m68k-protos.h (use_return_insn): Change return type from int to bool.
[gcc.git] / gcc / config / m68k / m68k.c
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "function.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "real.h"
32 #include "insn-config.h"
33 #include "conditions.h"
34 #include "output.h"
35 #include "insn-attr.h"
36 #include "recog.h"
37 #include "toplev.h"
38 #include "expr.h"
39 #include "reload.h"
40 #include "tm_p.h"
41 #include "target.h"
42 #include "target-def.h"
43 #include "debug.h"
44 #include "flags.h"
45
46 /* Structure describing stack frame layout. */
47 struct m68k_frame
48 {
49 /* Stack pointer to frame pointer offset. */
50 HOST_WIDE_INT offset;
51
52 /* Offset of FPU registers. */
53 HOST_WIDE_INT foffset;
54
55 /* Frame size in bytes (rounded up). */
56 HOST_WIDE_INT size;
57
58 /* Data and address register. */
59 int reg_no;
60 unsigned int reg_mask;
61 unsigned int reg_rev_mask;
62
63 /* FPU registers. */
64 int fpu_no;
65 unsigned int fpu_mask;
66 unsigned int fpu_rev_mask;
67
68 /* Offsets relative to ARG_POINTER. */
69 HOST_WIDE_INT frame_pointer_offset;
70 HOST_WIDE_INT stack_pointer_offset;
71
72 /* Function which the above information refers to. */
73 int funcdef_no;
74 };
75
76 /* Current frame information calculated by m68k_compute_frame_layout(). */
77 static struct m68k_frame current_frame;
78
79 /* This flag is used to communicate between movhi and ASM_OUTPUT_CASE_END,
80 if SGS_SWITCH_TABLE. */
81 int switch_table_difference_label_flag;
82
83 static rtx find_addr_reg (rtx);
84 static const char *singlemove_string (rtx *);
85 static void m68k_output_function_prologue (FILE *, HOST_WIDE_INT);
86 static void m68k_output_function_epilogue (FILE *, HOST_WIDE_INT);
87 #ifdef M68K_TARGET_COFF
88 static void m68k_coff_asm_named_section (const char *, unsigned int);
89 #endif /* M68K_TARGET_COFF */
90 #ifdef HPUX_ASM
91 static void m68k_hp320_internal_label (FILE *, const char *, unsigned long);
92 static void m68k_hp320_file_start (void);
93 #endif
94 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
95 HOST_WIDE_INT, tree);
96 static bool m68k_interrupt_function_p (tree func);
97 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
98 tree args, int flags,
99 bool *no_add_attrs);
100 static void m68k_compute_frame_layout (void);
101 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
102 static int const_int_cost (rtx);
103 static bool m68k_rtx_costs (rtx, int, int, int *);
104 \f
105
106 /* Alignment to use for loops and jumps */
107 /* Specify power of two alignment used for loops. */
108 const char *m68k_align_loops_string;
109 /* Specify power of two alignment used for non-loop jumps. */
110 const char *m68k_align_jumps_string;
111 /* Specify power of two alignment used for functions. */
112 const char *m68k_align_funcs_string;
113 /* Specify the identification number of the library being built */
114 const char *m68k_library_id_string;
115
116 /* Specify power of two alignment used for loops. */
117 int m68k_align_loops;
118 /* Specify power of two alignment used for non-loop jumps. */
119 int m68k_align_jumps;
120 /* Specify power of two alignment used for functions. */
121 int m68k_align_funcs;
122
123 /* Nonzero if the last compare/test insn had FP operands. The
124 sCC expanders peek at this to determine what to do for the
125 68060, which has no fsCC instructions. */
126 int m68k_last_compare_had_fp_operands;
127 \f
128 /* Initialize the GCC target structure. */
129
130 #if INT_OP_GROUP == INT_OP_DOT_WORD
131 #undef TARGET_ASM_ALIGNED_HI_OP
132 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
133 #endif
134
135 #if INT_OP_GROUP == INT_OP_NO_DOT
136 #undef TARGET_ASM_BYTE_OP
137 #define TARGET_ASM_BYTE_OP "\tbyte\t"
138 #undef TARGET_ASM_ALIGNED_HI_OP
139 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
140 #undef TARGET_ASM_ALIGNED_SI_OP
141 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
142 #endif
143
144 #if INT_OP_GROUP == INT_OP_DC
145 #undef TARGET_ASM_BYTE_OP
146 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
147 #undef TARGET_ASM_ALIGNED_HI_OP
148 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
149 #undef TARGET_ASM_ALIGNED_SI_OP
150 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
151 #endif
152
153 #undef TARGET_ASM_UNALIGNED_HI_OP
154 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
155 #undef TARGET_ASM_UNALIGNED_SI_OP
156 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
157
158 #undef TARGET_ASM_FUNCTION_PROLOGUE
159 #define TARGET_ASM_FUNCTION_PROLOGUE m68k_output_function_prologue
160 #undef TARGET_ASM_FUNCTION_EPILOGUE
161 #define TARGET_ASM_FUNCTION_EPILOGUE m68k_output_function_epilogue
162 #ifdef HPUX_ASM
163 #undef TARGET_ASM_INTERNAL_LABEL
164 #define TARGET_ASM_INTERNAL_LABEL m68k_hp320_internal_label
165 #endif
166
167 #undef TARGET_ASM_OUTPUT_MI_THUNK
168 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
169 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
170 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
171
172 #undef TARGET_ASM_FILE_START_APP_OFF
173 #define TARGET_ASM_FILE_START_APP_OFF true
174
175 #undef TARGET_RTX_COSTS
176 #define TARGET_RTX_COSTS m68k_rtx_costs
177
178 #undef TARGET_ATTRIBUTE_TABLE
179 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
180
181 static const struct attribute_spec m68k_attribute_table[] =
182 {
183 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
184 { "interrupt_handler", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
185 { NULL, 0, 0, false, false, false, NULL }
186 };
187
188 struct gcc_target targetm = TARGET_INITIALIZER;
189 \f
190 /* Sometimes certain combinations of command options do not make
191 sense on a particular target machine. You can define a macro
192 `OVERRIDE_OPTIONS' to take account of this. This macro, if
193 defined, is executed once just after all the command options have
194 been parsed.
195
196 Don't use this macro to turn on various extra optimizations for
197 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
198
199 void
200 override_options (void)
201 {
202 int def_align;
203 int i;
204
205 def_align = 1;
206
207 /* Validate -malign-loops= value, or provide default */
208 m68k_align_loops = def_align;
209 if (m68k_align_loops_string)
210 {
211 i = atoi (m68k_align_loops_string);
212 if (i < 1 || i > MAX_CODE_ALIGN)
213 error ("-malign-loops=%d is not between 1 and %d", i, MAX_CODE_ALIGN);
214 else
215 m68k_align_loops = i;
216 }
217
218 /* Library identification */
219 if (m68k_library_id_string)
220 {
221 int id;
222
223 if (! TARGET_ID_SHARED_LIBRARY)
224 error ("-mshared-library-id= specified without -mid-shared-library");
225 id = atoi (m68k_library_id_string);
226 if (id < 0 || id > MAX_LIBRARY_ID)
227 error ("-mshared-library-id=%d is not between 0 and %d", id, MAX_LIBRARY_ID);
228
229 /* From now on, m68k_library_id_string will contain the library offset. */
230 asprintf ((char **)&m68k_library_id_string, "%d", (id * -4) - 4);
231 }
232 else
233 /* If TARGET_ID_SHARED_LIBRARY is enabled, this will point to the
234 current library. */
235 m68k_library_id_string = "_current_shared_library_a5_offset_";
236
237 /* Sanity check to ensure that msep-data and mid-sahred-library are not
238 * both specified together. Doing so simply doesn't make sense.
239 */
240 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
241 error ("cannot specify both -msep-data and -mid-shared-library");
242
243 /* If we're generating code for a separate A5 relative data segment,
244 * we've got to enable -fPIC as well. This might be relaxable to
245 * -fpic but it hasn't been tested properly.
246 */
247 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
248 flag_pic = 2;
249
250 /* Validate -malign-jumps= value, or provide default */
251 m68k_align_jumps = def_align;
252 if (m68k_align_jumps_string)
253 {
254 i = atoi (m68k_align_jumps_string);
255 if (i < 1 || i > MAX_CODE_ALIGN)
256 error ("-malign-jumps=%d is not between 1 and %d", i, MAX_CODE_ALIGN);
257 else
258 m68k_align_jumps = i;
259 }
260
261 /* Validate -malign-functions= value, or provide default */
262 m68k_align_funcs = def_align;
263 if (m68k_align_funcs_string)
264 {
265 i = atoi (m68k_align_funcs_string);
266 if (i < 1 || i > MAX_CODE_ALIGN)
267 error ("-malign-functions=%d is not between 1 and %d",
268 i, MAX_CODE_ALIGN);
269 else
270 m68k_align_funcs = i;
271 }
272
273 /* -fPIC uses 32-bit pc-relative displacements, which don't exist
274 until the 68020. */
275 if (!TARGET_68020 && !TARGET_COLDFIRE && (flag_pic == 2))
276 error("-fPIC is not currently supported on the 68000 or 68010\n");
277
278 /* ??? A historic way of turning on pic, or is this intended to
279 be an embedded thing that doesn't have the same name binding
280 significance that it does on hosted ELF systems? */
281 if (TARGET_PCREL && flag_pic == 0)
282 flag_pic = 1;
283
284 /* Turn off function cse if we are doing PIC. We always want function call
285 to be done as `bsr foo@PLTPC', so it will force the assembler to create
286 the PLT entry for `foo'. Doing function cse will cause the address of
287 `foo' to be loaded into a register, which is exactly what we want to
288 avoid when we are doing PIC on svr4 m68k. */
289 if (flag_pic)
290 flag_no_function_cse = 1;
291
292 SUBTARGET_OVERRIDE_OPTIONS;
293
294 /* Tell the compiler which flavor of XFmode we're using. */
295 REAL_MODE_FORMAT (XFmode) = &ieee_extended_motorola_format;
296 }
297 \f
298 /* Return nonzero if FUNC is an interrupt function as specified by the
299 "interrupt_handler" attribute. */
300 static bool
301 m68k_interrupt_function_p(tree func)
302 {
303 tree a;
304
305 if (TREE_CODE (func) != FUNCTION_DECL)
306 return false;
307
308 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
309 return (a != NULL_TREE);
310 }
311
312 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
313 struct attribute_spec.handler. */
314 static tree
315 m68k_handle_fndecl_attribute (tree *node, tree name,
316 tree args ATTRIBUTE_UNUSED,
317 int flags ATTRIBUTE_UNUSED,
318 bool *no_add_attrs)
319 {
320 if (TREE_CODE (*node) != FUNCTION_DECL)
321 {
322 warning ("`%s' attribute only applies to functions",
323 IDENTIFIER_POINTER (name));
324 *no_add_attrs = true;
325 }
326
327 return NULL_TREE;
328 }
329
330 static void
331 m68k_compute_frame_layout (void)
332 {
333 int regno, saved;
334 unsigned int mask, rmask;
335 bool interrupt_handler = m68k_interrupt_function_p (current_function_decl);
336
337 /* Only compute the frame once per function.
338 Don't cache information until reload has been completed. */
339 if (current_frame.funcdef_no == current_function_funcdef_no
340 && reload_completed)
341 return;
342
343 current_frame.size = (get_frame_size () + 3) & -4;
344
345 mask = rmask = saved = 0;
346 for (regno = 0; regno < 16; regno++)
347 if (m68k_save_reg (regno, interrupt_handler))
348 {
349 mask |= 1 << regno;
350 rmask |= 1 << (15 - regno);
351 saved++;
352 }
353 current_frame.offset = saved * 4;
354 current_frame.reg_no = saved;
355 current_frame.reg_mask = mask;
356 current_frame.reg_rev_mask = rmask;
357
358 if (TARGET_68881 /* || TARGET_CFV4E */)
359 {
360 mask = rmask = saved = 0;
361 for (regno = 16; regno < 24; regno++)
362 if (m68k_save_reg (regno, interrupt_handler))
363 {
364 mask |= 1 << (23 - regno);
365 rmask |= 1 << (regno - 16);
366 saved++;
367 }
368 current_frame.foffset = saved * 12 /* (TARGET_CFV4E ? 8 : 12) */;
369 current_frame.offset += current_frame.foffset;
370 current_frame.fpu_no = saved;
371 current_frame.fpu_mask = mask;
372 current_frame.fpu_rev_mask = rmask;
373 }
374
375 /* Remember what function this frame refers to. */
376 current_frame.funcdef_no = current_function_funcdef_no;
377 }
378
379 HOST_WIDE_INT
380 m68k_initial_elimination_offset (int from, int to)
381 {
382 /* FIXME: The correct offset to compute here would appear to be
383 (frame_pointer_needed ? -UNITS_PER_WORD * 2 : -UNITS_PER_WORD);
384 but for some obscure reason, this must be 0 to get correct code. */
385 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
386 return 0;
387
388 m68k_compute_frame_layout ();
389
390 if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
391 return current_frame.offset + current_frame.size + (frame_pointer_needed ? -UNITS_PER_WORD * 2 : -UNITS_PER_WORD);
392 else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
393 return current_frame.offset + current_frame.size;
394
395 abort();
396 }
397
398 /* Return true if we need to save REGNO. */
399 static bool
400 m68k_save_reg (unsigned int regno, bool interrupt_handler)
401 {
402 if (flag_pic && current_function_uses_pic_offset_table
403 && regno == PIC_OFFSET_TABLE_REGNUM)
404 return true;
405
406 if (current_function_calls_eh_return)
407 {
408 unsigned int i;
409 for (i = 0; ; i++)
410 {
411 unsigned int test = EH_RETURN_DATA_REGNO (i);
412 if (test == INVALID_REGNUM)
413 break;
414 if (test == regno)
415 return true;
416 }
417 }
418
419 /* Fixed regs we never touch. */
420 if (fixed_regs[regno])
421 return false;
422
423 /* The frame pointer (if it is such) is handled specially. */
424 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
425 return false;
426
427 /* Interrupt handlers must also save call_used_regs
428 if they are live or when calling nested functions. */
429 if (interrupt_handler)
430 {
431 if (regs_ever_live[regno])
432 return true;
433
434 if (!current_function_is_leaf && call_used_regs[regno])
435 return true;
436 }
437
438 /* Never need to save registers that aren't touched. */
439 if (!regs_ever_live[regno])
440 return false;
441
442 /* Otherwise save everthing that isn't call-clobbered. */
443 return !call_used_regs[regno];
444 }
445
446 /* This function generates the assembly code for function entry.
447 STREAM is a stdio stream to output the code to.
448 SIZE is an int: how many units of temporary storage to allocate.
449 Refer to the array `regs_ever_live' to determine which registers
450 to save; `regs_ever_live[I]' is nonzero if register number I
451 is ever used in the function. This function is responsible for
452 knowing which registers should not be saved even if used. */
453
454
455 /* Note that the order of the bit mask for fmovem is the opposite
456 of the order for movem! */
457
458 static void
459 m68k_output_function_prologue (FILE *stream, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
460 {
461 int num_saved_regs = 0;
462 HOST_WIDE_INT fsize_with_regs;
463 HOST_WIDE_INT cfa_offset = INCOMING_FRAME_SP_OFFSET;
464
465 m68k_compute_frame_layout();
466
467 /* If the stack limit is a symbol, we can check it here,
468 before actually allocating the space. */
469 if (current_function_limit_stack
470 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
471 {
472 #if defined (MOTOROLA)
473 asm_fprintf (stream, "\tcmp.l %I%s+%wd,%Rsp\n\ttrapcs\n",
474 XSTR (stack_limit_rtx, 0), current_frame.size + 4);
475 #else
476 asm_fprintf (stream, "\tcmpl %I%s+%wd,%Rsp\n\ttrapcs\n",
477 XSTR (stack_limit_rtx, 0), current_frame.size + 4);
478 #endif
479 }
480
481 /* on Coldfire add register save into initial stack frame setup, if possible */
482 num_saved_regs = 0;
483 if (TARGET_COLDFIRE && current_frame.reg_no > 2)
484 num_saved_regs = current_frame.reg_no;
485
486 fsize_with_regs = current_frame.size + num_saved_regs * 4;
487
488 if (frame_pointer_needed)
489 {
490 if (current_frame.size == 0 && TARGET_68040)
491 {
492 /* on the 68040, pea + move is faster than link.w 0 */
493 #ifdef MOTOROLA
494 fprintf (stream, "\tpea (%s)\n\tmove.l %s,%s\n",
495 reg_names[FRAME_POINTER_REGNUM],
496 reg_names[STACK_POINTER_REGNUM],
497 reg_names[FRAME_POINTER_REGNUM]);
498 #else
499 fprintf (stream, "\tpea %s@\n\tmovel %s,%s\n",
500 reg_names[FRAME_POINTER_REGNUM],
501 reg_names[STACK_POINTER_REGNUM],
502 reg_names[FRAME_POINTER_REGNUM]);
503 #endif
504 }
505 else if (fsize_with_regs < 0x8000)
506 {
507 #ifdef MOTOROLA
508 asm_fprintf (stream, "\tlink.w %s,%I%wd\n",
509 reg_names[FRAME_POINTER_REGNUM], -fsize_with_regs);
510 #else
511 asm_fprintf (stream, "\tlink %s,%I%wd\n",
512 reg_names[FRAME_POINTER_REGNUM], -fsize_with_regs);
513 #endif
514 }
515 else if (TARGET_68020)
516 {
517 #ifdef MOTOROLA
518 asm_fprintf (stream, "\tlink.l %s,%I%wd\n",
519 reg_names[FRAME_POINTER_REGNUM], -fsize_with_regs);
520 #else
521 asm_fprintf (stream, "\tlink %s,%I%wd\n",
522 reg_names[FRAME_POINTER_REGNUM], -fsize_with_regs);
523 #endif
524 }
525 else
526 {
527 /* Adding negative number is faster on the 68040. */
528 #ifdef MOTOROLA
529 asm_fprintf (stream, "\tlink.w %s,%I0\n\tadd.l %I%wd,%Rsp\n",
530 reg_names[FRAME_POINTER_REGNUM], -fsize_with_regs);
531 #else
532 asm_fprintf (stream, "\tlink %s,%I0\n\taddl %I%wd,%Rsp\n",
533 reg_names[FRAME_POINTER_REGNUM], -fsize_with_regs);
534 #endif
535 }
536 if (dwarf2out_do_frame ())
537 {
538 char *l;
539 l = (char *) dwarf2out_cfi_label ();
540 cfa_offset += 4;
541 dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, -cfa_offset);
542 dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, cfa_offset);
543 cfa_offset += current_frame.size;
544 }
545 }
546 else if (fsize_with_regs) /* !frame_pointer_needed */
547 {
548 if (fsize_with_regs < 0x8000)
549 {
550 if (fsize_with_regs <= 8)
551 {
552 if (!TARGET_COLDFIRE)
553 {
554 /* asm_fprintf() cannot handle %. */
555 #ifdef MOTOROLA
556 asm_fprintf (stream, "\tsubq.w %I%wd,%Rsp\n", fsize_with_regs);
557 #else
558 asm_fprintf (stream, "\tsubqw %I%wd,%Rsp\n", fsize_with_regs);
559 #endif
560 }
561 else
562 {
563 /* asm_fprintf() cannot handle %. */
564 #ifdef MOTOROLA
565 asm_fprintf (stream, "\tsubq.l %I%wd,%Rsp\n", fsize_with_regs);
566 #else
567 asm_fprintf (stream, "\tsubql %I%wd,%Rsp\n", fsize_with_regs);
568 #endif
569 }
570 }
571 else if (fsize_with_regs <= 16 && TARGET_CPU32)
572 {
573 /* On the CPU32 it is faster to use two subqw instructions to
574 subtract a small integer (8 < N <= 16) to a register. */
575 /* asm_fprintf() cannot handle %. */
576 #ifdef MOTOROLA
577 asm_fprintf (stream,
578 "\tsubq.w %I8,%Rsp\n\tsubq.w %I%wd,%Rsp\n",
579 fsize_with_regs - 8);
580 #else
581 asm_fprintf (stream, "\tsubqw %I8,%Rsp\n\tsubqw %I%wd,%Rsp\n",
582 fsize_with_regs - 8);
583 #endif
584 }
585 else if (TARGET_68040)
586 {
587 /* Adding negative number is faster on the 68040. */
588 /* asm_fprintf() cannot handle %. */
589 #ifdef MOTOROLA
590 asm_fprintf (stream, "\tadd.w %I%wd,%Rsp\n", -fsize_with_regs);
591 #else
592 asm_fprintf (stream, "\taddw %I%wd,%Rsp\n", -fsize_with_regs);
593 #endif
594 }
595 else
596 {
597 #ifdef MOTOROLA
598 asm_fprintf (stream, "\tlea (%wd,%Rsp),%Rsp\n", -fsize_with_regs);
599 #else
600 asm_fprintf (stream, "\tlea %Rsp@(%wd),%Rsp\n", -fsize_with_regs);
601 #endif
602 }
603 }
604 else /* fsize_with_regs >= 0x8000 */
605 {
606 #ifdef MOTOROLA
607 asm_fprintf (stream, "\tadd.l %I%wd,%Rsp\n", -fsize_with_regs);
608 #else
609 asm_fprintf (stream, "\taddl %I%wd,%Rsp\n", -fsize_with_regs);
610 #endif
611 }
612 if (dwarf2out_do_frame ())
613 {
614 cfa_offset += current_frame.size + 4;
615 dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, cfa_offset);
616 }
617 } /* !frame_pointer_needed */
618
619 if (TARGET_68881)
620 {
621 if (current_frame.fpu_mask)
622 {
623 #ifdef MOTOROLA
624 asm_fprintf (stream, "\tfmovm %I0x%x,-(%Rsp)\n", current_frame.fpu_mask);
625 #else
626 asm_fprintf (stream, "\tfmovem %I0x%x,%Rsp@-\n", current_frmae.fpu_mask);
627 #endif
628 if (dwarf2out_do_frame ())
629 {
630 char *l = (char *) dwarf2out_cfi_label ();
631 int n_regs, regno;
632
633 cfa_offset += current_frame.fpu_no * 12;
634 if (! frame_pointer_needed)
635 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
636 for (regno = 16, n_regs = 0; regno < 24; regno++)
637 if (current_frame.fpu_mask & (1 << (regno - 16)))
638 dwarf2out_reg_save (l, regno,
639 -cfa_offset + n_regs++ * 12);
640 }
641 }
642 }
643
644 /* If the stack limit is not a symbol, check it here.
645 This has the disadvantage that it may be too late... */
646 if (current_function_limit_stack)
647 {
648 if (REG_P (stack_limit_rtx))
649 {
650 #if defined (MOTOROLA)
651 asm_fprintf (stream, "\tcmp.l %s,%Rsp\n\ttrapcs\n",
652 reg_names[REGNO (stack_limit_rtx)]);
653 #else
654 asm_fprintf (stream, "\tcmpl %s,%Rsp\n\ttrapcs\n",
655 reg_names[REGNO (stack_limit_rtx)]);
656 #endif
657 }
658 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
659 warning ("stack limit expression is not supported");
660 }
661
662 if (num_saved_regs <= 2)
663 {
664 /* Store each separately in the same order moveml uses.
665 Using two movel instructions instead of a single moveml
666 is about 15% faster for the 68020 and 68030 at no expense
667 in code size */
668
669 int i;
670
671 for (i = 0; i < 16; i++)
672 if (current_frame.reg_rev_mask & (1 << i))
673 {
674 asm_fprintf (stream,
675 #ifdef MOTOROLA
676 "\t%Omove.l %s,-(%Rsp)\n",
677 #else
678 "\tmovel %s,%Rsp@-\n",
679 #endif
680 reg_names[15 - i]);
681 if (dwarf2out_do_frame ())
682 {
683 char *l = (char *) dwarf2out_cfi_label ();
684
685 cfa_offset += 4;
686 if (! frame_pointer_needed)
687 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
688 dwarf2out_reg_save (l, 15 - i, -cfa_offset);
689 }
690 }
691 }
692 else if (current_frame.reg_rev_mask)
693 {
694 if (TARGET_COLDFIRE)
695 {
696 /* The ColdFire does not support the predecrement form of the
697 MOVEM instruction, so we must adjust the stack pointer and
698 then use the plain address register indirect mode.
699 The required register save space was combined earlier with
700 the fsize_with_regs amount. */
701
702 #ifdef MOTOROLA
703 asm_fprintf (stream, "\tmovm.l %I0x%x,(%Rsp)\n", current_frame.reg_mask);
704 #else
705 asm_fprintf (stream, "\tmoveml %I0x%x,%Rsp@\n", current_frame.reg_mask);
706 #endif
707 }
708 else
709 {
710 #ifdef MOTOROLA
711 asm_fprintf (stream, "\tmovm.l %I0x%x,-(%Rsp)\n", current_frame.reg_mask);
712 #else
713 asm_fprintf (stream, "\tmoveml %I0x%x,%Rsp@-\n", current_frame.reg_mask);
714 #endif
715 }
716 if (dwarf2out_do_frame ())
717 {
718 char *l = (char *) dwarf2out_cfi_label ();
719 int n_regs, regno;
720
721 cfa_offset += current_frame.reg_no * 4;
722 if (! frame_pointer_needed)
723 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
724 for (regno = 0, n_regs = 0; regno < 16; regno++)
725 if (current_frame.reg_mask & (1 << regno))
726 dwarf2out_reg_save (l, regno,
727 -cfa_offset + n_regs++ * 4);
728 }
729 }
730 if (!TARGET_SEP_DATA && flag_pic &&
731 (current_function_uses_pic_offset_table ||
732 (!current_function_is_leaf && TARGET_ID_SHARED_LIBRARY)))
733 {
734 if (TARGET_ID_SHARED_LIBRARY)
735 {
736 asm_fprintf (stream, "\tmovel %s@(%s), %s\n",
737 reg_names[PIC_OFFSET_TABLE_REGNUM],
738 m68k_library_id_string,
739 reg_names[PIC_OFFSET_TABLE_REGNUM]);
740 }
741 else
742 {
743 #ifdef MOTOROLA
744 asm_fprintf (stream, "\t%Olea (%Rpc, %U_GLOBAL_OFFSET_TABLE_@GOTPC), %s\n",
745 reg_names[PIC_OFFSET_TABLE_REGNUM]);
746 #else
747 asm_fprintf (stream, "\tmovel %I%U_GLOBAL_OFFSET_TABLE_, %s\n",
748 reg_names[PIC_OFFSET_TABLE_REGNUM]);
749 asm_fprintf (stream, "\tlea %Rpc@(0,%s:l),%s\n",
750 reg_names[PIC_OFFSET_TABLE_REGNUM],
751 reg_names[PIC_OFFSET_TABLE_REGNUM]);
752 #endif
753 }
754 }
755 }
756 \f
757 /* Return true if this function's epilogue can be output as RTL. */
758
759 bool
760 use_return_insn (void)
761 {
762 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
763 return false;
764
765 /* We can output the epilogue as RTL only if no registers need to be
766 restored. */
767 m68k_compute_frame_layout();
768 return current_frame.reg_no ? false : true;
769 }
770
771 /* This function generates the assembly code for function exit,
772 on machines that need it.
773
774 The function epilogue should not depend on the current stack pointer!
775 It should use the frame pointer only, if there is a frame pointer.
776 This is mandatory because of alloca; we also take advantage of it to
777 omit stack adjustments before returning. */
778
779 static void
780 m68k_output_function_epilogue (FILE *stream, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
781 {
782 HOST_WIDE_INT fsize, fsize_with_regs;
783 bool big = false;
784 bool restore_from_sp = false;
785 rtx insn = get_last_insn ();
786
787 m68k_compute_frame_layout();
788
789 /* If the last insn was a BARRIER, we don't have to write any code. */
790 if (GET_CODE (insn) == NOTE)
791 insn = prev_nonnote_insn (insn);
792 if (insn && GET_CODE (insn) == BARRIER)
793 {
794 /* Output just a no-op so that debuggers don't get confused
795 about which function the pc is in at this address. */
796 fprintf (stream, "\tnop\n");
797 return;
798 }
799
800 #ifdef FUNCTION_EXTRA_EPILOGUE
801 FUNCTION_EXTRA_EPILOGUE (stream, size);
802 #endif
803
804 fsize = current_frame.size;
805
806 /* FIXME : leaf_function_p below is too strong.
807 What we really need to know there is if there could be pending
808 stack adjustment needed at that point. */
809 restore_from_sp = ! frame_pointer_needed
810 || (! current_function_calls_alloca && leaf_function_p ());
811
812 /* fsize_with_regs is the size we need to adjust the sp when
813 popping the frame */
814 fsize_with_regs = fsize;
815
816 /* Because the ColdFire doesn't support moveml with
817 complex address modes, we must adjust the stack manually
818 after restoring registers. When the frame pointer isn't used,
819 we can merge movem adjustment into frame unlinking
820 made immediately after it. */
821 if (TARGET_COLDFIRE && restore_from_sp && (current_frame.reg_no > 2))
822 fsize_with_regs += current_frame.reg_no * 4;
823
824 if (current_frame.offset + fsize >= 0x8000
825 && ! restore_from_sp
826 && (current_frame.reg_mask || current_frame.fpu_mask))
827 {
828 /* Because the ColdFire doesn't support moveml with
829 complex address modes we make an extra correction here */
830 if (TARGET_COLDFIRE)
831 {
832 #ifdef MOTOROLA
833 asm_fprintf (stream, "\t%Omove.l %I%d,%Ra1\n",
834 -fsize - current_frame.offset);
835 #else
836 asm_fprintf (stream, "\tmovel %I%d,%Ra1\n",
837 -fsize - current_frame.offset);
838 #endif
839 }
840 else
841 {
842 #ifdef MOTOROLA
843 asm_fprintf (stream, "\t%Omove.l %I%wd,%Ra1\n", -fsize);
844 #else
845 asm_fprintf (stream, "\tmovel %I%wd,%Ra1\n", -fsize);
846 #endif
847 }
848
849 fsize = 0, big = true;
850 }
851 if (current_frame.reg_no <= 2)
852 {
853 /* Restore each separately in the same order moveml does.
854 Using two movel instructions instead of a single moveml
855 is about 15% faster for the 68020 and 68030 at no expense
856 in code size. */
857
858 int i;
859 HOST_WIDE_INT offset = current_frame.offset + fsize;
860
861 for (i = 0; i < 16; i++)
862 if (current_frame.reg_mask & (1 << i))
863 {
864 if (big)
865 {
866 #ifdef MOTOROLA
867 asm_fprintf (stream, "\t%Omove.l -%wd(%s,%Ra1.l),%s\n",
868 offset,
869 reg_names[FRAME_POINTER_REGNUM],
870 reg_names[i]);
871 #else
872 asm_fprintf (stream, "\tmovel %s@(-%wd,%Ra1:l),%s\n",
873 reg_names[FRAME_POINTER_REGNUM],
874 offset);
875 #endif
876 }
877 else if (restore_from_sp)
878 {
879 #ifdef MOTOROLA
880 asm_fprintf (stream, "\t%Omove.l (%Rsp)+,%s\n",
881 reg_names[i]);
882 #else
883 asm_fprintf (stream, "\tmovel %Rsp@+,%s\n",
884 reg_names[i]);
885 #endif
886 }
887 else
888 {
889 #ifdef MOTOROLA
890 asm_fprintf (stream, "\t%Omove.l -%wd(%s),%s\n",
891 offset,
892 reg_names[FRAME_POINTER_REGNUM],
893 reg_names[i]);
894 #else
895 asm_fprintf (stream, "\tmovel %s@(-%wd),%s\n",
896 reg_names[FRAME_POINTER_REGNUM],
897 offset,
898 reg_names[i]);
899 #endif
900 }
901 offset -= 4;
902 }
903 }
904 else if (current_frame.reg_mask)
905 {
906 /* The ColdFire requires special handling due to its limited moveml insn */
907 if (TARGET_COLDFIRE)
908 {
909 if (big)
910 {
911 #ifdef MOTOROLA
912 asm_fprintf (stream, "\tadd.l %s,%Ra1\n", reg_names[FRAME_POINTER_REGNUM]);
913 asm_fprintf (stream, "\tmovm.l (%Ra1),%I0x%x\n", current_frame.reg_mask);
914 #else
915 asm_fprintf (stream, "\taddl %s,%Ra1\n", reg_names[FRAME_POINTER_REGNUM]);
916 asm_fprintf (stream, "\tmoveml %Ra1@,%I0x%x\n", current_frame.reg_mask);
917 #endif
918 }
919 else if (restore_from_sp)
920 {
921 #ifdef MOTOROLA
922 asm_fprintf (stream, "\tmovm.l (%Rsp),%I0x%x\n", current_frame.reg_mask);
923 #else
924 asm_fprintf (stream, "\tmoveml %Rsp@,%I0x%x\n", current_frame.reg_mask);
925 #endif
926 }
927 else
928 {
929 #ifdef MOTOROLA
930 asm_fprintf (stream, "\tmovm.l -%wd(%s),%I0x%x\n",
931 current_frame.offset + fsize,
932 reg_names[FRAME_POINTER_REGNUM],
933 current_frame.reg_mask);
934 #else
935 asm_fprintf (stream, "\tmoveml %s@(-%wd),%I0x%x\n",
936 reg_names[FRAME_POINTER_REGNUM],
937 offset + fsize,
938 current_frame.reg_mask);
939 #endif
940 }
941 }
942 else /* !TARGET_COLDFIRE */
943 {
944 if (big)
945 {
946 #ifdef MOTOROLA
947 asm_fprintf (stream, "\tmovm.l -%wd(%s,%Ra1.l),%I0x%x\n",
948 current_frame.offset + fsize,
949 reg_names[FRAME_POINTER_REGNUM],
950 current_frame.reg_mask);
951 #else
952 asm_fprintf (stream, "\tmoveml %s@(-%wd,%Ra1:l),%I0x%x\n",
953 reg_names[FRAME_POINTER_REGNUM],
954 current_frame.offset + fsize,
955 current_frame.reg_mask);
956 #endif
957 }
958 else if (restore_from_sp)
959 {
960 #ifdef MOTOROLA
961 asm_fprintf (stream, "\tmovm.l (%Rsp)+,%I0x%x\n",
962 current_frame.reg_mask);
963 #else
964 asm_fprintf (stream, "\tmoveml %Rsp@+,%I0x%x\n",
965 current_frame.reg_mask);
966 #endif
967 }
968 else
969 {
970 #ifdef MOTOROLA
971 asm_fprintf (stream, "\tmovm.l -%wd(%s),%I0x%x\n",
972 current_frame.offset + fsize,
973 reg_names[FRAME_POINTER_REGNUM],
974 current_frame.reg_mask);
975 #else
976 asm_fprintf (stream, "\tmoveml %s@(-%wd),%I0x%x\n",
977 reg_names[FRAME_POINTER_REGNUM],
978 current_frame.offset + fsize,
979 current_frame.reg_mask);
980 #endif
981 }
982 }
983 }
984 if (current_frame.fpu_rev_mask)
985 {
986 if (big)
987 {
988 #ifdef MOTOROLA
989 asm_fprintf (stream, "\tfmovm -%wd(%s,%Ra1.l),%I0x%x\n",
990 current_frame.foffset + fsize,
991 reg_names[FRAME_POINTER_REGNUM],
992 current_frame.fpu_rev_mask);
993 #else
994 asm_fprintf (stream, "\tfmovem %s@(-%wd,%Ra1:l),%I0x%x\n",
995 reg_names[FRAME_POINTER_REGNUM],
996 current_frame.foffset + fsize,
997 current_frame.fpu_rev_mask);
998 #endif
999 }
1000 else if (restore_from_sp)
1001 {
1002 #ifdef MOTOROLA
1003 asm_fprintf (stream, "\tfmovm (%Rsp)+,%I0x%x\n",
1004 current_frame.fpu_rev_mask);
1005 #else
1006 asm_fprintf (stream, "\tfmovem %Rsp@+,%I0x%x\n",
1007 current_frame.fpu_rev_mask);
1008 #endif
1009 }
1010 else
1011 {
1012 #ifdef MOTOROLA
1013 asm_fprintf (stream, "\tfmovm -%wd(%s),%I0x%x\n",
1014 current_frame.foffset + fsize,
1015 reg_names[FRAME_POINTER_REGNUM],
1016 current_frame.fpu_mask);
1017 #else
1018 asm_fprintf (stream, "\tfmovem %s@(-%wd),%I0x%x\n",
1019 reg_names[FRAME_POINTER_REGNUM],
1020 current_frame.foffset + fsize,
1021 current_frame.fpu_rev_mask);
1022 #endif
1023 }
1024 }
1025 if (frame_pointer_needed)
1026 fprintf (stream, "\tunlk %s\n",
1027 reg_names[FRAME_POINTER_REGNUM]);
1028 else if (fsize_with_regs)
1029 {
1030 if (fsize_with_regs <= 8)
1031 {
1032 if (!TARGET_COLDFIRE)
1033 {
1034 #ifdef MOTOROLA
1035 asm_fprintf (stream, "\taddq.w %I%wd,%Rsp\n", fsize_with_regs);
1036 #else
1037 asm_fprintf (stream, "\taddqw %I%wd,%Rsp\n", fsize_with_regs);
1038 #endif
1039 }
1040 else /* TARGET_COLDFIRE */
1041 {
1042 #ifdef MOTOROLA
1043 asm_fprintf (stream, "\taddq.l %I%wd,%Rsp\n", fsize_with_regs);
1044 #else
1045 asm_fprintf (stream, "\taddql %I%wd,%Rsp\n", fsize_with_regs);
1046 #endif
1047 }
1048 }
1049 else if (fsize_with_regs <= 16 && TARGET_CPU32)
1050 {
1051 /* On the CPU32 it is faster to use two addqw instructions to
1052 add a small integer (8 < N <= 16) to a register. */
1053 #ifdef MOTOROLA
1054 asm_fprintf (stream, "\taddq.w %I8,%Rsp\n\taddq.w %I%wd,%Rsp\n",
1055 fsize_with_regs - 8);
1056 #else
1057 asm_fprintf (stream, "\taddqw %I8,%Rsp\n\taddqw %I%wd,%Rsp\n",
1058 fsize_with_regs - 8);
1059 #endif
1060 }
1061 else if (fsize_with_regs < 0x8000)
1062 {
1063 if (TARGET_68040)
1064 {
1065 #ifdef MOTOROLA
1066 asm_fprintf (stream, "\tadd.w %I%wd,%Rsp\n", fsize_with_regs);
1067 #else
1068 asm_fprintf (stream, "\taddw %I%wd,%Rsp\n", fsize_with_regs);
1069 #endif
1070 }
1071 else
1072 {
1073 #ifdef MOTOROLA
1074 asm_fprintf (stream, "\tlea (%wd,%Rsp),%Rsp\n", fsize_with_regs);
1075 #else
1076 asm_fprintf (stream, "\tlea %Rsp@(%wd),%Rsp\n", fsize_with_regs);
1077 #endif
1078 }
1079 }
1080 else
1081 {
1082 #ifdef MOTOROLA
1083 asm_fprintf (stream, "\tadd.l %I%wd,%Rsp\n", fsize_with_regs);
1084 #else
1085 asm_fprintf (stream, "\taddl %I%wd,%Rsp\n", fsize_with_regs);
1086 #endif
1087 }
1088 }
1089 if (current_function_calls_eh_return)
1090 {
1091 #ifdef MOTOROLA
1092 asm_fprintf (stream, "\tadd.l %Ra0,%Rsp\n");
1093 #else
1094 asm_fprintf (stream, "\taddl %Ra0,%Rsp\n");
1095 #endif
1096 }
1097 if (m68k_interrupt_function_p (current_function_decl))
1098 fprintf (stream, "\trte\n");
1099 else if (current_function_pops_args)
1100 asm_fprintf (stream, "\trtd %I%d\n", current_function_pops_args);
1101 else
1102 fprintf (stream, "\trts\n");
1103 }
1104 \f
1105 /* Similar to general_operand, but exclude stack_pointer_rtx. */
1106
1107 int
1108 not_sp_operand (rtx op, enum machine_mode mode)
1109 {
1110 return op != stack_pointer_rtx && nonimmediate_operand (op, mode);
1111 }
1112
1113 /* Return true if X is a valid comparison operator for the dbcc
1114 instruction.
1115
1116 Note it rejects floating point comparison operators.
1117 (In the future we could use Fdbcc).
1118
1119 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1120
1121 int
1122 valid_dbcc_comparison_p (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
1123 {
1124 switch (GET_CODE (x))
1125 {
1126 case EQ: case NE: case GTU: case LTU:
1127 case GEU: case LEU:
1128 return 1;
1129
1130 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1131 conservative */
1132 case GT: case LT: case GE: case LE:
1133 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1134 default:
1135 return 0;
1136 }
1137 }
1138
1139 /* Return nonzero if flags are currently in the 68881 flag register. */
1140 int
1141 flags_in_68881 (void)
1142 {
1143 /* We could add support for these in the future */
1144 return cc_status.flags & CC_IN_68881;
1145 }
1146
1147 /* Output a BSR instruction suitable for PIC code. */
1148 void
1149 m68k_output_pic_call(rtx dest)
1150 {
1151 const char *out;
1152
1153 if (!(GET_CODE (dest) == MEM && GET_CODE (XEXP (dest, 0)) == SYMBOL_REF))
1154 out = "jsr %0";
1155 /* We output a BSR instruction if we've using -fpic or we're building for
1156 * a target that supports long branches. If we're building -fPIC on the
1157 * 68000, 68010 or ColdFire we generate one of two sequences:
1158 * a shorter one that uses a GOT entry or a longer one that doesn't.
1159 * We'll use the -Os command-line flag to decide which to generate.
1160 * Both sequences take the same time to execute on the ColdFire.
1161 */
1162 else if (TARGET_PCREL)
1163 out = "bsr.l %o0";
1164 else if ((flag_pic == 1) || TARGET_68020)
1165 #ifdef HPUX_ASM
1166 out = "bsr.l %0";
1167 #elif defined(USE_GAS)
1168 out = "bsr.l %0@PLTPC";
1169 #else
1170 out = "bsr %0@PLTPC";
1171 #endif
1172 else if (optimize_size || TARGET_ID_SHARED_LIBRARY)
1173 out = "move.l %0@GOT(%%a5), %%a1\n\tjsr (%%a1)";
1174 else
1175 out = "lea %0-.-8,%%a1\n\tjsr 0(%%pc,%%a1)";
1176
1177 output_asm_insn(out, &dest);
1178 }
1179
1180 /* Output a dbCC; jCC sequence. Note we do not handle the
1181 floating point version of this sequence (Fdbcc). We also
1182 do not handle alternative conditions when CC_NO_OVERFLOW is
1183 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1184 kick those out before we get here. */
1185
1186 void
1187 output_dbcc_and_branch (rtx *operands)
1188 {
1189 switch (GET_CODE (operands[3]))
1190 {
1191 case EQ:
1192 #ifdef MOTOROLA
1193 output_asm_insn ("dbeq %0,%l1\n\tjbeq %l2", operands);
1194 #else
1195 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
1196 #endif
1197 break;
1198
1199 case NE:
1200 #ifdef MOTOROLA
1201 output_asm_insn ("dbne %0,%l1\n\tjbne %l2", operands);
1202 #else
1203 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
1204 #endif
1205 break;
1206
1207 case GT:
1208 #ifdef MOTOROLA
1209 output_asm_insn ("dbgt %0,%l1\n\tjbgt %l2", operands);
1210 #else
1211 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
1212 #endif
1213 break;
1214
1215 case GTU:
1216 #ifdef MOTOROLA
1217 output_asm_insn ("dbhi %0,%l1\n\tjbhi %l2", operands);
1218 #else
1219 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
1220 #endif
1221 break;
1222
1223 case LT:
1224 #ifdef MOTOROLA
1225 output_asm_insn ("dblt %0,%l1\n\tjblt %l2", operands);
1226 #else
1227 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
1228 #endif
1229 break;
1230
1231 case LTU:
1232 #ifdef MOTOROLA
1233 output_asm_insn ("dbcs %0,%l1\n\tjbcs %l2", operands);
1234 #else
1235 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
1236 #endif
1237 break;
1238
1239 case GE:
1240 #ifdef MOTOROLA
1241 output_asm_insn ("dbge %0,%l1\n\tjbge %l2", operands);
1242 #else
1243 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
1244 #endif
1245 break;
1246
1247 case GEU:
1248 #ifdef MOTOROLA
1249 output_asm_insn ("dbcc %0,%l1\n\tjbcc %l2", operands);
1250 #else
1251 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1252 #endif
1253 break;
1254
1255 case LE:
1256 #ifdef MOTOROLA
1257 output_asm_insn ("dble %0,%l1\n\tjble %l2", operands);
1258 #else
1259 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1260 #endif
1261 break;
1262
1263 case LEU:
1264 #ifdef MOTOROLA
1265 output_asm_insn ("dbls %0,%l1\n\tjbls %l2", operands);
1266 #else
1267 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1268 #endif
1269 break;
1270
1271 default:
1272 abort ();
1273 }
1274
1275 /* If the decrement is to be done in SImode, then we have
1276 to compensate for the fact that dbcc decrements in HImode. */
1277 switch (GET_MODE (operands[0]))
1278 {
1279 case SImode:
1280 #ifdef MOTOROLA
1281 output_asm_insn ("clr%.w %0\n\tsubq%.l %#1,%0\n\tjbpl %l1", operands);
1282 #else
1283 output_asm_insn ("clr%.w %0\n\tsubq%.l %#1,%0\n\tjpl %l1", operands);
1284 #endif
1285 break;
1286
1287 case HImode:
1288 break;
1289
1290 default:
1291 abort ();
1292 }
1293 }
1294
1295 const char *
1296 output_scc_di(rtx op, rtx operand1, rtx operand2, rtx dest)
1297 {
1298 rtx loperands[7];
1299 enum rtx_code op_code = GET_CODE (op);
1300
1301 /* This does not produce a useful cc. */
1302 CC_STATUS_INIT;
1303
1304 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1305 below. Swap the operands and change the op if these requirements
1306 are not fulfilled. */
1307 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1308 {
1309 rtx tmp = operand1;
1310
1311 operand1 = operand2;
1312 operand2 = tmp;
1313 op_code = swap_condition (op_code);
1314 }
1315 loperands[0] = operand1;
1316 if (GET_CODE (operand1) == REG)
1317 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1318 else
1319 loperands[1] = adjust_address (operand1, SImode, 4);
1320 if (operand2 != const0_rtx)
1321 {
1322 loperands[2] = operand2;
1323 if (GET_CODE (operand2) == REG)
1324 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1325 else
1326 loperands[3] = adjust_address (operand2, SImode, 4);
1327 }
1328 loperands[4] = gen_label_rtx();
1329 if (operand2 != const0_rtx)
1330 {
1331 #ifdef MOTOROLA
1332 #ifdef SGS_CMP_ORDER
1333 output_asm_insn ("cmp%.l %0,%2\n\tjbne %l4\n\tcmp%.l %1,%3", loperands);
1334 #else
1335 output_asm_insn ("cmp%.l %2,%0\n\tjbne %l4\n\tcmp%.l %3,%1", loperands);
1336 #endif
1337 #else
1338 #ifdef SGS_CMP_ORDER
1339 output_asm_insn ("cmp%.l %0,%2\n\tjne %l4\n\tcmp%.l %1,%3", loperands);
1340 #else
1341 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1342 #endif
1343 #endif
1344 }
1345 else
1346 {
1347 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1348 output_asm_insn ("tst%.l %0", loperands);
1349 else
1350 {
1351 #ifdef SGS_CMP_ORDER
1352 output_asm_insn ("cmp%.w %0,%#0", loperands);
1353 #else
1354 output_asm_insn ("cmp%.w %#0,%0", loperands);
1355 #endif
1356 }
1357
1358 #ifdef MOTOROLA
1359 output_asm_insn ("jbne %l4", loperands);
1360 #else
1361 output_asm_insn ("jne %l4", loperands);
1362 #endif
1363
1364 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1365 output_asm_insn ("tst%.l %1", loperands);
1366 else
1367 {
1368 #ifdef SGS_CMP_ORDER
1369 output_asm_insn ("cmp%.w %1,%#0", loperands);
1370 #else
1371 output_asm_insn ("cmp%.w %#0,%1", loperands);
1372 #endif
1373 }
1374 }
1375
1376 loperands[5] = dest;
1377
1378 switch (op_code)
1379 {
1380 case EQ:
1381 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1382 CODE_LABEL_NUMBER (loperands[4]));
1383 output_asm_insn ("seq %5", loperands);
1384 break;
1385
1386 case NE:
1387 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1388 CODE_LABEL_NUMBER (loperands[4]));
1389 output_asm_insn ("sne %5", loperands);
1390 break;
1391
1392 case GT:
1393 loperands[6] = gen_label_rtx();
1394 #ifdef MOTOROLA
1395 output_asm_insn ("shi %5\n\tjbra %l6", loperands);
1396 #else
1397 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1398 #endif
1399 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1400 CODE_LABEL_NUMBER (loperands[4]));
1401 output_asm_insn ("sgt %5", loperands);
1402 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1403 CODE_LABEL_NUMBER (loperands[6]));
1404 break;
1405
1406 case GTU:
1407 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1408 CODE_LABEL_NUMBER (loperands[4]));
1409 output_asm_insn ("shi %5", loperands);
1410 break;
1411
1412 case LT:
1413 loperands[6] = gen_label_rtx();
1414 #ifdef MOTOROLA
1415 output_asm_insn ("scs %5\n\tjbra %l6", loperands);
1416 #else
1417 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1418 #endif
1419 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1420 CODE_LABEL_NUMBER (loperands[4]));
1421 output_asm_insn ("slt %5", loperands);
1422 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1423 CODE_LABEL_NUMBER (loperands[6]));
1424 break;
1425
1426 case LTU:
1427 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1428 CODE_LABEL_NUMBER (loperands[4]));
1429 output_asm_insn ("scs %5", loperands);
1430 break;
1431
1432 case GE:
1433 loperands[6] = gen_label_rtx();
1434 #ifdef MOTOROLA
1435 output_asm_insn ("scc %5\n\tjbra %l6", loperands);
1436 #else
1437 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1438 #endif
1439 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1440 CODE_LABEL_NUMBER (loperands[4]));
1441 output_asm_insn ("sge %5", loperands);
1442 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1443 CODE_LABEL_NUMBER (loperands[6]));
1444 break;
1445
1446 case GEU:
1447 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1448 CODE_LABEL_NUMBER (loperands[4]));
1449 output_asm_insn ("scc %5", loperands);
1450 break;
1451
1452 case LE:
1453 loperands[6] = gen_label_rtx();
1454 #ifdef MOTOROLA
1455 output_asm_insn ("sls %5\n\tjbra %l6", loperands);
1456 #else
1457 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1458 #endif
1459 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1460 CODE_LABEL_NUMBER (loperands[4]));
1461 output_asm_insn ("sle %5", loperands);
1462 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1463 CODE_LABEL_NUMBER (loperands[6]));
1464 break;
1465
1466 case LEU:
1467 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1468 CODE_LABEL_NUMBER (loperands[4]));
1469 output_asm_insn ("sls %5", loperands);
1470 break;
1471
1472 default:
1473 abort ();
1474 }
1475 return "";
1476 }
1477
1478 const char *
1479 output_btst (rtx *operands, rtx countop, rtx dataop, rtx insn, int signpos)
1480 {
1481 operands[0] = countop;
1482 operands[1] = dataop;
1483
1484 if (GET_CODE (countop) == CONST_INT)
1485 {
1486 register int count = INTVAL (countop);
1487 /* If COUNT is bigger than size of storage unit in use,
1488 advance to the containing unit of same size. */
1489 if (count > signpos)
1490 {
1491 int offset = (count & ~signpos) / 8;
1492 count = count & signpos;
1493 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1494 }
1495 if (count == signpos)
1496 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1497 else
1498 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1499
1500 /* These three statements used to use next_insns_test_no...
1501 but it appears that this should do the same job. */
1502 if (count == 31
1503 && next_insn_tests_no_inequality (insn))
1504 return "tst%.l %1";
1505 if (count == 15
1506 && next_insn_tests_no_inequality (insn))
1507 return "tst%.w %1";
1508 if (count == 7
1509 && next_insn_tests_no_inequality (insn))
1510 return "tst%.b %1";
1511
1512 cc_status.flags = CC_NOT_NEGATIVE;
1513 }
1514 return "btst %0,%1";
1515 }
1516 \f
1517 /* Returns true if OP is either a symbol reference or a sum of a symbol
1518 reference and a constant. */
1519
1520 bool
1521 symbolic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1522 {
1523 switch (GET_CODE (op))
1524 {
1525 case SYMBOL_REF:
1526 case LABEL_REF:
1527 return true;
1528
1529 case CONST:
1530 op = XEXP (op, 0);
1531 return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
1532 || GET_CODE (XEXP (op, 0)) == LABEL_REF)
1533 && GET_CODE (XEXP (op, 1)) == CONST_INT);
1534
1535 #if 0 /* Deleted, with corresponding change in m68k.h,
1536 so as to fit the specs. No CONST_DOUBLE is ever symbolic. */
1537 case CONST_DOUBLE:
1538 return GET_MODE (op) == mode;
1539 #endif
1540
1541 default:
1542 return false;
1543 }
1544 }
1545 \f
1546 /* Check for sign_extend or zero_extend. Used for bit-count operands. */
1547
1548 int
1549 extend_operator(rtx x, enum machine_mode mode)
1550 {
1551 if (mode != VOIDmode && GET_MODE(x) != mode)
1552 return 0;
1553 switch (GET_CODE(x))
1554 {
1555 case SIGN_EXTEND :
1556 case ZERO_EXTEND :
1557 return 1;
1558 default :
1559 return 0;
1560 }
1561 }
1562
1563 \f
1564 /* Legitimize PIC addresses. If the address is already
1565 position-independent, we return ORIG. Newly generated
1566 position-independent addresses go to REG. If we need more
1567 than one register, we lose.
1568
1569 An address is legitimized by making an indirect reference
1570 through the Global Offset Table with the name of the symbol
1571 used as an offset.
1572
1573 The assembler and linker are responsible for placing the
1574 address of the symbol in the GOT. The function prologue
1575 is responsible for initializing a5 to the starting address
1576 of the GOT.
1577
1578 The assembler is also responsible for translating a symbol name
1579 into a constant displacement from the start of the GOT.
1580
1581 A quick example may make things a little clearer:
1582
1583 When not generating PIC code to store the value 12345 into _foo
1584 we would generate the following code:
1585
1586 movel #12345, _foo
1587
1588 When generating PIC two transformations are made. First, the compiler
1589 loads the address of foo into a register. So the first transformation makes:
1590
1591 lea _foo, a0
1592 movel #12345, a0@
1593
1594 The code in movsi will intercept the lea instruction and call this
1595 routine which will transform the instructions into:
1596
1597 movel a5@(_foo:w), a0
1598 movel #12345, a0@
1599
1600
1601 That (in a nutshell) is how *all* symbol and label references are
1602 handled. */
1603
1604 rtx
1605 legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
1606 rtx reg)
1607 {
1608 rtx pic_ref = orig;
1609
1610 /* First handle a simple SYMBOL_REF or LABEL_REF */
1611 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
1612 {
1613 if (reg == 0)
1614 abort ();
1615
1616 pic_ref = gen_rtx_MEM (Pmode,
1617 gen_rtx_PLUS (Pmode,
1618 pic_offset_table_rtx, orig));
1619 current_function_uses_pic_offset_table = 1;
1620 RTX_UNCHANGING_P (pic_ref) = 1;
1621 emit_move_insn (reg, pic_ref);
1622 return reg;
1623 }
1624 else if (GET_CODE (orig) == CONST)
1625 {
1626 rtx base;
1627
1628 /* Make sure this is CONST has not already been legitimized */
1629 if (GET_CODE (XEXP (orig, 0)) == PLUS
1630 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
1631 return orig;
1632
1633 if (reg == 0)
1634 abort ();
1635
1636 /* legitimize both operands of the PLUS */
1637 if (GET_CODE (XEXP (orig, 0)) == PLUS)
1638 {
1639 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
1640 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
1641 base == reg ? 0 : reg);
1642 }
1643 else abort ();
1644
1645 if (GET_CODE (orig) == CONST_INT)
1646 return plus_constant (base, INTVAL (orig));
1647 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
1648 /* Likewise, should we set special REG_NOTEs here? */
1649 }
1650 return pic_ref;
1651 }
1652
1653 \f
1654 typedef enum { MOVL, SWAP, NEGW, NOTW, NOTB, MOVQ } CONST_METHOD;
1655
1656 static CONST_METHOD const_method (rtx);
1657
1658 #define USE_MOVQ(i) ((unsigned)((i) + 128) <= 255)
1659
1660 static CONST_METHOD
1661 const_method (rtx constant)
1662 {
1663 int i;
1664 unsigned u;
1665
1666 i = INTVAL (constant);
1667 if (USE_MOVQ (i))
1668 return MOVQ;
1669
1670 /* The Coldfire doesn't have byte or word operations. */
1671 /* FIXME: This may not be useful for the m68060 either */
1672 if (!TARGET_COLDFIRE)
1673 {
1674 /* if -256 < N < 256 but N is not in range for a moveq
1675 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
1676 if (USE_MOVQ (i ^ 0xff))
1677 return NOTB;
1678 /* Likewise, try with not.w */
1679 if (USE_MOVQ (i ^ 0xffff))
1680 return NOTW;
1681 /* This is the only value where neg.w is useful */
1682 if (i == -65408)
1683 return NEGW;
1684 /* Try also with swap */
1685 u = i;
1686 if (USE_MOVQ ((u >> 16) | (u << 16)))
1687 return SWAP;
1688 }
1689 /* Otherwise, use move.l */
1690 return MOVL;
1691 }
1692
1693 static int
1694 const_int_cost (rtx constant)
1695 {
1696 switch (const_method (constant))
1697 {
1698 case MOVQ :
1699 /* Constants between -128 and 127 are cheap due to moveq */
1700 return 0;
1701 case NOTB :
1702 case NOTW :
1703 case NEGW :
1704 case SWAP :
1705 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap */
1706 return 1;
1707 case MOVL :
1708 return 2;
1709 default :
1710 abort ();
1711 }
1712 }
1713
1714 static bool
1715 m68k_rtx_costs (rtx x, int code, int outer_code, int *total)
1716 {
1717 switch (code)
1718 {
1719 case CONST_INT:
1720 /* Constant zero is super cheap due to clr instruction. */
1721 if (x == const0_rtx)
1722 *total = 0;
1723 else
1724 *total = const_int_cost (x);
1725 return true;
1726
1727 case CONST:
1728 case LABEL_REF:
1729 case SYMBOL_REF:
1730 *total = 3;
1731 return true;
1732
1733 case CONST_DOUBLE:
1734 /* Make 0.0 cheaper than other floating constants to
1735 encourage creating tstsf and tstdf insns. */
1736 if (outer_code == COMPARE
1737 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
1738 *total = 4;
1739 else
1740 *total = 5;
1741 return true;
1742
1743 /* These are vaguely right for a 68020. */
1744 /* The costs for long multiply have been adjusted to work properly
1745 in synth_mult on the 68020, relative to an average of the time
1746 for add and the time for shift, taking away a little more because
1747 sometimes move insns are needed. */
1748 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS terms. */
1749 #define MULL_COST (TARGET_68060 ? 2 : TARGET_68040 ? 5 : TARGET_CFV3 ? 3 : TARGET_COLDFIRE ? 10 : 13)
1750 #define MULW_COST (TARGET_68060 ? 2 : TARGET_68040 ? 3 : TARGET_68020 ? 8 : \
1751 TARGET_CFV3 ? 2 : 5)
1752 #define DIVW_COST (TARGET_68020 ? 27 : TARGET_CF_HWDIV ? 11 : 12)
1753
1754 case PLUS:
1755 /* An lea costs about three times as much as a simple add. */
1756 if (GET_MODE (x) == SImode
1757 && GET_CODE (XEXP (x, 1)) == REG
1758 && GET_CODE (XEXP (x, 0)) == MULT
1759 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1760 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
1761 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
1762 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
1763 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
1764 {
1765 /* lea an@(dx:l:i),am */
1766 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
1767 return true;
1768 }
1769 return false;
1770
1771 case ASHIFT:
1772 case ASHIFTRT:
1773 case LSHIFTRT:
1774 if (TARGET_68060)
1775 {
1776 *total = COSTS_N_INSNS(1);
1777 return true;
1778 }
1779 if (! TARGET_68020 && ! TARGET_COLDFIRE)
1780 {
1781 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
1782 {
1783 if (INTVAL (XEXP (x, 1)) < 16)
1784 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
1785 else
1786 /* We're using clrw + swap for these cases. */
1787 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
1788 }
1789 else
1790 *total = COSTS_N_INSNS (10); /* worst case */
1791 return true;
1792 }
1793 /* A shift by a big integer takes an extra instruction. */
1794 if (GET_CODE (XEXP (x, 1)) == CONST_INT
1795 && (INTVAL (XEXP (x, 1)) == 16))
1796 {
1797 *total = COSTS_N_INSNS (2); /* clrw;swap */
1798 return true;
1799 }
1800 if (GET_CODE (XEXP (x, 1)) == CONST_INT
1801 && !(INTVAL (XEXP (x, 1)) > 0
1802 && INTVAL (XEXP (x, 1)) <= 8))
1803 {
1804 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
1805 return true;
1806 }
1807 return false;
1808
1809 case MULT:
1810 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
1811 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
1812 && GET_MODE (x) == SImode)
1813 *total = COSTS_N_INSNS (MULW_COST);
1814 else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
1815 *total = COSTS_N_INSNS (MULW_COST);
1816 else
1817 *total = COSTS_N_INSNS (MULL_COST);
1818 return true;
1819
1820 case DIV:
1821 case UDIV:
1822 case MOD:
1823 case UMOD:
1824 if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
1825 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
1826 else if (TARGET_CF_HWDIV)
1827 *total = COSTS_N_INSNS (18);
1828 else
1829 *total = COSTS_N_INSNS (43); /* div.l */
1830 return true;
1831
1832 default:
1833 return false;
1834 }
1835 }
1836
1837 const char *
1838 output_move_const_into_data_reg (rtx *operands)
1839 {
1840 int i;
1841
1842 i = INTVAL (operands[1]);
1843 switch (const_method (operands[1]))
1844 {
1845 case MOVQ :
1846 return "moveq %1,%0";
1847 case NOTB :
1848 operands[1] = GEN_INT (i ^ 0xff);
1849 return "moveq %1,%0\n\tnot%.b %0";
1850 case NOTW :
1851 operands[1] = GEN_INT (i ^ 0xffff);
1852 return "moveq %1,%0\n\tnot%.w %0";
1853 case NEGW :
1854 return "moveq %#-128,%0\n\tneg%.w %0";
1855 case SWAP :
1856 {
1857 unsigned u = i;
1858
1859 operands[1] = GEN_INT ((u << 16) | (u >> 16));
1860 return "moveq %1,%0\n\tswap %0";
1861 }
1862 case MOVL :
1863 return "move%.l %1,%0";
1864 default :
1865 abort ();
1866 }
1867 }
1868
1869 const char *
1870 output_move_simode_const (rtx *operands)
1871 {
1872 if (operands[1] == const0_rtx
1873 && (DATA_REG_P (operands[0])
1874 || GET_CODE (operands[0]) == MEM)
1875 /* clr insns on 68000 read before writing.
1876 This isn't so on the 68010, but we have no TARGET_68010. */
1877 && ((TARGET_68020 || TARGET_COLDFIRE)
1878 || !(GET_CODE (operands[0]) == MEM
1879 && MEM_VOLATILE_P (operands[0]))))
1880 return "clr%.l %0";
1881 else if (operands[1] == const0_rtx
1882 && ADDRESS_REG_P (operands[0]))
1883 return "sub%.l %0,%0";
1884 else if (DATA_REG_P (operands[0]))
1885 return output_move_const_into_data_reg (operands);
1886 else if (ADDRESS_REG_P (operands[0])
1887 && INTVAL (operands[1]) < 0x8000
1888 && INTVAL (operands[1]) >= -0x8000)
1889 return "move%.w %1,%0";
1890 else if (GET_CODE (operands[0]) == MEM
1891 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
1892 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
1893 && INTVAL (operands[1]) < 0x8000
1894 && INTVAL (operands[1]) >= -0x8000)
1895 return "pea %a1";
1896 return "move%.l %1,%0";
1897 }
1898
1899 const char *
1900 output_move_simode (rtx *operands)
1901 {
1902 if (GET_CODE (operands[1]) == CONST_INT)
1903 return output_move_simode_const (operands);
1904 else if ((GET_CODE (operands[1]) == SYMBOL_REF
1905 || GET_CODE (operands[1]) == CONST)
1906 && push_operand (operands[0], SImode))
1907 return "pea %a1";
1908 else if ((GET_CODE (operands[1]) == SYMBOL_REF
1909 || GET_CODE (operands[1]) == CONST)
1910 && ADDRESS_REG_P (operands[0]))
1911 return "lea %a1,%0";
1912 return "move%.l %1,%0";
1913 }
1914
1915 const char *
1916 output_move_himode (rtx *operands)
1917 {
1918 if (GET_CODE (operands[1]) == CONST_INT)
1919 {
1920 if (operands[1] == const0_rtx
1921 && (DATA_REG_P (operands[0])
1922 || GET_CODE (operands[0]) == MEM)
1923 /* clr insns on 68000 read before writing.
1924 This isn't so on the 68010, but we have no TARGET_68010. */
1925 && ((TARGET_68020 || TARGET_COLDFIRE)
1926 || !(GET_CODE (operands[0]) == MEM
1927 && MEM_VOLATILE_P (operands[0]))))
1928 return "clr%.w %0";
1929 else if (operands[1] == const0_rtx
1930 && ADDRESS_REG_P (operands[0]))
1931 return "sub%.l %0,%0";
1932 else if (DATA_REG_P (operands[0])
1933 && INTVAL (operands[1]) < 128
1934 && INTVAL (operands[1]) >= -128)
1935 {
1936 return "moveq %1,%0";
1937 }
1938 else if (INTVAL (operands[1]) < 0x8000
1939 && INTVAL (operands[1]) >= -0x8000)
1940 return "move%.w %1,%0";
1941 }
1942 else if (CONSTANT_P (operands[1]))
1943 return "move%.l %1,%0";
1944 /* Recognize the insn before a tablejump, one that refers
1945 to a table of offsets. Such an insn will need to refer
1946 to a label on the insn. So output one. Use the label-number
1947 of the table of offsets to generate this label. This code,
1948 and similar code below, assumes that there will be at most one
1949 reference to each table. */
1950 if (GET_CODE (operands[1]) == MEM
1951 && GET_CODE (XEXP (operands[1], 0)) == PLUS
1952 && GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == LABEL_REF
1953 && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) != PLUS)
1954 {
1955 rtx labelref = XEXP (XEXP (operands[1], 0), 1);
1956 #if defined (MOTOROLA) && !defined (SGS_SWITCH_TABLES)
1957 #ifdef SGS
1958 asm_fprintf (asm_out_file, "\tset %LLI%d,.+2\n",
1959 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1960 #else /* not SGS */
1961 asm_fprintf (asm_out_file, "\t.set %LLI%d,.+2\n",
1962 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1963 #endif /* not SGS */
1964 #else /* SGS_SWITCH_TABLES or not MOTOROLA */
1965 (*targetm.asm_out.internal_label) (asm_out_file, "LI",
1966 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1967 #ifdef SGS_SWITCH_TABLES
1968 /* Set flag saying we need to define the symbol
1969 LD%n (with value L%n-LI%n) at the end of the switch table. */
1970 switch_table_difference_label_flag = 1;
1971 #endif /* SGS_SWITCH_TABLES */
1972 #endif /* SGS_SWITCH_TABLES or not MOTOROLA */
1973 }
1974 return "move%.w %1,%0";
1975 }
1976
1977 const char *
1978 output_move_qimode (rtx *operands)
1979 {
1980 rtx xoperands[4];
1981
1982 /* This is probably useless, since it loses for pushing a struct
1983 of several bytes a byte at a time. */
1984 /* 68k family always modifies the stack pointer by at least 2, even for
1985 byte pushes. The 5200 (coldfire) does not do this. */
1986 if (GET_CODE (operands[0]) == MEM
1987 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
1988 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
1989 && ! ADDRESS_REG_P (operands[1])
1990 && ! TARGET_COLDFIRE)
1991 {
1992 xoperands[1] = operands[1];
1993 xoperands[2]
1994 = gen_rtx_MEM (QImode,
1995 gen_rtx_PLUS (VOIDmode, stack_pointer_rtx, const1_rtx));
1996 /* Just pushing a byte puts it in the high byte of the halfword. */
1997 /* We must put it in the low-order, high-numbered byte. */
1998 if (!reg_mentioned_p (stack_pointer_rtx, operands[1]))
1999 {
2000 xoperands[3] = stack_pointer_rtx;
2001 output_asm_insn ("subq%.l %#2,%3\n\tmove%.b %1,%2", xoperands);
2002 }
2003 else
2004 output_asm_insn ("move%.b %1,%-\n\tmove%.b %@,%2", xoperands);
2005 return "";
2006 }
2007
2008 /* clr and st insns on 68000 read before writing.
2009 This isn't so on the 68010, but we have no TARGET_68010. */
2010 if (!ADDRESS_REG_P (operands[0])
2011 && ((TARGET_68020 || TARGET_COLDFIRE)
2012 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
2013 {
2014 if (operands[1] == const0_rtx)
2015 return "clr%.b %0";
2016 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
2017 && GET_CODE (operands[1]) == CONST_INT
2018 && (INTVAL (operands[1]) & 255) == 255)
2019 {
2020 CC_STATUS_INIT;
2021 return "st %0";
2022 }
2023 }
2024 if (GET_CODE (operands[1]) == CONST_INT
2025 && DATA_REG_P (operands[0])
2026 && INTVAL (operands[1]) < 128
2027 && INTVAL (operands[1]) >= -128)
2028 {
2029 return "moveq %1,%0";
2030 }
2031 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
2032 return "sub%.l %0,%0";
2033 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
2034 return "move%.l %1,%0";
2035 /* 68k family (including the 5200 coldfire) does not support byte moves to
2036 from address registers. */
2037 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
2038 return "move%.w %1,%0";
2039 return "move%.b %1,%0";
2040 }
2041
2042 const char *
2043 output_move_stricthi (rtx *operands)
2044 {
2045 if (operands[1] == const0_rtx
2046 /* clr insns on 68000 read before writing.
2047 This isn't so on the 68010, but we have no TARGET_68010. */
2048 && ((TARGET_68020 || TARGET_COLDFIRE)
2049 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
2050 return "clr%.w %0";
2051 return "move%.w %1,%0";
2052 }
2053
2054 const char *
2055 output_move_strictqi (rtx *operands)
2056 {
2057 if (operands[1] == const0_rtx
2058 /* clr insns on 68000 read before writing.
2059 This isn't so on the 68010, but we have no TARGET_68010. */
2060 && ((TARGET_68020 || TARGET_COLDFIRE)
2061 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
2062 return "clr%.b %0";
2063 return "move%.b %1,%0";
2064 }
2065
2066 /* Return the best assembler insn template
2067 for moving operands[1] into operands[0] as a fullword. */
2068
2069 static const char *
2070 singlemove_string (rtx *operands)
2071 {
2072 if (GET_CODE (operands[1]) == CONST_INT)
2073 return output_move_simode_const (operands);
2074 return "move%.l %1,%0";
2075 }
2076
2077
2078 /* Output assembler code to perform a doubleword move insn
2079 with operands OPERANDS. */
2080
2081 const char *
2082 output_move_double (rtx *operands)
2083 {
2084 enum
2085 {
2086 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
2087 } optype0, optype1;
2088 rtx latehalf[2];
2089 rtx middlehalf[2];
2090 rtx xops[2];
2091 rtx addreg0 = 0, addreg1 = 0;
2092 int dest_overlapped_low = 0;
2093 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
2094
2095 middlehalf[0] = 0;
2096 middlehalf[1] = 0;
2097
2098 /* First classify both operands. */
2099
2100 if (REG_P (operands[0]))
2101 optype0 = REGOP;
2102 else if (offsettable_memref_p (operands[0]))
2103 optype0 = OFFSOP;
2104 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
2105 optype0 = POPOP;
2106 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
2107 optype0 = PUSHOP;
2108 else if (GET_CODE (operands[0]) == MEM)
2109 optype0 = MEMOP;
2110 else
2111 optype0 = RNDOP;
2112
2113 if (REG_P (operands[1]))
2114 optype1 = REGOP;
2115 else if (CONSTANT_P (operands[1]))
2116 optype1 = CNSTOP;
2117 else if (offsettable_memref_p (operands[1]))
2118 optype1 = OFFSOP;
2119 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
2120 optype1 = POPOP;
2121 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
2122 optype1 = PUSHOP;
2123 else if (GET_CODE (operands[1]) == MEM)
2124 optype1 = MEMOP;
2125 else
2126 optype1 = RNDOP;
2127
2128 /* Check for the cases that the operand constraints are not
2129 supposed to allow to happen. Abort if we get one,
2130 because generating code for these cases is painful. */
2131
2132 if (optype0 == RNDOP || optype1 == RNDOP)
2133 abort ();
2134
2135 /* If one operand is decrementing and one is incrementing
2136 decrement the former register explicitly
2137 and change that operand into ordinary indexing. */
2138
2139 if (optype0 == PUSHOP && optype1 == POPOP)
2140 {
2141 operands[0] = XEXP (XEXP (operands[0], 0), 0);
2142 if (size == 12)
2143 output_asm_insn ("sub%.l %#12,%0", operands);
2144 else
2145 output_asm_insn ("subq%.l %#8,%0", operands);
2146 if (GET_MODE (operands[1]) == XFmode)
2147 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
2148 else if (GET_MODE (operands[0]) == DFmode)
2149 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
2150 else
2151 operands[0] = gen_rtx_MEM (DImode, operands[0]);
2152 optype0 = OFFSOP;
2153 }
2154 if (optype0 == POPOP && optype1 == PUSHOP)
2155 {
2156 operands[1] = XEXP (XEXP (operands[1], 0), 0);
2157 if (size == 12)
2158 output_asm_insn ("sub%.l %#12,%1", operands);
2159 else
2160 output_asm_insn ("subq%.l %#8,%1", operands);
2161 if (GET_MODE (operands[1]) == XFmode)
2162 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
2163 else if (GET_MODE (operands[1]) == DFmode)
2164 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
2165 else
2166 operands[1] = gen_rtx_MEM (DImode, operands[1]);
2167 optype1 = OFFSOP;
2168 }
2169
2170 /* If an operand is an unoffsettable memory ref, find a register
2171 we can increment temporarily to make it refer to the second word. */
2172
2173 if (optype0 == MEMOP)
2174 addreg0 = find_addr_reg (XEXP (operands[0], 0));
2175
2176 if (optype1 == MEMOP)
2177 addreg1 = find_addr_reg (XEXP (operands[1], 0));
2178
2179 /* Ok, we can do one word at a time.
2180 Normally we do the low-numbered word first,
2181 but if either operand is autodecrementing then we
2182 do the high-numbered word first.
2183
2184 In either case, set up in LATEHALF the operands to use
2185 for the high-numbered word and in some cases alter the
2186 operands in OPERANDS to be suitable for the low-numbered word. */
2187
2188 if (size == 12)
2189 {
2190 if (optype0 == REGOP)
2191 {
2192 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
2193 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2194 }
2195 else if (optype0 == OFFSOP)
2196 {
2197 middlehalf[0] = adjust_address (operands[0], SImode, 4);
2198 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
2199 }
2200 else
2201 {
2202 middlehalf[0] = operands[0];
2203 latehalf[0] = operands[0];
2204 }
2205
2206 if (optype1 == REGOP)
2207 {
2208 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
2209 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
2210 }
2211 else if (optype1 == OFFSOP)
2212 {
2213 middlehalf[1] = adjust_address (operands[1], SImode, 4);
2214 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
2215 }
2216 else if (optype1 == CNSTOP)
2217 {
2218 if (GET_CODE (operands[1]) == CONST_DOUBLE)
2219 {
2220 REAL_VALUE_TYPE r;
2221 long l[3];
2222
2223 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
2224 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
2225 operands[1] = GEN_INT (l[0]);
2226 middlehalf[1] = GEN_INT (l[1]);
2227 latehalf[1] = GEN_INT (l[2]);
2228 }
2229 else if (CONSTANT_P (operands[1]))
2230 {
2231 /* actually, no non-CONST_DOUBLE constant should ever
2232 appear here. */
2233 abort ();
2234 if (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) < 0)
2235 latehalf[1] = constm1_rtx;
2236 else
2237 latehalf[1] = const0_rtx;
2238 }
2239 }
2240 else
2241 {
2242 middlehalf[1] = operands[1];
2243 latehalf[1] = operands[1];
2244 }
2245 }
2246 else
2247 /* size is not 12: */
2248 {
2249 if (optype0 == REGOP)
2250 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2251 else if (optype0 == OFFSOP)
2252 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
2253 else
2254 latehalf[0] = operands[0];
2255
2256 if (optype1 == REGOP)
2257 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
2258 else if (optype1 == OFFSOP)
2259 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
2260 else if (optype1 == CNSTOP)
2261 split_double (operands[1], &operands[1], &latehalf[1]);
2262 else
2263 latehalf[1] = operands[1];
2264 }
2265
2266 /* If insn is effectively movd N(sp),-(sp) then we will do the
2267 high word first. We should use the adjusted operand 1 (which is N+4(sp))
2268 for the low word as well, to compensate for the first decrement of sp. */
2269 if (optype0 == PUSHOP
2270 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
2271 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
2272 operands[1] = middlehalf[1] = latehalf[1];
2273
2274 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
2275 if the upper part of reg N does not appear in the MEM, arrange to
2276 emit the move late-half first. Otherwise, compute the MEM address
2277 into the upper part of N and use that as a pointer to the memory
2278 operand. */
2279 if (optype0 == REGOP
2280 && (optype1 == OFFSOP || optype1 == MEMOP))
2281 {
2282 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
2283
2284 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
2285 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
2286 {
2287 /* If both halves of dest are used in the src memory address,
2288 compute the address into latehalf of dest.
2289 Note that this can't happen if the dest is two data regs. */
2290 compadr:
2291 xops[0] = latehalf[0];
2292 xops[1] = XEXP (operands[1], 0);
2293 output_asm_insn ("lea %a1,%0", xops);
2294 if (GET_MODE (operands[1]) == XFmode )
2295 {
2296 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
2297 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
2298 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
2299 }
2300 else
2301 {
2302 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
2303 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
2304 }
2305 }
2306 else if (size == 12
2307 && reg_overlap_mentioned_p (middlehalf[0],
2308 XEXP (operands[1], 0)))
2309 {
2310 /* Check for two regs used by both source and dest.
2311 Note that this can't happen if the dest is all data regs.
2312 It can happen if the dest is d6, d7, a0.
2313 But in that case, latehalf is an addr reg, so
2314 the code at compadr does ok. */
2315
2316 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
2317 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
2318 goto compadr;
2319
2320 /* JRV says this can't happen: */
2321 if (addreg0 || addreg1)
2322 abort ();
2323
2324 /* Only the middle reg conflicts; simply put it last. */
2325 output_asm_insn (singlemove_string (operands), operands);
2326 output_asm_insn (singlemove_string (latehalf), latehalf);
2327 output_asm_insn (singlemove_string (middlehalf), middlehalf);
2328 return "";
2329 }
2330 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
2331 /* If the low half of dest is mentioned in the source memory
2332 address, the arrange to emit the move late half first. */
2333 dest_overlapped_low = 1;
2334 }
2335
2336 /* If one or both operands autodecrementing,
2337 do the two words, high-numbered first. */
2338
2339 /* Likewise, the first move would clobber the source of the second one,
2340 do them in the other order. This happens only for registers;
2341 such overlap can't happen in memory unless the user explicitly
2342 sets it up, and that is an undefined circumstance. */
2343
2344 if (optype0 == PUSHOP || optype1 == PUSHOP
2345 || (optype0 == REGOP && optype1 == REGOP
2346 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
2347 || REGNO (operands[0]) == REGNO (latehalf[1])))
2348 || dest_overlapped_low)
2349 {
2350 /* Make any unoffsettable addresses point at high-numbered word. */
2351 if (addreg0)
2352 {
2353 if (size == 12)
2354 output_asm_insn ("addq%.l %#8,%0", &addreg0);
2355 else
2356 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2357 }
2358 if (addreg1)
2359 {
2360 if (size == 12)
2361 output_asm_insn ("addq%.l %#8,%0", &addreg1);
2362 else
2363 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2364 }
2365
2366 /* Do that word. */
2367 output_asm_insn (singlemove_string (latehalf), latehalf);
2368
2369 /* Undo the adds we just did. */
2370 if (addreg0)
2371 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2372 if (addreg1)
2373 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2374
2375 if (size == 12)
2376 {
2377 output_asm_insn (singlemove_string (middlehalf), middlehalf);
2378 if (addreg0)
2379 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2380 if (addreg1)
2381 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2382 }
2383
2384 /* Do low-numbered word. */
2385 return singlemove_string (operands);
2386 }
2387
2388 /* Normal case: do the two words, low-numbered first. */
2389
2390 output_asm_insn (singlemove_string (operands), operands);
2391
2392 /* Do the middle one of the three words for long double */
2393 if (size == 12)
2394 {
2395 if (addreg0)
2396 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2397 if (addreg1)
2398 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2399
2400 output_asm_insn (singlemove_string (middlehalf), middlehalf);
2401 }
2402
2403 /* Make any unoffsettable addresses point at high-numbered word. */
2404 if (addreg0)
2405 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2406 if (addreg1)
2407 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2408
2409 /* Do that word. */
2410 output_asm_insn (singlemove_string (latehalf), latehalf);
2411
2412 /* Undo the adds we just did. */
2413 if (addreg0)
2414 {
2415 if (size == 12)
2416 output_asm_insn ("subq%.l %#8,%0", &addreg0);
2417 else
2418 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2419 }
2420 if (addreg1)
2421 {
2422 if (size == 12)
2423 output_asm_insn ("subq%.l %#8,%0", &addreg1);
2424 else
2425 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2426 }
2427
2428 return "";
2429 }
2430
2431 /* Return a REG that occurs in ADDR with coefficient 1.
2432 ADDR can be effectively incremented by incrementing REG. */
2433
2434 static rtx
2435 find_addr_reg (rtx addr)
2436 {
2437 while (GET_CODE (addr) == PLUS)
2438 {
2439 if (GET_CODE (XEXP (addr, 0)) == REG)
2440 addr = XEXP (addr, 0);
2441 else if (GET_CODE (XEXP (addr, 1)) == REG)
2442 addr = XEXP (addr, 1);
2443 else if (CONSTANT_P (XEXP (addr, 0)))
2444 addr = XEXP (addr, 1);
2445 else if (CONSTANT_P (XEXP (addr, 1)))
2446 addr = XEXP (addr, 0);
2447 else
2448 abort ();
2449 }
2450 if (GET_CODE (addr) == REG)
2451 return addr;
2452 abort ();
2453 }
2454
2455 /* Output assembler code to perform a 32 bit 3 operand add. */
2456
2457 const char *
2458 output_addsi3 (rtx *operands)
2459 {
2460 if (! operands_match_p (operands[0], operands[1]))
2461 {
2462 if (!ADDRESS_REG_P (operands[1]))
2463 {
2464 rtx tmp = operands[1];
2465
2466 operands[1] = operands[2];
2467 operands[2] = tmp;
2468 }
2469
2470 /* These insns can result from reloads to access
2471 stack slots over 64k from the frame pointer. */
2472 if (GET_CODE (operands[2]) == CONST_INT
2473 && INTVAL (operands[2]) + 0x8000 >= (unsigned) 0x10000)
2474 return "move%.l %2,%0\n\tadd%.l %1,%0";
2475 #ifdef SGS
2476 if (GET_CODE (operands[2]) == REG)
2477 return "lea 0(%1,%2.l),%0";
2478 else
2479 return "lea %c2(%1),%0";
2480 #elif defined(MOTOROLA)
2481 if (GET_CODE (operands[2]) == REG)
2482 return "lea (%1,%2.l),%0";
2483 else
2484 return "lea (%c2,%1),%0";
2485 #else /* not MOTOROLA (MIT syntax) */
2486 if (GET_CODE (operands[2]) == REG)
2487 return "lea %1@(0,%2:l),%0";
2488 else
2489 return "lea %1@(%c2),%0";
2490 #endif /* not MOTOROLA */
2491 }
2492 if (GET_CODE (operands[2]) == CONST_INT)
2493 {
2494 if (INTVAL (operands[2]) > 0
2495 && INTVAL (operands[2]) <= 8)
2496 return "addq%.l %2,%0";
2497 if (INTVAL (operands[2]) < 0
2498 && INTVAL (operands[2]) >= -8)
2499 {
2500 operands[2] = GEN_INT (- INTVAL (operands[2]));
2501 return "subq%.l %2,%0";
2502 }
2503 /* On the CPU32 it is faster to use two addql instructions to
2504 add a small integer (8 < N <= 16) to a register.
2505 Likewise for subql. */
2506 if (TARGET_CPU32 && REG_P (operands[0]))
2507 {
2508 if (INTVAL (operands[2]) > 8
2509 && INTVAL (operands[2]) <= 16)
2510 {
2511 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
2512 return "addq%.l %#8,%0\n\taddq%.l %2,%0";
2513 }
2514 if (INTVAL (operands[2]) < -8
2515 && INTVAL (operands[2]) >= -16)
2516 {
2517 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
2518 return "subq%.l %#8,%0\n\tsubq%.l %2,%0";
2519 }
2520 }
2521 if (ADDRESS_REG_P (operands[0])
2522 && INTVAL (operands[2]) >= -0x8000
2523 && INTVAL (operands[2]) < 0x8000)
2524 {
2525 if (TARGET_68040)
2526 return "add%.w %2,%0";
2527 else
2528 #ifdef MOTOROLA
2529 return "lea (%c2,%0),%0";
2530 #else
2531 return "lea %0@(%c2),%0";
2532 #endif
2533 }
2534 }
2535 return "add%.l %2,%0";
2536 }
2537 \f
2538 /* Store in cc_status the expressions that the condition codes will
2539 describe after execution of an instruction whose pattern is EXP.
2540 Do not alter them if the instruction would not alter the cc's. */
2541
2542 /* On the 68000, all the insns to store in an address register fail to
2543 set the cc's. However, in some cases these instructions can make it
2544 possibly invalid to use the saved cc's. In those cases we clear out
2545 some or all of the saved cc's so they won't be used. */
2546
2547 void
2548 notice_update_cc (rtx exp, rtx insn)
2549 {
2550 if (GET_CODE (exp) == SET)
2551 {
2552 if (GET_CODE (SET_SRC (exp)) == CALL)
2553 {
2554 CC_STATUS_INIT;
2555 }
2556 else if (ADDRESS_REG_P (SET_DEST (exp)))
2557 {
2558 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
2559 cc_status.value1 = 0;
2560 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
2561 cc_status.value2 = 0;
2562 }
2563 else if (!FP_REG_P (SET_DEST (exp))
2564 && SET_DEST (exp) != cc0_rtx
2565 && (FP_REG_P (SET_SRC (exp))
2566 || GET_CODE (SET_SRC (exp)) == FIX
2567 || GET_CODE (SET_SRC (exp)) == FLOAT_TRUNCATE
2568 || GET_CODE (SET_SRC (exp)) == FLOAT_EXTEND))
2569 {
2570 CC_STATUS_INIT;
2571 }
2572 /* A pair of move insns doesn't produce a useful overall cc. */
2573 else if (!FP_REG_P (SET_DEST (exp))
2574 && !FP_REG_P (SET_SRC (exp))
2575 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
2576 && (GET_CODE (SET_SRC (exp)) == REG
2577 || GET_CODE (SET_SRC (exp)) == MEM
2578 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
2579 {
2580 CC_STATUS_INIT;
2581 }
2582 else if (GET_CODE (SET_SRC (exp)) == CALL)
2583 {
2584 CC_STATUS_INIT;
2585 }
2586 else if (XEXP (exp, 0) != pc_rtx)
2587 {
2588 cc_status.flags = 0;
2589 cc_status.value1 = XEXP (exp, 0);
2590 cc_status.value2 = XEXP (exp, 1);
2591 }
2592 }
2593 else if (GET_CODE (exp) == PARALLEL
2594 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
2595 {
2596 if (ADDRESS_REG_P (XEXP (XVECEXP (exp, 0, 0), 0)))
2597 CC_STATUS_INIT;
2598 else if (XEXP (XVECEXP (exp, 0, 0), 0) != pc_rtx)
2599 {
2600 cc_status.flags = 0;
2601 cc_status.value1 = XEXP (XVECEXP (exp, 0, 0), 0);
2602 cc_status.value2 = XEXP (XVECEXP (exp, 0, 0), 1);
2603 }
2604 }
2605 else
2606 CC_STATUS_INIT;
2607 if (cc_status.value2 != 0
2608 && ADDRESS_REG_P (cc_status.value2)
2609 && GET_MODE (cc_status.value2) == QImode)
2610 CC_STATUS_INIT;
2611 if (cc_status.value2 != 0)
2612 switch (GET_CODE (cc_status.value2))
2613 {
2614 case PLUS: case MINUS: case MULT:
2615 case DIV: case UDIV: case MOD: case UMOD: case NEG:
2616 #if 0 /* These instructions always clear the overflow bit */
2617 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
2618 case ROTATE: case ROTATERT:
2619 #endif
2620 if (GET_MODE (cc_status.value2) != VOIDmode)
2621 cc_status.flags |= CC_NO_OVERFLOW;
2622 break;
2623 case ZERO_EXTEND:
2624 /* (SET r1 (ZERO_EXTEND r2)) on this machine
2625 ends with a move insn moving r2 in r2's mode.
2626 Thus, the cc's are set for r2.
2627 This can set N bit spuriously. */
2628 cc_status.flags |= CC_NOT_NEGATIVE;
2629
2630 default:
2631 break;
2632 }
2633 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
2634 && cc_status.value2
2635 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
2636 cc_status.value2 = 0;
2637 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
2638 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
2639 cc_status.flags = CC_IN_68881;
2640 }
2641 \f
2642 const char *
2643 output_move_const_double (rtx *operands)
2644 {
2645 int code = standard_68881_constant_p (operands[1]);
2646
2647 if (code != 0)
2648 {
2649 static char buf[40];
2650
2651 sprintf (buf, "fmovecr %%#0x%x,%%0", code & 0xff);
2652 return buf;
2653 }
2654 return "fmove%.d %1,%0";
2655 }
2656
2657 const char *
2658 output_move_const_single (rtx *operands)
2659 {
2660 int code = standard_68881_constant_p (operands[1]);
2661
2662 if (code != 0)
2663 {
2664 static char buf[40];
2665
2666 sprintf (buf, "fmovecr %%#0x%x,%%0", code & 0xff);
2667 return buf;
2668 }
2669 return "fmove%.s %f1,%0";
2670 }
2671
2672 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
2673 from the "fmovecr" instruction.
2674 The value, anded with 0xff, gives the code to use in fmovecr
2675 to get the desired constant. */
2676
2677 /* This code has been fixed for cross-compilation. */
2678
2679 static int inited_68881_table = 0;
2680
2681 static const char *const strings_68881[7] = {
2682 "0.0",
2683 "1.0",
2684 "10.0",
2685 "100.0",
2686 "10000.0",
2687 "1e8",
2688 "1e16"
2689 };
2690
2691 static const int codes_68881[7] = {
2692 0x0f,
2693 0x32,
2694 0x33,
2695 0x34,
2696 0x35,
2697 0x36,
2698 0x37
2699 };
2700
2701 REAL_VALUE_TYPE values_68881[7];
2702
2703 /* Set up values_68881 array by converting the decimal values
2704 strings_68881 to binary. */
2705
2706 void
2707 init_68881_table (void)
2708 {
2709 int i;
2710 REAL_VALUE_TYPE r;
2711 enum machine_mode mode;
2712
2713 mode = SFmode;
2714 for (i = 0; i < 7; i++)
2715 {
2716 if (i == 6)
2717 mode = DFmode;
2718 r = REAL_VALUE_ATOF (strings_68881[i], mode);
2719 values_68881[i] = r;
2720 }
2721 inited_68881_table = 1;
2722 }
2723
2724 int
2725 standard_68881_constant_p (rtx x)
2726 {
2727 REAL_VALUE_TYPE r;
2728 int i;
2729
2730 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
2731 used at all on those chips. */
2732 if (TARGET_68040 || TARGET_68060)
2733 return 0;
2734
2735 if (! inited_68881_table)
2736 init_68881_table ();
2737
2738 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2739
2740 /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
2741 is rejected. */
2742 for (i = 0; i < 6; i++)
2743 {
2744 if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
2745 return (codes_68881[i]);
2746 }
2747
2748 if (GET_MODE (x) == SFmode)
2749 return 0;
2750
2751 if (REAL_VALUES_EQUAL (r, values_68881[6]))
2752 return (codes_68881[6]);
2753
2754 /* larger powers of ten in the constants ram are not used
2755 because they are not equal to a `double' C constant. */
2756 return 0;
2757 }
2758
2759 /* If X is a floating-point constant, return the logarithm of X base 2,
2760 or 0 if X is not a power of 2. */
2761
2762 int
2763 floating_exact_log2 (rtx x)
2764 {
2765 REAL_VALUE_TYPE r, r1;
2766 int exp;
2767
2768 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2769
2770 if (REAL_VALUES_LESS (r, dconst1))
2771 return 0;
2772
2773 exp = real_exponent (&r);
2774 real_2expN (&r1, exp);
2775 if (REAL_VALUES_EQUAL (r1, r))
2776 return exp;
2777
2778 return 0;
2779 }
2780 \f
2781 /* A C compound statement to output to stdio stream STREAM the
2782 assembler syntax for an instruction operand X. X is an RTL
2783 expression.
2784
2785 CODE is a value that can be used to specify one of several ways
2786 of printing the operand. It is used when identical operands
2787 must be printed differently depending on the context. CODE
2788 comes from the `%' specification that was used to request
2789 printing of the operand. If the specification was just `%DIGIT'
2790 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2791 is the ASCII code for LTR.
2792
2793 If X is a register, this macro should print the register's name.
2794 The names can be found in an array `reg_names' whose type is
2795 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
2796
2797 When the machine description has a specification `%PUNCT' (a `%'
2798 followed by a punctuation character), this macro is called with
2799 a null pointer for X and the punctuation character for CODE.
2800
2801 The m68k specific codes are:
2802
2803 '.' for dot needed in Motorola-style opcode names.
2804 '-' for an operand pushing on the stack:
2805 sp@-, -(sp) or -(%sp) depending on the style of syntax.
2806 '+' for an operand pushing on the stack:
2807 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
2808 '@' for a reference to the top word on the stack:
2809 sp@, (sp) or (%sp) depending on the style of syntax.
2810 '#' for an immediate operand prefix (# in MIT and Motorola syntax
2811 but & in SGS syntax).
2812 '!' for the cc register (used in an `and to cc' insn).
2813 '$' for the letter `s' in an op code, but only on the 68040.
2814 '&' for the letter `d' in an op code, but only on the 68040.
2815 '/' for register prefix needed by longlong.h.
2816
2817 'b' for byte insn (no effect, on the Sun; this is for the ISI).
2818 'd' to force memory addressing to be absolute, not relative.
2819 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
2820 'o' for operands to go directly to output_operand_address (bypassing
2821 print_operand_address--used only for SYMBOL_REFs under TARGET_PCREL)
2822 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
2823 or print pair of registers as rx:ry.
2824
2825 */
2826
2827 void
2828 print_operand (FILE *file, rtx op, int letter)
2829 {
2830 if (letter == '.')
2831 {
2832 #if defined (MOTOROLA)
2833 fprintf (file, ".");
2834 #endif
2835 }
2836 else if (letter == '#')
2837 {
2838 asm_fprintf (file, "%I");
2839 }
2840 else if (letter == '-')
2841 {
2842 #ifdef MOTOROLA
2843 asm_fprintf (file, "-(%Rsp)");
2844 #else
2845 asm_fprintf (file, "%Rsp@-");
2846 #endif
2847 }
2848 else if (letter == '+')
2849 {
2850 #ifdef MOTOROLA
2851 asm_fprintf (file, "(%Rsp)+");
2852 #else
2853 asm_fprintf (file, "%Rsp@+");
2854 #endif
2855 }
2856 else if (letter == '@')
2857 {
2858 #ifdef MOTOROLA
2859 asm_fprintf (file, "(%Rsp)");
2860 #else
2861 asm_fprintf (file, "%Rsp@");
2862 #endif
2863 }
2864 else if (letter == '!')
2865 {
2866 asm_fprintf (file, "%Rfpcr");
2867 }
2868 else if (letter == '$')
2869 {
2870 if (TARGET_68040_ONLY)
2871 {
2872 fprintf (file, "s");
2873 }
2874 }
2875 else if (letter == '&')
2876 {
2877 if (TARGET_68040_ONLY)
2878 {
2879 fprintf (file, "d");
2880 }
2881 }
2882 else if (letter == '/')
2883 {
2884 asm_fprintf (file, "%R");
2885 }
2886 else if (letter == 'o')
2887 {
2888 /* This is only for direct addresses with TARGET_PCREL */
2889 if (GET_CODE (op) != MEM || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
2890 || !TARGET_PCREL)
2891 abort ();
2892 output_addr_const (file, XEXP (op, 0));
2893 }
2894 else if (GET_CODE (op) == REG)
2895 {
2896 if (letter == 'R')
2897 /* Print out the second register name of a register pair.
2898 I.e., R (6) => 7. */
2899 fputs (reg_names[REGNO (op) + 1], file);
2900 else
2901 fputs (reg_names[REGNO (op)], file);
2902 }
2903 else if (GET_CODE (op) == MEM)
2904 {
2905 output_address (XEXP (op, 0));
2906 if (letter == 'd' && ! TARGET_68020
2907 && CONSTANT_ADDRESS_P (XEXP (op, 0))
2908 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
2909 && INTVAL (XEXP (op, 0)) < 0x8000
2910 && INTVAL (XEXP (op, 0)) >= -0x8000))
2911 {
2912 #ifdef MOTOROLA
2913 fprintf (file, ".l");
2914 #else
2915 fprintf (file, ":l");
2916 #endif
2917 }
2918 }
2919 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
2920 {
2921 REAL_VALUE_TYPE r;
2922 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2923 ASM_OUTPUT_FLOAT_OPERAND (letter, file, r);
2924 }
2925 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
2926 {
2927 REAL_VALUE_TYPE r;
2928 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2929 ASM_OUTPUT_LONG_DOUBLE_OPERAND (file, r);
2930 }
2931 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
2932 {
2933 REAL_VALUE_TYPE r;
2934 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2935 ASM_OUTPUT_DOUBLE_OPERAND (file, r);
2936 }
2937 else
2938 {
2939 /* Use `print_operand_address' instead of `output_addr_const'
2940 to ensure that we print relevant PIC stuff. */
2941 asm_fprintf (file, "%I");
2942 if (TARGET_PCREL
2943 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
2944 print_operand_address (file, op);
2945 else
2946 output_addr_const (file, op);
2947 }
2948 }
2949
2950 \f
2951 /* A C compound statement to output to stdio stream STREAM the
2952 assembler syntax for an instruction operand that is a memory
2953 reference whose address is ADDR. ADDR is an RTL expression.
2954
2955 Note that this contains a kludge that knows that the only reason
2956 we have an address (plus (label_ref...) (reg...)) when not generating
2957 PIC code is in the insn before a tablejump, and we know that m68k.md
2958 generates a label LInnn: on such an insn.
2959
2960 It is possible for PIC to generate a (plus (label_ref...) (reg...))
2961 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
2962
2963 Some SGS assemblers have a bug such that "Lnnn-LInnn-2.b(pc,d0.l*2)"
2964 fails to assemble. Luckily "Lnnn(pc,d0.l*2)" produces the results
2965 we want. This difference can be accommodated by using an assembler
2966 define such "LDnnn" to be either "Lnnn-LInnn-2.b", "Lnnn", or any other
2967 string, as necessary. This is accomplished via the ASM_OUTPUT_CASE_END
2968 macro. See m68k/sgs.h for an example; for versions without the bug.
2969 Some assemblers refuse all the above solutions. The workaround is to
2970 emit "K(pc,d0.l*2)" with K being a small constant known to give the
2971 right behavior.
2972
2973 They also do not like things like "pea 1.w", so we simple leave off
2974 the .w on small constants.
2975
2976 This routine is responsible for distinguishing between -fpic and -fPIC
2977 style relocations in an address. When generating -fpic code the
2978 offset is output in word mode (eg movel a5@(_foo:w), a0). When generating
2979 -fPIC code the offset is output in long mode (eg movel a5@(_foo:l), a0) */
2980
2981 #ifndef ASM_OUTPUT_CASE_FETCH
2982 #ifdef MOTOROLA
2983 #ifdef SGS
2984 #define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2985 asm_fprintf (file, "%LLD%d(%Rpc,%s.", labelno, regname)
2986 #else
2987 #define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2988 asm_fprintf (file, "%LL%d-%LLI%d.b(%Rpc,%s.", labelno, labelno, regname)
2989 #endif
2990 #else
2991 #define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2992 asm_fprintf (file, "%Rpc@(%LL%d-%LLI%d-2:b,%s:", labelno, labelno, regname)
2993 #endif
2994 #endif /* ASM_OUTPUT_CASE_FETCH */
2995
2996 void
2997 print_operand_address (FILE *file, rtx addr)
2998 {
2999 register rtx reg1, reg2, breg, ireg;
3000 rtx offset;
3001
3002 switch (GET_CODE (addr))
3003 {
3004 case REG:
3005 #ifdef MOTOROLA
3006 fprintf (file, "(%s)", reg_names[REGNO (addr)]);
3007 #else
3008 fprintf (file, "%s@", reg_names[REGNO (addr)]);
3009 #endif
3010 break;
3011 case PRE_DEC:
3012 #ifdef MOTOROLA
3013 fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
3014 #else
3015 fprintf (file, "%s@-", reg_names[REGNO (XEXP (addr, 0))]);
3016 #endif
3017 break;
3018 case POST_INC:
3019 #ifdef MOTOROLA
3020 fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
3021 #else
3022 fprintf (file, "%s@+", reg_names[REGNO (XEXP (addr, 0))]);
3023 #endif
3024 break;
3025 case PLUS:
3026 reg1 = reg2 = ireg = breg = offset = 0;
3027 if (CONSTANT_ADDRESS_P (XEXP (addr, 0)))
3028 {
3029 offset = XEXP (addr, 0);
3030 addr = XEXP (addr, 1);
3031 }
3032 else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)))
3033 {
3034 offset = XEXP (addr, 1);
3035 addr = XEXP (addr, 0);
3036 }
3037 if (GET_CODE (addr) != PLUS)
3038 {
3039 ;
3040 }
3041 else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND)
3042 {
3043 reg1 = XEXP (addr, 0);
3044 addr = XEXP (addr, 1);
3045 }
3046 else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND)
3047 {
3048 reg1 = XEXP (addr, 1);
3049 addr = XEXP (addr, 0);
3050 }
3051 else if (GET_CODE (XEXP (addr, 0)) == MULT)
3052 {
3053 reg1 = XEXP (addr, 0);
3054 addr = XEXP (addr, 1);
3055 }
3056 else if (GET_CODE (XEXP (addr, 1)) == MULT)
3057 {
3058 reg1 = XEXP (addr, 1);
3059 addr = XEXP (addr, 0);
3060 }
3061 else if (GET_CODE (XEXP (addr, 0)) == REG)
3062 {
3063 reg1 = XEXP (addr, 0);
3064 addr = XEXP (addr, 1);
3065 }
3066 else if (GET_CODE (XEXP (addr, 1)) == REG)
3067 {
3068 reg1 = XEXP (addr, 1);
3069 addr = XEXP (addr, 0);
3070 }
3071 if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT
3072 || GET_CODE (addr) == SIGN_EXTEND)
3073 {
3074 if (reg1 == 0)
3075 {
3076 reg1 = addr;
3077 }
3078 else
3079 {
3080 reg2 = addr;
3081 }
3082 addr = 0;
3083 }
3084 #if 0 /* for OLD_INDEXING */
3085 else if (GET_CODE (addr) == PLUS)
3086 {
3087 if (GET_CODE (XEXP (addr, 0)) == REG)
3088 {
3089 reg2 = XEXP (addr, 0);
3090 addr = XEXP (addr, 1);
3091 }
3092 else if (GET_CODE (XEXP (addr, 1)) == REG)
3093 {
3094 reg2 = XEXP (addr, 1);
3095 addr = XEXP (addr, 0);
3096 }
3097 }
3098 #endif
3099 if (offset != 0)
3100 {
3101 if (addr != 0)
3102 {
3103 abort ();
3104 }
3105 addr = offset;
3106 }
3107 if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND
3108 || GET_CODE (reg1) == MULT))
3109 || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2))))
3110 {
3111 breg = reg2;
3112 ireg = reg1;
3113 }
3114 else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1)))
3115 {
3116 breg = reg1;
3117 ireg = reg2;
3118 }
3119 if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF
3120 && ! (flag_pic && ireg == pic_offset_table_rtx))
3121 {
3122 int scale = 1;
3123 if (GET_CODE (ireg) == MULT)
3124 {
3125 scale = INTVAL (XEXP (ireg, 1));
3126 ireg = XEXP (ireg, 0);
3127 }
3128 if (GET_CODE (ireg) == SIGN_EXTEND)
3129 {
3130 ASM_OUTPUT_CASE_FETCH (file,
3131 CODE_LABEL_NUMBER (XEXP (addr, 0)),
3132 reg_names[REGNO (XEXP (ireg, 0))]);
3133 fprintf (file, "w");
3134 }
3135 else
3136 {
3137 ASM_OUTPUT_CASE_FETCH (file,
3138 CODE_LABEL_NUMBER (XEXP (addr, 0)),
3139 reg_names[REGNO (ireg)]);
3140 fprintf (file, "l");
3141 }
3142 if (scale != 1)
3143 {
3144 #ifdef MOTOROLA
3145 fprintf (file, "*%d", scale);
3146 #else
3147 fprintf (file, ":%d", scale);
3148 #endif
3149 }
3150 putc (')', file);
3151 break;
3152 }
3153 if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF
3154 && ! (flag_pic && breg == pic_offset_table_rtx))
3155 {
3156 ASM_OUTPUT_CASE_FETCH (file,
3157 CODE_LABEL_NUMBER (XEXP (addr, 0)),
3158 reg_names[REGNO (breg)]);
3159 fprintf (file, "l)");
3160 break;
3161 }
3162 if (ireg != 0 || breg != 0)
3163 {
3164 int scale = 1;
3165 if (breg == 0)
3166 {
3167 abort ();
3168 }
3169 if (! flag_pic && addr && GET_CODE (addr) == LABEL_REF)
3170 {
3171 abort ();
3172 }
3173 #ifdef MOTOROLA
3174 if (addr != 0)
3175 {
3176 output_addr_const (file, addr);
3177 if (flag_pic && (breg == pic_offset_table_rtx))
3178 {
3179 fprintf (file, "@GOT");
3180 if (flag_pic == 1)
3181 fprintf (file, ".w");
3182 }
3183 }
3184 fprintf (file, "(%s", reg_names[REGNO (breg)]);
3185 if (ireg != 0)
3186 {
3187 putc (',', file);
3188 }
3189 #else
3190 fprintf (file, "%s@(", reg_names[REGNO (breg)]);
3191 if (addr != 0)
3192 {
3193 output_addr_const (file, addr);
3194 if ((flag_pic == 1) && (breg == pic_offset_table_rtx))
3195 fprintf (file, ":w");
3196 if ((flag_pic == 2) && (breg == pic_offset_table_rtx))
3197 fprintf (file, ":l");
3198 }
3199 if (addr != 0 && ireg != 0)
3200 {
3201 putc (',', file);
3202 }
3203 #endif
3204 if (ireg != 0 && GET_CODE (ireg) == MULT)
3205 {
3206 scale = INTVAL (XEXP (ireg, 1));
3207 ireg = XEXP (ireg, 0);
3208 }
3209 if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND)
3210 {
3211 #ifdef MOTOROLA
3212 fprintf (file, "%s.w", reg_names[REGNO (XEXP (ireg, 0))]);
3213 #else
3214 fprintf (file, "%s:w", reg_names[REGNO (XEXP (ireg, 0))]);
3215 #endif
3216 }
3217 else if (ireg != 0)
3218 {
3219 #ifdef MOTOROLA
3220 fprintf (file, "%s.l", reg_names[REGNO (ireg)]);
3221 #else
3222 fprintf (file, "%s:l", reg_names[REGNO (ireg)]);
3223 #endif
3224 }
3225 if (scale != 1)
3226 {
3227 #ifdef MOTOROLA
3228 fprintf (file, "*%d", scale);
3229 #else
3230 fprintf (file, ":%d", scale);
3231 #endif
3232 }
3233 putc (')', file);
3234 break;
3235 }
3236 else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF
3237 && ! (flag_pic && reg1 == pic_offset_table_rtx))
3238 {
3239 ASM_OUTPUT_CASE_FETCH (file,
3240 CODE_LABEL_NUMBER (XEXP (addr, 0)),
3241 reg_names[REGNO (reg1)]);
3242 fprintf (file, "l)");
3243 break;
3244 }
3245 /* FALL-THROUGH (is this really what we want?) */
3246 default:
3247 if (GET_CODE (addr) == CONST_INT
3248 && INTVAL (addr) < 0x8000
3249 && INTVAL (addr) >= -0x8000)
3250 {
3251 #ifdef MOTOROLA
3252 #ifdef SGS
3253 /* Many SGS assemblers croak on size specifiers for constants. */
3254 fprintf (file, "%d", (int) INTVAL (addr));
3255 #else
3256 fprintf (file, "%d.w", (int) INTVAL (addr));
3257 #endif
3258 #else
3259 fprintf (file, "%d:w", (int) INTVAL (addr));
3260 #endif
3261 }
3262 else if (GET_CODE (addr) == CONST_INT)
3263 {
3264 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
3265 }
3266 else if (TARGET_PCREL)
3267 {
3268 fputc ('(', file);
3269 output_addr_const (file, addr);
3270 if (flag_pic == 1)
3271 asm_fprintf (file, ":w,%Rpc)");
3272 else
3273 asm_fprintf (file, ":l,%Rpc)");
3274 }
3275 else
3276 {
3277 /* Special case for SYMBOL_REF if the symbol name ends in
3278 `.<letter>', this can be mistaken as a size suffix. Put
3279 the name in parentheses. */
3280 if (GET_CODE (addr) == SYMBOL_REF
3281 && strlen (XSTR (addr, 0)) > 2
3282 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
3283 {
3284 putc ('(', file);
3285 output_addr_const (file, addr);
3286 putc (')', file);
3287 }
3288 else
3289 output_addr_const (file, addr);
3290 }
3291 break;
3292 }
3293 }
3294 \f
3295 /* Check for cases where a clr insns can be omitted from code using
3296 strict_low_part sets. For example, the second clrl here is not needed:
3297 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
3298
3299 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
3300 insn we are checking for redundancy. TARGET is the register set by the
3301 clear insn. */
3302
3303 bool
3304 strict_low_part_peephole_ok (enum machine_mode mode, rtx first_insn,
3305 rtx target)
3306 {
3307 rtx p;
3308
3309 p = prev_nonnote_insn (first_insn);
3310
3311 while (p)
3312 {
3313 /* If it isn't an insn, then give up. */
3314 if (GET_CODE (p) != INSN)
3315 return false;
3316
3317 if (reg_set_p (target, p))
3318 {
3319 rtx set = single_set (p);
3320 rtx dest;
3321
3322 /* If it isn't an easy to recognize insn, then give up. */
3323 if (! set)
3324 return false;
3325
3326 dest = SET_DEST (set);
3327
3328 /* If this sets the entire target register to zero, then our
3329 first_insn is redundant. */
3330 if (rtx_equal_p (dest, target)
3331 && SET_SRC (set) == const0_rtx)
3332 return true;
3333 else if (GET_CODE (dest) == STRICT_LOW_PART
3334 && GET_CODE (XEXP (dest, 0)) == REG
3335 && REGNO (XEXP (dest, 0)) == REGNO (target)
3336 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
3337 <= GET_MODE_SIZE (mode)))
3338 /* This is a strict low part set which modifies less than
3339 we are using, so it is safe. */
3340 ;
3341 else
3342 return false;
3343 }
3344
3345 p = prev_nonnote_insn (p);
3346
3347 }
3348
3349 return false;
3350 }
3351
3352 /* Accept integer operands in the range 0..0xffffffff. We have to check the
3353 range carefully since this predicate is used in DImode contexts. Also, we
3354 need some extra crud to make it work when hosted on 64-bit machines. */
3355
3356 int
3357 const_uint32_operand (rtx op, enum machine_mode mode)
3358 {
3359 /* It doesn't make sense to ask this question with a mode that is
3360 not larger than 32 bits. */
3361 if (GET_MODE_BITSIZE (mode) <= 32)
3362 abort ();
3363
3364 #if HOST_BITS_PER_WIDE_INT > 32
3365 /* All allowed constants will fit a CONST_INT. */
3366 return (GET_CODE (op) == CONST_INT
3367 && (INTVAL (op) >= 0 && INTVAL (op) <= 0xffffffffL));
3368 #else
3369 return (GET_CODE (op) == CONST_INT
3370 || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0));
3371 #endif
3372 }
3373
3374 /* Accept integer operands in the range -0x80000000..0x7fffffff. We have
3375 to check the range carefully since this predicate is used in DImode
3376 contexts. */
3377
3378 int
3379 const_sint32_operand (rtx op, enum machine_mode mode)
3380 {
3381 /* It doesn't make sense to ask this question with a mode that is
3382 not larger than 32 bits. */
3383 if (GET_MODE_BITSIZE (mode) <= 32)
3384 abort ();
3385
3386 /* All allowed constants will fit a CONST_INT. */
3387 return (GET_CODE (op) == CONST_INT
3388 && (INTVAL (op) >= (-0x7fffffff - 1) && INTVAL (op) <= 0x7fffffff));
3389 }
3390
3391 /* Operand predicates for implementing asymmetric pc-relative addressing
3392 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
3393 when used as a source operand, but not as a destination operand.
3394
3395 We model this by restricting the meaning of the basic predicates
3396 (general_operand, memory_operand, etc) to forbid the use of this
3397 addressing mode, and then define the following predicates that permit
3398 this addressing mode. These predicates can then be used for the
3399 source operands of the appropriate instructions.
3400
3401 n.b. While it is theoretically possible to change all machine patterns
3402 to use this addressing more where permitted by the architecture,
3403 it has only been implemented for "common" cases: SImode, HImode, and
3404 QImode operands, and only for the principle operations that would
3405 require this addressing mode: data movement and simple integer operations.
3406
3407 In parallel with these new predicates, two new constraint letters
3408 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
3409 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
3410 In the pcrel case 's' is only valid in combination with 'a' registers.
3411 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
3412 of how these constraints are used.
3413
3414 The use of these predicates is strictly optional, though patterns that
3415 don't will cause an extra reload register to be allocated where one
3416 was not necessary:
3417
3418 lea (abc:w,%pc),%a0 ; need to reload address
3419 moveq &1,%d1 ; since write to pc-relative space
3420 movel %d1,%a0@ ; is not allowed
3421 ...
3422 lea (abc:w,%pc),%a1 ; no need to reload address here
3423 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
3424
3425 For more info, consult tiemann@cygnus.com.
3426
3427
3428 All of the ugliness with predicates and constraints is due to the
3429 simple fact that the m68k does not allow a pc-relative addressing
3430 mode as a destination. gcc does not distinguish between source and
3431 destination addresses. Hence, if we claim that pc-relative address
3432 modes are valid, e.g. GO_IF_LEGITIMATE_ADDRESS accepts them, then we
3433 end up with invalid code. To get around this problem, we left
3434 pc-relative modes as invalid addresses, and then added special
3435 predicates and constraints to accept them.
3436
3437 A cleaner way to handle this is to modify gcc to distinguish
3438 between source and destination addresses. We can then say that
3439 pc-relative is a valid source address but not a valid destination
3440 address, and hopefully avoid a lot of the predicate and constraint
3441 hackery. Unfortunately, this would be a pretty big change. It would
3442 be a useful change for a number of ports, but there aren't any current
3443 plans to undertake this.
3444
3445 ***************************************************************************/
3446
3447
3448 /* Special case of a general operand that's used as a source operand.
3449 Use this to permit reads from PC-relative memory when -mpcrel
3450 is specified. */
3451
3452 int
3453 general_src_operand (rtx op, enum machine_mode mode)
3454 {
3455 if (TARGET_PCREL
3456 && GET_CODE (op) == MEM
3457 && (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
3458 || GET_CODE (XEXP (op, 0)) == LABEL_REF
3459 || GET_CODE (XEXP (op, 0)) == CONST))
3460 return 1;
3461 return general_operand (op, mode);
3462 }
3463
3464 /* Special case of a nonimmediate operand that's used as a source.
3465 Use this to permit reads from PC-relative memory when -mpcrel
3466 is specified. */
3467
3468 int
3469 nonimmediate_src_operand (rtx op, enum machine_mode mode)
3470 {
3471 if (TARGET_PCREL && GET_CODE (op) == MEM
3472 && (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
3473 || GET_CODE (XEXP (op, 0)) == LABEL_REF
3474 || GET_CODE (XEXP (op, 0)) == CONST))
3475 return 1;
3476 return nonimmediate_operand (op, mode);
3477 }
3478
3479 /* Special case of a memory operand that's used as a source.
3480 Use this to permit reads from PC-relative memory when -mpcrel
3481 is specified. */
3482
3483 int
3484 memory_src_operand (rtx op, enum machine_mode mode)
3485 {
3486 if (TARGET_PCREL && GET_CODE (op) == MEM
3487 && (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
3488 || GET_CODE (XEXP (op, 0)) == LABEL_REF
3489 || GET_CODE (XEXP (op, 0)) == CONST))
3490 return 1;
3491 return memory_operand (op, mode);
3492 }
3493
3494 /* Predicate that accepts only a pc-relative address. This is needed
3495 because pc-relative addresses don't satisfy the predicate
3496 "general_src_operand". */
3497
3498 int
3499 pcrel_address (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3500 {
3501 return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF
3502 || GET_CODE (op) == CONST);
3503 }
3504
3505 const char *
3506 output_andsi3 (rtx *operands)
3507 {
3508 int logval;
3509 if (GET_CODE (operands[2]) == CONST_INT
3510 && (INTVAL (operands[2]) | 0xffff) == 0xffffffff
3511 && (DATA_REG_P (operands[0])
3512 || offsettable_memref_p (operands[0]))
3513 && !TARGET_COLDFIRE)
3514 {
3515 if (GET_CODE (operands[0]) != REG)
3516 operands[0] = adjust_address (operands[0], HImode, 2);
3517 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
3518 /* Do not delete a following tstl %0 insn; that would be incorrect. */
3519 CC_STATUS_INIT;
3520 if (operands[2] == const0_rtx)
3521 return "clr%.w %0";
3522 return "and%.w %2,%0";
3523 }
3524 if (GET_CODE (operands[2]) == CONST_INT
3525 && (logval = exact_log2 (~ INTVAL (operands[2]))) >= 0
3526 && (DATA_REG_P (operands[0])
3527 || offsettable_memref_p (operands[0])))
3528 {
3529 if (DATA_REG_P (operands[0]))
3530 {
3531 operands[1] = GEN_INT (logval);
3532 }
3533 else
3534 {
3535 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
3536 operands[1] = GEN_INT (logval % 8);
3537 }
3538 /* This does not set condition codes in a standard way. */
3539 CC_STATUS_INIT;
3540 return "bclr %1,%0";
3541 }
3542 return "and%.l %2,%0";
3543 }
3544
3545 const char *
3546 output_iorsi3 (rtx *operands)
3547 {
3548 register int logval;
3549 if (GET_CODE (operands[2]) == CONST_INT
3550 && INTVAL (operands[2]) >> 16 == 0
3551 && (DATA_REG_P (operands[0])
3552 || offsettable_memref_p (operands[0]))
3553 && !TARGET_COLDFIRE)
3554 {
3555 if (GET_CODE (operands[0]) != REG)
3556 operands[0] = adjust_address (operands[0], HImode, 2);
3557 /* Do not delete a following tstl %0 insn; that would be incorrect. */
3558 CC_STATUS_INIT;
3559 if (INTVAL (operands[2]) == 0xffff)
3560 return "mov%.w %2,%0";
3561 return "or%.w %2,%0";
3562 }
3563 if (GET_CODE (operands[2]) == CONST_INT
3564 && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
3565 && (DATA_REG_P (operands[0])
3566 || offsettable_memref_p (operands[0])))
3567 {
3568 if (DATA_REG_P (operands[0]))
3569 operands[1] = GEN_INT (logval);
3570 else
3571 {
3572 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
3573 operands[1] = GEN_INT (logval % 8);
3574 }
3575 CC_STATUS_INIT;
3576 return "bset %1,%0";
3577 }
3578 return "or%.l %2,%0";
3579 }
3580
3581 const char *
3582 output_xorsi3 (rtx *operands)
3583 {
3584 register int logval;
3585 if (GET_CODE (operands[2]) == CONST_INT
3586 && INTVAL (operands[2]) >> 16 == 0
3587 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
3588 && !TARGET_COLDFIRE)
3589 {
3590 if (! DATA_REG_P (operands[0]))
3591 operands[0] = adjust_address (operands[0], HImode, 2);
3592 /* Do not delete a following tstl %0 insn; that would be incorrect. */
3593 CC_STATUS_INIT;
3594 if (INTVAL (operands[2]) == 0xffff)
3595 return "not%.w %0";
3596 return "eor%.w %2,%0";
3597 }
3598 if (GET_CODE (operands[2]) == CONST_INT
3599 && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
3600 && (DATA_REG_P (operands[0])
3601 || offsettable_memref_p (operands[0])))
3602 {
3603 if (DATA_REG_P (operands[0]))
3604 operands[1] = GEN_INT (logval);
3605 else
3606 {
3607 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
3608 operands[1] = GEN_INT (logval % 8);
3609 }
3610 CC_STATUS_INIT;
3611 return "bchg %1,%0";
3612 }
3613 return "eor%.l %2,%0";
3614 }
3615
3616 #ifdef M68K_TARGET_COFF
3617
3618 /* Output assembly to switch to section NAME with attribute FLAGS. */
3619
3620 static void
3621 m68k_coff_asm_named_section (const char *name, unsigned int flags)
3622 {
3623 char flagchar;
3624
3625 if (flags & SECTION_WRITE)
3626 flagchar = 'd';
3627 else
3628 flagchar = 'x';
3629
3630 fprintf (asm_out_file, "\t.section\t%s,\"%c\"\n", name, flagchar);
3631 }
3632
3633 #endif /* M68K_TARGET_COFF */
3634
3635 #ifdef HPUX_ASM
3636 static void
3637 m68k_hp320_internal_label (FILE *stream, const char *prefix,
3638 unsigned long labelno)
3639 {
3640 if (prefix[0] == 'L' && prefix[1] == 'I')
3641 fprintf(stream, "\tset %s%ld,.+2\n", prefix, labelno);
3642 else
3643 fprintf (stream, "%s%ld:\n", prefix, labelno);
3644 }
3645
3646 static void
3647 m68k_hp320_file_start (void)
3648 {
3649 /* version 1: 68010.
3650 2: 68020 without FPU.
3651 3: 68020 with FPU. */
3652 fprintf (asm_out_file, "\tversion %d\n",
3653 TARGET_68020 ? (TARGET_68881 ? 3 : 2) : 1);
3654 }
3655 #endif
3656
3657 static void
3658 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
3659 HOST_WIDE_INT delta,
3660 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
3661 tree function)
3662 {
3663 rtx xops[1];
3664 const char *fmt;
3665
3666 if (delta > 0 && delta <= 8)
3667 #ifdef MOTOROLA
3668 asm_fprintf (file, "\taddq.l %I%d,4(%Rsp)\n", (int) delta);
3669 #else
3670 asm_fprintf (file, "\taddql %I%d,%Rsp@(4)\n", (int) delta);
3671 #endif
3672 else if (delta < 0 && delta >= -8)
3673 #ifdef MOTOROLA
3674 asm_fprintf (file, "\tsubq.l %I%d,4(%Rsp)\n", (int) -delta);
3675 #else
3676 asm_fprintf (file, "\tsubql %I%d,%Rsp@(4)\n", (int) -delta);
3677 #endif
3678 else
3679 #ifdef MOTOROLA
3680 asm_fprintf (file, "\tadd.l %I%wd,4(%Rsp)\n", delta);
3681 #else
3682 asm_fprintf (file, "\taddl %I%wd,%Rsp@(4)\n", delta);
3683 #endif
3684
3685 xops[0] = DECL_RTL (function);
3686
3687 /* Logic taken from call patterns in m68k.md. */
3688 if (flag_pic)
3689 {
3690 if (TARGET_PCREL)
3691 fmt = "bra.l %o0";
3692 else if ((flag_pic == 1) || TARGET_68020)
3693 {
3694 #ifdef MOTOROLA
3695 #ifdef HPUX_ASM
3696 fmt = "bra.l %0";
3697 #else
3698 #ifdef USE_GAS
3699 fmt = "bra.l %0@PLTPC";
3700 #else
3701 fmt = "bra %0@PLTPC";
3702 #endif
3703 #endif
3704 #else
3705 #ifdef USE_GAS
3706 fmt = "bra.l %0";
3707 #else
3708 fmt = "jra %0,a1";
3709 #endif
3710 #endif
3711 }
3712 else if (optimize_size || TARGET_ID_SHARED_LIBRARY)
3713 fmt = "move.l %0@GOT(%%a5), %%a1\n\tjmp (%%a1)";
3714 else
3715 fmt = "lea %0-.-8,%%a1\n\tjsr 0(%%pc,%%a1)";
3716 }
3717 else
3718 {
3719 #if defined (MOTOROLA) && !defined (USE_GAS)
3720 fmt = "jmp %0";
3721 #else
3722 fmt = "jra %0";
3723 #endif
3724 }
3725
3726 output_asm_insn (fmt, xops);
3727 }