mips.c (mips_isa_rev): New variable.
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989-2014 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24
25 #include "config/vxworks-dummy.h"
26
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30 extern int target_flags_explicit;
31 #endif
32
33 /* MIPS external variables defined in mips.c. */
34
35 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
37 to work on a 64-bit machine. */
38
39 #define ABI_32 0
40 #define ABI_N32 1
41 #define ABI_64 2
42 #define ABI_EABI 3
43 #define ABI_O64 4
44
45 /* Masks that affect tuning.
46
47 PTF_AVOID_BRANCHLIKELY
48 Set if it is usually not profitable to use branch-likely instructions
49 for this target, typically because the branches are always predicted
50 taken and so incur a large overhead when not taken.
51
52 PTF_AVOID_IMADD
53 Set if it is usually not profitable to use the integer MADD or MSUB
54 instructions because of the overhead of getting the result out of
55 the HI/LO registers. */
56
57 #define PTF_AVOID_BRANCHLIKELY 0x1
58 #define PTF_AVOID_IMADD 0x2
59
60 /* Information about one recognized processor. Defined here for the
61 benefit of TARGET_CPU_CPP_BUILTINS. */
62 struct mips_cpu_info {
63 /* The 'canonical' name of the processor as far as GCC is concerned.
64 It's typically a manufacturer's prefix followed by a numerical
65 designation. It should be lowercase. */
66 const char *name;
67
68 /* The internal processor number that most closely matches this
69 entry. Several processors can have the same value, if there's no
70 difference between them from GCC's point of view. */
71 enum processor cpu;
72
73 /* The ISA level that the processor implements. */
74 int isa;
75
76 /* A mask of PTF_* values. */
77 unsigned int tune_flags;
78 };
79
80 #include "config/mips/mips-opts.h"
81
82 /* Macros to silence warnings about numbers being signed in traditional
83 C and unsigned in ISO C when compiled on 32-bit hosts. */
84
85 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
86 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
87 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
88
89 \f
90 /* Run-time compilation parameters selecting different hardware subsets. */
91
92 /* True if we are generating position-independent VxWorks RTP code. */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
94
95 /* True if the output file is marked as ".abicalls; .option pic0"
96 (-call_nonpic). */
97 #define TARGET_ABICALLS_PIC0 \
98 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
99
100 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
101 #define TARGET_ABICALLS_PIC2 \
102 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
103
104 /* True if the call patterns should be split into a jalr followed by
105 an instruction to restore $gp. It is only safe to split the load
106 from the call when every use of $gp is explicit.
107
108 See mips_must_initialize_gp_p for details about how we manage the
109 global pointer. */
110
111 #define TARGET_SPLIT_CALLS \
112 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
113
114 /* True if we're generating a form of -mabicalls in which we can use
115 operators like %hi and %lo to refer to locally-binding symbols.
116 We can only do this for -mno-shared, and only then if we can use
117 relocation operations instead of assembly macros. It isn't really
118 worth using absolute sequences for 64-bit symbols because GOT
119 accesses are so much shorter. */
120
121 #define TARGET_ABSOLUTE_ABICALLS \
122 (TARGET_ABICALLS \
123 && !TARGET_SHARED \
124 && TARGET_EXPLICIT_RELOCS \
125 && !ABI_HAS_64BIT_SYMBOLS)
126
127 /* True if we can optimize sibling calls. For simplicity, we only
128 handle cases in which call_insn_operand will reject invalid
129 sibcall addresses. There are two cases in which this isn't true:
130
131 - TARGET_MIPS16. call_insn_operand accepts constant addresses
132 but there is no direct jump instruction. It isn't worth
133 using sibling calls in this case anyway; they would usually
134 be longer than normal calls.
135
136 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
137 accepts global constants, but all sibcalls must be indirect. */
138 #define TARGET_SIBCALLS \
139 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
140
141 /* True if we need to use a global offset table to access some symbols. */
142 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
143
144 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
145 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
146
147 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
148 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
149
150 /* True if we should use .cprestore to store to the cprestore slot.
151
152 We continue to use .cprestore for explicit-reloc code so that JALs
153 inside inline asms will work correctly. */
154 #define TARGET_CPRESTORE_DIRECTIVE \
155 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
156
157 /* True if we can use the J and JAL instructions. */
158 #define TARGET_ABSOLUTE_JUMPS \
159 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
160
161 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
162 This is true for both the PIC and non-PIC VxWorks RTP modes. */
163 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
164
165 /* True if .gpword or .gpdword should be used for switch tables. */
166 #define TARGET_GPWORD \
167 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
168
169 /* True if the output must have a writable .eh_frame.
170 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
171 #ifdef HAVE_LD_PERSONALITY_RELAXATION
172 #define TARGET_WRITABLE_EH_FRAME 0
173 #else
174 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
175 #endif
176
177 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
178 #ifdef HAVE_AS_DSPR1_MULT
179 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
180 #else
181 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
182 #endif
183
184 /* The ISA compression flags that are currently in effect. */
185 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
186
187 /* Generate mips16 code */
188 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
189 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
190 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
191 /* Generate mips16e register save/restore sequences. */
192 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
193
194 /* True if we're generating a form of MIPS16 code in which general
195 text loads are allowed. */
196 #define TARGET_MIPS16_TEXT_LOADS \
197 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
198
199 /* True if we're generating a form of MIPS16 code in which PC-relative
200 loads are allowed. */
201 #define TARGET_MIPS16_PCREL_LOADS \
202 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
203
204 /* Generic ISA defines. */
205 #define ISA_MIPS1 (mips_isa == 1)
206 #define ISA_MIPS2 (mips_isa == 2)
207 #define ISA_MIPS3 (mips_isa == 3)
208 #define ISA_MIPS4 (mips_isa == 4)
209 #define ISA_MIPS32 (mips_isa == 32)
210 #define ISA_MIPS32R2 (mips_isa == 33)
211 #define ISA_MIPS64 (mips_isa == 64)
212 #define ISA_MIPS64R2 (mips_isa == 65)
213
214 /* Architecture target defines. */
215 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
216 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
217 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
218 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
219 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
220 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
221 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
222 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
223 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
224 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
225 #define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
226 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
227 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
228 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
229 || mips_arch == PROCESSOR_OCTEON2)
230 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2)
231 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
232 || mips_arch == PROCESSOR_SB1A)
233 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
234 #define TARGET_XLP (mips_arch == PROCESSOR_XLP)
235
236 /* Scheduling target defines. */
237 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
238 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
239 || mips_tune == PROCESSOR_24KF2_1 \
240 || mips_tune == PROCESSOR_24KF1_1)
241 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
242 || mips_tune == PROCESSOR_74KF2_1 \
243 || mips_tune == PROCESSOR_74KF1_1 \
244 || mips_tune == PROCESSOR_74KF3_2)
245 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
246 || mips_tune == PROCESSOR_LOONGSON_2F)
247 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
248 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
249 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
250 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
251 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
252 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
253 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
254 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
255 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
256 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
257 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
258 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
259 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
260 || mips_tune == PROCESSOR_OCTEON2)
261 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
262 || mips_tune == PROCESSOR_SB1A)
263
264 /* Whether vector modes and intrinsics for ST Microelectronics
265 Loongson-2E/2F processors should be enabled. In o32 pairs of
266 floating-point registers provide 64-bit values. */
267 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
268 && (TARGET_LOONGSON_2EF \
269 || TARGET_LOONGSON_3A))
270
271 /* True if the pre-reload scheduler should try to create chains of
272 multiply-add or multiply-subtract instructions. For example,
273 suppose we have:
274
275 t1 = a * b
276 t2 = t1 + c * d
277 t3 = e * f
278 t4 = t3 - g * h
279
280 t1 will have a higher priority than t2 and t3 will have a higher
281 priority than t4. However, before reload, there is no dependence
282 between t1 and t3, and they can often have similar priorities.
283 The scheduler will then tend to prefer:
284
285 t1 = a * b
286 t3 = e * f
287 t2 = t1 + c * d
288 t4 = t3 - g * h
289
290 which stops us from making full use of macc/madd-style instructions.
291 This sort of situation occurs frequently in Fourier transforms and
292 in unrolled loops.
293
294 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
295 queue so that chained multiply-add and multiply-subtract instructions
296 appear ahead of any other instruction that is likely to clobber lo.
297 In the example above, if t2 and t3 become ready at the same time,
298 the code ensures that t2 is scheduled first.
299
300 Multiply-accumulate instructions are a bigger win for some targets
301 than others, so this macro is defined on an opt-in basis. */
302 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
303 || TUNE_MIPS4120 \
304 || TUNE_MIPS4130 \
305 || TUNE_24K)
306
307 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
308 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
309
310 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
311 directly accessible, while the command-line options select
312 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
313 in use. */
314 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
315 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
316
317 /* False if SC acts as a memory barrier with respect to itself,
318 otherwise a SYNC will be emitted after SC for atomic operations
319 that require ordering between the SC and following loads and
320 stores. It does not tell anything about ordering of loads and
321 stores prior to and following the SC, only about the SC itself and
322 those loads and stores follow it. */
323 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
324
325 /* Define preprocessor macros for the -march and -mtune options.
326 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
327 processor. If INFO's canonical name is "foo", define PREFIX to
328 be "foo", and define an additional macro PREFIX_FOO. */
329 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
330 do \
331 { \
332 char *macro, *p; \
333 \
334 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
335 for (p = macro; *p != 0; p++) \
336 if (*p == '+') \
337 *p = 'P'; \
338 else \
339 *p = TOUPPER (*p); \
340 \
341 builtin_define (macro); \
342 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
343 free (macro); \
344 } \
345 while (0)
346
347 /* Target CPU builtins. */
348 #define TARGET_CPU_CPP_BUILTINS() \
349 do \
350 { \
351 builtin_assert ("machine=mips"); \
352 builtin_assert ("cpu=mips"); \
353 builtin_define ("__mips__"); \
354 builtin_define ("_mips"); \
355 \
356 /* We do this here because __mips is defined below and so we \
357 can't use builtin_define_std. We don't ever want to define \
358 "mips" for VxWorks because some of the VxWorks headers \
359 construct include filenames from a root directory macro, \
360 an architecture macro and a filename, where the architecture \
361 macro expands to 'mips'. If we define 'mips' to 1, the \
362 architecture macro expands to 1 as well. */ \
363 if (!flag_iso && !TARGET_VXWORKS) \
364 builtin_define ("mips"); \
365 \
366 if (TARGET_64BIT) \
367 builtin_define ("__mips64"); \
368 \
369 /* Treat _R3000 and _R4000 like register-size \
370 defines, which is how they've historically \
371 been used. */ \
372 if (TARGET_64BIT) \
373 { \
374 builtin_define_std ("R4000"); \
375 builtin_define ("_R4000"); \
376 } \
377 else \
378 { \
379 builtin_define_std ("R3000"); \
380 builtin_define ("_R3000"); \
381 } \
382 \
383 if (TARGET_FLOAT64) \
384 builtin_define ("__mips_fpr=64"); \
385 else \
386 builtin_define ("__mips_fpr=32"); \
387 \
388 if (mips_base_compression_flags & MASK_MIPS16) \
389 builtin_define ("__mips16"); \
390 \
391 if (TARGET_MIPS3D) \
392 builtin_define ("__mips3d"); \
393 \
394 if (TARGET_SMARTMIPS) \
395 builtin_define ("__mips_smartmips"); \
396 \
397 if (mips_base_compression_flags & MASK_MICROMIPS) \
398 builtin_define ("__mips_micromips"); \
399 \
400 if (TARGET_MCU) \
401 builtin_define ("__mips_mcu"); \
402 \
403 if (TARGET_EVA) \
404 builtin_define ("__mips_eva"); \
405 \
406 if (TARGET_DSP) \
407 { \
408 builtin_define ("__mips_dsp"); \
409 if (TARGET_DSPR2) \
410 { \
411 builtin_define ("__mips_dspr2"); \
412 builtin_define ("__mips_dsp_rev=2"); \
413 } \
414 else \
415 builtin_define ("__mips_dsp_rev=1"); \
416 } \
417 \
418 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
419 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
420 \
421 if (ISA_MIPS1) \
422 { \
423 builtin_define ("__mips=1"); \
424 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
425 } \
426 else if (ISA_MIPS2) \
427 { \
428 builtin_define ("__mips=2"); \
429 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
430 } \
431 else if (ISA_MIPS3) \
432 { \
433 builtin_define ("__mips=3"); \
434 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
435 } \
436 else if (ISA_MIPS4) \
437 { \
438 builtin_define ("__mips=4"); \
439 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
440 } \
441 else if (ISA_MIPS32) \
442 { \
443 builtin_define ("__mips=32"); \
444 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
445 } \
446 else if (ISA_MIPS32R2) \
447 { \
448 builtin_define ("__mips=32"); \
449 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
450 } \
451 else if (ISA_MIPS64) \
452 { \
453 builtin_define ("__mips=64"); \
454 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
455 } \
456 else if (ISA_MIPS64R2) \
457 { \
458 builtin_define ("__mips=64"); \
459 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
460 } \
461 if (mips_isa_rev > 0) \
462 builtin_define_with_int_value ("__mips_isa_rev", \
463 mips_isa_rev); \
464 \
465 switch (mips_abi) \
466 { \
467 case ABI_32: \
468 builtin_define ("_ABIO32=1"); \
469 builtin_define ("_MIPS_SIM=_ABIO32"); \
470 break; \
471 \
472 case ABI_N32: \
473 builtin_define ("_ABIN32=2"); \
474 builtin_define ("_MIPS_SIM=_ABIN32"); \
475 break; \
476 \
477 case ABI_64: \
478 builtin_define ("_ABI64=3"); \
479 builtin_define ("_MIPS_SIM=_ABI64"); \
480 break; \
481 \
482 case ABI_O64: \
483 builtin_define ("_ABIO64=4"); \
484 builtin_define ("_MIPS_SIM=_ABIO64"); \
485 break; \
486 } \
487 \
488 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
489 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
490 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
491 builtin_define_with_int_value ("_MIPS_FPSET", \
492 32 / MAX_FPRS_PER_FMT); \
493 \
494 /* These defines reflect the ABI in use, not whether the \
495 FPU is directly accessible. */ \
496 if (TARGET_NO_FLOAT) \
497 builtin_define ("__mips_no_float"); \
498 else if (TARGET_HARD_FLOAT_ABI) \
499 builtin_define ("__mips_hard_float"); \
500 else \
501 builtin_define ("__mips_soft_float"); \
502 \
503 if (TARGET_SINGLE_FLOAT) \
504 builtin_define ("__mips_single_float"); \
505 \
506 if (TARGET_PAIRED_SINGLE_FLOAT) \
507 builtin_define ("__mips_paired_single_float"); \
508 \
509 if (mips_abs == MIPS_IEEE_754_2008) \
510 builtin_define ("__mips_abs2008"); \
511 \
512 if (mips_nan == MIPS_IEEE_754_2008) \
513 builtin_define ("__mips_nan2008"); \
514 \
515 if (TARGET_BIG_ENDIAN) \
516 { \
517 builtin_define_std ("MIPSEB"); \
518 builtin_define ("_MIPSEB"); \
519 } \
520 else \
521 { \
522 builtin_define_std ("MIPSEL"); \
523 builtin_define ("_MIPSEL"); \
524 } \
525 \
526 /* Whether calls should go through $25. The separate __PIC__ \
527 macro indicates whether abicalls code might use a GOT. */ \
528 if (TARGET_ABICALLS) \
529 builtin_define ("__mips_abicalls"); \
530 \
531 /* Whether Loongson vector modes are enabled. */ \
532 if (TARGET_LOONGSON_VECTORS) \
533 builtin_define ("__mips_loongson_vector_rev"); \
534 \
535 /* Historical Octeon macro. */ \
536 if (TARGET_OCTEON) \
537 builtin_define ("__OCTEON__"); \
538 \
539 if (TARGET_SYNCI) \
540 builtin_define ("__mips_synci"); \
541 \
542 /* Macros dependent on the C dialect. */ \
543 if (preprocessing_asm_p ()) \
544 { \
545 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
546 builtin_define ("_LANGUAGE_ASSEMBLY"); \
547 } \
548 else if (c_dialect_cxx ()) \
549 { \
550 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
551 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
552 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
553 } \
554 else \
555 { \
556 builtin_define_std ("LANGUAGE_C"); \
557 builtin_define ("_LANGUAGE_C"); \
558 } \
559 if (c_dialect_objc ()) \
560 { \
561 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
562 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
563 /* Bizarre, but retained for backwards compatibility. */ \
564 builtin_define_std ("LANGUAGE_C"); \
565 builtin_define ("_LANGUAGE_C"); \
566 } \
567 \
568 if (mips_abi == ABI_EABI) \
569 builtin_define ("__mips_eabi"); \
570 \
571 if (TARGET_CACHE_BUILTIN) \
572 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
573 } \
574 while (0)
575
576 /* Default target_flags if no switches are specified */
577
578 #ifndef TARGET_DEFAULT
579 #define TARGET_DEFAULT 0
580 #endif
581
582 #ifndef TARGET_CPU_DEFAULT
583 #define TARGET_CPU_DEFAULT 0
584 #endif
585
586 #ifndef TARGET_ENDIAN_DEFAULT
587 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
588 #endif
589
590 #ifdef IN_LIBGCC2
591 #undef TARGET_64BIT
592 /* Make this compile time constant for libgcc2 */
593 #ifdef __mips64
594 #define TARGET_64BIT 1
595 #else
596 #define TARGET_64BIT 0
597 #endif
598 #endif /* IN_LIBGCC2 */
599
600 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
601 when compiled with hardware floating point. This is because MIPS16
602 code cannot save and restore the floating-point registers, which is
603 important if in a mixed MIPS16/non-MIPS16 environment. */
604
605 #ifdef IN_LIBGCC2
606 #if __mips_hard_float
607 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
608 #endif
609 #endif /* IN_LIBGCC2 */
610
611 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
612
613 #ifndef MULTILIB_ENDIAN_DEFAULT
614 #if TARGET_ENDIAN_DEFAULT == 0
615 #define MULTILIB_ENDIAN_DEFAULT "EL"
616 #else
617 #define MULTILIB_ENDIAN_DEFAULT "EB"
618 #endif
619 #endif
620
621 #ifndef MULTILIB_ISA_DEFAULT
622 #if MIPS_ISA_DEFAULT == 1
623 #define MULTILIB_ISA_DEFAULT "mips1"
624 #elif MIPS_ISA_DEFAULT == 2
625 #define MULTILIB_ISA_DEFAULT "mips2"
626 #elif MIPS_ISA_DEFAULT == 3
627 #define MULTILIB_ISA_DEFAULT "mips3"
628 #elif MIPS_ISA_DEFAULT == 4
629 #define MULTILIB_ISA_DEFAULT "mips4"
630 #elif MIPS_ISA_DEFAULT == 32
631 #define MULTILIB_ISA_DEFAULT "mips32"
632 #elif MIPS_ISA_DEFAULT == 33
633 #define MULTILIB_ISA_DEFAULT "mips32r2"
634 #elif MIPS_ISA_DEFAULT == 64
635 #define MULTILIB_ISA_DEFAULT "mips64"
636 #elif MIPS_ISA_DEFAULT == 65
637 #define MULTILIB_ISA_DEFAULT "mips64r2"
638 #else
639 #define MULTILIB_ISA_DEFAULT "mips1"
640 #endif
641 #endif
642
643 #ifndef MIPS_ABI_DEFAULT
644 #define MIPS_ABI_DEFAULT ABI_32
645 #endif
646
647 /* Use the most portable ABI flag for the ASM specs. */
648
649 #if MIPS_ABI_DEFAULT == ABI_32
650 #define MULTILIB_ABI_DEFAULT "mabi=32"
651 #elif MIPS_ABI_DEFAULT == ABI_O64
652 #define MULTILIB_ABI_DEFAULT "mabi=o64"
653 #elif MIPS_ABI_DEFAULT == ABI_N32
654 #define MULTILIB_ABI_DEFAULT "mabi=n32"
655 #elif MIPS_ABI_DEFAULT == ABI_64
656 #define MULTILIB_ABI_DEFAULT "mabi=64"
657 #elif MIPS_ABI_DEFAULT == ABI_EABI
658 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
659 #endif
660
661 #ifndef MULTILIB_DEFAULTS
662 #define MULTILIB_DEFAULTS \
663 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
664 #endif
665
666 /* We must pass -EL to the linker by default for little endian embedded
667 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
668 linker will default to using big-endian output files. The OUTPUT_FORMAT
669 line must be in the linker script, otherwise -EB/-EL will not work. */
670
671 #ifndef ENDIAN_SPEC
672 #if TARGET_ENDIAN_DEFAULT == 0
673 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
674 #else
675 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
676 #endif
677 #endif
678
679 /* A spec condition that matches all non-mips16 -mips arguments. */
680
681 #define MIPS_ISA_LEVEL_OPTION_SPEC \
682 "mips1|mips2|mips3|mips4|mips32*|mips64*"
683
684 /* A spec condition that matches all non-mips16 architecture arguments. */
685
686 #define MIPS_ARCH_OPTION_SPEC \
687 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
688
689 /* A spec that infers a -mips argument from an -march argument,
690 or injects the default if no architecture is specified. */
691
692 #define MIPS_ISA_LEVEL_SPEC \
693 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
694 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
695 %{march=mips2|march=r6000:-mips2} \
696 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
697 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
698 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
699 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
700 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
701 |march=34k*|march=74k*|march=m14k*|march=1004k*: -mips32r2} \
702 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
703 |march=xlr: -mips64} \
704 %{march=mips64r2|march=loongson3a|march=octeon|march=xlp: -mips64r2} \
705 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
706
707 /* A spec that infers a -mhard-float or -msoft-float setting from an
708 -march argument. Note that soft-float and hard-float code are not
709 link-compatible. */
710
711 #define MIPS_ARCH_FLOAT_SPEC \
712 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
713 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
714 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
715 |march=m14k*|march=octeon|march=xlr: -msoft-float; \
716 march=*: -mhard-float}"
717
718 /* A spec condition that matches 32-bit options. It only works if
719 MIPS_ISA_LEVEL_SPEC has been applied. */
720
721 #define MIPS_32BIT_OPTION_SPEC \
722 "mips1|mips2|mips32*|mgp32"
723
724 /* Infer a -msynci setting from a -mips argument, on the assumption that
725 -msynci is desired where possible. */
726 #define MIPS_ISA_SYNCI_SPEC \
727 "%{msynci|mno-synci:;:%{mips32r2|mips64r2:-msynci;:-mno-synci}}"
728
729 #if (MIPS_ABI_DEFAULT == ABI_O64 \
730 || MIPS_ABI_DEFAULT == ABI_N32 \
731 || MIPS_ABI_DEFAULT == ABI_64)
732 #define OPT_ARCH64 "mabi=32|mgp32:;"
733 #define OPT_ARCH32 "mabi=32|mgp32"
734 #else
735 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
736 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
737 #endif
738
739 /* Support for a compile-time default CPU, et cetera. The rules are:
740 --with-arch is ignored if -march is specified or a -mips is specified
741 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
742 --with-tune is ignored if -mtune is specified; likewise
743 --with-tune-32 and --with-tune-64.
744 --with-abi is ignored if -mabi is specified.
745 --with-float is ignored if -mhard-float or -msoft-float are
746 specified.
747 --with-nan is ignored if -mnan is specified.
748 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
749 specified. */
750 #define OPTION_DEFAULT_SPECS \
751 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
752 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
753 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
754 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
755 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
756 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
757 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
758 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
759 {"fpu", "%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}" }, \
760 {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
761 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
762 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
763 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
764 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
765
766 /* A spec that infers the -mdsp setting from an -march argument. */
767 #define BASE_DRIVER_SELF_SPECS \
768 "%{!mno-dsp: \
769 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k*: -mdsp} \
770 %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
771
772 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
773
774 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
775 && ISA_HAS_COND_TRAP)
776
777 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
778
779 /* True if the ABI can only work with 64-bit integer registers. We
780 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
781 otherwise floating-point registers must also be 64-bit. */
782 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
783
784 /* Likewise for 32-bit regs. */
785 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
786
787 /* True if the file format uses 64-bit symbols. At present, this is
788 only true for n64, which uses 64-bit ELF. */
789 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
790
791 /* True if symbols are 64 bits wide. This is usually determined by
792 the ABI's file format, but it can be overridden by -msym32. Note that
793 overriding the size with -msym32 changes the ABI of relocatable objects,
794 although it doesn't change the ABI of a fully-linked object. */
795 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
796 && Pmode == DImode \
797 && !TARGET_SYM32)
798
799 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
800 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
801 || ISA_MIPS4 \
802 || ISA_MIPS64 \
803 || ISA_MIPS64R2)
804
805 /* ISA has branch likely instructions (e.g. mips2). */
806 /* Disable branchlikely for tx39 until compare rewrite. They haven't
807 been generated up to this point. */
808 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
809
810 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
811 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
812 || TARGET_MIPS5400 \
813 || TARGET_MIPS5500 \
814 || TARGET_MIPS5900 \
815 || TARGET_MIPS7000 \
816 || TARGET_MIPS9000 \
817 || TARGET_MAD \
818 || mips_isa_rev >= 1) \
819 && !TARGET_MIPS16)
820
821 /* ISA has a three-operand multiplication instruction. */
822 #define ISA_HAS_DMUL3 (TARGET_64BIT \
823 && TARGET_OCTEON \
824 && !TARGET_MIPS16)
825
826 /* ISA supports instructions DMULT and DMULTU. */
827 #define ISA_HAS_DMULT (TARGET_64BIT && !TARGET_MIPS5900)
828
829 /* ISA supports instructions MULT and MULTU.
830 This is always true, but the macro is needed for ISA_HAS_<D>MULT
831 in mips.md. */
832 #define ISA_HAS_MULT (1)
833
834 /* ISA supports instructions DDIV and DDIVU. */
835 #define ISA_HAS_DDIV (TARGET_64BIT && !TARGET_MIPS5900)
836
837 /* ISA supports instructions DIV and DIVU.
838 This is always true, but the macro is needed for ISA_HAS_<D>DIV
839 in mips.md. */
840 #define ISA_HAS_DIV (1)
841
842 #define ISA_HAS_DIV3 ((TARGET_LOONGSON_2EF \
843 || TARGET_LOONGSON_3A) \
844 && !TARGET_MIPS16)
845
846 /* ISA has the floating-point conditional move instructions introduced
847 in mips4. */
848 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
849 || mips_isa_rev >= 1) \
850 && !TARGET_MIPS5500 \
851 && !TARGET_MIPS16)
852
853 /* ISA has the integer conditional move instructions introduced in mips4 and
854 ST Loongson 2E/2F. */
855 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
856 || TARGET_MIPS5900 \
857 || TARGET_LOONGSON_2EF)
858
859 /* ISA has LDC1 and SDC1. */
860 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
861 && !TARGET_MIPS5900 \
862 && !TARGET_MIPS16)
863
864 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
865 branch on CC, and move (both FP and non-FP) on CC. */
866 #define ISA_HAS_8CC (ISA_MIPS4 || mips_isa_rev >= 1)
867
868 /* This is a catch all for other mips4 instructions: indexed load, the
869 FP madd and msub instructions, and the FP recip and recip sqrt
870 instructions. Note that this macro should only be used by other
871 ISA_HAS_* macros. */
872 #define ISA_HAS_FP4 ((ISA_MIPS4 \
873 || ISA_MIPS64 \
874 || mips_isa_rev >= 2) \
875 && !TARGET_MIPS16)
876
877 /* ISA has floating-point indexed load and store instructions
878 (LWXC1, LDXC1, SWXC1 and SDXC1). */
879 #define ISA_HAS_LXC1_SXC1 ISA_HAS_FP4
880
881 /* ISA has paired-single instructions. */
882 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS64 || mips_isa_rev >= 2)
883
884 /* ISA has conditional trap instructions. */
885 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
886 && !TARGET_MIPS16)
887
888 /* ISA has integer multiply-accumulate instructions, madd and msub. */
889 #define ISA_HAS_MADD_MSUB (mips_isa_rev >= 1)
890
891 /* Integer multiply-accumulate instructions should be generated. */
892 #define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
893
894 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
895 #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
896
897 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
898 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
899
900 /* ISA has floating-point nmadd and nmsub instructions
901 'd = -((a * b) [+-] c)'. */
902 #define ISA_HAS_NMADD4_NMSUB4 ISA_HAS_FP4
903
904 /* ISA has floating-point nmadd and nmsub instructions
905 'c = -((a * b) [+-] c)'. */
906 #define ISA_HAS_NMADD3_NMSUB3 TARGET_LOONGSON_2EF
907
908 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The
909 MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
910 doubles are stored in pairs of FPRs, so for safety's sake, we apply
911 this restriction to the MIPS IV ISA too. */
912 #define ISA_HAS_FP_RECIP_RSQRT(MODE) \
913 (((ISA_HAS_FP4 \
914 && ((MODE) == SFmode \
915 || ((TARGET_FLOAT64 \
916 || mips_isa_rev >= 2) \
917 && (MODE) == DFmode))) \
918 || (TARGET_SB1 \
919 && (MODE) == V2SFmode)) \
920 && !TARGET_MIPS16)
921
922 /* ISA has count leading zeroes/ones instruction (not implemented). */
923 #define ISA_HAS_CLZ_CLO (mips_isa_rev >= 1 && !TARGET_MIPS16)
924
925 /* ISA has three operand multiply instructions that put
926 the high part in an accumulator: mulhi or mulhiu. */
927 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
928 || TARGET_MIPS5500 \
929 || TARGET_SR71K) \
930 && !TARGET_MIPS16)
931
932 /* ISA has three operand multiply instructions that negate the
933 result and put the result in an accumulator. */
934 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
935 || TARGET_MIPS5500 \
936 || TARGET_SR71K) \
937 && !TARGET_MIPS16)
938
939 /* ISA has three operand multiply instructions that subtract the
940 result from a 4th operand and put the result in an accumulator. */
941 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
942 || TARGET_MIPS5500 \
943 || TARGET_SR71K) \
944 && !TARGET_MIPS16)
945
946 /* ISA has three operand multiply instructions that add the result
947 to a 4th operand and put the result in an accumulator. */
948 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
949 || TARGET_MIPS4130 \
950 || TARGET_MIPS5400 \
951 || TARGET_MIPS5500 \
952 || TARGET_SR71K) \
953 && !TARGET_MIPS16)
954
955 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
956 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
957 || TARGET_MIPS4130) \
958 && !TARGET_MIPS16)
959
960 /* ISA has the "ror" (rotate right) instructions. */
961 #define ISA_HAS_ROR ((mips_isa_rev >= 2 \
962 || TARGET_MIPS5400 \
963 || TARGET_MIPS5500 \
964 || TARGET_SR71K \
965 || TARGET_SMARTMIPS) \
966 && !TARGET_MIPS16)
967
968 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
969 64-bit targets also provide DSBH and DSHD. */
970 #define ISA_HAS_WSBH (mips_isa_rev >= 2 && !TARGET_MIPS16)
971
972 /* ISA has data prefetch instructions. This controls use of 'pref'. */
973 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
974 || TARGET_LOONGSON_2EF \
975 || TARGET_MIPS5900 \
976 || mips_isa_rev >= 1) \
977 && !TARGET_MIPS16)
978
979 /* ISA has data indexed prefetch instructions. This controls use of
980 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
981 (prefx is a cop1x instruction, so can only be used if FP is
982 enabled.) */
983 #define ISA_HAS_PREFETCHX ISA_HAS_FP4
984
985 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
986 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
987 also requires TARGET_DOUBLE_FLOAT. */
988 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
989
990 /* ISA includes the MIPS32r2 seb and seh instructions. */
991 #define ISA_HAS_SEB_SEH (mips_isa_rev >= 2 && !TARGET_MIPS16)
992
993 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
994 #define ISA_HAS_EXT_INS (mips_isa_rev >= 2 && !TARGET_MIPS16)
995
996 /* ISA has instructions for accessing top part of 64-bit fp regs. */
997 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 && mips_isa_rev >= 2)
998
999 /* ISA has lwxs instruction (load w/scaled index address. */
1000 #define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1001 && !TARGET_MIPS16)
1002
1003 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1004 #define ISA_HAS_LBX (TARGET_OCTEON2)
1005 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1006 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1007 #define ISA_HAS_LHUX (TARGET_OCTEON2)
1008 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1009 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1010 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1011 && TARGET_64BIT)
1012
1013 /* The DSP ASE is available. */
1014 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1015
1016 /* Revision 2 of the DSP ASE is available. */
1017 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1018
1019 /* True if the result of a load is not available to the next instruction.
1020 A nop will then be needed between instructions like "lw $4,..."
1021 and "addiu $4,$4,1". */
1022 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1023 && !TARGET_MIPS3900 \
1024 && !TARGET_MIPS5900 \
1025 && !TARGET_MIPS16 \
1026 && !TARGET_MICROMIPS)
1027
1028 /* Likewise mtc1 and mfc1. */
1029 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1030 && !TARGET_MIPS5900 \
1031 && !TARGET_LOONGSON_2EF)
1032
1033 /* Likewise floating-point comparisons. */
1034 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1035 && !TARGET_MIPS5900 \
1036 && !TARGET_LOONGSON_2EF)
1037
1038 /* True if mflo and mfhi can be immediately followed by instructions
1039 which write to the HI and LO registers.
1040
1041 According to MIPS specifications, MIPS ISAs I, II, and III need
1042 (at least) two instructions between the reads of HI/LO and
1043 instructions which write them, and later ISAs do not. Contradicting
1044 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1045 the UM for the NEC Vr5000) document needing the instructions between
1046 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1047 MIPS64 and later ISAs to have the interlocks, plus any specific
1048 earlier-ISA CPUs for which CPU documentation declares that the
1049 instructions are really interlocked. */
1050 #define ISA_HAS_HILO_INTERLOCKS (mips_isa_rev >= 1 \
1051 || TARGET_MIPS5500 \
1052 || TARGET_MIPS5900 \
1053 || TARGET_LOONGSON_2EF)
1054
1055 /* ISA includes synci, jr.hb and jalr.hb. */
1056 #define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
1057
1058 /* ISA includes sync. */
1059 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1060 #define GENERATE_SYNC \
1061 (target_flags_explicit & MASK_LLSC \
1062 ? TARGET_LLSC && !TARGET_MIPS16 \
1063 : ISA_HAS_SYNC)
1064
1065 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1066 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1067 instructions. */
1068 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1069 #define GENERATE_LL_SC \
1070 (target_flags_explicit & MASK_LLSC \
1071 ? TARGET_LLSC && !TARGET_MIPS16 \
1072 : ISA_HAS_LL_SC)
1073
1074 #define ISA_HAS_SWAP (TARGET_XLP)
1075 #define ISA_HAS_LDADD (TARGET_XLP)
1076
1077 /* ISA includes the baddu instruction. */
1078 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1079
1080 /* ISA includes the bbit* instructions. */
1081 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1082
1083 /* ISA includes the cins instruction. */
1084 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1085
1086 /* ISA includes the exts instruction. */
1087 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1088
1089 /* ISA includes the seq and sne instructions. */
1090 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1091
1092 /* ISA includes the pop instruction. */
1093 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1094
1095 /* The CACHE instruction is available in non-MIPS16 code. */
1096 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1097
1098 /* The CACHE instruction is available. */
1099 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1100 \f
1101 /* Tell collect what flags to pass to nm. */
1102 #ifndef NM_FLAGS
1103 #define NM_FLAGS "-Bn"
1104 #endif
1105
1106 \f
1107 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1108 the assembler. It may be overridden by subtargets.
1109
1110 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1111 COFF debugging info. */
1112
1113 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1114 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1115 %{g} %{g0} %{g1} %{g2} %{g3} \
1116 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1117 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1118 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1119 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1120 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1121 #endif
1122
1123 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1124 overridden by subtargets. */
1125
1126 #ifndef SUBTARGET_ASM_SPEC
1127 #define SUBTARGET_ASM_SPEC ""
1128 #endif
1129
1130 #undef ASM_SPEC
1131 #define ASM_SPEC "\
1132 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1133 %{mips32*} %{mips64*} \
1134 %{mips16} %{mno-mips16:-no-mips16} \
1135 %{mmicromips} %{mno-micromips} \
1136 %{mips3d} %{mno-mips3d:-no-mips3d} \
1137 %{mdmx} %{mno-mdmx:-no-mdmx} \
1138 %{mdsp} %{mno-dsp} \
1139 %{mdspr2} %{mno-dspr2} \
1140 %{mmcu} %{mno-mcu} \
1141 %{meva} %{mno-eva} \
1142 %{mvirt} %{mno-virt} \
1143 %{msmartmips} %{mno-smartmips} \
1144 %{mmt} %{mno-mt} \
1145 %{mfix-rm7000} %{mno-fix-rm7000} \
1146 %{mfix-vr4120} %{mfix-vr4130} \
1147 %{mfix-24k} \
1148 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1149 %(subtarget_asm_debugging_spec) \
1150 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1151 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1152 %{mfp32} %{mfp64} %{mnan=*} \
1153 %{mshared} %{mno-shared} \
1154 %{msym32} %{mno-sym32} \
1155 %{mtune=*} \
1156 %(subtarget_asm_spec)"
1157
1158 /* Extra switches sometimes passed to the linker. */
1159
1160 #ifndef LINK_SPEC
1161 #define LINK_SPEC "\
1162 %(endian_spec) \
1163 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1164 %{shared}"
1165 #endif /* LINK_SPEC defined */
1166
1167
1168 /* Specs for the compiler proper */
1169
1170 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1171 overridden by subtargets. */
1172 #ifndef SUBTARGET_CC1_SPEC
1173 #define SUBTARGET_CC1_SPEC ""
1174 #endif
1175
1176 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1177
1178 #undef CC1_SPEC
1179 #define CC1_SPEC "\
1180 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1181 %(subtarget_cc1_spec)"
1182
1183 /* Preprocessor specs. */
1184
1185 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1186 overridden by subtargets. */
1187 #ifndef SUBTARGET_CPP_SPEC
1188 #define SUBTARGET_CPP_SPEC ""
1189 #endif
1190
1191 #define CPP_SPEC "%(subtarget_cpp_spec)"
1192
1193 /* This macro defines names of additional specifications to put in the specs
1194 that can be used in various specifications like CC1_SPEC. Its definition
1195 is an initializer with a subgrouping for each command option.
1196
1197 Each subgrouping contains a string constant, that defines the
1198 specification name, and a string constant that used by the GCC driver
1199 program.
1200
1201 Do not define this macro if it does not need to do anything. */
1202
1203 #define EXTRA_SPECS \
1204 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1205 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1206 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1207 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1208 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1209 { "endian_spec", ENDIAN_SPEC }, \
1210 SUBTARGET_EXTRA_SPECS
1211
1212 #ifndef SUBTARGET_EXTRA_SPECS
1213 #define SUBTARGET_EXTRA_SPECS
1214 #endif
1215 \f
1216 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1217 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1218
1219 #ifndef PREFERRED_DEBUGGING_TYPE
1220 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1221 #endif
1222
1223 /* The size of DWARF addresses should be the same as the size of symbols
1224 in the target file format. They shouldn't depend on things like -msym32,
1225 because many DWARF consumers do not allow the mixture of address sizes
1226 that one would then get from linking -msym32 code with -msym64 code.
1227
1228 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1229 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1230 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1231
1232 /* By default, turn on GDB extensions. */
1233 #define DEFAULT_GDB_EXTENSIONS 1
1234
1235 /* Local compiler-generated symbols must have a prefix that the assembler
1236 understands. By default, this is $, although some targets (e.g.,
1237 NetBSD-ELF) need to override this. */
1238
1239 #ifndef LOCAL_LABEL_PREFIX
1240 #define LOCAL_LABEL_PREFIX "$"
1241 #endif
1242
1243 /* By default on the mips, external symbols do not have an underscore
1244 prepended, but some targets (e.g., NetBSD) require this. */
1245
1246 #ifndef USER_LABEL_PREFIX
1247 #define USER_LABEL_PREFIX ""
1248 #endif
1249
1250 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1251 since the length can run past this up to a continuation point. */
1252 #undef DBX_CONTIN_LENGTH
1253 #define DBX_CONTIN_LENGTH 1500
1254
1255 /* How to renumber registers for dbx and gdb. */
1256 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1257
1258 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1259 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1260
1261 /* The DWARF 2 CFA column which tracks the return address. */
1262 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1263
1264 /* Before the prologue, RA lives in r31. */
1265 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1266
1267 /* Describe how we implement __builtin_eh_return. */
1268 #define EH_RETURN_DATA_REGNO(N) \
1269 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1270
1271 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1272
1273 #define EH_USES(N) mips_eh_uses (N)
1274
1275 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1276 The default for this in 64-bit mode is 8, which causes problems with
1277 SFmode register saves. */
1278 #define DWARF_CIE_DATA_ALIGNMENT -4
1279
1280 /* Correct the offset of automatic variables and arguments. Note that
1281 the MIPS debug format wants all automatic variables and arguments
1282 to be in terms of the virtual frame pointer (stack pointer before
1283 any adjustment in the function), while the MIPS 3.0 linker wants
1284 the frame pointer to be the stack pointer after the initial
1285 adjustment. */
1286
1287 #define DEBUGGER_AUTO_OFFSET(X) \
1288 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1289 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1290 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1291 \f
1292 /* Target machine storage layout */
1293
1294 #define BITS_BIG_ENDIAN 0
1295 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1296 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1297
1298 #define MAX_BITS_PER_WORD 64
1299
1300 /* Width of a word, in units (bytes). */
1301 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1302 #ifndef IN_LIBGCC2
1303 #define MIN_UNITS_PER_WORD 4
1304 #endif
1305
1306 /* For MIPS, width of a floating point register. */
1307 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1308
1309 /* The number of consecutive floating-point registers needed to store the
1310 largest format supported by the FPU. */
1311 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1312
1313 /* The number of consecutive floating-point registers needed to store the
1314 smallest format supported by the FPU. */
1315 #define MIN_FPRS_PER_FMT \
1316 (mips_isa_rev >= 1 ? 1 : MAX_FPRS_PER_FMT)
1317
1318 /* The largest size of value that can be held in floating-point
1319 registers and moved with a single instruction. */
1320 #define UNITS_PER_HWFPVALUE \
1321 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1322
1323 /* The largest size of value that can be held in floating-point
1324 registers. */
1325 #define UNITS_PER_FPVALUE \
1326 (TARGET_SOFT_FLOAT_ABI ? 0 \
1327 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1328 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1329
1330 /* The number of bytes in a double. */
1331 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1332
1333 /* Set the sizes of the core types. */
1334 #define SHORT_TYPE_SIZE 16
1335 #define INT_TYPE_SIZE 32
1336 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1337 #define LONG_LONG_TYPE_SIZE 64
1338
1339 #define FLOAT_TYPE_SIZE 32
1340 #define DOUBLE_TYPE_SIZE 64
1341 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1342
1343 /* Define the sizes of fixed-point types. */
1344 #define SHORT_FRACT_TYPE_SIZE 8
1345 #define FRACT_TYPE_SIZE 16
1346 #define LONG_FRACT_TYPE_SIZE 32
1347 #define LONG_LONG_FRACT_TYPE_SIZE 64
1348
1349 #define SHORT_ACCUM_TYPE_SIZE 16
1350 #define ACCUM_TYPE_SIZE 32
1351 #define LONG_ACCUM_TYPE_SIZE 64
1352 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1353 doesn't support 128-bit integers for MIPS32 currently. */
1354 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1355
1356 /* long double is not a fixed mode, but the idea is that, if we
1357 support long double, we also want a 128-bit integer type. */
1358 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1359
1360 #ifdef IN_LIBGCC2
1361 #if ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1362 || (defined _ABI64 && _MIPS_SIM == _ABI64))
1363 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1364 # else
1365 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1366 # endif
1367 #endif
1368
1369 /* Width in bits of a pointer. */
1370 #ifndef POINTER_SIZE
1371 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1372 #endif
1373
1374 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1375 #define PARM_BOUNDARY BITS_PER_WORD
1376
1377 /* Allocation boundary (in *bits*) for the code of a function. */
1378 #define FUNCTION_BOUNDARY 32
1379
1380 /* Alignment of field after `int : 0' in a structure. */
1381 #define EMPTY_FIELD_BOUNDARY 32
1382
1383 /* Every structure's size must be a multiple of this. */
1384 /* 8 is observed right on a DECstation and on riscos 4.02. */
1385 #define STRUCTURE_SIZE_BOUNDARY 8
1386
1387 /* There is no point aligning anything to a rounder boundary than this. */
1388 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1389
1390 /* All accesses must be aligned. */
1391 #define STRICT_ALIGNMENT 1
1392
1393 /* Define this if you wish to imitate the way many other C compilers
1394 handle alignment of bitfields and the structures that contain
1395 them.
1396
1397 The behavior is that the type written for a bit-field (`int',
1398 `short', or other integer type) imposes an alignment for the
1399 entire structure, as if the structure really did contain an
1400 ordinary field of that type. In addition, the bit-field is placed
1401 within the structure so that it would fit within such a field,
1402 not crossing a boundary for it.
1403
1404 Thus, on most machines, a bit-field whose type is written as `int'
1405 would not cross a four-byte boundary, and would force four-byte
1406 alignment for the whole structure. (The alignment used may not
1407 be four bytes; it is controlled by the other alignment
1408 parameters.)
1409
1410 If the macro is defined, its definition should be a C expression;
1411 a nonzero value for the expression enables this behavior. */
1412
1413 #define PCC_BITFIELD_TYPE_MATTERS 1
1414
1415 /* If defined, a C expression to compute the alignment given to a
1416 constant that is being placed in memory. CONSTANT is the constant
1417 and ALIGN is the alignment that the object would ordinarily have.
1418 The value of this macro is used instead of that alignment to align
1419 the object.
1420
1421 If this macro is not defined, then ALIGN is used.
1422
1423 The typical use of this macro is to increase alignment for string
1424 constants to be word aligned so that `strcpy' calls that copy
1425 constants can be done inline. */
1426
1427 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1428 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1429 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1430
1431 /* If defined, a C expression to compute the alignment for a static
1432 variable. TYPE is the data type, and ALIGN is the alignment that
1433 the object would ordinarily have. The value of this macro is used
1434 instead of that alignment to align the object.
1435
1436 If this macro is not defined, then ALIGN is used.
1437
1438 One use of this macro is to increase alignment of medium-size
1439 data to make it all fit in fewer cache lines. Another is to
1440 cause character arrays to be word-aligned so that `strcpy' calls
1441 that copy constants to character arrays can be done inline. */
1442
1443 #undef DATA_ALIGNMENT
1444 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1445 ((((ALIGN) < BITS_PER_WORD) \
1446 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1447 || TREE_CODE (TYPE) == UNION_TYPE \
1448 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1449
1450 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1451 character arrays to be word-aligned so that `strcpy' calls that copy
1452 constants to character arrays can be done inline, and 'strcmp' can be
1453 optimised to use word loads. */
1454 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1455 DATA_ALIGNMENT (TYPE, ALIGN)
1456
1457 #define PAD_VARARGS_DOWN \
1458 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1459
1460 /* Define if operations between registers always perform the operation
1461 on the full register even if a narrower mode is specified. */
1462 #define WORD_REGISTER_OPERATIONS
1463
1464 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1465 moves. All other references are zero extended. */
1466 #define LOAD_EXTEND_OP(MODE) \
1467 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1468 ? SIGN_EXTEND : ZERO_EXTEND)
1469
1470 /* Define this macro if it is advisable to hold scalars in registers
1471 in a wider mode than that declared by the program. In such cases,
1472 the value is constrained to be within the bounds of the declared
1473 type, but kept valid in the wider mode. The signedness of the
1474 extension may differ from that of the type. */
1475
1476 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1477 if (GET_MODE_CLASS (MODE) == MODE_INT \
1478 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1479 { \
1480 if ((MODE) == SImode) \
1481 (UNSIGNEDP) = 0; \
1482 (MODE) = Pmode; \
1483 }
1484
1485 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1486 Extensions of pointers to word_mode must be signed. */
1487 #define POINTERS_EXTEND_UNSIGNED false
1488
1489 /* Define if loading short immediate values into registers sign extends. */
1490 #define SHORT_IMMEDIATES_SIGN_EXTEND
1491
1492 /* The [d]clz instructions have the natural values at 0. */
1493
1494 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1495 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1496 \f
1497 /* Standard register usage. */
1498
1499 /* Number of hardware registers. We have:
1500
1501 - 32 integer registers
1502 - 32 floating point registers
1503 - 8 condition code registers
1504 - 2 accumulator registers (hi and lo)
1505 - 32 registers each for coprocessors 0, 2 and 3
1506 - 4 fake registers:
1507 - ARG_POINTER_REGNUM
1508 - FRAME_POINTER_REGNUM
1509 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1510 - CPRESTORE_SLOT_REGNUM
1511 - 2 dummy entries that were used at various times in the past.
1512 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1513 - 6 DSP control registers */
1514
1515 #define FIRST_PSEUDO_REGISTER 188
1516
1517 /* By default, fix the kernel registers ($26 and $27), the global
1518 pointer ($28) and the stack pointer ($29). This can change
1519 depending on the command-line options.
1520
1521 Regarding coprocessor registers: without evidence to the contrary,
1522 it's best to assume that each coprocessor register has a unique
1523 use. This can be overridden, in, e.g., mips_option_override or
1524 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1525 inappropriate for a particular target. */
1526
1527 #define FIXED_REGISTERS \
1528 { \
1529 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1530 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1531 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1532 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1533 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1534 /* COP0 registers */ \
1535 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1536 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1537 /* COP2 registers */ \
1538 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1539 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1540 /* COP3 registers */ \
1541 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1542 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1543 /* 6 DSP accumulator registers & 6 control registers */ \
1544 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1545 }
1546
1547
1548 /* Set up this array for o32 by default.
1549
1550 Note that we don't mark $31 as a call-clobbered register. The idea is
1551 that it's really the call instructions themselves which clobber $31.
1552 We don't care what the called function does with it afterwards.
1553
1554 This approach makes it easier to implement sibcalls. Unlike normal
1555 calls, sibcalls don't clobber $31, so the register reaches the
1556 called function in tact. EPILOGUE_USES says that $31 is useful
1557 to the called function. */
1558
1559 #define CALL_USED_REGISTERS \
1560 { \
1561 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1562 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1563 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1564 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1565 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1566 /* COP0 registers */ \
1567 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1568 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1569 /* COP2 registers */ \
1570 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1571 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1572 /* COP3 registers */ \
1573 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1574 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1575 /* 6 DSP accumulator registers & 6 control registers */ \
1576 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1577 }
1578
1579
1580 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1581
1582 #define CALL_REALLY_USED_REGISTERS \
1583 { /* General registers. */ \
1584 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1585 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1586 /* Floating-point registers. */ \
1587 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1588 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1589 /* Others. */ \
1590 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1591 /* COP0 registers */ \
1592 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1593 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1594 /* COP2 registers */ \
1595 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1596 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1597 /* COP3 registers */ \
1598 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1599 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1600 /* 6 DSP accumulator registers & 6 control registers */ \
1601 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1602 }
1603
1604 /* Internal macros to classify a register number as to whether it's a
1605 general purpose register, a floating point register, a
1606 multiply/divide register, or a status register. */
1607
1608 #define GP_REG_FIRST 0
1609 #define GP_REG_LAST 31
1610 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1611 #define GP_DBX_FIRST 0
1612 #define K0_REG_NUM (GP_REG_FIRST + 26)
1613 #define K1_REG_NUM (GP_REG_FIRST + 27)
1614 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1615
1616 #define FP_REG_FIRST 32
1617 #define FP_REG_LAST 63
1618 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1619 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1620
1621 #define MD_REG_FIRST 64
1622 #define MD_REG_LAST 65
1623 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1624 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1625
1626 /* The DWARF 2 CFA column which tracks the return address from a
1627 signal handler context. This means that to maintain backwards
1628 compatibility, no hard register can be assigned this column if it
1629 would need to be handled by the DWARF unwinder. */
1630 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1631
1632 #define ST_REG_FIRST 67
1633 #define ST_REG_LAST 74
1634 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1635
1636
1637 /* FIXME: renumber. */
1638 #define COP0_REG_FIRST 80
1639 #define COP0_REG_LAST 111
1640 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1641
1642 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1643 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1644 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1645
1646 #define COP2_REG_FIRST 112
1647 #define COP2_REG_LAST 143
1648 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1649
1650 #define COP3_REG_FIRST 144
1651 #define COP3_REG_LAST 175
1652 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1653
1654 /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1655 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1656 #define ALL_COP_REG_LAST COP3_REG_LAST
1657 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1658
1659 #define DSP_ACC_REG_FIRST 176
1660 #define DSP_ACC_REG_LAST 181
1661 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1662
1663 #define AT_REGNUM (GP_REG_FIRST + 1)
1664 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1665 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1666
1667 /* A few bitfield locations for the coprocessor registers. */
1668 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1669 the cause register for the EIC interrupt mode. */
1670 #define CAUSE_IPL 10
1671 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1672 #define SR_IPL 10
1673 /* Exception Level is at bit 1 of the status register. */
1674 #define SR_EXL 1
1675 /* Interrupt Enable is at bit 0 of the status register. */
1676 #define SR_IE 0
1677
1678 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1679 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1680 should be used instead. */
1681 #define FPSW_REGNUM ST_REG_FIRST
1682
1683 #define GP_REG_P(REGNO) \
1684 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1685 #define M16_REG_P(REGNO) \
1686 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1687 #define M16STORE_REG_P(REGNO) \
1688 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1689 #define FP_REG_P(REGNO) \
1690 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1691 #define MD_REG_P(REGNO) \
1692 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1693 #define ST_REG_P(REGNO) \
1694 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1695 #define COP0_REG_P(REGNO) \
1696 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1697 #define COP2_REG_P(REGNO) \
1698 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1699 #define COP3_REG_P(REGNO) \
1700 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1701 #define ALL_COP_REG_P(REGNO) \
1702 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1703 /* Test if REGNO is one of the 6 new DSP accumulators. */
1704 #define DSP_ACC_REG_P(REGNO) \
1705 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1706 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1707 #define ACC_REG_P(REGNO) \
1708 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1709
1710 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1711
1712 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1713 to initialize the mips16 gp pseudo register. */
1714 #define CONST_GP_P(X) \
1715 (GET_CODE (X) == CONST \
1716 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1717 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1718
1719 /* Return coprocessor number from register number. */
1720
1721 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1722 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1723 : COP3_REG_P (REGNO) ? '3' : '?')
1724
1725
1726 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1727
1728 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1729 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1730
1731 #define MODES_TIEABLE_P mips_modes_tieable_p
1732
1733 /* Register to use for pushing function arguments. */
1734 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1735
1736 /* These two registers don't really exist: they get eliminated to either
1737 the stack or hard frame pointer. */
1738 #define ARG_POINTER_REGNUM 77
1739 #define FRAME_POINTER_REGNUM 78
1740
1741 /* $30 is not available on the mips16, so we use $17 as the frame
1742 pointer. */
1743 #define HARD_FRAME_POINTER_REGNUM \
1744 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1745
1746 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1747 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1748
1749 /* Register in which static-chain is passed to a function. */
1750 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1751
1752 /* Registers used as temporaries in prologue/epilogue code:
1753
1754 - If a MIPS16 PIC function needs access to _gp, it first loads
1755 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1756
1757 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1758 register. The register must not conflict with MIPS16_PIC_TEMP.
1759
1760 - If we aren't generating MIPS16 code, the prologue can also use
1761 MIPS_PROLOGUE_TEMP2 as a general temporary register.
1762
1763 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1764 register.
1765
1766 If we're generating MIPS16 code, these registers must come from the
1767 core set of 8. The prologue registers mustn't conflict with any
1768 incoming arguments, the static chain pointer, or the frame pointer.
1769 The epilogue temporary mustn't conflict with the return registers,
1770 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1771 or the EH data registers.
1772
1773 If we're generating interrupt handlers, we use K0 as a temporary register
1774 in prologue/epilogue code. */
1775
1776 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1777 #define MIPS_PROLOGUE_TEMP_REGNUM \
1778 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1779 #define MIPS_PROLOGUE_TEMP2_REGNUM \
1780 (TARGET_MIPS16 \
1781 ? (gcc_unreachable (), INVALID_REGNUM) \
1782 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
1783 #define MIPS_EPILOGUE_TEMP_REGNUM \
1784 (cfun->machine->interrupt_handler_p \
1785 ? K0_REG_NUM \
1786 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1787
1788 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1789 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1790 #define MIPS_PROLOGUE_TEMP2(MODE) \
1791 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
1792 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1793
1794 /* Define this macro if it is as good or better to call a constant
1795 function address than to call an address kept in a register. */
1796 #define NO_FUNCTION_CSE 1
1797
1798 /* The ABI-defined global pointer. Sometimes we use a different
1799 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1800 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1801
1802 /* We normally use $28 as the global pointer. However, when generating
1803 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1804 register instead. They can then avoid saving and restoring $28
1805 and perhaps avoid using a frame at all.
1806
1807 When a leaf function uses something other than $28, mips_expand_prologue
1808 will modify pic_offset_table_rtx in place. Take the register number
1809 from there after reload. */
1810 #define PIC_OFFSET_TABLE_REGNUM \
1811 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1812 \f
1813 /* Define the classes of registers for register constraints in the
1814 machine description. Also define ranges of constants.
1815
1816 One of the classes must always be named ALL_REGS and include all hard regs.
1817 If there is more than one class, another class must be named NO_REGS
1818 and contain no registers.
1819
1820 The name GENERAL_REGS must be the name of a class (or an alias for
1821 another name such as ALL_REGS). This is the class of registers
1822 that is allowed by "g" or "r" in a register constraint.
1823 Also, registers outside this class are allocated only when
1824 instructions express preferences for them.
1825
1826 The classes must be numbered in nondecreasing order; that is,
1827 a larger-numbered class must never be contained completely
1828 in a smaller-numbered class.
1829
1830 For any two classes, it is very desirable that there be another
1831 class that represents their union. */
1832
1833 enum reg_class
1834 {
1835 NO_REGS, /* no registers in set */
1836 M16_STORE_REGS, /* microMIPS store registers */
1837 M16_REGS, /* mips16 directly accessible registers */
1838 T_REG, /* mips16 T register ($24) */
1839 M16_T_REGS, /* mips16 registers plus T register */
1840 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1841 V1_REG, /* Register $v1 ($3) used for TLS access. */
1842 LEA_REGS, /* Every GPR except $25 */
1843 GR_REGS, /* integer registers */
1844 FP_REGS, /* floating point registers */
1845 MD0_REG, /* first multiply/divide register */
1846 MD1_REG, /* second multiply/divide register */
1847 MD_REGS, /* multiply/divide registers (hi/lo) */
1848 COP0_REGS, /* generic coprocessor classes */
1849 COP2_REGS,
1850 COP3_REGS,
1851 ST_REGS, /* status registers (fp status) */
1852 DSP_ACC_REGS, /* DSP accumulator registers */
1853 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1854 FRAME_REGS, /* $arg and $frame */
1855 GR_AND_MD0_REGS, /* union classes */
1856 GR_AND_MD1_REGS,
1857 GR_AND_MD_REGS,
1858 GR_AND_ACC_REGS,
1859 ALL_REGS, /* all registers */
1860 LIM_REG_CLASSES /* max value + 1 */
1861 };
1862
1863 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1864
1865 #define GENERAL_REGS GR_REGS
1866
1867 /* An initializer containing the names of the register classes as C
1868 string constants. These names are used in writing some of the
1869 debugging dumps. */
1870
1871 #define REG_CLASS_NAMES \
1872 { \
1873 "NO_REGS", \
1874 "M16_STORE_REGS", \
1875 "M16_REGS", \
1876 "T_REG", \
1877 "M16_T_REGS", \
1878 "PIC_FN_ADDR_REG", \
1879 "V1_REG", \
1880 "LEA_REGS", \
1881 "GR_REGS", \
1882 "FP_REGS", \
1883 "MD0_REG", \
1884 "MD1_REG", \
1885 "MD_REGS", \
1886 /* coprocessor registers */ \
1887 "COP0_REGS", \
1888 "COP2_REGS", \
1889 "COP3_REGS", \
1890 "ST_REGS", \
1891 "DSP_ACC_REGS", \
1892 "ACC_REGS", \
1893 "FRAME_REGS", \
1894 "GR_AND_MD0_REGS", \
1895 "GR_AND_MD1_REGS", \
1896 "GR_AND_MD_REGS", \
1897 "GR_AND_ACC_REGS", \
1898 "ALL_REGS" \
1899 }
1900
1901 /* An initializer containing the contents of the register classes,
1902 as integers which are bit masks. The Nth integer specifies the
1903 contents of class N. The way the integer MASK is interpreted is
1904 that register R is in the class if `MASK & (1 << R)' is 1.
1905
1906 When the machine has more than 32 registers, an integer does not
1907 suffice. Then the integers are replaced by sub-initializers,
1908 braced groupings containing several integers. Each
1909 sub-initializer must be suitable as an initializer for the type
1910 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1911
1912 #define REG_CLASS_CONTENTS \
1913 { \
1914 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1915 { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_STORE_REGS */ \
1916 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1917 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1918 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1919 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1920 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1921 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1922 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1923 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1924 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1925 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1926 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1927 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1928 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1929 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1930 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1931 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1932 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1933 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1934 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1935 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1936 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1937 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1938 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1939 }
1940
1941
1942 /* A C expression whose value is a register class containing hard
1943 register REGNO. In general there is more that one such class;
1944 choose a class which is "minimal", meaning that no smaller class
1945 also contains the register. */
1946
1947 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1948
1949 /* A macro whose definition is the name of the class to which a
1950 valid base register must belong. A base register is one used in
1951 an address which is the register value plus a displacement. */
1952
1953 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1954
1955 /* A macro whose definition is the name of the class to which a
1956 valid index register must belong. An index register is one used
1957 in an address where its value is either multiplied by a scale
1958 factor or added to another register (as well as added to a
1959 displacement). */
1960
1961 #define INDEX_REG_CLASS NO_REGS
1962
1963 /* We generally want to put call-clobbered registers ahead of
1964 call-saved ones. (IRA expects this.) */
1965
1966 #define REG_ALLOC_ORDER \
1967 { /* Accumulator registers. When GPRs and accumulators have equal \
1968 cost, we generally prefer to use accumulators. For example, \
1969 a division of multiplication result is better allocated to LO, \
1970 so that we put the MFLO at the point of use instead of at the \
1971 point of definition. It's also needed if we're to take advantage \
1972 of the extra accumulators available with -mdspr2. In some cases, \
1973 it can also help to reduce register pressure. */ \
1974 64, 65,176,177,178,179,180,181, \
1975 /* Call-clobbered GPRs. */ \
1976 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1977 24, 25, 31, \
1978 /* The global pointer. This is call-clobbered for o32 and o64 \
1979 abicalls, call-saved for n32 and n64 abicalls, and a program \
1980 invariant otherwise. Putting it between the call-clobbered \
1981 and call-saved registers should cope with all eventualities. */ \
1982 28, \
1983 /* Call-saved GPRs. */ \
1984 16, 17, 18, 19, 20, 21, 22, 23, 30, \
1985 /* GPRs that can never be exposed to the register allocator. */ \
1986 0, 26, 27, 29, \
1987 /* Call-clobbered FPRs. */ \
1988 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1989 48, 49, 50, 51, \
1990 /* FPRs that are usually call-saved. The odd ones are actually \
1991 call-clobbered for n32, but listing them ahead of the even \
1992 registers might encourage the register allocator to fragment \
1993 the available FPR pairs. We need paired FPRs to store long \
1994 doubles, so it isn't clear that using a different order \
1995 for n32 would be a win. */ \
1996 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1997 /* None of the remaining classes have defined call-saved \
1998 registers. */ \
1999 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2000 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2001 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2002 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2003 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2004 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2005 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
2006 182,183,184,185,186,187 \
2007 }
2008
2009 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
2010 to be rearranged based on a particular function. On the mips16, we
2011 want to allocate $24 (T_REG) before other registers for
2012 instructions for which it is possible. */
2013
2014 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
2015
2016 /* True if VALUE is an unsigned 6-bit number. */
2017
2018 #define UIMM6_OPERAND(VALUE) \
2019 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2020
2021 /* True if VALUE is a signed 10-bit number. */
2022
2023 #define IMM10_OPERAND(VALUE) \
2024 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2025
2026 /* True if VALUE is a signed 16-bit number. */
2027
2028 #define SMALL_OPERAND(VALUE) \
2029 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2030
2031 /* True if VALUE is an unsigned 16-bit number. */
2032
2033 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2034 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2035
2036 /* True if VALUE can be loaded into a register using LUI. */
2037
2038 #define LUI_OPERAND(VALUE) \
2039 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2040 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2041
2042 /* Return a value X with the low 16 bits clear, and such that
2043 VALUE - X is a signed 16-bit value. */
2044
2045 #define CONST_HIGH_PART(VALUE) \
2046 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2047
2048 #define CONST_LOW_PART(VALUE) \
2049 ((VALUE) - CONST_HIGH_PART (VALUE))
2050
2051 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2052 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2053 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2054 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2055
2056 /* The HI and LO registers can only be reloaded via the general
2057 registers. Condition code registers can only be loaded to the
2058 general registers, and from the floating point registers. */
2059
2060 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2061 mips_secondary_reload_class (CLASS, MODE, X, true)
2062 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2063 mips_secondary_reload_class (CLASS, MODE, X, false)
2064
2065 /* Return the maximum number of consecutive registers
2066 needed to represent mode MODE in a register of class CLASS. */
2067
2068 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2069
2070 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2071 mips_cannot_change_mode_class (FROM, TO, CLASS)
2072 \f
2073 /* Stack layout; function entry, exit and calling. */
2074
2075 #define STACK_GROWS_DOWNWARD
2076
2077 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2078
2079 /* Size of the area allocated in the frame to save the GP. */
2080
2081 #define MIPS_GP_SAVE_AREA_SIZE \
2082 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2083
2084 /* The offset of the first local variable from the frame pointer. See
2085 mips_compute_frame_info for details about the frame layout. */
2086
2087 #define STARTING_FRAME_OFFSET \
2088 (FRAME_GROWS_DOWNWARD \
2089 ? 0 \
2090 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2091
2092 #define RETURN_ADDR_RTX mips_return_addr
2093
2094 /* Mask off the MIPS16 ISA bit in unwind addresses.
2095
2096 The reason for this is a little subtle. When unwinding a call,
2097 we are given the call's return address, which on most targets
2098 is the address of the following instruction. However, what we
2099 actually want to find is the EH region for the call itself.
2100 The target-independent unwind code therefore searches for "RA - 1".
2101
2102 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2103 RA - 1 is therefore the real (even-valued) start of the return
2104 instruction. EH region labels are usually odd-valued MIPS16 symbols
2105 too, so a search for an even address within a MIPS16 region would
2106 usually work.
2107
2108 However, there is an exception. If the end of an EH region is also
2109 the end of a function, the end label is allowed to be even. This is
2110 necessary because a following non-MIPS16 function may also need EH
2111 information for its first instruction.
2112
2113 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2114 non-ISA-encoded address. This probably isn't ideal, but it is
2115 the traditional (legacy) behavior. It is therefore only safe
2116 to search MIPS EH regions for an _odd-valued_ address.
2117
2118 Masking off the ISA bit means that the target-independent code
2119 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2120 #define MASK_RETURN_ADDR GEN_INT (-2)
2121
2122
2123 /* Similarly, don't use the least-significant bit to tell pointers to
2124 code from vtable index. */
2125
2126 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2127
2128 /* The eliminations to $17 are only used for mips16 code. See the
2129 definition of HARD_FRAME_POINTER_REGNUM. */
2130
2131 #define ELIMINABLE_REGS \
2132 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2133 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2134 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2135 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2136 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2137 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2138
2139 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2140 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2141
2142 /* Allocate stack space for arguments at the beginning of each function. */
2143 #define ACCUMULATE_OUTGOING_ARGS 1
2144
2145 /* The argument pointer always points to the first argument. */
2146 #define FIRST_PARM_OFFSET(FNDECL) 0
2147
2148 /* o32 and o64 reserve stack space for all argument registers. */
2149 #define REG_PARM_STACK_SPACE(FNDECL) \
2150 (TARGET_OLDABI \
2151 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2152 : 0)
2153
2154 /* Define this if it is the responsibility of the caller to
2155 allocate the area reserved for arguments passed in registers.
2156 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2157 of this macro is to determine whether the space is included in
2158 `crtl->outgoing_args_size'. */
2159 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2160
2161 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2162 \f
2163 /* Symbolic macros for the registers used to return integer and floating
2164 point values. */
2165
2166 #define GP_RETURN (GP_REG_FIRST + 2)
2167 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2168
2169 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2170
2171 /* Symbolic macros for the first/last argument registers. */
2172
2173 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2174 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2175 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2176 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2177
2178 /* 1 if N is a possible register number for function argument passing.
2179 We have no FP argument registers when soft-float. When FP registers
2180 are 32 bits, we can't directly reference the odd numbered ones. */
2181
2182 #define FUNCTION_ARG_REGNO_P(N) \
2183 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2184 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2185 && !fixed_regs[N])
2186 \f
2187 /* This structure has to cope with two different argument allocation
2188 schemes. Most MIPS ABIs view the arguments as a structure, of which
2189 the first N words go in registers and the rest go on the stack. If I
2190 < N, the Ith word might go in Ith integer argument register or in a
2191 floating-point register. For these ABIs, we only need to remember
2192 the offset of the current argument into the structure.
2193
2194 The EABI instead allocates the integer and floating-point arguments
2195 separately. The first N words of FP arguments go in FP registers,
2196 the rest go on the stack. Likewise, the first N words of the other
2197 arguments go in integer registers, and the rest go on the stack. We
2198 need to maintain three counts: the number of integer registers used,
2199 the number of floating-point registers used, and the number of words
2200 passed on the stack.
2201
2202 We could keep separate information for the two ABIs (a word count for
2203 the standard ABIs, and three separate counts for the EABI). But it
2204 seems simpler to view the standard ABIs as forms of EABI that do not
2205 allocate floating-point registers.
2206
2207 So for the standard ABIs, the first N words are allocated to integer
2208 registers, and mips_function_arg decides on an argument-by-argument
2209 basis whether that argument should really go in an integer register,
2210 or in a floating-point one. */
2211
2212 typedef struct mips_args {
2213 /* Always true for varargs functions. Otherwise true if at least
2214 one argument has been passed in an integer register. */
2215 int gp_reg_found;
2216
2217 /* The number of arguments seen so far. */
2218 unsigned int arg_number;
2219
2220 /* The number of integer registers used so far. For all ABIs except
2221 EABI, this is the number of words that have been added to the
2222 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2223 unsigned int num_gprs;
2224
2225 /* For EABI, the number of floating-point registers used so far. */
2226 unsigned int num_fprs;
2227
2228 /* The number of words passed on the stack. */
2229 unsigned int stack_words;
2230
2231 /* On the mips16, we need to keep track of which floating point
2232 arguments were passed in general registers, but would have been
2233 passed in the FP regs if this were a 32-bit function, so that we
2234 can move them to the FP regs if we wind up calling a 32-bit
2235 function. We record this information in fp_code, encoded in base
2236 four. A zero digit means no floating point argument, a one digit
2237 means an SFmode argument, and a two digit means a DFmode argument,
2238 and a three digit is not used. The low order digit is the first
2239 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2240 an SFmode argument. ??? A more sophisticated approach will be
2241 needed if MIPS_ABI != ABI_32. */
2242 int fp_code;
2243
2244 /* True if the function has a prototype. */
2245 int prototype;
2246 } CUMULATIVE_ARGS;
2247
2248 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2249 for a call to a function whose data type is FNTYPE.
2250 For a library call, FNTYPE is 0. */
2251
2252 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2253 mips_init_cumulative_args (&CUM, FNTYPE)
2254
2255 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2256 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2257
2258 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2259 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2260
2261 /* True if using EABI and varargs can be passed in floating-point
2262 registers. Under these conditions, we need a more complex form
2263 of va_list, which tracks GPR, FPR and stack arguments separately. */
2264 #define EABI_FLOAT_VARARGS_P \
2265 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2266
2267 \f
2268 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2269
2270 /* Treat LOC as a byte offset from the stack pointer and round it up
2271 to the next fully-aligned offset. */
2272 #define MIPS_STACK_ALIGN(LOC) \
2273 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2274
2275 \f
2276 /* Output assembler code to FILE to increment profiler label # LABELNO
2277 for profiling a function entry. */
2278
2279 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2280
2281 /* The profiler preserves all interesting registers, including $31. */
2282 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2283
2284 /* No mips port has ever used the profiler counter word, so don't emit it
2285 or the label for it. */
2286
2287 #define NO_PROFILE_COUNTERS 1
2288
2289 /* Define this macro if the code for function profiling should come
2290 before the function prologue. Normally, the profiling code comes
2291 after. */
2292
2293 /* #define PROFILE_BEFORE_PROLOGUE */
2294
2295 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2296 the stack pointer does not matter. The value is tested only in
2297 functions that have frame pointers.
2298 No definition is equivalent to always zero. */
2299
2300 #define EXIT_IGNORE_STACK 1
2301
2302 \f
2303 /* Trampolines are a block of code followed by two pointers. */
2304
2305 #define TRAMPOLINE_SIZE \
2306 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2307
2308 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2309 pointers from a single LUI base. */
2310
2311 #define TRAMPOLINE_ALIGNMENT 64
2312
2313 /* mips_trampoline_init calls this library function to flush
2314 program and data caches. */
2315
2316 #ifndef CACHE_FLUSH_FUNC
2317 #define CACHE_FLUSH_FUNC "_flush_cache"
2318 #endif
2319
2320 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2321 /* Flush both caches. We need to flush the data cache in case \
2322 the system has a write-back cache. */ \
2323 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2324 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2325 GEN_INT (3), TYPE_MODE (integer_type_node))
2326
2327 \f
2328 /* Addressing modes, and classification of registers for them. */
2329
2330 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2331 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2332 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2333 \f
2334 /* Maximum number of registers that can appear in a valid memory address. */
2335
2336 #define MAX_REGS_PER_ADDRESS 1
2337
2338 /* Check for constness inline but use mips_legitimate_address_p
2339 to check whether a constant really is an address. */
2340
2341 #define CONSTANT_ADDRESS_P(X) \
2342 (CONSTANT_P (X) && memory_address_p (SImode, X))
2343
2344 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2345 'the start of the function that this code is output in'. */
2346
2347 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2348 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2349 asm_fprintf ((FILE), "%U%s", \
2350 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2351 else \
2352 asm_fprintf ((FILE), "%U%s", (NAME))
2353 \f
2354 /* Flag to mark a function decl symbol that requires a long call. */
2355 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2356 #define SYMBOL_REF_LONG_CALL_P(X) \
2357 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2358
2359 /* This flag marks functions that cannot be lazily bound. */
2360 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2361 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2362 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2363
2364 /* True if we're generating a form of MIPS16 code in which jump tables
2365 are stored in the text section and encoded as 16-bit PC-relative
2366 offsets. This is only possible when general text loads are allowed,
2367 since the table access itself will be an "lh" instruction. If the
2368 PC-relative offsets grow too large, 32-bit offsets are used instead. */
2369 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2370
2371 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2372
2373 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2374
2375 /* Only use short offsets if their range will not overflow. */
2376 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2377 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2378 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2379 : SImode)
2380
2381 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2382
2383 /* Define this as 1 if `char' should by default be signed; else as 0. */
2384 #ifndef DEFAULT_SIGNED_CHAR
2385 #define DEFAULT_SIGNED_CHAR 1
2386 #endif
2387
2388 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2389 we generally don't want to use them for copying arbitrary data.
2390 A single N-word move is usually the same cost as N single-word moves. */
2391 #define MOVE_MAX UNITS_PER_WORD
2392 #define MAX_MOVE_MAX 8
2393
2394 /* Define this macro as a C expression which is nonzero if
2395 accessing less than a word of memory (i.e. a `char' or a
2396 `short') is no faster than accessing a word of memory, i.e., if
2397 such access require more than one instruction or if there is no
2398 difference in cost between byte and (aligned) word loads.
2399
2400 On RISC machines, it tends to generate better code to define
2401 this as 1, since it avoids making a QI or HI mode register.
2402
2403 But, generating word accesses for -mips16 is generally bad as shifts
2404 (often extended) would be needed for byte accesses. */
2405 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2406
2407 /* Standard MIPS integer shifts truncate the shift amount to the
2408 width of the shifted operand. However, Loongson vector shifts
2409 do not truncate the shift amount at all. */
2410 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2411
2412 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2413 is done just by pretending it is already truncated. */
2414 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2415 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2416
2417
2418 /* Specify the machine mode that pointers have.
2419 After generation of rtl, the compiler makes no further distinction
2420 between pointers and any other objects of this machine mode. */
2421
2422 #ifndef Pmode
2423 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2424 #endif
2425
2426 /* Give call MEMs SImode since it is the "most permissive" mode
2427 for both 32-bit and 64-bit targets. */
2428
2429 #define FUNCTION_MODE SImode
2430
2431 \f
2432 /* We allocate $fcc registers by hand and can't cope with moves of
2433 CCmode registers to and from pseudos (or memory). */
2434 #define AVOID_CCMODE_COPIES
2435
2436 /* A C expression for the cost of a branch instruction. A value of
2437 1 is the default; other values are interpreted relative to that. */
2438
2439 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2440 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2441
2442 /* The MIPS port has several functions that return an instruction count.
2443 Multiplying the count by this value gives the number of bytes that
2444 the instructions occupy. */
2445 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2446
2447 /* The length of a NOP in bytes. */
2448 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2449
2450 /* If defined, modifies the length assigned to instruction INSN as a
2451 function of the context in which it is used. LENGTH is an lvalue
2452 that contains the initially computed length of the insn and should
2453 be updated with the correct length of the insn. */
2454 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2455 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2456
2457 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2458 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2459 its operands. */
2460 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2461 "%*" OPCODE "%?\t" OPERANDS "%/"
2462
2463 /* Return an asm string that forces INSN to be treated as an absolute
2464 J or JAL instruction instead of an assembler macro. */
2465 #define MIPS_ABSOLUTE_JUMP(INSN) \
2466 (TARGET_ABICALLS_PIC2 \
2467 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2468 : INSN)
2469
2470 /* Return the asm template for a call. INSN is the instruction's mnemonic
2471 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2472 number of the target. SIZE_OPNO is the operand number of the argument size
2473 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2474 -1 and the call is indirect, use the function symbol from the call
2475 attributes to attach a R_MIPS_JALR relocation to the call.
2476
2477 When generating GOT code without explicit relocation operators,
2478 all calls should use assembly macros. Otherwise, all indirect
2479 calls should use "jr" or "jalr"; we will arrange to restore $gp
2480 afterwards if necessary. Finally, we can only generate direct
2481 calls for -mabicalls by temporarily switching to non-PIC mode.
2482
2483 For microMIPS jal(r), we try to generate jal(r)s when a 16-bit
2484 instruction is in the delay slot of jal(r). */
2485 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2486 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2487 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2488 : REG_P (OPERANDS[TARGET_OPNO]) \
2489 ? (mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO) \
2490 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2491 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2492 : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
2493 ? "%*" INSN "r%!\t%" #TARGET_OPNO "%/" \
2494 : "%*" INSN "r\t%" #TARGET_OPNO "%/") \
2495 : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
2496 ? MIPS_ABSOLUTE_JUMP ("%*" INSN "%!\t%" #TARGET_OPNO "%/") \
2497 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/")) \
2498
2499 /* Similar to MIPS_CALL, but this is for MICROMIPS "j" to generate
2500 "jrc" when nop is in the delay slot of "jr". */
2501
2502 #define MICROMIPS_J(INSN, OPERANDS, OPNO) \
2503 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2504 ? "%*j\t%" #OPNO "%/" \
2505 : REG_P (OPERANDS[OPNO]) \
2506 ? "%*jr%:\t%" #OPNO \
2507 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #OPNO "%/"))
2508
2509 \f
2510 /* Control the assembler format that we output. */
2511
2512 /* Output to assembler file text saying following lines
2513 may contain character constants, extra white space, comments, etc. */
2514
2515 #ifndef ASM_APP_ON
2516 #define ASM_APP_ON " #APP\n"
2517 #endif
2518
2519 /* Output to assembler file text saying following lines
2520 no longer contain unusual constructs. */
2521
2522 #ifndef ASM_APP_OFF
2523 #define ASM_APP_OFF " #NO_APP\n"
2524 #endif
2525
2526 #define REGISTER_NAMES \
2527 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2528 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2529 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2530 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2531 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2532 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2533 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2534 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2535 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2536 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2537 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2538 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2539 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2540 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2541 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2542 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2543 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2544 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2545 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2546 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2547 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2548 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2549 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2550 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2551
2552 /* List the "software" names for each register. Also list the numerical
2553 names for $fp and $sp. */
2554
2555 #define ADDITIONAL_REGISTER_NAMES \
2556 { \
2557 { "$29", 29 + GP_REG_FIRST }, \
2558 { "$30", 30 + GP_REG_FIRST }, \
2559 { "at", 1 + GP_REG_FIRST }, \
2560 { "v0", 2 + GP_REG_FIRST }, \
2561 { "v1", 3 + GP_REG_FIRST }, \
2562 { "a0", 4 + GP_REG_FIRST }, \
2563 { "a1", 5 + GP_REG_FIRST }, \
2564 { "a2", 6 + GP_REG_FIRST }, \
2565 { "a3", 7 + GP_REG_FIRST }, \
2566 { "t0", 8 + GP_REG_FIRST }, \
2567 { "t1", 9 + GP_REG_FIRST }, \
2568 { "t2", 10 + GP_REG_FIRST }, \
2569 { "t3", 11 + GP_REG_FIRST }, \
2570 { "t4", 12 + GP_REG_FIRST }, \
2571 { "t5", 13 + GP_REG_FIRST }, \
2572 { "t6", 14 + GP_REG_FIRST }, \
2573 { "t7", 15 + GP_REG_FIRST }, \
2574 { "s0", 16 + GP_REG_FIRST }, \
2575 { "s1", 17 + GP_REG_FIRST }, \
2576 { "s2", 18 + GP_REG_FIRST }, \
2577 { "s3", 19 + GP_REG_FIRST }, \
2578 { "s4", 20 + GP_REG_FIRST }, \
2579 { "s5", 21 + GP_REG_FIRST }, \
2580 { "s6", 22 + GP_REG_FIRST }, \
2581 { "s7", 23 + GP_REG_FIRST }, \
2582 { "t8", 24 + GP_REG_FIRST }, \
2583 { "t9", 25 + GP_REG_FIRST }, \
2584 { "k0", 26 + GP_REG_FIRST }, \
2585 { "k1", 27 + GP_REG_FIRST }, \
2586 { "gp", 28 + GP_REG_FIRST }, \
2587 { "sp", 29 + GP_REG_FIRST }, \
2588 { "fp", 30 + GP_REG_FIRST }, \
2589 { "ra", 31 + GP_REG_FIRST } \
2590 }
2591
2592 #define DBR_OUTPUT_SEQEND(STREAM) \
2593 do \
2594 { \
2595 /* Undo the effect of '%*'. */ \
2596 mips_pop_asm_switch (&mips_nomacro); \
2597 mips_pop_asm_switch (&mips_noreorder); \
2598 /* Emit a blank line after the delay slot for emphasis. */ \
2599 fputs ("\n", STREAM); \
2600 } \
2601 while (0)
2602
2603 /* The MIPS implementation uses some labels for its own purpose. The
2604 following lists what labels are created, and are all formed by the
2605 pattern $L[a-z].*. The machine independent portion of GCC creates
2606 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2607
2608 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2609 $Lb[0-9]+ Begin blocks for MIPS debug support
2610 $Lc[0-9]+ Label for use in s<xx> operation.
2611 $Le[0-9]+ End blocks for MIPS debug support */
2612
2613 #undef ASM_DECLARE_OBJECT_NAME
2614 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2615 mips_declare_object (STREAM, NAME, "", ":\n")
2616
2617 /* Globalizing directive for a label. */
2618 #define GLOBAL_ASM_OP "\t.globl\t"
2619
2620 /* This says how to define a global common symbol. */
2621
2622 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2623
2624 /* This says how to define a local common symbol (i.e., not visible to
2625 linker). */
2626
2627 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2628 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2629 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2630 #endif
2631
2632 /* This says how to output an external. It would be possible not to
2633 output anything and let undefined symbol become external. However
2634 the assembler uses length information on externals to allocate in
2635 data/sdata bss/sbss, thereby saving exec time. */
2636
2637 #undef ASM_OUTPUT_EXTERNAL
2638 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2639 mips_output_external(STREAM,DECL,NAME)
2640
2641 /* This is how to declare a function name. The actual work of
2642 emitting the label is moved to function_prologue, so that we can
2643 get the line number correctly emitted before the .ent directive,
2644 and after any .file directives. Define as empty so that the function
2645 is not declared before the .ent directive elsewhere. */
2646
2647 #undef ASM_DECLARE_FUNCTION_NAME
2648 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2649
2650 /* This is how to store into the string LABEL
2651 the symbol_ref name of an internal numbered label where
2652 PREFIX is the class of label and NUM is the number within the class.
2653 This is suitable for output with `assemble_name'. */
2654
2655 #undef ASM_GENERATE_INTERNAL_LABEL
2656 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2657 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2658
2659 /* Print debug labels as "foo = ." rather than "foo:" because they should
2660 represent a byte pointer rather than an ISA-encoded address. This is
2661 particularly important for code like:
2662
2663 $LFBxxx = .
2664 .cfi_startproc
2665 ...
2666 .section .gcc_except_table,...
2667 ...
2668 .uleb128 foo-$LFBxxx
2669
2670 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2671 likewise a byte pointer rather than an ISA-encoded address.
2672
2673 At the time of writing, this hook is not used for the function end
2674 label:
2675
2676 $LFExxx:
2677 .end foo
2678
2679 But this doesn't matter, because GAS doesn't treat a pre-.end label
2680 as a MIPS16 one anyway. */
2681
2682 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2683 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2684
2685 /* This is how to output an element of a case-vector that is absolute. */
2686
2687 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2688 fprintf (STREAM, "\t%s\t%sL%d\n", \
2689 ptr_mode == DImode ? ".dword" : ".word", \
2690 LOCAL_LABEL_PREFIX, \
2691 VALUE)
2692
2693 /* This is how to output an element of a case-vector. We can make the
2694 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2695 is supported. */
2696
2697 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2698 do { \
2699 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2700 { \
2701 if (GET_MODE (BODY) == HImode) \
2702 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2703 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2704 else \
2705 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2706 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2707 } \
2708 else if (TARGET_GPWORD) \
2709 fprintf (STREAM, "\t%s\t%sL%d\n", \
2710 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2711 LOCAL_LABEL_PREFIX, VALUE); \
2712 else if (TARGET_RTP_PIC) \
2713 { \
2714 /* Make the entry relative to the start of the function. */ \
2715 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2716 fprintf (STREAM, "\t%s\t%sL%d-", \
2717 Pmode == DImode ? ".dword" : ".word", \
2718 LOCAL_LABEL_PREFIX, VALUE); \
2719 assemble_name (STREAM, XSTR (fnsym, 0)); \
2720 fprintf (STREAM, "\n"); \
2721 } \
2722 else \
2723 fprintf (STREAM, "\t%s\t%sL%d\n", \
2724 ptr_mode == DImode ? ".dword" : ".word", \
2725 LOCAL_LABEL_PREFIX, VALUE); \
2726 } while (0)
2727
2728 /* This is how to output an assembler line
2729 that says to advance the location counter
2730 to a multiple of 2**LOG bytes. */
2731
2732 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2733 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2734
2735 /* This is how to output an assembler line to advance the location
2736 counter by SIZE bytes. */
2737
2738 #undef ASM_OUTPUT_SKIP
2739 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2740 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2741
2742 /* This is how to output a string. */
2743 #undef ASM_OUTPUT_ASCII
2744 #define ASM_OUTPUT_ASCII mips_output_ascii
2745
2746 \f
2747 /* Default to -G 8 */
2748 #ifndef MIPS_DEFAULT_GVALUE
2749 #define MIPS_DEFAULT_GVALUE 8
2750 #endif
2751
2752 /* Define the strings to put out for each section in the object file. */
2753 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2754 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2755
2756 #undef READONLY_DATA_SECTION_ASM_OP
2757 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2758 \f
2759 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2760 do \
2761 { \
2762 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2763 TARGET_64BIT ? "daddiu" : "addiu", \
2764 reg_names[STACK_POINTER_REGNUM], \
2765 reg_names[STACK_POINTER_REGNUM], \
2766 TARGET_64BIT ? "sd" : "sw", \
2767 reg_names[REGNO], \
2768 reg_names[STACK_POINTER_REGNUM]); \
2769 } \
2770 while (0)
2771
2772 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2773 do \
2774 { \
2775 mips_push_asm_switch (&mips_noreorder); \
2776 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2777 TARGET_64BIT ? "ld" : "lw", \
2778 reg_names[REGNO], \
2779 reg_names[STACK_POINTER_REGNUM], \
2780 TARGET_64BIT ? "daddu" : "addu", \
2781 reg_names[STACK_POINTER_REGNUM], \
2782 reg_names[STACK_POINTER_REGNUM]); \
2783 mips_pop_asm_switch (&mips_noreorder); \
2784 } \
2785 while (0)
2786
2787 /* How to start an assembler comment.
2788 The leading space is important (the mips native assembler requires it). */
2789 #ifndef ASM_COMMENT_START
2790 #define ASM_COMMENT_START " #"
2791 #endif
2792 \f
2793 #undef SIZE_TYPE
2794 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2795
2796 #undef PTRDIFF_TYPE
2797 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2798
2799 /* The maximum number of bytes that can be copied by one iteration of
2800 a movmemsi loop; see mips_block_move_loop. */
2801 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2802 (UNITS_PER_WORD * 4)
2803
2804 /* The maximum number of bytes that can be copied by a straight-line
2805 implementation of movmemsi; see mips_block_move_straight. We want
2806 to make sure that any loop-based implementation will iterate at
2807 least twice. */
2808 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2809 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2810
2811 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2812 values were determined experimentally by benchmarking with CSiBE.
2813 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2814 for o32 where we have to restore $gp afterwards as well as make an
2815 indirect call), but in practice, bumping this up higher for
2816 TARGET_ABICALLS doesn't make much difference to code size. */
2817
2818 #define MIPS_CALL_RATIO 8
2819
2820 /* Any loop-based implementation of movmemsi will have at least
2821 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2822 moves, so allow individual copies of fewer elements.
2823
2824 When movmemsi is not available, use a value approximating
2825 the length of a memcpy call sequence, so that move_by_pieces
2826 will generate inline code if it is shorter than a function call.
2827 Since move_by_pieces_ninsns counts memory-to-memory moves, but
2828 we'll have to generate a load/store pair for each, halve the
2829 value of MIPS_CALL_RATIO to take that into account. */
2830
2831 #define MOVE_RATIO(speed) \
2832 (HAVE_movmemsi \
2833 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
2834 : MIPS_CALL_RATIO / 2)
2835
2836 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2837 mips_move_by_pieces_p (SIZE, ALIGN)
2838
2839 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2840 of the length of a memset call, but use the default otherwise. */
2841
2842 #define CLEAR_RATIO(speed)\
2843 ((speed) ? 15 : MIPS_CALL_RATIO)
2844
2845 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2846 optimizing for size adjust the ratio to account for the overhead of
2847 loading the constant and replicating it across the word. */
2848
2849 #define SET_RATIO(speed) \
2850 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2851
2852 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
2853 mips_store_by_pieces_p (SIZE, ALIGN)
2854 \f
2855 /* Since the bits of the _init and _fini function is spread across
2856 many object files, each potentially with its own GP, we must assume
2857 we need to load our GP. We don't preserve $gp or $ra, since each
2858 init/fini chunk is supposed to initialize $gp, and crti/crtn
2859 already take care of preserving $ra and, when appropriate, $gp. */
2860 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2861 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2862 asm (SECTION_OP "\n\
2863 .set push\n\
2864 .set nomips16\n\
2865 .set noreorder\n\
2866 bal 1f\n\
2867 nop\n\
2868 1: .cpload $31\n\
2869 .set reorder\n\
2870 jal " USER_LABEL_PREFIX #FUNC "\n\
2871 .set pop\n\
2872 " TEXT_SECTION_ASM_OP);
2873 #elif ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2874 || (defined _ABI64 && _MIPS_SIM == _ABI64))
2875 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2876 asm (SECTION_OP "\n\
2877 .set push\n\
2878 .set nomips16\n\
2879 .set noreorder\n\
2880 bal 1f\n\
2881 nop\n\
2882 1: .set reorder\n\
2883 .cpsetup $31, $2, 1b\n\
2884 jal " USER_LABEL_PREFIX #FUNC "\n\
2885 .set pop\n\
2886 " TEXT_SECTION_ASM_OP);
2887 #endif
2888
2889 #ifndef HAVE_AS_TLS
2890 #define HAVE_AS_TLS 0
2891 #endif
2892
2893 #ifndef HAVE_AS_NAN
2894 #define HAVE_AS_NAN 0
2895 #endif
2896
2897 #ifndef USED_FOR_TARGET
2898 /* Information about ".set noFOO; ...; .set FOO" blocks. */
2899 struct mips_asm_switch {
2900 /* The FOO in the description above. */
2901 const char *name;
2902
2903 /* The current block nesting level, or 0 if we aren't in a block. */
2904 int nesting_level;
2905 };
2906
2907 extern const enum reg_class mips_regno_to_class[];
2908 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
2909 extern const char *current_function_file; /* filename current function is in */
2910 extern int num_source_filenames; /* current .file # */
2911 extern struct mips_asm_switch mips_noreorder;
2912 extern struct mips_asm_switch mips_nomacro;
2913 extern struct mips_asm_switch mips_noat;
2914 extern int mips_dbx_regno[];
2915 extern int mips_dwarf_regno[];
2916 extern bool mips_split_p[];
2917 extern bool mips_split_hi_p[];
2918 extern bool mips_use_pcrel_pool_p[];
2919 extern const char *mips_lo_relocs[];
2920 extern const char *mips_hi_relocs[];
2921 extern enum processor mips_arch; /* which cpu to codegen for */
2922 extern enum processor mips_tune; /* which cpu to schedule for */
2923 extern int mips_isa; /* architectural level */
2924 extern int mips_isa_rev;
2925 extern const struct mips_cpu_info *mips_arch_info;
2926 extern const struct mips_cpu_info *mips_tune_info;
2927 extern unsigned int mips_base_compression_flags;
2928 extern GTY(()) struct target_globals *mips16_globals;
2929 #endif
2930
2931 /* Enable querying of DFA units. */
2932 #define CPU_UNITS_QUERY 1
2933
2934 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2935 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2936
2937 /* As on most targets, we want the .eh_frame section to be read-only where
2938 possible. And as on most targets, this means two things:
2939
2940 (a) Non-locally-binding pointers must have an indirect encoding,
2941 so that the addresses in the .eh_frame section itself become
2942 locally-binding.
2943
2944 (b) A shared library's .eh_frame section must encode locally-binding
2945 pointers in a relative (relocation-free) form.
2946
2947 However, MIPS has traditionally not allowed directives like:
2948
2949 .long x-.
2950
2951 in cases where "x" is in a different section, or is not defined in the
2952 same assembly file. We are therefore unable to emit the PC-relative
2953 form required by (b) at assembly time.
2954
2955 Fortunately, the linker is able to convert absolute addresses into
2956 PC-relative addresses on our behalf. Unfortunately, only certain
2957 versions of the linker know how to do this for indirect pointers,
2958 and for personality data. We must fall back on using writable
2959 .eh_frame sections for shared libraries if the linker does not
2960 support this feature. */
2961 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2962 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
2963
2964 /* For switching between MIPS16 and non-MIPS16 modes. */
2965 #define SWITCHABLE_TARGET 1
2966
2967 /* Several named MIPS patterns depend on Pmode. These patterns have the
2968 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
2969 Add the appropriate suffix to generator function NAME and invoke it
2970 with arguments ARGS. */
2971 #define PMODE_INSN(NAME, ARGS) \
2972 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)