f3c3add004219685d1a1326fd0d69cd88ec03945
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by A. Lichnewsky (lich@inria.inria.fr).
5 Changed by Michael Meissner (meissner@osf.org).
6 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7 Brendan Eich (brendan@microunity.com).
8
9 This file is part of GNU CC.
10
11 GNU CC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
15
16 GNU CC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GNU CC; see the file COPYING. If not, write to
23 the Free Software Foundation, 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26
27 /* Standard GCC variables that we reference. */
28
29 extern char *asm_file_name;
30 extern char call_used_regs[];
31 extern int may_call_alloca;
32 extern char **save_argv;
33 extern int target_flags;
34
35 /* MIPS external variables defined in mips.c. */
36
37 /* comparison type */
38 enum cmp_type {
39 CMP_SI, /* compare four byte integers */
40 CMP_DI, /* compare eight byte integers */
41 CMP_SF, /* compare single precision floats */
42 CMP_DF, /* compare double precision floats */
43 CMP_MAX /* max comparison type */
44 };
45
46 /* types of delay slot */
47 enum delay_type {
48 DELAY_NONE, /* no delay slot */
49 DELAY_LOAD, /* load from memory delay */
50 DELAY_HILO, /* move from/to hi/lo registers */
51 DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
52 };
53
54 /* Which processor to schedule for. Since there is no difference between
55 a R2000 and R3000 in terms of the scheduler, we collapse them into
56 just an R3000. The elements of the enumeration must match exactly
57 the cpu attribute in the mips.md machine description. */
58
59 enum processor_type {
60 PROCESSOR_DEFAULT,
61 PROCESSOR_R3000,
62 PROCESSOR_R3900,
63 PROCESSOR_R6000,
64 PROCESSOR_R4000,
65 PROCESSOR_R4100,
66 PROCESSOR_R4300,
67 PROCESSOR_R4600,
68 PROCESSOR_R4650,
69 PROCESSOR_R5000,
70 PROCESSOR_R8000,
71 PROCESSOR_R4KC,
72 PROCESSOR_R5KC,
73 PROCESSOR_R20KC
74 };
75
76 /* Recast the cpu class to be the cpu attribute. */
77 #define mips_cpu_attr ((enum attr_cpu)mips_tune)
78
79 /* Which ABI to use. These are constants because abi64.h must check their
80 value at preprocessing time.
81
82 ABI_32 (original 32, or o32), ABI_N32 (n32), ABI_64 (n64) are all
83 defined by SGI. ABI_O64 is o32 extended to work on a 64 bit machine. */
84
85 #define ABI_32 0
86 #define ABI_N32 1
87 #define ABI_64 2
88 #define ABI_EABI 3
89 #define ABI_O64 4
90 /* MEABI is gcc's internal name for MIPS' new EABI (defined by MIPS)
91 which is not the same as the above EABI (defined by Cygnus,
92 Greenhills, and Toshiba?). MEABI is not yet complete or published,
93 but at this point it looks like N32 as far as calling conventions go,
94 but allows for either 32 or 64 bit registers.
95
96 Currently MIPS is calling their EABI "the" MIPS EABI, and Cygnus'
97 EABI the legacy EABI. In the end we may end up calling both ABI's
98 EABI but give them different version numbers, but for now I'm going
99 with different names. */
100 #define ABI_MEABI 5
101
102 /* Whether to emit abicalls code sequences or not. */
103
104 enum mips_abicalls_type {
105 MIPS_ABICALLS_NO,
106 MIPS_ABICALLS_YES
107 };
108
109 /* Recast the abicalls class to be the abicalls attribute. */
110 #define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
111
112 /* Which type of block move to do (whether or not the last store is
113 split out so it can fill a branch delay slot). */
114
115 enum block_move_type {
116 BLOCK_MOVE_NORMAL, /* generate complete block move */
117 BLOCK_MOVE_NOT_LAST, /* generate all but last store */
118 BLOCK_MOVE_LAST /* generate just the last store */
119 };
120
121 extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
122 extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
123 extern const char *current_function_file; /* filename current function is in */
124 extern int num_source_filenames; /* current .file # */
125 extern int inside_function; /* != 0 if inside of a function */
126 extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
127 extern int file_in_function_warning; /* warning given about .file in func */
128 extern int sdb_label_count; /* block start/end next label # */
129 extern int sdb_begin_function_line; /* Starting Line of current function */
130 extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
131 extern int g_switch_value; /* value of the -G xx switch */
132 extern int g_switch_set; /* whether -G xx was passed. */
133 extern int sym_lineno; /* sgi next label # for each stmt */
134 extern int set_noreorder; /* # of nested .set noreorder's */
135 extern int set_nomacro; /* # of nested .set nomacro's */
136 extern int set_noat; /* # of nested .set noat's */
137 extern int set_volatile; /* # of nested .set volatile's */
138 extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
139 extern int mips_dbx_regno[]; /* Map register # to debug register # */
140 extern GTY(()) rtx branch_cmp[2]; /* operands for compare */
141 extern enum cmp_type branch_type; /* what type of branch to use */
142 extern enum processor_type mips_arch; /* which cpu to codegen for */
143 extern enum processor_type mips_tune; /* which cpu to schedule for */
144 extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
145 extern int mips_isa; /* architectural level */
146 extern int mips16; /* whether generating mips16 code */
147 extern int mips16_hard_float; /* mips16 without -msoft-float */
148 extern int mips_entry; /* generate entry/exit for mips16 */
149 extern const char *mips_cpu_string; /* for -mcpu=<xxx> */
150 extern const char *mips_arch_string; /* for -march=<xxx> */
151 extern const char *mips_tune_string; /* for -mtune=<xxx> */
152 extern const char *mips_isa_string; /* for -mips{1,2,3,4} */
153 extern const char *mips_abi_string; /* for -mabi={32,n32,64} */
154 extern const char *mips_entry_string; /* for -mentry */
155 extern const char *mips_no_mips16_string;/* for -mno-mips16 */
156 extern const char *mips_explicit_type_size_string;/* for -mexplicit-type-size */
157 extern const char *mips_cache_flush_func;/* for -mflush-func= and -mno-flush-func */
158 extern int mips_split_addresses; /* perform high/lo_sum support */
159 extern int dslots_load_total; /* total # load related delay slots */
160 extern int dslots_load_filled; /* # filled load delay slots */
161 extern int dslots_jump_total; /* total # jump related delay slots */
162 extern int dslots_jump_filled; /* # filled jump delay slots */
163 extern int dslots_number_nops; /* # of nops needed by previous insn */
164 extern int num_refs[3]; /* # 1/2/3 word references */
165 extern GTY(()) rtx mips_load_reg; /* register to check for load delay */
166 extern GTY(()) rtx mips_load_reg2; /* 2nd reg to check for load delay */
167 extern GTY(()) rtx mips_load_reg3; /* 3rd reg to check for load delay */
168 extern GTY(()) rtx mips_load_reg4; /* 4th reg to check for load delay */
169 extern int mips_string_length; /* length of strings for mips16 */
170
171 /* Functions to change what output section we are using. */
172 extern void sdata_section PARAMS ((void));
173 extern void sbss_section PARAMS ((void));
174
175 /* Macros to silence warnings about numbers being signed in traditional
176 C and unsigned in ISO C when compiled on 32-bit hosts. */
177
178 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
179 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
180 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
181
182 \f
183 /* Run-time compilation parameters selecting different hardware subsets. */
184
185 /* Macros used in the machine description to test the flags. */
186
187 /* Bits for real switches */
188 #define MASK_INT64 0x00000001 /* ints are 64 bits */
189 #define MASK_LONG64 0x00000002 /* longs are 64 bits */
190 #define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
191 #define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
192 #define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
193 #define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
194 #define MASK_STATS 0x00000040 /* print statistics to stderr */
195 #define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
196 #define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
197 #define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
198 #define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
199 #define MASK_UNUSED1 0x00000800 /* Unused Mask. */
200 #define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
201 #define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
202 #define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
203 #define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
204 #define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
205 #define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
206 #define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
207 #define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
208 #define MASK_MIPS16 0x00100000 /* Generate mips16 code */
209 #define MASK_NO_CHECK_ZERO_DIV \
210 0x00200000 /* divide by zero checking */
211 #define MASK_CHECK_RANGE_DIV \
212 0x00400000 /* divide result range checking */
213 #define MASK_UNINIT_CONST_IN_RODATA \
214 0x00800000 /* Store uninitialized
215 consts in rodata */
216 #define MASK_NO_FUSED_MADD 0x01000000 /* Don't generate floating point
217 multiply-add operations. */
218
219 /* Debug switches, not documented */
220 #define MASK_DEBUG 0 /* unused */
221 #define MASK_DEBUG_A 0 /* don't allow <label>($reg) addrs */
222 #define MASK_DEBUG_B 0 /* GO_IF_LEGITIMATE_ADDRESS debug */
223 #define MASK_DEBUG_C 0 /* don't expand seq, etc. */
224 #define MASK_DEBUG_D 0 /* don't do define_split's */
225 #define MASK_DEBUG_E 0 /* function_arg debug */
226 #define MASK_DEBUG_F 0 /* ??? */
227 #define MASK_DEBUG_G 0 /* don't support 64 bit arithmetic */
228 #define MASK_DEBUG_H 0 /* allow ints in FP registers */
229 #define MASK_DEBUG_I 0 /* unused */
230
231 /* Dummy switches used only in specs */
232 #define MASK_MIPS_TFILE 0 /* flag for mips-tfile usage */
233
234 /* r4000 64 bit sizes */
235 #define TARGET_INT64 (target_flags & MASK_INT64)
236 #define TARGET_LONG64 (target_flags & MASK_LONG64)
237 #define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
238 #define TARGET_64BIT (target_flags & MASK_64BIT)
239
240 /* Mips vs. GNU linker */
241 #define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
242
243 /* Mips vs. GNU assembler */
244 #define TARGET_GAS (target_flags & MASK_GAS)
245 #define TARGET_MIPS_AS (!TARGET_GAS)
246
247 /* Debug Modes */
248 #define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
249 #define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
250 #define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
251 #define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
252 #define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
253 #define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
254 #define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
255 #define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
256 #define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
257 #define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
258
259 /* Reg. Naming in .s ($21 vs. $a0) */
260 #define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
261
262 /* Optimize for Sdata/Sbss */
263 #define TARGET_GP_OPT (target_flags & MASK_GPOPT)
264
265 /* print program statistics */
266 #define TARGET_STATS (target_flags & MASK_STATS)
267
268 /* call memcpy instead of inline code */
269 #define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
270
271 /* .abicalls, etc from Pyramid V.4 */
272 #define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
273
274 /* software floating point */
275 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
276 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
277
278 /* always call through a register */
279 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
280
281 /* generate embedded PIC code;
282 requires gas. */
283 #define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
284
285 /* for embedded systems, optimize for
286 reduced RAM space instead of for
287 fastest code. */
288 #define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
289
290 /* always store uninitialized const
291 variables in rodata, requires
292 TARGET_EMBEDDED_DATA. */
293 #define TARGET_UNINIT_CONST_IN_RODATA (target_flags & MASK_UNINIT_CONST_IN_RODATA)
294
295 /* generate big endian code. */
296 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
297
298 #define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
299 #define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
300
301 #define TARGET_MAD (target_flags & MASK_MAD)
302
303 #define TARGET_FUSED_MADD (! (target_flags & MASK_NO_FUSED_MADD))
304
305 #define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
306
307 #define TARGET_NO_CHECK_ZERO_DIV (target_flags & MASK_NO_CHECK_ZERO_DIV)
308 #define TARGET_CHECK_RANGE_DIV (target_flags & MASK_CHECK_RANGE_DIV)
309
310 /* This is true if we must enable the assembly language file switching
311 code. */
312
313 #define TARGET_FILE_SWITCHING \
314 (TARGET_GP_OPT && ! TARGET_GAS && ! TARGET_MIPS16)
315
316 /* We must disable the function end stabs when doing the file switching trick,
317 because the Lscope stabs end up in the wrong place, making it impossible
318 to debug the resulting code. */
319 #define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
320
321 /* Generate mips16 code */
322 #define TARGET_MIPS16 (target_flags & MASK_MIPS16)
323
324 /* Generic ISA defines. */
325 #define ISA_MIPS1 (mips_isa == 1)
326 #define ISA_MIPS2 (mips_isa == 2)
327 #define ISA_MIPS3 (mips_isa == 3)
328 #define ISA_MIPS4 (mips_isa == 4)
329 #define ISA_MIPS32 (mips_isa == 32)
330 #define ISA_MIPS64 (mips_isa == 64)
331
332 /* Architecture target defines. */
333 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
334 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
335 #define TARGET_MIPS4100 (mips_arch == PROCESSOR_R4100)
336 #define TARGET_MIPS4300 (mips_arch == PROCESSOR_R4300)
337 #define TARGET_MIPS4KC (mips_arch == PROCESSOR_R4KC)
338 #define TARGET_MIPS5KC (mips_arch == PROCESSOR_R5KC)
339
340 /* Scheduling target defines. */
341 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
342 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
343 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
344 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
345 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
346
347 /* Target CPU builtins. */
348 #define TARGET_CPU_CPP_BUILTINS() \
349 do \
350 { \
351 builtin_assert ("cpu=mips"); \
352 builtin_define ("__mips__"); \
353 builtin_define ("_mips"); \
354 \
355 /* We do this here because __mips is defined below \
356 and so we can't use builtin_define_std. */ \
357 if (!flag_iso) \
358 builtin_define ("mips"); \
359 \
360 if (TARGET_64BIT) \
361 { \
362 builtin_define ("__mips64"); \
363 /* Silly, but will do until processor defines. */ \
364 builtin_define_std ("R4000"); \
365 builtin_define ("_R4000"); \
366 } \
367 else \
368 { \
369 /* Ditto. */ \
370 builtin_define_std ("R3000"); \
371 builtin_define ("_R3000"); \
372 } \
373 if (TARGET_FLOAT64) \
374 builtin_define ("__mips_fpr=64"); \
375 else \
376 builtin_define ("__mips_fpr=32"); \
377 \
378 if (TARGET_MIPS16) \
379 builtin_define ("__mips16"); \
380 \
381 if (ISA_MIPS1) \
382 { \
383 builtin_define ("__mips=1"); \
384 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
385 } \
386 else if (ISA_MIPS2) \
387 { \
388 builtin_define ("__mips=2"); \
389 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
390 } \
391 else if (ISA_MIPS3) \
392 { \
393 builtin_define ("__mips=3"); \
394 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
395 } \
396 else if (ISA_MIPS4) \
397 { \
398 builtin_define ("__mips=4"); \
399 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
400 } \
401 else if (ISA_MIPS32) \
402 { \
403 builtin_define ("__mips=32"); \
404 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
405 } \
406 else if (ISA_MIPS64) \
407 { \
408 builtin_define ("__mips=64"); \
409 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
410 } \
411 \
412 if (TARGET_HARD_FLOAT) \
413 builtin_define ("__mips_hard_float"); \
414 else if (TARGET_SOFT_FLOAT) \
415 builtin_define ("__mips_soft_float"); \
416 \
417 if (TARGET_SINGLE_FLOAT) \
418 builtin_define ("__mips_single_float"); \
419 \
420 if (TARGET_BIG_ENDIAN) \
421 { \
422 builtin_define_std ("MIPSEB"); \
423 builtin_define ("_MIPSEB"); \
424 } \
425 else \
426 { \
427 builtin_define_std ("MIPSEL"); \
428 builtin_define ("_MIPSEL"); \
429 } \
430 \
431 /* Macros dependent on the C dialect. */ \
432 if (preprocessing_asm_p ()) \
433 { \
434 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
435 builtin_define ("_LANGUAGE_ASSEMBLY"); \
436 } \
437 else if (c_language == clk_c) \
438 { \
439 builtin_define_std ("LANGUAGE_C"); \
440 builtin_define ("_LANGUAGE_C"); \
441 } \
442 else if (c_language == clk_cplusplus) \
443 { \
444 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
445 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
446 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
447 } \
448 else if (c_language == clk_objective_c) \
449 { \
450 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
451 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
452 /* Bizzare, but needed at least for Irix. */ \
453 builtin_define_std ("LANGUAGE_C"); \
454 builtin_define ("_LANGUAGE_C"); \
455 } \
456 \
457 if (mips_abi == ABI_EABI) \
458 builtin_define ("__mips_eabi"); \
459 \
460 } while (0)
461
462
463
464 /* Macro to define tables used to set the flags.
465 This is a list in braces of pairs in braces,
466 each pair being { "NAME", VALUE }
467 where VALUE is the bits to set or minus the bits to clear.
468 An empty string NAME is used to identify the default VALUE. */
469
470 #define TARGET_SWITCHES \
471 { \
472 {"no-crt0", 0, \
473 N_("No default crt0.o") }, \
474 {"int64", MASK_INT64 | MASK_LONG64, \
475 N_("Use 64-bit int type")}, \
476 {"long64", MASK_LONG64, \
477 N_("Use 64-bit long type")}, \
478 {"long32", -(MASK_LONG64 | MASK_INT64), \
479 N_("Use 32-bit long type")}, \
480 {"split-addresses", MASK_SPLIT_ADDR, \
481 N_("Optimize lui/addiu address loads")}, \
482 {"no-split-addresses", -MASK_SPLIT_ADDR, \
483 N_("Don't optimize lui/addiu address loads")}, \
484 {"mips-as", -MASK_GAS, \
485 N_("Use MIPS as")}, \
486 {"gas", MASK_GAS, \
487 N_("Use GNU as")}, \
488 {"rnames", MASK_NAME_REGS, \
489 N_("Use symbolic register names")}, \
490 {"no-rnames", -MASK_NAME_REGS, \
491 N_("Don't use symbolic register names")}, \
492 {"gpOPT", MASK_GPOPT, \
493 N_("Use GP relative sdata/sbss sections")}, \
494 {"gpopt", MASK_GPOPT, \
495 N_("Use GP relative sdata/sbss sections")}, \
496 {"no-gpOPT", -MASK_GPOPT, \
497 N_("Don't use GP relative sdata/sbss sections")}, \
498 {"no-gpopt", -MASK_GPOPT, \
499 N_("Don't use GP relative sdata/sbss sections")}, \
500 {"stats", MASK_STATS, \
501 N_("Output compiler statistics")}, \
502 {"no-stats", -MASK_STATS, \
503 N_("Don't output compiler statistics")}, \
504 {"memcpy", MASK_MEMCPY, \
505 N_("Don't optimize block moves")}, \
506 {"no-memcpy", -MASK_MEMCPY, \
507 N_("Optimize block moves")}, \
508 {"mips-tfile", MASK_MIPS_TFILE, \
509 N_("Use mips-tfile asm postpass")}, \
510 {"no-mips-tfile", -MASK_MIPS_TFILE, \
511 N_("Don't use mips-tfile asm postpass")}, \
512 {"soft-float", MASK_SOFT_FLOAT, \
513 N_("Use software floating point")}, \
514 {"hard-float", -MASK_SOFT_FLOAT, \
515 N_("Use hardware floating point")}, \
516 {"fp64", MASK_FLOAT64, \
517 N_("Use 64-bit FP registers")}, \
518 {"fp32", -MASK_FLOAT64, \
519 N_("Use 32-bit FP registers")}, \
520 {"gp64", MASK_64BIT, \
521 N_("Use 64-bit general registers")}, \
522 {"gp32", -MASK_64BIT, \
523 N_("Use 32-bit general registers")}, \
524 {"abicalls", MASK_ABICALLS, \
525 N_("Use Irix PIC")}, \
526 {"no-abicalls", -MASK_ABICALLS, \
527 N_("Don't use Irix PIC")}, \
528 {"long-calls", MASK_LONG_CALLS, \
529 N_("Use indirect calls")}, \
530 {"no-long-calls", -MASK_LONG_CALLS, \
531 N_("Don't use indirect calls")}, \
532 {"embedded-pic", MASK_EMBEDDED_PIC, \
533 N_("Use embedded PIC")}, \
534 {"no-embedded-pic", -MASK_EMBEDDED_PIC, \
535 N_("Don't use embedded PIC")}, \
536 {"embedded-data", MASK_EMBEDDED_DATA, \
537 N_("Use ROM instead of RAM")}, \
538 {"no-embedded-data", -MASK_EMBEDDED_DATA, \
539 N_("Don't use ROM instead of RAM")}, \
540 {"uninit-const-in-rodata", MASK_UNINIT_CONST_IN_RODATA, \
541 N_("Put uninitialized constants in ROM (needs -membedded-data)")}, \
542 {"no-uninit-const-in-rodata", -MASK_UNINIT_CONST_IN_RODATA, \
543 N_("Don't put uninitialized constants in ROM")}, \
544 {"eb", MASK_BIG_ENDIAN, \
545 N_("Use big-endian byte order")}, \
546 {"el", -MASK_BIG_ENDIAN, \
547 N_("Use little-endian byte order")}, \
548 {"single-float", MASK_SINGLE_FLOAT, \
549 N_("Use single (32-bit) FP only")}, \
550 {"double-float", -MASK_SINGLE_FLOAT, \
551 N_("Don't use single (32-bit) FP only")}, \
552 {"mad", MASK_MAD, \
553 N_("Use multiply accumulate")}, \
554 {"no-mad", -MASK_MAD, \
555 N_("Don't use multiply accumulate")}, \
556 {"no-fused-madd", MASK_NO_FUSED_MADD, \
557 N_("Don't generate fused multiply/add instructions")}, \
558 {"fused-madd", -MASK_NO_FUSED_MADD, \
559 N_("Generate fused multiply/add instructions")}, \
560 {"fix4300", MASK_4300_MUL_FIX, \
561 N_("Work around early 4300 hardware bug")}, \
562 {"no-fix4300", -MASK_4300_MUL_FIX, \
563 N_("Don't work around early 4300 hardware bug")}, \
564 {"check-zero-division",-MASK_NO_CHECK_ZERO_DIV, \
565 N_("Trap on integer divide by zero")}, \
566 {"no-check-zero-division", MASK_NO_CHECK_ZERO_DIV, \
567 N_("Don't trap on integer divide by zero")}, \
568 {"check-range-division",MASK_CHECK_RANGE_DIV, \
569 N_("Trap on integer divide overflow")}, \
570 {"no-check-range-division",-MASK_CHECK_RANGE_DIV, \
571 N_("Don't trap on integer divide overflow")}, \
572 {"debug", MASK_DEBUG, \
573 NULL}, \
574 {"debuga", MASK_DEBUG_A, \
575 NULL}, \
576 {"debugb", MASK_DEBUG_B, \
577 NULL}, \
578 {"debugc", MASK_DEBUG_C, \
579 NULL}, \
580 {"debugd", MASK_DEBUG_D, \
581 NULL}, \
582 {"debuge", MASK_DEBUG_E, \
583 NULL}, \
584 {"debugf", MASK_DEBUG_F, \
585 NULL}, \
586 {"debugg", MASK_DEBUG_G, \
587 NULL}, \
588 {"debugh", MASK_DEBUG_H, \
589 NULL}, \
590 {"debugi", MASK_DEBUG_I, \
591 NULL}, \
592 {"", (TARGET_DEFAULT \
593 | TARGET_CPU_DEFAULT \
594 | TARGET_ENDIAN_DEFAULT), \
595 NULL}, \
596 }
597
598 /* Default target_flags if no switches are specified */
599
600 #ifndef TARGET_DEFAULT
601 #define TARGET_DEFAULT 0
602 #endif
603
604 #ifndef TARGET_CPU_DEFAULT
605 #define TARGET_CPU_DEFAULT 0
606 #endif
607
608 #ifndef TARGET_ENDIAN_DEFAULT
609 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
610 #endif
611
612 #ifndef MIPS_ISA_DEFAULT
613 #define MIPS_ISA_DEFAULT 1
614 #endif
615
616 #ifdef IN_LIBGCC2
617 #undef TARGET_64BIT
618 /* Make this compile time constant for libgcc2 */
619 #ifdef __mips64
620 #define TARGET_64BIT 1
621 #else
622 #define TARGET_64BIT 0
623 #endif
624 #endif /* IN_LIBGCC2 */
625
626 #ifndef MULTILIB_ENDIAN_DEFAULT
627 #if TARGET_ENDIAN_DEFAULT == 0
628 #define MULTILIB_ENDIAN_DEFAULT "EL"
629 #else
630 #define MULTILIB_ENDIAN_DEFAULT "EB"
631 #endif
632 #endif
633
634 #ifndef MULTILIB_ISA_DEFAULT
635 # if MIPS_ISA_DEFAULT == 1
636 # define MULTILIB_ISA_DEFAULT "mips1"
637 # else
638 # if MIPS_ISA_DEFAULT == 2
639 # define MULTILIB_ISA_DEFAULT "mips2"
640 # else
641 # if MIPS_ISA_DEFAULT == 3
642 # define MULTILIB_ISA_DEFAULT "mips3"
643 # else
644 # if MIPS_ISA_DEFAULT == 4
645 # define MULTILIB_ISA_DEFAULT "mips4"
646 # else
647 # if MIPS_ISA_DEFAULT == 32
648 # define MULTILIB_ISA_DEFAULT "mips32"
649 # else
650 # if MIPS_ISA_DEFAULT == 64
651 # define MULTILIB_ISA_DEFAULT "mips64"
652 # else
653 # define MULTILIB_ISA_DEFAULT "mips1"
654 # endif
655 # endif
656 # endif
657 # endif
658 # endif
659 # endif
660 #endif
661
662 #ifndef MULTILIB_DEFAULTS
663 #define MULTILIB_DEFAULTS { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT }
664 #endif
665
666 /* We must pass -EL to the linker by default for little endian embedded
667 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
668 linker will default to using big-endian output files. The OUTPUT_FORMAT
669 line must be in the linker script, otherwise -EB/-EL will not work. */
670
671 #ifndef ENDIAN_SPEC
672 #if TARGET_ENDIAN_DEFAULT == 0
673 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
674 #else
675 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
676 #endif
677 #endif
678
679 #define TARGET_OPTIONS \
680 { \
681 SUBTARGET_TARGET_OPTIONS \
682 { "cpu=", &mips_cpu_string, \
683 N_("Specify CPU for scheduling purposes")}, \
684 { "tune=", &mips_tune_string, \
685 N_("Specify CPU for scheduling purposes")}, \
686 { "arch=", &mips_arch_string, \
687 N_("Specify CPU for code generation purposes")}, \
688 { "ips", &mips_isa_string, \
689 N_("Specify a Standard MIPS ISA")}, \
690 { "entry", &mips_entry_string, \
691 N_("Use mips16 entry/exit psuedo ops")}, \
692 { "no-mips16", &mips_no_mips16_string, \
693 N_("Don't use MIPS16 instructions")}, \
694 { "explicit-type-size", &mips_explicit_type_size_string, \
695 NULL}, \
696 { "no-flush-func", &mips_cache_flush_func, \
697 N_("Don't call any cache flush functions")}, \
698 { "flush-func=", &mips_cache_flush_func, \
699 N_("Specify cache flush function")}, \
700 }
701
702 /* This is meant to be redefined in the host dependent files. */
703 #define SUBTARGET_TARGET_OPTIONS
704
705 #define GENERATE_BRANCHLIKELY (!TARGET_MIPS16 && ISA_HAS_BRANCHLIKELY)
706
707 /* Generate three-operand multiply instructions for SImode. */
708 #define GENERATE_MULT3_SI ((TARGET_MIPS3900 \
709 || ISA_MIPS32 \
710 || ISA_MIPS64) \
711 && !TARGET_MIPS16)
712
713 /* Generate three-operand multiply instructions for DImode. */
714 #define GENERATE_MULT3_DI ((TARGET_MIPS3900) \
715 && !TARGET_MIPS16)
716
717 /* Macros to decide whether certain features are available or not,
718 depending on the instruction set architecture level. */
719
720 #define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
721 #define HAVE_SQRT_P() (!ISA_MIPS1)
722
723 /* ISA has instructions for managing 64 bit fp and gp regs (eg. mips3). */
724 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
725 || ISA_MIPS4 \
726 || ISA_MIPS64)
727
728 /* ISA has branch likely instructions (eg. mips2). */
729 /* Disable branchlikely for tx39 until compare rewrite. They haven't
730 been generated up to this point. */
731 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1 \
732 && !TARGET_MIPS16)
733
734 /* ISA has the conditional move instructions introduced in mips4. */
735 #define ISA_HAS_CONDMOVE ((ISA_MIPS4 \
736 || ISA_MIPS32 \
737 || ISA_MIPS64) \
738 && !TARGET_MIPS16)
739
740 /* ISA has just the integer condition move instructions (movn,movz) */
741 #define ISA_HAS_INT_CONDMOVE 0
742
743 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
744 branch on CC, and move (both FP and non-FP) on CC. */
745 #define ISA_HAS_8CC (ISA_MIPS4 \
746 || ISA_MIPS32 \
747 || ISA_MIPS64)
748
749 /* This is a catch all for the other new mips4 instructions: indexed load and
750 indexed prefetch instructions, the FP madd and msub instructions,
751 and the FP recip and recip sqrt instructions */
752 #define ISA_HAS_FP4 ((ISA_MIPS4 \
753 || ISA_MIPS64) \
754 && !TARGET_MIPS16)
755
756 /* ISA has conditional trap instructions. */
757 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
758 && !TARGET_MIPS16)
759
760 /* ISA has integer multiply-accumulate instructions, madd and msub. */
761 #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
762 || ISA_MIPS64 \
763 ) && !TARGET_MIPS16)
764
765 /* ISA has floating-point nmadd and nmsub instructions. */
766 #define ISA_HAS_NMADD_NMSUB ((ISA_MIPS4 \
767 || ISA_MIPS64) \
768 && ! TARGET_MIPS16)
769
770 /* ISA has count leading zeroes/ones instruction (not implemented). */
771 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
772 || ISA_MIPS64 \
773 ) && !TARGET_MIPS16)
774
775 /* ISA has double-word count leading zeroes/ones instruction (not
776 implemented). */
777 #define ISA_HAS_DCLZ_DCLO (ISA_MIPS64 \
778 && !TARGET_MIPS16)
779
780 /* ISA has data prefetch instruction. */
781 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
782 || ISA_MIPS32 \
783 || ISA_MIPS64) \
784 && !TARGET_MIPS16)
785
786 /* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
787 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
788 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
789 target_flags, and -mgp64 sets MASK_64BIT.
790
791 Setting MASK_64BIT in target_flags will cause gcc to assume that
792 registers are 64 bits wide. int, long and void * will be 32 bit;
793 this may be changed with -mint64 or -mlong64.
794
795 The gen* programs link code that refers to MASK_64BIT. They don't
796 actually use the information in target_flags; they just refer to
797 it. */
798 \f
799 /* Switch Recognition by gcc.c. Add -G xx support */
800
801 #undef SWITCH_TAKES_ARG
802 #define SWITCH_TAKES_ARG(CHAR) \
803 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
804
805 /* Sometimes certain combinations of command options do not make sense
806 on a particular target machine. You can define a macro
807 `OVERRIDE_OPTIONS' to take account of this. This macro, if
808 defined, is executed once just after all the command options have
809 been parsed.
810
811 On the MIPS, it is used to handle -G. We also use it to set up all
812 of the tables referenced in the other macros. */
813
814 #define OVERRIDE_OPTIONS override_options ()
815
816 /* Zero or more C statements that may conditionally modify two
817 variables `fixed_regs' and `call_used_regs' (both of type `char
818 []') after they have been initialized from the two preceding
819 macros.
820
821 This is necessary in case the fixed or call-clobbered registers
822 depend on target flags.
823
824 You need not define this macro if it has no work to do.
825
826 If the usage of an entire class of registers depends on the target
827 flags, you may indicate this to GCC by using this macro to modify
828 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
829 the classes which should not be used by GCC. Also define the macro
830 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
831 letter for a class that shouldn't be used.
832
833 (However, if this class is not included in `GENERAL_REGS' and all
834 of the insn patterns whose constraints permit this class are
835 controlled by target switches, then GCC will automatically avoid
836 using these registers when the target switches are opposed to
837 them.) */
838
839 #define CONDITIONAL_REGISTER_USAGE \
840 do \
841 { \
842 if (!TARGET_HARD_FLOAT) \
843 { \
844 int regno; \
845 \
846 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
847 fixed_regs[regno] = call_used_regs[regno] = 1; \
848 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
849 fixed_regs[regno] = call_used_regs[regno] = 1; \
850 } \
851 else if (! ISA_HAS_8CC) \
852 { \
853 int regno; \
854 \
855 /* We only have a single condition code register. We \
856 implement this by hiding all the condition code registers, \
857 and generating RTL that refers directly to ST_REG_FIRST. */ \
858 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
859 fixed_regs[regno] = call_used_regs[regno] = 1; \
860 } \
861 /* In mips16 mode, we permit the $t temporary registers to be used \
862 for reload. We prohibit the unused $s registers, since they \
863 are caller saved, and saving them via a mips16 register would \
864 probably waste more time than just reloading the value. */ \
865 if (TARGET_MIPS16) \
866 { \
867 fixed_regs[18] = call_used_regs[18] = 1; \
868 fixed_regs[19] = call_used_regs[19] = 1; \
869 fixed_regs[20] = call_used_regs[20] = 1; \
870 fixed_regs[21] = call_used_regs[21] = 1; \
871 fixed_regs[22] = call_used_regs[22] = 1; \
872 fixed_regs[23] = call_used_regs[23] = 1; \
873 fixed_regs[26] = call_used_regs[26] = 1; \
874 fixed_regs[27] = call_used_regs[27] = 1; \
875 fixed_regs[30] = call_used_regs[30] = 1; \
876 } \
877 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
878 } \
879 while (0)
880
881 /* This is meant to be redefined in the host dependent files. */
882 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
883
884 /* Show we can debug even without a frame pointer. */
885 #define CAN_DEBUG_WITHOUT_FP
886 \f
887 /* Tell collect what flags to pass to nm. */
888 #ifndef NM_FLAGS
889 #define NM_FLAGS "-Bn"
890 #endif
891
892 \f
893 /* Assembler specs. */
894
895 /* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
896 than gas. */
897
898 #define MIPS_AS_ASM_SPEC "\
899 %{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
900 %{pipe: %e-pipe is not supported} \
901 %{K} %(subtarget_mips_as_asm_spec)"
902
903 /* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
904 rather than gas. It may be overridden by subtargets. */
905
906 #ifndef SUBTARGET_MIPS_AS_ASM_SPEC
907 #define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
908 #endif
909
910 /* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
911 assembler. */
912
913 #define GAS_ASM_SPEC "%{march=*} %{mtune=*} %{mcpu=*} %{m4650} %{mmad:-m4650} %{m3900} %{v} %{mgp32} %{mgp64} %(abi_gas_asm_spec) %{mabi=32:%{!mips*:-mips1}}"
914
915
916 extern int mips_abi;
917
918 #ifndef MIPS_ABI_DEFAULT
919 #define MIPS_ABI_DEFAULT ABI_32
920 #endif
921
922 #ifndef ABI_GAS_ASM_SPEC
923 #define ABI_GAS_ASM_SPEC ""
924 #endif
925
926 /* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
927 GAS_ASM_SPEC as the default, depending upon the value of
928 TARGET_DEFAULT. */
929
930 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
931 /* GAS */
932
933 #define TARGET_ASM_SPEC "\
934 %{mmips-as: %(mips_as_asm_spec)} \
935 %{!mmips-as: %(gas_asm_spec)}"
936
937 #else /* not GAS */
938
939 #define TARGET_ASM_SPEC "\
940 %{!mgas: %(mips_as_asm_spec)} \
941 %{mgas: %(gas_asm_spec)}"
942
943 #endif /* not GAS */
944
945 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
946 to the assembler. It may be overridden by subtargets. */
947 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
948 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
949 %{noasmopt:-O0} \
950 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
951 #endif
952
953 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
954 the assembler. It may be overridden by subtargets. */
955 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
956 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
957 %{g} %{g0} %{g1} %{g2} %{g3} \
958 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
959 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
960 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
961 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3}"
962 #endif
963
964 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
965 overridden by subtargets. */
966
967 #ifndef SUBTARGET_ASM_SPEC
968 #define SUBTARGET_ASM_SPEC ""
969 #endif
970
971 /* ASM_SPEC is the set of arguments to pass to the assembler. */
972
973 #undef ASM_SPEC
974 #define ASM_SPEC "\
975 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64}\
976 %{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
977 %(subtarget_asm_optimizing_spec) \
978 %(subtarget_asm_debugging_spec) \
979 %{membedded-pic} \
980 %{mabi=32:-32}%{mabi=o32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
981 %(target_asm_spec) \
982 %(subtarget_asm_spec)"
983
984 /* Specify to run a post-processor, mips-tfile after the assembler
985 has run to stuff the mips debug information into the object file.
986 This is needed because the $#!%^ MIPS assembler provides no way
987 of specifying such information in the assembly file. If we are
988 cross compiling, disable mips-tfile unless the user specifies
989 -mmips-tfile. */
990
991 #ifndef ASM_FINAL_SPEC
992 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
993 /* GAS */
994 #define ASM_FINAL_SPEC "\
995 %{mmips-as: %{!mno-mips-tfile: \
996 \n mips-tfile %{v*: -v} \
997 %{K: -I %b.o~} \
998 %{!K: %{save-temps: -I %b.o~}} \
999 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1000 %{.s:%i} %{!.s:%g.s}}}"
1001
1002 #else
1003 /* not GAS */
1004 #define ASM_FINAL_SPEC "\
1005 %{!mgas: %{!mno-mips-tfile: \
1006 \n mips-tfile %{v*: -v} \
1007 %{K: -I %b.o~} \
1008 %{!K: %{save-temps: -I %b.o~}} \
1009 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1010 %{.s:%i} %{!.s:%g.s}}}"
1011
1012 #endif
1013 #endif /* ASM_FINAL_SPEC */
1014
1015 /* Redefinition of libraries used. Mips doesn't support normal
1016 UNIX style profiling via calling _mcount. It does offer
1017 profiling that samples the PC, so do what we can... */
1018
1019 #ifndef LIB_SPEC
1020 #define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
1021 #endif
1022
1023 /* Extra switches sometimes passed to the linker. */
1024 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
1025 will interpret it as a -b option. */
1026
1027 #ifndef LINK_SPEC
1028 #define LINK_SPEC "\
1029 %(endian_spec) \
1030 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64} \
1031 %{bestGnum} %{shared} %{non_shared}"
1032 #endif /* LINK_SPEC defined */
1033
1034
1035 /* Specs for the compiler proper */
1036
1037 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1038 overridden by subtargets. */
1039 #ifndef SUBTARGET_CC1_SPEC
1040 #define SUBTARGET_CC1_SPEC ""
1041 #endif
1042
1043 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1044 /* Note, we will need to adjust the following if we ever find a MIPS variant
1045 that has 32-bit GPRs and 64-bit FPRs as well as fix all of the reload bugs
1046 that show up in this case. */
1047
1048 #ifndef CC1_SPEC
1049 #define CC1_SPEC "\
1050 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
1051 %{mips1:-mfp32 -mgp32} %{mips2:-mfp32 -mgp32}\
1052 %{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
1053 %{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
1054 %{mips32:-mfp32 -mgp32} \
1055 %{mips64:%{!msingle-float:-mfp64} -mgp64} \
1056 %{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
1057 %{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
1058 %{mint64|mlong64|mlong32:-mexplicit-type-size }\
1059 %{mgp32: %{mfp64:%emay not use both -mgp32 and -mfp64} %{!mfp32: -mfp32}} \
1060 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1061 %{save-temps: } \
1062 %(subtarget_cc1_spec)"
1063 #endif
1064
1065 /* Preprocessor specs. */
1066
1067 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1068 overridden by subtargets. */
1069 #ifndef SUBTARGET_CPP_SPEC
1070 #define SUBTARGET_CPP_SPEC ""
1071 #endif
1072
1073 #define CPP_SPEC "%(subtarget_cpp_spec)"
1074
1075 /* This macro defines names of additional specifications to put in the specs
1076 that can be used in various specifications like CC1_SPEC. Its definition
1077 is an initializer with a subgrouping for each command option.
1078
1079 Each subgrouping contains a string constant, that defines the
1080 specification name, and a string constant that used by the GNU CC driver
1081 program.
1082
1083 Do not define this macro if it does not need to do anything. */
1084
1085 #define EXTRA_SPECS \
1086 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1087 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1088 { "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
1089 { "gas_asm_spec", GAS_ASM_SPEC }, \
1090 { "abi_gas_asm_spec", ABI_GAS_ASM_SPEC }, \
1091 { "target_asm_spec", TARGET_ASM_SPEC }, \
1092 { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
1093 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1094 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1095 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1096 { "endian_spec", ENDIAN_SPEC }, \
1097 SUBTARGET_EXTRA_SPECS
1098
1099 #ifndef SUBTARGET_EXTRA_SPECS
1100 #define SUBTARGET_EXTRA_SPECS
1101 #endif
1102
1103 /* If defined, this macro is an additional prefix to try after
1104 `STANDARD_EXEC_PREFIX'. */
1105
1106 #ifndef MD_EXEC_PREFIX
1107 #define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
1108 #endif
1109
1110 #ifndef MD_STARTFILE_PREFIX
1111 #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
1112 #endif
1113
1114 \f
1115 /* Print subsidiary information on the compiler version in use. */
1116
1117 #define MIPS_VERSION "[AL 1.1, MM 40]"
1118
1119 #ifndef MACHINE_TYPE
1120 #define MACHINE_TYPE "BSD Mips"
1121 #endif
1122
1123 #ifndef TARGET_VERSION_INTERNAL
1124 #define TARGET_VERSION_INTERNAL(STREAM) \
1125 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
1126 #endif
1127
1128 #ifndef TARGET_VERSION
1129 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
1130 #endif
1131
1132 \f
1133 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1134 #define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
1135 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1136
1137 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1138 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1139 #endif
1140
1141 /* By default, turn on GDB extensions. */
1142 #define DEFAULT_GDB_EXTENSIONS 1
1143
1144 /* If we are passing smuggling stabs through the MIPS ECOFF object
1145 format, put a comment in front of the .stab<x> operation so
1146 that the MIPS assembler does not choke. The mips-tfile program
1147 will correctly put the stab into the object file. */
1148
1149 #define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1150 #define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1151 #define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1152
1153 /* Local compiler-generated symbols must have a prefix that the assembler
1154 understands. By default, this is $, although some targets (e.g.,
1155 NetBSD-ELF) need to override this. */
1156
1157 #ifndef LOCAL_LABEL_PREFIX
1158 #define LOCAL_LABEL_PREFIX "$"
1159 #endif
1160
1161 /* By default on the mips, external symbols do not have an underscore
1162 prepended, but some targets (e.g., NetBSD) require this. */
1163
1164 #ifndef USER_LABEL_PREFIX
1165 #define USER_LABEL_PREFIX ""
1166 #endif
1167
1168 /* Forward references to tags are allowed. */
1169 #define SDB_ALLOW_FORWARD_REFERENCES
1170
1171 /* Unknown tags are also allowed. */
1172 #define SDB_ALLOW_UNKNOWN_REFERENCES
1173
1174 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1175 since the length can run past this up to a continuation point. */
1176 #undef DBX_CONTIN_LENGTH
1177 #define DBX_CONTIN_LENGTH 1500
1178
1179 /* How to renumber registers for dbx and gdb. */
1180 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
1181
1182 /* The mapping from gcc register number to DWARF 2 CFA column number.
1183 This mapping does not allow for tracking register 0, since SGI's broken
1184 dwarf reader thinks column 0 is used for the frame address, but since
1185 register 0 is fixed this is not a problem. */
1186 #define DWARF_FRAME_REGNUM(REG) \
1187 (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
1188
1189 /* The DWARF 2 CFA column which tracks the return address. */
1190 #define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
1191
1192 /* Before the prologue, RA lives in r31. */
1193 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
1194
1195 /* Describe how we implement __builtin_eh_return. */
1196 #define EH_RETURN_DATA_REGNO(N) ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1197 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1198
1199 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1200 The default for this in 64-bit mode is 8, which causes problems with
1201 SFmode register saves. */
1202 #define DWARF_CIE_DATA_ALIGNMENT 4
1203
1204 /* Overrides for the COFF debug format. */
1205 #define PUT_SDB_SCL(a) \
1206 do { \
1207 extern FILE *asm_out_text_file; \
1208 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
1209 } while (0)
1210
1211 #define PUT_SDB_INT_VAL(a) \
1212 do { \
1213 extern FILE *asm_out_text_file; \
1214 fprintf (asm_out_text_file, "\t.val\t"); \
1215 fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
1216 fprintf (asm_out_text_file, ";"); \
1217 } while (0)
1218
1219 #define PUT_SDB_VAL(a) \
1220 do { \
1221 extern FILE *asm_out_text_file; \
1222 fputs ("\t.val\t", asm_out_text_file); \
1223 output_addr_const (asm_out_text_file, (a)); \
1224 fputc (';', asm_out_text_file); \
1225 } while (0)
1226
1227 #define PUT_SDB_DEF(a) \
1228 do { \
1229 extern FILE *asm_out_text_file; \
1230 fprintf (asm_out_text_file, "\t%s.def\t", \
1231 (TARGET_GAS) ? "" : "#"); \
1232 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1233 fputc (';', asm_out_text_file); \
1234 } while (0)
1235
1236 #define PUT_SDB_PLAIN_DEF(a) \
1237 do { \
1238 extern FILE *asm_out_text_file; \
1239 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
1240 (TARGET_GAS) ? "" : "#", (a)); \
1241 } while (0)
1242
1243 #define PUT_SDB_ENDEF \
1244 do { \
1245 extern FILE *asm_out_text_file; \
1246 fprintf (asm_out_text_file, "\t.endef\n"); \
1247 } while (0)
1248
1249 #define PUT_SDB_TYPE(a) \
1250 do { \
1251 extern FILE *asm_out_text_file; \
1252 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
1253 } while (0)
1254
1255 #define PUT_SDB_SIZE(a) \
1256 do { \
1257 extern FILE *asm_out_text_file; \
1258 fprintf (asm_out_text_file, "\t.size\t"); \
1259 fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
1260 fprintf (asm_out_text_file, ";"); \
1261 } while (0)
1262
1263 #define PUT_SDB_DIM(a) \
1264 do { \
1265 extern FILE *asm_out_text_file; \
1266 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
1267 } while (0)
1268
1269 #ifndef PUT_SDB_START_DIM
1270 #define PUT_SDB_START_DIM \
1271 do { \
1272 extern FILE *asm_out_text_file; \
1273 fprintf (asm_out_text_file, "\t.dim\t"); \
1274 } while (0)
1275 #endif
1276
1277 #ifndef PUT_SDB_NEXT_DIM
1278 #define PUT_SDB_NEXT_DIM(a) \
1279 do { \
1280 extern FILE *asm_out_text_file; \
1281 fprintf (asm_out_text_file, "%d,", a); \
1282 } while (0)
1283 #endif
1284
1285 #ifndef PUT_SDB_LAST_DIM
1286 #define PUT_SDB_LAST_DIM(a) \
1287 do { \
1288 extern FILE *asm_out_text_file; \
1289 fprintf (asm_out_text_file, "%d;", a); \
1290 } while (0)
1291 #endif
1292
1293 #define PUT_SDB_TAG(a) \
1294 do { \
1295 extern FILE *asm_out_text_file; \
1296 fprintf (asm_out_text_file, "\t.tag\t"); \
1297 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1298 fputc (';', asm_out_text_file); \
1299 } while (0)
1300
1301 /* For block start and end, we create labels, so that
1302 later we can figure out where the correct offset is.
1303 The normal .ent/.end serve well enough for functions,
1304 so those are just commented out. */
1305
1306 #define PUT_SDB_BLOCK_START(LINE) \
1307 do { \
1308 extern FILE *asm_out_text_file; \
1309 fprintf (asm_out_text_file, \
1310 "%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
1311 LOCAL_LABEL_PREFIX, \
1312 sdb_label_count, \
1313 (TARGET_GAS) ? "" : "#", \
1314 LOCAL_LABEL_PREFIX, \
1315 sdb_label_count, \
1316 (LINE)); \
1317 sdb_label_count++; \
1318 } while (0)
1319
1320 #define PUT_SDB_BLOCK_END(LINE) \
1321 do { \
1322 extern FILE *asm_out_text_file; \
1323 fprintf (asm_out_text_file, \
1324 "%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
1325 LOCAL_LABEL_PREFIX, \
1326 sdb_label_count, \
1327 (TARGET_GAS) ? "" : "#", \
1328 LOCAL_LABEL_PREFIX, \
1329 sdb_label_count, \
1330 (LINE)); \
1331 sdb_label_count++; \
1332 } while (0)
1333
1334 #define PUT_SDB_FUNCTION_START(LINE)
1335
1336 #define PUT_SDB_FUNCTION_END(LINE) \
1337 do { \
1338 extern FILE *asm_out_text_file; \
1339 ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
1340 } while (0)
1341
1342 #define PUT_SDB_EPILOGUE_END(NAME)
1343
1344 #define PUT_SDB_SRC_FILE(FILENAME) \
1345 do { \
1346 extern FILE *asm_out_text_file; \
1347 output_file_directive (asm_out_text_file, (FILENAME));\
1348 } while (0)
1349
1350 #define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
1351 sprintf ((BUFFER), ".%dfake", (NUMBER));
1352
1353 /* Correct the offset of automatic variables and arguments. Note that
1354 the MIPS debug format wants all automatic variables and arguments
1355 to be in terms of the virtual frame pointer (stack pointer before
1356 any adjustment in the function), while the MIPS 3.0 linker wants
1357 the frame pointer to be the stack pointer after the initial
1358 adjustment. */
1359
1360 #define DEBUGGER_AUTO_OFFSET(X) \
1361 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1362 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1363 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1364
1365 /* Tell collect that the object format is ECOFF */
1366 #ifndef OBJECT_FORMAT_ROSE
1367 #define OBJECT_FORMAT_COFF /* Object file looks like COFF */
1368 #define EXTENDED_COFF /* ECOFF, not normal coff */
1369 #endif
1370 \f
1371 /* Target machine storage layout */
1372
1373 /* Define this if most significant bit is lowest numbered
1374 in instructions that operate on numbered bit-fields.
1375 */
1376 #define BITS_BIG_ENDIAN 0
1377
1378 /* Define this if most significant byte of a word is the lowest numbered. */
1379 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1380
1381 /* Define this if most significant word of a multiword number is the lowest. */
1382 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1383
1384 /* Define this to set the endianness to use in libgcc2.c, which can
1385 not depend on target_flags. */
1386 #if !defined(MIPSEL) && !defined(__MIPSEL__)
1387 #define LIBGCC2_WORDS_BIG_ENDIAN 1
1388 #else
1389 #define LIBGCC2_WORDS_BIG_ENDIAN 0
1390 #endif
1391
1392 #define MAX_BITS_PER_WORD 64
1393
1394 /* Width of a word, in units (bytes). */
1395 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1396 #define MIN_UNITS_PER_WORD 4
1397
1398 /* For MIPS, width of a floating point register. */
1399 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1400
1401 /* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1402 the next available register. */
1403 #define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1404
1405 /* The largest size of value that can be held in floating-point registers. */
1406 #define UNITS_PER_FPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1407
1408 /* The number of bytes in a double. */
1409 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1410
1411 /* A C expression for the size in bits of the type `int' on the
1412 target machine. If you don't define this, the default is one
1413 word. */
1414 #define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
1415
1416 /* Tell the preprocessor the maximum size of wchar_t. */
1417 #ifndef MAX_WCHAR_TYPE_SIZE
1418 #ifndef WCHAR_TYPE_SIZE
1419 #define MAX_WCHAR_TYPE_SIZE 64
1420 #endif
1421 #endif
1422
1423 /* A C expression for the size in bits of the type `short' on the
1424 target machine. If you don't define this, the default is half a
1425 word. (If this would be less than one storage unit, it is
1426 rounded up to one unit.) */
1427 #define SHORT_TYPE_SIZE 16
1428
1429 /* A C expression for the size in bits of the type `long' on the
1430 target machine. If you don't define this, the default is one
1431 word. */
1432 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1433 #define MAX_LONG_TYPE_SIZE 64
1434
1435 /* A C expression for the size in bits of the type `long long' on the
1436 target machine. If you don't define this, the default is two
1437 words. */
1438 #define LONG_LONG_TYPE_SIZE 64
1439
1440 /* A C expression for the size in bits of the type `float' on the
1441 target machine. If you don't define this, the default is one
1442 word. */
1443 #define FLOAT_TYPE_SIZE 32
1444
1445 /* A C expression for the size in bits of the type `double' on the
1446 target machine. If you don't define this, the default is two
1447 words. */
1448 #define DOUBLE_TYPE_SIZE 64
1449
1450 /* A C expression for the size in bits of the type `long double' on
1451 the target machine. If you don't define this, the default is two
1452 words. */
1453 #define LONG_DOUBLE_TYPE_SIZE 64
1454
1455 /* Width in bits of a pointer.
1456 See also the macro `Pmode' defined below. */
1457 #ifndef POINTER_SIZE
1458 #define POINTER_SIZE (Pmode == DImode ? 64 : 32)
1459 #endif
1460
1461 /* Allocation boundary (in *bits*) for storing pointers in memory. */
1462 #define POINTER_BOUNDARY (Pmode == DImode ? 64 : 32)
1463
1464 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1465 #define PARM_BOUNDARY ((mips_abi == ABI_O64 || mips_abi == ABI_N32 \
1466 || mips_abi == ABI_64 \
1467 || (mips_abi == ABI_EABI && TARGET_64BIT)) ? 64 : 32)
1468
1469 /* Allocation boundary (in *bits*) for the code of a function. */
1470 #define FUNCTION_BOUNDARY 32
1471
1472 /* Alignment of field after `int : 0' in a structure. */
1473 #define EMPTY_FIELD_BOUNDARY 32
1474
1475 /* Every structure's size must be a multiple of this. */
1476 /* 8 is observed right on a DECstation and on riscos 4.02. */
1477 #define STRUCTURE_SIZE_BOUNDARY 8
1478
1479 /* There is no point aligning anything to a rounder boundary than this. */
1480 #define BIGGEST_ALIGNMENT 64
1481
1482 /* Set this nonzero if move instructions will actually fail to work
1483 when given unaligned data. */
1484 #define STRICT_ALIGNMENT 1
1485
1486 /* Define this if you wish to imitate the way many other C compilers
1487 handle alignment of bitfields and the structures that contain
1488 them.
1489
1490 The behavior is that the type written for a bitfield (`int',
1491 `short', or other integer type) imposes an alignment for the
1492 entire structure, as if the structure really did contain an
1493 ordinary field of that type. In addition, the bitfield is placed
1494 within the structure so that it would fit within such a field,
1495 not crossing a boundary for it.
1496
1497 Thus, on most machines, a bitfield whose type is written as `int'
1498 would not cross a four-byte boundary, and would force four-byte
1499 alignment for the whole structure. (The alignment used may not
1500 be four bytes; it is controlled by the other alignment
1501 parameters.)
1502
1503 If the macro is defined, its definition should be a C expression;
1504 a nonzero value for the expression enables this behavior. */
1505
1506 #define PCC_BITFIELD_TYPE_MATTERS 1
1507
1508 /* If defined, a C expression to compute the alignment given to a
1509 constant that is being placed in memory. CONSTANT is the constant
1510 and ALIGN is the alignment that the object would ordinarily have.
1511 The value of this macro is used instead of that alignment to align
1512 the object.
1513
1514 If this macro is not defined, then ALIGN is used.
1515
1516 The typical use of this macro is to increase alignment for string
1517 constants to be word aligned so that `strcpy' calls that copy
1518 constants can be done inline. */
1519
1520 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1521 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1522 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1523
1524 /* If defined, a C expression to compute the alignment for a static
1525 variable. TYPE is the data type, and ALIGN is the alignment that
1526 the object would ordinarily have. The value of this macro is used
1527 instead of that alignment to align the object.
1528
1529 If this macro is not defined, then ALIGN is used.
1530
1531 One use of this macro is to increase alignment of medium-size
1532 data to make it all fit in fewer cache lines. Another is to
1533 cause character arrays to be word-aligned so that `strcpy' calls
1534 that copy constants to character arrays can be done inline. */
1535
1536 #undef DATA_ALIGNMENT
1537 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1538 ((((ALIGN) < BITS_PER_WORD) \
1539 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1540 || TREE_CODE (TYPE) == UNION_TYPE \
1541 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1542
1543
1544 /* Force right-alignment for small varargs in 32 bit little_endian mode */
1545
1546 #define PAD_VARARGS_DOWN (TARGET_64BIT \
1547 || mips_abi == ABI_MEABI \
1548 ? BYTES_BIG_ENDIAN : !BYTES_BIG_ENDIAN)
1549
1550 /* Define this macro if an argument declared as `char' or `short' in a
1551 prototype should actually be passed as an `int'. In addition to
1552 avoiding errors in certain cases of mismatch, it also makes for
1553 better code on certain machines. */
1554
1555 #define PROMOTE_PROTOTYPES 1
1556
1557 /* Define if operations between registers always perform the operation
1558 on the full register even if a narrower mode is specified. */
1559 #define WORD_REGISTER_OPERATIONS
1560
1561 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1562 will either zero-extend or sign-extend. The value of this macro should
1563 be the code that says which one of the two operations is implicitly
1564 done, NIL if none.
1565
1566 When in 64 bit mode, mips_move_1word will sign extend SImode and CCmode
1567 moves. All other referces are zero extended. */
1568 #define LOAD_EXTEND_OP(MODE) \
1569 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1570 ? SIGN_EXTEND : ZERO_EXTEND)
1571
1572 /* Define this macro if it is advisable to hold scalars in registers
1573 in a wider mode than that declared by the program. In such cases,
1574 the value is constrained to be within the bounds of the declared
1575 type, but kept valid in the wider mode. The signedness of the
1576 extension may differ from that of the type.
1577
1578 We promote any value smaller than SImode up to SImode. We don't
1579 want to promote to DImode when in 64 bit mode, because that would
1580 prevent us from using the faster SImode multiply and divide
1581 instructions. */
1582
1583 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1584 if (GET_MODE_CLASS (MODE) == MODE_INT \
1585 && GET_MODE_SIZE (MODE) < 4) \
1586 (MODE) = SImode;
1587
1588 /* Define this if function arguments should also be promoted using the above
1589 procedure. */
1590
1591 #define PROMOTE_FUNCTION_ARGS
1592
1593 /* Likewise, if the function return value is promoted. */
1594
1595 #define PROMOTE_FUNCTION_RETURN
1596 \f
1597 /* Standard register usage. */
1598
1599 /* Number of actual hardware registers.
1600 The hardware registers are assigned numbers for the compiler
1601 from 0 to just below FIRST_PSEUDO_REGISTER.
1602 All registers that the compiler knows about must be given numbers,
1603 even those that are not normally considered general registers.
1604
1605 On the Mips, we have 32 integer registers, 32 floating point
1606 registers, 8 condition code registers, and the special registers
1607 hi, lo, hilo, and rap. Afetr that we have 32 COP0 registers, 32
1608 COP2 registers, and 32 COp3 registers. (COP1 is the floating-point
1609 processor.) The 8 condition code registers are only used if
1610 mips_isa >= 4. The hilo register is only used in 64 bit mode. It
1611 represents a 64 bit value stored as two 32 bit values in the hi and
1612 lo registers; this is the result of the mult instruction. rap is a
1613 pointer to the stack where the return address reg ($31) was stored.
1614 This is needed for C++ exception handling. */
1615
1616 #define FIRST_PSEUDO_REGISTER 176
1617
1618 /* 1 for registers that have pervasive standard uses
1619 and are not available for the register allocator.
1620
1621 On the MIPS, see conventions, page D-2 */
1622
1623 /* Regarding coprocessor registers: without evidence to the contrary,
1624 it's best to assume that each coprocessor register has a unique
1625 use. This can be overridden, in, e.g., override_options() or
1626 CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1627 for a particular target. */
1628
1629 #define FIXED_REGISTERS \
1630 { \
1631 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1632 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1633 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1634 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1635 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, \
1636 /* COP0 registers */ \
1637 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1638 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1639 /* COP2 registers */ \
1640 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1641 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1642 /* COP3 registers */ \
1643 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1644 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1645 }
1646
1647
1648 /* 1 for registers not available across function calls.
1649 These must include the FIXED_REGISTERS and also any
1650 registers that can be used without being saved.
1651 The latter must include the registers where values are returned
1652 and the register where structure-value addresses are passed.
1653 Aside from that, you can include as many other registers as you like. */
1654
1655 #define CALL_USED_REGISTERS \
1656 { \
1657 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1658 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1659 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1660 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1661 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \
1662 /* COP0 registers */ \
1663 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1664 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1665 /* COP2 registers */ \
1666 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1667 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1668 /* COP3 registers */ \
1669 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1670 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1671 }
1672
1673 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
1674 problem which makes CALL_USED_REGISTERS *always* include
1675 all the FIXED_REGISTERS. Until this problem has been
1676 resolved this macro can be used to overcome this situation.
1677 In particular, block_propagate() requires this list
1678 be acurate, or we can remove registers which should be live.
1679 This macro is used in regs_invalidated_by_call. */
1680
1681
1682 #define CALL_REALLY_USED_REGISTERS \
1683 { /* General registers. */ \
1684 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1685 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, \
1686 /* Floating-point registers. */ \
1687 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1688 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1689 /* Others. */ \
1690 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \
1691 /* COP0 registers */ \
1692 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1693 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1694 /* COP2 registers */ \
1695 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1696 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1697 /* COP3 registers */ \
1698 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1699 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
1700 }
1701
1702 /* Internal macros to classify a register number as to whether it's a
1703 general purpose register, a floating point register, a
1704 multiply/divide register, or a status register. */
1705
1706 #define GP_REG_FIRST 0
1707 #define GP_REG_LAST 31
1708 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1709 #define GP_DBX_FIRST 0
1710
1711 #define FP_REG_FIRST 32
1712 #define FP_REG_LAST 63
1713 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1714 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1715
1716 #define MD_REG_FIRST 64
1717 #define MD_REG_LAST 66
1718 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1719
1720 #define ST_REG_FIRST 67
1721 #define ST_REG_LAST 74
1722 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1723
1724 #define RAP_REG_NUM 75
1725
1726 #define COP0_REG_FIRST 80
1727 #define COP0_REG_LAST 111
1728 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1729
1730 #define COP2_REG_FIRST 112
1731 #define COP2_REG_LAST 143
1732 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1733
1734 #define COP3_REG_FIRST 144
1735 #define COP3_REG_LAST 175
1736 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1737 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1738 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1739
1740 #define AT_REGNUM (GP_REG_FIRST + 1)
1741 #define HI_REGNUM (MD_REG_FIRST + 0)
1742 #define LO_REGNUM (MD_REG_FIRST + 1)
1743 #define HILO_REGNUM (MD_REG_FIRST + 2)
1744
1745 /* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
1746 mips_isa >= 4, it should not be used, and an arbitrary ST_REG
1747 should be used instead. */
1748 #define FPSW_REGNUM ST_REG_FIRST
1749
1750 #define GP_REG_P(REGNO) \
1751 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1752 #define M16_REG_P(REGNO) \
1753 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1754 #define FP_REG_P(REGNO) \
1755 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1756 #define MD_REG_P(REGNO) \
1757 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1758 #define ST_REG_P(REGNO) \
1759 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1760 #define COP0_REG_P(REGNO) \
1761 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1762 #define COP2_REG_P(REGNO) \
1763 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1764 #define COP3_REG_P(REGNO) \
1765 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1766 #define ALL_COP_REG_P(REGNO) \
1767 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1768
1769 /* Return coprocessor number from register number. */
1770
1771 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1772 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1773 : COP3_REG_P (REGNO) ? '3' : '?')
1774
1775 /* Return number of consecutive hard regs needed starting at reg REGNO
1776 to hold something of mode MODE.
1777 This is ordinarily the length in words of a value of mode MODE
1778 but can be less for certain modes in special long registers.
1779
1780 On the MIPS, all general registers are one word long. Except on
1781 the R4000 with the FR bit set, the floating point uses register
1782 pairs, with the second register not being allocable. */
1783
1784 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1785
1786 /* Value is 1 if hard register REGNO can hold a value of machine-mode
1787 MODE. In 32 bit mode, require that DImode and DFmode be in even
1788 registers. For DImode, this makes some of the insns easier to
1789 write, since you don't have to worry about a DImode value in
1790 registers 3 & 4, producing a result in 4 & 5.
1791
1792 To make the code simpler HARD_REGNO_MODE_OK now just references an
1793 array built in override_options. Because machmodes.h is not yet
1794 included before this file is processed, the MODE bound can't be
1795 expressed here. */
1796
1797 extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1798
1799 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1800 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1801
1802 /* Value is 1 if it is a good idea to tie two pseudo registers
1803 when one has mode MODE1 and one has mode MODE2.
1804 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1805 for any hard reg, then this must be 0 for correct output. */
1806 #define MODES_TIEABLE_P(MODE1, MODE2) \
1807 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1808 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1809 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1810 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1811
1812 /* MIPS pc is not overloaded on a register. */
1813 /* #define PC_REGNUM xx */
1814
1815 /* Register to use for pushing function arguments. */
1816 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1817
1818 /* Offset from the stack pointer to the first available location. Use
1819 the default value zero. */
1820 /* #define STACK_POINTER_OFFSET 0 */
1821
1822 /* Base register for access to local variables of the function. We
1823 pretend that the frame pointer is $1, and then eliminate it to
1824 HARD_FRAME_POINTER_REGNUM. We can get away with this because $1 is
1825 a fixed register, and will not be used for anything else. */
1826 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
1827
1828 /* Temporary scratch register for use by the assembler. */
1829 #define ASSEMBLER_SCRATCH_REGNUM (GP_REG_FIRST + 1)
1830
1831 /* $30 is not available on the mips16, so we use $17 as the frame
1832 pointer. */
1833 #define HARD_FRAME_POINTER_REGNUM \
1834 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1835
1836 /* Value should be nonzero if functions must have frame pointers.
1837 Zero means the frame pointer need not be set up (and parms
1838 may be accessed via the stack pointer) in functions that seem suitable.
1839 This is computed in `reload', in reload1.c. */
1840 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1841
1842 /* Base register for access to arguments of the function. */
1843 #define ARG_POINTER_REGNUM GP_REG_FIRST
1844
1845 /* Fake register that holds the address on the stack of the
1846 current function's return address. */
1847 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
1848
1849 /* Register in which static-chain is passed to a function. */
1850 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1851
1852 /* If the structure value address is passed in a register, then
1853 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1854 /* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1855
1856 /* If the structure value address is not passed in a register, define
1857 `STRUCT_VALUE' as an expression returning an RTX for the place
1858 where the address is passed. If it returns 0, the address is
1859 passed as an "invisible" first argument. */
1860 #define STRUCT_VALUE 0
1861
1862 /* Mips registers used in prologue/epilogue code when the stack frame
1863 is larger than 32K bytes. These registers must come from the
1864 scratch register set, and not used for passing and returning
1865 arguments and any other information used in the calling sequence
1866 (such as pic). Must start at 12, since t0/t3 are parameter passing
1867 registers in the 64 bit ABI. */
1868
1869 #define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1870 #define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
1871
1872 /* Define this macro if it is as good or better to call a constant
1873 function address than to call an address kept in a register. */
1874 #define NO_FUNCTION_CSE 1
1875
1876 /* Define this macro if it is as good or better for a function to
1877 call itself with an explicit address than to call an address
1878 kept in a register. */
1879 #define NO_RECURSIVE_FUNCTION_CSE 1
1880
1881 /* The register number of the register used to address a table of
1882 static data addresses in memory. In some cases this register is
1883 defined by a processor's "application binary interface" (ABI).
1884 When this macro is defined, RTL is generated for this register
1885 once, as with the stack pointer and frame pointer registers. If
1886 this macro is not defined, it is up to the machine-dependent
1887 files to allocate such a register (if necessary). */
1888 #define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
1889
1890 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1891 \f
1892 /* Define the classes of registers for register constraints in the
1893 machine description. Also define ranges of constants.
1894
1895 One of the classes must always be named ALL_REGS and include all hard regs.
1896 If there is more than one class, another class must be named NO_REGS
1897 and contain no registers.
1898
1899 The name GENERAL_REGS must be the name of a class (or an alias for
1900 another name such as ALL_REGS). This is the class of registers
1901 that is allowed by "g" or "r" in a register constraint.
1902 Also, registers outside this class are allocated only when
1903 instructions express preferences for them.
1904
1905 The classes must be numbered in nondecreasing order; that is,
1906 a larger-numbered class must never be contained completely
1907 in a smaller-numbered class.
1908
1909 For any two classes, it is very desirable that there be another
1910 class that represents their union. */
1911
1912 enum reg_class
1913 {
1914 NO_REGS, /* no registers in set */
1915 M16_NA_REGS, /* mips16 regs not used to pass args */
1916 M16_REGS, /* mips16 directly accessible registers */
1917 T_REG, /* mips16 T register ($24) */
1918 M16_T_REGS, /* mips16 registers plus T register */
1919 GR_REGS, /* integer registers */
1920 FP_REGS, /* floating point registers */
1921 HI_REG, /* hi register */
1922 LO_REG, /* lo register */
1923 HILO_REG, /* hilo register pair for 64 bit mode mult */
1924 MD_REGS, /* multiply/divide registers (hi/lo) */
1925 COP0_REGS, /* generic coprocessor classes */
1926 COP2_REGS,
1927 COP3_REGS,
1928 HI_AND_GR_REGS, /* union classes */
1929 LO_AND_GR_REGS,
1930 HILO_AND_GR_REGS,
1931 HI_AND_FP_REGS,
1932 COP0_AND_GR_REGS,
1933 COP2_AND_GR_REGS,
1934 COP3_AND_GR_REGS,
1935 ALL_COP_REGS,
1936 ALL_COP_AND_GR_REGS,
1937 ST_REGS, /* status registers (fp status) */
1938 ALL_REGS, /* all registers */
1939 LIM_REG_CLASSES /* max value + 1 */
1940 };
1941
1942 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1943
1944 #define GENERAL_REGS GR_REGS
1945
1946 /* An initializer containing the names of the register classes as C
1947 string constants. These names are used in writing some of the
1948 debugging dumps. */
1949
1950 #define REG_CLASS_NAMES \
1951 { \
1952 "NO_REGS", \
1953 "M16_NA_REGS", \
1954 "M16_REGS", \
1955 "T_REG", \
1956 "M16_T_REGS", \
1957 "GR_REGS", \
1958 "FP_REGS", \
1959 "HI_REG", \
1960 "LO_REG", \
1961 "HILO_REG", \
1962 "MD_REGS", \
1963 /* coprocessor registers */ \
1964 "COP0_REGS", \
1965 "COP2_REGS", \
1966 "COP3_REGS", \
1967 "HI_AND_GR_REGS", \
1968 "LO_AND_GR_REGS", \
1969 "HILO_AND_GR_REGS", \
1970 "HI_AND_FP_REGS", \
1971 "COP0_AND_GR_REGS", \
1972 "COP2_AND_GR_REGS", \
1973 "COP3_AND_GR_REGS", \
1974 "ALL_COP_REGS", \
1975 "ALL_COP_AND_GR_REGS", \
1976 "ST_REGS", \
1977 "ALL_REGS" \
1978 }
1979
1980 /* An initializer containing the contents of the register classes,
1981 as integers which are bit masks. The Nth integer specifies the
1982 contents of class N. The way the integer MASK is interpreted is
1983 that register R is in the class if `MASK & (1 << R)' is 1.
1984
1985 When the machine has more than 32 registers, an integer does not
1986 suffice. Then the integers are replaced by sub-initializers,
1987 braced groupings containing several integers. Each
1988 sub-initializer must be suitable as an initializer for the type
1989 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1990
1991 #define REG_CLASS_CONTENTS \
1992 { \
1993 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1994 { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
1995 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 registers */ \
1996 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
1997 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
1998 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* integer registers */ \
1999 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* floating registers*/ \
2000 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* hi register */ \
2001 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* lo register */ \
2002 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000, 0x00000000 }, /* hilo register */ \
2003 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* mul/div registers */ \
2004 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
2005 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
2006 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
2007 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* union classes */ \
2008 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, \
2009 { 0xffffffff, 0x00000000, 0x00000004, 0x00000000, 0x00000000, 0x00000000 }, \
2010 { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, \
2011 { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, \
2012 { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, \
2013 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
2014 { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
2015 { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
2016 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* status registers */ \
2017 { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0000ffff } /* all registers */ \
2018 }
2019
2020
2021 /* A C expression whose value is a register class containing hard
2022 register REGNO. In general there is more that one such class;
2023 choose a class which is "minimal", meaning that no smaller class
2024 also contains the register. */
2025
2026 extern const enum reg_class mips_regno_to_class[];
2027
2028 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2029
2030 /* A macro whose definition is the name of the class to which a
2031 valid base register must belong. A base register is one used in
2032 an address which is the register value plus a displacement. */
2033
2034 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
2035
2036 /* A macro whose definition is the name of the class to which a
2037 valid index register must belong. An index register is one used
2038 in an address where its value is either multiplied by a scale
2039 factor or added to another register (as well as added to a
2040 displacement). */
2041
2042 #define INDEX_REG_CLASS NO_REGS
2043
2044 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
2045 registers explicitly used in the rtl to be used as spill registers
2046 but prevents the compiler from extending the lifetime of these
2047 registers. */
2048
2049 #define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
2050
2051 /* This macro is used later on in the file. */
2052 #define GR_REG_CLASS_P(CLASS) \
2053 ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
2054 || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS)
2055
2056 /* This macro is also used later on in the file. */
2057 #define COP_REG_CLASS_P(CLASS) \
2058 ((CLASS) == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
2059
2060 /* REG_ALLOC_ORDER is to order in which to allocate registers. This
2061 is the default value (allocate the registers in numeric order). We
2062 define it just so that we can override it for the mips16 target in
2063 ORDER_REGS_FOR_LOCAL_ALLOC. */
2064
2065 #define REG_ALLOC_ORDER \
2066 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2067 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
2068 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2069 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2070 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2071 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2072 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2073 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2074 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2075 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2076 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 \
2077 }
2078
2079 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
2080 to be rearranged based on a particular function. On the mips16, we
2081 want to allocate $24 (T_REG) before other registers for
2082 instructions for which it is possible. */
2083
2084 #define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
2085
2086 /* REGISTER AND CONSTANT CLASSES */
2087
2088 /* Get reg_class from a letter such as appears in the machine
2089 description.
2090
2091 DEFINED REGISTER CLASSES:
2092
2093 'd' General (aka integer) registers
2094 Normally this is GR_REGS, but in mips16 mode this is M16_REGS
2095 'y' General registers (in both mips16 and non mips16 mode)
2096 'e' mips16 non argument registers (M16_NA_REGS)
2097 't' mips16 temporary register ($24)
2098 'f' Floating point registers
2099 'h' Hi register
2100 'l' Lo register
2101 'x' Multiply/divide registers
2102 'a' HILO_REG
2103 'z' FP Status register
2104 'B' Cop0 register
2105 'C' Cop2 register
2106 'D' Cop3 register
2107 'b' All registers */
2108
2109 extern enum reg_class mips_char_to_class[256];
2110
2111 #define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]
2112
2113 /* The letters I, J, K, L, M, N, O, and P in a register constraint
2114 string can be used to stand for particular ranges of immediate
2115 operands. This macro defines what the ranges are. C is the
2116 letter, and VALUE is a constant value. Return 1 if VALUE is
2117 in the range specified by C. */
2118
2119 /* For MIPS:
2120
2121 `I' is used for the range of constants an arithmetic insn can
2122 actually contain (16 bits signed integers).
2123
2124 `J' is used for the range which is just zero (ie, $r0).
2125
2126 `K' is used for the range of constants a logical insn can actually
2127 contain (16 bit zero-extended integers).
2128
2129 `L' is used for the range of constants that be loaded with lui
2130 (ie, the bottom 16 bits are zero).
2131
2132 `M' is used for the range of constants that take two words to load
2133 (ie, not matched by `I', `K', and `L').
2134
2135 `N' is used for negative 16 bit constants other than -65536.
2136
2137 `O' is a 15 bit signed integer.
2138
2139 `P' is used for positive 16 bit constants. */
2140
2141 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
2142 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
2143
2144 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
2145 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
2146 : (C) == 'J' ? ((VALUE) == 0) \
2147 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
2148 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
2149 && (((VALUE) & ~2147483647) == 0 \
2150 || ((VALUE) & ~2147483647) == ~2147483647)) \
2151 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
2152 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
2153 && (((VALUE) & 0x0000ffff) != 0 \
2154 || (((VALUE) & ~2147483647) != 0 \
2155 && ((VALUE) & ~2147483647) != ~2147483647))) \
2156 : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
2157 : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
2158 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
2159 : 0)
2160
2161 /* Similar, but for floating constants, and defining letters G and H.
2162 Here VALUE is the CONST_DOUBLE rtx itself. */
2163
2164 /* For Mips
2165
2166 'G' : Floating point 0 */
2167
2168 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2169 ((C) == 'G' \
2170 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
2171
2172 /* Letters in the range `Q' through `U' may be defined in a
2173 machine-dependent fashion to stand for arbitrary operand types.
2174 The machine description macro `EXTRA_CONSTRAINT' is passed the
2175 operand as its first argument and the constraint letter as its
2176 second operand.
2177
2178 `Q' is for mips16 GP relative constants
2179 `R' is for memory references which take 1 word for the instruction.
2180 `T' is for memory addresses that can be used to load two words. */
2181
2182 #define EXTRA_CONSTRAINT(OP,CODE) \
2183 (((CODE) == 'T') ? double_memory_operand (OP, GET_MODE (OP)) \
2184 : ((CODE) == 'Q') ? (GET_CODE (OP) == CONST \
2185 && mips16_gp_offset_p (OP)) \
2186 : (GET_CODE (OP) != MEM) ? FALSE \
2187 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
2188 : FALSE)
2189
2190 /* Given an rtx X being reloaded into a reg required to be
2191 in class CLASS, return the class of reg to actually use.
2192 In general this is just CLASS; but on some machines
2193 in some cases it is preferable to use a more restrictive class. */
2194
2195 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
2196 ((CLASS) != ALL_REGS \
2197 ? (! TARGET_MIPS16 \
2198 ? (CLASS) \
2199 : ((CLASS) != GR_REGS \
2200 ? (CLASS) \
2201 : M16_REGS)) \
2202 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2203 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
2204 ? (TARGET_SOFT_FLOAT \
2205 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
2206 : FP_REGS) \
2207 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
2208 || GET_MODE (X) == VOIDmode) \
2209 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
2210 : (CLASS))))
2211
2212 /* Certain machines have the property that some registers cannot be
2213 copied to some other registers without using memory. Define this
2214 macro on those machines to be a C expression that is non-zero if
2215 objects of mode MODE in registers of CLASS1 can only be copied to
2216 registers of class CLASS2 by storing a register of CLASS1 into
2217 memory and loading that memory location into a register of CLASS2.
2218
2219 Do not define this macro if its value would always be zero. */
2220 #if 0
2221 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
2222 ((!TARGET_DEBUG_H_MODE \
2223 && GET_MODE_CLASS (MODE) == MODE_INT \
2224 && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
2225 || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
2226 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
2227 && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
2228 || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
2229 #endif
2230 /* The HI and LO registers can only be reloaded via the general
2231 registers. Condition code registers can only be loaded to the
2232 general registers, and from the floating point registers. */
2233
2234 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2235 mips_secondary_reload_class (CLASS, MODE, X, 1)
2236 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2237 mips_secondary_reload_class (CLASS, MODE, X, 0)
2238
2239 /* Return the maximum number of consecutive registers
2240 needed to represent mode MODE in a register of class CLASS. */
2241
2242 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2243
2244 /* If defined, gives a class of registers that cannot be used as the
2245 operand of a SUBREG that changes the mode of the object illegally.
2246 When FP regs are larger than integer regs... Er, anyone remember what
2247 goes wrong?
2248
2249 In little-endian mode, the hi-lo registers are numbered backwards,
2250 so (subreg:SI (reg:DI hi) 0) gets the high word instead of the low
2251 word as intended. */
2252
2253 #define CLASS_CANNOT_CHANGE_MODE \
2254 (TARGET_BIG_ENDIAN \
2255 ? (TARGET_FLOAT64 && ! TARGET_64BIT ? FP_REGS : NO_REGS) \
2256 : (TARGET_FLOAT64 && ! TARGET_64BIT ? HI_AND_FP_REGS : HI_REG))
2257
2258 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
2259
2260 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
2261 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
2262 \f
2263 /* Stack layout; function entry, exit and calling. */
2264
2265 /* Define this if pushing a word on the stack
2266 makes the stack pointer a smaller address. */
2267 #define STACK_GROWS_DOWNWARD
2268
2269 /* Define this if the nominal address of the stack frame
2270 is at the high-address end of the local variables;
2271 that is, each additional local variable allocated
2272 goes at a more negative offset in the frame. */
2273 /* #define FRAME_GROWS_DOWNWARD */
2274
2275 /* Offset within stack frame to start allocating local variables at.
2276 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
2277 first local allocated. Otherwise, it is the offset to the BEGINNING
2278 of the first local allocated. */
2279 #define STARTING_FRAME_OFFSET \
2280 (current_function_outgoing_args_size \
2281 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
2282
2283 /* Offset from the stack pointer register to an item dynamically
2284 allocated on the stack, e.g., by `alloca'.
2285
2286 The default value for this macro is `STACK_POINTER_OFFSET' plus the
2287 length of the outgoing arguments. The default is correct for most
2288 machines. See `function.c' for details.
2289
2290 The MIPS ABI states that functions which dynamically allocate the
2291 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
2292 we are trying to create a second frame pointer to the function, so
2293 allocate some stack space to make it happy.
2294
2295 However, the linker currently complains about linking any code that
2296 dynamically allocates stack space, and there seems to be a bug in
2297 STACK_DYNAMIC_OFFSET, so don't define this right now. */
2298
2299 #if 0
2300 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
2301 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
2302 ? 4*UNITS_PER_WORD \
2303 : current_function_outgoing_args_size)
2304 #endif
2305
2306 /* The return address for the current frame is in r31 if this is a leaf
2307 function. Otherwise, it is on the stack. It is at a variable offset
2308 from sp/fp/ap, so we define a fake hard register rap which is a
2309 poiner to the return address on the stack. This always gets eliminated
2310 during reload to be either the frame pointer or the stack pointer plus
2311 an offset. */
2312
2313 /* ??? This definition fails for leaf functions. There is currently no
2314 general solution for this problem. */
2315
2316 /* ??? There appears to be no way to get the return address of any previous
2317 frame except by disassembling instructions in the prologue/epilogue.
2318 So currently we support only the current frame. */
2319
2320 #define RETURN_ADDR_RTX(count, frame) \
2321 (((count) == 0) \
2322 ? (leaf_function_p () \
2323 ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31) \
2324 : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, \
2325 RETURN_ADDRESS_POINTER_REGNUM))) \
2326 : (rtx) 0)
2327
2328 /* Since the mips16 ISA mode is encoded in the least-significant bit
2329 of the address, mask it off return addresses for purposes of
2330 finding exception handling regions. */
2331
2332 #define MASK_RETURN_ADDR GEN_INT (-2)
2333
2334 /* Similarly, don't use the least-significant bit to tell pointers to
2335 code from vtable index. */
2336
2337 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2338
2339 /* If defined, this macro specifies a table of register pairs used to
2340 eliminate unneeded registers that point into the stack frame. If
2341 it is not defined, the only elimination attempted by the compiler
2342 is to replace references to the frame pointer with references to
2343 the stack pointer.
2344
2345 The definition of this macro is a list of structure
2346 initializations, each of which specifies an original and
2347 replacement register.
2348
2349 On some machines, the position of the argument pointer is not
2350 known until the compilation is completed. In such a case, a
2351 separate hard register must be used for the argument pointer.
2352 This register can be eliminated by replacing it with either the
2353 frame pointer or the argument pointer, depending on whether or not
2354 the frame pointer has been eliminated.
2355
2356 In this case, you might specify:
2357 #define ELIMINABLE_REGS \
2358 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2359 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
2360 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
2361
2362 Note that the elimination of the argument pointer with the stack
2363 pointer is specified first since that is the preferred elimination.
2364
2365 The eliminations to $17 are only used on the mips16. See the
2366 definition of HARD_FRAME_POINTER_REGNUM. */
2367
2368 #define ELIMINABLE_REGS \
2369 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2370 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2371 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2372 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2373 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2374 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2375 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2376 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2377 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2378
2379 /* A C expression that returns non-zero if the compiler is allowed to
2380 try to replace register number FROM-REG with register number
2381 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
2382 defined, and will usually be the constant 1, since most of the
2383 cases preventing register elimination are things that the compiler
2384 already knows about.
2385
2386 When not in mips16 and mips64, we can always eliminate to the
2387 frame pointer. We can eliminate to the stack pointer unless
2388 a frame pointer is needed. In mips16 mode, we need a frame
2389 pointer for a large frame; otherwise, reload may be unable
2390 to compute the address of a local variable, since there is
2391 no way to add a large constant to the stack pointer
2392 without using a temporary register.
2393
2394 In mips16, for some instructions (eg lwu), we can't eliminate the
2395 frame pointer for the stack pointer. These instructions are
2396 only generated in TARGET_64BIT mode.
2397 */
2398
2399 #define CAN_ELIMINATE(FROM, TO) \
2400 (((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
2401 && (((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed) \
2402 || (TO) == HARD_FRAME_POINTER_REGNUM)) \
2403 || ((FROM) != RETURN_ADDRESS_POINTER_REGNUM \
2404 && ((TO) == HARD_FRAME_POINTER_REGNUM \
2405 || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed \
2406 && ! (TARGET_MIPS16 && TARGET_64BIT) \
2407 && (! TARGET_MIPS16 \
2408 || compute_frame_size (get_frame_size ()) < 32768)))))
2409
2410 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2411 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2412
2413 /* If we generate an insn to push BYTES bytes,
2414 this says how many the stack pointer really advances by.
2415 On the VAX, sp@- in a byte insn really pushes a word. */
2416
2417 /* #define PUSH_ROUNDING(BYTES) 0 */
2418
2419 /* If defined, the maximum amount of space required for outgoing
2420 arguments will be computed and placed into the variable
2421 `current_function_outgoing_args_size'. No space will be pushed
2422 onto the stack for each call; instead, the function prologue
2423 should increase the stack frame size by this amount.
2424
2425 It is not proper to define both `PUSH_ROUNDING' and
2426 `ACCUMULATE_OUTGOING_ARGS'. */
2427 #define ACCUMULATE_OUTGOING_ARGS 1
2428
2429 /* Offset from the argument pointer register to the first argument's
2430 address. On some machines it may depend on the data type of the
2431 function.
2432
2433 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
2434 the first argument's address.
2435
2436 On the MIPS, we must skip the first argument position if we are
2437 returning a structure or a union, to account for its address being
2438 passed in $4. However, at the current time, this produces a compiler
2439 that can't bootstrap, so comment it out for now. */
2440
2441 #if 0
2442 #define FIRST_PARM_OFFSET(FNDECL) \
2443 (FNDECL != 0 \
2444 && TREE_TYPE (FNDECL) != 0 \
2445 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
2446 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
2447 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
2448 ? UNITS_PER_WORD \
2449 : 0)
2450 #else
2451 #define FIRST_PARM_OFFSET(FNDECL) 0
2452 #endif
2453
2454 /* When a parameter is passed in a register, stack space is still
2455 allocated for it. For the MIPS, stack space must be allocated, cf
2456 Asm Lang Prog Guide page 7-8.
2457
2458 BEWARE that some space is also allocated for non existing arguments
2459 in register. In case an argument list is of form GF used registers
2460 are a0 (a2,a3), but we should push over a1... */
2461
2462 #define REG_PARM_STACK_SPACE(FNDECL) \
2463 ((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
2464
2465 /* Define this if it is the responsibility of the caller to
2466 allocate the area reserved for arguments passed in registers.
2467 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2468 of this macro is to determine whether the space is included in
2469 `current_function_outgoing_args_size'. */
2470 #define OUTGOING_REG_PARM_STACK_SPACE
2471
2472 /* Align stack frames on 64 bits (Double Word ). */
2473 #ifndef STACK_BOUNDARY
2474 #define STACK_BOUNDARY 64
2475 #endif
2476
2477 /* Make sure 4 words are always allocated on the stack. */
2478
2479 #ifndef STACK_ARGS_ADJUST
2480 #define STACK_ARGS_ADJUST(SIZE) \
2481 { \
2482 if (SIZE.constant < 4 * UNITS_PER_WORD) \
2483 SIZE.constant = 4 * UNITS_PER_WORD; \
2484 }
2485 #endif
2486
2487 \f
2488 /* A C expression that should indicate the number of bytes of its
2489 own arguments that a function pops on returning, or 0
2490 if the function pops no arguments and the caller must therefore
2491 pop them all after the function returns.
2492
2493 FUNDECL is the declaration node of the function (as a tree).
2494
2495 FUNTYPE is a C variable whose value is a tree node that
2496 describes the function in question. Normally it is a node of
2497 type `FUNCTION_TYPE' that describes the data type of the function.
2498 From this it is possible to obtain the data types of the value
2499 and arguments (if known).
2500
2501 When a call to a library function is being considered, FUNTYPE
2502 will contain an identifier node for the library function. Thus,
2503 if you need to distinguish among various library functions, you
2504 can do so by their names. Note that "library function" in this
2505 context means a function used to perform arithmetic, whose name
2506 is known specially in the compiler and was not mentioned in the
2507 C code being compiled.
2508
2509 STACK-SIZE is the number of bytes of arguments passed on the
2510 stack. If a variable number of bytes is passed, it is zero, and
2511 argument popping will always be the responsibility of the
2512 calling function. */
2513
2514 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
2515
2516
2517 /* Symbolic macros for the registers used to return integer and floating
2518 point values. */
2519
2520 #define GP_RETURN (GP_REG_FIRST + 2)
2521 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2522
2523 /* Symbolic macros for the first/last argument registers. */
2524
2525 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2526 #define GP_ARG_LAST (GP_REG_FIRST + 7)
2527 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2528 #define FP_ARG_LAST (FP_REG_FIRST + 15)
2529
2530 #define MAX_ARGS_IN_REGISTERS 4
2531
2532 /* Define how to find the value returned by a library function
2533 assuming the value has mode MODE. Because we define
2534 PROMOTE_FUNCTION_RETURN, we must promote the mode just as
2535 PROMOTE_MODE does. */
2536
2537 #define LIBCALL_VALUE(MODE) \
2538 mips_function_value (NULL_TREE, NULL, (MODE))
2539
2540 /* Define how to find the value returned by a function.
2541 VALTYPE is the data type of the value (as a tree).
2542 If the precise function being called is known, FUNC is its FUNCTION_DECL;
2543 otherwise, FUNC is 0. */
2544
2545 #define FUNCTION_VALUE(VALTYPE, FUNC) \
2546 mips_function_value ((VALTYPE), (FUNC), VOIDmode)
2547
2548 /* 1 if N is a possible register number for a function value.
2549 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2550 Currently, R2 and F0 are only implemented here (C has no complex type) */
2551
2552 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
2553
2554 /* 1 if N is a possible register number for function argument passing.
2555 We have no FP argument registers when soft-float. When FP registers
2556 are 32 bits, we can't directly reference the odd numbered ones. */
2557 /* For o64 we should be checking the mode for SFmode as well. */
2558
2559 #define FUNCTION_ARG_REGNO_P(N) \
2560 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2561 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) \
2562 && ((N) % FP_INC == 0) && mips_abi != ABI_O64)) \
2563 && !fixed_regs[N])
2564
2565 /* A C expression which can inhibit the returning of certain function
2566 values in registers, based on the type of value. A nonzero value says
2567 to return the function value in memory, just as large structures are
2568 always returned. Here TYPE will be a C expression of type
2569 `tree', representing the data type of the value.
2570
2571 Note that values of mode `BLKmode' must be explicitly
2572 handled by this macro. Also, the option `-fpcc-struct-return'
2573 takes effect regardless of this macro. On most systems, it is
2574 possible to leave the macro undefined; this causes a default
2575 definition to be used, whose value is the constant 1 for BLKmode
2576 values, and 0 otherwise.
2577
2578 GCC normally converts 1 byte structures into chars, 2 byte
2579 structs into shorts, and 4 byte structs into ints, and returns
2580 them this way. Defining the following macro overrides this,
2581 to give us MIPS cc compatibility. */
2582
2583 #define RETURN_IN_MEMORY(TYPE) \
2584 mips_return_in_memory (TYPE)
2585
2586 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
2587 (PRETEND_SIZE) = mips_setup_incoming_varargs (&(CUM), (MODE), \
2588 (TYPE), (NO_RTL))
2589 \f
2590
2591 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
2592
2593 \f
2594 /* Define a data type for recording info about an argument list
2595 during the scan of that argument list. This data type should
2596 hold all necessary information about the function itself
2597 and about the args processed so far, enough to enable macros
2598 such as FUNCTION_ARG to determine where the next arg should go.
2599
2600 This structure has to cope with two different argument allocation
2601 schemes. Most MIPS ABIs view the arguments as a struct, of which the
2602 first N words go in registers and the rest go on the stack. If I < N,
2603 the Ith word might go in Ith integer argument register or the
2604 Ith floating-point one. In some cases, it has to go in both (see
2605 function_arg). For these ABIs, we only need to remember the number
2606 of words passed so far.
2607
2608 The EABI instead allocates the integer and floating-point arguments
2609 separately. The first N words of FP arguments go in FP registers,
2610 the rest go on the stack. Likewise, the first N words of the other
2611 arguments go in integer registers, and the rest go on the stack. We
2612 need to maintain three counts: the number of integer registers used,
2613 the number of floating-point registers used, and the number of words
2614 passed on the stack.
2615
2616 We could keep separate information for the two ABIs (a word count for
2617 the standard ABIs, and three separate counts for the EABI). But it
2618 seems simpler to view the standard ABIs as forms of EABI that do not
2619 allocate floating-point registers.
2620
2621 So for the standard ABIs, the first N words are allocated to integer
2622 registers, and function_arg decides on an argument-by-argument basis
2623 whether that argument should really go in an integer register, or in
2624 a floating-point one. */
2625
2626 typedef struct mips_args {
2627 /* Always true for varargs functions. Otherwise true if at least
2628 one argument has been passed in an integer register. */
2629 int gp_reg_found;
2630
2631 /* The number of arguments seen so far. */
2632 unsigned int arg_number;
2633
2634 /* For EABI, the number of integer registers used so far. For other
2635 ABIs, the number of words passed in registers (whether integer
2636 or floating-point). */
2637 unsigned int num_gprs;
2638
2639 /* For EABI, the number of floating-point registers used so far. */
2640 unsigned int num_fprs;
2641
2642 /* The number of words passed on the stack. */
2643 unsigned int stack_words;
2644
2645 /* On the mips16, we need to keep track of which floating point
2646 arguments were passed in general registers, but would have been
2647 passed in the FP regs if this were a 32 bit function, so that we
2648 can move them to the FP regs if we wind up calling a 32 bit
2649 function. We record this information in fp_code, encoded in base
2650 four. A zero digit means no floating point argument, a one digit
2651 means an SFmode argument, and a two digit means a DFmode argument,
2652 and a three digit is not used. The low order digit is the first
2653 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2654 an SFmode argument. ??? A more sophisticated approach will be
2655 needed if MIPS_ABI != ABI_32. */
2656 int fp_code;
2657
2658 /* True if the function has a prototype. */
2659 int prototype;
2660
2661 /* When a structure does not take up a full register, the argument
2662 should sometimes be shifted left so that it occupies the high part
2663 of the register. These two fields describe an array of ashl
2664 patterns for doing this. See function_arg_advance, which creates
2665 the shift patterns, and function_arg, which returns them when given
2666 a VOIDmode argument. */
2667 unsigned int num_adjusts;
2668 rtx adjust[MAX_ARGS_IN_REGISTERS];
2669 } CUMULATIVE_ARGS;
2670
2671 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2672 for a call to a function whose data type is FNTYPE.
2673 For a library call, FNTYPE is 0.
2674
2675 */
2676
2677 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
2678 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2679
2680 /* Update the data in CUM to advance over an argument
2681 of mode MODE and data type TYPE.
2682 (TYPE is null for libcalls where that information may not be available.) */
2683
2684 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2685 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2686
2687 /* Determine where to put an argument to a function.
2688 Value is zero to push the argument on the stack,
2689 or a hard register in which to store the argument.
2690
2691 MODE is the argument's machine mode.
2692 TYPE is the data type of the argument (as a tree).
2693 This is null for libcalls where that information may
2694 not be available.
2695 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2696 the preceding args and about the function being called.
2697 NAMED is nonzero if this argument is a named parameter
2698 (otherwise it is an extra parameter matching an ellipsis). */
2699
2700 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2701 function_arg( &CUM, MODE, TYPE, NAMED)
2702
2703 /* For an arg passed partly in registers and partly in memory,
2704 this is the number of registers used.
2705 For args passed entirely in registers or entirely in memory, zero. */
2706
2707 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2708 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
2709
2710 /* If defined, a C expression that gives the alignment boundary, in
2711 bits, of an argument with the specified mode and type. If it is
2712 not defined, `PARM_BOUNDARY' is used for all arguments. */
2713
2714 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
2715 (((TYPE) != 0) \
2716 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
2717 ? PARM_BOUNDARY \
2718 : TYPE_ALIGN(TYPE)) \
2719 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
2720 ? PARM_BOUNDARY \
2721 : GET_MODE_ALIGNMENT(MODE)))
2722
2723 /* True if using EABI and varargs can be passed in floating-point
2724 registers. Under these conditions, we need a more complex form
2725 of va_list, which tracks GPR, FPR and stack arguments separately. */
2726 #define EABI_FLOAT_VARARGS_P \
2727 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2728
2729 \f
2730 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
2731
2732 #define MUST_SAVE_REGISTER(regno) \
2733 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2734 || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
2735 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
2736
2737 /* ALIGN FRAMES on double word boundaries */
2738 #ifndef MIPS_STACK_ALIGN
2739 #define MIPS_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
2740 #endif
2741
2742 \f
2743 /* Define the `__builtin_va_list' type for the ABI. */
2744 #define BUILD_VA_LIST_TYPE(VALIST) \
2745 (VALIST) = mips_build_va_list ()
2746
2747 /* Implement `va_start' for varargs and stdarg. */
2748 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2749 mips_va_start (stdarg, valist, nextarg)
2750
2751 /* Implement `va_arg'. */
2752 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
2753 mips_va_arg (valist, type)
2754 \f
2755 /* Output assembler code to FILE to increment profiler label # LABELNO
2756 for profiling a function entry. */
2757
2758 #define FUNCTION_PROFILER(FILE, LABELNO) \
2759 { \
2760 if (TARGET_MIPS16) \
2761 sorry ("mips16 function profiling"); \
2762 fprintf (FILE, "\t.set\tnoat\n"); \
2763 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2764 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2765 fprintf (FILE, \
2766 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2767 TARGET_64BIT ? "dsubu" : "subu", \
2768 reg_names[STACK_POINTER_REGNUM], \
2769 reg_names[STACK_POINTER_REGNUM], \
2770 Pmode == DImode ? 16 : 8); \
2771 fprintf (FILE, "\tjal\t_mcount\n"); \
2772 fprintf (FILE, "\t.set\tat\n"); \
2773 }
2774
2775 /* Define this macro if the code for function profiling should come
2776 before the function prologue. Normally, the profiling code comes
2777 after. */
2778
2779 /* #define PROFILE_BEFORE_PROLOGUE */
2780
2781 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2782 the stack pointer does not matter. The value is tested only in
2783 functions that have frame pointers.
2784 No definition is equivalent to always zero. */
2785
2786 #define EXIT_IGNORE_STACK 1
2787
2788 \f
2789 /* A C statement to output, on the stream FILE, assembler code for a
2790 block of data that contains the constant parts of a trampoline.
2791 This code should not include a label--the label is taken care of
2792 automatically. */
2793
2794 #define TRAMPOLINE_TEMPLATE(STREAM) \
2795 { \
2796 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2797 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2798 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2799 if (Pmode == DImode) \
2800 { \
2801 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2802 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2803 } \
2804 else \
2805 { \
2806 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2807 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2808 } \
2809 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
2810 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2811 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2812 if (Pmode == DImode) \
2813 { \
2814 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2815 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2816 } \
2817 else \
2818 { \
2819 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2820 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2821 } \
2822 }
2823
2824 /* A C expression for the size in bytes of the trampoline, as an
2825 integer. */
2826
2827 #define TRAMPOLINE_SIZE (32 + (Pmode == DImode ? 16 : 8))
2828
2829 /* Alignment required for trampolines, in bits. */
2830
2831 #define TRAMPOLINE_ALIGNMENT (Pmode == DImode ? 64 : 32)
2832
2833 /* INITIALIZE_TRAMPOLINE calls this library function to flush
2834 program and data caches. */
2835
2836 #ifndef CACHE_FLUSH_FUNC
2837 #define CACHE_FLUSH_FUNC "_flush_cache"
2838 #endif
2839
2840 /* A C statement to initialize the variable parts of a trampoline.
2841 ADDR is an RTX for the address of the trampoline; FNADDR is an
2842 RTX for the address of the nested function; STATIC_CHAIN is an
2843 RTX for the static chain value that should be passed to the
2844 function when it is called. */
2845
2846 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2847 { \
2848 rtx addr = ADDR; \
2849 if (Pmode == DImode) \
2850 { \
2851 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 32)), FUNC); \
2852 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 40)), CHAIN);\
2853 } \
2854 else \
2855 { \
2856 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
2857 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
2858 } \
2859 \
2860 /* Flush both caches. We need to flush the data cache in case \
2861 the system has a write-back cache. */ \
2862 /* ??? Should check the return value for errors. */ \
2863 if (mips_cache_flush_func && mips_cache_flush_func[0]) \
2864 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2865 0, VOIDmode, 3, addr, Pmode, \
2866 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2867 GEN_INT (3), TYPE_MODE (integer_type_node)); \
2868 }
2869 \f
2870 /* Addressing modes, and classification of registers for them. */
2871
2872 /* #define HAVE_POST_INCREMENT 0 */
2873 /* #define HAVE_POST_DECREMENT 0 */
2874
2875 /* #define HAVE_PRE_DECREMENT 0 */
2876 /* #define HAVE_PRE_INCREMENT 0 */
2877
2878 /* These assume that REGNO is a hard or pseudo reg number.
2879 They give nonzero only if REGNO is a hard reg of the suitable class
2880 or a pseudo reg currently allocated to a suitable hard reg.
2881 These definitions are NOT overridden anywhere. */
2882
2883 #define BASE_REG_P(regno, mode) \
2884 (TARGET_MIPS16 \
2885 ? (M16_REG_P (regno) \
2886 || (regno) == FRAME_POINTER_REGNUM \
2887 || (regno) == ARG_POINTER_REGNUM \
2888 || ((regno) == STACK_POINTER_REGNUM \
2889 && (GET_MODE_SIZE (mode) == 4 \
2890 || GET_MODE_SIZE (mode) == 8))) \
2891 : GP_REG_P (regno))
2892
2893 #define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
2894 BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? (int) regno : reg_renumber[regno], \
2895 (mode))
2896
2897 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
2898 (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
2899
2900 #define REGNO_OK_FOR_INDEX_P(regno) 0
2901 #define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
2902 GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
2903
2904 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2905 and check its validity for a certain class.
2906 We have two alternate definitions for each of them.
2907 The usual definition accepts all pseudo regs; the other rejects them all.
2908 The symbol REG_OK_STRICT causes the latter definition to be used.
2909
2910 Most source files want to accept pseudo regs in the hope that
2911 they will get allocated to the class that the insn wants them to be in.
2912 Some source files that are used after register allocation
2913 need to be strict. */
2914
2915 #ifndef REG_OK_STRICT
2916 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2917 mips_reg_mode_ok_for_base_p (X, MODE, 0)
2918 #else
2919 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2920 mips_reg_mode_ok_for_base_p (X, MODE, 1)
2921 #endif
2922
2923 #define REG_OK_FOR_INDEX_P(X) 0
2924
2925 \f
2926 /* Maximum number of registers that can appear in a valid memory address. */
2927
2928 #define MAX_REGS_PER_ADDRESS 1
2929
2930 /* A C compound statement with a conditional `goto LABEL;' executed
2931 if X (an RTX) is a legitimate memory address on the target
2932 machine for a memory operand of mode MODE. */
2933
2934 #if 1
2935 #define GO_PRINTF(x) fprintf(stderr, (x))
2936 #define GO_PRINTF2(x,y) fprintf(stderr, (x), (y))
2937 #define GO_DEBUG_RTX(x) debug_rtx(x)
2938
2939 #else
2940 #define GO_PRINTF(x)
2941 #define GO_PRINTF2(x,y)
2942 #define GO_DEBUG_RTX(x)
2943 #endif
2944
2945 #ifdef REG_OK_STRICT
2946 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2947 { \
2948 if (mips_legitimate_address_p (MODE, X, 1)) \
2949 goto ADDR; \
2950 }
2951 #else
2952 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2953 { \
2954 if (mips_legitimate_address_p (MODE, X, 0)) \
2955 goto ADDR; \
2956 }
2957 #endif
2958
2959 /* A C expression that is 1 if the RTX X is a constant which is a
2960 valid address. This is defined to be the same as `CONSTANT_P (X)',
2961 but rejecting CONST_DOUBLE. */
2962 /* When pic, we must reject addresses of the form symbol+large int.
2963 This is because an instruction `sw $4,s+70000' needs to be converted
2964 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
2965 assembler would use $at as a temp to load in the large offset. In this
2966 case $at is already in use. We convert such problem addresses to
2967 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
2968 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them
2969 when !TARGET_GAS. */
2970 /* We should be rejecting everything but const addresses. */
2971 #define CONSTANT_ADDRESS_P(X) \
2972 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2973 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2974 || (GET_CODE (X) == CONST \
2975 && ! (flag_pic && pic_address_needs_scratch (X)) \
2976 && (TARGET_GAS) \
2977 && (mips_abi != ABI_N32 \
2978 && mips_abi != ABI_64)))
2979
2980
2981 /* Define this, so that when PIC, reload won't try to reload invalid
2982 addresses which require two reload registers. */
2983
2984 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2985
2986 /* Nonzero if the constant value X is a legitimate general operand.
2987 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2988
2989 At present, GAS doesn't understand li.[sd], so don't allow it
2990 to be generated at present. Also, the MIPS assembler does not
2991 grok li.d Infinity. */
2992
2993 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them.
2994 Note that the Irix 6 assembler problem may already be fixed.
2995 Note also that the GET_CODE (X) == CONST test catches the mips16
2996 gp pseudo reg (see mips16_gp_pseudo_reg) deciding it is not
2997 a LEGITIMATE_CONSTANT. If we ever want mips16 and ABI_N32 or
2998 ABI_64 to work together, we'll need to fix this. */
2999 #define LEGITIMATE_CONSTANT_P(X) \
3000 ((GET_CODE (X) != CONST_DOUBLE \
3001 || mips_const_double_ok (X, GET_MODE (X))) \
3002 && ! (GET_CODE (X) == CONST \
3003 && ! TARGET_GAS \
3004 && (mips_abi == ABI_N32 \
3005 || mips_abi == ABI_64)) \
3006 && (! TARGET_MIPS16 || mips16_constant (X, GET_MODE (X), 0, 0)))
3007
3008 /* A C compound statement that attempts to replace X with a valid
3009 memory address for an operand of mode MODE. WIN will be a C
3010 statement label elsewhere in the code; the macro definition may
3011 use
3012
3013 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
3014
3015 to avoid further processing if the address has become legitimate.
3016
3017 X will always be the result of a call to `break_out_memory_refs',
3018 and OLDX will be the operand that was given to that function to
3019 produce X.
3020
3021 The code generated by this macro should not alter the
3022 substructure of X. If it transforms X into a more legitimate
3023 form, it should assign X (which will always be a C variable) a
3024 new value.
3025
3026 It is not necessary for this macro to come up with a legitimate
3027 address. The compiler has standard ways of doing so in all
3028 cases. In fact, it is safe for this macro to do nothing. But
3029 often a machine-dependent strategy can generate better code.
3030
3031 For the MIPS, transform:
3032
3033 memory(X + <large int>)
3034
3035 into:
3036
3037 Y = <large int> & ~0x7fff;
3038 Z = X + Y
3039 memory (Z + (<large int> & 0x7fff));
3040
3041 This is for CSE to find several similar references, and only use one Z.
3042
3043 When PIC, convert addresses of the form memory (symbol+large int) to
3044 memory (reg+large int). */
3045
3046
3047 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
3048 { \
3049 register rtx xinsn = (X); \
3050 \
3051 if (TARGET_DEBUG_B_MODE) \
3052 { \
3053 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
3054 GO_DEBUG_RTX (xinsn); \
3055 } \
3056 \
3057 if (mips_split_addresses && mips_check_split (X, MODE)) \
3058 { \
3059 /* ??? Is this ever executed? */ \
3060 X = gen_rtx_LO_SUM (Pmode, \
3061 copy_to_mode_reg (Pmode, \
3062 gen_rtx (HIGH, Pmode, X)), \
3063 X); \
3064 goto WIN; \
3065 } \
3066 \
3067 if (GET_CODE (xinsn) == CONST \
3068 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
3069 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
3070 || (!TARGET_GAS \
3071 && (mips_abi == ABI_N32 \
3072 || mips_abi == ABI_64)))) \
3073 { \
3074 rtx ptr_reg = gen_reg_rtx (Pmode); \
3075 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
3076 \
3077 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
3078 \
3079 X = gen_rtx_PLUS (Pmode, ptr_reg, constant); \
3080 if (SMALL_INT (constant)) \
3081 goto WIN; \
3082 /* Otherwise we fall through so the code below will fix the \
3083 constant. */ \
3084 xinsn = X; \
3085 } \
3086 \
3087 if (GET_CODE (xinsn) == PLUS) \
3088 { \
3089 register rtx xplus0 = XEXP (xinsn, 0); \
3090 register rtx xplus1 = XEXP (xinsn, 1); \
3091 register enum rtx_code code0 = GET_CODE (xplus0); \
3092 register enum rtx_code code1 = GET_CODE (xplus1); \
3093 \
3094 if (code0 != REG && code1 == REG) \
3095 { \
3096 xplus0 = XEXP (xinsn, 1); \
3097 xplus1 = XEXP (xinsn, 0); \
3098 code0 = GET_CODE (xplus0); \
3099 code1 = GET_CODE (xplus1); \
3100 } \
3101 \
3102 if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE) \
3103 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
3104 { \
3105 rtx int_reg = gen_reg_rtx (Pmode); \
3106 rtx ptr_reg = gen_reg_rtx (Pmode); \
3107 \
3108 emit_move_insn (int_reg, \
3109 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
3110 \
3111 emit_insn (gen_rtx_SET (VOIDmode, \
3112 ptr_reg, \
3113 gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
3114 \
3115 X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff); \
3116 goto WIN; \
3117 } \
3118 } \
3119 \
3120 if (TARGET_DEBUG_B_MODE) \
3121 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
3122 }
3123
3124
3125 /* A C statement or compound statement with a conditional `goto
3126 LABEL;' executed if memory address X (an RTX) can have different
3127 meanings depending on the machine mode of the memory reference it
3128 is used for.
3129
3130 Autoincrement and autodecrement addresses typically have
3131 mode-dependent effects because the amount of the increment or
3132 decrement is the size of the operand being addressed. Some
3133 machines have other mode-dependent addresses. Many RISC machines
3134 have no mode-dependent addresses.
3135
3136 You may assume that ADDR is a valid address for the machine. */
3137
3138 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
3139
3140 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
3141 'the start of the function that this code is output in'. */
3142
3143 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
3144 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
3145 asm_fprintf ((FILE), "%U%s", \
3146 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
3147 else \
3148 asm_fprintf ((FILE), "%U%s", (NAME))
3149
3150 /* The mips16 wants the constant pool to be after the function,
3151 because the PC relative load instructions use unsigned offsets. */
3152
3153 #define CONSTANT_POOL_BEFORE_FUNCTION (! TARGET_MIPS16)
3154
3155 #define ASM_OUTPUT_POOL_EPILOGUE(FILE, FNNAME, FNDECL, SIZE) \
3156 mips_string_length = 0;
3157
3158 #if 0
3159 /* In mips16 mode, put most string constants after the function. */
3160 #define CONSTANT_AFTER_FUNCTION_P(tree) \
3161 (TARGET_MIPS16 && mips16_constant_after_function_p (tree))
3162 #endif
3163 \f
3164 /* Specify the machine mode that this machine uses
3165 for the index in the tablejump instruction.
3166 ??? Using HImode in mips16 mode can cause overflow. However, the
3167 overflow is no more likely than the overflow in a branch
3168 instruction. Large functions can currently break in both ways. */
3169 #define CASE_VECTOR_MODE \
3170 (TARGET_MIPS16 ? HImode : Pmode == DImode ? DImode : SImode)
3171
3172 /* Define as C expression which evaluates to nonzero if the tablejump
3173 instruction expects the table to contain offsets from the address of the
3174 table.
3175 Do not define this if the table should contain absolute addresses. */
3176 #define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
3177
3178 /* Define this as 1 if `char' should by default be signed; else as 0. */
3179 #ifndef DEFAULT_SIGNED_CHAR
3180 #define DEFAULT_SIGNED_CHAR 1
3181 #endif
3182
3183 /* Max number of bytes we can move from memory to memory
3184 in one reasonably fast instruction. */
3185 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
3186 #define MAX_MOVE_MAX 8
3187
3188 /* Define this macro as a C expression which is nonzero if
3189 accessing less than a word of memory (i.e. a `char' or a
3190 `short') is no faster than accessing a word of memory, i.e., if
3191 such access require more than one instruction or if there is no
3192 difference in cost between byte and (aligned) word loads.
3193
3194 On RISC machines, it tends to generate better code to define
3195 this as 1, since it avoids making a QI or HI mode register. */
3196 #define SLOW_BYTE_ACCESS 1
3197
3198 /* We assume that the store-condition-codes instructions store 0 for false
3199 and some other value for true. This is the value stored for true. */
3200
3201 #define STORE_FLAG_VALUE 1
3202
3203 /* Define this to be nonzero if shift instructions ignore all but the low-order
3204 few bits. */
3205 #define SHIFT_COUNT_TRUNCATED 1
3206
3207 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
3208 is done just by pretending it is already truncated. */
3209 /* In 64 bit mode, 32 bit instructions require that register values be properly
3210 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
3211 converts a value >32 bits to a value <32 bits. */
3212 /* ??? This results in inefficient code for 64 bit to 32 conversions.
3213 Something needs to be done about this. Perhaps not use any 32 bit
3214 instructions? Perhaps use PROMOTE_MODE? */
3215 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
3216 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
3217
3218 /* Specify the machine mode that pointers have.
3219 After generation of rtl, the compiler makes no further distinction
3220 between pointers and any other objects of this machine mode.
3221
3222 For MIPS we make pointers are the smaller of longs and gp-registers. */
3223
3224 #ifndef Pmode
3225 #define Pmode ((TARGET_LONG64 && TARGET_64BIT) ? DImode : SImode)
3226 #endif
3227
3228 /* A function address in a call instruction
3229 is a word address (for indexing purposes)
3230 so give the MEM rtx a words's mode. */
3231
3232 #define FUNCTION_MODE (Pmode == DImode ? DImode : SImode)
3233
3234 \f
3235 /* A part of a C `switch' statement that describes the relative
3236 costs of constant RTL expressions. It must contain `case'
3237 labels for expression codes `const_int', `const', `symbol_ref',
3238 `label_ref' and `const_double'. Each case must ultimately reach
3239 a `return' statement to return the relative cost of the use of
3240 that kind of constant value in an expression. The cost may
3241 depend on the precise value of the constant, which is available
3242 for examination in X.
3243
3244 CODE is the expression code--redundant, since it can be obtained
3245 with `GET_CODE (X)'. */
3246
3247 #define CONST_COSTS(X,CODE,OUTER_CODE) \
3248 case CONST_INT: \
3249 if (! TARGET_MIPS16) \
3250 { \
3251 /* Always return 0, since we don't have different sized \
3252 instructions, hence different costs according to Richard \
3253 Kenner */ \
3254 return 0; \
3255 } \
3256 if ((OUTER_CODE) == SET) \
3257 { \
3258 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3259 return 0; \
3260 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3261 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3262 return COSTS_N_INSNS (1); \
3263 else \
3264 return COSTS_N_INSNS (2); \
3265 } \
3266 /* A PLUS could be an address. We don't want to force an address \
3267 to use a register, so accept any signed 16 bit value without \
3268 complaint. */ \
3269 if ((OUTER_CODE) == PLUS \
3270 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3271 return 0; \
3272 /* A number between 1 and 8 inclusive is efficient for a shift. \
3273 Otherwise, we will need an extended instruction. */ \
3274 if ((OUTER_CODE) == ASHIFT || (OUTER_CODE) == ASHIFTRT \
3275 || (OUTER_CODE) == LSHIFTRT) \
3276 { \
3277 if (INTVAL (X) >= 1 && INTVAL (X) <= 8) \
3278 return 0; \
3279 return COSTS_N_INSNS (1); \
3280 } \
3281 /* We can use cmpi for an xor with an unsigned 16 bit value. */ \
3282 if ((OUTER_CODE) == XOR \
3283 && INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3284 return 0; \
3285 /* We may be able to use slt or sltu for a comparison with a \
3286 signed 16 bit value. (The boundary conditions aren't quite \
3287 right, but this is just a heuristic anyhow.) */ \
3288 if (((OUTER_CODE) == LT || (OUTER_CODE) == LE \
3289 || (OUTER_CODE) == GE || (OUTER_CODE) == GT \
3290 || (OUTER_CODE) == LTU || (OUTER_CODE) == LEU \
3291 || (OUTER_CODE) == GEU || (OUTER_CODE) == GTU) \
3292 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3293 return 0; \
3294 /* Equality comparisons with 0 are cheap. */ \
3295 if (((OUTER_CODE) == EQ || (OUTER_CODE) == NE) \
3296 && INTVAL (X) == 0) \
3297 return 0; \
3298 \
3299 /* Otherwise, work out the cost to load the value into a \
3300 register. */ \
3301 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3302 return COSTS_N_INSNS (1); \
3303 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3304 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3305 return COSTS_N_INSNS (2); \
3306 else \
3307 return COSTS_N_INSNS (3); \
3308 \
3309 case LABEL_REF: \
3310 return COSTS_N_INSNS (2); \
3311 \
3312 case CONST: \
3313 { \
3314 rtx offset = const0_rtx; \
3315 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
3316 \
3317 if (TARGET_MIPS16 && mips16_gp_offset_p (X)) \
3318 { \
3319 /* Treat this like a signed 16 bit CONST_INT. */ \
3320 if ((OUTER_CODE) == PLUS) \
3321 return 0; \
3322 else if ((OUTER_CODE) == SET) \
3323 return COSTS_N_INSNS (1); \
3324 else \
3325 return COSTS_N_INSNS (2); \
3326 } \
3327 \
3328 if (GET_CODE (symref) == LABEL_REF) \
3329 return COSTS_N_INSNS (2); \
3330 \
3331 if (GET_CODE (symref) != SYMBOL_REF) \
3332 return COSTS_N_INSNS (4); \
3333 \
3334 /* let's be paranoid.... */ \
3335 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
3336 return COSTS_N_INSNS (2); \
3337 \
3338 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
3339 } \
3340 \
3341 case SYMBOL_REF: \
3342 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
3343 \
3344 case CONST_DOUBLE: \
3345 { \
3346 rtx high, low; \
3347 if (TARGET_MIPS16) \
3348 return COSTS_N_INSNS (4); \
3349 split_double (X, &high, &low); \
3350 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
3351 || low == CONST0_RTX (GET_MODE (low))) \
3352 ? 2 : 4); \
3353 }
3354
3355 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
3356 This can be used, for example, to indicate how costly a multiply
3357 instruction is. In writing this macro, you can use the construct
3358 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
3359
3360 This macro is optional; do not define it if the default cost
3361 assumptions are adequate for the target machine.
3362
3363 If -mdebugd is used, change the multiply cost to 2, so multiply by
3364 a constant isn't converted to a series of shifts. This helps
3365 strength reduction, and also makes it easier to identify what the
3366 compiler is doing. */
3367
3368 /* ??? Fix this to be right for the R8000. */
3369 #define RTX_COSTS(X,CODE,OUTER_CODE) \
3370 case MEM: \
3371 { \
3372 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
3373 if (simple_memory_operand (X, GET_MODE (X))) \
3374 return COSTS_N_INSNS (num_words); \
3375 \
3376 return COSTS_N_INSNS (2*num_words); \
3377 } \
3378 \
3379 case FFS: \
3380 return COSTS_N_INSNS (6); \
3381 \
3382 case NOT: \
3383 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
3384 \
3385 case AND: \
3386 case IOR: \
3387 case XOR: \
3388 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3389 return COSTS_N_INSNS (2); \
3390 \
3391 break; \
3392 \
3393 case ASHIFT: \
3394 case ASHIFTRT: \
3395 case LSHIFTRT: \
3396 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3397 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
3398 \
3399 break; \
3400 \
3401 case ABS: \
3402 { \
3403 enum machine_mode xmode = GET_MODE (X); \
3404 if (xmode == SFmode || xmode == DFmode) \
3405 return COSTS_N_INSNS (1); \
3406 \
3407 return COSTS_N_INSNS (4); \
3408 } \
3409 \
3410 case PLUS: \
3411 case MINUS: \
3412 { \
3413 enum machine_mode xmode = GET_MODE (X); \
3414 if (xmode == SFmode || xmode == DFmode) \
3415 { \
3416 if (TUNE_MIPS3000 \
3417 || TUNE_MIPS3900) \
3418 return COSTS_N_INSNS (2); \
3419 else if (TUNE_MIPS6000) \
3420 return COSTS_N_INSNS (3); \
3421 else \
3422 return COSTS_N_INSNS (6); \
3423 } \
3424 \
3425 if (xmode == DImode && !TARGET_64BIT) \
3426 return COSTS_N_INSNS (4); \
3427 \
3428 break; \
3429 } \
3430 \
3431 case NEG: \
3432 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3433 return 4; \
3434 \
3435 break; \
3436 \
3437 case MULT: \
3438 { \
3439 enum machine_mode xmode = GET_MODE (X); \
3440 if (xmode == SFmode) \
3441 { \
3442 if (TUNE_MIPS3000 \
3443 || TUNE_MIPS3900 \
3444 || TUNE_MIPS5000) \
3445 return COSTS_N_INSNS (4); \
3446 else if (TUNE_MIPS6000) \
3447 return COSTS_N_INSNS (5); \
3448 else \
3449 return COSTS_N_INSNS (7); \
3450 } \
3451 \
3452 if (xmode == DFmode) \
3453 { \
3454 if (TUNE_MIPS3000 \
3455 || TUNE_MIPS3900 \
3456 || TUNE_MIPS5000) \
3457 return COSTS_N_INSNS (5); \
3458 else if (TUNE_MIPS6000) \
3459 return COSTS_N_INSNS (6); \
3460 else \
3461 return COSTS_N_INSNS (8); \
3462 } \
3463 \
3464 if (TUNE_MIPS3000) \
3465 return COSTS_N_INSNS (12); \
3466 else if (TUNE_MIPS3900) \
3467 return COSTS_N_INSNS (2); \
3468 else if (TUNE_MIPS6000) \
3469 return COSTS_N_INSNS (17); \
3470 else if (TUNE_MIPS5000) \
3471 return COSTS_N_INSNS (5); \
3472 else \
3473 return COSTS_N_INSNS (10); \
3474 } \
3475 \
3476 case DIV: \
3477 case MOD: \
3478 { \
3479 enum machine_mode xmode = GET_MODE (X); \
3480 if (xmode == SFmode) \
3481 { \
3482 if (TUNE_MIPS3000 \
3483 || TUNE_MIPS3900) \
3484 return COSTS_N_INSNS (12); \
3485 else if (TUNE_MIPS6000) \
3486 return COSTS_N_INSNS (15); \
3487 else \
3488 return COSTS_N_INSNS (23); \
3489 } \
3490 \
3491 if (xmode == DFmode) \
3492 { \
3493 if (TUNE_MIPS3000 \
3494 || TUNE_MIPS3900) \
3495 return COSTS_N_INSNS (19); \
3496 else if (TUNE_MIPS6000) \
3497 return COSTS_N_INSNS (16); \
3498 else \
3499 return COSTS_N_INSNS (36); \
3500 } \
3501 } \
3502 /* fall through */ \
3503 \
3504 case UDIV: \
3505 case UMOD: \
3506 if (TUNE_MIPS3000 \
3507 || TUNE_MIPS3900) \
3508 return COSTS_N_INSNS (35); \
3509 else if (TUNE_MIPS6000) \
3510 return COSTS_N_INSNS (38); \
3511 else if (TUNE_MIPS5000) \
3512 return COSTS_N_INSNS (36); \
3513 else \
3514 return COSTS_N_INSNS (69); \
3515 \
3516 case SIGN_EXTEND: \
3517 /* A sign extend from SImode to DImode in 64 bit mode is often \
3518 zero instructions, because the result can often be used \
3519 directly by another instruction; we'll call it one. */ \
3520 if (TARGET_64BIT && GET_MODE (X) == DImode \
3521 && GET_MODE (XEXP (X, 0)) == SImode) \
3522 return COSTS_N_INSNS (1); \
3523 else \
3524 return COSTS_N_INSNS (2); \
3525 \
3526 case ZERO_EXTEND: \
3527 if (TARGET_64BIT && GET_MODE (X) == DImode \
3528 && GET_MODE (XEXP (X, 0)) == SImode) \
3529 return COSTS_N_INSNS (2); \
3530 else \
3531 return COSTS_N_INSNS (1);
3532
3533 /* An expression giving the cost of an addressing mode that
3534 contains ADDRESS. If not defined, the cost is computed from the
3535 form of the ADDRESS expression and the `CONST_COSTS' values.
3536
3537 For most CISC machines, the default cost is a good approximation
3538 of the true cost of the addressing mode. However, on RISC
3539 machines, all instructions normally have the same length and
3540 execution time. Hence all addresses will have equal costs.
3541
3542 In cases where more than one form of an address is known, the
3543 form with the lowest cost will be used. If multiple forms have
3544 the same, lowest, cost, the one that is the most complex will be
3545 used.
3546
3547 For example, suppose an address that is equal to the sum of a
3548 register and a constant is used twice in the same basic block.
3549 When this macro is not defined, the address will be computed in
3550 a register and memory references will be indirect through that
3551 register. On machines where the cost of the addressing mode
3552 containing the sum is no higher than that of a simple indirect
3553 reference, this will produce an additional instruction and
3554 possibly require an additional register. Proper specification
3555 of this macro eliminates this overhead for such machines.
3556
3557 Similar use of this macro is made in strength reduction of loops.
3558
3559 ADDRESS need not be valid as an address. In such a case, the
3560 cost is not relevant and can be any value; invalid addresses
3561 need not be assigned a different cost.
3562
3563 On machines where an address involving more than one register is
3564 as cheap as an address computation involving only one register,
3565 defining `ADDRESS_COST' to reflect this can cause two registers
3566 to be live over a region of code where only one would have been
3567 if `ADDRESS_COST' were not defined in that manner. This effect
3568 should be considered in the definition of this macro.
3569 Equivalent costs should probably only be given to addresses with
3570 different numbers of registers on machines with lots of registers.
3571
3572 This macro will normally either not be defined or be defined as
3573 a constant. */
3574
3575 #define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
3576
3577 /* A C expression for the cost of moving data from a register in
3578 class FROM to one in class TO. The classes are expressed using
3579 the enumeration values such as `GENERAL_REGS'. A value of 2 is
3580 the default; other values are interpreted relative to that.
3581
3582 It is not required that the cost always equal 2 when FROM is the
3583 same as TO; on some machines it is expensive to move between
3584 registers if they are not general registers.
3585
3586 If reload sees an insn consisting of a single `set' between two
3587 hard registers, and if `REGISTER_MOVE_COST' applied to their
3588 classes returns a value of 2, reload does not check to ensure
3589 that the constraints of the insn are met. Setting a cost of
3590 other than 2 will allow reload to verify that the constraints are
3591 met. You should do this if the `movM' pattern's constraints do
3592 not allow such copying. */
3593
3594 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
3595 mips_register_move_cost (MODE, FROM, TO)
3596
3597 /* ??? Fix this to be right for the R8000. */
3598 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
3599 (((TUNE_MIPS4000 || TUNE_MIPS6000) ? 6 : 4) \
3600 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
3601
3602 /* Define if copies to/from condition code registers should be avoided.
3603
3604 This is needed for the MIPS because reload_outcc is not complete;
3605 it needs to handle cases where the source is a general or another
3606 condition code register. */
3607 #define AVOID_CCMODE_COPIES
3608
3609 /* A C expression for the cost of a branch instruction. A value of
3610 1 is the default; other values are interpreted relative to that. */
3611
3612 /* ??? Fix this to be right for the R8000. */
3613 #define BRANCH_COST \
3614 ((! TARGET_MIPS16 \
3615 && (TUNE_MIPS4000 || TUNE_MIPS6000)) \
3616 ? 2 : 1)
3617
3618 /* If defined, modifies the length assigned to instruction INSN as a
3619 function of the context in which it is used. LENGTH is an lvalue
3620 that contains the initially computed length of the insn and should
3621 be updated with the correct length of the insn. */
3622 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
3623 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
3624
3625 \f
3626 /* Optionally define this if you have added predicates to
3627 `MACHINE.c'. This macro is called within an initializer of an
3628 array of structures. The first field in the structure is the
3629 name of a predicate and the second field is an array of rtl
3630 codes. For each predicate, list all rtl codes that can be in
3631 expressions matched by the predicate. The list should have a
3632 trailing comma. Here is an example of two entries in the list
3633 for a typical RISC machine:
3634
3635 #define PREDICATE_CODES \
3636 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
3637 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3638
3639 Defining this macro does not affect the generated code (however,
3640 incorrect definitions that omit an rtl code that may be matched
3641 by the predicate can cause the compiler to malfunction).
3642 Instead, it allows the table built by `genrecog' to be more
3643 compact and efficient, thus speeding up the compiler. The most
3644 important predicates to include in the list specified by this
3645 macro are thoses used in the most insn patterns. */
3646
3647 #define PREDICATE_CODES \
3648 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
3649 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
3650 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
3651 {"reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
3652 {"true_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
3653 {"small_int", { CONST_INT }}, \
3654 {"large_int", { CONST_INT }}, \
3655 {"mips_const_double_ok", { CONST_DOUBLE }}, \
3656 {"const_float_1_operand", { CONST_DOUBLE }}, \
3657 {"simple_memory_operand", { MEM, SUBREG }}, \
3658 {"equality_op", { EQ, NE }}, \
3659 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
3660 LTU, LEU }}, \
3661 {"trap_cmp_op", { EQ, NE, GE, GEU, LT, LTU }}, \
3662 {"pc_or_label_operand", { PC, LABEL_REF }}, \
3663 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
3664 {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3665 SYMBOL_REF, LABEL_REF, SUBREG, \
3666 REG, MEM}}, \
3667 {"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3668 SYMBOL_REF, LABEL_REF, SUBREG, REG, \
3669 MEM, SIGN_EXTEND }}, \
3670 {"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
3671 {"se_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG, \
3672 SIGN_EXTEND }}, \
3673 {"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
3674 SIGN_EXTEND }}, \
3675 {"se_arith_operand", { REG, CONST_INT, SUBREG, \
3676 SIGN_EXTEND }}, \
3677 {"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3678 SYMBOL_REF, LABEL_REF, SUBREG, \
3679 REG, SIGN_EXTEND }}, \
3680 {"se_nonimmediate_operand", { SUBREG, REG, MEM, SIGN_EXTEND }}, \
3681 {"consttable_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
3682 CONST_DOUBLE, CONST }}, \
3683 {"extend_operator", { SIGN_EXTEND, ZERO_EXTEND }}, \
3684 {"highpart_shift_operator", { ASHIFTRT, LSHIFTRT, ROTATERT, ROTATE }},
3685
3686 /* A list of predicates that do special things with modes, and so
3687 should not elicit warnings for VOIDmode match_operand. */
3688
3689 #define SPECIAL_MODE_PREDICATES \
3690 "pc_or_label_operand",
3691
3692 \f
3693 /* If defined, a C statement to be executed just prior to the
3694 output of assembler code for INSN, to modify the extracted
3695 operands so they will be output differently.
3696
3697 Here the argument OPVEC is the vector containing the operands
3698 extracted from INSN, and NOPERANDS is the number of elements of
3699 the vector which contain meaningful data for this insn. The
3700 contents of this vector are what will be used to convert the
3701 insn template into assembler code, so you can change the
3702 assembler output by changing the contents of the vector.
3703
3704 We use it to check if the current insn needs a nop in front of it
3705 because of load delays, and also to update the delay slot
3706 statistics. */
3707
3708 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3709 final_prescan_insn (INSN, OPVEC, NOPERANDS)
3710
3711 \f
3712 /* Control the assembler format that we output. */
3713
3714 /* Output at beginning of assembler file.
3715 If we are optimizing to use the global pointer, create a temporary
3716 file to hold all of the text stuff, and write it out to the end.
3717 This is needed because the MIPS assembler is evidently one pass,
3718 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
3719 declaration when the code is processed, it generates a two
3720 instruction sequence. */
3721
3722 #undef ASM_FILE_START
3723 #define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
3724
3725 /* Output to assembler file text saying following lines
3726 may contain character constants, extra white space, comments, etc. */
3727
3728 #ifndef ASM_APP_ON
3729 #define ASM_APP_ON " #APP\n"
3730 #endif
3731
3732 /* Output to assembler file text saying following lines
3733 no longer contain unusual constructs. */
3734
3735 #ifndef ASM_APP_OFF
3736 #define ASM_APP_OFF " #NO_APP\n"
3737 #endif
3738
3739 /* How to refer to registers in assembler output.
3740 This sequence is indexed by compiler's hard-register-number (see above).
3741
3742 In order to support the two different conventions for register names,
3743 we use the name of a table set up in mips.c, which is overwritten
3744 if -mrnames is used. */
3745
3746 #define REGISTER_NAMES \
3747 { \
3748 &mips_reg_names[ 0][0], \
3749 &mips_reg_names[ 1][0], \
3750 &mips_reg_names[ 2][0], \
3751 &mips_reg_names[ 3][0], \
3752 &mips_reg_names[ 4][0], \
3753 &mips_reg_names[ 5][0], \
3754 &mips_reg_names[ 6][0], \
3755 &mips_reg_names[ 7][0], \
3756 &mips_reg_names[ 8][0], \
3757 &mips_reg_names[ 9][0], \
3758 &mips_reg_names[10][0], \
3759 &mips_reg_names[11][0], \
3760 &mips_reg_names[12][0], \
3761 &mips_reg_names[13][0], \
3762 &mips_reg_names[14][0], \
3763 &mips_reg_names[15][0], \
3764 &mips_reg_names[16][0], \
3765 &mips_reg_names[17][0], \
3766 &mips_reg_names[18][0], \
3767 &mips_reg_names[19][0], \
3768 &mips_reg_names[20][0], \
3769 &mips_reg_names[21][0], \
3770 &mips_reg_names[22][0], \
3771 &mips_reg_names[23][0], \
3772 &mips_reg_names[24][0], \
3773 &mips_reg_names[25][0], \
3774 &mips_reg_names[26][0], \
3775 &mips_reg_names[27][0], \
3776 &mips_reg_names[28][0], \
3777 &mips_reg_names[29][0], \
3778 &mips_reg_names[30][0], \
3779 &mips_reg_names[31][0], \
3780 &mips_reg_names[32][0], \
3781 &mips_reg_names[33][0], \
3782 &mips_reg_names[34][0], \
3783 &mips_reg_names[35][0], \
3784 &mips_reg_names[36][0], \
3785 &mips_reg_names[37][0], \
3786 &mips_reg_names[38][0], \
3787 &mips_reg_names[39][0], \
3788 &mips_reg_names[40][0], \
3789 &mips_reg_names[41][0], \
3790 &mips_reg_names[42][0], \
3791 &mips_reg_names[43][0], \
3792 &mips_reg_names[44][0], \
3793 &mips_reg_names[45][0], \
3794 &mips_reg_names[46][0], \
3795 &mips_reg_names[47][0], \
3796 &mips_reg_names[48][0], \
3797 &mips_reg_names[49][0], \
3798 &mips_reg_names[50][0], \
3799 &mips_reg_names[51][0], \
3800 &mips_reg_names[52][0], \
3801 &mips_reg_names[53][0], \
3802 &mips_reg_names[54][0], \
3803 &mips_reg_names[55][0], \
3804 &mips_reg_names[56][0], \
3805 &mips_reg_names[57][0], \
3806 &mips_reg_names[58][0], \
3807 &mips_reg_names[59][0], \
3808 &mips_reg_names[60][0], \
3809 &mips_reg_names[61][0], \
3810 &mips_reg_names[62][0], \
3811 &mips_reg_names[63][0], \
3812 &mips_reg_names[64][0], \
3813 &mips_reg_names[65][0], \
3814 &mips_reg_names[66][0], \
3815 &mips_reg_names[67][0], \
3816 &mips_reg_names[68][0], \
3817 &mips_reg_names[69][0], \
3818 &mips_reg_names[70][0], \
3819 &mips_reg_names[71][0], \
3820 &mips_reg_names[72][0], \
3821 &mips_reg_names[73][0], \
3822 &mips_reg_names[74][0], \
3823 &mips_reg_names[75][0], \
3824 &mips_reg_names[76][0], \
3825 &mips_reg_names[77][0], \
3826 &mips_reg_names[78][0], \
3827 &mips_reg_names[79][0], \
3828 &mips_reg_names[80][0], \
3829 &mips_reg_names[81][0], \
3830 &mips_reg_names[82][0], \
3831 &mips_reg_names[83][0], \
3832 &mips_reg_names[84][0], \
3833 &mips_reg_names[85][0], \
3834 &mips_reg_names[86][0], \
3835 &mips_reg_names[87][0], \
3836 &mips_reg_names[88][0], \
3837 &mips_reg_names[89][0], \
3838 &mips_reg_names[90][0], \
3839 &mips_reg_names[91][0], \
3840 &mips_reg_names[92][0], \
3841 &mips_reg_names[93][0], \
3842 &mips_reg_names[94][0], \
3843 &mips_reg_names[95][0], \
3844 &mips_reg_names[96][0], \
3845 &mips_reg_names[97][0], \
3846 &mips_reg_names[98][0], \
3847 &mips_reg_names[99][0], \
3848 &mips_reg_names[100][0], \
3849 &mips_reg_names[101][0], \
3850 &mips_reg_names[102][0], \
3851 &mips_reg_names[103][0], \
3852 &mips_reg_names[104][0], \
3853 &mips_reg_names[105][0], \
3854 &mips_reg_names[106][0], \
3855 &mips_reg_names[107][0], \
3856 &mips_reg_names[108][0], \
3857 &mips_reg_names[109][0], \
3858 &mips_reg_names[110][0], \
3859 &mips_reg_names[111][0], \
3860 &mips_reg_names[112][0], \
3861 &mips_reg_names[113][0], \
3862 &mips_reg_names[114][0], \
3863 &mips_reg_names[115][0], \
3864 &mips_reg_names[116][0], \
3865 &mips_reg_names[117][0], \
3866 &mips_reg_names[118][0], \
3867 &mips_reg_names[119][0], \
3868 &mips_reg_names[120][0], \
3869 &mips_reg_names[121][0], \
3870 &mips_reg_names[122][0], \
3871 &mips_reg_names[123][0], \
3872 &mips_reg_names[124][0], \
3873 &mips_reg_names[125][0], \
3874 &mips_reg_names[126][0], \
3875 &mips_reg_names[127][0], \
3876 &mips_reg_names[128][0], \
3877 &mips_reg_names[129][0], \
3878 &mips_reg_names[130][0], \
3879 &mips_reg_names[131][0], \
3880 &mips_reg_names[132][0], \
3881 &mips_reg_names[133][0], \
3882 &mips_reg_names[134][0], \
3883 &mips_reg_names[135][0], \
3884 &mips_reg_names[136][0], \
3885 &mips_reg_names[137][0], \
3886 &mips_reg_names[138][0], \
3887 &mips_reg_names[139][0], \
3888 &mips_reg_names[140][0], \
3889 &mips_reg_names[141][0], \
3890 &mips_reg_names[142][0], \
3891 &mips_reg_names[143][0], \
3892 &mips_reg_names[144][0], \
3893 &mips_reg_names[145][0], \
3894 &mips_reg_names[146][0], \
3895 &mips_reg_names[147][0], \
3896 &mips_reg_names[148][0], \
3897 &mips_reg_names[149][0], \
3898 &mips_reg_names[150][0], \
3899 &mips_reg_names[151][0], \
3900 &mips_reg_names[152][0], \
3901 &mips_reg_names[153][0], \
3902 &mips_reg_names[154][0], \
3903 &mips_reg_names[155][0], \
3904 &mips_reg_names[156][0], \
3905 &mips_reg_names[157][0], \
3906 &mips_reg_names[158][0], \
3907 &mips_reg_names[159][0], \
3908 &mips_reg_names[160][0], \
3909 &mips_reg_names[161][0], \
3910 &mips_reg_names[162][0], \
3911 &mips_reg_names[163][0], \
3912 &mips_reg_names[164][0], \
3913 &mips_reg_names[165][0], \
3914 &mips_reg_names[166][0], \
3915 &mips_reg_names[167][0], \
3916 &mips_reg_names[168][0], \
3917 &mips_reg_names[169][0], \
3918 &mips_reg_names[170][0], \
3919 &mips_reg_names[171][0], \
3920 &mips_reg_names[172][0], \
3921 &mips_reg_names[173][0], \
3922 &mips_reg_names[174][0], \
3923 &mips_reg_names[175][0] \
3924 }
3925
3926 /* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
3927 So define this for it. */
3928 #define DEBUG_REGISTER_NAMES \
3929 { \
3930 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
3931 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
3932 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
3933 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
3934 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
3935 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
3936 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
3937 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
3938 "hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
3939 "$fcc5","$fcc6","$fcc7","$rap", "", "", "", "", \
3940 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",\
3941 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15",\
3942 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23",\
3943 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31",\
3944 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",\
3945 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15",\
3946 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23",\
3947 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31",\
3948 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",\
3949 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15",\
3950 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23",\
3951 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31"\
3952 }
3953
3954 /* If defined, a C initializer for an array of structures
3955 containing a name and a register number. This macro defines
3956 additional names for hard registers, thus allowing the `asm'
3957 option in declarations to refer to registers using alternate
3958 names.
3959
3960 We define both names for the integer registers here. */
3961
3962 #define ADDITIONAL_REGISTER_NAMES \
3963 { \
3964 { "$0", 0 + GP_REG_FIRST }, \
3965 { "$1", 1 + GP_REG_FIRST }, \
3966 { "$2", 2 + GP_REG_FIRST }, \
3967 { "$3", 3 + GP_REG_FIRST }, \
3968 { "$4", 4 + GP_REG_FIRST }, \
3969 { "$5", 5 + GP_REG_FIRST }, \
3970 { "$6", 6 + GP_REG_FIRST }, \
3971 { "$7", 7 + GP_REG_FIRST }, \
3972 { "$8", 8 + GP_REG_FIRST }, \
3973 { "$9", 9 + GP_REG_FIRST }, \
3974 { "$10", 10 + GP_REG_FIRST }, \
3975 { "$11", 11 + GP_REG_FIRST }, \
3976 { "$12", 12 + GP_REG_FIRST }, \
3977 { "$13", 13 + GP_REG_FIRST }, \
3978 { "$14", 14 + GP_REG_FIRST }, \
3979 { "$15", 15 + GP_REG_FIRST }, \
3980 { "$16", 16 + GP_REG_FIRST }, \
3981 { "$17", 17 + GP_REG_FIRST }, \
3982 { "$18", 18 + GP_REG_FIRST }, \
3983 { "$19", 19 + GP_REG_FIRST }, \
3984 { "$20", 20 + GP_REG_FIRST }, \
3985 { "$21", 21 + GP_REG_FIRST }, \
3986 { "$22", 22 + GP_REG_FIRST }, \
3987 { "$23", 23 + GP_REG_FIRST }, \
3988 { "$24", 24 + GP_REG_FIRST }, \
3989 { "$25", 25 + GP_REG_FIRST }, \
3990 { "$26", 26 + GP_REG_FIRST }, \
3991 { "$27", 27 + GP_REG_FIRST }, \
3992 { "$28", 28 + GP_REG_FIRST }, \
3993 { "$29", 29 + GP_REG_FIRST }, \
3994 { "$30", 30 + GP_REG_FIRST }, \
3995 { "$31", 31 + GP_REG_FIRST }, \
3996 { "$sp", 29 + GP_REG_FIRST }, \
3997 { "$fp", 30 + GP_REG_FIRST }, \
3998 { "at", 1 + GP_REG_FIRST }, \
3999 { "v0", 2 + GP_REG_FIRST }, \
4000 { "v1", 3 + GP_REG_FIRST }, \
4001 { "a0", 4 + GP_REG_FIRST }, \
4002 { "a1", 5 + GP_REG_FIRST }, \
4003 { "a2", 6 + GP_REG_FIRST }, \
4004 { "a3", 7 + GP_REG_FIRST }, \
4005 { "t0", 8 + GP_REG_FIRST }, \
4006 { "t1", 9 + GP_REG_FIRST }, \
4007 { "t2", 10 + GP_REG_FIRST }, \
4008 { "t3", 11 + GP_REG_FIRST }, \
4009 { "t4", 12 + GP_REG_FIRST }, \
4010 { "t5", 13 + GP_REG_FIRST }, \
4011 { "t6", 14 + GP_REG_FIRST }, \
4012 { "t7", 15 + GP_REG_FIRST }, \
4013 { "s0", 16 + GP_REG_FIRST }, \
4014 { "s1", 17 + GP_REG_FIRST }, \
4015 { "s2", 18 + GP_REG_FIRST }, \
4016 { "s3", 19 + GP_REG_FIRST }, \
4017 { "s4", 20 + GP_REG_FIRST }, \
4018 { "s5", 21 + GP_REG_FIRST }, \
4019 { "s6", 22 + GP_REG_FIRST }, \
4020 { "s7", 23 + GP_REG_FIRST }, \
4021 { "t8", 24 + GP_REG_FIRST }, \
4022 { "t9", 25 + GP_REG_FIRST }, \
4023 { "k0", 26 + GP_REG_FIRST }, \
4024 { "k1", 27 + GP_REG_FIRST }, \
4025 { "gp", 28 + GP_REG_FIRST }, \
4026 { "sp", 29 + GP_REG_FIRST }, \
4027 { "fp", 30 + GP_REG_FIRST }, \
4028 { "ra", 31 + GP_REG_FIRST }, \
4029 { "$sp", 29 + GP_REG_FIRST }, \
4030 { "$fp", 30 + GP_REG_FIRST } \
4031 ALL_COP_ADDITIONAL_REGISTER_NAMES \
4032 }
4033
4034 /* This is meant to be redefined in the host dependent files. It is a
4035 set of alternative names and regnums for mips coprocessors. */
4036
4037 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
4038
4039 /* A C compound statement to output to stdio stream STREAM the
4040 assembler syntax for an instruction operand X. X is an RTL
4041 expression.
4042
4043 CODE is a value that can be used to specify one of several ways
4044 of printing the operand. It is used when identical operands
4045 must be printed differently depending on the context. CODE
4046 comes from the `%' specification that was used to request
4047 printing of the operand. If the specification was just `%DIGIT'
4048 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4049 is the ASCII code for LTR.
4050
4051 If X is a register, this macro should print the register's name.
4052 The names can be found in an array `reg_names' whose type is
4053 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4054
4055 When the machine description has a specification `%PUNCT' (a `%'
4056 followed by a punctuation character), this macro is called with
4057 a null pointer for X and the punctuation character for CODE.
4058
4059 See mips.c for the MIPS specific codes. */
4060
4061 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
4062
4063 /* A C expression which evaluates to true if CODE is a valid
4064 punctuation character for use in the `PRINT_OPERAND' macro. If
4065 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
4066 punctuation characters (except for the standard one, `%') are
4067 used in this way. */
4068
4069 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
4070
4071 /* A C compound statement to output to stdio stream STREAM the
4072 assembler syntax for an instruction operand that is a memory
4073 reference whose address is ADDR. ADDR is an RTL expression. */
4074
4075 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
4076
4077
4078 /* A C statement, to be executed after all slot-filler instructions
4079 have been output. If necessary, call `dbr_sequence_length' to
4080 determine the number of slots filled in a sequence (zero if not
4081 currently outputting a sequence), to decide how many no-ops to
4082 output, or whatever.
4083
4084 Don't define this macro if it has nothing to do, but it is
4085 helpful in reading assembly output if the extent of the delay
4086 sequence is made explicit (e.g. with white space).
4087
4088 Note that output routines for instructions with delay slots must
4089 be prepared to deal with not being output as part of a sequence
4090 (i.e. when the scheduling pass is not run, or when no slot
4091 fillers could be found.) The variable `final_sequence' is null
4092 when not processing a sequence, otherwise it contains the
4093 `sequence' rtx being output. */
4094
4095 #define DBR_OUTPUT_SEQEND(STREAM) \
4096 do \
4097 { \
4098 if (set_nomacro > 0 && --set_nomacro == 0) \
4099 fputs ("\t.set\tmacro\n", STREAM); \
4100 \
4101 if (set_noreorder > 0 && --set_noreorder == 0) \
4102 fputs ("\t.set\treorder\n", STREAM); \
4103 \
4104 dslots_jump_filled++; \
4105 fputs ("\n", STREAM); \
4106 } \
4107 while (0)
4108
4109
4110 /* How to tell the debugger about changes of source files. Note, the
4111 mips ECOFF format cannot deal with changes of files inside of
4112 functions, which means the output of parser generators like bison
4113 is generally not debuggable without using the -l switch. Lose,
4114 lose, lose. Silicon graphics seems to want all .file's hardwired
4115 to 1. */
4116
4117 #ifndef SET_FILE_NUMBER
4118 #define SET_FILE_NUMBER() ++num_source_filenames
4119 #endif
4120
4121 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
4122 mips_output_filename (STREAM, NAME)
4123
4124 /* This is defined so that it can be overridden in iris6.h. */
4125 #define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
4126 do \
4127 { \
4128 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
4129 output_quoted_string (STREAM, NAME); \
4130 fputs ("\n", STREAM); \
4131 } \
4132 while (0)
4133
4134 /* This is how to output a note the debugger telling it the line number
4135 to which the following sequence of instructions corresponds.
4136 Silicon graphics puts a label after each .loc. */
4137
4138 #ifndef LABEL_AFTER_LOC
4139 #define LABEL_AFTER_LOC(STREAM)
4140 #endif
4141
4142 #ifndef ASM_OUTPUT_SOURCE_LINE
4143 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
4144 mips_output_lineno (STREAM, LINE)
4145 #endif
4146
4147 /* The MIPS implementation uses some labels for its own purpose. The
4148 following lists what labels are created, and are all formed by the
4149 pattern $L[a-z].*. The machine independent portion of GCC creates
4150 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
4151
4152 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
4153 $Lb[0-9]+ Begin blocks for MIPS debug support
4154 $Lc[0-9]+ Label for use in s<xx> operation.
4155 $Le[0-9]+ End blocks for MIPS debug support */
4156
4157 /* This is how to output the definition of a user-level label named NAME,
4158 such as the label on a static function or variable NAME.
4159
4160 If we are optimizing the gp, remember that this label has been put
4161 out, so we know not to emit an .extern for it in mips_asm_file_end.
4162 We use one of the common bits in the IDENTIFIER tree node for this,
4163 since those bits seem to be unused, and we don't have any method
4164 of getting the decl nodes from the name. */
4165
4166 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
4167 do { \
4168 assemble_name (STREAM, NAME); \
4169 fputs (":\n", STREAM); \
4170 } while (0)
4171
4172
4173 /* A C statement (sans semicolon) to output to the stdio stream
4174 STREAM any text necessary for declaring the name NAME of an
4175 initialized variable which is being defined. This macro must
4176 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
4177 The argument DECL is the `VAR_DECL' tree node representing the
4178 variable.
4179
4180 If this macro is not defined, then the variable name is defined
4181 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
4182
4183 #undef ASM_DECLARE_OBJECT_NAME
4184 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
4185 do \
4186 { \
4187 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
4188 } \
4189 while (0)
4190
4191
4192 /* This is how to output a command to make the user-level label named NAME
4193 defined for reference from other files. */
4194
4195 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
4196 do { \
4197 fputs ("\t.globl\t", STREAM); \
4198 assemble_name (STREAM, NAME); \
4199 fputs ("\n", STREAM); \
4200 } while (0)
4201
4202 /* This says how to define a global common symbol. */
4203
4204 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(STREAM, DECL, NAME, SIZE, ALIGN) \
4205 do { \
4206 /* If the target wants uninitialized const declarations in \
4207 .rdata then don't put them in .comm */ \
4208 if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA \
4209 && TREE_CODE (DECL) == VAR_DECL && TREE_READONLY (DECL) \
4210 && (DECL_INITIAL (DECL) == 0 \
4211 || DECL_INITIAL (DECL) == error_mark_node)) \
4212 { \
4213 if (TREE_PUBLIC (DECL) && DECL_NAME (DECL)) \
4214 ASM_GLOBALIZE_LABEL (STREAM, NAME); \
4215 \
4216 readonly_data_section (); \
4217 ASM_OUTPUT_ALIGN (STREAM, floor_log2 (ALIGN / BITS_PER_UNIT)); \
4218 mips_declare_object (STREAM, NAME, "", ":\n\t.space\t%u\n", \
4219 (SIZE)); \
4220 } \
4221 else \
4222 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", \
4223 (SIZE)); \
4224 } while (0)
4225
4226
4227 /* This says how to define a local common symbol (ie, not visible to
4228 linker). */
4229
4230 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
4231 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
4232
4233
4234 /* This says how to output an external. It would be possible not to
4235 output anything and let undefined symbol become external. However
4236 the assembler uses length information on externals to allocate in
4237 data/sdata bss/sbss, thereby saving exec time. */
4238
4239 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
4240 mips_output_external(STREAM,DECL,NAME)
4241
4242 /* This says what to print at the end of the assembly file */
4243 #undef ASM_FILE_END
4244 #define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
4245
4246
4247 /* Play switch file games if we're optimizing the global pointer. */
4248
4249 #undef TEXT_SECTION
4250 #define TEXT_SECTION() \
4251 do { \
4252 extern FILE *asm_out_text_file; \
4253 if (TARGET_FILE_SWITCHING) \
4254 asm_out_file = asm_out_text_file; \
4255 fputs (TEXT_SECTION_ASM_OP, asm_out_file); \
4256 fputc ('\n', asm_out_file); \
4257 } while (0)
4258
4259
4260 /* This is how to declare a function name. The actual work of
4261 emitting the label is moved to function_prologue, so that we can
4262 get the line number correctly emitted before the .ent directive,
4263 and after any .file directives. Define as empty so that the function
4264 is not declared before the .ent directive elsewhere. */
4265
4266 #undef ASM_DECLARE_FUNCTION_NAME
4267 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
4268
4269
4270 /* This is how to output an internal numbered label where
4271 PREFIX is the class of label and NUM is the number within the class. */
4272
4273 #undef ASM_OUTPUT_INTERNAL_LABEL
4274 #define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
4275 fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
4276
4277 /* This is how to store into the string LABEL
4278 the symbol_ref name of an internal numbered label where
4279 PREFIX is the class of label and NUM is the number within the class.
4280 This is suitable for output with `assemble_name'. */
4281
4282 #undef ASM_GENERATE_INTERNAL_LABEL
4283 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
4284 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
4285
4286 /* This is how to output an element of a case-vector that is absolute. */
4287
4288 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
4289 fprintf (STREAM, "\t%s\t%sL%d\n", \
4290 Pmode == DImode ? ".dword" : ".word", \
4291 LOCAL_LABEL_PREFIX, \
4292 VALUE)
4293
4294 /* This is how to output an element of a case-vector that is relative.
4295 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
4296 TARGET_EMBEDDED_PIC). */
4297
4298 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
4299 do { \
4300 if (TARGET_MIPS16) \
4301 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
4302 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
4303 else if (TARGET_EMBEDDED_PIC) \
4304 fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n", \
4305 Pmode == DImode ? ".dword" : ".word", \
4306 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
4307 else if (mips_abi == ABI_32 || mips_abi == ABI_O64) \
4308 fprintf (STREAM, "\t%s\t%sL%d\n", \
4309 Pmode == DImode ? ".gpdword" : ".gpword", \
4310 LOCAL_LABEL_PREFIX, VALUE); \
4311 else \
4312 fprintf (STREAM, "\t%s\t%sL%d\n", \
4313 Pmode == DImode ? ".dword" : ".word", \
4314 LOCAL_LABEL_PREFIX, VALUE); \
4315 } while (0)
4316
4317 /* When generating embedded PIC or mips16 code we want to put the jump
4318 table in the .text section. In all other cases, we want to put the
4319 jump table in the .rdata section. Unfortunately, we can't use
4320 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
4321 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
4322 section if appropriate. */
4323 #undef ASM_OUTPUT_CASE_LABEL
4324 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
4325 do { \
4326 if (TARGET_EMBEDDED_PIC || TARGET_MIPS16) \
4327 function_section (current_function_decl); \
4328 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
4329 } while (0)
4330
4331 /* This is how to output an assembler line
4332 that says to advance the location counter
4333 to a multiple of 2**LOG bytes. */
4334
4335 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
4336 fprintf (STREAM, "\t.align\t%d\n", (LOG))
4337
4338 /* This is how to output an assembler line to advance the location
4339 counter by SIZE bytes. */
4340
4341 #undef ASM_OUTPUT_SKIP
4342 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
4343 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
4344
4345 /* This is how to output a string. */
4346 #undef ASM_OUTPUT_ASCII
4347 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
4348 mips_output_ascii (STREAM, STRING, LEN)
4349
4350 /* Handle certain cpp directives used in header files on sysV. */
4351 #define SCCS_DIRECTIVE
4352
4353 /* Output #ident as a in the read-only data section. */
4354 #undef ASM_OUTPUT_IDENT
4355 #define ASM_OUTPUT_IDENT(FILE, STRING) \
4356 { \
4357 const char *p = STRING; \
4358 int size = strlen (p) + 1; \
4359 readonly_data_section (); \
4360 assemble_string (p, size); \
4361 }
4362 \f
4363 /* Default to -G 8 */
4364 #ifndef MIPS_DEFAULT_GVALUE
4365 #define MIPS_DEFAULT_GVALUE 8
4366 #endif
4367
4368 /* Define the strings to put out for each section in the object file. */
4369 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
4370 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
4371 #define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
4372 #ifndef READONLY_DATA_SECTION_ASM_OP
4373 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
4374 #endif
4375 #define SMALL_DATA_SECTION sdata_section
4376
4377 /* What other sections we support other than the normal .data/.text. */
4378
4379 #undef EXTRA_SECTIONS
4380 #define EXTRA_SECTIONS in_sdata
4381
4382 /* Define the additional functions to select our additional sections. */
4383
4384 /* on the MIPS it is not a good idea to put constants in the text
4385 section, since this defeats the sdata/data mechanism. This is
4386 especially true when -O is used. In this case an effort is made to
4387 address with faster (gp) register relative addressing, which can
4388 only get at sdata and sbss items (there is no stext !!) However,
4389 if the constant is too large for sdata, and it's readonly, it
4390 will go into the .rdata section. */
4391
4392 #undef EXTRA_SECTION_FUNCTIONS
4393 #define EXTRA_SECTION_FUNCTIONS \
4394 void \
4395 sdata_section () \
4396 { \
4397 if (in_section != in_sdata) \
4398 { \
4399 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
4400 in_section = in_sdata; \
4401 } \
4402 }
4403
4404 /* Given a decl node or constant node, choose the section to output it in
4405 and select that section. */
4406
4407 #undef TARGET_ASM_SELECT_SECTION
4408 #define TARGET_ASM_SELECT_SECTION mips_select_section
4409 \f
4410 /* Store in OUTPUT a string (made with alloca) containing
4411 an assembler-name for a local static variable named NAME.
4412 LABELNO is an integer which is different for each call. */
4413
4414 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
4415 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
4416 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
4417
4418 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
4419 do \
4420 { \
4421 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
4422 TARGET_64BIT ? "dsubu" : "subu", \
4423 reg_names[STACK_POINTER_REGNUM], \
4424 reg_names[STACK_POINTER_REGNUM], \
4425 TARGET_64BIT ? "sd" : "sw", \
4426 reg_names[REGNO], \
4427 reg_names[STACK_POINTER_REGNUM]); \
4428 } \
4429 while (0)
4430
4431 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
4432 do \
4433 { \
4434 if (! set_noreorder) \
4435 fprintf (STREAM, "\t.set\tnoreorder\n"); \
4436 \
4437 dslots_load_total++; \
4438 dslots_load_filled++; \
4439 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
4440 TARGET_64BIT ? "ld" : "lw", \
4441 reg_names[REGNO], \
4442 reg_names[STACK_POINTER_REGNUM], \
4443 TARGET_64BIT ? "daddu" : "addu", \
4444 reg_names[STACK_POINTER_REGNUM], \
4445 reg_names[STACK_POINTER_REGNUM]); \
4446 \
4447 if (! set_noreorder) \
4448 fprintf (STREAM, "\t.set\treorder\n"); \
4449 } \
4450 while (0)
4451
4452 /* How to start an assembler comment.
4453 The leading space is important (the mips native assembler requires it). */
4454 #ifndef ASM_COMMENT_START
4455 #define ASM_COMMENT_START " #"
4456 #endif
4457 \f
4458
4459 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
4460 and mips-tdump.c to print them out.
4461
4462 These must match the corresponding definitions in gdb/mipsread.c.
4463 Unfortunately, gcc and gdb do not currently share any directories. */
4464
4465 #define CODE_MASK 0x8F300
4466 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
4467 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
4468 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
4469
4470 \f
4471 /* Default definitions for size_t and ptrdiff_t. */
4472
4473 #ifndef SIZE_TYPE
4474 #define SIZE_TYPE (Pmode == DImode ? "long unsigned int" : "unsigned int")
4475 #endif
4476
4477 #ifndef PTRDIFF_TYPE
4478 #define PTRDIFF_TYPE (Pmode == DImode ? "long int" : "int")
4479 #endif
4480
4481 /* See mips_expand_prologue's use of loadgp for when this should be
4482 true. */
4483
4484 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS \
4485 && mips_abi != ABI_32 \
4486 && mips_abi != ABI_O64)
4487 \f
4488 /* In mips16 mode, we need to look through the function to check for
4489 PC relative loads that are out of range. */
4490 #define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg (X)
4491
4492 /* We need to use a special set of functions to handle hard floating
4493 point code in mips16 mode. */
4494
4495 #ifndef INIT_SUBTARGET_OPTABS
4496 #define INIT_SUBTARGET_OPTABS
4497 #endif
4498
4499 #define INIT_TARGET_OPTABS \
4500 do \
4501 { \
4502 if (! TARGET_MIPS16 || ! mips16_hard_float) \
4503 INIT_SUBTARGET_OPTABS; \
4504 else \
4505 { \
4506 add_optab->handlers[(int) SFmode].libfunc = \
4507 init_one_libfunc ("__mips16_addsf3"); \
4508 sub_optab->handlers[(int) SFmode].libfunc = \
4509 init_one_libfunc ("__mips16_subsf3"); \
4510 smul_optab->handlers[(int) SFmode].libfunc = \
4511 init_one_libfunc ("__mips16_mulsf3"); \
4512 sdiv_optab->handlers[(int) SFmode].libfunc = \
4513 init_one_libfunc ("__mips16_divsf3"); \
4514 \
4515 eqsf2_libfunc = init_one_libfunc ("__mips16_eqsf2"); \
4516 nesf2_libfunc = init_one_libfunc ("__mips16_nesf2"); \
4517 gtsf2_libfunc = init_one_libfunc ("__mips16_gtsf2"); \
4518 gesf2_libfunc = init_one_libfunc ("__mips16_gesf2"); \
4519 ltsf2_libfunc = init_one_libfunc ("__mips16_ltsf2"); \
4520 lesf2_libfunc = init_one_libfunc ("__mips16_lesf2"); \
4521 \
4522 floatsisf_libfunc = \
4523 init_one_libfunc ("__mips16_floatsisf"); \
4524 fixsfsi_libfunc = \
4525 init_one_libfunc ("__mips16_fixsfsi"); \
4526 \
4527 if (TARGET_DOUBLE_FLOAT) \
4528 { \
4529 add_optab->handlers[(int) DFmode].libfunc = \
4530 init_one_libfunc ("__mips16_adddf3"); \
4531 sub_optab->handlers[(int) DFmode].libfunc = \
4532 init_one_libfunc ("__mips16_subdf3"); \
4533 smul_optab->handlers[(int) DFmode].libfunc = \
4534 init_one_libfunc ("__mips16_muldf3"); \
4535 sdiv_optab->handlers[(int) DFmode].libfunc = \
4536 init_one_libfunc ("__mips16_divdf3"); \
4537 \
4538 extendsfdf2_libfunc = \
4539 init_one_libfunc ("__mips16_extendsfdf2"); \
4540 truncdfsf2_libfunc = \
4541 init_one_libfunc ("__mips16_truncdfsf2"); \
4542 \
4543 eqdf2_libfunc = \
4544 init_one_libfunc ("__mips16_eqdf2"); \
4545 nedf2_libfunc = \
4546 init_one_libfunc ("__mips16_nedf2"); \
4547 gtdf2_libfunc = \
4548 init_one_libfunc ("__mips16_gtdf2"); \
4549 gedf2_libfunc = \
4550 init_one_libfunc ("__mips16_gedf2"); \
4551 ltdf2_libfunc = \
4552 init_one_libfunc ("__mips16_ltdf2"); \
4553 ledf2_libfunc = \
4554 init_one_libfunc ("__mips16_ledf2"); \
4555 \
4556 floatsidf_libfunc = \
4557 init_one_libfunc ("__mips16_floatsidf"); \
4558 fixdfsi_libfunc = \
4559 init_one_libfunc ("__mips16_fixdfsi"); \
4560 } \
4561 } \
4562 } \
4563 while (0)
4564
4565 #define DFMODE_NAN \
4566 unsigned short DFbignan[4] = {0x7ff7, 0xffff, 0xffff, 0xffff}; \
4567 unsigned short DFlittlenan[4] = {0xffff, 0xffff, 0xffff, 0xfff7}
4568 #define SFMODE_NAN \
4569 unsigned short SFbignan[2] = {0x7fbf, 0xffff}; \
4570 unsigned short SFlittlenan[2] = {0xffff, 0xffbf}