re PR target/39079 (MIPS: __builtin___clear_cache() broken on SMP ISA_HAS_SYNCI systems.)
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by A. Lichnewsky (lich@inria.inria.fr).
6 Changed by Michael Meissner (meissner@osf.org).
7 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
8 Brendan Eich (brendan@microunity.com).
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GCC is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26
27 #include "config/vxworks-dummy.h"
28
29 /* MIPS external variables defined in mips.c. */
30
31 /* Which processor to schedule for. Since there is no difference between
32 a R2000 and R3000 in terms of the scheduler, we collapse them into
33 just an R3000. The elements of the enumeration must match exactly
34 the cpu attribute in the mips.md machine description. */
35
36 enum processor_type {
37 PROCESSOR_R3000,
38 PROCESSOR_4KC,
39 PROCESSOR_4KP,
40 PROCESSOR_5KC,
41 PROCESSOR_5KF,
42 PROCESSOR_20KC,
43 PROCESSOR_24KC,
44 PROCESSOR_24KF2_1,
45 PROCESSOR_24KF1_1,
46 PROCESSOR_74KC,
47 PROCESSOR_74KF2_1,
48 PROCESSOR_74KF1_1,
49 PROCESSOR_74KF3_2,
50 PROCESSOR_LOONGSON_2E,
51 PROCESSOR_LOONGSON_2F,
52 PROCESSOR_M4K,
53 PROCESSOR_OCTEON,
54 PROCESSOR_R3900,
55 PROCESSOR_R6000,
56 PROCESSOR_R4000,
57 PROCESSOR_R4100,
58 PROCESSOR_R4111,
59 PROCESSOR_R4120,
60 PROCESSOR_R4130,
61 PROCESSOR_R4300,
62 PROCESSOR_R4600,
63 PROCESSOR_R4650,
64 PROCESSOR_R5000,
65 PROCESSOR_R5400,
66 PROCESSOR_R5500,
67 PROCESSOR_R7000,
68 PROCESSOR_R8000,
69 PROCESSOR_R9000,
70 PROCESSOR_R10000,
71 PROCESSOR_SB1,
72 PROCESSOR_SB1A,
73 PROCESSOR_SR71000,
74 PROCESSOR_XLR,
75 PROCESSOR_MAX
76 };
77
78 /* Costs of various operations on the different architectures. */
79
80 struct mips_rtx_cost_data
81 {
82 unsigned short fp_add;
83 unsigned short fp_mult_sf;
84 unsigned short fp_mult_df;
85 unsigned short fp_div_sf;
86 unsigned short fp_div_df;
87 unsigned short int_mult_si;
88 unsigned short int_mult_di;
89 unsigned short int_div_si;
90 unsigned short int_div_di;
91 unsigned short branch_cost;
92 unsigned short memory_latency;
93 };
94
95 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
96 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
97 to work on a 64-bit machine. */
98
99 #define ABI_32 0
100 #define ABI_N32 1
101 #define ABI_64 2
102 #define ABI_EABI 3
103 #define ABI_O64 4
104
105 /* Masks that affect tuning.
106
107 PTF_AVOID_BRANCHLIKELY
108 Set if it is usually not profitable to use branch-likely instructions
109 for this target, typically because the branches are always predicted
110 taken and so incur a large overhead when not taken. */
111 #define PTF_AVOID_BRANCHLIKELY 0x1
112
113 /* Information about one recognized processor. Defined here for the
114 benefit of TARGET_CPU_CPP_BUILTINS. */
115 struct mips_cpu_info {
116 /* The 'canonical' name of the processor as far as GCC is concerned.
117 It's typically a manufacturer's prefix followed by a numerical
118 designation. It should be lowercase. */
119 const char *name;
120
121 /* The internal processor number that most closely matches this
122 entry. Several processors can have the same value, if there's no
123 difference between them from GCC's point of view. */
124 enum processor_type cpu;
125
126 /* The ISA level that the processor implements. */
127 int isa;
128
129 /* A mask of PTF_* values. */
130 unsigned int tune_flags;
131 };
132
133 /* Enumerates the setting of the -mcode-readable option. */
134 enum mips_code_readable_setting {
135 CODE_READABLE_NO,
136 CODE_READABLE_PCREL,
137 CODE_READABLE_YES
138 };
139
140 /* Macros to silence warnings about numbers being signed in traditional
141 C and unsigned in ISO C when compiled on 32-bit hosts. */
142
143 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
144 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
145 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
146
147 \f
148 /* Run-time compilation parameters selecting different hardware subsets. */
149
150 /* True if we are generating position-independent VxWorks RTP code. */
151 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
152
153 /* True if the output file is marked as ".abicalls; .option pic0"
154 (-call_nonpic). */
155 #define TARGET_ABICALLS_PIC0 \
156 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
157
158 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
159 #define TARGET_ABICALLS_PIC2 \
160 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
161
162 /* True if the call patterns should be split into a jalr followed by
163 an instruction to restore $gp. It is only safe to split the load
164 from the call when every use of $gp is explicit. */
165
166 #define TARGET_SPLIT_CALLS \
167 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP)
168
169 /* True if we're generating a form of -mabicalls in which we can use
170 operators like %hi and %lo to refer to locally-binding symbols.
171 We can only do this for -mno-shared, and only then if we can use
172 relocation operations instead of assembly macros. It isn't really
173 worth using absolute sequences for 64-bit symbols because GOT
174 accesses are so much shorter. */
175
176 #define TARGET_ABSOLUTE_ABICALLS \
177 (TARGET_ABICALLS \
178 && !TARGET_SHARED \
179 && TARGET_EXPLICIT_RELOCS \
180 && !ABI_HAS_64BIT_SYMBOLS)
181
182 /* True if we can optimize sibling calls. For simplicity, we only
183 handle cases in which call_insn_operand will reject invalid
184 sibcall addresses. There are two cases in which this isn't true:
185
186 - TARGET_MIPS16. call_insn_operand accepts constant addresses
187 but there is no direct jump instruction. It isn't worth
188 using sibling calls in this case anyway; they would usually
189 be longer than normal calls.
190
191 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
192 accepts global constants, but all sibcalls must be indirect. */
193 #define TARGET_SIBCALLS \
194 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
195
196 /* True if we need to use a global offset table to access some symbols. */
197 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
198
199 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
200 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
201
202 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
203 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
204
205 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
206 This is true for both the PIC and non-PIC VxWorks RTP modes. */
207 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
208
209 /* True if .gpword or .gpdword should be used for switch tables.
210
211 Although GAS does understand .gpdword, the SGI linker mishandles
212 the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
213 We therefore disable GP-relative switch tables for n64 on IRIX targets. */
214 #define TARGET_GPWORD \
215 (TARGET_ABICALLS \
216 && !TARGET_ABSOLUTE_ABICALLS \
217 && !(mips_abi == ABI_64 && TARGET_IRIX))
218
219 /* Generate mips16 code */
220 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
221 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
222 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
223 /* Generate mips16e register save/restore sequences. */
224 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
225
226 /* True if we're generating a form of MIPS16 code in which general
227 text loads are allowed. */
228 #define TARGET_MIPS16_TEXT_LOADS \
229 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
230
231 /* True if we're generating a form of MIPS16 code in which PC-relative
232 loads are allowed. */
233 #define TARGET_MIPS16_PCREL_LOADS \
234 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
235
236 /* Generic ISA defines. */
237 #define ISA_MIPS1 (mips_isa == 1)
238 #define ISA_MIPS2 (mips_isa == 2)
239 #define ISA_MIPS3 (mips_isa == 3)
240 #define ISA_MIPS4 (mips_isa == 4)
241 #define ISA_MIPS32 (mips_isa == 32)
242 #define ISA_MIPS32R2 (mips_isa == 33)
243 #define ISA_MIPS64 (mips_isa == 64)
244 #define ISA_MIPS64R2 (mips_isa == 65)
245
246 /* Architecture target defines. */
247 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
248 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
249 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
250 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
251 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
252 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
253 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
254 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
255 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
256 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
257 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
258 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON)
259 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
260 || mips_arch == PROCESSOR_SB1A)
261 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
262
263 /* Scheduling target defines. */
264 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
265 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
266 || mips_tune == PROCESSOR_24KF2_1 \
267 || mips_tune == PROCESSOR_24KF1_1)
268 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
269 || mips_tune == PROCESSOR_74KF2_1 \
270 || mips_tune == PROCESSOR_74KF1_1 \
271 || mips_tune == PROCESSOR_74KF3_2)
272 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
273 || mips_tune == PROCESSOR_LOONGSON_2F)
274 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
275 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
276 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
277 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
278 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
279 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
280 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
281 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
282 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
283 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
284 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
285 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON)
286 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
287 || mips_tune == PROCESSOR_SB1A)
288
289 /* Whether vector modes and intrinsics for ST Microelectronics
290 Loongson-2E/2F processors should be enabled. In o32 pairs of
291 floating-point registers provide 64-bit values. */
292 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
293 && TARGET_LOONGSON_2EF)
294
295 /* True if the pre-reload scheduler should try to create chains of
296 multiply-add or multiply-subtract instructions. For example,
297 suppose we have:
298
299 t1 = a * b
300 t2 = t1 + c * d
301 t3 = e * f
302 t4 = t3 - g * h
303
304 t1 will have a higher priority than t2 and t3 will have a higher
305 priority than t4. However, before reload, there is no dependence
306 between t1 and t3, and they can often have similar priorities.
307 The scheduler will then tend to prefer:
308
309 t1 = a * b
310 t3 = e * f
311 t2 = t1 + c * d
312 t4 = t3 - g * h
313
314 which stops us from making full use of macc/madd-style instructions.
315 This sort of situation occurs frequently in Fourier transforms and
316 in unrolled loops.
317
318 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
319 queue so that chained multiply-add and multiply-subtract instructions
320 appear ahead of any other instruction that is likely to clobber lo.
321 In the example above, if t2 and t3 become ready at the same time,
322 the code ensures that t2 is scheduled first.
323
324 Multiply-accumulate instructions are a bigger win for some targets
325 than others, so this macro is defined on an opt-in basis. */
326 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
327 || TUNE_MIPS4120 \
328 || TUNE_MIPS4130 \
329 || TUNE_24K)
330
331 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
332 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
333
334 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
335 directly accessible, while the command-line options select
336 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
337 in use. */
338 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
339 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
340
341 /* IRIX specific stuff. */
342 #define TARGET_IRIX 0
343 #define TARGET_IRIX6 0
344
345 /* Define preprocessor macros for the -march and -mtune options.
346 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
347 processor. If INFO's canonical name is "foo", define PREFIX to
348 be "foo", and define an additional macro PREFIX_FOO. */
349 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
350 do \
351 { \
352 char *macro, *p; \
353 \
354 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
355 for (p = macro; *p != 0; p++) \
356 *p = TOUPPER (*p); \
357 \
358 builtin_define (macro); \
359 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
360 free (macro); \
361 } \
362 while (0)
363
364 /* Target CPU builtins. */
365 #define TARGET_CPU_CPP_BUILTINS() \
366 do \
367 { \
368 /* Everyone but IRIX defines this to mips. */ \
369 if (!TARGET_IRIX) \
370 builtin_assert ("machine=mips"); \
371 \
372 builtin_assert ("cpu=mips"); \
373 builtin_define ("__mips__"); \
374 builtin_define ("_mips"); \
375 \
376 /* We do this here because __mips is defined below and so we \
377 can't use builtin_define_std. We don't ever want to define \
378 "mips" for VxWorks because some of the VxWorks headers \
379 construct include filenames from a root directory macro, \
380 an architecture macro and a filename, where the architecture \
381 macro expands to 'mips'. If we define 'mips' to 1, the \
382 architecture macro expands to 1 as well. */ \
383 if (!flag_iso && !TARGET_VXWORKS) \
384 builtin_define ("mips"); \
385 \
386 if (TARGET_64BIT) \
387 builtin_define ("__mips64"); \
388 \
389 if (!TARGET_IRIX) \
390 { \
391 /* Treat _R3000 and _R4000 like register-size \
392 defines, which is how they've historically \
393 been used. */ \
394 if (TARGET_64BIT) \
395 { \
396 builtin_define_std ("R4000"); \
397 builtin_define ("_R4000"); \
398 } \
399 else \
400 { \
401 builtin_define_std ("R3000"); \
402 builtin_define ("_R3000"); \
403 } \
404 } \
405 if (TARGET_FLOAT64) \
406 builtin_define ("__mips_fpr=64"); \
407 else \
408 builtin_define ("__mips_fpr=32"); \
409 \
410 if (mips_base_mips16) \
411 builtin_define ("__mips16"); \
412 \
413 if (TARGET_MIPS3D) \
414 builtin_define ("__mips3d"); \
415 \
416 if (TARGET_SMARTMIPS) \
417 builtin_define ("__mips_smartmips"); \
418 \
419 if (TARGET_DSP) \
420 { \
421 builtin_define ("__mips_dsp"); \
422 if (TARGET_DSPR2) \
423 { \
424 builtin_define ("__mips_dspr2"); \
425 builtin_define ("__mips_dsp_rev=2"); \
426 } \
427 else \
428 builtin_define ("__mips_dsp_rev=1"); \
429 } \
430 \
431 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
432 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
433 \
434 if (ISA_MIPS1) \
435 { \
436 builtin_define ("__mips=1"); \
437 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
438 } \
439 else if (ISA_MIPS2) \
440 { \
441 builtin_define ("__mips=2"); \
442 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
443 } \
444 else if (ISA_MIPS3) \
445 { \
446 builtin_define ("__mips=3"); \
447 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
448 } \
449 else if (ISA_MIPS4) \
450 { \
451 builtin_define ("__mips=4"); \
452 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
453 } \
454 else if (ISA_MIPS32) \
455 { \
456 builtin_define ("__mips=32"); \
457 builtin_define ("__mips_isa_rev=1"); \
458 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
459 } \
460 else if (ISA_MIPS32R2) \
461 { \
462 builtin_define ("__mips=32"); \
463 builtin_define ("__mips_isa_rev=2"); \
464 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
465 } \
466 else if (ISA_MIPS64) \
467 { \
468 builtin_define ("__mips=64"); \
469 builtin_define ("__mips_isa_rev=1"); \
470 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
471 } \
472 else if (ISA_MIPS64R2) \
473 { \
474 builtin_define ("__mips=64"); \
475 builtin_define ("__mips_isa_rev=2"); \
476 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
477 } \
478 \
479 switch (mips_abi) \
480 { \
481 case ABI_32: \
482 builtin_define ("_ABIO32=1"); \
483 builtin_define ("_MIPS_SIM=_ABIO32"); \
484 break; \
485 \
486 case ABI_N32: \
487 builtin_define ("_ABIN32=2"); \
488 builtin_define ("_MIPS_SIM=_ABIN32"); \
489 break; \
490 \
491 case ABI_64: \
492 builtin_define ("_ABI64=3"); \
493 builtin_define ("_MIPS_SIM=_ABI64"); \
494 break; \
495 \
496 case ABI_O64: \
497 builtin_define ("_ABIO64=4"); \
498 builtin_define ("_MIPS_SIM=_ABIO64"); \
499 break; \
500 } \
501 \
502 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
503 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
504 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
505 builtin_define_with_int_value ("_MIPS_FPSET", \
506 32 / MAX_FPRS_PER_FMT); \
507 \
508 /* These defines reflect the ABI in use, not whether the \
509 FPU is directly accessible. */ \
510 if (TARGET_HARD_FLOAT_ABI) \
511 builtin_define ("__mips_hard_float"); \
512 else \
513 builtin_define ("__mips_soft_float"); \
514 \
515 if (TARGET_SINGLE_FLOAT) \
516 builtin_define ("__mips_single_float"); \
517 \
518 if (TARGET_PAIRED_SINGLE_FLOAT) \
519 builtin_define ("__mips_paired_single_float"); \
520 \
521 if (TARGET_BIG_ENDIAN) \
522 { \
523 builtin_define_std ("MIPSEB"); \
524 builtin_define ("_MIPSEB"); \
525 } \
526 else \
527 { \
528 builtin_define_std ("MIPSEL"); \
529 builtin_define ("_MIPSEL"); \
530 } \
531 \
532 /* Whether calls should go through $25. The separate __PIC__ \
533 macro indicates whether abicalls code might use a GOT. */ \
534 if (TARGET_ABICALLS) \
535 builtin_define ("__mips_abicalls"); \
536 \
537 /* Whether Loongson vector modes are enabled. */ \
538 if (TARGET_LOONGSON_VECTORS) \
539 builtin_define ("__mips_loongson_vector_rev"); \
540 \
541 /* Historical Octeon macro. */ \
542 if (TARGET_OCTEON) \
543 builtin_define ("__OCTEON__"); \
544 \
545 /* Macros dependent on the C dialect. */ \
546 if (preprocessing_asm_p ()) \
547 { \
548 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
549 builtin_define ("_LANGUAGE_ASSEMBLY"); \
550 } \
551 else if (c_dialect_cxx ()) \
552 { \
553 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
554 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
555 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
556 } \
557 else \
558 { \
559 builtin_define_std ("LANGUAGE_C"); \
560 builtin_define ("_LANGUAGE_C"); \
561 } \
562 if (c_dialect_objc ()) \
563 { \
564 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
565 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
566 /* Bizarre, but needed at least for Irix. */ \
567 builtin_define_std ("LANGUAGE_C"); \
568 builtin_define ("_LANGUAGE_C"); \
569 } \
570 \
571 if (mips_abi == ABI_EABI) \
572 builtin_define ("__mips_eabi"); \
573 \
574 if (TARGET_CACHE_BUILTIN) \
575 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
576 } \
577 while (0)
578
579 /* Default target_flags if no switches are specified */
580
581 #ifndef TARGET_DEFAULT
582 #define TARGET_DEFAULT 0
583 #endif
584
585 #ifndef TARGET_CPU_DEFAULT
586 #define TARGET_CPU_DEFAULT 0
587 #endif
588
589 #ifndef TARGET_ENDIAN_DEFAULT
590 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
591 #endif
592
593 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
594 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
595 #endif
596
597 /* 'from-abi' makes a good default: you get whatever the ABI requires. */
598 #ifndef MIPS_ISA_DEFAULT
599 #ifndef MIPS_CPU_STRING_DEFAULT
600 #define MIPS_CPU_STRING_DEFAULT "from-abi"
601 #endif
602 #endif
603
604 #ifdef IN_LIBGCC2
605 #undef TARGET_64BIT
606 /* Make this compile time constant for libgcc2 */
607 #ifdef __mips64
608 #define TARGET_64BIT 1
609 #else
610 #define TARGET_64BIT 0
611 #endif
612 #endif /* IN_LIBGCC2 */
613
614 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
615 when compiled with hardware floating point. This is because MIPS16
616 code cannot save and restore the floating-point registers, which is
617 important if in a mixed MIPS16/non-MIPS16 environment. */
618
619 #ifdef IN_LIBGCC2
620 #if __mips_hard_float
621 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
622 #endif
623 #endif /* IN_LIBGCC2 */
624
625 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
626
627 #ifndef MULTILIB_ENDIAN_DEFAULT
628 #if TARGET_ENDIAN_DEFAULT == 0
629 #define MULTILIB_ENDIAN_DEFAULT "EL"
630 #else
631 #define MULTILIB_ENDIAN_DEFAULT "EB"
632 #endif
633 #endif
634
635 #ifndef MULTILIB_ISA_DEFAULT
636 # if MIPS_ISA_DEFAULT == 1
637 # define MULTILIB_ISA_DEFAULT "mips1"
638 # else
639 # if MIPS_ISA_DEFAULT == 2
640 # define MULTILIB_ISA_DEFAULT "mips2"
641 # else
642 # if MIPS_ISA_DEFAULT == 3
643 # define MULTILIB_ISA_DEFAULT "mips3"
644 # else
645 # if MIPS_ISA_DEFAULT == 4
646 # define MULTILIB_ISA_DEFAULT "mips4"
647 # else
648 # if MIPS_ISA_DEFAULT == 32
649 # define MULTILIB_ISA_DEFAULT "mips32"
650 # else
651 # if MIPS_ISA_DEFAULT == 33
652 # define MULTILIB_ISA_DEFAULT "mips32r2"
653 # else
654 # if MIPS_ISA_DEFAULT == 64
655 # define MULTILIB_ISA_DEFAULT "mips64"
656 # else
657 # if MIPS_ISA_DEFAULT == 65
658 # define MULTILIB_ISA_DEFAULT "mips64r2"
659 # else
660 # define MULTILIB_ISA_DEFAULT "mips1"
661 # endif
662 # endif
663 # endif
664 # endif
665 # endif
666 # endif
667 # endif
668 # endif
669 #endif
670
671 #ifndef MIPS_ABI_DEFAULT
672 #define MIPS_ABI_DEFAULT ABI_32
673 #endif
674
675 /* Use the most portable ABI flag for the ASM specs. */
676
677 #if MIPS_ABI_DEFAULT == ABI_32
678 #define MULTILIB_ABI_DEFAULT "mabi=32"
679 #endif
680
681 #if MIPS_ABI_DEFAULT == ABI_O64
682 #define MULTILIB_ABI_DEFAULT "mabi=o64"
683 #endif
684
685 #if MIPS_ABI_DEFAULT == ABI_N32
686 #define MULTILIB_ABI_DEFAULT "mabi=n32"
687 #endif
688
689 #if MIPS_ABI_DEFAULT == ABI_64
690 #define MULTILIB_ABI_DEFAULT "mabi=64"
691 #endif
692
693 #if MIPS_ABI_DEFAULT == ABI_EABI
694 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
695 #endif
696
697 #ifndef MULTILIB_DEFAULTS
698 #define MULTILIB_DEFAULTS \
699 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
700 #endif
701
702 /* We must pass -EL to the linker by default for little endian embedded
703 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
704 linker will default to using big-endian output files. The OUTPUT_FORMAT
705 line must be in the linker script, otherwise -EB/-EL will not work. */
706
707 #ifndef ENDIAN_SPEC
708 #if TARGET_ENDIAN_DEFAULT == 0
709 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
710 #else
711 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
712 #endif
713 #endif
714
715 /* A spec condition that matches all non-mips16 -mips arguments. */
716
717 #define MIPS_ISA_LEVEL_OPTION_SPEC \
718 "mips1|mips2|mips3|mips4|mips32*|mips64*"
719
720 /* A spec condition that matches all non-mips16 architecture arguments. */
721
722 #define MIPS_ARCH_OPTION_SPEC \
723 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
724
725 /* A spec that infers a -mips argument from an -march argument,
726 or injects the default if no architecture is specified. */
727
728 #define MIPS_ISA_LEVEL_SPEC \
729 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
730 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
731 %{march=mips2|march=r6000:-mips2} \
732 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
733 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
734 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
735 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
736 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
737 |march=34k*|march=74k*: -mips32r2} \
738 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
739 |march=xlr: -mips64} \
740 %{march=mips64r2|march=octeon: -mips64r2} \
741 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
742
743 /* A spec that infers a -mhard-float or -msoft-float setting from an
744 -march argument. Note that soft-float and hard-float code are not
745 link-compatible. */
746
747 #define MIPS_ARCH_FLOAT_SPEC \
748 "%{mhard-float|msoft-float|march=mips*:; \
749 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
750 |march=34kc|march=74kc|march=5kc|march=octeon|march=xlr: -msoft-float; \
751 march=*: -mhard-float}"
752
753 /* A spec condition that matches 32-bit options. It only works if
754 MIPS_ISA_LEVEL_SPEC has been applied. */
755
756 #define MIPS_32BIT_OPTION_SPEC \
757 "mips1|mips2|mips32*|mgp32"
758
759 #if MIPS_ABI_DEFAULT == ABI_O64 \
760 || MIPS_ABI_DEFAULT == ABI_N32 \
761 || MIPS_ABI_DEFAULT == ABI_64
762 #define OPT_ARCH64 "mabi=32|mgp32:;"
763 #define OPT_ARCH32 "mabi=32|mgp32"
764 #else
765 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
766 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
767 #endif
768
769 /* Support for a compile-time default CPU, et cetera. The rules are:
770 --with-arch is ignored if -march is specified or a -mips is specified
771 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
772 --with-tune is ignored if -mtune is specified; likewise
773 --with-tune-32 and --with-tune-64.
774 --with-abi is ignored if -mabi is specified.
775 --with-float is ignored if -mhard-float or -msoft-float are
776 specified.
777 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
778 specified. */
779 #define OPTION_DEFAULT_SPECS \
780 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
781 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
782 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
783 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
784 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
785 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
786 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
787 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
788 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
789 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
790 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
791 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
792
793
794 /* A spec that infers the -mdsp setting from an -march argument. */
795 #define BASE_DRIVER_SELF_SPECS \
796 "%{!mno-dsp:%{march=24ke*|march=34k*|march=74k*: -mdsp}}"
797
798 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
799
800 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
801 && ISA_HAS_COND_TRAP)
802
803 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
804
805 /* True if the ABI can only work with 64-bit integer registers. We
806 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
807 otherwise floating-point registers must also be 64-bit. */
808 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
809
810 /* Likewise for 32-bit regs. */
811 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
812
813 /* True if the file format uses 64-bit symbols. At present, this is
814 only true for n64, which uses 64-bit ELF. */
815 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
816
817 /* True if symbols are 64 bits wide. This is usually determined by
818 the ABI's file format, but it can be overridden by -msym32. Note that
819 overriding the size with -msym32 changes the ABI of relocatable objects,
820 although it doesn't change the ABI of a fully-linked object. */
821 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS && !TARGET_SYM32)
822
823 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
824 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
825 || ISA_MIPS4 \
826 || ISA_MIPS64 \
827 || ISA_MIPS64R2)
828
829 /* ISA has branch likely instructions (e.g. mips2). */
830 /* Disable branchlikely for tx39 until compare rewrite. They haven't
831 been generated up to this point. */
832 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
833
834 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
835 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
836 || TARGET_MIPS5400 \
837 || TARGET_MIPS5500 \
838 || TARGET_MIPS7000 \
839 || TARGET_MIPS9000 \
840 || TARGET_MAD \
841 || ISA_MIPS32 \
842 || ISA_MIPS32R2 \
843 || ISA_MIPS64 \
844 || ISA_MIPS64R2) \
845 && !TARGET_MIPS16)
846
847 /* ISA has a three-operand multiplication instruction. */
848 #define ISA_HAS_DMUL3 (TARGET_64BIT \
849 && TARGET_OCTEON \
850 && !TARGET_MIPS16)
851
852 /* ISA has the floating-point conditional move instructions introduced
853 in mips4. */
854 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
855 || ISA_MIPS32 \
856 || ISA_MIPS32R2 \
857 || ISA_MIPS64 \
858 || ISA_MIPS64R2) \
859 && !TARGET_MIPS5500 \
860 && !TARGET_MIPS16)
861
862 /* ISA has the integer conditional move instructions introduced in mips4 and
863 ST Loongson 2E/2F. */
864 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE || TARGET_LOONGSON_2EF)
865
866 /* ISA has LDC1 and SDC1. */
867 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 && !TARGET_MIPS16)
868
869 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
870 branch on CC, and move (both FP and non-FP) on CC. */
871 #define ISA_HAS_8CC (ISA_MIPS4 \
872 || ISA_MIPS32 \
873 || ISA_MIPS32R2 \
874 || ISA_MIPS64 \
875 || ISA_MIPS64R2)
876
877 /* This is a catch all for other mips4 instructions: indexed load, the
878 FP madd and msub instructions, and the FP recip and recip sqrt
879 instructions. */
880 #define ISA_HAS_FP4 ((ISA_MIPS4 \
881 || (ISA_MIPS32R2 && TARGET_FLOAT64) \
882 || ISA_MIPS64 \
883 || ISA_MIPS64R2) \
884 && !TARGET_MIPS16)
885
886 /* ISA has paired-single instructions. */
887 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
888
889 /* ISA has conditional trap instructions. */
890 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
891 && !TARGET_MIPS16)
892
893 /* ISA has integer multiply-accumulate instructions, madd and msub. */
894 #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
895 || ISA_MIPS32R2 \
896 || ISA_MIPS64 \
897 || ISA_MIPS64R2) \
898 && !TARGET_MIPS16)
899
900 /* Integer multiply-accumulate instructions should be generated. */
901 #define GENERATE_MADD_MSUB (ISA_HAS_MADD_MSUB && !TUNE_74K)
902
903 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
904 #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
905
906 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
907 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
908
909 /* ISA has floating-point nmadd and nmsub instructions
910 'd = -((a * b) [+-] c)'. */
911 #define ISA_HAS_NMADD4_NMSUB4(MODE) \
912 ((ISA_MIPS4 \
913 || (ISA_MIPS32R2 && (MODE) == V2SFmode) \
914 || ISA_MIPS64 \
915 || ISA_MIPS64R2) \
916 && (!TARGET_MIPS5400 || TARGET_MAD) \
917 && !TARGET_MIPS16)
918
919 /* ISA has floating-point nmadd and nmsub instructions
920 'c = -((a * b) [+-] c)'. */
921 #define ISA_HAS_NMADD3_NMSUB3(MODE) \
922 TARGET_LOONGSON_2EF
923
924 /* ISA has count leading zeroes/ones instruction (not implemented). */
925 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
926 || ISA_MIPS32R2 \
927 || ISA_MIPS64 \
928 || ISA_MIPS64R2) \
929 && !TARGET_MIPS16)
930
931 /* ISA has three operand multiply instructions that put
932 the high part in an accumulator: mulhi or mulhiu. */
933 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
934 || TARGET_MIPS5500 \
935 || TARGET_SR71K) \
936 && !TARGET_MIPS16)
937
938 /* ISA has three operand multiply instructions that
939 negates the result and puts the result in an accumulator. */
940 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
941 || TARGET_MIPS5500 \
942 || TARGET_SR71K) \
943 && !TARGET_MIPS16)
944
945 /* ISA has three operand multiply instructions that subtracts the
946 result from a 4th operand and puts the result in an accumulator. */
947 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
948 || TARGET_MIPS5500 \
949 || TARGET_SR71K) \
950 && !TARGET_MIPS16)
951
952 /* ISA has three operand multiply instructions that the result
953 from a 4th operand and puts the result in an accumulator. */
954 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
955 || TARGET_MIPS4130 \
956 || TARGET_MIPS5400 \
957 || TARGET_MIPS5500 \
958 || TARGET_SR71K) \
959 && !TARGET_MIPS16)
960
961 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
962 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
963 || TARGET_MIPS4130) \
964 && !TARGET_MIPS16)
965
966 /* ISA has the "ror" (rotate right) instructions. */
967 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
968 || ISA_MIPS64R2 \
969 || TARGET_MIPS5400 \
970 || TARGET_MIPS5500 \
971 || TARGET_SR71K \
972 || TARGET_SMARTMIPS) \
973 && !TARGET_MIPS16)
974
975 /* ISA has data prefetch instructions. This controls use of 'pref'. */
976 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
977 || TARGET_LOONGSON_2EF \
978 || ISA_MIPS32 \
979 || ISA_MIPS32R2 \
980 || ISA_MIPS64 \
981 || ISA_MIPS64R2) \
982 && !TARGET_MIPS16)
983
984 /* ISA has data indexed prefetch instructions. This controls use of
985 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
986 (prefx is a cop1x instruction, so can only be used if FP is
987 enabled.) */
988 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
989 || ISA_MIPS32R2 \
990 || ISA_MIPS64 \
991 || ISA_MIPS64R2) \
992 && !TARGET_MIPS16)
993
994 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
995 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
996 also requires TARGET_DOUBLE_FLOAT. */
997 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
998
999 /* ISA includes the MIPS32r2 seb and seh instructions. */
1000 #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \
1001 || ISA_MIPS64R2) \
1002 && !TARGET_MIPS16)
1003
1004 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
1005 #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \
1006 || ISA_MIPS64R2) \
1007 && !TARGET_MIPS16)
1008
1009 /* ISA has instructions for accessing top part of 64-bit fp regs. */
1010 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \
1011 && (ISA_MIPS32R2 \
1012 || ISA_MIPS64R2))
1013
1014 /* ISA has lwxs instruction (load w/scaled index address. */
1015 #define ISA_HAS_LWXS (TARGET_SMARTMIPS && !TARGET_MIPS16)
1016
1017 /* The DSP ASE is available. */
1018 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1019
1020 /* Revision 2 of the DSP ASE is available. */
1021 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1022
1023 /* True if the result of a load is not available to the next instruction.
1024 A nop will then be needed between instructions like "lw $4,..."
1025 and "addiu $4,$4,1". */
1026 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1027 && !TARGET_MIPS3900 \
1028 && !TARGET_MIPS16)
1029
1030 /* Likewise mtc1 and mfc1. */
1031 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1032 && !TARGET_LOONGSON_2EF)
1033
1034 /* Likewise floating-point comparisons. */
1035 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1036 && !TARGET_LOONGSON_2EF)
1037
1038 /* True if mflo and mfhi can be immediately followed by instructions
1039 which write to the HI and LO registers.
1040
1041 According to MIPS specifications, MIPS ISAs I, II, and III need
1042 (at least) two instructions between the reads of HI/LO and
1043 instructions which write them, and later ISAs do not. Contradicting
1044 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1045 the UM for the NEC Vr5000) document needing the instructions between
1046 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1047 MIPS64 and later ISAs to have the interlocks, plus any specific
1048 earlier-ISA CPUs for which CPU documentation declares that the
1049 instructions are really interlocked. */
1050 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1051 || ISA_MIPS32R2 \
1052 || ISA_MIPS64 \
1053 || ISA_MIPS64R2 \
1054 || TARGET_MIPS5500 \
1055 || TARGET_LOONGSON_2EF)
1056
1057 /* ISA includes synci, jr.hb and jalr.hb. */
1058 #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \
1059 || ISA_MIPS64R2) \
1060 && !TARGET_MIPS16)
1061
1062 /* ISA includes sync. */
1063 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1064 #define GENERATE_SYNC \
1065 (target_flags_explicit & MASK_LLSC \
1066 ? TARGET_LLSC && !TARGET_MIPS16 \
1067 : ISA_HAS_SYNC)
1068
1069 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1070 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1071 instructions. */
1072 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS16)
1073 #define GENERATE_LL_SC \
1074 (target_flags_explicit & MASK_LLSC \
1075 ? TARGET_LLSC && !TARGET_MIPS16 \
1076 : ISA_HAS_LL_SC)
1077
1078 /* ISA includes the baddu instruction. */
1079 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1080
1081 /* ISA includes the bbit* instructions. */
1082 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1083
1084 /* ISA includes the cins instruction. */
1085 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1086
1087 /* ISA includes the exts instruction. */
1088 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1089
1090 /* ISA includes the seq and sne instructions. */
1091 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1092
1093 /* ISA includes the pop instruction. */
1094 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1095
1096 /* The CACHE instruction is available in non-MIPS16 code. */
1097 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1098
1099 /* The CACHE instruction is available. */
1100 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1101 \f
1102 /* Add -G xx support. */
1103
1104 #undef SWITCH_TAKES_ARG
1105 #define SWITCH_TAKES_ARG(CHAR) \
1106 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
1107
1108 #define OVERRIDE_OPTIONS mips_override_options ()
1109
1110 #define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
1111
1112 /* Show we can debug even without a frame pointer. */
1113 #define CAN_DEBUG_WITHOUT_FP
1114 \f
1115 /* Tell collect what flags to pass to nm. */
1116 #ifndef NM_FLAGS
1117 #define NM_FLAGS "-Bn"
1118 #endif
1119
1120 \f
1121 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
1122 to the assembler. It may be overridden by subtargets. */
1123 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
1124 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
1125 %{noasmopt:-O0} \
1126 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
1127 #endif
1128
1129 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1130 the assembler. It may be overridden by subtargets.
1131
1132 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1133 COFF debugging info. */
1134
1135 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1136 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1137 %{g} %{g0} %{g1} %{g2} %{g3} \
1138 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1139 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1140 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1141 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1142 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1143 #endif
1144
1145 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1146 overridden by subtargets. */
1147
1148 #ifndef SUBTARGET_ASM_SPEC
1149 #define SUBTARGET_ASM_SPEC ""
1150 #endif
1151
1152 #undef ASM_SPEC
1153 #define ASM_SPEC "\
1154 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1155 %{mips32*} %{mips64*} \
1156 %{mips16} %{mno-mips16:-no-mips16} \
1157 %{mips3d} %{mno-mips3d:-no-mips3d} \
1158 %{mdmx} %{mno-mdmx:-no-mdmx} \
1159 %{mdsp} %{mno-dsp} \
1160 %{mdspr2} %{mno-dspr2} \
1161 %{msmartmips} %{mno-smartmips} \
1162 %{mmt} %{mno-mt} \
1163 %{mfix-vr4120} %{mfix-vr4130} \
1164 %(subtarget_asm_optimizing_spec) \
1165 %(subtarget_asm_debugging_spec) \
1166 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1167 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1168 %{mfp32} %{mfp64} \
1169 %{mshared} %{mno-shared} \
1170 %{msym32} %{mno-sym32} \
1171 %{mtune=*} %{v} \
1172 %(subtarget_asm_spec)"
1173
1174 /* Extra switches sometimes passed to the linker. */
1175 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
1176 will interpret it as a -b option. */
1177
1178 #ifndef LINK_SPEC
1179 #define LINK_SPEC "\
1180 %(endian_spec) \
1181 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1182 %{bestGnum} %{shared} %{non_shared}"
1183 #endif /* LINK_SPEC defined */
1184
1185
1186 /* Specs for the compiler proper */
1187
1188 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1189 overridden by subtargets. */
1190 #ifndef SUBTARGET_CC1_SPEC
1191 #define SUBTARGET_CC1_SPEC ""
1192 #endif
1193
1194 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1195
1196 #undef CC1_SPEC
1197 #define CC1_SPEC "\
1198 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
1199 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1200 %{save-temps: } \
1201 %(subtarget_cc1_spec)"
1202
1203 /* Preprocessor specs. */
1204
1205 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1206 overridden by subtargets. */
1207 #ifndef SUBTARGET_CPP_SPEC
1208 #define SUBTARGET_CPP_SPEC ""
1209 #endif
1210
1211 #define CPP_SPEC "%(subtarget_cpp_spec)"
1212
1213 /* This macro defines names of additional specifications to put in the specs
1214 that can be used in various specifications like CC1_SPEC. Its definition
1215 is an initializer with a subgrouping for each command option.
1216
1217 Each subgrouping contains a string constant, that defines the
1218 specification name, and a string constant that used by the GCC driver
1219 program.
1220
1221 Do not define this macro if it does not need to do anything. */
1222
1223 #define EXTRA_SPECS \
1224 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1225 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1226 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1227 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1228 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1229 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1230 { "endian_spec", ENDIAN_SPEC }, \
1231 SUBTARGET_EXTRA_SPECS
1232
1233 #ifndef SUBTARGET_EXTRA_SPECS
1234 #define SUBTARGET_EXTRA_SPECS
1235 #endif
1236 \f
1237 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1238 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1239
1240 #ifndef PREFERRED_DEBUGGING_TYPE
1241 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1242 #endif
1243
1244 /* The size of DWARF addresses should be the same as the size of symbols
1245 in the target file format. They shouldn't depend on things like -msym32,
1246 because many DWARF consumers do not allow the mixture of address sizes
1247 that one would then get from linking -msym32 code with -msym64 code.
1248
1249 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1250 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1251 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1252
1253 /* By default, turn on GDB extensions. */
1254 #define DEFAULT_GDB_EXTENSIONS 1
1255
1256 /* Local compiler-generated symbols must have a prefix that the assembler
1257 understands. By default, this is $, although some targets (e.g.,
1258 NetBSD-ELF) need to override this. */
1259
1260 #ifndef LOCAL_LABEL_PREFIX
1261 #define LOCAL_LABEL_PREFIX "$"
1262 #endif
1263
1264 /* By default on the mips, external symbols do not have an underscore
1265 prepended, but some targets (e.g., NetBSD) require this. */
1266
1267 #ifndef USER_LABEL_PREFIX
1268 #define USER_LABEL_PREFIX ""
1269 #endif
1270
1271 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1272 since the length can run past this up to a continuation point. */
1273 #undef DBX_CONTIN_LENGTH
1274 #define DBX_CONTIN_LENGTH 1500
1275
1276 /* How to renumber registers for dbx and gdb. */
1277 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1278
1279 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1280 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1281
1282 /* The DWARF 2 CFA column which tracks the return address. */
1283 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
1284
1285 /* Before the prologue, RA lives in r31. */
1286 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
1287
1288 /* Describe how we implement __builtin_eh_return. */
1289 #define EH_RETURN_DATA_REGNO(N) \
1290 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1291
1292 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1293
1294 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1295 The default for this in 64-bit mode is 8, which causes problems with
1296 SFmode register saves. */
1297 #define DWARF_CIE_DATA_ALIGNMENT -4
1298
1299 /* Correct the offset of automatic variables and arguments. Note that
1300 the MIPS debug format wants all automatic variables and arguments
1301 to be in terms of the virtual frame pointer (stack pointer before
1302 any adjustment in the function), while the MIPS 3.0 linker wants
1303 the frame pointer to be the stack pointer after the initial
1304 adjustment. */
1305
1306 #define DEBUGGER_AUTO_OFFSET(X) \
1307 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1308 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1309 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1310 \f
1311 /* Target machine storage layout */
1312
1313 #define BITS_BIG_ENDIAN 0
1314 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1315 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1316
1317 /* Define this to set the endianness to use in libgcc2.c, which can
1318 not depend on target_flags. */
1319 #if !defined(MIPSEL) && !defined(__MIPSEL__)
1320 #define LIBGCC2_WORDS_BIG_ENDIAN 1
1321 #else
1322 #define LIBGCC2_WORDS_BIG_ENDIAN 0
1323 #endif
1324
1325 #define MAX_BITS_PER_WORD 64
1326
1327 /* Width of a word, in units (bytes). */
1328 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1329 #ifndef IN_LIBGCC2
1330 #define MIN_UNITS_PER_WORD 4
1331 #endif
1332
1333 /* For MIPS, width of a floating point register. */
1334 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1335
1336 /* The number of consecutive floating-point registers needed to store the
1337 largest format supported by the FPU. */
1338 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1339
1340 /* The number of consecutive floating-point registers needed to store the
1341 smallest format supported by the FPU. */
1342 #define MIN_FPRS_PER_FMT \
1343 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1344 ? 1 : MAX_FPRS_PER_FMT)
1345
1346 /* The largest size of value that can be held in floating-point
1347 registers and moved with a single instruction. */
1348 #define UNITS_PER_HWFPVALUE \
1349 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1350
1351 /* The largest size of value that can be held in floating-point
1352 registers. */
1353 #define UNITS_PER_FPVALUE \
1354 (TARGET_SOFT_FLOAT_ABI ? 0 \
1355 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1356 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1357
1358 /* The number of bytes in a double. */
1359 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1360
1361 #define UNITS_PER_SIMD_WORD(MODE) \
1362 (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1363
1364 /* Set the sizes of the core types. */
1365 #define SHORT_TYPE_SIZE 16
1366 #define INT_TYPE_SIZE 32
1367 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1368 #define LONG_LONG_TYPE_SIZE 64
1369
1370 #define FLOAT_TYPE_SIZE 32
1371 #define DOUBLE_TYPE_SIZE 64
1372 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1373
1374 /* Define the sizes of fixed-point types. */
1375 #define SHORT_FRACT_TYPE_SIZE 8
1376 #define FRACT_TYPE_SIZE 16
1377 #define LONG_FRACT_TYPE_SIZE 32
1378 #define LONG_LONG_FRACT_TYPE_SIZE 64
1379
1380 #define SHORT_ACCUM_TYPE_SIZE 16
1381 #define ACCUM_TYPE_SIZE 32
1382 #define LONG_ACCUM_TYPE_SIZE 64
1383 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1384 doesn't support 128-bit integers for MIPS32 currently. */
1385 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1386
1387 /* long double is not a fixed mode, but the idea is that, if we
1388 support long double, we also want a 128-bit integer type. */
1389 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1390
1391 #ifdef IN_LIBGCC2
1392 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1393 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1394 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1395 # else
1396 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1397 # endif
1398 #endif
1399
1400 /* Width in bits of a pointer. */
1401 #ifndef POINTER_SIZE
1402 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1403 #endif
1404
1405 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1406 #define PARM_BOUNDARY BITS_PER_WORD
1407
1408 /* Allocation boundary (in *bits*) for the code of a function. */
1409 #define FUNCTION_BOUNDARY 32
1410
1411 /* Alignment of field after `int : 0' in a structure. */
1412 #define EMPTY_FIELD_BOUNDARY 32
1413
1414 /* Every structure's size must be a multiple of this. */
1415 /* 8 is observed right on a DECstation and on riscos 4.02. */
1416 #define STRUCTURE_SIZE_BOUNDARY 8
1417
1418 /* There is no point aligning anything to a rounder boundary than this. */
1419 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1420
1421 /* All accesses must be aligned. */
1422 #define STRICT_ALIGNMENT 1
1423
1424 /* Define this if you wish to imitate the way many other C compilers
1425 handle alignment of bitfields and the structures that contain
1426 them.
1427
1428 The behavior is that the type written for a bit-field (`int',
1429 `short', or other integer type) imposes an alignment for the
1430 entire structure, as if the structure really did contain an
1431 ordinary field of that type. In addition, the bit-field is placed
1432 within the structure so that it would fit within such a field,
1433 not crossing a boundary for it.
1434
1435 Thus, on most machines, a bit-field whose type is written as `int'
1436 would not cross a four-byte boundary, and would force four-byte
1437 alignment for the whole structure. (The alignment used may not
1438 be four bytes; it is controlled by the other alignment
1439 parameters.)
1440
1441 If the macro is defined, its definition should be a C expression;
1442 a nonzero value for the expression enables this behavior. */
1443
1444 #define PCC_BITFIELD_TYPE_MATTERS 1
1445
1446 /* If defined, a C expression to compute the alignment given to a
1447 constant that is being placed in memory. CONSTANT is the constant
1448 and ALIGN is the alignment that the object would ordinarily have.
1449 The value of this macro is used instead of that alignment to align
1450 the object.
1451
1452 If this macro is not defined, then ALIGN is used.
1453
1454 The typical use of this macro is to increase alignment for string
1455 constants to be word aligned so that `strcpy' calls that copy
1456 constants can be done inline. */
1457
1458 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1459 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1460 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1461
1462 /* If defined, a C expression to compute the alignment for a static
1463 variable. TYPE is the data type, and ALIGN is the alignment that
1464 the object would ordinarily have. The value of this macro is used
1465 instead of that alignment to align the object.
1466
1467 If this macro is not defined, then ALIGN is used.
1468
1469 One use of this macro is to increase alignment of medium-size
1470 data to make it all fit in fewer cache lines. Another is to
1471 cause character arrays to be word-aligned so that `strcpy' calls
1472 that copy constants to character arrays can be done inline. */
1473
1474 #undef DATA_ALIGNMENT
1475 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1476 ((((ALIGN) < BITS_PER_WORD) \
1477 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1478 || TREE_CODE (TYPE) == UNION_TYPE \
1479 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1480
1481 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1482 character arrays to be word-aligned so that `strcpy' calls that copy
1483 constants to character arrays can be done inline, and 'strcmp' can be
1484 optimised to use word loads. */
1485 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1486 DATA_ALIGNMENT (TYPE, ALIGN)
1487
1488 #define PAD_VARARGS_DOWN \
1489 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1490
1491 /* Define if operations between registers always perform the operation
1492 on the full register even if a narrower mode is specified. */
1493 #define WORD_REGISTER_OPERATIONS
1494
1495 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1496 moves. All other references are zero extended. */
1497 #define LOAD_EXTEND_OP(MODE) \
1498 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1499 ? SIGN_EXTEND : ZERO_EXTEND)
1500
1501 /* Define this macro if it is advisable to hold scalars in registers
1502 in a wider mode than that declared by the program. In such cases,
1503 the value is constrained to be within the bounds of the declared
1504 type, but kept valid in the wider mode. The signedness of the
1505 extension may differ from that of the type. */
1506
1507 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1508 if (GET_MODE_CLASS (MODE) == MODE_INT \
1509 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1510 { \
1511 if ((MODE) == SImode) \
1512 (UNSIGNEDP) = 0; \
1513 (MODE) = Pmode; \
1514 }
1515
1516 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1517 Extensions of pointers to word_mode must be signed. */
1518 #define POINTERS_EXTEND_UNSIGNED false
1519
1520 /* Define if loading short immediate values into registers sign extends. */
1521 #define SHORT_IMMEDIATES_SIGN_EXTEND
1522
1523 /* The [d]clz instructions have the natural values at 0. */
1524
1525 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1526 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1527 \f
1528 /* Standard register usage. */
1529
1530 /* Number of hardware registers. We have:
1531
1532 - 32 integer registers
1533 - 32 floating point registers
1534 - 8 condition code registers
1535 - 2 accumulator registers (hi and lo)
1536 - 32 registers each for coprocessors 0, 2 and 3
1537 - 3 fake registers:
1538 - ARG_POINTER_REGNUM
1539 - FRAME_POINTER_REGNUM
1540 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1541 - 3 dummy entries that were used at various times in the past.
1542 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1543 - 6 DSP control registers */
1544
1545 #define FIRST_PSEUDO_REGISTER 188
1546
1547 /* By default, fix the kernel registers ($26 and $27), the global
1548 pointer ($28) and the stack pointer ($29). This can change
1549 depending on the command-line options.
1550
1551 Regarding coprocessor registers: without evidence to the contrary,
1552 it's best to assume that each coprocessor register has a unique
1553 use. This can be overridden, in, e.g., mips_override_options or
1554 CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1555 for a particular target. */
1556
1557 #define FIXED_REGISTERS \
1558 { \
1559 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1560 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1561 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1562 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1563 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1564 /* COP0 registers */ \
1565 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1566 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1567 /* COP2 registers */ \
1568 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1569 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1570 /* COP3 registers */ \
1571 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1572 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1573 /* 6 DSP accumulator registers & 6 control registers */ \
1574 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1575 }
1576
1577
1578 /* Set up this array for o32 by default.
1579
1580 Note that we don't mark $31 as a call-clobbered register. The idea is
1581 that it's really the call instructions themselves which clobber $31.
1582 We don't care what the called function does with it afterwards.
1583
1584 This approach makes it easier to implement sibcalls. Unlike normal
1585 calls, sibcalls don't clobber $31, so the register reaches the
1586 called function in tact. EPILOGUE_USES says that $31 is useful
1587 to the called function. */
1588
1589 #define CALL_USED_REGISTERS \
1590 { \
1591 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1592 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1593 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1594 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1595 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1596 /* COP0 registers */ \
1597 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1598 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1599 /* COP2 registers */ \
1600 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1601 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1602 /* COP3 registers */ \
1603 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1604 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1605 /* 6 DSP accumulator registers & 6 control registers */ \
1606 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1607 }
1608
1609
1610 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1611
1612 #define CALL_REALLY_USED_REGISTERS \
1613 { /* General registers. */ \
1614 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1615 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1616 /* Floating-point registers. */ \
1617 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1618 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1619 /* Others. */ \
1620 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1621 /* COP0 registers */ \
1622 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1623 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1624 /* COP2 registers */ \
1625 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1626 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1627 /* COP3 registers */ \
1628 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1629 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1630 /* 6 DSP accumulator registers & 6 control registers */ \
1631 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1632 }
1633
1634 /* Internal macros to classify a register number as to whether it's a
1635 general purpose register, a floating point register, a
1636 multiply/divide register, or a status register. */
1637
1638 #define GP_REG_FIRST 0
1639 #define GP_REG_LAST 31
1640 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1641 #define GP_DBX_FIRST 0
1642 #define K0_REG_NUM (GP_REG_FIRST + 26)
1643 #define K1_REG_NUM (GP_REG_FIRST + 27)
1644 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1645
1646 #define FP_REG_FIRST 32
1647 #define FP_REG_LAST 63
1648 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1649 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1650
1651 #define MD_REG_FIRST 64
1652 #define MD_REG_LAST 65
1653 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1654 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1655
1656 /* The DWARF 2 CFA column which tracks the return address from a
1657 signal handler context. This means that to maintain backwards
1658 compatibility, no hard register can be assigned this column if it
1659 would need to be handled by the DWARF unwinder. */
1660 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1661
1662 #define ST_REG_FIRST 67
1663 #define ST_REG_LAST 74
1664 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1665
1666
1667 /* FIXME: renumber. */
1668 #define COP0_REG_FIRST 80
1669 #define COP0_REG_LAST 111
1670 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1671
1672 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1673 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1674 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1675
1676 #define COP2_REG_FIRST 112
1677 #define COP2_REG_LAST 143
1678 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1679
1680 #define COP3_REG_FIRST 144
1681 #define COP3_REG_LAST 175
1682 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1683 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1684 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1685
1686 #define DSP_ACC_REG_FIRST 176
1687 #define DSP_ACC_REG_LAST 181
1688 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1689
1690 #define AT_REGNUM (GP_REG_FIRST + 1)
1691 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1692 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1693
1694 /* A few bitfield locations for the coprocessor registers. */
1695 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1696 the cause register for the EIC interrupt mode. */
1697 #define CAUSE_IPL 10
1698 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1699 #define SR_IPL 10
1700 /* Exception Level is at bit 1 of the status register. */
1701 #define SR_EXL 1
1702 /* Interrupt Enable is at bit 0 of the status register. */
1703 #define SR_IE 0
1704
1705 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1706 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1707 should be used instead. */
1708 #define FPSW_REGNUM ST_REG_FIRST
1709
1710 #define GP_REG_P(REGNO) \
1711 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1712 #define M16_REG_P(REGNO) \
1713 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1714 #define FP_REG_P(REGNO) \
1715 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1716 #define MD_REG_P(REGNO) \
1717 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1718 #define ST_REG_P(REGNO) \
1719 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1720 #define COP0_REG_P(REGNO) \
1721 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1722 #define COP2_REG_P(REGNO) \
1723 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1724 #define COP3_REG_P(REGNO) \
1725 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1726 #define ALL_COP_REG_P(REGNO) \
1727 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1728 /* Test if REGNO is one of the 6 new DSP accumulators. */
1729 #define DSP_ACC_REG_P(REGNO) \
1730 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1731 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1732 #define ACC_REG_P(REGNO) \
1733 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1734
1735 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1736
1737 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1738 to initialize the mips16 gp pseudo register. */
1739 #define CONST_GP_P(X) \
1740 (GET_CODE (X) == CONST \
1741 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1742 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1743
1744 /* Return coprocessor number from register number. */
1745
1746 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1747 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1748 : COP3_REG_P (REGNO) ? '3' : '?')
1749
1750
1751 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1752
1753 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1754 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1755
1756 #define MODES_TIEABLE_P mips_modes_tieable_p
1757
1758 /* Register to use for pushing function arguments. */
1759 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1760
1761 /* These two registers don't really exist: they get eliminated to either
1762 the stack or hard frame pointer. */
1763 #define ARG_POINTER_REGNUM 77
1764 #define FRAME_POINTER_REGNUM 78
1765
1766 /* $30 is not available on the mips16, so we use $17 as the frame
1767 pointer. */
1768 #define HARD_FRAME_POINTER_REGNUM \
1769 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1770
1771 /* Register in which static-chain is passed to a function. */
1772 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1773
1774 /* Registers used as temporaries in prologue/epilogue code:
1775
1776 - If a MIPS16 PIC function needs access to _gp, it first loads
1777 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1778
1779 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1780 register. The register must not conflict with MIPS16_PIC_TEMP.
1781
1782 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1783 register.
1784
1785 If we're generating MIPS16 code, these registers must come from the
1786 core set of 8. The prologue registers mustn't conflict with any
1787 incoming arguments, the static chain pointer, or the frame pointer.
1788 The epilogue temporary mustn't conflict with the return registers,
1789 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1790 or the EH data registers.
1791
1792 If we're generating interrupt handlers, we use K0 as a temporary register
1793 in prologue/epilogue code. */
1794
1795 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1796 #define MIPS_PROLOGUE_TEMP_REGNUM \
1797 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1798 #define MIPS_EPILOGUE_TEMP_REGNUM \
1799 (cfun->machine->interrupt_handler_p \
1800 ? K0_REG_NUM \
1801 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1802
1803 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1804 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1805 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1806
1807 /* Define this macro if it is as good or better to call a constant
1808 function address than to call an address kept in a register. */
1809 #define NO_FUNCTION_CSE 1
1810
1811 /* The ABI-defined global pointer. Sometimes we use a different
1812 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1813 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1814
1815 /* We normally use $28 as the global pointer. However, when generating
1816 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1817 register instead. They can then avoid saving and restoring $28
1818 and perhaps avoid using a frame at all.
1819
1820 When a leaf function uses something other than $28, mips_expand_prologue
1821 will modify pic_offset_table_rtx in place. Take the register number
1822 from there after reload. */
1823 #define PIC_OFFSET_TABLE_REGNUM \
1824 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1825
1826 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1827 \f
1828 /* Define the classes of registers for register constraints in the
1829 machine description. Also define ranges of constants.
1830
1831 One of the classes must always be named ALL_REGS and include all hard regs.
1832 If there is more than one class, another class must be named NO_REGS
1833 and contain no registers.
1834
1835 The name GENERAL_REGS must be the name of a class (or an alias for
1836 another name such as ALL_REGS). This is the class of registers
1837 that is allowed by "g" or "r" in a register constraint.
1838 Also, registers outside this class are allocated only when
1839 instructions express preferences for them.
1840
1841 The classes must be numbered in nondecreasing order; that is,
1842 a larger-numbered class must never be contained completely
1843 in a smaller-numbered class.
1844
1845 For any two classes, it is very desirable that there be another
1846 class that represents their union. */
1847
1848 enum reg_class
1849 {
1850 NO_REGS, /* no registers in set */
1851 M16_REGS, /* mips16 directly accessible registers */
1852 T_REG, /* mips16 T register ($24) */
1853 M16_T_REGS, /* mips16 registers plus T register */
1854 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1855 V1_REG, /* Register $v1 ($3) used for TLS access. */
1856 LEA_REGS, /* Every GPR except $25 */
1857 GR_REGS, /* integer registers */
1858 FP_REGS, /* floating point registers */
1859 MD0_REG, /* first multiply/divide register */
1860 MD1_REG, /* second multiply/divide register */
1861 MD_REGS, /* multiply/divide registers (hi/lo) */
1862 COP0_REGS, /* generic coprocessor classes */
1863 COP2_REGS,
1864 COP3_REGS,
1865 ST_REGS, /* status registers (fp status) */
1866 DSP_ACC_REGS, /* DSP accumulator registers */
1867 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1868 FRAME_REGS, /* $arg and $frame */
1869 GR_AND_MD0_REGS, /* union classes */
1870 GR_AND_MD1_REGS,
1871 GR_AND_MD_REGS,
1872 GR_AND_ACC_REGS,
1873 ALL_REGS, /* all registers */
1874 LIM_REG_CLASSES /* max value + 1 */
1875 };
1876
1877 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1878
1879 #define GENERAL_REGS GR_REGS
1880
1881 /* An initializer containing the names of the register classes as C
1882 string constants. These names are used in writing some of the
1883 debugging dumps. */
1884
1885 #define REG_CLASS_NAMES \
1886 { \
1887 "NO_REGS", \
1888 "M16_REGS", \
1889 "T_REG", \
1890 "M16_T_REGS", \
1891 "PIC_FN_ADDR_REG", \
1892 "V1_REG", \
1893 "LEA_REGS", \
1894 "GR_REGS", \
1895 "FP_REGS", \
1896 "MD0_REG", \
1897 "MD1_REG", \
1898 "MD_REGS", \
1899 /* coprocessor registers */ \
1900 "COP0_REGS", \
1901 "COP2_REGS", \
1902 "COP3_REGS", \
1903 "ST_REGS", \
1904 "DSP_ACC_REGS", \
1905 "ACC_REGS", \
1906 "FRAME_REGS", \
1907 "GR_AND_MD0_REGS", \
1908 "GR_AND_MD1_REGS", \
1909 "GR_AND_MD_REGS", \
1910 "GR_AND_ACC_REGS", \
1911 "ALL_REGS" \
1912 }
1913
1914 /* An initializer containing the contents of the register classes,
1915 as integers which are bit masks. The Nth integer specifies the
1916 contents of class N. The way the integer MASK is interpreted is
1917 that register R is in the class if `MASK & (1 << R)' is 1.
1918
1919 When the machine has more than 32 registers, an integer does not
1920 suffice. Then the integers are replaced by sub-initializers,
1921 braced groupings containing several integers. Each
1922 sub-initializer must be suitable as an initializer for the type
1923 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1924
1925 #define REG_CLASS_CONTENTS \
1926 { \
1927 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1928 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1929 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1930 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1931 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1932 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1933 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1934 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1935 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1936 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1937 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1938 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1939 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1940 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1941 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1942 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1943 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1944 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1945 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1946 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1947 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1948 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1949 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1950 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1951 }
1952
1953
1954 /* A C expression whose value is a register class containing hard
1955 register REGNO. In general there is more that one such class;
1956 choose a class which is "minimal", meaning that no smaller class
1957 also contains the register. */
1958
1959 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1960
1961 /* A macro whose definition is the name of the class to which a
1962 valid base register must belong. A base register is one used in
1963 an address which is the register value plus a displacement. */
1964
1965 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1966
1967 /* A macro whose definition is the name of the class to which a
1968 valid index register must belong. An index register is one used
1969 in an address where its value is either multiplied by a scale
1970 factor or added to another register (as well as added to a
1971 displacement). */
1972
1973 #define INDEX_REG_CLASS NO_REGS
1974
1975 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1976 registers explicitly used in the rtl to be used as spill registers
1977 but prevents the compiler from extending the lifetime of these
1978 registers. */
1979
1980 #define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1981
1982 /* We generally want to put call-clobbered registers ahead of
1983 call-saved ones. (IRA expects this.) */
1984
1985 #define REG_ALLOC_ORDER \
1986 { /* Accumulator registers. When GPRs and accumulators have equal \
1987 cost, we generally prefer to use accumulators. For example, \
1988 a division of multiplication result is better allocated to LO, \
1989 so that we put the MFLO at the point of use instead of at the \
1990 point of definition. It's also needed if we're to take advantage \
1991 of the extra accumulators available with -mdspr2. In some cases, \
1992 it can also help to reduce register pressure. */ \
1993 64, 65,176,177,178,179,180,181, \
1994 /* Call-clobbered GPRs. */ \
1995 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1996 24, 25, 31, \
1997 /* The global pointer. This is call-clobbered for o32 and o64 \
1998 abicalls, call-saved for n32 and n64 abicalls, and a program \
1999 invariant otherwise. Putting it between the call-clobbered \
2000 and call-saved registers should cope with all eventualities. */ \
2001 28, \
2002 /* Call-saved GPRs. */ \
2003 16, 17, 18, 19, 20, 21, 22, 23, 30, \
2004 /* GPRs that can never be exposed to the register allocator. */ \
2005 0, 26, 27, 29, \
2006 /* Call-clobbered FPRs. */ \
2007 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2008 48, 49, 50, 51, \
2009 /* FPRs that are usually call-saved. The odd ones are actually \
2010 call-clobbered for n32, but listing them ahead of the even \
2011 registers might encourage the register allocator to fragment \
2012 the available FPR pairs. We need paired FPRs to store long \
2013 doubles, so it isn't clear that using a different order \
2014 for n32 would be a win. */ \
2015 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2016 /* None of the remaining classes have defined call-saved \
2017 registers. */ \
2018 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2019 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2020 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2021 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2022 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2023 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2024 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
2025 182,183,184,185,186,187 \
2026 }
2027
2028 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
2029 to be rearranged based on a particular function. On the mips16, we
2030 want to allocate $24 (T_REG) before other registers for
2031 instructions for which it is possible. */
2032
2033 #define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
2034
2035 /* True if VALUE is an unsigned 6-bit number. */
2036
2037 #define UIMM6_OPERAND(VALUE) \
2038 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2039
2040 /* True if VALUE is a signed 10-bit number. */
2041
2042 #define IMM10_OPERAND(VALUE) \
2043 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2044
2045 /* True if VALUE is a signed 16-bit number. */
2046
2047 #define SMALL_OPERAND(VALUE) \
2048 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2049
2050 /* True if VALUE is an unsigned 16-bit number. */
2051
2052 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2053 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2054
2055 /* True if VALUE can be loaded into a register using LUI. */
2056
2057 #define LUI_OPERAND(VALUE) \
2058 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2059 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2060
2061 /* Return a value X with the low 16 bits clear, and such that
2062 VALUE - X is a signed 16-bit value. */
2063
2064 #define CONST_HIGH_PART(VALUE) \
2065 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2066
2067 #define CONST_LOW_PART(VALUE) \
2068 ((VALUE) - CONST_HIGH_PART (VALUE))
2069
2070 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2071 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2072 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2073
2074 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
2075 mips_preferred_reload_class (X, CLASS)
2076
2077 /* The HI and LO registers can only be reloaded via the general
2078 registers. Condition code registers can only be loaded to the
2079 general registers, and from the floating point registers. */
2080
2081 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2082 mips_secondary_reload_class (CLASS, MODE, X, true)
2083 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2084 mips_secondary_reload_class (CLASS, MODE, X, false)
2085
2086 /* Return the maximum number of consecutive registers
2087 needed to represent mode MODE in a register of class CLASS. */
2088
2089 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2090
2091 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2092 mips_cannot_change_mode_class (FROM, TO, CLASS)
2093 \f
2094 /* Stack layout; function entry, exit and calling. */
2095
2096 #define STACK_GROWS_DOWNWARD
2097
2098 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2099
2100 /* Size of the area allocated in the frame to save the GP. */
2101
2102 #define MIPS_GP_SAVE_AREA_SIZE \
2103 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2104
2105 /* The offset of the first local variable from the frame pointer. See
2106 mips_compute_frame_info for details about the frame layout. */
2107
2108 #define STARTING_FRAME_OFFSET \
2109 (FRAME_GROWS_DOWNWARD \
2110 ? 0 \
2111 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2112
2113 #define RETURN_ADDR_RTX mips_return_addr
2114
2115 /* Mask off the MIPS16 ISA bit in unwind addresses.
2116
2117 The reason for this is a little subtle. When unwinding a call,
2118 we are given the call's return address, which on most targets
2119 is the address of the following instruction. However, what we
2120 actually want to find is the EH region for the call itself.
2121 The target-independent unwind code therefore searches for "RA - 1".
2122
2123 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2124 RA - 1 is therefore the real (even-valued) start of the return
2125 instruction. EH region labels are usually odd-valued MIPS16 symbols
2126 too, so a search for an even address within a MIPS16 region would
2127 usually work.
2128
2129 However, there is an exception. If the end of an EH region is also
2130 the end of a function, the end label is allowed to be even. This is
2131 necessary because a following non-MIPS16 function may also need EH
2132 information for its first instruction.
2133
2134 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2135 non-ISA-encoded address. This probably isn't ideal, but it is
2136 the traditional (legacy) behavior. It is therefore only safe
2137 to search MIPS EH regions for an _odd-valued_ address.
2138
2139 Masking off the ISA bit means that the target-independent code
2140 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2141 #define MASK_RETURN_ADDR GEN_INT (-2)
2142
2143
2144 /* Similarly, don't use the least-significant bit to tell pointers to
2145 code from vtable index. */
2146
2147 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2148
2149 /* The eliminations to $17 are only used for mips16 code. See the
2150 definition of HARD_FRAME_POINTER_REGNUM. */
2151
2152 #define ELIMINABLE_REGS \
2153 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2154 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2155 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2156 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2157 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2158 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2159
2160 /* Make sure that we're not trying to eliminate to the wrong hard frame
2161 pointer. */
2162 #define CAN_ELIMINATE(FROM, TO) \
2163 ((TO) == HARD_FRAME_POINTER_REGNUM || (TO) == STACK_POINTER_REGNUM)
2164
2165 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2166 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2167
2168 /* Allocate stack space for arguments at the beginning of each function. */
2169 #define ACCUMULATE_OUTGOING_ARGS 1
2170
2171 /* The argument pointer always points to the first argument. */
2172 #define FIRST_PARM_OFFSET(FNDECL) 0
2173
2174 /* o32 and o64 reserve stack space for all argument registers. */
2175 #define REG_PARM_STACK_SPACE(FNDECL) \
2176 (TARGET_OLDABI \
2177 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2178 : 0)
2179
2180 /* Define this if it is the responsibility of the caller to
2181 allocate the area reserved for arguments passed in registers.
2182 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2183 of this macro is to determine whether the space is included in
2184 `crtl->outgoing_args_size'. */
2185 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2186
2187 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2188 \f
2189 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
2190
2191 /* Symbolic macros for the registers used to return integer and floating
2192 point values. */
2193
2194 #define GP_RETURN (GP_REG_FIRST + 2)
2195 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2196
2197 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2198
2199 /* Symbolic macros for the first/last argument registers. */
2200
2201 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2202 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2203 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2204 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2205
2206 #define LIBCALL_VALUE(MODE) \
2207 mips_function_value (NULL_TREE, MODE)
2208
2209 #define FUNCTION_VALUE(VALTYPE, FUNC) \
2210 mips_function_value (VALTYPE, VOIDmode)
2211
2212 /* 1 if N is a possible register number for a function value.
2213 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2214 Currently, R2 and F0 are only implemented here (C has no complex type) */
2215
2216 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
2217 || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
2218 && (N) == FP_RETURN + 2))
2219
2220 /* 1 if N is a possible register number for function argument passing.
2221 We have no FP argument registers when soft-float. When FP registers
2222 are 32 bits, we can't directly reference the odd numbered ones. */
2223
2224 #define FUNCTION_ARG_REGNO_P(N) \
2225 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2226 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2227 && !fixed_regs[N])
2228 \f
2229 /* This structure has to cope with two different argument allocation
2230 schemes. Most MIPS ABIs view the arguments as a structure, of which
2231 the first N words go in registers and the rest go on the stack. If I
2232 < N, the Ith word might go in Ith integer argument register or in a
2233 floating-point register. For these ABIs, we only need to remember
2234 the offset of the current argument into the structure.
2235
2236 The EABI instead allocates the integer and floating-point arguments
2237 separately. The first N words of FP arguments go in FP registers,
2238 the rest go on the stack. Likewise, the first N words of the other
2239 arguments go in integer registers, and the rest go on the stack. We
2240 need to maintain three counts: the number of integer registers used,
2241 the number of floating-point registers used, and the number of words
2242 passed on the stack.
2243
2244 We could keep separate information for the two ABIs (a word count for
2245 the standard ABIs, and three separate counts for the EABI). But it
2246 seems simpler to view the standard ABIs as forms of EABI that do not
2247 allocate floating-point registers.
2248
2249 So for the standard ABIs, the first N words are allocated to integer
2250 registers, and mips_function_arg decides on an argument-by-argument
2251 basis whether that argument should really go in an integer register,
2252 or in a floating-point one. */
2253
2254 typedef struct mips_args {
2255 /* Always true for varargs functions. Otherwise true if at least
2256 one argument has been passed in an integer register. */
2257 int gp_reg_found;
2258
2259 /* The number of arguments seen so far. */
2260 unsigned int arg_number;
2261
2262 /* The number of integer registers used so far. For all ABIs except
2263 EABI, this is the number of words that have been added to the
2264 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2265 unsigned int num_gprs;
2266
2267 /* For EABI, the number of floating-point registers used so far. */
2268 unsigned int num_fprs;
2269
2270 /* The number of words passed on the stack. */
2271 unsigned int stack_words;
2272
2273 /* On the mips16, we need to keep track of which floating point
2274 arguments were passed in general registers, but would have been
2275 passed in the FP regs if this were a 32-bit function, so that we
2276 can move them to the FP regs if we wind up calling a 32-bit
2277 function. We record this information in fp_code, encoded in base
2278 four. A zero digit means no floating point argument, a one digit
2279 means an SFmode argument, and a two digit means a DFmode argument,
2280 and a three digit is not used. The low order digit is the first
2281 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2282 an SFmode argument. ??? A more sophisticated approach will be
2283 needed if MIPS_ABI != ABI_32. */
2284 int fp_code;
2285
2286 /* True if the function has a prototype. */
2287 int prototype;
2288 } CUMULATIVE_ARGS;
2289
2290 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2291 for a call to a function whose data type is FNTYPE.
2292 For a library call, FNTYPE is 0. */
2293
2294 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2295 mips_init_cumulative_args (&CUM, FNTYPE)
2296
2297 /* Update the data in CUM to advance over an argument
2298 of mode MODE and data type TYPE.
2299 (TYPE is null for libcalls where that information may not be available.) */
2300
2301 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2302 mips_function_arg_advance (&CUM, MODE, TYPE, NAMED)
2303
2304 /* Determine where to put an argument to a function.
2305 Value is zero to push the argument on the stack,
2306 or a hard register in which to store the argument.
2307
2308 MODE is the argument's machine mode.
2309 TYPE is the data type of the argument (as a tree).
2310 This is null for libcalls where that information may
2311 not be available.
2312 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2313 the preceding args and about the function being called.
2314 NAMED is nonzero if this argument is a named parameter
2315 (otherwise it is an extra parameter matching an ellipsis). */
2316
2317 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2318 mips_function_arg (&CUM, MODE, TYPE, NAMED)
2319
2320 #define FUNCTION_ARG_BOUNDARY mips_function_arg_boundary
2321
2322 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2323 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2324
2325 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2326 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2327
2328 /* True if using EABI and varargs can be passed in floating-point
2329 registers. Under these conditions, we need a more complex form
2330 of va_list, which tracks GPR, FPR and stack arguments separately. */
2331 #define EABI_FLOAT_VARARGS_P \
2332 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2333
2334 \f
2335 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2336
2337 /* Treat LOC as a byte offset from the stack pointer and round it up
2338 to the next fully-aligned offset. */
2339 #define MIPS_STACK_ALIGN(LOC) \
2340 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2341
2342 \f
2343 /* Output assembler code to FILE to increment profiler label # LABELNO
2344 for profiling a function entry. */
2345
2346 #define FUNCTION_PROFILER(FILE, LABELNO) \
2347 { \
2348 if (TARGET_MIPS16) \
2349 sorry ("mips16 function profiling"); \
2350 if (TARGET_LONG_CALLS) \
2351 { \
2352 /* For TARGET_LONG_CALLS use $3 for the address of _mcount. */ \
2353 if (Pmode == DImode) \
2354 fprintf (FILE, "\tdla\t%s,_mcount\n", reg_names[GP_REG_FIRST + 3]); \
2355 else \
2356 fprintf (FILE, "\tla\t%s,_mcount\n", reg_names[GP_REG_FIRST + 3]); \
2357 } \
2358 fprintf (FILE, "\t.set\tnoat\n"); \
2359 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2360 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2361 /* _mcount treats $2 as the static chain register. */ \
2362 if (cfun->static_chain_decl != NULL) \
2363 fprintf (FILE, "\tmove\t%s,%s\n", reg_names[2], \
2364 reg_names[STATIC_CHAIN_REGNUM]); \
2365 if (!TARGET_NEWABI) \
2366 { \
2367 fprintf (FILE, \
2368 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2369 TARGET_64BIT ? "dsubu" : "subu", \
2370 reg_names[STACK_POINTER_REGNUM], \
2371 reg_names[STACK_POINTER_REGNUM], \
2372 Pmode == DImode ? 16 : 8); \
2373 } \
2374 if (TARGET_LONG_CALLS) \
2375 fprintf (FILE, "\tjalr\t%s\n", reg_names[GP_REG_FIRST + 3]); \
2376 else \
2377 fprintf (FILE, "\tjal\t_mcount\n"); \
2378 fprintf (FILE, "\t.set\tat\n"); \
2379 /* _mcount treats $2 as the static chain register. */ \
2380 if (cfun->static_chain_decl != NULL) \
2381 fprintf (FILE, "\tmove\t%s,%s\n", reg_names[STATIC_CHAIN_REGNUM], \
2382 reg_names[2]); \
2383 }
2384
2385 /* The profiler preserves all interesting registers, including $31. */
2386 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2387
2388 /* No mips port has ever used the profiler counter word, so don't emit it
2389 or the label for it. */
2390
2391 #define NO_PROFILE_COUNTERS 1
2392
2393 /* Define this macro if the code for function profiling should come
2394 before the function prologue. Normally, the profiling code comes
2395 after. */
2396
2397 /* #define PROFILE_BEFORE_PROLOGUE */
2398
2399 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2400 the stack pointer does not matter. The value is tested only in
2401 functions that have frame pointers.
2402 No definition is equivalent to always zero. */
2403
2404 #define EXIT_IGNORE_STACK 1
2405
2406 \f
2407 /* A C statement to output, on the stream FILE, assembler code for a
2408 block of data that contains the constant parts of a trampoline.
2409 This code should not include a label--the label is taken care of
2410 automatically. */
2411
2412 #define TRAMPOLINE_TEMPLATE(STREAM) \
2413 { \
2414 if (ptr_mode == DImode) \
2415 fprintf (STREAM, "\t.word\t0x03e0082d\t\t# dmove $1,$31\n"); \
2416 else \
2417 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2418 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2419 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2420 if (ptr_mode == DImode) \
2421 { \
2422 fprintf (STREAM, "\t.word\t0xdff90014\t\t# ld $25,20($31)\n"); \
2423 fprintf (STREAM, "\t.word\t0xdfef001c\t\t# ld $15,28($31)\n"); \
2424 } \
2425 else \
2426 { \
2427 fprintf (STREAM, "\t.word\t0x8ff90010\t\t# lw $25,16($31)\n"); \
2428 fprintf (STREAM, "\t.word\t0x8fef0014\t\t# lw $15,20($31)\n"); \
2429 } \
2430 fprintf (STREAM, "\t.word\t0x03200008\t\t# jr $25\n"); \
2431 if (ptr_mode == DImode) \
2432 { \
2433 fprintf (STREAM, "\t.word\t0x0020f82d\t\t# dmove $31,$1\n"); \
2434 fprintf (STREAM, "\t.word\t0x00000000\t\t# <padding>\n"); \
2435 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2436 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2437 } \
2438 else \
2439 { \
2440 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2441 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2442 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2443 } \
2444 }
2445
2446 /* A C expression for the size in bytes of the trampoline, as an
2447 integer. */
2448
2449 #define TRAMPOLINE_SIZE (ptr_mode == DImode ? 48 : 36)
2450
2451 /* Alignment required for trampolines, in bits. */
2452
2453 #define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
2454
2455 /* INITIALIZE_TRAMPOLINE calls this library function to flush
2456 program and data caches. */
2457
2458 #ifndef CACHE_FLUSH_FUNC
2459 #define CACHE_FLUSH_FUNC "_flush_cache"
2460 #endif
2461
2462 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2463 /* Flush both caches. We need to flush the data cache in case \
2464 the system has a write-back cache. */ \
2465 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2466 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2467 GEN_INT (3), TYPE_MODE (integer_type_node))
2468
2469 /* A C statement to initialize the variable parts of a trampoline.
2470 ADDR is an RTX for the address of the trampoline; FNADDR is an
2471 RTX for the address of the nested function; STATIC_CHAIN is an
2472 RTX for the static chain value that should be passed to the
2473 function when it is called. */
2474
2475 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2476 { \
2477 rtx func_addr, chain_addr, end_addr; \
2478 \
2479 func_addr = plus_constant (ADDR, ptr_mode == DImode ? 32 : 28); \
2480 chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode)); \
2481 mips_emit_move (gen_rtx_MEM (ptr_mode, func_addr), FUNC); \
2482 mips_emit_move (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN); \
2483 end_addr = gen_reg_rtx (Pmode); \
2484 emit_insn (gen_add3_insn (end_addr, copy_rtx (ADDR), \
2485 GEN_INT (TRAMPOLINE_SIZE))); \
2486 emit_insn (gen_clear_cache (copy_rtx (ADDR), end_addr)); \
2487 }
2488 \f
2489 /* Addressing modes, and classification of registers for them. */
2490
2491 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2492 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2493 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2494
2495 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2496 and check its validity for a certain class.
2497 We have two alternate definitions for each of them.
2498 The usual definition accepts all pseudo regs; the other rejects them all.
2499 The symbol REG_OK_STRICT causes the latter definition to be used.
2500
2501 Most source files want to accept pseudo regs in the hope that
2502 they will get allocated to the class that the insn wants them to be in.
2503 Some source files that are used after register allocation
2504 need to be strict. */
2505
2506 #ifndef REG_OK_STRICT
2507 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2508 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2509 #else
2510 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2511 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2512 #endif
2513
2514 #define REG_OK_FOR_INDEX_P(X) 0
2515
2516 \f
2517 /* Maximum number of registers that can appear in a valid memory address. */
2518
2519 #define MAX_REGS_PER_ADDRESS 1
2520
2521 /* Check for constness inline but use mips_legitimate_address_p
2522 to check whether a constant really is an address. */
2523
2524 #define CONSTANT_ADDRESS_P(X) \
2525 (CONSTANT_P (X) && memory_address_p (SImode, X))
2526
2527 #define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2528
2529 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2530 'the start of the function that this code is output in'. */
2531
2532 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2533 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2534 asm_fprintf ((FILE), "%U%s", \
2535 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2536 else \
2537 asm_fprintf ((FILE), "%U%s", (NAME))
2538 \f
2539 /* Flag to mark a function decl symbol that requires a long call. */
2540 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2541 #define SYMBOL_REF_LONG_CALL_P(X) \
2542 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2543
2544 /* This flag marks functions that cannot be lazily bound. */
2545 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2546 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2547 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2548
2549 /* True if we're generating a form of MIPS16 code in which jump tables
2550 are stored in the text section and encoded as 16-bit PC-relative
2551 offsets. This is only possible when general text loads are allowed,
2552 since the table access itself will be an "lh" instruction. */
2553 /* ??? 16-bit offsets can overflow in large functions. */
2554 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2555
2556 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2557
2558 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? HImode : ptr_mode)
2559
2560 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2561
2562 /* Define this as 1 if `char' should by default be signed; else as 0. */
2563 #ifndef DEFAULT_SIGNED_CHAR
2564 #define DEFAULT_SIGNED_CHAR 1
2565 #endif
2566
2567 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2568 we generally don't want to use them for copying arbitrary data.
2569 A single N-word move is usually the same cost as N single-word moves. */
2570 #define MOVE_MAX UNITS_PER_WORD
2571 #define MAX_MOVE_MAX 8
2572
2573 /* Define this macro as a C expression which is nonzero if
2574 accessing less than a word of memory (i.e. a `char' or a
2575 `short') is no faster than accessing a word of memory, i.e., if
2576 such access require more than one instruction or if there is no
2577 difference in cost between byte and (aligned) word loads.
2578
2579 On RISC machines, it tends to generate better code to define
2580 this as 1, since it avoids making a QI or HI mode register.
2581
2582 But, generating word accesses for -mips16 is generally bad as shifts
2583 (often extended) would be needed for byte accesses. */
2584 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2585
2586 /* Define this to be nonzero if shift instructions ignore all but the low-order
2587 few bits. */
2588 #define SHIFT_COUNT_TRUNCATED 1
2589
2590 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2591 is done just by pretending it is already truncated. */
2592 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2593 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2594
2595
2596 /* Specify the machine mode that pointers have.
2597 After generation of rtl, the compiler makes no further distinction
2598 between pointers and any other objects of this machine mode. */
2599
2600 #ifndef Pmode
2601 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2602 #endif
2603
2604 /* Give call MEMs SImode since it is the "most permissive" mode
2605 for both 32-bit and 64-bit targets. */
2606
2607 #define FUNCTION_MODE SImode
2608
2609 \f
2610 /* A C expression for the cost of moving data from a register in
2611 class FROM to one in class TO. The classes are expressed using
2612 the enumeration values such as `GENERAL_REGS'. A value of 2 is
2613 the default; other values are interpreted relative to that.
2614
2615 It is not required that the cost always equal 2 when FROM is the
2616 same as TO; on some machines it is expensive to move between
2617 registers if they are not general registers.
2618
2619 If reload sees an insn consisting of a single `set' between two
2620 hard registers, and if `REGISTER_MOVE_COST' applied to their
2621 classes returns a value of 2, reload does not check to ensure
2622 that the constraints of the insn are met. Setting a cost of
2623 other than 2 will allow reload to verify that the constraints are
2624 met. You should do this if the `movM' pattern's constraints do
2625 not allow such copying. */
2626
2627 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
2628 mips_register_move_cost (MODE, FROM, TO)
2629
2630 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2631 (mips_cost->memory_latency \
2632 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2633
2634 /* Define if copies to/from condition code registers should be avoided.
2635
2636 This is needed for the MIPS because reload_outcc is not complete;
2637 it needs to handle cases where the source is a general or another
2638 condition code register. */
2639 #define AVOID_CCMODE_COPIES
2640
2641 /* A C expression for the cost of a branch instruction. A value of
2642 1 is the default; other values are interpreted relative to that. */
2643
2644 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2645 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2646
2647 /* If defined, modifies the length assigned to instruction INSN as a
2648 function of the context in which it is used. LENGTH is an lvalue
2649 that contains the initially computed length of the insn and should
2650 be updated with the correct length of the insn. */
2651 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2652 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2653
2654 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2655 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2656 its operands. */
2657 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2658 "%*" OPCODE "%?\t" OPERANDS "%/"
2659
2660 /* Return the asm template for a call. INSN is the instruction's mnemonic
2661 ("j" or "jal"), OPERANDS are its operands, and OPNO is the operand number
2662 of the target.
2663
2664 When generating GOT code without explicit relocation operators,
2665 all calls should use assembly macros. Otherwise, all indirect
2666 calls should use "jr" or "jalr"; we will arrange to restore $gp
2667 afterwards if necessary. Finally, we can only generate direct
2668 calls for -mabicalls by temporarily switching to non-PIC mode. */
2669 #define MIPS_CALL(INSN, OPERANDS, OPNO) \
2670 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2671 ? "%*" INSN "\t%" #OPNO "%/" \
2672 : REG_P (OPERANDS[OPNO]) \
2673 ? "%*" INSN "r\t%" #OPNO "%/" \
2674 : TARGET_ABICALLS_PIC2 \
2675 ? (".option\tpic0\n\t" \
2676 "%*" INSN "\t%" #OPNO "%/\n\t" \
2677 ".option\tpic2") \
2678 : "%*" INSN "\t%" #OPNO "%/")
2679 \f
2680 /* Control the assembler format that we output. */
2681
2682 /* Output to assembler file text saying following lines
2683 may contain character constants, extra white space, comments, etc. */
2684
2685 #ifndef ASM_APP_ON
2686 #define ASM_APP_ON " #APP\n"
2687 #endif
2688
2689 /* Output to assembler file text saying following lines
2690 no longer contain unusual constructs. */
2691
2692 #ifndef ASM_APP_OFF
2693 #define ASM_APP_OFF " #NO_APP\n"
2694 #endif
2695
2696 #define REGISTER_NAMES \
2697 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2698 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2699 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2700 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2701 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2702 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2703 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2704 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2705 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2706 "$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec", \
2707 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2708 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2709 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2710 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2711 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2712 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2713 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2714 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2715 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2716 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2717 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2718 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2719 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2720 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2721
2722 /* List the "software" names for each register. Also list the numerical
2723 names for $fp and $sp. */
2724
2725 #define ADDITIONAL_REGISTER_NAMES \
2726 { \
2727 { "$29", 29 + GP_REG_FIRST }, \
2728 { "$30", 30 + GP_REG_FIRST }, \
2729 { "at", 1 + GP_REG_FIRST }, \
2730 { "v0", 2 + GP_REG_FIRST }, \
2731 { "v1", 3 + GP_REG_FIRST }, \
2732 { "a0", 4 + GP_REG_FIRST }, \
2733 { "a1", 5 + GP_REG_FIRST }, \
2734 { "a2", 6 + GP_REG_FIRST }, \
2735 { "a3", 7 + GP_REG_FIRST }, \
2736 { "t0", 8 + GP_REG_FIRST }, \
2737 { "t1", 9 + GP_REG_FIRST }, \
2738 { "t2", 10 + GP_REG_FIRST }, \
2739 { "t3", 11 + GP_REG_FIRST }, \
2740 { "t4", 12 + GP_REG_FIRST }, \
2741 { "t5", 13 + GP_REG_FIRST }, \
2742 { "t6", 14 + GP_REG_FIRST }, \
2743 { "t7", 15 + GP_REG_FIRST }, \
2744 { "s0", 16 + GP_REG_FIRST }, \
2745 { "s1", 17 + GP_REG_FIRST }, \
2746 { "s2", 18 + GP_REG_FIRST }, \
2747 { "s3", 19 + GP_REG_FIRST }, \
2748 { "s4", 20 + GP_REG_FIRST }, \
2749 { "s5", 21 + GP_REG_FIRST }, \
2750 { "s6", 22 + GP_REG_FIRST }, \
2751 { "s7", 23 + GP_REG_FIRST }, \
2752 { "t8", 24 + GP_REG_FIRST }, \
2753 { "t9", 25 + GP_REG_FIRST }, \
2754 { "k0", 26 + GP_REG_FIRST }, \
2755 { "k1", 27 + GP_REG_FIRST }, \
2756 { "gp", 28 + GP_REG_FIRST }, \
2757 { "sp", 29 + GP_REG_FIRST }, \
2758 { "fp", 30 + GP_REG_FIRST }, \
2759 { "ra", 31 + GP_REG_FIRST }, \
2760 ALL_COP_ADDITIONAL_REGISTER_NAMES \
2761 }
2762
2763 /* This is meant to be redefined in the host dependent files. It is a
2764 set of alternative names and regnums for mips coprocessors. */
2765
2766 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
2767
2768 #define PRINT_OPERAND mips_print_operand
2769 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2770 #define PRINT_OPERAND_ADDRESS mips_print_operand_address
2771
2772 /* A C statement, to be executed after all slot-filler instructions
2773 have been output. If necessary, call `dbr_sequence_length' to
2774 determine the number of slots filled in a sequence (zero if not
2775 currently outputting a sequence), to decide how many no-ops to
2776 output, or whatever.
2777
2778 Don't define this macro if it has nothing to do, but it is
2779 helpful in reading assembly output if the extent of the delay
2780 sequence is made explicit (e.g. with white space).
2781
2782 Note that output routines for instructions with delay slots must
2783 be prepared to deal with not being output as part of a sequence
2784 (i.e. when the scheduling pass is not run, or when no slot
2785 fillers could be found.) The variable `final_sequence' is null
2786 when not processing a sequence, otherwise it contains the
2787 `sequence' rtx being output. */
2788
2789 #define DBR_OUTPUT_SEQEND(STREAM) \
2790 do \
2791 { \
2792 if (set_nomacro > 0 && --set_nomacro == 0) \
2793 fputs ("\t.set\tmacro\n", STREAM); \
2794 \
2795 if (set_noreorder > 0 && --set_noreorder == 0) \
2796 fputs ("\t.set\treorder\n", STREAM); \
2797 \
2798 fputs ("\n", STREAM); \
2799 } \
2800 while (0)
2801
2802 /* How to tell the debugger about changes of source files. */
2803 #define ASM_OUTPUT_SOURCE_FILENAME mips_output_filename
2804
2805 /* mips-tfile does not understand .stabd directives. */
2806 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
2807 dbxout_begin_stabn_sline (LINE); \
2808 dbxout_stab_value_internal_label ("LM", &COUNTER); \
2809 } while (0)
2810
2811 /* Use .loc directives for SDB line numbers. */
2812 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2813 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2814
2815 /* The MIPS implementation uses some labels for its own purpose. The
2816 following lists what labels are created, and are all formed by the
2817 pattern $L[a-z].*. The machine independent portion of GCC creates
2818 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2819
2820 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2821 $Lb[0-9]+ Begin blocks for MIPS debug support
2822 $Lc[0-9]+ Label for use in s<xx> operation.
2823 $Le[0-9]+ End blocks for MIPS debug support */
2824
2825 #undef ASM_DECLARE_OBJECT_NAME
2826 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2827 mips_declare_object (STREAM, NAME, "", ":\n")
2828
2829 /* Globalizing directive for a label. */
2830 #define GLOBAL_ASM_OP "\t.globl\t"
2831
2832 /* This says how to define a global common symbol. */
2833
2834 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2835
2836 /* This says how to define a local common symbol (i.e., not visible to
2837 linker). */
2838
2839 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2840 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2841 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2842 #endif
2843
2844 /* This says how to output an external. It would be possible not to
2845 output anything and let undefined symbol become external. However
2846 the assembler uses length information on externals to allocate in
2847 data/sdata bss/sbss, thereby saving exec time. */
2848
2849 #undef ASM_OUTPUT_EXTERNAL
2850 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2851 mips_output_external(STREAM,DECL,NAME)
2852
2853 /* This is how to declare a function name. The actual work of
2854 emitting the label is moved to function_prologue, so that we can
2855 get the line number correctly emitted before the .ent directive,
2856 and after any .file directives. Define as empty so that the function
2857 is not declared before the .ent directive elsewhere. */
2858
2859 #undef ASM_DECLARE_FUNCTION_NAME
2860 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2861
2862 /* This is how to store into the string LABEL
2863 the symbol_ref name of an internal numbered label where
2864 PREFIX is the class of label and NUM is the number within the class.
2865 This is suitable for output with `assemble_name'. */
2866
2867 #undef ASM_GENERATE_INTERNAL_LABEL
2868 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2869 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2870
2871 /* Print debug labels as "foo = ." rather than "foo:" because they should
2872 represent a byte pointer rather than an ISA-encoded address. This is
2873 particularly important for code like:
2874
2875 $LFBxxx = .
2876 .cfi_startproc
2877 ...
2878 .section .gcc_except_table,...
2879 ...
2880 .uleb128 foo-$LFBxxx
2881
2882 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2883 likewise a byte pointer rather than an ISA-encoded address.
2884
2885 At the time of writing, this hook is not used for the function end
2886 label:
2887
2888 $LFExxx:
2889 .end foo
2890
2891 But this doesn't matter, because GAS doesn't treat a pre-.end label
2892 as a MIPS16 one anyway. */
2893
2894 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2895 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2896
2897 /* This is how to output an element of a case-vector that is absolute. */
2898
2899 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2900 fprintf (STREAM, "\t%s\t%sL%d\n", \
2901 ptr_mode == DImode ? ".dword" : ".word", \
2902 LOCAL_LABEL_PREFIX, \
2903 VALUE)
2904
2905 /* This is how to output an element of a case-vector. We can make the
2906 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2907 is supported. */
2908
2909 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2910 do { \
2911 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2912 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2913 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2914 else if (TARGET_GPWORD) \
2915 fprintf (STREAM, "\t%s\t%sL%d\n", \
2916 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2917 LOCAL_LABEL_PREFIX, VALUE); \
2918 else if (TARGET_RTP_PIC) \
2919 { \
2920 /* Make the entry relative to the start of the function. */ \
2921 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2922 fprintf (STREAM, "\t%s\t%sL%d-", \
2923 Pmode == DImode ? ".dword" : ".word", \
2924 LOCAL_LABEL_PREFIX, VALUE); \
2925 assemble_name (STREAM, XSTR (fnsym, 0)); \
2926 fprintf (STREAM, "\n"); \
2927 } \
2928 else \
2929 fprintf (STREAM, "\t%s\t%sL%d\n", \
2930 ptr_mode == DImode ? ".dword" : ".word", \
2931 LOCAL_LABEL_PREFIX, VALUE); \
2932 } while (0)
2933
2934 /* This is how to output an assembler line
2935 that says to advance the location counter
2936 to a multiple of 2**LOG bytes. */
2937
2938 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2939 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2940
2941 /* This is how to output an assembler line to advance the location
2942 counter by SIZE bytes. */
2943
2944 #undef ASM_OUTPUT_SKIP
2945 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2946 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2947
2948 /* This is how to output a string. */
2949 #undef ASM_OUTPUT_ASCII
2950 #define ASM_OUTPUT_ASCII mips_output_ascii
2951
2952 /* Output #ident as a in the read-only data section. */
2953 #undef ASM_OUTPUT_IDENT
2954 #define ASM_OUTPUT_IDENT(FILE, STRING) \
2955 { \
2956 const char *p = STRING; \
2957 int size = strlen (p) + 1; \
2958 switch_to_section (readonly_data_section); \
2959 assemble_string (p, size); \
2960 }
2961 \f
2962 /* Default to -G 8 */
2963 #ifndef MIPS_DEFAULT_GVALUE
2964 #define MIPS_DEFAULT_GVALUE 8
2965 #endif
2966
2967 /* Define the strings to put out for each section in the object file. */
2968 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2969 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2970
2971 #undef READONLY_DATA_SECTION_ASM_OP
2972 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2973 \f
2974 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2975 do \
2976 { \
2977 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2978 TARGET_64BIT ? "daddiu" : "addiu", \
2979 reg_names[STACK_POINTER_REGNUM], \
2980 reg_names[STACK_POINTER_REGNUM], \
2981 TARGET_64BIT ? "sd" : "sw", \
2982 reg_names[REGNO], \
2983 reg_names[STACK_POINTER_REGNUM]); \
2984 } \
2985 while (0)
2986
2987 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2988 do \
2989 { \
2990 if (! set_noreorder) \
2991 fprintf (STREAM, "\t.set\tnoreorder\n"); \
2992 \
2993 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2994 TARGET_64BIT ? "ld" : "lw", \
2995 reg_names[REGNO], \
2996 reg_names[STACK_POINTER_REGNUM], \
2997 TARGET_64BIT ? "daddu" : "addu", \
2998 reg_names[STACK_POINTER_REGNUM], \
2999 reg_names[STACK_POINTER_REGNUM]); \
3000 \
3001 if (! set_noreorder) \
3002 fprintf (STREAM, "\t.set\treorder\n"); \
3003 } \
3004 while (0)
3005
3006 /* How to start an assembler comment.
3007 The leading space is important (the mips native assembler requires it). */
3008 #ifndef ASM_COMMENT_START
3009 #define ASM_COMMENT_START " #"
3010 #endif
3011 \f
3012 /* Default definitions for size_t and ptrdiff_t. We must override the
3013 definitions from ../svr4.h on mips-*-linux-gnu. */
3014
3015 #undef SIZE_TYPE
3016 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
3017
3018 #undef PTRDIFF_TYPE
3019 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
3020
3021 /* The maximum number of bytes that can be copied by one iteration of
3022 a movmemsi loop; see mips_block_move_loop. */
3023 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
3024 (UNITS_PER_WORD * 4)
3025
3026 /* The maximum number of bytes that can be copied by a straight-line
3027 implementation of movmemsi; see mips_block_move_straight. We want
3028 to make sure that any loop-based implementation will iterate at
3029 least twice. */
3030 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
3031 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
3032
3033 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
3034 values were determined experimentally by benchmarking with CSiBE.
3035 In theory, the call overhead is higher for TARGET_ABICALLS (especially
3036 for o32 where we have to restore $gp afterwards as well as make an
3037 indirect call), but in practice, bumping this up higher for
3038 TARGET_ABICALLS doesn't make much difference to code size. */
3039
3040 #define MIPS_CALL_RATIO 8
3041
3042 /* Any loop-based implementation of movmemsi will have at least
3043 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
3044 moves, so allow individual copies of fewer elements.
3045
3046 When movmemsi is not available, use a value approximating
3047 the length of a memcpy call sequence, so that move_by_pieces
3048 will generate inline code if it is shorter than a function call.
3049 Since move_by_pieces_ninsns counts memory-to-memory moves, but
3050 we'll have to generate a load/store pair for each, halve the
3051 value of MIPS_CALL_RATIO to take that into account. */
3052
3053 #define MOVE_RATIO(speed) \
3054 (HAVE_movmemsi \
3055 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
3056 : MIPS_CALL_RATIO / 2)
3057
3058 /* movmemsi is meant to generate code that is at least as good as
3059 move_by_pieces. However, movmemsi effectively uses a by-pieces
3060 implementation both for moves smaller than a word and for word-aligned
3061 moves of no more than MIPS_MAX_MOVE_BYTES_STRAIGHT bytes. We should
3062 allow the tree-level optimisers to do such moves by pieces, as it
3063 often exposes other optimization opportunities. We might as well
3064 continue to use movmemsi at the rtl level though, as it produces
3065 better code when scheduling is disabled (such as at -O). */
3066
3067 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
3068 (HAVE_movmemsi \
3069 ? (!currently_expanding_to_rtl \
3070 && ((ALIGN) < BITS_PER_WORD \
3071 ? (SIZE) < UNITS_PER_WORD \
3072 : (SIZE) <= MIPS_MAX_MOVE_BYTES_STRAIGHT)) \
3073 : (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
3074 < (unsigned int) MOVE_RATIO (false)))
3075
3076 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
3077 of the length of a memset call, but use the default otherwise. */
3078
3079 #define CLEAR_RATIO(speed)\
3080 ((speed) ? 15 : MIPS_CALL_RATIO)
3081
3082 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
3083 optimizing for size adjust the ratio to account for the overhead of
3084 loading the constant and replicating it across the word. */
3085
3086 #define SET_RATIO(speed) \
3087 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
3088
3089 /* STORE_BY_PIECES_P can be used when copying a constant string, but
3090 in that case each word takes 3 insns (lui, ori, sw), or more in
3091 64-bit mode, instead of 2 (lw, sw). For now we always fail this
3092 and let the move_by_pieces code copy the string from read-only
3093 memory. In the future, this could be tuned further for multi-issue
3094 CPUs that can issue stores down one pipe and arithmetic instructions
3095 down another; in that case, the lui/ori/sw combination would be a
3096 win for long enough strings. */
3097
3098 #define STORE_BY_PIECES_P(SIZE, ALIGN) 0
3099 \f
3100 #ifndef __mips16
3101 /* Since the bits of the _init and _fini function is spread across
3102 many object files, each potentially with its own GP, we must assume
3103 we need to load our GP. We don't preserve $gp or $ra, since each
3104 init/fini chunk is supposed to initialize $gp, and crti/crtn
3105 already take care of preserving $ra and, when appropriate, $gp. */
3106 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
3107 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3108 asm (SECTION_OP "\n\
3109 .set noreorder\n\
3110 bal 1f\n\
3111 nop\n\
3112 1: .cpload $31\n\
3113 .set reorder\n\
3114 jal " USER_LABEL_PREFIX #FUNC "\n\
3115 " TEXT_SECTION_ASM_OP);
3116 #endif /* Switch to #elif when we're no longer limited by K&R C. */
3117 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
3118 || (defined _ABI64 && _MIPS_SIM == _ABI64)
3119 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3120 asm (SECTION_OP "\n\
3121 .set noreorder\n\
3122 bal 1f\n\
3123 nop\n\
3124 1: .set reorder\n\
3125 .cpsetup $31, $2, 1b\n\
3126 jal " USER_LABEL_PREFIX #FUNC "\n\
3127 " TEXT_SECTION_ASM_OP);
3128 #endif
3129 #endif
3130
3131 #ifndef HAVE_AS_TLS
3132 #define HAVE_AS_TLS 0
3133 #endif
3134
3135 /* Return an asm string that atomically:
3136
3137 - Compares memory reference %1 to register %2 and, if they are
3138 equal, changes %1 to %3.
3139
3140 - Sets register %0 to the old value of memory reference %1.
3141
3142 SUFFIX is the suffix that should be added to "ll" and "sc" instructions
3143 and OP is the instruction that should be used to load %3 into a
3144 register. */
3145 #define MIPS_COMPARE_AND_SWAP(SUFFIX, OP) \
3146 "%(%<%[%|sync\n" \
3147 "1:\tll" SUFFIX "\t%0,%1\n" \
3148 "\tbne\t%0,%z2,2f\n" \
3149 "\t" OP "\t%@,%3\n" \
3150 "\tsc" SUFFIX "\t%@,%1\n" \
3151 "\tbeq%?\t%@,%.,1b\n" \
3152 "\tnop\n" \
3153 "\tsync%-%]%>%)\n" \
3154 "2:\n"
3155
3156 /* Return an asm string that atomically:
3157
3158 - Given that %2 contains a bit mask and %3 the inverted mask and
3159 that %4 and %5 have already been ANDed with %2.
3160
3161 - Compares the bits in memory reference %1 selected by mask %2 to
3162 register %4 and, if they are equal, changes the selected bits
3163 in memory to %5.
3164
3165 - Sets register %0 to the old value of memory reference %1.
3166
3167 OPS are the instructions needed to OR %5 with %@. */
3168 #define MIPS_COMPARE_AND_SWAP_12(OPS) \
3169 "%(%<%[%|sync\n" \
3170 "1:\tll\t%0,%1\n" \
3171 "\tand\t%@,%0,%2\n" \
3172 "\tbne\t%@,%z4,2f\n" \
3173 "\tand\t%@,%0,%3\n" \
3174 OPS \
3175 "\tsc\t%@,%1\n" \
3176 "\tbeq%?\t%@,%.,1b\n" \
3177 "\tnop\n" \
3178 "\tsync%-%]%>%)\n" \
3179 "2:\n"
3180
3181 #define MIPS_COMPARE_AND_SWAP_12_ZERO_OP ""
3182 #define MIPS_COMPARE_AND_SWAP_12_NONZERO_OP "\tor\t%@,%@,%5\n"
3183
3184
3185 /* Return an asm string that atomically:
3186
3187 - Sets memory reference %0 to %0 INSN %1.
3188
3189 SUFFIX is the suffix that should be added to "ll" and "sc"
3190 instructions. */
3191 #define MIPS_SYNC_OP(SUFFIX, INSN) \
3192 "%(%<%[%|sync\n" \
3193 "1:\tll" SUFFIX "\t%@,%0\n" \
3194 "\t" INSN "\t%@,%@,%1\n" \
3195 "\tsc" SUFFIX "\t%@,%0\n" \
3196 "\tbeq%?\t%@,%.,1b\n" \
3197 "\tnop\n" \
3198 "\tsync%-%]%>%)"
3199
3200 /* Return an asm string that atomically:
3201
3202 - Given that %1 contains a bit mask and %2 the inverted mask and
3203 that %3 has already been ANDed with %1.
3204
3205 - Sets the selected bits of memory reference %0 to %0 INSN %3.
3206
3207 - Uses scratch register %4.
3208
3209 AND_OP is an instruction done after INSN to mask INSN's result
3210 with the mask. For most operations, this is an AND with the
3211 inclusive mask (%1). For nand operations -- where the result of
3212 INSN is already correctly masked -- it instead performs a bitwise
3213 not. */
3214 #define MIPS_SYNC_OP_12(INSN, AND_OP) \
3215 "%(%<%[%|sync\n" \
3216 "1:\tll\t%4,%0\n" \
3217 "\tand\t%@,%4,%2\n" \
3218 "\t" INSN "\t%4,%4,%z3\n" \
3219 AND_OP \
3220 "\tor\t%@,%@,%4\n" \
3221 "\tsc\t%@,%0\n" \
3222 "\tbeq%?\t%@,%.,1b\n" \
3223 "\tnop\n" \
3224 "\tsync%-%]%>%)"
3225
3226 #define MIPS_SYNC_OP_12_AND "\tand\t%4,%4,%1\n"
3227 #define MIPS_SYNC_OP_12_XOR "\txor\t%4,%4,%1\n"
3228
3229 /* Return an asm string that atomically:
3230
3231 - Given that %2 contains a bit mask and %3 the inverted mask and
3232 that %4 has already been ANDed with %2.
3233
3234 - Sets the selected bits of memory reference %1 to %1 INSN %4.
3235
3236 - Sets %0 to the original value of %1.
3237
3238 - Uses scratch register %5.
3239
3240 AND_OP is an instruction done after INSN to mask INSN's result
3241 with the mask. For most operations, this is an AND with the
3242 inclusive mask (%1). For nand operations -- where the result of
3243 INSN is already correctly masked -- it instead performs a bitwise
3244 not. */
3245 #define MIPS_SYNC_OLD_OP_12(INSN, AND_OP) \
3246 "%(%<%[%|sync\n" \
3247 "1:\tll\t%0,%1\n" \
3248 "\tand\t%@,%0,%3\n" \
3249 "\t" INSN "\t%5,%0,%z4\n" \
3250 AND_OP \
3251 "\tor\t%@,%@,%5\n" \
3252 "\tsc\t%@,%1\n" \
3253 "\tbeq%?\t%@,%.,1b\n" \
3254 "\tnop\n" \
3255 "\tsync%-%]%>%)"
3256
3257 #define MIPS_SYNC_OLD_OP_12_AND "\tand\t%5,%5,%2\n"
3258 #define MIPS_SYNC_OLD_OP_12_XOR "\txor\t%5,%5,%2\n"
3259
3260 /* Return an asm string that atomically:
3261
3262 - Given that %2 contains a bit mask and %3 the inverted mask and
3263 that %4 has already been ANDed with %2.
3264
3265 - Sets the selected bits of memory reference %1 to %1 INSN %4.
3266
3267 - Sets %0 to the new value of %1.
3268
3269 AND_OP is an instruction done after INSN to mask INSN's result
3270 with the mask. For most operations, this is an AND with the
3271 inclusive mask (%1). For nand operations -- where the result of
3272 INSN is already correctly masked -- it instead performs a bitwise
3273 not. */
3274 #define MIPS_SYNC_NEW_OP_12(INSN, AND_OP) \
3275 "%(%<%[%|sync\n" \
3276 "1:\tll\t%0,%1\n" \
3277 "\tand\t%@,%0,%3\n" \
3278 "\t" INSN "\t%0,%0,%z4\n" \
3279 AND_OP \
3280 "\tor\t%@,%@,%0\n" \
3281 "\tsc\t%@,%1\n" \
3282 "\tbeq%?\t%@,%.,1b\n" \
3283 "\tnop\n" \
3284 "\tsync%-%]%>%)"
3285
3286 #define MIPS_SYNC_NEW_OP_12_AND "\tand\t%0,%0,%2\n"
3287 #define MIPS_SYNC_NEW_OP_12_XOR "\txor\t%0,%0,%2\n"
3288
3289 /* Return an asm string that atomically:
3290
3291 - Sets memory reference %1 to %1 INSN %2.
3292
3293 - Sets register %0 to the old value of memory reference %1.
3294
3295 SUFFIX is the suffix that should be added to "ll" and "sc"
3296 instructions. */
3297 #define MIPS_SYNC_OLD_OP(SUFFIX, INSN) \
3298 "%(%<%[%|sync\n" \
3299 "1:\tll" SUFFIX "\t%0,%1\n" \
3300 "\t" INSN "\t%@,%0,%2\n" \
3301 "\tsc" SUFFIX "\t%@,%1\n" \
3302 "\tbeq%?\t%@,%.,1b\n" \
3303 "\tnop\n" \
3304 "\tsync%-%]%>%)"
3305
3306 /* Return an asm string that atomically:
3307
3308 - Sets memory reference %1 to %1 INSN %2.
3309
3310 - Sets register %0 to the new value of memory reference %1.
3311
3312 SUFFIX is the suffix that should be added to "ll" and "sc"
3313 instructions. */
3314 #define MIPS_SYNC_NEW_OP(SUFFIX, INSN) \
3315 "%(%<%[%|sync\n" \
3316 "1:\tll" SUFFIX "\t%0,%1\n" \
3317 "\t" INSN "\t%@,%0,%2\n" \
3318 "\tsc" SUFFIX "\t%@,%1\n" \
3319 "\tbeq%?\t%@,%.,1b%~\n" \
3320 "\t" INSN "\t%0,%0,%2\n" \
3321 "\tsync%-%]%>%)"
3322
3323 /* Return an asm string that atomically:
3324
3325 - Sets memory reference %0 to ~(%0 AND %1).
3326
3327 SUFFIX is the suffix that should be added to "ll" and "sc"
3328 instructions. INSN is the and instruction needed to and a register
3329 with %2. */
3330 #define MIPS_SYNC_NAND(SUFFIX, INSN) \
3331 "%(%<%[%|sync\n" \
3332 "1:\tll" SUFFIX "\t%@,%0\n" \
3333 "\t" INSN "\t%@,%@,%1\n" \
3334 "\tnor\t%@,%@,%.\n" \
3335 "\tsc" SUFFIX "\t%@,%0\n" \
3336 "\tbeq%?\t%@,%.,1b\n" \
3337 "\tnop\n" \
3338 "\tsync%-%]%>%)"
3339
3340 /* Return an asm string that atomically:
3341
3342 - Sets memory reference %1 to ~(%1 AND %2).
3343
3344 - Sets register %0 to the old value of memory reference %1.
3345
3346 SUFFIX is the suffix that should be added to "ll" and "sc"
3347 instructions. INSN is the and instruction needed to and a register
3348 with %2. */
3349 #define MIPS_SYNC_OLD_NAND(SUFFIX, INSN) \
3350 "%(%<%[%|sync\n" \
3351 "1:\tll" SUFFIX "\t%0,%1\n" \
3352 "\t" INSN "\t%@,%0,%2\n" \
3353 "\tnor\t%@,%@,%.\n" \
3354 "\tsc" SUFFIX "\t%@,%1\n" \
3355 "\tbeq%?\t%@,%.,1b\n" \
3356 "\tnop\n" \
3357 "\tsync%-%]%>%)"
3358
3359 /* Return an asm string that atomically:
3360
3361 - Sets memory reference %1 to ~(%1 AND %2).
3362
3363 - Sets register %0 to the new value of memory reference %1.
3364
3365 SUFFIX is the suffix that should be added to "ll" and "sc"
3366 instructions. INSN is the and instruction needed to and a register
3367 with %2. */
3368 #define MIPS_SYNC_NEW_NAND(SUFFIX, INSN) \
3369 "%(%<%[%|sync\n" \
3370 "1:\tll" SUFFIX "\t%0,%1\n" \
3371 "\t" INSN "\t%0,%0,%2\n" \
3372 "\tnor\t%@,%0,%.\n" \
3373 "\tsc" SUFFIX "\t%@,%1\n" \
3374 "\tbeq%?\t%@,%.,1b%~\n" \
3375 "\tnor\t%0,%0,%.\n" \
3376 "\tsync%-%]%>%)"
3377
3378 /* Return an asm string that atomically:
3379
3380 - Sets memory reference %1 to %2.
3381
3382 - Sets register %0 to the old value of memory reference %1.
3383
3384 SUFFIX is the suffix that should be added to "ll" and "sc"
3385 instructions. OP is the and instruction that should be used to
3386 load %2 into a register. */
3387 #define MIPS_SYNC_EXCHANGE(SUFFIX, OP) \
3388 "%(%<%[%|\n" \
3389 "1:\tll" SUFFIX "\t%0,%1\n" \
3390 "\t" OP "\t%@,%2\n" \
3391 "\tsc" SUFFIX "\t%@,%1\n" \
3392 "\tbeq%?\t%@,%.,1b\n" \
3393 "\tnop\n" \
3394 "\tsync%-%]%>%)"
3395
3396 /* Return an asm string that atomically:
3397
3398 - Given that %2 contains an inclusive mask, %3 and exclusive mask
3399 and %4 has already been ANDed with the inclusive mask.
3400
3401 - Sets bits selected by the inclusive mask of memory reference %1
3402 to %4.
3403
3404 - Sets register %0 to the old value of memory reference %1.
3405
3406 OPS are the instructions needed to OR %4 with %@.
3407
3408 Operand %2 is unused, but needed as to give the test_and_set_12
3409 insn the five operands expected by the expander. */
3410 #define MIPS_SYNC_EXCHANGE_12(OPS) \
3411 "%(%<%[%|\n" \
3412 "1:\tll\t%0,%1\n" \
3413 "\tand\t%@,%0,%3\n" \
3414 OPS \
3415 "\tsc\t%@,%1\n" \
3416 "\tbeq%?\t%@,%.,1b\n" \
3417 "\tnop\n" \
3418 "\tsync%-%]%>%)"
3419
3420 #define MIPS_SYNC_EXCHANGE_12_ZERO_OP ""
3421 #define MIPS_SYNC_EXCHANGE_12_NONZERO_OP "\tor\t%@,%@,%4\n"
3422
3423 #ifndef USED_FOR_TARGET
3424 extern const enum reg_class mips_regno_to_class[];
3425 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
3426 extern bool mips_print_operand_punct[256];
3427 extern const char *current_function_file; /* filename current function is in */
3428 extern int num_source_filenames; /* current .file # */
3429 extern int set_noreorder; /* # of nested .set noreorder's */
3430 extern int set_nomacro; /* # of nested .set nomacro's */
3431 extern int mips_dbx_regno[];
3432 extern int mips_dwarf_regno[];
3433 extern bool mips_split_p[];
3434 extern bool mips_split_hi_p[];
3435 extern enum processor_type mips_arch; /* which cpu to codegen for */
3436 extern enum processor_type mips_tune; /* which cpu to schedule for */
3437 extern int mips_isa; /* architectural level */
3438 extern int mips_abi; /* which ABI to use */
3439 extern const struct mips_cpu_info *mips_arch_info;
3440 extern const struct mips_cpu_info *mips_tune_info;
3441 extern const struct mips_rtx_cost_data *mips_cost;
3442 extern bool mips_base_mips16;
3443 extern enum mips_code_readable_setting mips_code_readable;
3444 #endif
3445
3446 /* Enable querying of DFA units. */
3447 #define CPU_UNITS_QUERY 1
3448
3449 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3450 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
3451
3452 /* This is necessary to avoid a warning about comparing different enum
3453 types. */
3454 #define mips_tune_attr ((enum attr_cpu) mips_tune)