config.gcc (mips*-*-*): Add --with-fpu support.
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989-2013 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24
25 #include "config/vxworks-dummy.h"
26
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30 extern int target_flags_explicit;
31 #endif
32
33 /* MIPS external variables defined in mips.c. */
34
35 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
37 to work on a 64-bit machine. */
38
39 #define ABI_32 0
40 #define ABI_N32 1
41 #define ABI_64 2
42 #define ABI_EABI 3
43 #define ABI_O64 4
44
45 /* Masks that affect tuning.
46
47 PTF_AVOID_BRANCHLIKELY
48 Set if it is usually not profitable to use branch-likely instructions
49 for this target, typically because the branches are always predicted
50 taken and so incur a large overhead when not taken.
51
52 PTF_AVOID_IMADD
53 Set if it is usually not profitable to use the integer MADD or MSUB
54 instructions because of the overhead of getting the result out of
55 the HI/LO registers. */
56
57 #define PTF_AVOID_BRANCHLIKELY 0x1
58 #define PTF_AVOID_IMADD 0x2
59
60 /* Information about one recognized processor. Defined here for the
61 benefit of TARGET_CPU_CPP_BUILTINS. */
62 struct mips_cpu_info {
63 /* The 'canonical' name of the processor as far as GCC is concerned.
64 It's typically a manufacturer's prefix followed by a numerical
65 designation. It should be lowercase. */
66 const char *name;
67
68 /* The internal processor number that most closely matches this
69 entry. Several processors can have the same value, if there's no
70 difference between them from GCC's point of view. */
71 enum processor cpu;
72
73 /* The ISA level that the processor implements. */
74 int isa;
75
76 /* A mask of PTF_* values. */
77 unsigned int tune_flags;
78 };
79
80 #include "config/mips/mips-opts.h"
81
82 /* Macros to silence warnings about numbers being signed in traditional
83 C and unsigned in ISO C when compiled on 32-bit hosts. */
84
85 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
86 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
87 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
88
89 \f
90 /* Run-time compilation parameters selecting different hardware subsets. */
91
92 /* True if we are generating position-independent VxWorks RTP code. */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
94
95 /* True if the output file is marked as ".abicalls; .option pic0"
96 (-call_nonpic). */
97 #define TARGET_ABICALLS_PIC0 \
98 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
99
100 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
101 #define TARGET_ABICALLS_PIC2 \
102 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
103
104 /* True if the call patterns should be split into a jalr followed by
105 an instruction to restore $gp. It is only safe to split the load
106 from the call when every use of $gp is explicit.
107
108 See mips_must_initialize_gp_p for details about how we manage the
109 global pointer. */
110
111 #define TARGET_SPLIT_CALLS \
112 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
113
114 /* True if we're generating a form of -mabicalls in which we can use
115 operators like %hi and %lo to refer to locally-binding symbols.
116 We can only do this for -mno-shared, and only then if we can use
117 relocation operations instead of assembly macros. It isn't really
118 worth using absolute sequences for 64-bit symbols because GOT
119 accesses are so much shorter. */
120
121 #define TARGET_ABSOLUTE_ABICALLS \
122 (TARGET_ABICALLS \
123 && !TARGET_SHARED \
124 && TARGET_EXPLICIT_RELOCS \
125 && !ABI_HAS_64BIT_SYMBOLS)
126
127 /* True if we can optimize sibling calls. For simplicity, we only
128 handle cases in which call_insn_operand will reject invalid
129 sibcall addresses. There are two cases in which this isn't true:
130
131 - TARGET_MIPS16. call_insn_operand accepts constant addresses
132 but there is no direct jump instruction. It isn't worth
133 using sibling calls in this case anyway; they would usually
134 be longer than normal calls.
135
136 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
137 accepts global constants, but all sibcalls must be indirect. */
138 #define TARGET_SIBCALLS \
139 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
140
141 /* True if we need to use a global offset table to access some symbols. */
142 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
143
144 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
145 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
146
147 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
148 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
149
150 /* True if we should use .cprestore to store to the cprestore slot.
151
152 We continue to use .cprestore for explicit-reloc code so that JALs
153 inside inline asms will work correctly. */
154 #define TARGET_CPRESTORE_DIRECTIVE \
155 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
156
157 /* True if we can use the J and JAL instructions. */
158 #define TARGET_ABSOLUTE_JUMPS \
159 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
160
161 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
162 This is true for both the PIC and non-PIC VxWorks RTP modes. */
163 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
164
165 /* True if .gpword or .gpdword should be used for switch tables. */
166 #define TARGET_GPWORD \
167 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
168
169 /* True if the output must have a writable .eh_frame.
170 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
171 #ifdef HAVE_LD_PERSONALITY_RELAXATION
172 #define TARGET_WRITABLE_EH_FRAME 0
173 #else
174 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
175 #endif
176
177 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
178 #ifdef HAVE_AS_DSPR1_MULT
179 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
180 #else
181 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
182 #endif
183
184 /* The ISA compression flags that are currently in effect. */
185 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
186
187 /* Generate mips16 code */
188 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
189 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
190 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
191 /* Generate mips16e register save/restore sequences. */
192 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
193
194 /* True if we're generating a form of MIPS16 code in which general
195 text loads are allowed. */
196 #define TARGET_MIPS16_TEXT_LOADS \
197 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
198
199 /* True if we're generating a form of MIPS16 code in which PC-relative
200 loads are allowed. */
201 #define TARGET_MIPS16_PCREL_LOADS \
202 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
203
204 /* Generic ISA defines. */
205 #define ISA_MIPS1 (mips_isa == 1)
206 #define ISA_MIPS2 (mips_isa == 2)
207 #define ISA_MIPS3 (mips_isa == 3)
208 #define ISA_MIPS4 (mips_isa == 4)
209 #define ISA_MIPS32 (mips_isa == 32)
210 #define ISA_MIPS32R2 (mips_isa == 33)
211 #define ISA_MIPS64 (mips_isa == 64)
212 #define ISA_MIPS64R2 (mips_isa == 65)
213
214 /* Architecture target defines. */
215 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
216 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
217 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
218 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
219 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
220 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
221 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
222 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
223 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
224 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
225 #define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
226 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
227 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
228 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
229 || mips_arch == PROCESSOR_OCTEON2)
230 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2)
231 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
232 || mips_arch == PROCESSOR_SB1A)
233 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
234 #define TARGET_XLP (mips_arch == PROCESSOR_XLP)
235
236 /* Scheduling target defines. */
237 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
238 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
239 || mips_tune == PROCESSOR_24KF2_1 \
240 || mips_tune == PROCESSOR_24KF1_1)
241 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
242 || mips_tune == PROCESSOR_74KF2_1 \
243 || mips_tune == PROCESSOR_74KF1_1 \
244 || mips_tune == PROCESSOR_74KF3_2)
245 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
246 || mips_tune == PROCESSOR_LOONGSON_2F)
247 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
248 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
249 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
250 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
251 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
252 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
253 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
254 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
255 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
256 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
257 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
258 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
259 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
260 || mips_tune == PROCESSOR_OCTEON2)
261 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
262 || mips_tune == PROCESSOR_SB1A)
263
264 /* Whether vector modes and intrinsics for ST Microelectronics
265 Loongson-2E/2F processors should be enabled. In o32 pairs of
266 floating-point registers provide 64-bit values. */
267 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
268 && (TARGET_LOONGSON_2EF \
269 || TARGET_LOONGSON_3A))
270
271 /* True if the pre-reload scheduler should try to create chains of
272 multiply-add or multiply-subtract instructions. For example,
273 suppose we have:
274
275 t1 = a * b
276 t2 = t1 + c * d
277 t3 = e * f
278 t4 = t3 - g * h
279
280 t1 will have a higher priority than t2 and t3 will have a higher
281 priority than t4. However, before reload, there is no dependence
282 between t1 and t3, and they can often have similar priorities.
283 The scheduler will then tend to prefer:
284
285 t1 = a * b
286 t3 = e * f
287 t2 = t1 + c * d
288 t4 = t3 - g * h
289
290 which stops us from making full use of macc/madd-style instructions.
291 This sort of situation occurs frequently in Fourier transforms and
292 in unrolled loops.
293
294 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
295 queue so that chained multiply-add and multiply-subtract instructions
296 appear ahead of any other instruction that is likely to clobber lo.
297 In the example above, if t2 and t3 become ready at the same time,
298 the code ensures that t2 is scheduled first.
299
300 Multiply-accumulate instructions are a bigger win for some targets
301 than others, so this macro is defined on an opt-in basis. */
302 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
303 || TUNE_MIPS4120 \
304 || TUNE_MIPS4130 \
305 || TUNE_24K)
306
307 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
308 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
309
310 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
311 directly accessible, while the command-line options select
312 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
313 in use. */
314 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
315 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
316
317 /* False if SC acts as a memory barrier with respect to itself,
318 otherwise a SYNC will be emitted after SC for atomic operations
319 that require ordering between the SC and following loads and
320 stores. It does not tell anything about ordering of loads and
321 stores prior to and following the SC, only about the SC itself and
322 those loads and stores follow it. */
323 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
324
325 /* Define preprocessor macros for the -march and -mtune options.
326 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
327 processor. If INFO's canonical name is "foo", define PREFIX to
328 be "foo", and define an additional macro PREFIX_FOO. */
329 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
330 do \
331 { \
332 char *macro, *p; \
333 \
334 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
335 for (p = macro; *p != 0; p++) \
336 if (*p == '+') \
337 *p = 'P'; \
338 else \
339 *p = TOUPPER (*p); \
340 \
341 builtin_define (macro); \
342 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
343 free (macro); \
344 } \
345 while (0)
346
347 /* Target CPU builtins. */
348 #define TARGET_CPU_CPP_BUILTINS() \
349 do \
350 { \
351 builtin_assert ("machine=mips"); \
352 builtin_assert ("cpu=mips"); \
353 builtin_define ("__mips__"); \
354 builtin_define ("_mips"); \
355 \
356 /* We do this here because __mips is defined below and so we \
357 can't use builtin_define_std. We don't ever want to define \
358 "mips" for VxWorks because some of the VxWorks headers \
359 construct include filenames from a root directory macro, \
360 an architecture macro and a filename, where the architecture \
361 macro expands to 'mips'. If we define 'mips' to 1, the \
362 architecture macro expands to 1 as well. */ \
363 if (!flag_iso && !TARGET_VXWORKS) \
364 builtin_define ("mips"); \
365 \
366 if (TARGET_64BIT) \
367 builtin_define ("__mips64"); \
368 \
369 /* Treat _R3000 and _R4000 like register-size \
370 defines, which is how they've historically \
371 been used. */ \
372 if (TARGET_64BIT) \
373 { \
374 builtin_define_std ("R4000"); \
375 builtin_define ("_R4000"); \
376 } \
377 else \
378 { \
379 builtin_define_std ("R3000"); \
380 builtin_define ("_R3000"); \
381 } \
382 \
383 if (TARGET_FLOAT64) \
384 builtin_define ("__mips_fpr=64"); \
385 else \
386 builtin_define ("__mips_fpr=32"); \
387 \
388 if (mips_base_compression_flags & MASK_MIPS16) \
389 builtin_define ("__mips16"); \
390 \
391 if (TARGET_MIPS3D) \
392 builtin_define ("__mips3d"); \
393 \
394 if (TARGET_SMARTMIPS) \
395 builtin_define ("__mips_smartmips"); \
396 \
397 if (mips_base_compression_flags & MASK_MICROMIPS) \
398 builtin_define ("__mips_micromips"); \
399 \
400 if (TARGET_MCU) \
401 builtin_define ("__mips_mcu"); \
402 \
403 if (TARGET_EVA) \
404 builtin_define ("__mips_eva"); \
405 \
406 if (TARGET_DSP) \
407 { \
408 builtin_define ("__mips_dsp"); \
409 if (TARGET_DSPR2) \
410 { \
411 builtin_define ("__mips_dspr2"); \
412 builtin_define ("__mips_dsp_rev=2"); \
413 } \
414 else \
415 builtin_define ("__mips_dsp_rev=1"); \
416 } \
417 \
418 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
419 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
420 \
421 if (ISA_MIPS1) \
422 { \
423 builtin_define ("__mips=1"); \
424 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
425 } \
426 else if (ISA_MIPS2) \
427 { \
428 builtin_define ("__mips=2"); \
429 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
430 } \
431 else if (ISA_MIPS3) \
432 { \
433 builtin_define ("__mips=3"); \
434 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
435 } \
436 else if (ISA_MIPS4) \
437 { \
438 builtin_define ("__mips=4"); \
439 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
440 } \
441 else if (ISA_MIPS32) \
442 { \
443 builtin_define ("__mips=32"); \
444 builtin_define ("__mips_isa_rev=1"); \
445 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
446 } \
447 else if (ISA_MIPS32R2) \
448 { \
449 builtin_define ("__mips=32"); \
450 builtin_define ("__mips_isa_rev=2"); \
451 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
452 } \
453 else if (ISA_MIPS64) \
454 { \
455 builtin_define ("__mips=64"); \
456 builtin_define ("__mips_isa_rev=1"); \
457 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
458 } \
459 else if (ISA_MIPS64R2) \
460 { \
461 builtin_define ("__mips=64"); \
462 builtin_define ("__mips_isa_rev=2"); \
463 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
464 } \
465 \
466 switch (mips_abi) \
467 { \
468 case ABI_32: \
469 builtin_define ("_ABIO32=1"); \
470 builtin_define ("_MIPS_SIM=_ABIO32"); \
471 break; \
472 \
473 case ABI_N32: \
474 builtin_define ("_ABIN32=2"); \
475 builtin_define ("_MIPS_SIM=_ABIN32"); \
476 break; \
477 \
478 case ABI_64: \
479 builtin_define ("_ABI64=3"); \
480 builtin_define ("_MIPS_SIM=_ABI64"); \
481 break; \
482 \
483 case ABI_O64: \
484 builtin_define ("_ABIO64=4"); \
485 builtin_define ("_MIPS_SIM=_ABIO64"); \
486 break; \
487 } \
488 \
489 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
490 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
491 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
492 builtin_define_with_int_value ("_MIPS_FPSET", \
493 32 / MAX_FPRS_PER_FMT); \
494 \
495 /* These defines reflect the ABI in use, not whether the \
496 FPU is directly accessible. */ \
497 if (TARGET_NO_FLOAT) \
498 builtin_define ("__mips_no_float"); \
499 else if (TARGET_HARD_FLOAT_ABI) \
500 builtin_define ("__mips_hard_float"); \
501 else \
502 builtin_define ("__mips_soft_float"); \
503 \
504 if (TARGET_SINGLE_FLOAT) \
505 builtin_define ("__mips_single_float"); \
506 \
507 if (TARGET_PAIRED_SINGLE_FLOAT) \
508 builtin_define ("__mips_paired_single_float"); \
509 \
510 if (TARGET_BIG_ENDIAN) \
511 { \
512 builtin_define_std ("MIPSEB"); \
513 builtin_define ("_MIPSEB"); \
514 } \
515 else \
516 { \
517 builtin_define_std ("MIPSEL"); \
518 builtin_define ("_MIPSEL"); \
519 } \
520 \
521 /* Whether calls should go through $25. The separate __PIC__ \
522 macro indicates whether abicalls code might use a GOT. */ \
523 if (TARGET_ABICALLS) \
524 builtin_define ("__mips_abicalls"); \
525 \
526 /* Whether Loongson vector modes are enabled. */ \
527 if (TARGET_LOONGSON_VECTORS) \
528 builtin_define ("__mips_loongson_vector_rev"); \
529 \
530 /* Historical Octeon macro. */ \
531 if (TARGET_OCTEON) \
532 builtin_define ("__OCTEON__"); \
533 \
534 if (TARGET_SYNCI) \
535 builtin_define ("__mips_synci"); \
536 \
537 /* Macros dependent on the C dialect. */ \
538 if (preprocessing_asm_p ()) \
539 { \
540 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
541 builtin_define ("_LANGUAGE_ASSEMBLY"); \
542 } \
543 else if (c_dialect_cxx ()) \
544 { \
545 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
546 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
547 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
548 } \
549 else \
550 { \
551 builtin_define_std ("LANGUAGE_C"); \
552 builtin_define ("_LANGUAGE_C"); \
553 } \
554 if (c_dialect_objc ()) \
555 { \
556 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
557 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
558 /* Bizarre, but retained for backwards compatibility. */ \
559 builtin_define_std ("LANGUAGE_C"); \
560 builtin_define ("_LANGUAGE_C"); \
561 } \
562 \
563 if (mips_abi == ABI_EABI) \
564 builtin_define ("__mips_eabi"); \
565 \
566 if (TARGET_CACHE_BUILTIN) \
567 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
568 } \
569 while (0)
570
571 /* Default target_flags if no switches are specified */
572
573 #ifndef TARGET_DEFAULT
574 #define TARGET_DEFAULT 0
575 #endif
576
577 #ifndef TARGET_CPU_DEFAULT
578 #define TARGET_CPU_DEFAULT 0
579 #endif
580
581 #ifndef TARGET_ENDIAN_DEFAULT
582 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
583 #endif
584
585 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
586 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
587 #endif
588
589 #ifdef IN_LIBGCC2
590 #undef TARGET_64BIT
591 /* Make this compile time constant for libgcc2 */
592 #ifdef __mips64
593 #define TARGET_64BIT 1
594 #else
595 #define TARGET_64BIT 0
596 #endif
597 #endif /* IN_LIBGCC2 */
598
599 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
600 when compiled with hardware floating point. This is because MIPS16
601 code cannot save and restore the floating-point registers, which is
602 important if in a mixed MIPS16/non-MIPS16 environment. */
603
604 #ifdef IN_LIBGCC2
605 #if __mips_hard_float
606 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
607 #endif
608 #endif /* IN_LIBGCC2 */
609
610 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
611
612 #ifndef MULTILIB_ENDIAN_DEFAULT
613 #if TARGET_ENDIAN_DEFAULT == 0
614 #define MULTILIB_ENDIAN_DEFAULT "EL"
615 #else
616 #define MULTILIB_ENDIAN_DEFAULT "EB"
617 #endif
618 #endif
619
620 #ifndef MULTILIB_ISA_DEFAULT
621 #if MIPS_ISA_DEFAULT == 1
622 #define MULTILIB_ISA_DEFAULT "mips1"
623 #elif MIPS_ISA_DEFAULT == 2
624 #define MULTILIB_ISA_DEFAULT "mips2"
625 #elif MIPS_ISA_DEFAULT == 3
626 #define MULTILIB_ISA_DEFAULT "mips3"
627 #elif MIPS_ISA_DEFAULT == 4
628 #define MULTILIB_ISA_DEFAULT "mips4"
629 #elif MIPS_ISA_DEFAULT == 32
630 #define MULTILIB_ISA_DEFAULT "mips32"
631 #elif MIPS_ISA_DEFAULT == 33
632 #define MULTILIB_ISA_DEFAULT "mips32r2"
633 #elif MIPS_ISA_DEFAULT == 64
634 #define MULTILIB_ISA_DEFAULT "mips64"
635 #elif MIPS_ISA_DEFAULT == 65
636 #define MULTILIB_ISA_DEFAULT "mips64r2"
637 #else
638 #define MULTILIB_ISA_DEFAULT "mips1"
639 #endif
640 #endif
641
642 #ifndef MIPS_ABI_DEFAULT
643 #define MIPS_ABI_DEFAULT ABI_32
644 #endif
645
646 /* Use the most portable ABI flag for the ASM specs. */
647
648 #if MIPS_ABI_DEFAULT == ABI_32
649 #define MULTILIB_ABI_DEFAULT "mabi=32"
650 #elif MIPS_ABI_DEFAULT == ABI_O64
651 #define MULTILIB_ABI_DEFAULT "mabi=o64"
652 #elif MIPS_ABI_DEFAULT == ABI_N32
653 #define MULTILIB_ABI_DEFAULT "mabi=n32"
654 #elif MIPS_ABI_DEFAULT == ABI_64
655 #define MULTILIB_ABI_DEFAULT "mabi=64"
656 #elif MIPS_ABI_DEFAULT == ABI_EABI
657 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
658 #endif
659
660 #ifndef MULTILIB_DEFAULTS
661 #define MULTILIB_DEFAULTS \
662 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
663 #endif
664
665 /* We must pass -EL to the linker by default for little endian embedded
666 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
667 linker will default to using big-endian output files. The OUTPUT_FORMAT
668 line must be in the linker script, otherwise -EB/-EL will not work. */
669
670 #ifndef ENDIAN_SPEC
671 #if TARGET_ENDIAN_DEFAULT == 0
672 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
673 #else
674 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
675 #endif
676 #endif
677
678 /* A spec condition that matches all non-mips16 -mips arguments. */
679
680 #define MIPS_ISA_LEVEL_OPTION_SPEC \
681 "mips1|mips2|mips3|mips4|mips32*|mips64*"
682
683 /* A spec condition that matches all non-mips16 architecture arguments. */
684
685 #define MIPS_ARCH_OPTION_SPEC \
686 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
687
688 /* A spec that infers a -mips argument from an -march argument,
689 or injects the default if no architecture is specified. */
690
691 #define MIPS_ISA_LEVEL_SPEC \
692 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
693 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
694 %{march=mips2|march=r6000:-mips2} \
695 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
696 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
697 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
698 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
699 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
700 |march=34k*|march=74k*|march=m14k*|march=1004k*: -mips32r2} \
701 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
702 |march=xlr|march=loongson3a: -mips64} \
703 %{march=mips64r2|march=octeon|march=xlp: -mips64r2} \
704 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
705
706 /* A spec that infers a -mhard-float or -msoft-float setting from an
707 -march argument. Note that soft-float and hard-float code are not
708 link-compatible. */
709
710 #define MIPS_ARCH_FLOAT_SPEC \
711 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
712 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
713 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
714 |march=m14k*|march=octeon|march=xlr: -msoft-float; \
715 march=*: -mhard-float}"
716
717 /* A spec condition that matches 32-bit options. It only works if
718 MIPS_ISA_LEVEL_SPEC has been applied. */
719
720 #define MIPS_32BIT_OPTION_SPEC \
721 "mips1|mips2|mips32*|mgp32"
722
723 /* Infer a -msynci setting from a -mips argument, on the assumption that
724 -msynci is desired where possible. */
725 #define MIPS_ISA_SYNCI_SPEC \
726 "%{msynci|mno-synci:;:%{mips32r2|mips64r2:-msynci;:-mno-synci}}"
727
728 #if (MIPS_ABI_DEFAULT == ABI_O64 \
729 || MIPS_ABI_DEFAULT == ABI_N32 \
730 || MIPS_ABI_DEFAULT == ABI_64)
731 #define OPT_ARCH64 "mabi=32|mgp32:;"
732 #define OPT_ARCH32 "mabi=32|mgp32"
733 #else
734 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
735 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
736 #endif
737
738 /* Support for a compile-time default CPU, et cetera. The rules are:
739 --with-arch is ignored if -march is specified or a -mips is specified
740 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
741 --with-tune is ignored if -mtune is specified; likewise
742 --with-tune-32 and --with-tune-64.
743 --with-abi is ignored if -mabi is specified.
744 --with-float is ignored if -mhard-float or -msoft-float are
745 specified.
746 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
747 specified. */
748 #define OPTION_DEFAULT_SPECS \
749 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
750 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
751 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
752 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
753 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
754 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
755 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
756 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
757 {"fpu", "%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}" }, \
758 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
759 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
760 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
761 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
762
763 /* A spec that infers the -mdsp setting from an -march argument. */
764 #define BASE_DRIVER_SELF_SPECS \
765 "%{!mno-dsp: \
766 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k*: -mdsp} \
767 %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
768
769 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
770
771 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
772 && ISA_HAS_COND_TRAP)
773
774 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
775
776 /* True if the ABI can only work with 64-bit integer registers. We
777 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
778 otherwise floating-point registers must also be 64-bit. */
779 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
780
781 /* Likewise for 32-bit regs. */
782 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
783
784 /* True if the file format uses 64-bit symbols. At present, this is
785 only true for n64, which uses 64-bit ELF. */
786 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
787
788 /* True if symbols are 64 bits wide. This is usually determined by
789 the ABI's file format, but it can be overridden by -msym32. Note that
790 overriding the size with -msym32 changes the ABI of relocatable objects,
791 although it doesn't change the ABI of a fully-linked object. */
792 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
793 && Pmode == DImode \
794 && !TARGET_SYM32)
795
796 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
797 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
798 || ISA_MIPS4 \
799 || ISA_MIPS64 \
800 || ISA_MIPS64R2)
801
802 /* ISA has branch likely instructions (e.g. mips2). */
803 /* Disable branchlikely for tx39 until compare rewrite. They haven't
804 been generated up to this point. */
805 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
806
807 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
808 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
809 || TARGET_MIPS5400 \
810 || TARGET_MIPS5500 \
811 || TARGET_MIPS5900 \
812 || TARGET_MIPS7000 \
813 || TARGET_MIPS9000 \
814 || TARGET_MAD \
815 || ISA_MIPS32 \
816 || ISA_MIPS32R2 \
817 || ISA_MIPS64 \
818 || ISA_MIPS64R2) \
819 && !TARGET_MIPS16)
820
821 /* ISA has a three-operand multiplication instruction. */
822 #define ISA_HAS_DMUL3 (TARGET_64BIT \
823 && TARGET_OCTEON \
824 && !TARGET_MIPS16)
825
826 /* ISA supports instructions DMULT and DMULTU. */
827 #define ISA_HAS_DMULT (TARGET_64BIT && !TARGET_MIPS5900)
828
829 /* ISA supports instructions MULT and MULTU.
830 This is always true, but the macro is needed for ISA_HAS_<D>MULT
831 in mips.md. */
832 #define ISA_HAS_MULT (1)
833
834 /* ISA supports instructions DDIV and DDIVU. */
835 #define ISA_HAS_DDIV (TARGET_64BIT && !TARGET_MIPS5900)
836
837 /* ISA supports instructions DIV and DIVU.
838 This is always true, but the macro is needed for ISA_HAS_<D>DIV
839 in mips.md. */
840 #define ISA_HAS_DIV (1)
841
842 #define ISA_HAS_DIV3 ((TARGET_LOONGSON_2EF \
843 || TARGET_LOONGSON_3A) \
844 && !TARGET_MIPS16)
845
846 /* ISA has the floating-point conditional move instructions introduced
847 in mips4. */
848 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
849 || ISA_MIPS32 \
850 || ISA_MIPS32R2 \
851 || ISA_MIPS64 \
852 || ISA_MIPS64R2) \
853 && !TARGET_MIPS5500 \
854 && !TARGET_MIPS16)
855
856 /* ISA has the integer conditional move instructions introduced in mips4 and
857 ST Loongson 2E/2F. */
858 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
859 || TARGET_MIPS5900 \
860 || TARGET_LOONGSON_2EF)
861
862 /* ISA has LDC1 and SDC1. */
863 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
864 && !TARGET_MIPS5900 \
865 && !TARGET_MIPS16)
866
867 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
868 branch on CC, and move (both FP and non-FP) on CC. */
869 #define ISA_HAS_8CC (ISA_MIPS4 \
870 || ISA_MIPS32 \
871 || ISA_MIPS32R2 \
872 || ISA_MIPS64 \
873 || ISA_MIPS64R2)
874
875 /* This is a catch all for other mips4 instructions: indexed load, the
876 FP madd and msub instructions, and the FP recip and recip sqrt
877 instructions. */
878 #define ISA_HAS_FP4 ((ISA_MIPS4 \
879 || (ISA_MIPS32R2 && TARGET_FLOAT64) \
880 || ISA_MIPS64 \
881 || ISA_MIPS64R2) \
882 && !TARGET_MIPS16)
883
884 /* ISA has paired-single instructions. */
885 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
886
887 /* ISA has conditional trap instructions. */
888 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
889 && !TARGET_MIPS16)
890
891 /* ISA has integer multiply-accumulate instructions, madd and msub. */
892 #define ISA_HAS_MADD_MSUB (ISA_MIPS32 \
893 || ISA_MIPS32R2 \
894 || ISA_MIPS64 \
895 || ISA_MIPS64R2)
896
897 /* Integer multiply-accumulate instructions should be generated. */
898 #define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
899
900 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
901 #define ISA_HAS_FP_MADD4_MSUB4 (ISA_HAS_FP4 \
902 || (ISA_MIPS32R2 && !TARGET_MIPS16))
903
904 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
905 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
906
907 /* ISA has floating-point nmadd and nmsub instructions
908 'd = -((a * b) [+-] c)'. */
909 #define ISA_HAS_NMADD4_NMSUB4 (ISA_HAS_FP4 \
910 || (ISA_MIPS32R2 && !TARGET_MIPS16))
911
912 /* ISA has floating-point nmadd and nmsub instructions
913 'c = -((a * b) [+-] c)'. */
914 #define ISA_HAS_NMADD3_NMSUB3 TARGET_LOONGSON_2EF
915
916 /* ISA has count leading zeroes/ones instruction (not implemented). */
917 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
918 || ISA_MIPS32R2 \
919 || ISA_MIPS64 \
920 || ISA_MIPS64R2) \
921 && !TARGET_MIPS16)
922
923 /* ISA has three operand multiply instructions that put
924 the high part in an accumulator: mulhi or mulhiu. */
925 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
926 || TARGET_MIPS5500 \
927 || TARGET_SR71K) \
928 && !TARGET_MIPS16)
929
930 /* ISA has three operand multiply instructions that negate the
931 result and put the result in an accumulator. */
932 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
933 || TARGET_MIPS5500 \
934 || TARGET_SR71K) \
935 && !TARGET_MIPS16)
936
937 /* ISA has three operand multiply instructions that subtract the
938 result from a 4th operand and put the result in an accumulator. */
939 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
940 || TARGET_MIPS5500 \
941 || TARGET_SR71K) \
942 && !TARGET_MIPS16)
943
944 /* ISA has three operand multiply instructions that add the result
945 to a 4th operand and put the result in an accumulator. */
946 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
947 || TARGET_MIPS4130 \
948 || TARGET_MIPS5400 \
949 || TARGET_MIPS5500 \
950 || TARGET_SR71K) \
951 && !TARGET_MIPS16)
952
953 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
954 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
955 || TARGET_MIPS4130) \
956 && !TARGET_MIPS16)
957
958 /* ISA has the "ror" (rotate right) instructions. */
959 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
960 || ISA_MIPS64R2 \
961 || TARGET_MIPS5400 \
962 || TARGET_MIPS5500 \
963 || TARGET_SR71K \
964 || TARGET_SMARTMIPS) \
965 && !TARGET_MIPS16)
966
967 /* ISA has data prefetch instructions. This controls use of 'pref'. */
968 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
969 || TARGET_LOONGSON_2EF \
970 || TARGET_MIPS5900 \
971 || ISA_MIPS32 \
972 || ISA_MIPS32R2 \
973 || ISA_MIPS64 \
974 || ISA_MIPS64R2) \
975 && !TARGET_MIPS16)
976
977 /* ISA has data indexed prefetch instructions. This controls use of
978 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
979 (prefx is a cop1x instruction, so can only be used if FP is
980 enabled.) */
981 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
982 || ISA_MIPS32R2 \
983 || ISA_MIPS64 \
984 || ISA_MIPS64R2) \
985 && !TARGET_MIPS16)
986
987 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
988 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
989 also requires TARGET_DOUBLE_FLOAT. */
990 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
991
992 /* ISA includes the MIPS32r2 seb and seh instructions. */
993 #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \
994 || ISA_MIPS64R2) \
995 && !TARGET_MIPS16)
996
997 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
998 #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \
999 || ISA_MIPS64R2) \
1000 && !TARGET_MIPS16)
1001
1002 /* ISA has instructions for accessing top part of 64-bit fp regs. */
1003 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \
1004 && (ISA_MIPS32R2 \
1005 || ISA_MIPS64R2))
1006
1007 /* ISA has lwxs instruction (load w/scaled index address. */
1008 #define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1009 && !TARGET_MIPS16)
1010
1011 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1012 #define ISA_HAS_LBX (TARGET_OCTEON2)
1013 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1014 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1015 #define ISA_HAS_LHUX (TARGET_OCTEON2)
1016 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1017 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1018 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1019 && TARGET_64BIT)
1020
1021 /* The DSP ASE is available. */
1022 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1023
1024 /* Revision 2 of the DSP ASE is available. */
1025 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1026
1027 /* True if the result of a load is not available to the next instruction.
1028 A nop will then be needed between instructions like "lw $4,..."
1029 and "addiu $4,$4,1". */
1030 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1031 && !TARGET_MIPS3900 \
1032 && !TARGET_MIPS5900 \
1033 && !TARGET_MIPS16 \
1034 && !TARGET_MICROMIPS)
1035
1036 /* Likewise mtc1 and mfc1. */
1037 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1038 && !TARGET_MIPS5900 \
1039 && !TARGET_LOONGSON_2EF)
1040
1041 /* Likewise floating-point comparisons. */
1042 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1043 && !TARGET_MIPS5900 \
1044 && !TARGET_LOONGSON_2EF)
1045
1046 /* True if mflo and mfhi can be immediately followed by instructions
1047 which write to the HI and LO registers.
1048
1049 According to MIPS specifications, MIPS ISAs I, II, and III need
1050 (at least) two instructions between the reads of HI/LO and
1051 instructions which write them, and later ISAs do not. Contradicting
1052 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1053 the UM for the NEC Vr5000) document needing the instructions between
1054 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1055 MIPS64 and later ISAs to have the interlocks, plus any specific
1056 earlier-ISA CPUs for which CPU documentation declares that the
1057 instructions are really interlocked. */
1058 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1059 || ISA_MIPS32R2 \
1060 || ISA_MIPS64 \
1061 || ISA_MIPS64R2 \
1062 || TARGET_MIPS5500 \
1063 || TARGET_MIPS5900 \
1064 || TARGET_LOONGSON_2EF)
1065
1066 /* ISA includes synci, jr.hb and jalr.hb. */
1067 #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \
1068 || ISA_MIPS64R2) \
1069 && !TARGET_MIPS16)
1070
1071 /* ISA includes sync. */
1072 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1073 #define GENERATE_SYNC \
1074 (target_flags_explicit & MASK_LLSC \
1075 ? TARGET_LLSC && !TARGET_MIPS16 \
1076 : ISA_HAS_SYNC)
1077
1078 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1079 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1080 instructions. */
1081 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1082 #define GENERATE_LL_SC \
1083 (target_flags_explicit & MASK_LLSC \
1084 ? TARGET_LLSC && !TARGET_MIPS16 \
1085 : ISA_HAS_LL_SC)
1086
1087 #define ISA_HAS_SWAP (TARGET_XLP)
1088 #define ISA_HAS_LDADD (TARGET_XLP)
1089
1090 /* ISA includes the baddu instruction. */
1091 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1092
1093 /* ISA includes the bbit* instructions. */
1094 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1095
1096 /* ISA includes the cins instruction. */
1097 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1098
1099 /* ISA includes the exts instruction. */
1100 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1101
1102 /* ISA includes the seq and sne instructions. */
1103 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1104
1105 /* ISA includes the pop instruction. */
1106 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1107
1108 /* The CACHE instruction is available in non-MIPS16 code. */
1109 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1110
1111 /* The CACHE instruction is available. */
1112 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1113 \f
1114 /* Tell collect what flags to pass to nm. */
1115 #ifndef NM_FLAGS
1116 #define NM_FLAGS "-Bn"
1117 #endif
1118
1119 \f
1120 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1121 the assembler. It may be overridden by subtargets.
1122
1123 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1124 COFF debugging info. */
1125
1126 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1127 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1128 %{g} %{g0} %{g1} %{g2} %{g3} \
1129 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1130 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1131 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1132 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1133 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1134 #endif
1135
1136 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1137 overridden by subtargets. */
1138
1139 #ifndef SUBTARGET_ASM_SPEC
1140 #define SUBTARGET_ASM_SPEC ""
1141 #endif
1142
1143 #undef ASM_SPEC
1144 #define ASM_SPEC "\
1145 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1146 %{mips32*} %{mips64*} \
1147 %{mips16} %{mno-mips16:-no-mips16} \
1148 %{mmicromips} %{mno-micromips} \
1149 %{mips3d} %{mno-mips3d:-no-mips3d} \
1150 %{mdmx} %{mno-mdmx:-no-mdmx} \
1151 %{mdsp} %{mno-dsp} \
1152 %{mdspr2} %{mno-dspr2} \
1153 %{mmcu} %{mno-mcu} \
1154 %{meva} %{mno-eva} \
1155 %{msmartmips} %{mno-smartmips} \
1156 %{mmt} %{mno-mt} \
1157 %{mfix-vr4120} %{mfix-vr4130} \
1158 %{mfix-24k} \
1159 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1160 %(subtarget_asm_debugging_spec) \
1161 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1162 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1163 %{mfp32} %{mfp64} \
1164 %{mshared} %{mno-shared} \
1165 %{msym32} %{mno-sym32} \
1166 %{mtune=*} \
1167 %(subtarget_asm_spec)"
1168
1169 /* Extra switches sometimes passed to the linker. */
1170
1171 #ifndef LINK_SPEC
1172 #define LINK_SPEC "\
1173 %(endian_spec) \
1174 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1175 %{shared}"
1176 #endif /* LINK_SPEC defined */
1177
1178
1179 /* Specs for the compiler proper */
1180
1181 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1182 overridden by subtargets. */
1183 #ifndef SUBTARGET_CC1_SPEC
1184 #define SUBTARGET_CC1_SPEC ""
1185 #endif
1186
1187 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1188
1189 #undef CC1_SPEC
1190 #define CC1_SPEC "\
1191 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1192 %(subtarget_cc1_spec)"
1193
1194 /* Preprocessor specs. */
1195
1196 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1197 overridden by subtargets. */
1198 #ifndef SUBTARGET_CPP_SPEC
1199 #define SUBTARGET_CPP_SPEC ""
1200 #endif
1201
1202 #define CPP_SPEC "%(subtarget_cpp_spec)"
1203
1204 /* This macro defines names of additional specifications to put in the specs
1205 that can be used in various specifications like CC1_SPEC. Its definition
1206 is an initializer with a subgrouping for each command option.
1207
1208 Each subgrouping contains a string constant, that defines the
1209 specification name, and a string constant that used by the GCC driver
1210 program.
1211
1212 Do not define this macro if it does not need to do anything. */
1213
1214 #define EXTRA_SPECS \
1215 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1216 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1217 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1218 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1219 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1220 { "endian_spec", ENDIAN_SPEC }, \
1221 SUBTARGET_EXTRA_SPECS
1222
1223 #ifndef SUBTARGET_EXTRA_SPECS
1224 #define SUBTARGET_EXTRA_SPECS
1225 #endif
1226 \f
1227 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1228 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1229
1230 #ifndef PREFERRED_DEBUGGING_TYPE
1231 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1232 #endif
1233
1234 /* The size of DWARF addresses should be the same as the size of symbols
1235 in the target file format. They shouldn't depend on things like -msym32,
1236 because many DWARF consumers do not allow the mixture of address sizes
1237 that one would then get from linking -msym32 code with -msym64 code.
1238
1239 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1240 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1241 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1242
1243 /* By default, turn on GDB extensions. */
1244 #define DEFAULT_GDB_EXTENSIONS 1
1245
1246 /* Local compiler-generated symbols must have a prefix that the assembler
1247 understands. By default, this is $, although some targets (e.g.,
1248 NetBSD-ELF) need to override this. */
1249
1250 #ifndef LOCAL_LABEL_PREFIX
1251 #define LOCAL_LABEL_PREFIX "$"
1252 #endif
1253
1254 /* By default on the mips, external symbols do not have an underscore
1255 prepended, but some targets (e.g., NetBSD) require this. */
1256
1257 #ifndef USER_LABEL_PREFIX
1258 #define USER_LABEL_PREFIX ""
1259 #endif
1260
1261 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1262 since the length can run past this up to a continuation point. */
1263 #undef DBX_CONTIN_LENGTH
1264 #define DBX_CONTIN_LENGTH 1500
1265
1266 /* How to renumber registers for dbx and gdb. */
1267 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1268
1269 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1270 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1271
1272 /* The DWARF 2 CFA column which tracks the return address. */
1273 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1274
1275 /* Before the prologue, RA lives in r31. */
1276 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1277
1278 /* Describe how we implement __builtin_eh_return. */
1279 #define EH_RETURN_DATA_REGNO(N) \
1280 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1281
1282 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1283
1284 #define EH_USES(N) mips_eh_uses (N)
1285
1286 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1287 The default for this in 64-bit mode is 8, which causes problems with
1288 SFmode register saves. */
1289 #define DWARF_CIE_DATA_ALIGNMENT -4
1290
1291 /* Correct the offset of automatic variables and arguments. Note that
1292 the MIPS debug format wants all automatic variables and arguments
1293 to be in terms of the virtual frame pointer (stack pointer before
1294 any adjustment in the function), while the MIPS 3.0 linker wants
1295 the frame pointer to be the stack pointer after the initial
1296 adjustment. */
1297
1298 #define DEBUGGER_AUTO_OFFSET(X) \
1299 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1300 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1301 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1302 \f
1303 /* Target machine storage layout */
1304
1305 #define BITS_BIG_ENDIAN 0
1306 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1307 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1308
1309 #define MAX_BITS_PER_WORD 64
1310
1311 /* Width of a word, in units (bytes). */
1312 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1313 #ifndef IN_LIBGCC2
1314 #define MIN_UNITS_PER_WORD 4
1315 #endif
1316
1317 /* For MIPS, width of a floating point register. */
1318 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1319
1320 /* The number of consecutive floating-point registers needed to store the
1321 largest format supported by the FPU. */
1322 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1323
1324 /* The number of consecutive floating-point registers needed to store the
1325 smallest format supported by the FPU. */
1326 #define MIN_FPRS_PER_FMT \
1327 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1328 ? 1 : MAX_FPRS_PER_FMT)
1329
1330 /* The largest size of value that can be held in floating-point
1331 registers and moved with a single instruction. */
1332 #define UNITS_PER_HWFPVALUE \
1333 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1334
1335 /* The largest size of value that can be held in floating-point
1336 registers. */
1337 #define UNITS_PER_FPVALUE \
1338 (TARGET_SOFT_FLOAT_ABI ? 0 \
1339 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1340 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1341
1342 /* The number of bytes in a double. */
1343 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1344
1345 /* Set the sizes of the core types. */
1346 #define SHORT_TYPE_SIZE 16
1347 #define INT_TYPE_SIZE 32
1348 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1349 #define LONG_LONG_TYPE_SIZE 64
1350
1351 #define FLOAT_TYPE_SIZE 32
1352 #define DOUBLE_TYPE_SIZE 64
1353 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1354
1355 /* Define the sizes of fixed-point types. */
1356 #define SHORT_FRACT_TYPE_SIZE 8
1357 #define FRACT_TYPE_SIZE 16
1358 #define LONG_FRACT_TYPE_SIZE 32
1359 #define LONG_LONG_FRACT_TYPE_SIZE 64
1360
1361 #define SHORT_ACCUM_TYPE_SIZE 16
1362 #define ACCUM_TYPE_SIZE 32
1363 #define LONG_ACCUM_TYPE_SIZE 64
1364 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1365 doesn't support 128-bit integers for MIPS32 currently. */
1366 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1367
1368 /* long double is not a fixed mode, but the idea is that, if we
1369 support long double, we also want a 128-bit integer type. */
1370 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1371
1372 #ifdef IN_LIBGCC2
1373 #if ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1374 || (defined _ABI64 && _MIPS_SIM == _ABI64))
1375 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1376 # else
1377 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1378 # endif
1379 #endif
1380
1381 /* Width in bits of a pointer. */
1382 #ifndef POINTER_SIZE
1383 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1384 #endif
1385
1386 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1387 #define PARM_BOUNDARY BITS_PER_WORD
1388
1389 /* Allocation boundary (in *bits*) for the code of a function. */
1390 #define FUNCTION_BOUNDARY 32
1391
1392 /* Alignment of field after `int : 0' in a structure. */
1393 #define EMPTY_FIELD_BOUNDARY 32
1394
1395 /* Every structure's size must be a multiple of this. */
1396 /* 8 is observed right on a DECstation and on riscos 4.02. */
1397 #define STRUCTURE_SIZE_BOUNDARY 8
1398
1399 /* There is no point aligning anything to a rounder boundary than this. */
1400 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1401
1402 /* All accesses must be aligned. */
1403 #define STRICT_ALIGNMENT 1
1404
1405 /* Define this if you wish to imitate the way many other C compilers
1406 handle alignment of bitfields and the structures that contain
1407 them.
1408
1409 The behavior is that the type written for a bit-field (`int',
1410 `short', or other integer type) imposes an alignment for the
1411 entire structure, as if the structure really did contain an
1412 ordinary field of that type. In addition, the bit-field is placed
1413 within the structure so that it would fit within such a field,
1414 not crossing a boundary for it.
1415
1416 Thus, on most machines, a bit-field whose type is written as `int'
1417 would not cross a four-byte boundary, and would force four-byte
1418 alignment for the whole structure. (The alignment used may not
1419 be four bytes; it is controlled by the other alignment
1420 parameters.)
1421
1422 If the macro is defined, its definition should be a C expression;
1423 a nonzero value for the expression enables this behavior. */
1424
1425 #define PCC_BITFIELD_TYPE_MATTERS 1
1426
1427 /* If defined, a C expression to compute the alignment given to a
1428 constant that is being placed in memory. CONSTANT is the constant
1429 and ALIGN is the alignment that the object would ordinarily have.
1430 The value of this macro is used instead of that alignment to align
1431 the object.
1432
1433 If this macro is not defined, then ALIGN is used.
1434
1435 The typical use of this macro is to increase alignment for string
1436 constants to be word aligned so that `strcpy' calls that copy
1437 constants can be done inline. */
1438
1439 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1440 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1441 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1442
1443 /* If defined, a C expression to compute the alignment for a static
1444 variable. TYPE is the data type, and ALIGN is the alignment that
1445 the object would ordinarily have. The value of this macro is used
1446 instead of that alignment to align the object.
1447
1448 If this macro is not defined, then ALIGN is used.
1449
1450 One use of this macro is to increase alignment of medium-size
1451 data to make it all fit in fewer cache lines. Another is to
1452 cause character arrays to be word-aligned so that `strcpy' calls
1453 that copy constants to character arrays can be done inline. */
1454
1455 #undef DATA_ALIGNMENT
1456 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1457 ((((ALIGN) < BITS_PER_WORD) \
1458 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1459 || TREE_CODE (TYPE) == UNION_TYPE \
1460 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1461
1462 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1463 character arrays to be word-aligned so that `strcpy' calls that copy
1464 constants to character arrays can be done inline, and 'strcmp' can be
1465 optimised to use word loads. */
1466 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1467 DATA_ALIGNMENT (TYPE, ALIGN)
1468
1469 #define PAD_VARARGS_DOWN \
1470 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1471
1472 /* Define if operations between registers always perform the operation
1473 on the full register even if a narrower mode is specified. */
1474 #define WORD_REGISTER_OPERATIONS
1475
1476 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1477 moves. All other references are zero extended. */
1478 #define LOAD_EXTEND_OP(MODE) \
1479 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1480 ? SIGN_EXTEND : ZERO_EXTEND)
1481
1482 /* Define this macro if it is advisable to hold scalars in registers
1483 in a wider mode than that declared by the program. In such cases,
1484 the value is constrained to be within the bounds of the declared
1485 type, but kept valid in the wider mode. The signedness of the
1486 extension may differ from that of the type. */
1487
1488 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1489 if (GET_MODE_CLASS (MODE) == MODE_INT \
1490 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1491 { \
1492 if ((MODE) == SImode) \
1493 (UNSIGNEDP) = 0; \
1494 (MODE) = Pmode; \
1495 }
1496
1497 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1498 Extensions of pointers to word_mode must be signed. */
1499 #define POINTERS_EXTEND_UNSIGNED false
1500
1501 /* Define if loading short immediate values into registers sign extends. */
1502 #define SHORT_IMMEDIATES_SIGN_EXTEND
1503
1504 /* The [d]clz instructions have the natural values at 0. */
1505
1506 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1507 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1508 \f
1509 /* Standard register usage. */
1510
1511 /* Number of hardware registers. We have:
1512
1513 - 32 integer registers
1514 - 32 floating point registers
1515 - 8 condition code registers
1516 - 2 accumulator registers (hi and lo)
1517 - 32 registers each for coprocessors 0, 2 and 3
1518 - 4 fake registers:
1519 - ARG_POINTER_REGNUM
1520 - FRAME_POINTER_REGNUM
1521 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1522 - CPRESTORE_SLOT_REGNUM
1523 - 2 dummy entries that were used at various times in the past.
1524 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1525 - 6 DSP control registers */
1526
1527 #define FIRST_PSEUDO_REGISTER 188
1528
1529 /* By default, fix the kernel registers ($26 and $27), the global
1530 pointer ($28) and the stack pointer ($29). This can change
1531 depending on the command-line options.
1532
1533 Regarding coprocessor registers: without evidence to the contrary,
1534 it's best to assume that each coprocessor register has a unique
1535 use. This can be overridden, in, e.g., mips_option_override or
1536 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1537 inappropriate for a particular target. */
1538
1539 #define FIXED_REGISTERS \
1540 { \
1541 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1542 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1543 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1544 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1545 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1546 /* COP0 registers */ \
1547 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1548 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1549 /* COP2 registers */ \
1550 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1551 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1552 /* COP3 registers */ \
1553 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1554 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1555 /* 6 DSP accumulator registers & 6 control registers */ \
1556 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1557 }
1558
1559
1560 /* Set up this array for o32 by default.
1561
1562 Note that we don't mark $31 as a call-clobbered register. The idea is
1563 that it's really the call instructions themselves which clobber $31.
1564 We don't care what the called function does with it afterwards.
1565
1566 This approach makes it easier to implement sibcalls. Unlike normal
1567 calls, sibcalls don't clobber $31, so the register reaches the
1568 called function in tact. EPILOGUE_USES says that $31 is useful
1569 to the called function. */
1570
1571 #define CALL_USED_REGISTERS \
1572 { \
1573 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1574 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1575 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1576 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1577 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1578 /* COP0 registers */ \
1579 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1580 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1581 /* COP2 registers */ \
1582 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1583 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1584 /* COP3 registers */ \
1585 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1586 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1587 /* 6 DSP accumulator registers & 6 control registers */ \
1588 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1589 }
1590
1591
1592 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1593
1594 #define CALL_REALLY_USED_REGISTERS \
1595 { /* General registers. */ \
1596 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1597 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1598 /* Floating-point registers. */ \
1599 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1600 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1601 /* Others. */ \
1602 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1603 /* COP0 registers */ \
1604 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1605 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1606 /* COP2 registers */ \
1607 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1608 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1609 /* COP3 registers */ \
1610 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1611 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1612 /* 6 DSP accumulator registers & 6 control registers */ \
1613 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1614 }
1615
1616 /* Internal macros to classify a register number as to whether it's a
1617 general purpose register, a floating point register, a
1618 multiply/divide register, or a status register. */
1619
1620 #define GP_REG_FIRST 0
1621 #define GP_REG_LAST 31
1622 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1623 #define GP_DBX_FIRST 0
1624 #define K0_REG_NUM (GP_REG_FIRST + 26)
1625 #define K1_REG_NUM (GP_REG_FIRST + 27)
1626 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1627
1628 #define FP_REG_FIRST 32
1629 #define FP_REG_LAST 63
1630 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1631 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1632
1633 #define MD_REG_FIRST 64
1634 #define MD_REG_LAST 65
1635 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1636 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1637
1638 /* The DWARF 2 CFA column which tracks the return address from a
1639 signal handler context. This means that to maintain backwards
1640 compatibility, no hard register can be assigned this column if it
1641 would need to be handled by the DWARF unwinder. */
1642 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1643
1644 #define ST_REG_FIRST 67
1645 #define ST_REG_LAST 74
1646 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1647
1648
1649 /* FIXME: renumber. */
1650 #define COP0_REG_FIRST 80
1651 #define COP0_REG_LAST 111
1652 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1653
1654 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1655 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1656 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1657
1658 #define COP2_REG_FIRST 112
1659 #define COP2_REG_LAST 143
1660 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1661
1662 #define COP3_REG_FIRST 144
1663 #define COP3_REG_LAST 175
1664 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1665
1666 /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1667 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1668 #define ALL_COP_REG_LAST COP3_REG_LAST
1669 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1670
1671 #define DSP_ACC_REG_FIRST 176
1672 #define DSP_ACC_REG_LAST 181
1673 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1674
1675 #define AT_REGNUM (GP_REG_FIRST + 1)
1676 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1677 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1678
1679 /* A few bitfield locations for the coprocessor registers. */
1680 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1681 the cause register for the EIC interrupt mode. */
1682 #define CAUSE_IPL 10
1683 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1684 #define SR_IPL 10
1685 /* Exception Level is at bit 1 of the status register. */
1686 #define SR_EXL 1
1687 /* Interrupt Enable is at bit 0 of the status register. */
1688 #define SR_IE 0
1689
1690 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1691 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1692 should be used instead. */
1693 #define FPSW_REGNUM ST_REG_FIRST
1694
1695 #define GP_REG_P(REGNO) \
1696 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1697 #define M16_REG_P(REGNO) \
1698 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1699 #define M16STORE_REG_P(REGNO) \
1700 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1701 #define FP_REG_P(REGNO) \
1702 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1703 #define MD_REG_P(REGNO) \
1704 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1705 #define ST_REG_P(REGNO) \
1706 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1707 #define COP0_REG_P(REGNO) \
1708 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1709 #define COP2_REG_P(REGNO) \
1710 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1711 #define COP3_REG_P(REGNO) \
1712 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1713 #define ALL_COP_REG_P(REGNO) \
1714 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1715 /* Test if REGNO is one of the 6 new DSP accumulators. */
1716 #define DSP_ACC_REG_P(REGNO) \
1717 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1718 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1719 #define ACC_REG_P(REGNO) \
1720 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1721
1722 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1723
1724 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1725 to initialize the mips16 gp pseudo register. */
1726 #define CONST_GP_P(X) \
1727 (GET_CODE (X) == CONST \
1728 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1729 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1730
1731 /* Return coprocessor number from register number. */
1732
1733 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1734 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1735 : COP3_REG_P (REGNO) ? '3' : '?')
1736
1737
1738 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1739
1740 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1741 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1742
1743 #define MODES_TIEABLE_P mips_modes_tieable_p
1744
1745 /* Register to use for pushing function arguments. */
1746 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1747
1748 /* These two registers don't really exist: they get eliminated to either
1749 the stack or hard frame pointer. */
1750 #define ARG_POINTER_REGNUM 77
1751 #define FRAME_POINTER_REGNUM 78
1752
1753 /* $30 is not available on the mips16, so we use $17 as the frame
1754 pointer. */
1755 #define HARD_FRAME_POINTER_REGNUM \
1756 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1757
1758 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1759 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1760
1761 /* Register in which static-chain is passed to a function. */
1762 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1763
1764 /* Registers used as temporaries in prologue/epilogue code:
1765
1766 - If a MIPS16 PIC function needs access to _gp, it first loads
1767 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1768
1769 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1770 register. The register must not conflict with MIPS16_PIC_TEMP.
1771
1772 - If we aren't generating MIPS16 code, the prologue can also use
1773 MIPS_PROLOGUE_TEMP2 as a general temporary register.
1774
1775 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1776 register.
1777
1778 If we're generating MIPS16 code, these registers must come from the
1779 core set of 8. The prologue registers mustn't conflict with any
1780 incoming arguments, the static chain pointer, or the frame pointer.
1781 The epilogue temporary mustn't conflict with the return registers,
1782 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1783 or the EH data registers.
1784
1785 If we're generating interrupt handlers, we use K0 as a temporary register
1786 in prologue/epilogue code. */
1787
1788 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1789 #define MIPS_PROLOGUE_TEMP_REGNUM \
1790 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1791 #define MIPS_PROLOGUE_TEMP2_REGNUM \
1792 (TARGET_MIPS16 \
1793 ? (gcc_unreachable (), INVALID_REGNUM) \
1794 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
1795 #define MIPS_EPILOGUE_TEMP_REGNUM \
1796 (cfun->machine->interrupt_handler_p \
1797 ? K0_REG_NUM \
1798 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1799
1800 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1801 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1802 #define MIPS_PROLOGUE_TEMP2(MODE) \
1803 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
1804 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1805
1806 /* Define this macro if it is as good or better to call a constant
1807 function address than to call an address kept in a register. */
1808 #define NO_FUNCTION_CSE 1
1809
1810 /* The ABI-defined global pointer. Sometimes we use a different
1811 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1812 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1813
1814 /* We normally use $28 as the global pointer. However, when generating
1815 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1816 register instead. They can then avoid saving and restoring $28
1817 and perhaps avoid using a frame at all.
1818
1819 When a leaf function uses something other than $28, mips_expand_prologue
1820 will modify pic_offset_table_rtx in place. Take the register number
1821 from there after reload. */
1822 #define PIC_OFFSET_TABLE_REGNUM \
1823 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1824 \f
1825 /* Define the classes of registers for register constraints in the
1826 machine description. Also define ranges of constants.
1827
1828 One of the classes must always be named ALL_REGS and include all hard regs.
1829 If there is more than one class, another class must be named NO_REGS
1830 and contain no registers.
1831
1832 The name GENERAL_REGS must be the name of a class (or an alias for
1833 another name such as ALL_REGS). This is the class of registers
1834 that is allowed by "g" or "r" in a register constraint.
1835 Also, registers outside this class are allocated only when
1836 instructions express preferences for them.
1837
1838 The classes must be numbered in nondecreasing order; that is,
1839 a larger-numbered class must never be contained completely
1840 in a smaller-numbered class.
1841
1842 For any two classes, it is very desirable that there be another
1843 class that represents their union. */
1844
1845 enum reg_class
1846 {
1847 NO_REGS, /* no registers in set */
1848 M16_REGS, /* mips16 directly accessible registers */
1849 T_REG, /* mips16 T register ($24) */
1850 M16_T_REGS, /* mips16 registers plus T register */
1851 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1852 V1_REG, /* Register $v1 ($3) used for TLS access. */
1853 LEA_REGS, /* Every GPR except $25 */
1854 GR_REGS, /* integer registers */
1855 FP_REGS, /* floating point registers */
1856 MD0_REG, /* first multiply/divide register */
1857 MD1_REG, /* second multiply/divide register */
1858 MD_REGS, /* multiply/divide registers (hi/lo) */
1859 COP0_REGS, /* generic coprocessor classes */
1860 COP2_REGS,
1861 COP3_REGS,
1862 ST_REGS, /* status registers (fp status) */
1863 DSP_ACC_REGS, /* DSP accumulator registers */
1864 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1865 FRAME_REGS, /* $arg and $frame */
1866 GR_AND_MD0_REGS, /* union classes */
1867 GR_AND_MD1_REGS,
1868 GR_AND_MD_REGS,
1869 GR_AND_ACC_REGS,
1870 ALL_REGS, /* all registers */
1871 LIM_REG_CLASSES /* max value + 1 */
1872 };
1873
1874 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1875
1876 #define GENERAL_REGS GR_REGS
1877
1878 /* An initializer containing the names of the register classes as C
1879 string constants. These names are used in writing some of the
1880 debugging dumps. */
1881
1882 #define REG_CLASS_NAMES \
1883 { \
1884 "NO_REGS", \
1885 "M16_REGS", \
1886 "T_REG", \
1887 "M16_T_REGS", \
1888 "PIC_FN_ADDR_REG", \
1889 "V1_REG", \
1890 "LEA_REGS", \
1891 "GR_REGS", \
1892 "FP_REGS", \
1893 "MD0_REG", \
1894 "MD1_REG", \
1895 "MD_REGS", \
1896 /* coprocessor registers */ \
1897 "COP0_REGS", \
1898 "COP2_REGS", \
1899 "COP3_REGS", \
1900 "ST_REGS", \
1901 "DSP_ACC_REGS", \
1902 "ACC_REGS", \
1903 "FRAME_REGS", \
1904 "GR_AND_MD0_REGS", \
1905 "GR_AND_MD1_REGS", \
1906 "GR_AND_MD_REGS", \
1907 "GR_AND_ACC_REGS", \
1908 "ALL_REGS" \
1909 }
1910
1911 /* An initializer containing the contents of the register classes,
1912 as integers which are bit masks. The Nth integer specifies the
1913 contents of class N. The way the integer MASK is interpreted is
1914 that register R is in the class if `MASK & (1 << R)' is 1.
1915
1916 When the machine has more than 32 registers, an integer does not
1917 suffice. Then the integers are replaced by sub-initializers,
1918 braced groupings containing several integers. Each
1919 sub-initializer must be suitable as an initializer for the type
1920 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1921
1922 #define REG_CLASS_CONTENTS \
1923 { \
1924 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1925 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1926 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1927 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1928 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1929 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1930 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1931 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1932 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1933 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1934 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1935 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1936 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1937 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1938 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1939 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1940 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1941 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1942 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1943 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1944 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1945 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1946 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1947 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1948 }
1949
1950
1951 /* A C expression whose value is a register class containing hard
1952 register REGNO. In general there is more that one such class;
1953 choose a class which is "minimal", meaning that no smaller class
1954 also contains the register. */
1955
1956 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1957
1958 /* A macro whose definition is the name of the class to which a
1959 valid base register must belong. A base register is one used in
1960 an address which is the register value plus a displacement. */
1961
1962 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1963
1964 /* A macro whose definition is the name of the class to which a
1965 valid index register must belong. An index register is one used
1966 in an address where its value is either multiplied by a scale
1967 factor or added to another register (as well as added to a
1968 displacement). */
1969
1970 #define INDEX_REG_CLASS NO_REGS
1971
1972 /* We generally want to put call-clobbered registers ahead of
1973 call-saved ones. (IRA expects this.) */
1974
1975 #define REG_ALLOC_ORDER \
1976 { /* Accumulator registers. When GPRs and accumulators have equal \
1977 cost, we generally prefer to use accumulators. For example, \
1978 a division of multiplication result is better allocated to LO, \
1979 so that we put the MFLO at the point of use instead of at the \
1980 point of definition. It's also needed if we're to take advantage \
1981 of the extra accumulators available with -mdspr2. In some cases, \
1982 it can also help to reduce register pressure. */ \
1983 64, 65,176,177,178,179,180,181, \
1984 /* Call-clobbered GPRs. */ \
1985 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1986 24, 25, 31, \
1987 /* The global pointer. This is call-clobbered for o32 and o64 \
1988 abicalls, call-saved for n32 and n64 abicalls, and a program \
1989 invariant otherwise. Putting it between the call-clobbered \
1990 and call-saved registers should cope with all eventualities. */ \
1991 28, \
1992 /* Call-saved GPRs. */ \
1993 16, 17, 18, 19, 20, 21, 22, 23, 30, \
1994 /* GPRs that can never be exposed to the register allocator. */ \
1995 0, 26, 27, 29, \
1996 /* Call-clobbered FPRs. */ \
1997 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1998 48, 49, 50, 51, \
1999 /* FPRs that are usually call-saved. The odd ones are actually \
2000 call-clobbered for n32, but listing them ahead of the even \
2001 registers might encourage the register allocator to fragment \
2002 the available FPR pairs. We need paired FPRs to store long \
2003 doubles, so it isn't clear that using a different order \
2004 for n32 would be a win. */ \
2005 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2006 /* None of the remaining classes have defined call-saved \
2007 registers. */ \
2008 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2009 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2010 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2011 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2012 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2013 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2014 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
2015 182,183,184,185,186,187 \
2016 }
2017
2018 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
2019 to be rearranged based on a particular function. On the mips16, we
2020 want to allocate $24 (T_REG) before other registers for
2021 instructions for which it is possible. */
2022
2023 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
2024
2025 /* True if VALUE is an unsigned 6-bit number. */
2026
2027 #define UIMM6_OPERAND(VALUE) \
2028 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2029
2030 /* True if VALUE is a signed 10-bit number. */
2031
2032 #define IMM10_OPERAND(VALUE) \
2033 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2034
2035 /* True if VALUE is a signed 16-bit number. */
2036
2037 #define SMALL_OPERAND(VALUE) \
2038 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2039
2040 /* True if VALUE is an unsigned 16-bit number. */
2041
2042 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2043 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2044
2045 /* True if VALUE can be loaded into a register using LUI. */
2046
2047 #define LUI_OPERAND(VALUE) \
2048 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2049 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2050
2051 /* Return a value X with the low 16 bits clear, and such that
2052 VALUE - X is a signed 16-bit value. */
2053
2054 #define CONST_HIGH_PART(VALUE) \
2055 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2056
2057 #define CONST_LOW_PART(VALUE) \
2058 ((VALUE) - CONST_HIGH_PART (VALUE))
2059
2060 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2061 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2062 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2063 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2064
2065 /* The HI and LO registers can only be reloaded via the general
2066 registers. Condition code registers can only be loaded to the
2067 general registers, and from the floating point registers. */
2068
2069 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2070 mips_secondary_reload_class (CLASS, MODE, X, true)
2071 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2072 mips_secondary_reload_class (CLASS, MODE, X, false)
2073
2074 /* Return the maximum number of consecutive registers
2075 needed to represent mode MODE in a register of class CLASS. */
2076
2077 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2078
2079 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2080 mips_cannot_change_mode_class (FROM, TO, CLASS)
2081 \f
2082 /* Stack layout; function entry, exit and calling. */
2083
2084 #define STACK_GROWS_DOWNWARD
2085
2086 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2087
2088 /* Size of the area allocated in the frame to save the GP. */
2089
2090 #define MIPS_GP_SAVE_AREA_SIZE \
2091 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2092
2093 /* The offset of the first local variable from the frame pointer. See
2094 mips_compute_frame_info for details about the frame layout. */
2095
2096 #define STARTING_FRAME_OFFSET \
2097 (FRAME_GROWS_DOWNWARD \
2098 ? 0 \
2099 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2100
2101 #define RETURN_ADDR_RTX mips_return_addr
2102
2103 /* Mask off the MIPS16 ISA bit in unwind addresses.
2104
2105 The reason for this is a little subtle. When unwinding a call,
2106 we are given the call's return address, which on most targets
2107 is the address of the following instruction. However, what we
2108 actually want to find is the EH region for the call itself.
2109 The target-independent unwind code therefore searches for "RA - 1".
2110
2111 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2112 RA - 1 is therefore the real (even-valued) start of the return
2113 instruction. EH region labels are usually odd-valued MIPS16 symbols
2114 too, so a search for an even address within a MIPS16 region would
2115 usually work.
2116
2117 However, there is an exception. If the end of an EH region is also
2118 the end of a function, the end label is allowed to be even. This is
2119 necessary because a following non-MIPS16 function may also need EH
2120 information for its first instruction.
2121
2122 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2123 non-ISA-encoded address. This probably isn't ideal, but it is
2124 the traditional (legacy) behavior. It is therefore only safe
2125 to search MIPS EH regions for an _odd-valued_ address.
2126
2127 Masking off the ISA bit means that the target-independent code
2128 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2129 #define MASK_RETURN_ADDR GEN_INT (-2)
2130
2131
2132 /* Similarly, don't use the least-significant bit to tell pointers to
2133 code from vtable index. */
2134
2135 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2136
2137 /* The eliminations to $17 are only used for mips16 code. See the
2138 definition of HARD_FRAME_POINTER_REGNUM. */
2139
2140 #define ELIMINABLE_REGS \
2141 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2142 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2143 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2144 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2145 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2146 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2147
2148 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2149 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2150
2151 /* Allocate stack space for arguments at the beginning of each function. */
2152 #define ACCUMULATE_OUTGOING_ARGS 1
2153
2154 /* The argument pointer always points to the first argument. */
2155 #define FIRST_PARM_OFFSET(FNDECL) 0
2156
2157 /* o32 and o64 reserve stack space for all argument registers. */
2158 #define REG_PARM_STACK_SPACE(FNDECL) \
2159 (TARGET_OLDABI \
2160 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2161 : 0)
2162
2163 /* Define this if it is the responsibility of the caller to
2164 allocate the area reserved for arguments passed in registers.
2165 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2166 of this macro is to determine whether the space is included in
2167 `crtl->outgoing_args_size'. */
2168 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2169
2170 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2171 \f
2172 /* Symbolic macros for the registers used to return integer and floating
2173 point values. */
2174
2175 #define GP_RETURN (GP_REG_FIRST + 2)
2176 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2177
2178 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2179
2180 /* Symbolic macros for the first/last argument registers. */
2181
2182 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2183 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2184 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2185 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2186
2187 /* 1 if N is a possible register number for function argument passing.
2188 We have no FP argument registers when soft-float. When FP registers
2189 are 32 bits, we can't directly reference the odd numbered ones. */
2190
2191 #define FUNCTION_ARG_REGNO_P(N) \
2192 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2193 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2194 && !fixed_regs[N])
2195 \f
2196 /* This structure has to cope with two different argument allocation
2197 schemes. Most MIPS ABIs view the arguments as a structure, of which
2198 the first N words go in registers and the rest go on the stack. If I
2199 < N, the Ith word might go in Ith integer argument register or in a
2200 floating-point register. For these ABIs, we only need to remember
2201 the offset of the current argument into the structure.
2202
2203 The EABI instead allocates the integer and floating-point arguments
2204 separately. The first N words of FP arguments go in FP registers,
2205 the rest go on the stack. Likewise, the first N words of the other
2206 arguments go in integer registers, and the rest go on the stack. We
2207 need to maintain three counts: the number of integer registers used,
2208 the number of floating-point registers used, and the number of words
2209 passed on the stack.
2210
2211 We could keep separate information for the two ABIs (a word count for
2212 the standard ABIs, and three separate counts for the EABI). But it
2213 seems simpler to view the standard ABIs as forms of EABI that do not
2214 allocate floating-point registers.
2215
2216 So for the standard ABIs, the first N words are allocated to integer
2217 registers, and mips_function_arg decides on an argument-by-argument
2218 basis whether that argument should really go in an integer register,
2219 or in a floating-point one. */
2220
2221 typedef struct mips_args {
2222 /* Always true for varargs functions. Otherwise true if at least
2223 one argument has been passed in an integer register. */
2224 int gp_reg_found;
2225
2226 /* The number of arguments seen so far. */
2227 unsigned int arg_number;
2228
2229 /* The number of integer registers used so far. For all ABIs except
2230 EABI, this is the number of words that have been added to the
2231 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2232 unsigned int num_gprs;
2233
2234 /* For EABI, the number of floating-point registers used so far. */
2235 unsigned int num_fprs;
2236
2237 /* The number of words passed on the stack. */
2238 unsigned int stack_words;
2239
2240 /* On the mips16, we need to keep track of which floating point
2241 arguments were passed in general registers, but would have been
2242 passed in the FP regs if this were a 32-bit function, so that we
2243 can move them to the FP regs if we wind up calling a 32-bit
2244 function. We record this information in fp_code, encoded in base
2245 four. A zero digit means no floating point argument, a one digit
2246 means an SFmode argument, and a two digit means a DFmode argument,
2247 and a three digit is not used. The low order digit is the first
2248 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2249 an SFmode argument. ??? A more sophisticated approach will be
2250 needed if MIPS_ABI != ABI_32. */
2251 int fp_code;
2252
2253 /* True if the function has a prototype. */
2254 int prototype;
2255 } CUMULATIVE_ARGS;
2256
2257 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2258 for a call to a function whose data type is FNTYPE.
2259 For a library call, FNTYPE is 0. */
2260
2261 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2262 mips_init_cumulative_args (&CUM, FNTYPE)
2263
2264 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2265 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2266
2267 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2268 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2269
2270 /* True if using EABI and varargs can be passed in floating-point
2271 registers. Under these conditions, we need a more complex form
2272 of va_list, which tracks GPR, FPR and stack arguments separately. */
2273 #define EABI_FLOAT_VARARGS_P \
2274 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2275
2276 \f
2277 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2278
2279 /* Treat LOC as a byte offset from the stack pointer and round it up
2280 to the next fully-aligned offset. */
2281 #define MIPS_STACK_ALIGN(LOC) \
2282 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2283
2284 \f
2285 /* Output assembler code to FILE to increment profiler label # LABELNO
2286 for profiling a function entry. */
2287
2288 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2289
2290 /* The profiler preserves all interesting registers, including $31. */
2291 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2292
2293 /* No mips port has ever used the profiler counter word, so don't emit it
2294 or the label for it. */
2295
2296 #define NO_PROFILE_COUNTERS 1
2297
2298 /* Define this macro if the code for function profiling should come
2299 before the function prologue. Normally, the profiling code comes
2300 after. */
2301
2302 /* #define PROFILE_BEFORE_PROLOGUE */
2303
2304 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2305 the stack pointer does not matter. The value is tested only in
2306 functions that have frame pointers.
2307 No definition is equivalent to always zero. */
2308
2309 #define EXIT_IGNORE_STACK 1
2310
2311 \f
2312 /* Trampolines are a block of code followed by two pointers. */
2313
2314 #define TRAMPOLINE_SIZE \
2315 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2316
2317 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2318 pointers from a single LUI base. */
2319
2320 #define TRAMPOLINE_ALIGNMENT 64
2321
2322 /* mips_trampoline_init calls this library function to flush
2323 program and data caches. */
2324
2325 #ifndef CACHE_FLUSH_FUNC
2326 #define CACHE_FLUSH_FUNC "_flush_cache"
2327 #endif
2328
2329 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2330 /* Flush both caches. We need to flush the data cache in case \
2331 the system has a write-back cache. */ \
2332 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2333 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2334 GEN_INT (3), TYPE_MODE (integer_type_node))
2335
2336 \f
2337 /* Addressing modes, and classification of registers for them. */
2338
2339 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2340 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2341 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2342 \f
2343 /* Maximum number of registers that can appear in a valid memory address. */
2344
2345 #define MAX_REGS_PER_ADDRESS 1
2346
2347 /* Check for constness inline but use mips_legitimate_address_p
2348 to check whether a constant really is an address. */
2349
2350 #define CONSTANT_ADDRESS_P(X) \
2351 (CONSTANT_P (X) && memory_address_p (SImode, X))
2352
2353 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2354 'the start of the function that this code is output in'. */
2355
2356 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2357 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2358 asm_fprintf ((FILE), "%U%s", \
2359 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2360 else \
2361 asm_fprintf ((FILE), "%U%s", (NAME))
2362 \f
2363 /* Flag to mark a function decl symbol that requires a long call. */
2364 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2365 #define SYMBOL_REF_LONG_CALL_P(X) \
2366 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2367
2368 /* This flag marks functions that cannot be lazily bound. */
2369 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2370 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2371 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2372
2373 /* True if we're generating a form of MIPS16 code in which jump tables
2374 are stored in the text section and encoded as 16-bit PC-relative
2375 offsets. This is only possible when general text loads are allowed,
2376 since the table access itself will be an "lh" instruction. If the
2377 PC-relative offsets grow too large, 32-bit offsets are used instead. */
2378 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2379
2380 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2381
2382 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2383
2384 /* Only use short offsets if their range will not overflow. */
2385 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2386 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2387 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2388 : SImode)
2389
2390 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2391
2392 /* Define this as 1 if `char' should by default be signed; else as 0. */
2393 #ifndef DEFAULT_SIGNED_CHAR
2394 #define DEFAULT_SIGNED_CHAR 1
2395 #endif
2396
2397 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2398 we generally don't want to use them for copying arbitrary data.
2399 A single N-word move is usually the same cost as N single-word moves. */
2400 #define MOVE_MAX UNITS_PER_WORD
2401 #define MAX_MOVE_MAX 8
2402
2403 /* Define this macro as a C expression which is nonzero if
2404 accessing less than a word of memory (i.e. a `char' or a
2405 `short') is no faster than accessing a word of memory, i.e., if
2406 such access require more than one instruction or if there is no
2407 difference in cost between byte and (aligned) word loads.
2408
2409 On RISC machines, it tends to generate better code to define
2410 this as 1, since it avoids making a QI or HI mode register.
2411
2412 But, generating word accesses for -mips16 is generally bad as shifts
2413 (often extended) would be needed for byte accesses. */
2414 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2415
2416 /* Standard MIPS integer shifts truncate the shift amount to the
2417 width of the shifted operand. However, Loongson vector shifts
2418 do not truncate the shift amount at all. */
2419 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2420
2421 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2422 is done just by pretending it is already truncated. */
2423 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2424 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2425
2426
2427 /* Specify the machine mode that pointers have.
2428 After generation of rtl, the compiler makes no further distinction
2429 between pointers and any other objects of this machine mode. */
2430
2431 #ifndef Pmode
2432 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2433 #endif
2434
2435 /* Give call MEMs SImode since it is the "most permissive" mode
2436 for both 32-bit and 64-bit targets. */
2437
2438 #define FUNCTION_MODE SImode
2439
2440 \f
2441 /* We allocate $fcc registers by hand and can't cope with moves of
2442 CCmode registers to and from pseudos (or memory). */
2443 #define AVOID_CCMODE_COPIES
2444
2445 /* A C expression for the cost of a branch instruction. A value of
2446 1 is the default; other values are interpreted relative to that. */
2447
2448 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2449 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2450
2451 /* The MIPS port has several functions that return an instruction count.
2452 Multiplying the count by this value gives the number of bytes that
2453 the instructions occupy. */
2454 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2455
2456 /* The length of a NOP in bytes. */
2457 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2458
2459 /* If defined, modifies the length assigned to instruction INSN as a
2460 function of the context in which it is used. LENGTH is an lvalue
2461 that contains the initially computed length of the insn and should
2462 be updated with the correct length of the insn. */
2463 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2464 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2465
2466 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2467 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2468 its operands. */
2469 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2470 "%*" OPCODE "%?\t" OPERANDS "%/"
2471
2472 /* Return an asm string that forces INSN to be treated as an absolute
2473 J or JAL instruction instead of an assembler macro. */
2474 #define MIPS_ABSOLUTE_JUMP(INSN) \
2475 (TARGET_ABICALLS_PIC2 \
2476 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2477 : INSN)
2478
2479 /* Return the asm template for a call. INSN is the instruction's mnemonic
2480 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2481 number of the target. SIZE_OPNO is the operand number of the argument size
2482 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2483 -1 and the call is indirect, use the function symbol from the call
2484 attributes to attach a R_MIPS_JALR relocation to the call.
2485
2486 When generating GOT code without explicit relocation operators,
2487 all calls should use assembly macros. Otherwise, all indirect
2488 calls should use "jr" or "jalr"; we will arrange to restore $gp
2489 afterwards if necessary. Finally, we can only generate direct
2490 calls for -mabicalls by temporarily switching to non-PIC mode.
2491
2492 For microMIPS jal(r), we try to generate jal(r)s when a 16-bit
2493 instruction is in the delay slot of jal(r). */
2494 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2495 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2496 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2497 : REG_P (OPERANDS[TARGET_OPNO]) \
2498 ? (mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO) \
2499 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2500 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2501 : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
2502 ? "%*" INSN "r%!\t%" #TARGET_OPNO "%/" \
2503 : "%*" INSN "r\t%" #TARGET_OPNO "%/") \
2504 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/"))
2505
2506 /* Similar to MIPS_CALL, but this is for MICROMIPS "j" to generate
2507 "jrc" when nop is in the delay slot of "jr". */
2508
2509 #define MICROMIPS_J(INSN, OPERANDS, OPNO) \
2510 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2511 ? "%*j\t%" #OPNO "%/" \
2512 : REG_P (OPERANDS[OPNO]) \
2513 ? "%*jr%:\t%" #OPNO \
2514 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #OPNO "%/"))
2515
2516 \f
2517 /* Control the assembler format that we output. */
2518
2519 /* Output to assembler file text saying following lines
2520 may contain character constants, extra white space, comments, etc. */
2521
2522 #ifndef ASM_APP_ON
2523 #define ASM_APP_ON " #APP\n"
2524 #endif
2525
2526 /* Output to assembler file text saying following lines
2527 no longer contain unusual constructs. */
2528
2529 #ifndef ASM_APP_OFF
2530 #define ASM_APP_OFF " #NO_APP\n"
2531 #endif
2532
2533 #define REGISTER_NAMES \
2534 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2535 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2536 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2537 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2538 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2539 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2540 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2541 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2542 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2543 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2544 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2545 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2546 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2547 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2548 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2549 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2550 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2551 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2552 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2553 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2554 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2555 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2556 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2557 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2558
2559 /* List the "software" names for each register. Also list the numerical
2560 names for $fp and $sp. */
2561
2562 #define ADDITIONAL_REGISTER_NAMES \
2563 { \
2564 { "$29", 29 + GP_REG_FIRST }, \
2565 { "$30", 30 + GP_REG_FIRST }, \
2566 { "at", 1 + GP_REG_FIRST }, \
2567 { "v0", 2 + GP_REG_FIRST }, \
2568 { "v1", 3 + GP_REG_FIRST }, \
2569 { "a0", 4 + GP_REG_FIRST }, \
2570 { "a1", 5 + GP_REG_FIRST }, \
2571 { "a2", 6 + GP_REG_FIRST }, \
2572 { "a3", 7 + GP_REG_FIRST }, \
2573 { "t0", 8 + GP_REG_FIRST }, \
2574 { "t1", 9 + GP_REG_FIRST }, \
2575 { "t2", 10 + GP_REG_FIRST }, \
2576 { "t3", 11 + GP_REG_FIRST }, \
2577 { "t4", 12 + GP_REG_FIRST }, \
2578 { "t5", 13 + GP_REG_FIRST }, \
2579 { "t6", 14 + GP_REG_FIRST }, \
2580 { "t7", 15 + GP_REG_FIRST }, \
2581 { "s0", 16 + GP_REG_FIRST }, \
2582 { "s1", 17 + GP_REG_FIRST }, \
2583 { "s2", 18 + GP_REG_FIRST }, \
2584 { "s3", 19 + GP_REG_FIRST }, \
2585 { "s4", 20 + GP_REG_FIRST }, \
2586 { "s5", 21 + GP_REG_FIRST }, \
2587 { "s6", 22 + GP_REG_FIRST }, \
2588 { "s7", 23 + GP_REG_FIRST }, \
2589 { "t8", 24 + GP_REG_FIRST }, \
2590 { "t9", 25 + GP_REG_FIRST }, \
2591 { "k0", 26 + GP_REG_FIRST }, \
2592 { "k1", 27 + GP_REG_FIRST }, \
2593 { "gp", 28 + GP_REG_FIRST }, \
2594 { "sp", 29 + GP_REG_FIRST }, \
2595 { "fp", 30 + GP_REG_FIRST }, \
2596 { "ra", 31 + GP_REG_FIRST } \
2597 }
2598
2599 #define DBR_OUTPUT_SEQEND(STREAM) \
2600 do \
2601 { \
2602 /* Undo the effect of '%*'. */ \
2603 mips_pop_asm_switch (&mips_nomacro); \
2604 mips_pop_asm_switch (&mips_noreorder); \
2605 /* Emit a blank line after the delay slot for emphasis. */ \
2606 fputs ("\n", STREAM); \
2607 } \
2608 while (0)
2609
2610 /* The MIPS implementation uses some labels for its own purpose. The
2611 following lists what labels are created, and are all formed by the
2612 pattern $L[a-z].*. The machine independent portion of GCC creates
2613 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2614
2615 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2616 $Lb[0-9]+ Begin blocks for MIPS debug support
2617 $Lc[0-9]+ Label for use in s<xx> operation.
2618 $Le[0-9]+ End blocks for MIPS debug support */
2619
2620 #undef ASM_DECLARE_OBJECT_NAME
2621 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2622 mips_declare_object (STREAM, NAME, "", ":\n")
2623
2624 /* Globalizing directive for a label. */
2625 #define GLOBAL_ASM_OP "\t.globl\t"
2626
2627 /* This says how to define a global common symbol. */
2628
2629 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2630
2631 /* This says how to define a local common symbol (i.e., not visible to
2632 linker). */
2633
2634 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2635 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2636 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2637 #endif
2638
2639 /* This says how to output an external. It would be possible not to
2640 output anything and let undefined symbol become external. However
2641 the assembler uses length information on externals to allocate in
2642 data/sdata bss/sbss, thereby saving exec time. */
2643
2644 #undef ASM_OUTPUT_EXTERNAL
2645 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2646 mips_output_external(STREAM,DECL,NAME)
2647
2648 /* This is how to declare a function name. The actual work of
2649 emitting the label is moved to function_prologue, so that we can
2650 get the line number correctly emitted before the .ent directive,
2651 and after any .file directives. Define as empty so that the function
2652 is not declared before the .ent directive elsewhere. */
2653
2654 #undef ASM_DECLARE_FUNCTION_NAME
2655 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2656
2657 /* This is how to store into the string LABEL
2658 the symbol_ref name of an internal numbered label where
2659 PREFIX is the class of label and NUM is the number within the class.
2660 This is suitable for output with `assemble_name'. */
2661
2662 #undef ASM_GENERATE_INTERNAL_LABEL
2663 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2664 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2665
2666 /* Print debug labels as "foo = ." rather than "foo:" because they should
2667 represent a byte pointer rather than an ISA-encoded address. This is
2668 particularly important for code like:
2669
2670 $LFBxxx = .
2671 .cfi_startproc
2672 ...
2673 .section .gcc_except_table,...
2674 ...
2675 .uleb128 foo-$LFBxxx
2676
2677 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2678 likewise a byte pointer rather than an ISA-encoded address.
2679
2680 At the time of writing, this hook is not used for the function end
2681 label:
2682
2683 $LFExxx:
2684 .end foo
2685
2686 But this doesn't matter, because GAS doesn't treat a pre-.end label
2687 as a MIPS16 one anyway. */
2688
2689 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2690 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2691
2692 /* This is how to output an element of a case-vector that is absolute. */
2693
2694 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2695 fprintf (STREAM, "\t%s\t%sL%d\n", \
2696 ptr_mode == DImode ? ".dword" : ".word", \
2697 LOCAL_LABEL_PREFIX, \
2698 VALUE)
2699
2700 /* This is how to output an element of a case-vector. We can make the
2701 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2702 is supported. */
2703
2704 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2705 do { \
2706 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2707 { \
2708 if (GET_MODE (BODY) == HImode) \
2709 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2710 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2711 else \
2712 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2713 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2714 } \
2715 else if (TARGET_GPWORD) \
2716 fprintf (STREAM, "\t%s\t%sL%d\n", \
2717 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2718 LOCAL_LABEL_PREFIX, VALUE); \
2719 else if (TARGET_RTP_PIC) \
2720 { \
2721 /* Make the entry relative to the start of the function. */ \
2722 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2723 fprintf (STREAM, "\t%s\t%sL%d-", \
2724 Pmode == DImode ? ".dword" : ".word", \
2725 LOCAL_LABEL_PREFIX, VALUE); \
2726 assemble_name (STREAM, XSTR (fnsym, 0)); \
2727 fprintf (STREAM, "\n"); \
2728 } \
2729 else \
2730 fprintf (STREAM, "\t%s\t%sL%d\n", \
2731 ptr_mode == DImode ? ".dword" : ".word", \
2732 LOCAL_LABEL_PREFIX, VALUE); \
2733 } while (0)
2734
2735 /* This is how to output an assembler line
2736 that says to advance the location counter
2737 to a multiple of 2**LOG bytes. */
2738
2739 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2740 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2741
2742 /* This is how to output an assembler line to advance the location
2743 counter by SIZE bytes. */
2744
2745 #undef ASM_OUTPUT_SKIP
2746 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2747 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2748
2749 /* This is how to output a string. */
2750 #undef ASM_OUTPUT_ASCII
2751 #define ASM_OUTPUT_ASCII mips_output_ascii
2752
2753 \f
2754 /* Default to -G 8 */
2755 #ifndef MIPS_DEFAULT_GVALUE
2756 #define MIPS_DEFAULT_GVALUE 8
2757 #endif
2758
2759 /* Define the strings to put out for each section in the object file. */
2760 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2761 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2762
2763 #undef READONLY_DATA_SECTION_ASM_OP
2764 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2765 \f
2766 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2767 do \
2768 { \
2769 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2770 TARGET_64BIT ? "daddiu" : "addiu", \
2771 reg_names[STACK_POINTER_REGNUM], \
2772 reg_names[STACK_POINTER_REGNUM], \
2773 TARGET_64BIT ? "sd" : "sw", \
2774 reg_names[REGNO], \
2775 reg_names[STACK_POINTER_REGNUM]); \
2776 } \
2777 while (0)
2778
2779 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2780 do \
2781 { \
2782 mips_push_asm_switch (&mips_noreorder); \
2783 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2784 TARGET_64BIT ? "ld" : "lw", \
2785 reg_names[REGNO], \
2786 reg_names[STACK_POINTER_REGNUM], \
2787 TARGET_64BIT ? "daddu" : "addu", \
2788 reg_names[STACK_POINTER_REGNUM], \
2789 reg_names[STACK_POINTER_REGNUM]); \
2790 mips_pop_asm_switch (&mips_noreorder); \
2791 } \
2792 while (0)
2793
2794 /* How to start an assembler comment.
2795 The leading space is important (the mips native assembler requires it). */
2796 #ifndef ASM_COMMENT_START
2797 #define ASM_COMMENT_START " #"
2798 #endif
2799 \f
2800 #undef SIZE_TYPE
2801 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2802
2803 #undef PTRDIFF_TYPE
2804 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2805
2806 /* The maximum number of bytes that can be copied by one iteration of
2807 a movmemsi loop; see mips_block_move_loop. */
2808 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2809 (UNITS_PER_WORD * 4)
2810
2811 /* The maximum number of bytes that can be copied by a straight-line
2812 implementation of movmemsi; see mips_block_move_straight. We want
2813 to make sure that any loop-based implementation will iterate at
2814 least twice. */
2815 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2816 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2817
2818 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2819 values were determined experimentally by benchmarking with CSiBE.
2820 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2821 for o32 where we have to restore $gp afterwards as well as make an
2822 indirect call), but in practice, bumping this up higher for
2823 TARGET_ABICALLS doesn't make much difference to code size. */
2824
2825 #define MIPS_CALL_RATIO 8
2826
2827 /* Any loop-based implementation of movmemsi will have at least
2828 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2829 moves, so allow individual copies of fewer elements.
2830
2831 When movmemsi is not available, use a value approximating
2832 the length of a memcpy call sequence, so that move_by_pieces
2833 will generate inline code if it is shorter than a function call.
2834 Since move_by_pieces_ninsns counts memory-to-memory moves, but
2835 we'll have to generate a load/store pair for each, halve the
2836 value of MIPS_CALL_RATIO to take that into account. */
2837
2838 #define MOVE_RATIO(speed) \
2839 (HAVE_movmemsi \
2840 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
2841 : MIPS_CALL_RATIO / 2)
2842
2843 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2844 mips_move_by_pieces_p (SIZE, ALIGN)
2845
2846 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2847 of the length of a memset call, but use the default otherwise. */
2848
2849 #define CLEAR_RATIO(speed)\
2850 ((speed) ? 15 : MIPS_CALL_RATIO)
2851
2852 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2853 optimizing for size adjust the ratio to account for the overhead of
2854 loading the constant and replicating it across the word. */
2855
2856 #define SET_RATIO(speed) \
2857 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2858
2859 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
2860 mips_store_by_pieces_p (SIZE, ALIGN)
2861 \f
2862 /* Since the bits of the _init and _fini function is spread across
2863 many object files, each potentially with its own GP, we must assume
2864 we need to load our GP. We don't preserve $gp or $ra, since each
2865 init/fini chunk is supposed to initialize $gp, and crti/crtn
2866 already take care of preserving $ra and, when appropriate, $gp. */
2867 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2868 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2869 asm (SECTION_OP "\n\
2870 .set push\n\
2871 .set nomips16\n\
2872 .set noreorder\n\
2873 bal 1f\n\
2874 nop\n\
2875 1: .cpload $31\n\
2876 .set reorder\n\
2877 jal " USER_LABEL_PREFIX #FUNC "\n\
2878 .set pop\n\
2879 " TEXT_SECTION_ASM_OP);
2880 #elif ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2881 || (defined _ABI64 && _MIPS_SIM == _ABI64))
2882 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2883 asm (SECTION_OP "\n\
2884 .set push\n\
2885 .set nomips16\n\
2886 .set noreorder\n\
2887 bal 1f\n\
2888 nop\n\
2889 1: .set reorder\n\
2890 .cpsetup $31, $2, 1b\n\
2891 jal " USER_LABEL_PREFIX #FUNC "\n\
2892 .set pop\n\
2893 " TEXT_SECTION_ASM_OP);
2894 #endif
2895
2896 #ifndef HAVE_AS_TLS
2897 #define HAVE_AS_TLS 0
2898 #endif
2899
2900 #ifndef USED_FOR_TARGET
2901 /* Information about ".set noFOO; ...; .set FOO" blocks. */
2902 struct mips_asm_switch {
2903 /* The FOO in the description above. */
2904 const char *name;
2905
2906 /* The current block nesting level, or 0 if we aren't in a block. */
2907 int nesting_level;
2908 };
2909
2910 extern const enum reg_class mips_regno_to_class[];
2911 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
2912 extern const char *current_function_file; /* filename current function is in */
2913 extern int num_source_filenames; /* current .file # */
2914 extern struct mips_asm_switch mips_noreorder;
2915 extern struct mips_asm_switch mips_nomacro;
2916 extern struct mips_asm_switch mips_noat;
2917 extern int mips_dbx_regno[];
2918 extern int mips_dwarf_regno[];
2919 extern bool mips_split_p[];
2920 extern bool mips_split_hi_p[];
2921 extern bool mips_use_pcrel_pool_p[];
2922 extern const char *mips_lo_relocs[];
2923 extern const char *mips_hi_relocs[];
2924 extern enum processor mips_arch; /* which cpu to codegen for */
2925 extern enum processor mips_tune; /* which cpu to schedule for */
2926 extern int mips_isa; /* architectural level */
2927 extern const struct mips_cpu_info *mips_arch_info;
2928 extern const struct mips_cpu_info *mips_tune_info;
2929 extern unsigned int mips_base_compression_flags;
2930 extern GTY(()) struct target_globals *mips16_globals;
2931 #endif
2932
2933 /* Enable querying of DFA units. */
2934 #define CPU_UNITS_QUERY 1
2935
2936 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2937 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2938
2939 /* As on most targets, we want the .eh_frame section to be read-only where
2940 possible. And as on most targets, this means two things:
2941
2942 (a) Non-locally-binding pointers must have an indirect encoding,
2943 so that the addresses in the .eh_frame section itself become
2944 locally-binding.
2945
2946 (b) A shared library's .eh_frame section must encode locally-binding
2947 pointers in a relative (relocation-free) form.
2948
2949 However, MIPS has traditionally not allowed directives like:
2950
2951 .long x-.
2952
2953 in cases where "x" is in a different section, or is not defined in the
2954 same assembly file. We are therefore unable to emit the PC-relative
2955 form required by (b) at assembly time.
2956
2957 Fortunately, the linker is able to convert absolute addresses into
2958 PC-relative addresses on our behalf. Unfortunately, only certain
2959 versions of the linker know how to do this for indirect pointers,
2960 and for personality data. We must fall back on using writable
2961 .eh_frame sections for shared libraries if the linker does not
2962 support this feature. */
2963 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2964 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
2965
2966 /* For switching between MIPS16 and non-MIPS16 modes. */
2967 #define SWITCHABLE_TARGET 1
2968
2969 /* Several named MIPS patterns depend on Pmode. These patterns have the
2970 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
2971 Add the appropriate suffix to generator function NAME and invoke it
2972 with arguments ARGS. */
2973 #define PMODE_INSN(NAME, ARGS) \
2974 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)