULTILIB_DEFAULTS
157 # if TARGET_DEFAULT & MASK_M6811
158 # define MULTILIB_DEFAULTS { "m68hc11" }
159 # else
160 # define MULTILIB_DEFAULTS { "m68hc12" }
161 # endif
162 #endif
163
164 /* Macro to define tables used to set the flags. This is a list in braces of
165 pairs in braces, each pair being { "NAME", VALUE } where VALUE is the bits
166 to set or minus the bits to clear. An empty string NAME is used to
167 identify the default VALUE. */
168
169 #define TARGET_SWITCHES \
170 { { "short", MASK_SHORT, \
171 N_("Compile with 16-bit integer mode")}, \
172 { "noshort", - MASK_SHORT, \
173 N_("Compile with 32-bit integer mode")}, \
174 { "auto-incdec", MASK_AUTO_INC_DEC, \
175 N_("Auto pre/post decrement increment allowed")}, \
176 { "noauto-incdec", - MASK_AUTO_INC_DEC, \
177 N_("Auto pre/post decrement increment not allowed")}, \
178 { "inmax", MASK_MIN_MAX, \
179 N_("Min/max instructions allowed")}, \
180 { "nominmax", MASK_MIN_MAX, \
181 N_("Min/max instructions not allowed")}, \
182 { "long-calls", MASK_LONG_CALLS, \
183 N_("Use call and rtc for function calls and returns")}, \
184 { "nolong-calls", - MASK_LONG_CALLS, \
185 N_("Use jsr and rts for function calls and returns")}, \
186 { "relax", MASK_NO_DIRECT_MODE, \
187 N_("Do not use direct addressing mode for soft registers")},\
188 { "68hc11", MASK_M6811, \
189 N_("Compile for a 68HC11")}, \
190 { "68hc12", MASK_M6812, \
191 N_("Compile for a 68HC12")}, \
192 { "68hcs12", MASK_M6812 | MASK_M68S12, \
193 N_("Compile for a 68HCS12")}, \
194 { "6811", MASK_M6811, \
195 N_("Compile for a 68HC11")}, \
196 { "6812", MASK_M6812, \
197 N_("Compile for a 68HC12")}, \
198 { "68S12", MASK_M6812 | MASK_M68S12, \
199 N_("Compile for a 68HCS12")}, \
200 { "", TARGET_DEFAULT, 0 }}
201
202 /* This macro is similar to `TARGET_SWITCHES' but defines names of
203 command options that have values. Its definition is an
204 initializer with a subgrouping for each command option.
205
206 Each subgrouping contains a string constant, that defines the
207 fixed part of the option name, and the address of a variable. The
208 variable, type `char *', is set to the variable part of the given
209 option if the fixed part matches. The actual option name is made
210 by appending `-m' to the specified name. */
211 #define TARGET_OPTIONS \
212 { { "reg-alloc=", &m68hc11_reg_alloc_order, \
213 N_("Specify the register allocation order")}, \
214 { "soft-reg-count=", &m68hc11_soft_reg_count, \
215 N_("Indicate the number of soft registers available") }, \
216 SUBTARGET_OPTIONS \
217 }
218
219 /* These are meant to be redefined in the host dependent files */
220 #define SUBTARGET_SWITCHES
221 #define SUBTARGET_OPTIONS
222
223 extern const char *m68hc11_regparm_string;
224 extern const char *m68hc11_reg_alloc_order;
225 extern const char *m68hc11_soft_reg_count;
226
227 #ifndef TARGET_M68HC12
228 # define TARGET_M68HC11 1
229 #endif
230
231 /* Print subsidiary information on the compiler version in use. */
232 #define TARGET_VERSION fprintf (stderr, " (MC68HC11/MC68HC12/MC68HCS12)")
233
234 /* Sometimes certain combinations of command options do not make
235 sense on a particular target machine. You can define a macro
236 `OVERRIDE_OPTIONS' to take account of this. This macro, if
237 defined, is executed once just after all the command options have
238 been parsed.
239
240 Don't use this macro to turn on various extra optimizations for
241 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
242
243 #define OVERRIDE_OPTIONS m68hc11_override_options ();
244
245 \f
246 /* Define cost parameters for a given processor variant. */
247 struct processor_costs {
248 const int add; /* cost of an add instruction */
249 const int logical; /* cost of a logical instruction */
250 const int shift_var;
251 const int shiftQI_const[8];
252 const int shiftHI_const[16];
253 const int multQI;
254 const int multHI;
255 const int multSI;
256 const int divQI;
257 const int divHI;
258 const int divSI;
259 };
260
261 /* Costs for the current processor. */
262 extern const struct processor_costs *m68hc11_cost;
263 \f
264
265 /* target machine storage layout */
266
267 /* Define this if most significant byte of a word is the lowest numbered. */
268 #define BYTES_BIG_ENDIAN 1
269
270 /* Define this if most significant bit is lowest numbered
271 in instructions that operate on numbered bit-fields. */
272 #define BITS_BIG_ENDIAN 0
273
274 /* Define this if most significant word of a multiword number is numbered. */
275 #define WORDS_BIG_ENDIAN 1
276
277 /* Width of a word, in units (bytes). */
278 #define UNITS_PER_WORD 2
279
280 /* Definition of size_t. This is really an unsigned short as the
281 68hc11 only handles a 64K address space. */
282 #define SIZE_TYPE "short unsigned int"
283
284 /* A C expression for a string describing the name of the data type
285 to use for the result of subtracting two pointers. The typedef
286 name `ptrdiff_t' is defined using the contents of the string.
287 The 68hc11 only has a 64K address space. */
288 #define PTRDIFF_TYPE "short int"
289
290 /* Allocation boundary (bits) for storing pointers in memory. */
291 #define POINTER_BOUNDARY 8
292
293 /* Normal alignment required for function parameters on the stack, in bits.
294 This can't be less than BITS_PER_WORD */
295 #define PARM_BOUNDARY (BITS_PER_WORD)
296
297 /* Boundary (bits) on which stack pointer should be aligned. */
298 #define STACK_BOUNDARY 8
299
300 /* Allocation boundary (bits) for the code of a function. */
301 #define FUNCTION_BOUNDARY 8
302
303 #define BIGGEST_ALIGNMENT 8
304
305 /* Alignment of field after `int : 0' in a structure. */
306 #define EMPTY_FIELD_BOUNDARY 8
307
308 /* Every structure's size must be a multiple of this. */
309 #define STRUCTURE_SIZE_BOUNDARY 8
310
311 /* Define this if instructions will fail to work if given data not
312 on the nominal alignment. If instructions will merely go slower
313 in that case, do not define this macro. */
314 #define STRICT_ALIGNMENT 0
315
316 /* An integer expression for the size in bits of the largest integer
317 machine mode that should actually be used. All integer machine modes of
318 this size or smaller can be used for structures and unions with the
319 appropriate sizes. */
320 #define MAX_FIXED_MODE_SIZE 64
321 \f
322 /* target machine storage layout */
323
324 /* Size (bits) of the type "int" on target machine
325 (If undefined, default is BITS_PER_WORD). */
326 #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
327
328 /* Size (bits) of the type "short" on target machine */
329 #define SHORT_TYPE_SIZE 16
330
331 /* Size (bits) of the type "long" on target machine */
332 #define LONG_TYPE_SIZE 32
333
334 /* Size (bits) of the type "long long" on target machine */
335 #define LONG_LONG_TYPE_SIZE 64
336
337 /* A C expression for the size in bits of the type `float' on the
338 target machine. If you don't define this, the default is one word.
339 Don't use default: a word is only 16. */
340 #define FLOAT_TYPE_SIZE 32
341
342 /* A C expression for the size in bits of the type double on the target
343 machine. If you don't define this, the default is two words.
344 Be IEEE compliant. */
345 #define DOUBLE_TYPE_SIZE 64
346
347 #define LONG_DOUBLE_TYPE_SIZE 64
348
349 /* Define this as 1 if `char' should by default be signed; else as 0. */
350 #define DEFAULT_SIGNED_CHAR 0
351
352 /* Define these to avoid dependence on meaning of `int'.
353 Note that WCHAR_TYPE_SIZE is used in cexp.y,
354 where TARGET_SHORT is not available. */
355 #define WCHAR_TYPE "short int"
356 #define WCHAR_TYPE_SIZE 16
357 \f
358
359 /* Standard register usage. */
360
361 #define HARD_REG_SIZE (UNITS_PER_WORD)
362
363 /* Assign names to real MC68HC11 registers.
364 A and B registers are not really used (A+B = D)
365 X register is first so that GCC allocates X+D for 32-bit integers and
366 the lowpart of that integer will be D. Having the lower part in D is
367 better for 32<->16bit conversions and for many arithmetic operations. */
368 #define HARD_X_REGNUM 0
369 #define HARD_D_REGNUM 1
370 #define HARD_Y_REGNUM 2
371 #define HARD_SP_REGNUM 3
372 #define HARD_PC_REGNUM 4
373 #define HARD_A_REGNUM 5
374 #define HARD_B_REGNUM 6
375 #define HARD_CCR_REGNUM 7
376
377 /* The Z register does not really exist in the 68HC11. This a fake register
378 for GCC. It is treated exactly as an index register (X or Y). It is only
379 in the A_REGS class, which is the BASE_REG_CLASS for GCC. Defining this
380 register helps the reload pass of GCC. Otherwise, the reload often aborts
381 with register spill failures.
382
383 The Z register is replaced by either X or Y during the machine specific
384 reorg (m68hc11_reorg). It is saved in the SOFT_Z_REGNUM soft-register
385 when this is necessary.
386
387 It's possible to tell GCC not to use this register with -ffixed-z. */
388 #define HARD_Z_REGNUM 8
389
390 /* The frame pointer is a soft-register. It's treated as such by GCC:
391 it is not and must not be part of the BASE_REG_CLASS. */
392 #define DEFAULT_HARD_FP_REGNUM (9)
393 #define HARD_FP_REGNUM (9)
394 #define HARD_AP_REGNUM (HARD_FP_REGNUM)
395
396 /* Temporary soft-register used in some cases when an operand came
397 up into a bad register class (D, X, Y, SP) and gcc failed to
398 recognize this. This register is never allocated by GCC. */
399 #define SOFT_TMP_REGNUM 10
400
401 /* The soft-register which is used to save the Z register
402 (see Z register replacement notes in m68hc11.c). */
403 #define SOFT_Z_REGNUM 11
404
405 /* The soft-register which is used to save either X or Y. */
406 #define SOFT_SAVED_XY_REGNUM 12
407
408 /* A fake clobber register for 68HC12 patterns. */
409 #define FAKE_CLOBBER_REGNUM (13)
410
411 /* Define 32 soft-registers of 16-bit each. By default,
412 only 12 of them are enabled and can be used by GCC. The
413 -msoft-reg-count=<n> option allows to control the number of valid
414 soft-registers. GCC can put 32-bit values in them
415 by allocating consecutive registers. The first 3 soft-registers
416 are never allocated by GCC. They are used in case the insn template needs
417 a temporary register, or for the Z register replacement. */
418
419 #define MAX_SOFT_REG_COUNT (32)
420 #define SOFT_REG_FIXED 0, 0, 0, 0, 0, 0, 0, 0, \
421 0, 0, 0, 0, 1, 1, 1, 1, \
422 1, 1, 1, 1, 1, 1, 1, 1, \
423 1, 1, 1, 1, 1, 1, 1, 1
424 #define SOFT_REG_USED 0, 0, 0, 0, 0, 0, 0, 0, \
425 0, 0, 0, 0, 1, 1, 1, 1, \
426 1, 1, 1, 1, 1, 1, 1, 1, \
427 1, 1, 1, 1, 1, 1, 1, 1
428 #define SOFT_REG_ORDER \
429 SOFT_REG_FIRST, SOFT_REG_FIRST+1,SOFT_REG_FIRST+2,SOFT_REG_FIRST+3,\
430 SOFT_REG_FIRST+4, SOFT_REG_FIRST+5,SOFT_REG_FIRST+6,SOFT_REG_FIRST+7,\
431 SOFT_REG_FIRST+8, SOFT_REG_FIRST+9,SOFT_REG_FIRST+10,SOFT_REG_FIRST+11,\
432 SOFT_REG_FIRST+12, SOFT_REG_FIRST+13,SOFT_REG_FIRST+14,SOFT_REG_FIRST+15,\
433 SOFT_REG_FIRST+16, SOFT_REG_FIRST+17,SOFT_REG_FIRST+18,SOFT_REG_FIRST+19,\
434 SOFT_REG_FIRST+20, SOFT_REG_FIRST+21,SOFT_REG_FIRST+22,SOFT_REG_FIRST+23,\
435 SOFT_REG_FIRST+24, SOFT_REG_FIRST+25,SOFT_REG_FIRST+26,SOFT_REG_FIRST+27,\
436 SOFT_REG_FIRST+28, SOFT_REG_FIRST+29,SOFT_REG_FIRST+30,SOFT_REG_FIRST+31
437
438 #define SOFT_REG_NAMES \
439 "*_.d1", "*_.d2", "*_.d3", "*_.d4", \
440 "*_.d5", "*_.d6", "*_.d7", "*_.d8", \
441 "*_.d9", "*_.d10", "*_.d11", "*_.d12", \
442 "*_.d13", "*_.d14", "*_.d15", "*_.d16", \
443 "*_.d17", "*_.d18", "*_.d19", "*_.d20", \
444 "*_.d21", "*_.d22", "*_.d23", "*_.d24", \
445 "*_.d25", "*_.d26", "*_.d27", "*_.d28", \
446 "*_.d29", "*_.d30", "*_.d31", "*_.d32"
447
448 /* First available soft-register for GCC. */
449 #define SOFT_REG_FIRST (SOFT_SAVED_XY_REGNUM+2)
450
451 /* Last available soft-register for GCC. */
452 #define SOFT_REG_LAST (SOFT_REG_FIRST+MAX_SOFT_REG_COUNT)
453 #define SOFT_FP_REGNUM (SOFT_REG_LAST)
454 #define SOFT_AP_REGNUM (SOFT_FP_REGNUM+1)
455
456 /* Number of actual hardware registers. The hardware registers are assigned
457 numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER.
458 All registers that the compiler knows about must be given numbers, even
459 those that are not normally considered general registers. */
460 #define FIRST_PSEUDO_REGISTER (SOFT_REG_LAST+2)
461
462 /* 1 for registers that have pervasive standard uses and are not available
463 for the register allocator. */
464 #define FIXED_REGISTERS \
465 {0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,1, 1, SOFT_REG_FIXED, 1, 1}
466 /* X, D, Y, SP,PC,A, B, CCR, Z, FP,ZTMP,ZR,XYR, FK, D1 - D32, SOFT-FP, AP */
467
468 /* 1 for registers not available across function calls. For our pseudo
469 registers, all are available. */
470 #define CALL_USED_REGISTERS \
471 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, SOFT_REG_USED, 1, 1}
472 /* X, D, Y, SP,PC,A, B, CCR, Z, FP, ZTMP,ZR,XYR, D1 - 32, SOFT-FP, AP */
473
474
475 /* Define this macro to change register usage conditional on target flags.
476
477 The soft-registers are disabled or enabled according to the
478 -msoft-reg-count=<n> option. */
479
480
481 #define CONDITIONAL_REGISTER_USAGE (m68hc11_conditional_register_usage ())
482
483 /* List the order in which to allocate registers. Each register must be
484 listed once, even those in FIXED_REGISTERS. */
485 #define REG_ALLOC_ORDER \
486 { HARD_D_REGNUM, HARD_X_REGNUM, HARD_Y_REGNUM, \
487 SOFT_REG_ORDER, HARD_Z_REGNUM, HARD_PC_REGNUM, HARD_A_REGNUM, \
488 HARD_B_REGNUM, HARD_CCR_REGNUM, HARD_FP_REGNUM, SOFT_FP_REGNUM, \
489 HARD_SP_REGNUM, SOFT_TMP_REGNUM, SOFT_Z_REGNUM, SOFT_SAVED_XY_REGNUM, \
490 SOFT_AP_REGNUM, FAKE_CLOBBER_REGNUM }
491
492 /* A C expression for the number of consecutive hard registers,
493 starting at register number REGNO, required to hold a value of
494 mode MODE. */
495 #define HARD_REGNO_NREGS(REGNO, MODE) \
496 ((Q_REGNO_P (REGNO)) ? (GET_MODE_SIZE (MODE)) : \
497 ((GET_MODE_SIZE (MODE) + HARD_REG_SIZE - 1) / HARD_REG_SIZE))
498
499 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
500 - 8 bit values are stored anywhere (except the SP register).
501 - 16 bit values can be stored in any register whose mode is 16
502 - 32 bit values can be stored in D, X registers or in a soft register
503 (except the last one because we need 2 soft registers)
504 - Values whose size is > 32 bit are not stored in real hard
505 registers. They may be stored in soft registers if there are
506 enough of them. */
507 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
508 hard_regno_mode_ok (REGNO,MODE)
509
510 /* Value is 1 if it is a good idea to tie two pseudo registers when one has
511 mode MODE1 and one has mode MODE2. If HARD_REGNO_MODE_OK could produce
512 different values for MODE1 and MODE2, for any hard reg, then this must be
513 0 for correct output.
514
515 All modes are tieable except QImode. */
516 #define MODES_TIEABLE_P(MODE1, MODE2) \
517 (((MODE1) == (MODE2)) \
518 || ((MODE1) != QImode && (MODE2) != QImode))
519 \f
520
521 /* Define the classes of registers for register constraints in the
522 machine description. Also define ranges of constants.
523
524 One of the classes must always be named ALL_REGS and include all hard regs.
525 If there is more than one class, another class must be named NO_REGS
526 and contain no registers.
527
528 The name GENERAL_REGS must be the name of a class (or an alias for
529 another name such as ALL_REGS). This is the class of registers
530 that is allowed by "g" or "r" in a register constraint.
531 Also, registers outside this class are allocated only when
532 instructions express preferences for them.
533
534 The classes must be numbered in nondecreasing order; that is,
535 a larger-numbered class must never be contained completely
536 in a smaller-numbered class.
537
538 For any two classes, it is very desirable that there be another
539 class that represents their union. */
540
541 /* The M68hc11 has so fiew registers that it's not possible for GCC to
542 do any register allocation without breaking. We extend the processor
543 registers by having soft registers. These registers are treated as
544 hard registers by GCC but they are located in memory and accessed by page0
545 accesses (IND mode). */
546 enum reg_class
547 {
548 NO_REGS,
549 D_REGS, /* 16-bit data register */
550 X_REGS, /* 16-bit X register */
551 Y_REGS, /* 16-bit Y register */
552 SP_REGS, /* 16 bit stack pointer */
553 DA_REGS, /* 8-bit A reg. */
554 DB_REGS, /* 8-bit B reg. */
555 Z_REGS, /* 16-bit fake Z register */
556 D8_REGS, /* 8-bit A or B reg. */
557 Q_REGS, /* 8-bit (byte (QI)) data (A, B or D) */
558 D_OR_X_REGS, /* D or X register */
559 D_OR_Y_REGS, /* D or Y register */
560 D_OR_SP_REGS, /* D or SP register */
561 X_OR_Y_REGS, /* IX or Y register */
562 A_REGS, /* 16-bit address register (X, Y, Z) */
563 X_OR_SP_REGS, /* X or SP register */
564 Y_OR_SP_REGS, /* Y or SP register */
565 X_OR_Y_OR_D_REGS, /* X, Y or D */
566 A_OR_D_REGS, /* X, Y, Z or D */
567 A_OR_SP_REGS, /* X, Y, Z or SP */
568 H_REGS, /* 16-bit hard register (D, X, Y, Z, SP) */
569 S_REGS, /* 16-bit soft register */
570 D_OR_S_REGS, /* 16-bit soft register or D register */
571 X_OR_S_REGS, /* 16-bit soft register or X register */
572 Y_OR_S_REGS, /* 16-bit soft register or Y register */
573 SP_OR_S_REGS, /* 16-bit soft register or SP register */
574 D_OR_X_OR_S_REGS, /* 16-bit soft register or D or X register */
575 D_OR_Y_OR_S_REGS, /* 16-bit soft register or D or Y register */
576 D_OR_SP_OR_S_REGS, /* 16-bit soft register or D or SP register */
577 A_OR_S_REGS, /* 16-bit soft register or X, Y registers */
578 D_OR_A_OR_S_REGS, /* 16-bit soft register or D, X, Y registers */
579 TMP_REGS, /* 16 bit fake scratch register */
580 D_OR_A_OR_TMP_REGS, /* General scratch register */
581 G_REGS, /* 16-bit general register
582 (H_REGS + soft registers) */
583 ALL_REGS,
584 LIM_REG_CLASSES
585 };
586
587 /* alias GENERAL_REGS to G_REGS. */
588 #define GENERAL_REGS G_REGS
589
590 #define N_REG_CLASSES (int) LIM_REG_CLASSES
591
592 /* Give names of register classes as strings for dump file. */
593 #define REG_CLASS_NAMES \
594 { "NO_REGS", \
595 "D_REGS", \
596 "X_REGS", \
597 "Y_REGS", \
598 "SP_REGS", \
599 "DA_REGS", \
600 "DB_REGS", \
601 "D8_REGS", \
602 "Z_REGS", \
603 "Q_REGS", \
604 "D_OR_X_REGS", \
605 "D_OR_Y_REGS", \
606 "D_OR_SP_REGS", \
607 "X_OR_Y_REGS", \
608 "A_REGS", \
609 "X_OR_SP_REGS", \
610 "Y_OR_SP_REGS", \
611 "X_OR_Y_OR_D_REGS", \
612 "A_OR_D_REGS", \
613 "A_OR_SP_REGS", \
614 "H_REGS", \
615 "S_REGS", \
616 "D_OR_S_REGS", \
617 "X_OR_S_REGS", \
618 "Y_OR_S_REGS", \
619 "SP_OR_S_REGS", \
620 "D_OR_X_OR_S_REGS", \
621 "D_OR_Y_OR_S_REGS", \
622 "D_OR_SP_OR_S_REGS", \
623 "A_OR_S_REGS", \
624 "D_OR_A_OR_S_REGS", \
625 "TMP_REGS", \
626 "D_OR_A_OR_TMP_REGS", \
627 "G_REGS", \
628 "ALL_REGS" }
629
630 /* An initializer containing the contents of the register classes,
631 as integers which are bit masks. The Nth integer specifies the
632 contents of class N. The way the integer MASK is interpreted is
633 that register R is in the class if `MASK & (1 << R)' is 1. */
634
635 /*--------------------------------------------------------------
636 X 0x00000001
637 D 0x00000002
638 Y 0x00000004
639 SP 0x00000008
640 PC 0x00000010
641 A 0x00000020
642 B 0x00000040
643 CCR 0x00000080
644 Z 0x00000100
645 FRAME 0x00000200
646 ZTMP 0x00000400
647 ZREG 0x00000800
648 XYREG 0x00001000
649 FAKE 0x00002000
650 Di 0xFFFFc000, 0x03FFF
651 SFRAME 0x00000000, 0x04000
652 AP 0x00000000, 0x08000
653
654 D_OR_X_REGS represents D+X. It is used for 32-bits numbers.
655 A_REGS represents a valid base register for indexing. It represents
656 X,Y and the Z register.
657 S_REGS represents the soft-registers. This includes the hard frame
658 and soft frame registers.
659 --------------------------------------------------------------*/
660
661 #define REG_CLASS_CONTENTS \
662 /* NO_REGS */ {{ 0x00000000, 0x00000000 }, \
663 /* D_REGS */ { 0x00000002, 0x00000000 }, /* D */ \
664 /* X_REGS */ { 0x00000001, 0x00000000 }, /* X */ \
665 /* Y_REGS */ { 0x00000004, 0x00000000 }, /* Y */ \
666 /* SP_REGS */ { 0x00000008, 0x00000000 }, /* SP */ \
667 /* DA_REGS */ { 0x00000020, 0x00000000 }, /* A */ \
668 /* DB_REGS */ { 0x00000040, 0x00000000 }, /* B */ \
669 /* Z_REGS */ { 0x00000100, 0x00000000 }, /* Z */ \
670 /* D8_REGS */ { 0x00000060, 0x00000000 }, /* A B */ \
671 /* Q_REGS */ { 0x00000062, 0x00000000 }, /* A B D */ \
672 /* D_OR_X_REGS */ { 0x00000003, 0x00000000 }, /* D X */ \
673 /* D_OR_Y_REGS */ { 0x00000006, 0x00000000 }, /* D Y */ \
674 /* D_OR_SP_REGS */ { 0x0000000A, 0x00000000 }, /* D SP */ \
675 /* X_OR_Y_REGS */ { 0x00000005, 0x00000000 }, /* X Y */ \
676 /* A_REGS */ { 0x00000105, 0x00000000 }, /* X Y Z */ \
677 /* X_OR_SP_REGS */ { 0x00000009, 0x00000000 }, /* X SP */ \
678 /* Y_OR_SP_REGS */ { 0x0000000C, 0x00000000 }, /* Y SP */ \
679 /* X_OR_Y_OR_D_REGS */ { 0x00000007, 0x00000000 }, /* D X Y */ \
680 /* A_OR_D_REGS */ { 0x00000107, 0x00000000 }, /* D X Y Z */ \
681 /* A_OR_SP_REGS */ { 0x0000010D, 0x00000000 }, /* X Y SP */ \
682 /* H_REGS */ { 0x0000010F, 0x00000000 }, /* D X Y SP */ \
683 /* S_REGS */ { 0xFFFFDE00, 0x00007FFF }, /* _.D,..,FP,Z* */ \
684 /* D_OR_S_REGS */ { 0xFFFFDE02, 0x00007FFF }, /* D _.D */ \
685 /* X_OR_S_REGS */ { 0xFFFFDE01, 0x00007FFF }, /* X _.D */ \
686 /* Y_OR_S_REGS */ { 0xFFFFDE04, 0x00007FFF }, /* Y _.D */ \
687 /* SP_OR_S_REGS */ { 0xFFFFDE08, 0x00007FFF }, /* SP _.D */ \
688 /* D_OR_X_OR_S_REGS */ { 0xFFFFDE03, 0x00007FFF }, /* D X _.D */ \
689 /* D_OR_Y_OR_S_REGS */ { 0xFFFFDE06, 0x00007FFF }, /* D Y _.D */ \
690 /* D_OR_SP_OR_S_REGS */ { 0xFFFFDE0A, 0x00007FFF }, /* D SP _.D */ \
691 /* A_OR_S_REGS */ { 0xFFFFDF05, 0x00007FFF }, /* X Y _.D */ \
692 /* D_OR_A_OR_S_REGS */ { 0xFFFFDF07, 0x00007FFF }, /* D X Y _.D */ \
693 /* TMP_REGS */ { 0x00002000, 0x00000000 }, /* FAKE */ \
694 /* D_OR_A_OR_TMP_REGS*/ { 0x00002107, 0x00000000 }, /* D X Y Z Fake */ \
695 /* G_REGS */ { 0xFFFFFF1F, 0x00007FFF }, /* ? _.D D X Y */ \
696 /* ALL_REGS*/ { 0xFFFFFFFF, 0x00007FFF }}
697
698
699 /* set up a C expression whose value is a register class containing hard
700 register REGNO */
701 #define Q_REGNO_P(REGNO) ((REGNO) == HARD_A_REGNUM \
702 || (REGNO) == HARD_B_REGNUM)
703 #define Q_REG_P(X) (REG_P (X) && Q_REGNO_P (REGNO (X)))
704
705 #define D_REGNO_P(REGNO) ((REGNO) == HARD_D_REGNUM)
706 #define D_REG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
707
708 #define DB_REGNO_P(REGNO) ((REGNO) == HARD_B_REGNUM)
709 #define DB_REG_P(X) (REG_P (X) && DB_REGNO_P (REGNO (X)))
710 #define DA_REGNO_P(REGNO) ((REGNO) == HARD_A_REGNUM)
711 #define DA_REG_P(X) (REG_P (X) && DA_REGNO_P (REGNO (X)))
712
713 #define X_REGNO_P(REGNO) ((REGNO) == HARD_X_REGNUM)
714 #define X_REG_P(X) (REG_P (X) && X_REGNO_P (REGNO (X)))
715
716 #define Y_REGNO_P(REGNO) ((REGNO) == HARD_Y_REGNUM)
717 #define Y_REG_P(X) (REG_P (X) && Y_REGNO_P (REGNO (X)))
718
719 #define Z_REGNO_P(REGNO) ((REGNO) == HARD_Z_REGNUM)
720 #define Z_REG_P(X) (REG_P (X) && Z_REGNO_P (REGNO (X)))
721
722 #define SP_REGNO_P(REGNO) ((REGNO) == HARD_SP_REGNUM)
723 #define SP_REG_P(X) (REG_P (X) && SP_REGNO_P (REGNO (X)))
724
725 /* Address register. */
726 #define A_REGNO_P(REGNO) ((REGNO) == HARD_X_REGNUM \
727 || (REGNO) == HARD_Y_REGNUM \
728 || (REGNO) == HARD_Z_REGNUM)
729 #define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
730
731 /* M68hc11 hard registers. */
732 #define H_REGNO_P(REGNO) (D_REGNO_P (REGNO) || A_REGNO_P (REGNO) \
733 || SP_REGNO_P (REGNO) || Q_REGNO_P (REGNO))
734 #define H_REG_P(X) (REG_P (X) && H_REGNO_P (REGNO (X)))
735
736 #define FAKE_REGNO_P(REGNO) ((REGNO) == FAKE_CLOBBER_REGNUM)
737 #define FAKE_REG_P(X) (REG_P (X) && FAKE_REGNO_P (REGNO (X)))
738
739 /* Soft registers (or register emulation for gcc). The temporary register
740 used by insn template must be part of the S_REGS class so that it
741 matches the 'u' constraint. */
742 #define S_REGNO_P(REGNO) ((REGNO) >= SOFT_TMP_REGNUM \
743 && (REGNO) <= SOFT_REG_LAST \
744 && (REGNO) != FAKE_CLOBBER_REGNUM)
745 #define S_REG_P(X) (REG_P (X) && S_REGNO_P (REGNO (X)))
746
747 #define Z_REGNO_P(REGNO) ((REGNO) == HARD_Z_REGNUM)
748 #define Z_REG_P(X) (REG_P (X) && Z_REGNO_P (REGNO (X)))
749
750 /* General register. */
751 #define G_REGNO_P(REGNO) (H_REGNO_P (REGNO) || S_REGNO_P (REGNO) \
752 || ((REGNO) == HARD_PC_REGNUM) \
753 || ((REGNO) == HARD_FP_REGNUM) \
754 || ((REGNO) == SOFT_FP_REGNUM) \
755 || ((REGNO) == FAKE_CLOBBER_REGNUM) \
756 || ((REGNO) == SOFT_AP_REGNUM))
757
758 #define G_REG_P(X) (REG_P (X) && G_REGNO_P (REGNO (X)))
759
760 #define REGNO_REG_CLASS(REGNO) \
761 (D_REGNO_P (REGNO) ? D_REGS : \
762 (X_REGNO_P (REGNO) ? X_REGS : \
763 (Y_REGNO_P (REGNO) ? Y_REGS : \
764 (SP_REGNO_P (REGNO) ? SP_REGS : \
765 (Z_REGNO_P (REGNO) ? Z_REGS : \
766 (H_REGNO_P (REGNO) ? H_REGS : \
767 (FAKE_REGNO_P (REGNO) ? TMP_REGS : \
768 (S_REGNO_P (REGNO) ? S_REGS : \
769 (DA_REGNO_P (REGNO) ? DA_REGS: \
770 (DB_REGNO_P (REGNO) ? DB_REGS: \
771 (G_REGNO_P (REGNO) ? G_REGS : ALL_REGS)))))))))))
772
773
774 /* Get reg_class from a letter in the machine description. */
775
776 extern enum reg_class m68hc11_tmp_regs_class;
777 #define REG_CLASS_FROM_LETTER(C) \
778 ((C) == 'a' ? DA_REGS : \
779 (C) == 'A' ? A_REGS : \
780 (C) == 'b' ? DB_REGS : \
781 (C) == 'B' ? X_OR_Y_REGS : \
782 (C) == 'd' ? D_REGS : \
783 (C) == 'D' ? D_OR_X_REGS : \
784 (C) == 'q' ? Q_REGS : \
785 (C) == 'h' ? H_REGS : \
786 (C) == 't' ? TMP_REGS : \
787 (C) == 'u' ? S_REGS : \
788 (C) == 'v' ? m68hc11_tmp_regs_class : \
789 (C) == 'w' ? SP_REGS : \
790 (C) == 'x' ? X_REGS : \
791 (C) == 'y' ? Y_REGS : \
792 (C) == 'z' ? Z_REGS : NO_REGS)
793
794 #define PREFERRED_RELOAD_CLASS(X,CLASS) preferred_reload_class(X,CLASS)
795
796 #define SMALL_REGISTER_CLASSES 1
797
798 /* A C expression whose value is nonzero if pseudos that have been
799 assigned to registers of class CLASS would likely be spilled
800 because registers of CLASS are needed for spill registers.
801
802 The default value of this macro returns 1 if CLASS has exactly one
803 register and zero otherwise. On most machines, this default
804 should be used. Only define this macro to some other expression
805 if pseudo allocated by `local-alloc.c' end up in memory because
806 their hard registers were needed for spill registers. If this
807 macro returns nonzero for those classes, those pseudos will only
808 be allocated by `global.c', which knows how to reallocate the
809 pseudo to another register. If there would not be another
810 register available for reallocation, you should not change the
811 definition of this macro since the only effect of such a
812 definition would be to slow down register allocation. */
813
814 #define CLASS_LIKELY_SPILLED_P(CLASS) \
815 (((CLASS) == D_REGS) \
816 || ((CLASS) == X_REGS) \
817 || ((CLASS) == Y_REGS) \
818 || ((CLASS) == A_REGS) \
819 || ((CLASS) == SP_REGS) \
820 || ((CLASS) == D_OR_X_REGS) \
821 || ((CLASS) == D_OR_Y_REGS) \
822 || ((CLASS) == X_OR_SP_REGS) \
823 || ((CLASS) == Y_OR_SP_REGS) \
824 || ((CLASS) == D_OR_SP_REGS))
825
826 /* Return the maximum number of consecutive registers needed to represent
827 mode MODE in a register of class CLASS. */
828 #define CLASS_MAX_NREGS(CLASS, MODE) \
829 (((CLASS) == DA_REGS || (CLASS) == DB_REGS \
830 || (CLASS) == D8_REGS || (CLASS) == Q_REGS) ? GET_MODE_SIZE (MODE) \
831 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
832
833 /* The letters I, J, K, L and M in a register constraint string
834 can be used to stand for particular ranges of immediate operands.
835 This macro defines what the ranges are.
836 C is the letter, and VALUE is a constant value.
837 Return 1 if VALUE is in the range specified by C.
838
839 `K' is for 0.
840 `L' is for range -65536 to 65536
841 `M' is for values whose 16-bit low part is 0
842 'N' is for +1 or -1.
843 'O' is for 16 (for rotate using swap).
844 'P' is for range -8 to 2 (used by addhi_sp)
845
846 'I', 'J' are not used. */
847
848 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
849 ((C) == 'K' ? (VALUE) == 0 : \
850 (C) == 'L' ? ((VALUE) >= -65536 && (VALUE) <= 65535) : \
851 (C) == 'M' ? ((VALUE) & 0x0ffffL) == 0 : \
852 (C) == 'N' ? ((VALUE) == 1 || (VALUE) == -1) : \
853 (C) == 'O' ? (VALUE) == 16 : \
854 (C) == 'P' ? ((VALUE) <= 2 && (VALUE) >= -8) : 0)
855
856 /* Similar, but for floating constants, and defining letters G and H.
857
858 `G' is for 0.0. */
859 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
860 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
861 && VALUE == CONST0_RTX (GET_MODE (VALUE))) : 0)
862
863 /* 'U' represents certain kind of memory indexed operand for 68HC12.
864 and any memory operand for 68HC11. */
865 #define EXTRA_CONSTRAINT(OP, C) \
866 ((C) == 'U' ? m68hc11_small_indexed_indirect_p (OP, GET_MODE (OP)) \
867 : (C) == 'Q' ? m68hc11_symbolic_p (OP, GET_MODE (OP)) \
868 : (C) == 'R' ? m68hc11_indirect_p (OP, GET_MODE (OP)) \
869 : (C) == 'S' ? (memory_operand (OP, GET_MODE (OP)) \
870 && non_push_operand (OP, GET_MODE (OP))) : 0)
871
872 \f
873 /* Stack layout; function entry, exit and calling. */
874
875 /* Define this if pushing a word on the stack
876 makes the stack pointer a smaller address. */
877 #define STACK_GROWS_DOWNWARD
878
879 /* Define this if the nominal address of the stack frame
880 is at the high-address end of the local variables;
881 that is, each additional local variable allocated
882 goes at a more negative offset in the frame.
883
884 Don't define for 68HC11, the frame pointer is the bottom
885 of local variables. */
886 /* #define FRAME_GROWS_DOWNWARD */
887
888 /* Define this if successive arguments to a function occupy decreasing
889 addresses in the stack. */
890 /* #define ARGS_GROW_DOWNWARD */
891
892 /* Offset within stack frame to start allocating local variables at.
893 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
894 first local allocated. Otherwise, it is the offset to the BEGINNING
895 of the first local allocated. */
896 #define STARTING_FRAME_OFFSET 0
897
898 /* Offset of first parameter from the argument pointer register value. */
899
900 #define FIRST_PARM_OFFSET(FNDECL) 2
901
902 /* After the prologue, RA is at 0(AP) in the current frame. */
903 #define RETURN_ADDR_RTX(COUNT, FRAME) \
904 ((COUNT) == 0 \
905 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
906 : 0)
907
908 /* Before the prologue, the top of the frame is at 2(sp). */
909 #define INCOMING_FRAME_SP_OFFSET 2
910
911 /* Define this if functions should assume that stack space has been
912 allocated for arguments even when their values are passed in
913 registers.
914
915 The value of this macro is the size, in bytes, of the area reserved for
916 arguments passed in registers.
917
918 This space can either be allocated by the caller or be a part of the
919 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
920 says which. */
921 /* #define REG_PARM_STACK_SPACE(FNDECL) 2 */
922
923 /* Define this macro if REG_PARM_STACK_SPACE is defined but stack
924 parameters don't skip the area specified by REG_PARM_STACK_SPACE.
925 Normally, when a parameter is not passed in registers, it is placed on
926 the stack beyond the REG_PARM_STACK_SPACE area. Defining this macro
927 suppresses this behavior and causes the parameter to be passed on the
928 stack in its natural location. */
929 /* #define STACK_PARMS_IN_REG_PARM_AREA */
930
931 /* Register to use for pushing function arguments. */
932 #define STACK_POINTER_REGNUM HARD_SP_REGNUM
933
934 /* Base register for access to local variables of the function. */
935 #define FRAME_POINTER_REGNUM SOFT_FP_REGNUM
936
937 #define HARD_FRAME_POINTER_REGNUM HARD_FP_REGNUM
938
939 /* Base register for access to arguments of the function. */
940 #define ARG_POINTER_REGNUM SOFT_AP_REGNUM
941
942 /* Register in which static-chain is passed to a function. */
943 #define STATIC_CHAIN_REGNUM SOFT_Z_REGNUM
944
945 \f
946 /* Definitions for register eliminations.
947
948 This is an array of structures. Each structure initializes one pair
949 of eliminable registers. The "from" register number is given first,
950 followed by "to". Eliminations of the same "from" register are listed
951 in order of preference.
952
953 We have two registers that are eliminated on the 6811. The psuedo arg
954 pointer and pseudo frame pointer registers can always be eliminated;
955 they are replaced with either the stack or the real frame pointer. */
956
957 #define ELIMINABLE_REGS \
958 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
959 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
960 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
961 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
962
963 /* Value should be nonzero if functions must have frame pointers.
964 Zero means the frame pointer need not be set up (and parms may be
965 accessed via the stack pointer) in functions that seem suitable.
966 This is computed in `reload', in reload1.c. */
967 #define FRAME_POINTER_REQUIRED 0
968
969 /* Given FROM and TO register numbers, say whether this elimination is allowed.
970 Frame pointer elimination is automatically handled.
971
972 All other eliminations are valid. */
973
974 #define CAN_ELIMINATE(FROM, TO) \
975 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
976 ? ! frame_pointer_needed \
977 : 1)
978
979
980 /* Define the offset between two registers, one to be eliminated, and the other
981 its replacement, at the start of a routine. */
982
983 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
984 { OFFSET = m68hc11_initial_elimination_offset (FROM, TO); }
985
986 \f
987 /* Passing Function Arguments on the Stack. */
988
989 /* When a prototype says `char' or `short', really pass an `int'. */
990 /* #define PROMOTE_PROTOTYPES */
991
992 /* If we generate an insn to push BYTES bytes, this says how many the
993 stack pointer really advances by. No rounding or alignment needed
994 for MC6811. */
995 #define PUSH_ROUNDING(BYTES) (BYTES)
996
997 /* Value is 1 if returning from a function call automatically pops the
998 arguments described by the number-of-args field in the call. FUNTYPE is
999 the data type of the function (as a tree), or for a library call it is
1000 an identifier node for the subroutine name.
1001
1002 The standard MC6811 call, with arg count word, includes popping the
1003 args as part of the call template. */
1004 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1005
1006 /* Nonzero if type TYPE should be returned in memory.
1007 Blocks and data types largers than 4 bytes cannot be returned
1008 in the register (D + X = 4). */
1009 #define RETURN_IN_MEMORY(TYPE) \
1010 ((TYPE_MODE (TYPE) == BLKmode) \
1011 ? (int_size_in_bytes (TYPE) > 4) \
1012 : (GET_MODE_SIZE (TYPE_MODE (TYPE)) > 4))
1013
1014 \f
1015 /* Passing Arguments in Registers. */
1016
1017 /* Define a data type for recording info about an argument list
1018 during the scan of that argument list. This data type should
1019 hold all necessary information about the function itself
1020 and about the args processed so far, enough to enable macros
1021 such as FUNCTION_ARG to determine where the next arg should go. */
1022
1023 typedef struct m68hc11_args
1024 {
1025 int words;
1026 int nregs;
1027 } CUMULATIVE_ARGS;
1028
1029 /* A C expression that indicates when an argument must be passed by reference.
1030 If nonzero for an argument, a copy of that argument is made in memory and a
1031 pointer to the argument is passed instead of the argument itself.
1032 The pointer is passed in whatever way is appropriate for passing a pointer
1033 to that type.
1034
1035 64-bit numbers are passed by reference. */
1036 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1037 m68hc11_function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1038
1039
1040 /* If defined, a C expression which determines whether, and in which direction,
1041 to pad out an argument with extra space. The value should be of type
1042 `enum direction': either `upward' to pad above the argument,
1043 `downward' to pad below, or `none' to inhibit padding.
1044
1045 Structures are stored left shifted in their argument slot. */
1046 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1047 m68hc11_function_arg_padding ((MODE), (TYPE))
1048
1049 /* A C expression that indicates when it is the called function's
1050 responsibility to make a copy of arguments passed by invisible
1051 reference. Normally, the caller makes a copy and passes the
1052 address of the copy to the routine being called. When
1053 FUNCTION_ARG_CALLEE_COPIES is defined and is nonzero, the caller
1054 does not make a copy. Instead, it passes a pointer to the "live"
1055 value. The called function must not modify this value. If it can
1056 be determined that the value won't be modified, it need not make a
1057 copy; otherwise a copy must be made. */
1058 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
1059 ((NAMED) && FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED))
1060
1061 /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a
1062 function whose data type is FNTYPE. For a library call, FNTYPE is 0. */
1063 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1064 (m68hc11_init_cumulative_args (&CUM, FNTYPE, LIBNAME))
1065
1066 /* Update the data in CUM to advance over an argument of mode MODE and data
1067 type TYPE. (TYPE is null for libcalls where that information may not be
1068 available.) */
1069 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1070 (m68hc11_function_arg_advance (&CUM, MODE, TYPE, NAMED))
1071
1072 /* Define where to put the arguments to a function.
1073 Value is zero to push the argument on the stack,
1074 or a hard register in which to store the argument.
1075
1076 MODE is the argument's machine mode.
1077 TYPE is the data type of the argument (as a tree).
1078 This is null for libcalls where that information may
1079 not be available.
1080 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1081 the preceding args and about the function being called.
1082 NAMED is nonzero if this argument is a named parameter
1083 (otherwise it is an extra parameter matching an ellipsis). */
1084 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1085 (m68hc11_function_arg (&CUM, MODE, TYPE, NAMED))
1086
1087 /* Define the profitability of saving registers around calls.
1088
1089 Disable this because the saving instructions generated by
1090 caller-save need a reload and the way it is implemented,
1091 it forbids all spill registers at that point. Enabling
1092 caller saving results in spill failure. */
1093 #define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
1094
1095 /* Implement `va_arg'. */
1096 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1097 m68hc11_va_arg (valist, type)
1098
1099 /* For an arg passed partly in registers and partly in memory,
1100 this is the number of registers used.
1101 For args passed entirely in registers or entirely in memory, zero.
1102
1103 Passing an arg partly in register and memory does not work at all.
1104 Don't do that. */
1105 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
1106
1107 /* 1 if N is a possible register number for function argument passing.
1108 D is for 16-bit values, X is for 32-bit (X+D). */
1109 #define FUNCTION_ARG_REGNO_P(N) \
1110 (((N) == HARD_D_REGNUM) || ((N) == HARD_X_REGNUM))
1111
1112 /* All return values are in the D or X+D registers:
1113 - 8 and 16-bit values are returned in D.
1114 BLKmode are passed in D as pointer.
1115 - 32-bit values are returned in X + D.
1116 The high part is passed in X and the low part in D.
1117 For GCC, the register number must be HARD_X_REGNUM. */
1118 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1119 gen_rtx (REG, TYPE_MODE (VALTYPE), \
1120 ((TYPE_MODE (VALTYPE) == BLKmode \
1121 || GET_MODE_SIZE (TYPE_MODE (VALTYPE)) <= 2) \
1122 ? HARD_D_REGNUM : HARD_X_REGNUM))
1123
1124 #define LIBCALL_VALUE(MODE) \
1125 gen_rtx (REG, MODE, \
1126 (((MODE) == BLKmode || GET_MODE_SIZE (MODE) <= 2) \
1127 ? HARD_D_REGNUM : HARD_X_REGNUM))
1128
1129 /* 1 if N is a possible register number for a function value. */
1130 #define FUNCTION_VALUE_REGNO_P(N) \
1131 ((N) == HARD_D_REGNUM || (N) == HARD_X_REGNUM)
1132
1133 /* Register in which address to store a structure value is passed to a
1134 function. */
1135 #define STRUCT_VALUE_REGNUM HARD_D_REGNUM
1136
1137 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1138 the stack pointer does not matter. The value is tested only in functions
1139 that have frame pointers. No definition is equivalent to always zero. */
1140 #define EXIT_IGNORE_STACK 0
1141
1142 \f
1143 /* Generating Code for Profiling. */
1144
1145 /* Output assembler code to FILE to increment profiler label # LABELNO
1146 for profiling a function entry. */
1147 #define FUNCTION_PROFILER(FILE, LABELNO) \
1148 fprintf (FILE, "\tldy\t.LP%d\n\tjsr mcount\n", (LABELNO))
1149 /* Length in units of the trampoline for entering a nested function. */
1150 #define TRAMPOLINE_SIZE (TARGET_M6811 ? 11 : 9)
1151
1152 /* A C statement to initialize the variable parts of a trampoline.
1153 ADDR is an RTX for the address of the trampoline; FNADDR is an
1154 RTX for the address of the nested function; STATIC_CHAIN is an
1155 RTX for the static chain value that should be passed to the
1156 function when it is called. */
1157 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1158 m68hc11_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1159
1160 \f
1161 /* `INIT_TARGET_OPTABS'
1162 Define this macro as a C statement that declares additional library
1163 routines renames existing ones. `init_optabs' calls this macro
1164 after initializing all the normal library routines.
1165
1166 Overrides the memcpy */
1167
1168 #define INIT_TARGET_OPTABS \
1169 do \
1170 { \
1171 memcpy_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__memcpy"); \
1172 memcmp_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__memcmp"); \
1173 memset_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__memset"); \
1174 } \
1175 while (0)
1176
1177 \f
1178 /* Addressing modes, and classification of registers for them. */
1179
1180 /* The 68HC12 has all the post/pre increment/decrement modes. */
1181 #define HAVE_POST_INCREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
1182 #define HAVE_PRE_INCREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
1183 #define HAVE_POST_DECREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
1184 #define HAVE_PRE_DECREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
1185
1186 /* The class value for base registers. This depends on the target:
1187 A_REGS for 68HC11 and A_OR_SP_REGS for 68HC12. The class value
1188 is stored at init time. */
1189 extern enum reg_class m68hc11_base_reg_class;
1190 #define BASE_REG_CLASS m68hc11_base_reg_class
1191
1192 /* The class value for index registers. This is NO_REGS for 68HC11. */
1193
1194 extern enum reg_class m68hc11_index_reg_class;
1195 #define INDEX_REG_CLASS m68hc11_index_reg_class
1196
1197 /* These assume that REGNO is a hard or pseudo reg number. They give nonzero
1198 only if REGNO is a hard reg of the suitable class or a pseudo reg currently
1199 allocated to a suitable hard reg. Since they use reg_renumber, they are
1200 safe only once reg_renumber has been allocated, which happens in
1201 local-alloc.c. */
1202
1203
1204 /* Internal macro, return 1 if REGNO is a valid base register. */
1205 #define REG_VALID_P(REGNO) (1) /* ? */
1206
1207 extern unsigned char m68hc11_reg_valid_for_base[FIRST_PSEUDO_REGISTER];
1208 #define REG_VALID_FOR_BASE_P(REGNO) \
1209 (REG_VALID_P (REGNO) && (REGNO) < FIRST_PSEUDO_REGISTER \
1210 && m68hc11_reg_valid_for_base[REGNO])
1211
1212 /* Internal macro, return 1 if REGNO is a valid index register. */
1213 extern unsigned char m68hc11_reg_valid_for_index[FIRST_PSEUDO_REGISTER];
1214 #define REG_VALID_FOR_INDEX_P(REGNO) \
1215 (REG_VALID_P (REGNO) >= 0 && (REGNO) < FIRST_PSEUDO_REGISTER \
1216 && m68hc11_reg_valid_for_index[REGNO])
1217
1218 /* Internal macro, the nonstrict definition for REGNO_OK_FOR_BASE_P. */
1219 #define REGNO_OK_FOR_BASE_NONSTRICT_P(REGNO) \
1220 ((REGNO) >= FIRST_PSEUDO_REGISTER \
1221 || REG_VALID_FOR_BASE_P (REGNO) \
1222 || (REGNO) == FRAME_POINTER_REGNUM \
1223 || (REGNO) == HARD_FRAME_POINTER_REGNUM \
1224 || (REGNO) == ARG_POINTER_REGNUM \
1225 || (reg_renumber && REG_VALID_FOR_BASE_P (reg_renumber[REGNO])))
1226
1227 /* Internal macro, the nonstrict definition for REGNO_OK_FOR_INDEX_P. */
1228 #define REGNO_OK_FOR_INDEX_NONSTRICT_P(REGNO) \
1229 (TARGET_M6812 \
1230 && ((REGNO) >= FIRST_PSEUDO_REGISTER \
1231 || REG_VALID_FOR_INDEX_P (REGNO) \
1232 || (reg_renumber && REG_VALID_FOR_INDEX_P (reg_renumber[REGNO]))))
1233
1234 /* Internal macro, the strict definition for REGNO_OK_FOR_BASE_P. */
1235 #define REGNO_OK_FOR_BASE_STRICT_P(REGNO) \
1236 ((REGNO) < FIRST_PSEUDO_REGISTER ? REG_VALID_FOR_BASE_P (REGNO) \
1237 : (reg_renumber && REG_VALID_FOR_BASE_P (reg_renumber[REGNO])))
1238
1239 /* Internal macro, the strict definition for REGNO_OK_FOR_INDEX_P. */
1240 #define REGNO_OK_FOR_INDEX_STRICT_P(REGNO) \
1241 (TARGET_M6812 \
1242 && ((REGNO) < FIRST_PSEUDO_REGISTER ? REG_VALID_FOR_INDEX_P (REGNO) \
1243 : (reg_renumber && REG_VALID_FOR_INDEX_P (reg_renumber[REGNO]))))
1244
1245 #define REGNO_OK_FOR_BASE_P2(REGNO,STRICT) \
1246 ((STRICT) ? (REGNO_OK_FOR_BASE_STRICT_P (REGNO)) \
1247 : (REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO)))
1248
1249 #define REGNO_OK_FOR_INDEX_P2(REGNO,STRICT) \
1250 ((STRICT) ? (REGNO_OK_FOR_INDEX_STRICT_P (REGNO)) \
1251 : (REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO)))
1252
1253 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_BASE_STRICT_P (REGNO)
1254 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_INDEX_STRICT_P (REGNO)
1255
1256 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_STRICT_P (REGNO (X))
1257 #define REG_OK_FOR_BASE_NONSTRICT_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (X))
1258 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_STRICT_P (REGNO (X))
1259 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (X))
1260
1261 /* see PUSH_POP_ADDRESS_P() below for an explanation of this. */
1262 #define IS_STACK_PUSH(operand) \
1263 ((GET_CODE (operand) == MEM) \
1264 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC) \
1265 && (SP_REG_P (XEXP (XEXP (operand, 0), 0))))
1266
1267 #define IS_STACK_POP(operand) \
1268 ((GET_CODE (operand) == MEM) \
1269 && (GET_CODE (XEXP (operand, 0)) == POST_INC) \
1270 && (SP_REG_P (XEXP (XEXP (operand, 0), 0))))
1271
1272 /* 1 if X is an rtx for a constant that is a valid address. */
1273 #define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
1274
1275 /* Maximum number of registers that can appear in a valid memory address */
1276 #define MAX_REGS_PER_ADDRESS 2
1277
1278 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1279 valid memory address for an instruction. The MODE argument is the
1280 machine mode for the MEM expression that wants to use this address. */
1281
1282 /*--------------------------------------------------------------
1283 Valid addresses are either direct or indirect (MEM) versions
1284 of the following forms:
1285 constant N
1286 register ,X
1287 indexed N,X
1288 --------------------------------------------------------------*/
1289
1290 /* The range of index that is allowed by indirect addressing. */
1291
1292 #define VALID_MIN_OFFSET m68hc11_min_offset
1293 #define VALID_MAX_OFFSET m68hc11_max_offset
1294
1295 /* The offset values which are allowed by the n,x and n,y addressing modes.
1296 Take into account the size of the mode because we may have to add
1297 a mode offset to access the lowest part of the data.
1298 (For example, for an SImode, the last valid offset is 252.) */
1299 #define VALID_CONSTANT_OFFSET_P(X,MODE) \
1300 (((GET_CODE (X) == CONST_INT) && \
1301 ((INTVAL (X) >= VALID_MIN_OFFSET) \
1302 && ((INTVAL (X) <= VALID_MAX_OFFSET \
1303 - (HOST_WIDE_INT) (GET_MODE_SIZE (MODE) + 1))))) \
1304 || (TARGET_M6812 \
1305 && ((GET_CODE (X) == SYMBOL_REF) \
1306 || GET_CODE (X) == LABEL_REF \
1307 || GET_CODE (X) == CONST)))
1308
1309 /* This is included to allow stack push/pop operations. Special hacks in the
1310 md and m6811.c files exist to support this. */
1311 #define PUSH_POP_ADDRESS_P(X) \
1312 (((GET_CODE (X) == PRE_DEC) || (GET_CODE (X) == POST_INC)) \
1313 && SP_REG_P (XEXP (X, 0)))
1314
1315 /* Go to ADDR if X is a valid address. */
1316 #ifndef REG_OK_STRICT
1317 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1318 { \
1319 if (m68hc11_go_if_legitimate_address ((X), (MODE), 0)) goto ADDR; \
1320 }
1321 #else
1322 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1323 { \
1324 if (m68hc11_go_if_legitimate_address ((X), (MODE), 1)) goto ADDR; \
1325 }
1326 #endif
1327
1328 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its
1329 validity for a certain class. We have two alternate definitions for each
1330 of them. The usual definition accepts all pseudo regs; the other rejects
1331 them unless they have been allocated suitable hard regs. The symbol
1332 REG_OK_STRICT causes the latter definition to be used.
1333
1334 Most source files want to accept pseudo regs in the hope that they will
1335 get allocated to the class that the insn wants them to be in. Source files
1336 for reload pass need to be strict. After reload, it makes no difference,
1337 since pseudo regs have been eliminated by then. */
1338
1339 #ifndef REG_OK_STRICT
1340 /* Nonzero if X is a hard reg that can be used as a base reg. */
1341 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1342
1343 /* Nonzero if X is a hard reg that can be used as an index. */
1344 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1345 #else
1346 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1347 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1348 #endif
1349
1350
1351 /* Try machine-dependent ways of modifying an illegitimate address
1352 to be legitimate. If we find one, return the new, valid address.
1353 This macro is used in only one place: `memory_address' in explow.c.
1354
1355 OLDX is the address as it was before break_out_memory_refs was called.
1356 In some cases it is useful to look at this to decide what needs to be done.
1357
1358 MODE and WIN are passed so that this macro can use
1359 GO_IF_LEGITIMATE_ADDRESS.
1360
1361 It is always safe for this macro to do nothing.
1362 It exists to recognize opportunities to optimize the output. */
1363
1364 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1365 { rtx operand = (X); \
1366 if (m68hc11_legitimize_address (&operand, (OLDX), (MODE))) \
1367 { \
1368 (X) = operand; \
1369 GO_IF_LEGITIMATE_ADDRESS (MODE,X,WIN); \
1370 } \
1371 }
1372
1373 /* Go to LABEL if ADDR (a legitimate address expression)
1374 has an effect that depends on the machine mode it is used for. */
1375 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1376 { \
1377 if (GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC \
1378 || GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC) \
1379 goto LABEL; \
1380 }
1381
1382 /* Nonzero if the constant value X is a legitimate general operand.
1383 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1384
1385 #define LEGITIMATE_CONSTANT_P(X) 1
1386
1387 \f
1388 /* Tell final.c how to eliminate redundant test instructions. */
1389
1390 #define NOTICE_UPDATE_CC(EXP, INSN) \
1391 m68hc11_notice_update_cc ((EXP), (INSN))
1392
1393 /* Compute the cost of computing a constant rtl expression RTX whose rtx-code
1394 is CODE. The body of this macro is a portion of a switch statement. If
1395 the code is computed here, return it with a return statement. Otherwise,
1396 break from the switch.
1397
1398 Constants are cheap. Moving them in registers must be avoided
1399 because most instructions do not handle two register operands. */
1400 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1401 case CONST_INT: \
1402 /* Logical and arithmetic operations with a constant */ \
1403 /* operand are better because they are not supported */ \
1404 /* with two registers. */ \
1405 /* 'clr' is slow */ \
1406 if ((OUTER_CODE) == SET && (RTX) == const0_rtx) \
1407 /* After reload, the reload_cse pass checks the cost */ \
1408 /* to change a SET into a PLUS. Make const0 cheap. */ \
1409 return 1 - reload_completed; \
1410 else \
1411 return 0; \
1412 case CONST: \
1413 case LABEL_REF: \
1414 case SYMBOL_REF: \
1415 if ((OUTER_CODE) == SET) \
1416 return 1 - reload_completed; \
1417 return 0; \
1418 case CONST_DOUBLE: \
1419 return 0;
1420
1421 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1422 case ROTATE: \
1423 case ROTATERT: \
1424 case ASHIFT: \
1425 case LSHIFTRT: \
1426 case ASHIFTRT: \
1427 case MINUS: \
1428 case PLUS: \
1429 case AND: \
1430 case XOR: \
1431 case IOR: \
1432 case UDIV: \
1433 case DIV: \
1434 case MOD: \
1435 case MULT: \
1436 case NEG: \
1437 case SIGN_EXTEND: \
1438 case NOT: \
1439 case COMPARE: \
1440 case ZERO_EXTEND: \
1441 case IF_THEN_ELSE: \
1442 return m68hc11_rtx_costs (X, CODE, OUTER_CODE);
1443
1444 /* An expression giving the cost of an addressing mode that contains
1445 ADDRESS. If not defined, the cost is computed from the ADDRESS
1446 expression and the `CONST_COSTS' values. */
1447
1448 #define ADDRESS_COST(RTX) m68hc11_address_cost (RTX)
1449
1450 /* Move costs between classes of registers */
1451 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1452 (m68hc11_register_move_cost (MODE, CLASS1, CLASS2))
1453
1454 /* Move cost between register and memory.
1455 - Move to a 16-bit register is reasonable,
1456 - Move to a soft register can be expensive. */
1457 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1458 m68hc11_memory_move_cost ((MODE),(CLASS),(IN))
1459
1460 /* A C expression for the cost of a branch instruction. A value of 1
1461 is the default; other values are interpreted relative to that.
1462
1463 Pretend branches are cheap because GCC generates sub-optimal code
1464 for the default value. */
1465 #define BRANCH_COST 0
1466
1467 /* Nonzero if access to memory by bytes is slow and undesirable. */
1468 #define SLOW_BYTE_ACCESS 0
1469
1470 /* It is as good to call a constant function address as to call an address
1471 kept in a register. */
1472 #define NO_FUNCTION_CSE
1473
1474 /* Try a machine-dependent way of reloading an illegitimate address
1475 operand. If we find one, push the reload and jump to WIN. This
1476 macro is used in only one place: `find_reloads_address' in reload.c.
1477
1478 For M68HC11, we handle large displacements of a base register
1479 by splitting the addend accors an addhi3 insn.
1480
1481 For M68HC12, the 64K offset range is available.
1482 */
1483
1484 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1485 do { \
1486 /* We must recognize output that we have already generated ourselves. */ \
1487 if (GET_CODE (X) == PLUS \
1488 && GET_CODE (XEXP (X, 0)) == PLUS \
1489 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1490 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1491 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1492 { \
1493 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
1494 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1495 OPNUM, TYPE); \
1496 goto WIN; \
1497 } \
1498 if (GET_CODE (X) == PLUS \
1499 && GET_CODE (XEXP (X, 0)) == REG \
1500 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1501 && !VALID_CONSTANT_OFFSET_P (XEXP (X, 1), MODE)) \
1502 { \
1503 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1504 HOST_WIDE_INT low, high; \
1505 high = val & (~0x0FF); \
1506 low = val & 0x00FF; \
1507 if (low >= 256-15) { high += 16; low -= 16; } \
1508 /* Reload the high part into a base reg; leave the low part \
1509 in the mem directly. */ \
1510 \
1511 X = gen_rtx_PLUS (Pmode, \
1512 gen_rtx_PLUS (Pmode, XEXP (X, 0), \
1513 GEN_INT (high)), \
1514 GEN_INT (low)); \
1515 \
1516 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
1517 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1518 OPNUM, TYPE); \
1519 goto WIN; \
1520 } \
1521 } while (0)
1522
1523 \f
1524 /* Defining the Output Assembler Language. */
1525
1526 /* A default list of other sections which we might be "in" at any given
1527 time. For targets that use additional sections (e.g. .tdesc) you
1528 should override this definition in the target-specific file which
1529 includes this file. */
1530
1531 /* Output before read-only data. */
1532 #define TEXT_SECTION_ASM_OP ("\t.sect\t.text")
1533
1534 /* Output before writable data. */
1535 #define DATA_SECTION_ASM_OP ("\t.sect\t.data")
1536
1537 /* Output before uninitialized data. */
1538 #define BSS_SECTION_ASM_OP ("\t.sect\t.bss")
1539
1540 /* Define the pseudo-ops used to switch to the .ctors and .dtors sections.
1541
1542 Same as config/elfos.h but don't mark these section SHF_WRITE since
1543 there is no shared library problem. */
1544 #undef CTORS_SECTION_ASM_OP
1545 #define CTORS_SECTION_ASM_OP "\t.section\t.ctors,\"a\""
1546
1547 #undef DTORS_SECTION_ASM_OP
1548 #define DTORS_SECTION_ASM_OP "\t.section\t.dtors,\"a\""
1549
1550 #define TARGET_ASM_CONSTRUCTOR m68hc11_asm_out_constructor
1551 #define TARGET_ASM_DESTRUCTOR m68hc11_asm_out_destructor
1552
1553 /* This is how to begin an assembly language file. Most svr4 assemblers want
1554 at least a .file directive to come first, and some want to see a .version
1555 directive come right after that. Here we just establish a default
1556 which generates only the .file directive. If you need a .version
1557 directive for any specific target, you should override this definition
1558 in the target-specific file which includes this one. */
1559
1560 #undef ASM_FILE_START
1561 #define ASM_FILE_START(FILE) \
1562 m68hc11_asm_file_start ((FILE), main_input_filename)
1563
1564 /* Comment character */
1565 #define ASM_COMMENT_START ";"
1566
1567 /* Output to assembler file text saying following lines
1568 may contain character constants, extra white space, comments, etc. */
1569 #define ASM_APP_ON "; Begin inline assembler code\n#APP\n"
1570
1571 /* Output to assembler file text saying following lines
1572 no longer contain unusual constructs. */
1573 #define ASM_APP_OFF "; End of inline assembler code\n#NO_APP\n"
1574
1575 /* Write the extra assembler code needed to declare a function properly.
1576 Some svr4 assemblers need to also have something extra said about the
1577 function's return value. We allow for that here.
1578
1579 For 68HC12 we mark functions that return with 'rtc'. The linker
1580 will ensure that a 'call' is really made (instead of 'jsr').
1581 The debugger needs this information to correctly compute the stack frame.
1582
1583 For 68HC11/68HC12 we also mark interrupt handlers for gdb to
1584 compute the correct stack frame. */
1585
1586 #undef ASM_DECLARE_FUNCTION_NAME
1587 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1588 do \
1589 { \
1590 fprintf (FILE, "%s", TYPE_ASM_OP); \
1591 assemble_name (FILE, NAME); \
1592 putc (',', FILE); \
1593 fprintf (FILE, TYPE_OPERAND_FMT, "function"); \
1594 putc ('\n', FILE); \
1595 \
1596 if (TARGET_M6812 && current_function_far) \
1597 { \
1598 fprintf (FILE, "\t.far\t"); \
1599 assemble_name (FILE, NAME); \
1600 putc ('\n', FILE); \
1601 } \
1602 else if (current_function_interrupt \
1603 || current_function_trap) \
1604 { \
1605 fprintf (FILE, "\t.interrupt\t"); \
1606 assemble_name (FILE, NAME); \
1607 putc ('\b', FILE); \
1608 } \
1609 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
1610 ASM_OUTPUT_LABEL(FILE, NAME); \
1611 } \
1612 while (0)
1613
1614 /* Output #ident as a .ident. */
1615
1616 /* output external reference */
1617 #define ASM_OUTPUT_EXTERNAL(FILE,DECL,NAME) \
1618 {fputs ("\t; extern\t", FILE); \
1619 assemble_name (FILE, NAME); \
1620 fputs ("\n", FILE);}
1621
1622 /* How to refer to registers in assembler output. This sequence is indexed
1623 by compiler's hard-register-number (see above). */
1624 #define REGISTER_NAMES \
1625 { "x", "d", "y", "sp", "pc", "a", "b", "ccr", "z", \
1626 "*_.frame", "*_.tmp", "*_.z", "*_.xy", "*fake clobber", \
1627 SOFT_REG_NAMES, "*sframe", "*ap"}
1628
1629 /* Print an instruction operand X on file FILE. CODE is the code from the
1630 %-spec for printing this operand. If `%z3' was used to print operand
1631 3, then CODE is 'z'. */
1632
1633 #define PRINT_OPERAND(FILE, X, CODE) \
1634 print_operand (FILE, X, CODE)
1635
1636 /* Print a memory operand whose address is X, on file FILE. */
1637 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1638 print_operand_address (FILE, ADDR)
1639
1640 /* This is how to output an insn to push/pop a register on the stack.
1641 It need not be very fast code.
1642
1643 Don't define because we don't know how to handle that with
1644 the STATIC_CHAIN_REGNUM (soft register). Saving the static
1645 chain must be made inside FUNCTION_PROFILER. */
1646
1647 #undef ASM_OUTPUT_REG_PUSH
1648 #undef ASM_OUTPUT_REG_POP
1649
1650 /* This is how to output an element of a case-vector that is relative. */
1651
1652 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1653 fprintf (FILE, "\t%s\tL%d-L%d\n", integer_asm_op (2, TRUE), VALUE, REL)
1654
1655 /* This is how to output an element of a case-vector that is absolute. */
1656 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1657 fprintf (FILE, "\t%s\t.L%d\n", integer_asm_op (2, TRUE), VALUE)
1658
1659 /* This is how to output an assembler line that says to advance the
1660 location counter to a multiple of 2**LOG bytes. */
1661 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1662 do { \
1663 if ((LOG) > 1) \
1664 fprintf ((FILE), "%s\n", ALIGN_ASM_OP); \
1665 } while (0)
1666
1667 \f
1668 /* Assembler Commands for Exception Regions. */
1669
1670 /* Default values provided by GCC should be ok. Assumming that DWARF-2
1671 frame unwind info is ok for this platform. */
1672
1673 #undef PREFERRED_DEBUGGING_TYPE
1674 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1675
1676 /* The prefix for local labels. You should be able to define this as
1677 an empty string, or any arbitrary string (such as ".", ".L%", etc)
1678 without having to make any other changes to account for the specific
1679 definition. Note it is a string literal, not interpreted by printf
1680 and friends. */
1681 #define LOCAL_LABEL_PREFIX "."
1682
1683 /* The prefix for immediate operands. */
1684 #define IMMEDIATE_PREFIX "#"
1685 #define GLOBAL_ASM_OP "\t.globl\t"
1686
1687 \f
1688 /* Miscellaneous Parameters. */
1689
1690 /* Define the codes that are matched by predicates in m68hc11.c. */
1691 #define PREDICATE_CODES \
1692 {"stack_register_operand", {SUBREG, REG}}, \
1693 {"d_register_operand", {SUBREG, REG}}, \
1694 {"hard_addr_reg_operand", {SUBREG, REG}}, \
1695 {"hard_reg_operand", {SUBREG, REG}}, \
1696 {"m68hc11_logical_operator", {AND, IOR, XOR}}, \
1697 {"m68hc11_arith_operator", {AND, IOR, XOR, PLUS, MINUS, \
1698 ASHIFT, ASHIFTRT, LSHIFTRT, \
1699 ROTATE, ROTATERT }}, \
1700 {"m68hc11_non_shift_operator", {AND, IOR, XOR, PLUS, MINUS}}, \
1701 {"m68hc11_unary_operator", {NEG, NOT, SIGN_EXTEND, ZERO_EXTEND}}, \
1702 {"non_push_operand", {SUBREG, REG, MEM}}, \
1703 {"reg_or_some_mem_operand", {SUBREG, REG, MEM}}, \
1704 {"tst_operand", {SUBREG, REG, MEM}}, \
1705 {"cmp_operand", {SUBREG, REG, MEM, SYMBOL_REF, LABEL_REF, \
1706 CONST_INT, CONST_DOUBLE}},
1707
1708 /* Specify the machine mode that this machine uses
1709 for the index in the tablejump instruction. */
1710 #define CASE_VECTOR_MODE Pmode
1711
1712 /* This flag, if defined, says the same insns that convert to a signed fixnum
1713 also convert validly to an unsigned one. */
1714 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1715
1716 /* Max number of bytes we can move from memory to memory in one
1717 reasonably fast instruction. */
1718 #define MOVE_MAX 2
1719
1720 /* MOVE_RATIO is the number of move instructions that is better than a
1721 block move. Make this small on 6811, since the code size grows very
1722 large with each move. */
1723 #define MOVE_RATIO 3
1724
1725 /* Define if shifts truncate the shift count which implies one can omit
1726 a sign-extension or zero-extension of a shift count. */
1727 #define SHIFT_COUNT_TRUNCATED 1
1728
1729 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1730 is done just by pretending it is already truncated. */
1731 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1732
1733 /* Specify the machine mode that pointers have. After generation of rtl, the
1734 compiler makes no further distinction between pointers and any other
1735 objects of this machine mode. */
1736 #define Pmode HImode
1737
1738 /* A function address in a call instruction is a byte address (for indexing
1739 purposes) so give the MEM rtx a byte's mode. */
1740 #define FUNCTION_MODE QImode
1741
1742 /* Allow $ in identifiers */
1743 #define DOLLARS_IN_IDENTIFIERS 1
1744
1745 /* Machine-dependent reorg pass.
1746 Specific optimizations are defined here:
1747 - this pass changes the Z register into either X or Y
1748 (it preserves X/Y previous values in a memory slot in page0).
1749
1750 When this pass is finished, the global variable
1751 'z_replacement_completed' is set to 2. */
1752 #define MACHINE_DEPENDENT_REORG(X) m68hc11_reorg (X)
1753
1754 extern int debug_m6811;
1755 extern int z_replacement_completed;
1756 extern int current_function_interrupt;
1757 extern int current_function_trap;
1758 extern int current_function_far;