mips.h (ISA_HAS_MUL3): Include TARGET_MIPS5900.
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989-2013 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24
25 #include "config/vxworks-dummy.h"
26
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30 extern int target_flags_explicit;
31 #endif
32
33 /* MIPS external variables defined in mips.c. */
34
35 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
37 to work on a 64-bit machine. */
38
39 #define ABI_32 0
40 #define ABI_N32 1
41 #define ABI_64 2
42 #define ABI_EABI 3
43 #define ABI_O64 4
44
45 /* Masks that affect tuning.
46
47 PTF_AVOID_BRANCHLIKELY
48 Set if it is usually not profitable to use branch-likely instructions
49 for this target, typically because the branches are always predicted
50 taken and so incur a large overhead when not taken.
51
52 PTF_AVOID_IMADD
53 Set if it is usually not profitable to use the integer MADD or MSUB
54 instructions because of the overhead of getting the result out of
55 the HI/LO registers. */
56
57 #define PTF_AVOID_BRANCHLIKELY 0x1
58 #define PTF_AVOID_IMADD 0x2
59
60 /* Information about one recognized processor. Defined here for the
61 benefit of TARGET_CPU_CPP_BUILTINS. */
62 struct mips_cpu_info {
63 /* The 'canonical' name of the processor as far as GCC is concerned.
64 It's typically a manufacturer's prefix followed by a numerical
65 designation. It should be lowercase. */
66 const char *name;
67
68 /* The internal processor number that most closely matches this
69 entry. Several processors can have the same value, if there's no
70 difference between them from GCC's point of view. */
71 enum processor cpu;
72
73 /* The ISA level that the processor implements. */
74 int isa;
75
76 /* A mask of PTF_* values. */
77 unsigned int tune_flags;
78 };
79
80 #include "config/mips/mips-opts.h"
81
82 /* Macros to silence warnings about numbers being signed in traditional
83 C and unsigned in ISO C when compiled on 32-bit hosts. */
84
85 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
86 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
87 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
88
89 \f
90 /* Run-time compilation parameters selecting different hardware subsets. */
91
92 /* True if we are generating position-independent VxWorks RTP code. */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
94
95 /* True if the output file is marked as ".abicalls; .option pic0"
96 (-call_nonpic). */
97 #define TARGET_ABICALLS_PIC0 \
98 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
99
100 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
101 #define TARGET_ABICALLS_PIC2 \
102 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
103
104 /* True if the call patterns should be split into a jalr followed by
105 an instruction to restore $gp. It is only safe to split the load
106 from the call when every use of $gp is explicit.
107
108 See mips_must_initialize_gp_p for details about how we manage the
109 global pointer. */
110
111 #define TARGET_SPLIT_CALLS \
112 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
113
114 /* True if we're generating a form of -mabicalls in which we can use
115 operators like %hi and %lo to refer to locally-binding symbols.
116 We can only do this for -mno-shared, and only then if we can use
117 relocation operations instead of assembly macros. It isn't really
118 worth using absolute sequences for 64-bit symbols because GOT
119 accesses are so much shorter. */
120
121 #define TARGET_ABSOLUTE_ABICALLS \
122 (TARGET_ABICALLS \
123 && !TARGET_SHARED \
124 && TARGET_EXPLICIT_RELOCS \
125 && !ABI_HAS_64BIT_SYMBOLS)
126
127 /* True if we can optimize sibling calls. For simplicity, we only
128 handle cases in which call_insn_operand will reject invalid
129 sibcall addresses. There are two cases in which this isn't true:
130
131 - TARGET_MIPS16. call_insn_operand accepts constant addresses
132 but there is no direct jump instruction. It isn't worth
133 using sibling calls in this case anyway; they would usually
134 be longer than normal calls.
135
136 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
137 accepts global constants, but all sibcalls must be indirect. */
138 #define TARGET_SIBCALLS \
139 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
140
141 /* True if we need to use a global offset table to access some symbols. */
142 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
143
144 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
145 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
146
147 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
148 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
149
150 /* True if we should use .cprestore to store to the cprestore slot.
151
152 We continue to use .cprestore for explicit-reloc code so that JALs
153 inside inline asms will work correctly. */
154 #define TARGET_CPRESTORE_DIRECTIVE \
155 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
156
157 /* True if we can use the J and JAL instructions. */
158 #define TARGET_ABSOLUTE_JUMPS \
159 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
160
161 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
162 This is true for both the PIC and non-PIC VxWorks RTP modes. */
163 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
164
165 /* True if .gpword or .gpdword should be used for switch tables. */
166 #define TARGET_GPWORD \
167 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
168
169 /* True if the output must have a writable .eh_frame.
170 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
171 #ifdef HAVE_LD_PERSONALITY_RELAXATION
172 #define TARGET_WRITABLE_EH_FRAME 0
173 #else
174 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
175 #endif
176
177 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
178 #ifdef HAVE_AS_DSPR1_MULT
179 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
180 #else
181 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
182 #endif
183
184 /* The ISA compression flags that are currently in effect. */
185 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
186
187 /* Generate mips16 code */
188 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
189 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
190 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
191 /* Generate mips16e register save/restore sequences. */
192 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
193
194 /* True if we're generating a form of MIPS16 code in which general
195 text loads are allowed. */
196 #define TARGET_MIPS16_TEXT_LOADS \
197 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
198
199 /* True if we're generating a form of MIPS16 code in which PC-relative
200 loads are allowed. */
201 #define TARGET_MIPS16_PCREL_LOADS \
202 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
203
204 /* Generic ISA defines. */
205 #define ISA_MIPS1 (mips_isa == 1)
206 #define ISA_MIPS2 (mips_isa == 2)
207 #define ISA_MIPS3 (mips_isa == 3)
208 #define ISA_MIPS4 (mips_isa == 4)
209 #define ISA_MIPS32 (mips_isa == 32)
210 #define ISA_MIPS32R2 (mips_isa == 33)
211 #define ISA_MIPS64 (mips_isa == 64)
212 #define ISA_MIPS64R2 (mips_isa == 65)
213
214 /* Architecture target defines. */
215 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
216 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
217 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
218 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
219 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
220 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
221 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
222 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
223 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
224 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
225 #define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
226 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
227 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
228 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
229 || mips_arch == PROCESSOR_OCTEON2)
230 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2)
231 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
232 || mips_arch == PROCESSOR_SB1A)
233 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
234 #define TARGET_XLP (mips_arch == PROCESSOR_XLP)
235
236 /* Scheduling target defines. */
237 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
238 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
239 || mips_tune == PROCESSOR_24KF2_1 \
240 || mips_tune == PROCESSOR_24KF1_1)
241 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
242 || mips_tune == PROCESSOR_74KF2_1 \
243 || mips_tune == PROCESSOR_74KF1_1 \
244 || mips_tune == PROCESSOR_74KF3_2)
245 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
246 || mips_tune == PROCESSOR_LOONGSON_2F)
247 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
248 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
249 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
250 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
251 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
252 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
253 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
254 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
255 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
256 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
257 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
258 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
259 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
260 || mips_tune == PROCESSOR_OCTEON2)
261 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
262 || mips_tune == PROCESSOR_SB1A)
263
264 /* Whether vector modes and intrinsics for ST Microelectronics
265 Loongson-2E/2F processors should be enabled. In o32 pairs of
266 floating-point registers provide 64-bit values. */
267 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
268 && (TARGET_LOONGSON_2EF \
269 || TARGET_LOONGSON_3A))
270
271 /* True if the pre-reload scheduler should try to create chains of
272 multiply-add or multiply-subtract instructions. For example,
273 suppose we have:
274
275 t1 = a * b
276 t2 = t1 + c * d
277 t3 = e * f
278 t4 = t3 - g * h
279
280 t1 will have a higher priority than t2 and t3 will have a higher
281 priority than t4. However, before reload, there is no dependence
282 between t1 and t3, and they can often have similar priorities.
283 The scheduler will then tend to prefer:
284
285 t1 = a * b
286 t3 = e * f
287 t2 = t1 + c * d
288 t4 = t3 - g * h
289
290 which stops us from making full use of macc/madd-style instructions.
291 This sort of situation occurs frequently in Fourier transforms and
292 in unrolled loops.
293
294 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
295 queue so that chained multiply-add and multiply-subtract instructions
296 appear ahead of any other instruction that is likely to clobber lo.
297 In the example above, if t2 and t3 become ready at the same time,
298 the code ensures that t2 is scheduled first.
299
300 Multiply-accumulate instructions are a bigger win for some targets
301 than others, so this macro is defined on an opt-in basis. */
302 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
303 || TUNE_MIPS4120 \
304 || TUNE_MIPS4130 \
305 || TUNE_24K)
306
307 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
308 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
309
310 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
311 directly accessible, while the command-line options select
312 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
313 in use. */
314 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
315 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
316
317 /* False if SC acts as a memory barrier with respect to itself,
318 otherwise a SYNC will be emitted after SC for atomic operations
319 that require ordering between the SC and following loads and
320 stores. It does not tell anything about ordering of loads and
321 stores prior to and following the SC, only about the SC itself and
322 those loads and stores follow it. */
323 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
324
325 /* Define preprocessor macros for the -march and -mtune options.
326 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
327 processor. If INFO's canonical name is "foo", define PREFIX to
328 be "foo", and define an additional macro PREFIX_FOO. */
329 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
330 do \
331 { \
332 char *macro, *p; \
333 \
334 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
335 for (p = macro; *p != 0; p++) \
336 if (*p == '+') \
337 *p = 'P'; \
338 else \
339 *p = TOUPPER (*p); \
340 \
341 builtin_define (macro); \
342 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
343 free (macro); \
344 } \
345 while (0)
346
347 /* Target CPU builtins. */
348 #define TARGET_CPU_CPP_BUILTINS() \
349 do \
350 { \
351 builtin_assert ("machine=mips"); \
352 builtin_assert ("cpu=mips"); \
353 builtin_define ("__mips__"); \
354 builtin_define ("_mips"); \
355 \
356 /* We do this here because __mips is defined below and so we \
357 can't use builtin_define_std. We don't ever want to define \
358 "mips" for VxWorks because some of the VxWorks headers \
359 construct include filenames from a root directory macro, \
360 an architecture macro and a filename, where the architecture \
361 macro expands to 'mips'. If we define 'mips' to 1, the \
362 architecture macro expands to 1 as well. */ \
363 if (!flag_iso && !TARGET_VXWORKS) \
364 builtin_define ("mips"); \
365 \
366 if (TARGET_64BIT) \
367 builtin_define ("__mips64"); \
368 \
369 /* Treat _R3000 and _R4000 like register-size \
370 defines, which is how they've historically \
371 been used. */ \
372 if (TARGET_64BIT) \
373 { \
374 builtin_define_std ("R4000"); \
375 builtin_define ("_R4000"); \
376 } \
377 else \
378 { \
379 builtin_define_std ("R3000"); \
380 builtin_define ("_R3000"); \
381 } \
382 \
383 if (TARGET_FLOAT64) \
384 builtin_define ("__mips_fpr=64"); \
385 else \
386 builtin_define ("__mips_fpr=32"); \
387 \
388 if (mips_base_compression_flags & MASK_MIPS16) \
389 builtin_define ("__mips16"); \
390 \
391 if (TARGET_MIPS3D) \
392 builtin_define ("__mips3d"); \
393 \
394 if (TARGET_SMARTMIPS) \
395 builtin_define ("__mips_smartmips"); \
396 \
397 if (mips_base_compression_flags & MASK_MICROMIPS) \
398 builtin_define ("__mips_micromips"); \
399 \
400 if (TARGET_MCU) \
401 builtin_define ("__mips_mcu"); \
402 \
403 if (TARGET_EVA) \
404 builtin_define ("__mips_eva"); \
405 \
406 if (TARGET_DSP) \
407 { \
408 builtin_define ("__mips_dsp"); \
409 if (TARGET_DSPR2) \
410 { \
411 builtin_define ("__mips_dspr2"); \
412 builtin_define ("__mips_dsp_rev=2"); \
413 } \
414 else \
415 builtin_define ("__mips_dsp_rev=1"); \
416 } \
417 \
418 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
419 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
420 \
421 if (ISA_MIPS1) \
422 { \
423 builtin_define ("__mips=1"); \
424 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
425 } \
426 else if (ISA_MIPS2) \
427 { \
428 builtin_define ("__mips=2"); \
429 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
430 } \
431 else if (ISA_MIPS3) \
432 { \
433 builtin_define ("__mips=3"); \
434 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
435 } \
436 else if (ISA_MIPS4) \
437 { \
438 builtin_define ("__mips=4"); \
439 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
440 } \
441 else if (ISA_MIPS32) \
442 { \
443 builtin_define ("__mips=32"); \
444 builtin_define ("__mips_isa_rev=1"); \
445 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
446 } \
447 else if (ISA_MIPS32R2) \
448 { \
449 builtin_define ("__mips=32"); \
450 builtin_define ("__mips_isa_rev=2"); \
451 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
452 } \
453 else if (ISA_MIPS64) \
454 { \
455 builtin_define ("__mips=64"); \
456 builtin_define ("__mips_isa_rev=1"); \
457 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
458 } \
459 else if (ISA_MIPS64R2) \
460 { \
461 builtin_define ("__mips=64"); \
462 builtin_define ("__mips_isa_rev=2"); \
463 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
464 } \
465 \
466 switch (mips_abi) \
467 { \
468 case ABI_32: \
469 builtin_define ("_ABIO32=1"); \
470 builtin_define ("_MIPS_SIM=_ABIO32"); \
471 break; \
472 \
473 case ABI_N32: \
474 builtin_define ("_ABIN32=2"); \
475 builtin_define ("_MIPS_SIM=_ABIN32"); \
476 break; \
477 \
478 case ABI_64: \
479 builtin_define ("_ABI64=3"); \
480 builtin_define ("_MIPS_SIM=_ABI64"); \
481 break; \
482 \
483 case ABI_O64: \
484 builtin_define ("_ABIO64=4"); \
485 builtin_define ("_MIPS_SIM=_ABIO64"); \
486 break; \
487 } \
488 \
489 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
490 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
491 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
492 builtin_define_with_int_value ("_MIPS_FPSET", \
493 32 / MAX_FPRS_PER_FMT); \
494 \
495 /* These defines reflect the ABI in use, not whether the \
496 FPU is directly accessible. */ \
497 if (TARGET_NO_FLOAT) \
498 builtin_define ("__mips_no_float"); \
499 else if (TARGET_HARD_FLOAT_ABI) \
500 builtin_define ("__mips_hard_float"); \
501 else \
502 builtin_define ("__mips_soft_float"); \
503 \
504 if (TARGET_SINGLE_FLOAT) \
505 builtin_define ("__mips_single_float"); \
506 \
507 if (TARGET_PAIRED_SINGLE_FLOAT) \
508 builtin_define ("__mips_paired_single_float"); \
509 \
510 if (TARGET_BIG_ENDIAN) \
511 { \
512 builtin_define_std ("MIPSEB"); \
513 builtin_define ("_MIPSEB"); \
514 } \
515 else \
516 { \
517 builtin_define_std ("MIPSEL"); \
518 builtin_define ("_MIPSEL"); \
519 } \
520 \
521 /* Whether calls should go through $25. The separate __PIC__ \
522 macro indicates whether abicalls code might use a GOT. */ \
523 if (TARGET_ABICALLS) \
524 builtin_define ("__mips_abicalls"); \
525 \
526 /* Whether Loongson vector modes are enabled. */ \
527 if (TARGET_LOONGSON_VECTORS) \
528 builtin_define ("__mips_loongson_vector_rev"); \
529 \
530 /* Historical Octeon macro. */ \
531 if (TARGET_OCTEON) \
532 builtin_define ("__OCTEON__"); \
533 \
534 if (TARGET_SYNCI) \
535 builtin_define ("__mips_synci"); \
536 \
537 /* Macros dependent on the C dialect. */ \
538 if (preprocessing_asm_p ()) \
539 { \
540 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
541 builtin_define ("_LANGUAGE_ASSEMBLY"); \
542 } \
543 else if (c_dialect_cxx ()) \
544 { \
545 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
546 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
547 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
548 } \
549 else \
550 { \
551 builtin_define_std ("LANGUAGE_C"); \
552 builtin_define ("_LANGUAGE_C"); \
553 } \
554 if (c_dialect_objc ()) \
555 { \
556 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
557 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
558 /* Bizarre, but retained for backwards compatibility. */ \
559 builtin_define_std ("LANGUAGE_C"); \
560 builtin_define ("_LANGUAGE_C"); \
561 } \
562 \
563 if (mips_abi == ABI_EABI) \
564 builtin_define ("__mips_eabi"); \
565 \
566 if (TARGET_CACHE_BUILTIN) \
567 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
568 } \
569 while (0)
570
571 /* Default target_flags if no switches are specified */
572
573 #ifndef TARGET_DEFAULT
574 #define TARGET_DEFAULT 0
575 #endif
576
577 #ifndef TARGET_CPU_DEFAULT
578 #define TARGET_CPU_DEFAULT 0
579 #endif
580
581 #ifndef TARGET_ENDIAN_DEFAULT
582 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
583 #endif
584
585 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
586 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
587 #endif
588
589 #ifdef IN_LIBGCC2
590 #undef TARGET_64BIT
591 /* Make this compile time constant for libgcc2 */
592 #ifdef __mips64
593 #define TARGET_64BIT 1
594 #else
595 #define TARGET_64BIT 0
596 #endif
597 #endif /* IN_LIBGCC2 */
598
599 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
600 when compiled with hardware floating point. This is because MIPS16
601 code cannot save and restore the floating-point registers, which is
602 important if in a mixed MIPS16/non-MIPS16 environment. */
603
604 #ifdef IN_LIBGCC2
605 #if __mips_hard_float
606 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
607 #endif
608 #endif /* IN_LIBGCC2 */
609
610 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
611
612 #ifndef MULTILIB_ENDIAN_DEFAULT
613 #if TARGET_ENDIAN_DEFAULT == 0
614 #define MULTILIB_ENDIAN_DEFAULT "EL"
615 #else
616 #define MULTILIB_ENDIAN_DEFAULT "EB"
617 #endif
618 #endif
619
620 #ifndef MULTILIB_ISA_DEFAULT
621 #if MIPS_ISA_DEFAULT == 1
622 #define MULTILIB_ISA_DEFAULT "mips1"
623 #elif MIPS_ISA_DEFAULT == 2
624 #define MULTILIB_ISA_DEFAULT "mips2"
625 #elif MIPS_ISA_DEFAULT == 3
626 #define MULTILIB_ISA_DEFAULT "mips3"
627 #elif MIPS_ISA_DEFAULT == 4
628 #define MULTILIB_ISA_DEFAULT "mips4"
629 #elif MIPS_ISA_DEFAULT == 32
630 #define MULTILIB_ISA_DEFAULT "mips32"
631 #elif MIPS_ISA_DEFAULT == 33
632 #define MULTILIB_ISA_DEFAULT "mips32r2"
633 #elif MIPS_ISA_DEFAULT == 64
634 #define MULTILIB_ISA_DEFAULT "mips64"
635 #elif MIPS_ISA_DEFAULT == 65
636 #define MULTILIB_ISA_DEFAULT "mips64r2"
637 #else
638 #define MULTILIB_ISA_DEFAULT "mips1"
639 #endif
640 #endif
641
642 #ifndef MIPS_ABI_DEFAULT
643 #define MIPS_ABI_DEFAULT ABI_32
644 #endif
645
646 /* Use the most portable ABI flag for the ASM specs. */
647
648 #if MIPS_ABI_DEFAULT == ABI_32
649 #define MULTILIB_ABI_DEFAULT "mabi=32"
650 #elif MIPS_ABI_DEFAULT == ABI_O64
651 #define MULTILIB_ABI_DEFAULT "mabi=o64"
652 #elif MIPS_ABI_DEFAULT == ABI_N32
653 #define MULTILIB_ABI_DEFAULT "mabi=n32"
654 #elif MIPS_ABI_DEFAULT == ABI_64
655 #define MULTILIB_ABI_DEFAULT "mabi=64"
656 #elif MIPS_ABI_DEFAULT == ABI_EABI
657 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
658 #endif
659
660 #ifndef MULTILIB_DEFAULTS
661 #define MULTILIB_DEFAULTS \
662 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
663 #endif
664
665 /* We must pass -EL to the linker by default for little endian embedded
666 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
667 linker will default to using big-endian output files. The OUTPUT_FORMAT
668 line must be in the linker script, otherwise -EB/-EL will not work. */
669
670 #ifndef ENDIAN_SPEC
671 #if TARGET_ENDIAN_DEFAULT == 0
672 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
673 #else
674 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
675 #endif
676 #endif
677
678 /* A spec condition that matches all non-mips16 -mips arguments. */
679
680 #define MIPS_ISA_LEVEL_OPTION_SPEC \
681 "mips1|mips2|mips3|mips4|mips32*|mips64*"
682
683 /* A spec condition that matches all non-mips16 architecture arguments. */
684
685 #define MIPS_ARCH_OPTION_SPEC \
686 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
687
688 /* A spec that infers a -mips argument from an -march argument,
689 or injects the default if no architecture is specified. */
690
691 #define MIPS_ISA_LEVEL_SPEC \
692 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
693 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
694 %{march=mips2|march=r6000:-mips2} \
695 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
696 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
697 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
698 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
699 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
700 |march=34k*|march=74k*|march=m14k*|march=1004k*: -mips32r2} \
701 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
702 |march=xlr|march=loongson3a: -mips64} \
703 %{march=mips64r2|march=octeon|march=xlp: -mips64r2} \
704 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
705
706 /* A spec that infers a -mhard-float or -msoft-float setting from an
707 -march argument. Note that soft-float and hard-float code are not
708 link-compatible. */
709
710 #define MIPS_ARCH_FLOAT_SPEC \
711 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
712 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
713 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
714 |march=m14k*|march=octeon|march=xlr: -msoft-float; \
715 march=*: -mhard-float}"
716
717 /* A spec condition that matches 32-bit options. It only works if
718 MIPS_ISA_LEVEL_SPEC has been applied. */
719
720 #define MIPS_32BIT_OPTION_SPEC \
721 "mips1|mips2|mips32*|mgp32"
722
723 /* Infer a -msynci setting from a -mips argument, on the assumption that
724 -msynci is desired where possible. */
725 #define MIPS_ISA_SYNCI_SPEC \
726 "%{msynci|mno-synci:;:%{mips32r2|mips64r2:-msynci;:-mno-synci}}"
727
728 #if (MIPS_ABI_DEFAULT == ABI_O64 \
729 || MIPS_ABI_DEFAULT == ABI_N32 \
730 || MIPS_ABI_DEFAULT == ABI_64)
731 #define OPT_ARCH64 "mabi=32|mgp32:;"
732 #define OPT_ARCH32 "mabi=32|mgp32"
733 #else
734 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
735 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
736 #endif
737
738 /* Support for a compile-time default CPU, et cetera. The rules are:
739 --with-arch is ignored if -march is specified or a -mips is specified
740 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
741 --with-tune is ignored if -mtune is specified; likewise
742 --with-tune-32 and --with-tune-64.
743 --with-abi is ignored if -mabi is specified.
744 --with-float is ignored if -mhard-float or -msoft-float are
745 specified.
746 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
747 specified. */
748 #define OPTION_DEFAULT_SPECS \
749 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
750 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
751 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
752 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
753 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
754 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
755 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
756 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
757 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
758 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
759 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
760 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
761
762 /* A spec that infers the -mdsp setting from an -march argument. */
763 #define BASE_DRIVER_SELF_SPECS \
764 "%{!mno-dsp: \
765 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k*: -mdsp} \
766 %{march=74k*:%{!mno-dspr2: -mdspr2 -mdsp}}}"
767
768 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
769
770 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
771 && ISA_HAS_COND_TRAP)
772
773 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
774
775 /* True if the ABI can only work with 64-bit integer registers. We
776 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
777 otherwise floating-point registers must also be 64-bit. */
778 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
779
780 /* Likewise for 32-bit regs. */
781 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
782
783 /* True if the file format uses 64-bit symbols. At present, this is
784 only true for n64, which uses 64-bit ELF. */
785 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
786
787 /* True if symbols are 64 bits wide. This is usually determined by
788 the ABI's file format, but it can be overridden by -msym32. Note that
789 overriding the size with -msym32 changes the ABI of relocatable objects,
790 although it doesn't change the ABI of a fully-linked object. */
791 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
792 && Pmode == DImode \
793 && !TARGET_SYM32)
794
795 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
796 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
797 || ISA_MIPS4 \
798 || ISA_MIPS64 \
799 || ISA_MIPS64R2)
800
801 /* ISA has branch likely instructions (e.g. mips2). */
802 /* Disable branchlikely for tx39 until compare rewrite. They haven't
803 been generated up to this point. */
804 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
805
806 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
807 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
808 || TARGET_MIPS5400 \
809 || TARGET_MIPS5500 \
810 || TARGET_MIPS5900 \
811 || TARGET_MIPS7000 \
812 || TARGET_MIPS9000 \
813 || TARGET_MAD \
814 || ISA_MIPS32 \
815 || ISA_MIPS32R2 \
816 || ISA_MIPS64 \
817 || ISA_MIPS64R2) \
818 && !TARGET_MIPS16)
819
820 /* ISA has a three-operand multiplication instruction. */
821 #define ISA_HAS_DMUL3 (TARGET_64BIT \
822 && TARGET_OCTEON \
823 && !TARGET_MIPS16)
824
825 /* ISA supports instructions DMULT and DMULTU. */
826 #define ISA_HAS_DMULT (TARGET_64BIT && !TARGET_MIPS5900)
827
828 /* ISA supports instructions MULT and MULTU.
829 This is always true, but the macro is needed for ISA_HAS_<D>MULT
830 in mips.md. */
831 #define ISA_HAS_MULT (1)
832
833 /* ISA supports instructions DDIV and DDIVU. */
834 #define ISA_HAS_DDIV (TARGET_64BIT && !TARGET_MIPS5900)
835
836 /* ISA supports instructions DIV and DIVU.
837 This is always true, but the macro is needed for ISA_HAS_<D>DIV
838 in mips.md. */
839 #define ISA_HAS_DIV (1)
840
841 #define ISA_HAS_DIV3 ((TARGET_LOONGSON_2EF \
842 || TARGET_LOONGSON_3A) \
843 && !TARGET_MIPS16)
844
845 /* ISA has the floating-point conditional move instructions introduced
846 in mips4. */
847 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
848 || ISA_MIPS32 \
849 || ISA_MIPS32R2 \
850 || ISA_MIPS64 \
851 || ISA_MIPS64R2) \
852 && !TARGET_MIPS5500 \
853 && !TARGET_MIPS16)
854
855 /* ISA has the integer conditional move instructions introduced in mips4 and
856 ST Loongson 2E/2F. */
857 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
858 || TARGET_MIPS5900 \
859 || TARGET_LOONGSON_2EF)
860
861 /* ISA has LDC1 and SDC1. */
862 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 && !TARGET_MIPS16)
863
864 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
865 branch on CC, and move (both FP and non-FP) on CC. */
866 #define ISA_HAS_8CC (ISA_MIPS4 \
867 || ISA_MIPS32 \
868 || ISA_MIPS32R2 \
869 || ISA_MIPS64 \
870 || ISA_MIPS64R2)
871
872 /* This is a catch all for other mips4 instructions: indexed load, the
873 FP madd and msub instructions, and the FP recip and recip sqrt
874 instructions. */
875 #define ISA_HAS_FP4 ((ISA_MIPS4 \
876 || (ISA_MIPS32R2 && TARGET_FLOAT64) \
877 || ISA_MIPS64 \
878 || ISA_MIPS64R2) \
879 && !TARGET_MIPS16)
880
881 /* ISA has paired-single instructions. */
882 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
883
884 /* ISA has conditional trap instructions. */
885 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
886 && !TARGET_MIPS16)
887
888 /* ISA has integer multiply-accumulate instructions, madd and msub. */
889 #define ISA_HAS_MADD_MSUB (ISA_MIPS32 \
890 || ISA_MIPS32R2 \
891 || ISA_MIPS64 \
892 || ISA_MIPS64R2)
893
894 /* Integer multiply-accumulate instructions should be generated. */
895 #define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
896
897 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
898 #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
899
900 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
901 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
902
903 /* ISA has floating-point nmadd and nmsub instructions
904 'd = -((a * b) [+-] c)'. */
905 #define ISA_HAS_NMADD4_NMSUB4(MODE) \
906 ((ISA_MIPS4 \
907 || (ISA_MIPS32R2 && (MODE) == V2SFmode) \
908 || ISA_MIPS64 \
909 || ISA_MIPS64R2) \
910 && (!TARGET_MIPS5400 || TARGET_MAD) \
911 && !TARGET_MIPS16)
912
913 /* ISA has floating-point nmadd and nmsub instructions
914 'c = -((a * b) [+-] c)'. */
915 #define ISA_HAS_NMADD3_NMSUB3(MODE) \
916 TARGET_LOONGSON_2EF
917
918 /* ISA has count leading zeroes/ones instruction (not implemented). */
919 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
920 || ISA_MIPS32R2 \
921 || ISA_MIPS64 \
922 || ISA_MIPS64R2) \
923 && !TARGET_MIPS16)
924
925 /* ISA has three operand multiply instructions that put
926 the high part in an accumulator: mulhi or mulhiu. */
927 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
928 || TARGET_MIPS5500 \
929 || TARGET_SR71K) \
930 && !TARGET_MIPS16)
931
932 /* ISA has three operand multiply instructions that
933 negates the result and puts the result in an accumulator. */
934 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
935 || TARGET_MIPS5500 \
936 || TARGET_SR71K) \
937 && !TARGET_MIPS16)
938
939 /* ISA has three operand multiply instructions that subtracts the
940 result from a 4th operand and puts the result in an accumulator. */
941 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
942 || TARGET_MIPS5500 \
943 || TARGET_SR71K) \
944 && !TARGET_MIPS16)
945
946 /* ISA has three operand multiply instructions that the result
947 from a 4th operand and puts the result in an accumulator. */
948 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
949 || TARGET_MIPS4130 \
950 || TARGET_MIPS5400 \
951 || TARGET_MIPS5500 \
952 || TARGET_SR71K) \
953 && !TARGET_MIPS16)
954
955 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
956 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
957 || TARGET_MIPS4130) \
958 && !TARGET_MIPS16)
959
960 /* ISA has the "ror" (rotate right) instructions. */
961 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
962 || ISA_MIPS64R2 \
963 || TARGET_MIPS5400 \
964 || TARGET_MIPS5500 \
965 || TARGET_SR71K \
966 || TARGET_SMARTMIPS) \
967 && !TARGET_MIPS16)
968
969 /* ISA has data prefetch instructions. This controls use of 'pref'. */
970 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
971 || TARGET_LOONGSON_2EF \
972 || TARGET_MIPS5900 \
973 || ISA_MIPS32 \
974 || ISA_MIPS32R2 \
975 || ISA_MIPS64 \
976 || ISA_MIPS64R2) \
977 && !TARGET_MIPS16)
978
979 /* ISA has data indexed prefetch instructions. This controls use of
980 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
981 (prefx is a cop1x instruction, so can only be used if FP is
982 enabled.) */
983 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
984 || ISA_MIPS32R2 \
985 || ISA_MIPS64 \
986 || ISA_MIPS64R2) \
987 && !TARGET_MIPS16)
988
989 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
990 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
991 also requires TARGET_DOUBLE_FLOAT. */
992 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
993
994 /* ISA includes the MIPS32r2 seb and seh instructions. */
995 #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \
996 || ISA_MIPS64R2) \
997 && !TARGET_MIPS16)
998
999 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
1000 #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \
1001 || ISA_MIPS64R2) \
1002 && !TARGET_MIPS16)
1003
1004 /* ISA has instructions for accessing top part of 64-bit fp regs. */
1005 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \
1006 && (ISA_MIPS32R2 \
1007 || ISA_MIPS64R2))
1008
1009 /* ISA has lwxs instruction (load w/scaled index address. */
1010 #define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1011 && !TARGET_MIPS16)
1012
1013 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1014 #define ISA_HAS_LBX (TARGET_OCTEON2)
1015 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1016 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1017 #define ISA_HAS_LHUX (TARGET_OCTEON2)
1018 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1019 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1020 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1021 && TARGET_64BIT)
1022
1023 /* The DSP ASE is available. */
1024 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1025
1026 /* Revision 2 of the DSP ASE is available. */
1027 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1028
1029 /* True if the result of a load is not available to the next instruction.
1030 A nop will then be needed between instructions like "lw $4,..."
1031 and "addiu $4,$4,1". */
1032 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1033 && !TARGET_MIPS3900 \
1034 && !TARGET_MIPS5900 \
1035 && !TARGET_MIPS16 \
1036 && !TARGET_MICROMIPS)
1037
1038 /* Likewise mtc1 and mfc1. */
1039 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1040 && !TARGET_MIPS5900 \
1041 && !TARGET_LOONGSON_2EF)
1042
1043 /* Likewise floating-point comparisons. */
1044 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1045 && !TARGET_MIPS5900 \
1046 && !TARGET_LOONGSON_2EF)
1047
1048 /* True if mflo and mfhi can be immediately followed by instructions
1049 which write to the HI and LO registers.
1050
1051 According to MIPS specifications, MIPS ISAs I, II, and III need
1052 (at least) two instructions between the reads of HI/LO and
1053 instructions which write them, and later ISAs do not. Contradicting
1054 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1055 the UM for the NEC Vr5000) document needing the instructions between
1056 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1057 MIPS64 and later ISAs to have the interlocks, plus any specific
1058 earlier-ISA CPUs for which CPU documentation declares that the
1059 instructions are really interlocked. */
1060 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1061 || ISA_MIPS32R2 \
1062 || ISA_MIPS64 \
1063 || ISA_MIPS64R2 \
1064 || TARGET_MIPS5500 \
1065 || TARGET_MIPS5900 \
1066 || TARGET_LOONGSON_2EF)
1067
1068 /* ISA includes synci, jr.hb and jalr.hb. */
1069 #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \
1070 || ISA_MIPS64R2) \
1071 && !TARGET_MIPS16)
1072
1073 /* ISA includes sync. */
1074 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1075 #define GENERATE_SYNC \
1076 (target_flags_explicit & MASK_LLSC \
1077 ? TARGET_LLSC && !TARGET_MIPS16 \
1078 : ISA_HAS_SYNC)
1079
1080 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1081 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1082 instructions. */
1083 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1084 #define GENERATE_LL_SC \
1085 (target_flags_explicit & MASK_LLSC \
1086 ? TARGET_LLSC && !TARGET_MIPS16 \
1087 : ISA_HAS_LL_SC)
1088
1089 #define ISA_HAS_SWAP (TARGET_XLP)
1090 #define ISA_HAS_LDADD (TARGET_XLP)
1091
1092 /* ISA includes the baddu instruction. */
1093 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1094
1095 /* ISA includes the bbit* instructions. */
1096 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1097
1098 /* ISA includes the cins instruction. */
1099 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1100
1101 /* ISA includes the exts instruction. */
1102 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1103
1104 /* ISA includes the seq and sne instructions. */
1105 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1106
1107 /* ISA includes the pop instruction. */
1108 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1109
1110 /* The CACHE instruction is available in non-MIPS16 code. */
1111 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1112
1113 /* The CACHE instruction is available. */
1114 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1115 \f
1116 /* Tell collect what flags to pass to nm. */
1117 #ifndef NM_FLAGS
1118 #define NM_FLAGS "-Bn"
1119 #endif
1120
1121 \f
1122 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1123 the assembler. It may be overridden by subtargets.
1124
1125 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1126 COFF debugging info. */
1127
1128 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1129 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1130 %{g} %{g0} %{g1} %{g2} %{g3} \
1131 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1132 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1133 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1134 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1135 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1136 #endif
1137
1138 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1139 overridden by subtargets. */
1140
1141 #ifndef SUBTARGET_ASM_SPEC
1142 #define SUBTARGET_ASM_SPEC ""
1143 #endif
1144
1145 #undef ASM_SPEC
1146 #define ASM_SPEC "\
1147 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1148 %{mips32*} %{mips64*} \
1149 %{mips16} %{mno-mips16:-no-mips16} \
1150 %{mmicromips} %{mno-micromips} \
1151 %{mips3d} %{mno-mips3d:-no-mips3d} \
1152 %{mdmx} %{mno-mdmx:-no-mdmx} \
1153 %{mdsp} %{mno-dsp} \
1154 %{mdspr2} %{mno-dspr2} \
1155 %{mmcu} %{mno-mcu} \
1156 %{meva} %{mno-eva} \
1157 %{msmartmips} %{mno-smartmips} \
1158 %{mmt} %{mno-mt} \
1159 %{mfix-vr4120} %{mfix-vr4130} \
1160 %{mfix-24k} \
1161 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1162 %(subtarget_asm_debugging_spec) \
1163 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1164 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1165 %{mfp32} %{mfp64} \
1166 %{mshared} %{mno-shared} \
1167 %{msym32} %{mno-sym32} \
1168 %{mtune=*} \
1169 %(subtarget_asm_spec)"
1170
1171 /* Extra switches sometimes passed to the linker. */
1172
1173 #ifndef LINK_SPEC
1174 #define LINK_SPEC "\
1175 %(endian_spec) \
1176 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1177 %{shared}"
1178 #endif /* LINK_SPEC defined */
1179
1180
1181 /* Specs for the compiler proper */
1182
1183 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1184 overridden by subtargets. */
1185 #ifndef SUBTARGET_CC1_SPEC
1186 #define SUBTARGET_CC1_SPEC ""
1187 #endif
1188
1189 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1190
1191 #undef CC1_SPEC
1192 #define CC1_SPEC "\
1193 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1194 %(subtarget_cc1_spec)"
1195
1196 /* Preprocessor specs. */
1197
1198 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1199 overridden by subtargets. */
1200 #ifndef SUBTARGET_CPP_SPEC
1201 #define SUBTARGET_CPP_SPEC ""
1202 #endif
1203
1204 #define CPP_SPEC "%(subtarget_cpp_spec)"
1205
1206 /* This macro defines names of additional specifications to put in the specs
1207 that can be used in various specifications like CC1_SPEC. Its definition
1208 is an initializer with a subgrouping for each command option.
1209
1210 Each subgrouping contains a string constant, that defines the
1211 specification name, and a string constant that used by the GCC driver
1212 program.
1213
1214 Do not define this macro if it does not need to do anything. */
1215
1216 #define EXTRA_SPECS \
1217 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1218 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1219 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1220 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1221 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1222 { "endian_spec", ENDIAN_SPEC }, \
1223 SUBTARGET_EXTRA_SPECS
1224
1225 #ifndef SUBTARGET_EXTRA_SPECS
1226 #define SUBTARGET_EXTRA_SPECS
1227 #endif
1228 \f
1229 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1230 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1231
1232 #ifndef PREFERRED_DEBUGGING_TYPE
1233 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1234 #endif
1235
1236 /* The size of DWARF addresses should be the same as the size of symbols
1237 in the target file format. They shouldn't depend on things like -msym32,
1238 because many DWARF consumers do not allow the mixture of address sizes
1239 that one would then get from linking -msym32 code with -msym64 code.
1240
1241 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1242 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1243 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1244
1245 /* By default, turn on GDB extensions. */
1246 #define DEFAULT_GDB_EXTENSIONS 1
1247
1248 /* Local compiler-generated symbols must have a prefix that the assembler
1249 understands. By default, this is $, although some targets (e.g.,
1250 NetBSD-ELF) need to override this. */
1251
1252 #ifndef LOCAL_LABEL_PREFIX
1253 #define LOCAL_LABEL_PREFIX "$"
1254 #endif
1255
1256 /* By default on the mips, external symbols do not have an underscore
1257 prepended, but some targets (e.g., NetBSD) require this. */
1258
1259 #ifndef USER_LABEL_PREFIX
1260 #define USER_LABEL_PREFIX ""
1261 #endif
1262
1263 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1264 since the length can run past this up to a continuation point. */
1265 #undef DBX_CONTIN_LENGTH
1266 #define DBX_CONTIN_LENGTH 1500
1267
1268 /* How to renumber registers for dbx and gdb. */
1269 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1270
1271 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1272 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1273
1274 /* The DWARF 2 CFA column which tracks the return address. */
1275 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1276
1277 /* Before the prologue, RA lives in r31. */
1278 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1279
1280 /* Describe how we implement __builtin_eh_return. */
1281 #define EH_RETURN_DATA_REGNO(N) \
1282 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1283
1284 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1285
1286 #define EH_USES(N) mips_eh_uses (N)
1287
1288 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1289 The default for this in 64-bit mode is 8, which causes problems with
1290 SFmode register saves. */
1291 #define DWARF_CIE_DATA_ALIGNMENT -4
1292
1293 /* Correct the offset of automatic variables and arguments. Note that
1294 the MIPS debug format wants all automatic variables and arguments
1295 to be in terms of the virtual frame pointer (stack pointer before
1296 any adjustment in the function), while the MIPS 3.0 linker wants
1297 the frame pointer to be the stack pointer after the initial
1298 adjustment. */
1299
1300 #define DEBUGGER_AUTO_OFFSET(X) \
1301 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1302 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1303 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1304 \f
1305 /* Target machine storage layout */
1306
1307 #define BITS_BIG_ENDIAN 0
1308 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1309 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1310
1311 #define MAX_BITS_PER_WORD 64
1312
1313 /* Width of a word, in units (bytes). */
1314 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1315 #ifndef IN_LIBGCC2
1316 #define MIN_UNITS_PER_WORD 4
1317 #endif
1318
1319 /* For MIPS, width of a floating point register. */
1320 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1321
1322 /* The number of consecutive floating-point registers needed to store the
1323 largest format supported by the FPU. */
1324 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1325
1326 /* The number of consecutive floating-point registers needed to store the
1327 smallest format supported by the FPU. */
1328 #define MIN_FPRS_PER_FMT \
1329 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1330 ? 1 : MAX_FPRS_PER_FMT)
1331
1332 /* The largest size of value that can be held in floating-point
1333 registers and moved with a single instruction. */
1334 #define UNITS_PER_HWFPVALUE \
1335 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1336
1337 /* The largest size of value that can be held in floating-point
1338 registers. */
1339 #define UNITS_PER_FPVALUE \
1340 (TARGET_SOFT_FLOAT_ABI ? 0 \
1341 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1342 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1343
1344 /* The number of bytes in a double. */
1345 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1346
1347 /* Set the sizes of the core types. */
1348 #define SHORT_TYPE_SIZE 16
1349 #define INT_TYPE_SIZE 32
1350 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1351 #define LONG_LONG_TYPE_SIZE 64
1352
1353 #define FLOAT_TYPE_SIZE 32
1354 #define DOUBLE_TYPE_SIZE 64
1355 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1356
1357 /* Define the sizes of fixed-point types. */
1358 #define SHORT_FRACT_TYPE_SIZE 8
1359 #define FRACT_TYPE_SIZE 16
1360 #define LONG_FRACT_TYPE_SIZE 32
1361 #define LONG_LONG_FRACT_TYPE_SIZE 64
1362
1363 #define SHORT_ACCUM_TYPE_SIZE 16
1364 #define ACCUM_TYPE_SIZE 32
1365 #define LONG_ACCUM_TYPE_SIZE 64
1366 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1367 doesn't support 128-bit integers for MIPS32 currently. */
1368 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1369
1370 /* long double is not a fixed mode, but the idea is that, if we
1371 support long double, we also want a 128-bit integer type. */
1372 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1373
1374 #ifdef IN_LIBGCC2
1375 #if ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1376 || (defined _ABI64 && _MIPS_SIM == _ABI64))
1377 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1378 # else
1379 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1380 # endif
1381 #endif
1382
1383 /* Width in bits of a pointer. */
1384 #ifndef POINTER_SIZE
1385 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1386 #endif
1387
1388 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1389 #define PARM_BOUNDARY BITS_PER_WORD
1390
1391 /* Allocation boundary (in *bits*) for the code of a function. */
1392 #define FUNCTION_BOUNDARY 32
1393
1394 /* Alignment of field after `int : 0' in a structure. */
1395 #define EMPTY_FIELD_BOUNDARY 32
1396
1397 /* Every structure's size must be a multiple of this. */
1398 /* 8 is observed right on a DECstation and on riscos 4.02. */
1399 #define STRUCTURE_SIZE_BOUNDARY 8
1400
1401 /* There is no point aligning anything to a rounder boundary than this. */
1402 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1403
1404 /* All accesses must be aligned. */
1405 #define STRICT_ALIGNMENT 1
1406
1407 /* Define this if you wish to imitate the way many other C compilers
1408 handle alignment of bitfields and the structures that contain
1409 them.
1410
1411 The behavior is that the type written for a bit-field (`int',
1412 `short', or other integer type) imposes an alignment for the
1413 entire structure, as if the structure really did contain an
1414 ordinary field of that type. In addition, the bit-field is placed
1415 within the structure so that it would fit within such a field,
1416 not crossing a boundary for it.
1417
1418 Thus, on most machines, a bit-field whose type is written as `int'
1419 would not cross a four-byte boundary, and would force four-byte
1420 alignment for the whole structure. (The alignment used may not
1421 be four bytes; it is controlled by the other alignment
1422 parameters.)
1423
1424 If the macro is defined, its definition should be a C expression;
1425 a nonzero value for the expression enables this behavior. */
1426
1427 #define PCC_BITFIELD_TYPE_MATTERS 1
1428
1429 /* If defined, a C expression to compute the alignment given to a
1430 constant that is being placed in memory. CONSTANT is the constant
1431 and ALIGN is the alignment that the object would ordinarily have.
1432 The value of this macro is used instead of that alignment to align
1433 the object.
1434
1435 If this macro is not defined, then ALIGN is used.
1436
1437 The typical use of this macro is to increase alignment for string
1438 constants to be word aligned so that `strcpy' calls that copy
1439 constants can be done inline. */
1440
1441 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1442 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1443 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1444
1445 /* If defined, a C expression to compute the alignment for a static
1446 variable. TYPE is the data type, and ALIGN is the alignment that
1447 the object would ordinarily have. The value of this macro is used
1448 instead of that alignment to align the object.
1449
1450 If this macro is not defined, then ALIGN is used.
1451
1452 One use of this macro is to increase alignment of medium-size
1453 data to make it all fit in fewer cache lines. Another is to
1454 cause character arrays to be word-aligned so that `strcpy' calls
1455 that copy constants to character arrays can be done inline. */
1456
1457 #undef DATA_ALIGNMENT
1458 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1459 ((((ALIGN) < BITS_PER_WORD) \
1460 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1461 || TREE_CODE (TYPE) == UNION_TYPE \
1462 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1463
1464 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1465 character arrays to be word-aligned so that `strcpy' calls that copy
1466 constants to character arrays can be done inline, and 'strcmp' can be
1467 optimised to use word loads. */
1468 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1469 DATA_ALIGNMENT (TYPE, ALIGN)
1470
1471 #define PAD_VARARGS_DOWN \
1472 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1473
1474 /* Define if operations between registers always perform the operation
1475 on the full register even if a narrower mode is specified. */
1476 #define WORD_REGISTER_OPERATIONS
1477
1478 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1479 moves. All other references are zero extended. */
1480 #define LOAD_EXTEND_OP(MODE) \
1481 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1482 ? SIGN_EXTEND : ZERO_EXTEND)
1483
1484 /* Define this macro if it is advisable to hold scalars in registers
1485 in a wider mode than that declared by the program. In such cases,
1486 the value is constrained to be within the bounds of the declared
1487 type, but kept valid in the wider mode. The signedness of the
1488 extension may differ from that of the type. */
1489
1490 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1491 if (GET_MODE_CLASS (MODE) == MODE_INT \
1492 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1493 { \
1494 if ((MODE) == SImode) \
1495 (UNSIGNEDP) = 0; \
1496 (MODE) = Pmode; \
1497 }
1498
1499 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1500 Extensions of pointers to word_mode must be signed. */
1501 #define POINTERS_EXTEND_UNSIGNED false
1502
1503 /* Define if loading short immediate values into registers sign extends. */
1504 #define SHORT_IMMEDIATES_SIGN_EXTEND
1505
1506 /* The [d]clz instructions have the natural values at 0. */
1507
1508 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1509 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1510 \f
1511 /* Standard register usage. */
1512
1513 /* Number of hardware registers. We have:
1514
1515 - 32 integer registers
1516 - 32 floating point registers
1517 - 8 condition code registers
1518 - 2 accumulator registers (hi and lo)
1519 - 32 registers each for coprocessors 0, 2 and 3
1520 - 4 fake registers:
1521 - ARG_POINTER_REGNUM
1522 - FRAME_POINTER_REGNUM
1523 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1524 - CPRESTORE_SLOT_REGNUM
1525 - 2 dummy entries that were used at various times in the past.
1526 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1527 - 6 DSP control registers */
1528
1529 #define FIRST_PSEUDO_REGISTER 188
1530
1531 /* By default, fix the kernel registers ($26 and $27), the global
1532 pointer ($28) and the stack pointer ($29). This can change
1533 depending on the command-line options.
1534
1535 Regarding coprocessor registers: without evidence to the contrary,
1536 it's best to assume that each coprocessor register has a unique
1537 use. This can be overridden, in, e.g., mips_option_override or
1538 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1539 inappropriate for a particular target. */
1540
1541 #define FIXED_REGISTERS \
1542 { \
1543 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1544 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1545 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1546 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1547 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1548 /* COP0 registers */ \
1549 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1550 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1551 /* COP2 registers */ \
1552 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1553 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1554 /* COP3 registers */ \
1555 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1556 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1557 /* 6 DSP accumulator registers & 6 control registers */ \
1558 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1559 }
1560
1561
1562 /* Set up this array for o32 by default.
1563
1564 Note that we don't mark $31 as a call-clobbered register. The idea is
1565 that it's really the call instructions themselves which clobber $31.
1566 We don't care what the called function does with it afterwards.
1567
1568 This approach makes it easier to implement sibcalls. Unlike normal
1569 calls, sibcalls don't clobber $31, so the register reaches the
1570 called function in tact. EPILOGUE_USES says that $31 is useful
1571 to the called function. */
1572
1573 #define CALL_USED_REGISTERS \
1574 { \
1575 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1576 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1577 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1578 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1579 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1580 /* COP0 registers */ \
1581 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1582 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1583 /* COP2 registers */ \
1584 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1585 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1586 /* COP3 registers */ \
1587 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1588 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1589 /* 6 DSP accumulator registers & 6 control registers */ \
1590 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1591 }
1592
1593
1594 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1595
1596 #define CALL_REALLY_USED_REGISTERS \
1597 { /* General registers. */ \
1598 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1599 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1600 /* Floating-point registers. */ \
1601 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1602 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1603 /* Others. */ \
1604 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1605 /* COP0 registers */ \
1606 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1607 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1608 /* COP2 registers */ \
1609 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1610 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1611 /* COP3 registers */ \
1612 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1613 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1614 /* 6 DSP accumulator registers & 6 control registers */ \
1615 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1616 }
1617
1618 /* Internal macros to classify a register number as to whether it's a
1619 general purpose register, a floating point register, a
1620 multiply/divide register, or a status register. */
1621
1622 #define GP_REG_FIRST 0
1623 #define GP_REG_LAST 31
1624 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1625 #define GP_DBX_FIRST 0
1626 #define K0_REG_NUM (GP_REG_FIRST + 26)
1627 #define K1_REG_NUM (GP_REG_FIRST + 27)
1628 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1629
1630 #define FP_REG_FIRST 32
1631 #define FP_REG_LAST 63
1632 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1633 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1634
1635 #define MD_REG_FIRST 64
1636 #define MD_REG_LAST 65
1637 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1638 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1639
1640 /* The DWARF 2 CFA column which tracks the return address from a
1641 signal handler context. This means that to maintain backwards
1642 compatibility, no hard register can be assigned this column if it
1643 would need to be handled by the DWARF unwinder. */
1644 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1645
1646 #define ST_REG_FIRST 67
1647 #define ST_REG_LAST 74
1648 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1649
1650
1651 /* FIXME: renumber. */
1652 #define COP0_REG_FIRST 80
1653 #define COP0_REG_LAST 111
1654 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1655
1656 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1657 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1658 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1659
1660 #define COP2_REG_FIRST 112
1661 #define COP2_REG_LAST 143
1662 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1663
1664 #define COP3_REG_FIRST 144
1665 #define COP3_REG_LAST 175
1666 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1667
1668 /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1669 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1670 #define ALL_COP_REG_LAST COP3_REG_LAST
1671 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1672
1673 #define DSP_ACC_REG_FIRST 176
1674 #define DSP_ACC_REG_LAST 181
1675 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1676
1677 #define AT_REGNUM (GP_REG_FIRST + 1)
1678 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1679 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1680
1681 /* A few bitfield locations for the coprocessor registers. */
1682 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1683 the cause register for the EIC interrupt mode. */
1684 #define CAUSE_IPL 10
1685 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1686 #define SR_IPL 10
1687 /* Exception Level is at bit 1 of the status register. */
1688 #define SR_EXL 1
1689 /* Interrupt Enable is at bit 0 of the status register. */
1690 #define SR_IE 0
1691
1692 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1693 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1694 should be used instead. */
1695 #define FPSW_REGNUM ST_REG_FIRST
1696
1697 #define GP_REG_P(REGNO) \
1698 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1699 #define M16_REG_P(REGNO) \
1700 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1701 #define M16STORE_REG_P(REGNO) \
1702 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1703 #define FP_REG_P(REGNO) \
1704 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1705 #define MD_REG_P(REGNO) \
1706 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1707 #define ST_REG_P(REGNO) \
1708 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1709 #define COP0_REG_P(REGNO) \
1710 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1711 #define COP2_REG_P(REGNO) \
1712 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1713 #define COP3_REG_P(REGNO) \
1714 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1715 #define ALL_COP_REG_P(REGNO) \
1716 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1717 /* Test if REGNO is one of the 6 new DSP accumulators. */
1718 #define DSP_ACC_REG_P(REGNO) \
1719 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1720 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1721 #define ACC_REG_P(REGNO) \
1722 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1723
1724 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1725
1726 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1727 to initialize the mips16 gp pseudo register. */
1728 #define CONST_GP_P(X) \
1729 (GET_CODE (X) == CONST \
1730 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1731 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1732
1733 /* Return coprocessor number from register number. */
1734
1735 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1736 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1737 : COP3_REG_P (REGNO) ? '3' : '?')
1738
1739
1740 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1741
1742 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1743 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1744
1745 #define MODES_TIEABLE_P mips_modes_tieable_p
1746
1747 /* Register to use for pushing function arguments. */
1748 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1749
1750 /* These two registers don't really exist: they get eliminated to either
1751 the stack or hard frame pointer. */
1752 #define ARG_POINTER_REGNUM 77
1753 #define FRAME_POINTER_REGNUM 78
1754
1755 /* $30 is not available on the mips16, so we use $17 as the frame
1756 pointer. */
1757 #define HARD_FRAME_POINTER_REGNUM \
1758 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1759
1760 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1761 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1762
1763 /* Register in which static-chain is passed to a function. */
1764 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1765
1766 /* Registers used as temporaries in prologue/epilogue code:
1767
1768 - If a MIPS16 PIC function needs access to _gp, it first loads
1769 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1770
1771 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1772 register. The register must not conflict with MIPS16_PIC_TEMP.
1773
1774 - If we aren't generating MIPS16 code, the prologue can also use
1775 MIPS_PROLOGUE_TEMP2 as a general temporary register.
1776
1777 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1778 register.
1779
1780 If we're generating MIPS16 code, these registers must come from the
1781 core set of 8. The prologue registers mustn't conflict with any
1782 incoming arguments, the static chain pointer, or the frame pointer.
1783 The epilogue temporary mustn't conflict with the return registers,
1784 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1785 or the EH data registers.
1786
1787 If we're generating interrupt handlers, we use K0 as a temporary register
1788 in prologue/epilogue code. */
1789
1790 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1791 #define MIPS_PROLOGUE_TEMP_REGNUM \
1792 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1793 #define MIPS_PROLOGUE_TEMP2_REGNUM \
1794 (TARGET_MIPS16 \
1795 ? (gcc_unreachable (), INVALID_REGNUM) \
1796 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
1797 #define MIPS_EPILOGUE_TEMP_REGNUM \
1798 (cfun->machine->interrupt_handler_p \
1799 ? K0_REG_NUM \
1800 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1801
1802 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1803 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1804 #define MIPS_PROLOGUE_TEMP2(MODE) \
1805 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
1806 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1807
1808 /* Define this macro if it is as good or better to call a constant
1809 function address than to call an address kept in a register. */
1810 #define NO_FUNCTION_CSE 1
1811
1812 /* The ABI-defined global pointer. Sometimes we use a different
1813 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1814 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1815
1816 /* We normally use $28 as the global pointer. However, when generating
1817 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1818 register instead. They can then avoid saving and restoring $28
1819 and perhaps avoid using a frame at all.
1820
1821 When a leaf function uses something other than $28, mips_expand_prologue
1822 will modify pic_offset_table_rtx in place. Take the register number
1823 from there after reload. */
1824 #define PIC_OFFSET_TABLE_REGNUM \
1825 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1826 \f
1827 /* Define the classes of registers for register constraints in the
1828 machine description. Also define ranges of constants.
1829
1830 One of the classes must always be named ALL_REGS and include all hard regs.
1831 If there is more than one class, another class must be named NO_REGS
1832 and contain no registers.
1833
1834 The name GENERAL_REGS must be the name of a class (or an alias for
1835 another name such as ALL_REGS). This is the class of registers
1836 that is allowed by "g" or "r" in a register constraint.
1837 Also, registers outside this class are allocated only when
1838 instructions express preferences for them.
1839
1840 The classes must be numbered in nondecreasing order; that is,
1841 a larger-numbered class must never be contained completely
1842 in a smaller-numbered class.
1843
1844 For any two classes, it is very desirable that there be another
1845 class that represents their union. */
1846
1847 enum reg_class
1848 {
1849 NO_REGS, /* no registers in set */
1850 M16_REGS, /* mips16 directly accessible registers */
1851 T_REG, /* mips16 T register ($24) */
1852 M16_T_REGS, /* mips16 registers plus T register */
1853 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1854 V1_REG, /* Register $v1 ($3) used for TLS access. */
1855 LEA_REGS, /* Every GPR except $25 */
1856 GR_REGS, /* integer registers */
1857 FP_REGS, /* floating point registers */
1858 MD0_REG, /* first multiply/divide register */
1859 MD1_REG, /* second multiply/divide register */
1860 MD_REGS, /* multiply/divide registers (hi/lo) */
1861 COP0_REGS, /* generic coprocessor classes */
1862 COP2_REGS,
1863 COP3_REGS,
1864 ST_REGS, /* status registers (fp status) */
1865 DSP_ACC_REGS, /* DSP accumulator registers */
1866 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1867 FRAME_REGS, /* $arg and $frame */
1868 GR_AND_MD0_REGS, /* union classes */
1869 GR_AND_MD1_REGS,
1870 GR_AND_MD_REGS,
1871 GR_AND_ACC_REGS,
1872 ALL_REGS, /* all registers */
1873 LIM_REG_CLASSES /* max value + 1 */
1874 };
1875
1876 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1877
1878 #define GENERAL_REGS GR_REGS
1879
1880 /* An initializer containing the names of the register classes as C
1881 string constants. These names are used in writing some of the
1882 debugging dumps. */
1883
1884 #define REG_CLASS_NAMES \
1885 { \
1886 "NO_REGS", \
1887 "M16_REGS", \
1888 "T_REG", \
1889 "M16_T_REGS", \
1890 "PIC_FN_ADDR_REG", \
1891 "V1_REG", \
1892 "LEA_REGS", \
1893 "GR_REGS", \
1894 "FP_REGS", \
1895 "MD0_REG", \
1896 "MD1_REG", \
1897 "MD_REGS", \
1898 /* coprocessor registers */ \
1899 "COP0_REGS", \
1900 "COP2_REGS", \
1901 "COP3_REGS", \
1902 "ST_REGS", \
1903 "DSP_ACC_REGS", \
1904 "ACC_REGS", \
1905 "FRAME_REGS", \
1906 "GR_AND_MD0_REGS", \
1907 "GR_AND_MD1_REGS", \
1908 "GR_AND_MD_REGS", \
1909 "GR_AND_ACC_REGS", \
1910 "ALL_REGS" \
1911 }
1912
1913 /* An initializer containing the contents of the register classes,
1914 as integers which are bit masks. The Nth integer specifies the
1915 contents of class N. The way the integer MASK is interpreted is
1916 that register R is in the class if `MASK & (1 << R)' is 1.
1917
1918 When the machine has more than 32 registers, an integer does not
1919 suffice. Then the integers are replaced by sub-initializers,
1920 braced groupings containing several integers. Each
1921 sub-initializer must be suitable as an initializer for the type
1922 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1923
1924 #define REG_CLASS_CONTENTS \
1925 { \
1926 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1927 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1928 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1929 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1930 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1931 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1932 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1933 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1934 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1935 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1936 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1937 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1938 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1939 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1940 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1941 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1942 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1943 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1944 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1945 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1946 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1947 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1948 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1949 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1950 }
1951
1952
1953 /* A C expression whose value is a register class containing hard
1954 register REGNO. In general there is more that one such class;
1955 choose a class which is "minimal", meaning that no smaller class
1956 also contains the register. */
1957
1958 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1959
1960 /* A macro whose definition is the name of the class to which a
1961 valid base register must belong. A base register is one used in
1962 an address which is the register value plus a displacement. */
1963
1964 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1965
1966 /* A macro whose definition is the name of the class to which a
1967 valid index register must belong. An index register is one used
1968 in an address where its value is either multiplied by a scale
1969 factor or added to another register (as well as added to a
1970 displacement). */
1971
1972 #define INDEX_REG_CLASS NO_REGS
1973
1974 /* We generally want to put call-clobbered registers ahead of
1975 call-saved ones. (IRA expects this.) */
1976
1977 #define REG_ALLOC_ORDER \
1978 { /* Accumulator registers. When GPRs and accumulators have equal \
1979 cost, we generally prefer to use accumulators. For example, \
1980 a division of multiplication result is better allocated to LO, \
1981 so that we put the MFLO at the point of use instead of at the \
1982 point of definition. It's also needed if we're to take advantage \
1983 of the extra accumulators available with -mdspr2. In some cases, \
1984 it can also help to reduce register pressure. */ \
1985 64, 65,176,177,178,179,180,181, \
1986 /* Call-clobbered GPRs. */ \
1987 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1988 24, 25, 31, \
1989 /* The global pointer. This is call-clobbered for o32 and o64 \
1990 abicalls, call-saved for n32 and n64 abicalls, and a program \
1991 invariant otherwise. Putting it between the call-clobbered \
1992 and call-saved registers should cope with all eventualities. */ \
1993 28, \
1994 /* Call-saved GPRs. */ \
1995 16, 17, 18, 19, 20, 21, 22, 23, 30, \
1996 /* GPRs that can never be exposed to the register allocator. */ \
1997 0, 26, 27, 29, \
1998 /* Call-clobbered FPRs. */ \
1999 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2000 48, 49, 50, 51, \
2001 /* FPRs that are usually call-saved. The odd ones are actually \
2002 call-clobbered for n32, but listing them ahead of the even \
2003 registers might encourage the register allocator to fragment \
2004 the available FPR pairs. We need paired FPRs to store long \
2005 doubles, so it isn't clear that using a different order \
2006 for n32 would be a win. */ \
2007 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2008 /* None of the remaining classes have defined call-saved \
2009 registers. */ \
2010 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2011 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2012 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2013 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2014 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2015 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2016 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
2017 182,183,184,185,186,187 \
2018 }
2019
2020 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
2021 to be rearranged based on a particular function. On the mips16, we
2022 want to allocate $24 (T_REG) before other registers for
2023 instructions for which it is possible. */
2024
2025 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
2026
2027 /* True if VALUE is an unsigned 6-bit number. */
2028
2029 #define UIMM6_OPERAND(VALUE) \
2030 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2031
2032 /* True if VALUE is a signed 10-bit number. */
2033
2034 #define IMM10_OPERAND(VALUE) \
2035 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2036
2037 /* True if VALUE is a signed 16-bit number. */
2038
2039 #define SMALL_OPERAND(VALUE) \
2040 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2041
2042 /* True if VALUE is an unsigned 16-bit number. */
2043
2044 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2045 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2046
2047 /* True if VALUE can be loaded into a register using LUI. */
2048
2049 #define LUI_OPERAND(VALUE) \
2050 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2051 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2052
2053 /* Return a value X with the low 16 bits clear, and such that
2054 VALUE - X is a signed 16-bit value. */
2055
2056 #define CONST_HIGH_PART(VALUE) \
2057 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2058
2059 #define CONST_LOW_PART(VALUE) \
2060 ((VALUE) - CONST_HIGH_PART (VALUE))
2061
2062 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2063 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2064 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2065 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2066
2067 /* The HI and LO registers can only be reloaded via the general
2068 registers. Condition code registers can only be loaded to the
2069 general registers, and from the floating point registers. */
2070
2071 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2072 mips_secondary_reload_class (CLASS, MODE, X, true)
2073 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2074 mips_secondary_reload_class (CLASS, MODE, X, false)
2075
2076 /* Return the maximum number of consecutive registers
2077 needed to represent mode MODE in a register of class CLASS. */
2078
2079 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2080
2081 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2082 mips_cannot_change_mode_class (FROM, TO, CLASS)
2083 \f
2084 /* Stack layout; function entry, exit and calling. */
2085
2086 #define STACK_GROWS_DOWNWARD
2087
2088 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2089
2090 /* Size of the area allocated in the frame to save the GP. */
2091
2092 #define MIPS_GP_SAVE_AREA_SIZE \
2093 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2094
2095 /* The offset of the first local variable from the frame pointer. See
2096 mips_compute_frame_info for details about the frame layout. */
2097
2098 #define STARTING_FRAME_OFFSET \
2099 (FRAME_GROWS_DOWNWARD \
2100 ? 0 \
2101 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2102
2103 #define RETURN_ADDR_RTX mips_return_addr
2104
2105 /* Mask off the MIPS16 ISA bit in unwind addresses.
2106
2107 The reason for this is a little subtle. When unwinding a call,
2108 we are given the call's return address, which on most targets
2109 is the address of the following instruction. However, what we
2110 actually want to find is the EH region for the call itself.
2111 The target-independent unwind code therefore searches for "RA - 1".
2112
2113 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2114 RA - 1 is therefore the real (even-valued) start of the return
2115 instruction. EH region labels are usually odd-valued MIPS16 symbols
2116 too, so a search for an even address within a MIPS16 region would
2117 usually work.
2118
2119 However, there is an exception. If the end of an EH region is also
2120 the end of a function, the end label is allowed to be even. This is
2121 necessary because a following non-MIPS16 function may also need EH
2122 information for its first instruction.
2123
2124 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2125 non-ISA-encoded address. This probably isn't ideal, but it is
2126 the traditional (legacy) behavior. It is therefore only safe
2127 to search MIPS EH regions for an _odd-valued_ address.
2128
2129 Masking off the ISA bit means that the target-independent code
2130 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2131 #define MASK_RETURN_ADDR GEN_INT (-2)
2132
2133
2134 /* Similarly, don't use the least-significant bit to tell pointers to
2135 code from vtable index. */
2136
2137 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2138
2139 /* The eliminations to $17 are only used for mips16 code. See the
2140 definition of HARD_FRAME_POINTER_REGNUM. */
2141
2142 #define ELIMINABLE_REGS \
2143 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2144 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2145 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2146 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2147 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2148 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2149
2150 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2151 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2152
2153 /* Allocate stack space for arguments at the beginning of each function. */
2154 #define ACCUMULATE_OUTGOING_ARGS 1
2155
2156 /* The argument pointer always points to the first argument. */
2157 #define FIRST_PARM_OFFSET(FNDECL) 0
2158
2159 /* o32 and o64 reserve stack space for all argument registers. */
2160 #define REG_PARM_STACK_SPACE(FNDECL) \
2161 (TARGET_OLDABI \
2162 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2163 : 0)
2164
2165 /* Define this if it is the responsibility of the caller to
2166 allocate the area reserved for arguments passed in registers.
2167 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2168 of this macro is to determine whether the space is included in
2169 `crtl->outgoing_args_size'. */
2170 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2171
2172 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2173 \f
2174 /* Symbolic macros for the registers used to return integer and floating
2175 point values. */
2176
2177 #define GP_RETURN (GP_REG_FIRST + 2)
2178 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2179
2180 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2181
2182 /* Symbolic macros for the first/last argument registers. */
2183
2184 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2185 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2186 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2187 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2188
2189 /* 1 if N is a possible register number for function argument passing.
2190 We have no FP argument registers when soft-float. When FP registers
2191 are 32 bits, we can't directly reference the odd numbered ones. */
2192
2193 #define FUNCTION_ARG_REGNO_P(N) \
2194 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2195 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2196 && !fixed_regs[N])
2197 \f
2198 /* This structure has to cope with two different argument allocation
2199 schemes. Most MIPS ABIs view the arguments as a structure, of which
2200 the first N words go in registers and the rest go on the stack. If I
2201 < N, the Ith word might go in Ith integer argument register or in a
2202 floating-point register. For these ABIs, we only need to remember
2203 the offset of the current argument into the structure.
2204
2205 The EABI instead allocates the integer and floating-point arguments
2206 separately. The first N words of FP arguments go in FP registers,
2207 the rest go on the stack. Likewise, the first N words of the other
2208 arguments go in integer registers, and the rest go on the stack. We
2209 need to maintain three counts: the number of integer registers used,
2210 the number of floating-point registers used, and the number of words
2211 passed on the stack.
2212
2213 We could keep separate information for the two ABIs (a word count for
2214 the standard ABIs, and three separate counts for the EABI). But it
2215 seems simpler to view the standard ABIs as forms of EABI that do not
2216 allocate floating-point registers.
2217
2218 So for the standard ABIs, the first N words are allocated to integer
2219 registers, and mips_function_arg decides on an argument-by-argument
2220 basis whether that argument should really go in an integer register,
2221 or in a floating-point one. */
2222
2223 typedef struct mips_args {
2224 /* Always true for varargs functions. Otherwise true if at least
2225 one argument has been passed in an integer register. */
2226 int gp_reg_found;
2227
2228 /* The number of arguments seen so far. */
2229 unsigned int arg_number;
2230
2231 /* The number of integer registers used so far. For all ABIs except
2232 EABI, this is the number of words that have been added to the
2233 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2234 unsigned int num_gprs;
2235
2236 /* For EABI, the number of floating-point registers used so far. */
2237 unsigned int num_fprs;
2238
2239 /* The number of words passed on the stack. */
2240 unsigned int stack_words;
2241
2242 /* On the mips16, we need to keep track of which floating point
2243 arguments were passed in general registers, but would have been
2244 passed in the FP regs if this were a 32-bit function, so that we
2245 can move them to the FP regs if we wind up calling a 32-bit
2246 function. We record this information in fp_code, encoded in base
2247 four. A zero digit means no floating point argument, a one digit
2248 means an SFmode argument, and a two digit means a DFmode argument,
2249 and a three digit is not used. The low order digit is the first
2250 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2251 an SFmode argument. ??? A more sophisticated approach will be
2252 needed if MIPS_ABI != ABI_32. */
2253 int fp_code;
2254
2255 /* True if the function has a prototype. */
2256 int prototype;
2257 } CUMULATIVE_ARGS;
2258
2259 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2260 for a call to a function whose data type is FNTYPE.
2261 For a library call, FNTYPE is 0. */
2262
2263 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2264 mips_init_cumulative_args (&CUM, FNTYPE)
2265
2266 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2267 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2268
2269 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2270 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2271
2272 /* True if using EABI and varargs can be passed in floating-point
2273 registers. Under these conditions, we need a more complex form
2274 of va_list, which tracks GPR, FPR and stack arguments separately. */
2275 #define EABI_FLOAT_VARARGS_P \
2276 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2277
2278 \f
2279 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2280
2281 /* Treat LOC as a byte offset from the stack pointer and round it up
2282 to the next fully-aligned offset. */
2283 #define MIPS_STACK_ALIGN(LOC) \
2284 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2285
2286 \f
2287 /* Output assembler code to FILE to increment profiler label # LABELNO
2288 for profiling a function entry. */
2289
2290 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2291
2292 /* The profiler preserves all interesting registers, including $31. */
2293 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2294
2295 /* No mips port has ever used the profiler counter word, so don't emit it
2296 or the label for it. */
2297
2298 #define NO_PROFILE_COUNTERS 1
2299
2300 /* Define this macro if the code for function profiling should come
2301 before the function prologue. Normally, the profiling code comes
2302 after. */
2303
2304 /* #define PROFILE_BEFORE_PROLOGUE */
2305
2306 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2307 the stack pointer does not matter. The value is tested only in
2308 functions that have frame pointers.
2309 No definition is equivalent to always zero. */
2310
2311 #define EXIT_IGNORE_STACK 1
2312
2313 \f
2314 /* Trampolines are a block of code followed by two pointers. */
2315
2316 #define TRAMPOLINE_SIZE \
2317 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2318
2319 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2320 pointers from a single LUI base. */
2321
2322 #define TRAMPOLINE_ALIGNMENT 64
2323
2324 /* mips_trampoline_init calls this library function to flush
2325 program and data caches. */
2326
2327 #ifndef CACHE_FLUSH_FUNC
2328 #define CACHE_FLUSH_FUNC "_flush_cache"
2329 #endif
2330
2331 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2332 /* Flush both caches. We need to flush the data cache in case \
2333 the system has a write-back cache. */ \
2334 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2335 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2336 GEN_INT (3), TYPE_MODE (integer_type_node))
2337
2338 \f
2339 /* Addressing modes, and classification of registers for them. */
2340
2341 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2342 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2343 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2344 \f
2345 /* Maximum number of registers that can appear in a valid memory address. */
2346
2347 #define MAX_REGS_PER_ADDRESS 1
2348
2349 /* Check for constness inline but use mips_legitimate_address_p
2350 to check whether a constant really is an address. */
2351
2352 #define CONSTANT_ADDRESS_P(X) \
2353 (CONSTANT_P (X) && memory_address_p (SImode, X))
2354
2355 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2356 'the start of the function that this code is output in'. */
2357
2358 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2359 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2360 asm_fprintf ((FILE), "%U%s", \
2361 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2362 else \
2363 asm_fprintf ((FILE), "%U%s", (NAME))
2364 \f
2365 /* Flag to mark a function decl symbol that requires a long call. */
2366 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2367 #define SYMBOL_REF_LONG_CALL_P(X) \
2368 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2369
2370 /* This flag marks functions that cannot be lazily bound. */
2371 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2372 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2373 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2374
2375 /* True if we're generating a form of MIPS16 code in which jump tables
2376 are stored in the text section and encoded as 16-bit PC-relative
2377 offsets. This is only possible when general text loads are allowed,
2378 since the table access itself will be an "lh" instruction. If the
2379 PC-relative offsets grow too large, 32-bit offsets are used instead. */
2380 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2381
2382 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2383
2384 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2385
2386 /* Only use short offsets if their range will not overflow. */
2387 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2388 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2389 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2390 : SImode)
2391
2392 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2393
2394 /* Define this as 1 if `char' should by default be signed; else as 0. */
2395 #ifndef DEFAULT_SIGNED_CHAR
2396 #define DEFAULT_SIGNED_CHAR 1
2397 #endif
2398
2399 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2400 we generally don't want to use them for copying arbitrary data.
2401 A single N-word move is usually the same cost as N single-word moves. */
2402 #define MOVE_MAX UNITS_PER_WORD
2403 #define MAX_MOVE_MAX 8
2404
2405 /* Define this macro as a C expression which is nonzero if
2406 accessing less than a word of memory (i.e. a `char' or a
2407 `short') is no faster than accessing a word of memory, i.e., if
2408 such access require more than one instruction or if there is no
2409 difference in cost between byte and (aligned) word loads.
2410
2411 On RISC machines, it tends to generate better code to define
2412 this as 1, since it avoids making a QI or HI mode register.
2413
2414 But, generating word accesses for -mips16 is generally bad as shifts
2415 (often extended) would be needed for byte accesses. */
2416 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2417
2418 /* Standard MIPS integer shifts truncate the shift amount to the
2419 width of the shifted operand. However, Loongson vector shifts
2420 do not truncate the shift amount at all. */
2421 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2422
2423 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2424 is done just by pretending it is already truncated. */
2425 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2426 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2427
2428
2429 /* Specify the machine mode that pointers have.
2430 After generation of rtl, the compiler makes no further distinction
2431 between pointers and any other objects of this machine mode. */
2432
2433 #ifndef Pmode
2434 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2435 #endif
2436
2437 /* Give call MEMs SImode since it is the "most permissive" mode
2438 for both 32-bit and 64-bit targets. */
2439
2440 #define FUNCTION_MODE SImode
2441
2442 \f
2443 /* We allocate $fcc registers by hand and can't cope with moves of
2444 CCmode registers to and from pseudos (or memory). */
2445 #define AVOID_CCMODE_COPIES
2446
2447 /* A C expression for the cost of a branch instruction. A value of
2448 1 is the default; other values are interpreted relative to that. */
2449
2450 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2451 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2452
2453 /* The MIPS port has several functions that return an instruction count.
2454 Multiplying the count by this value gives the number of bytes that
2455 the instructions occupy. */
2456 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2457
2458 /* The length of a NOP in bytes. */
2459 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2460
2461 /* If defined, modifies the length assigned to instruction INSN as a
2462 function of the context in which it is used. LENGTH is an lvalue
2463 that contains the initially computed length of the insn and should
2464 be updated with the correct length of the insn. */
2465 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2466 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2467
2468 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2469 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2470 its operands. */
2471 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2472 "%*" OPCODE "%?\t" OPERANDS "%/"
2473
2474 /* Return an asm string that forces INSN to be treated as an absolute
2475 J or JAL instruction instead of an assembler macro. */
2476 #define MIPS_ABSOLUTE_JUMP(INSN) \
2477 (TARGET_ABICALLS_PIC2 \
2478 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2479 : INSN)
2480
2481 /* Return the asm template for a call. INSN is the instruction's mnemonic
2482 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2483 number of the target. SIZE_OPNO is the operand number of the argument size
2484 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2485 -1 and the call is indirect, use the function symbol from the call
2486 attributes to attach a R_MIPS_JALR relocation to the call.
2487
2488 When generating GOT code without explicit relocation operators,
2489 all calls should use assembly macros. Otherwise, all indirect
2490 calls should use "jr" or "jalr"; we will arrange to restore $gp
2491 afterwards if necessary. Finally, we can only generate direct
2492 calls for -mabicalls by temporarily switching to non-PIC mode.
2493
2494 For microMIPS jal(r), we try to generate jal(r)s when a 16-bit
2495 instruction is in the delay slot of jal(r). */
2496 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2497 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2498 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2499 : REG_P (OPERANDS[TARGET_OPNO]) \
2500 ? (mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO) \
2501 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2502 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2503 : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
2504 ? "%*" INSN "r%!\t%" #TARGET_OPNO "%/" \
2505 : "%*" INSN "r\t%" #TARGET_OPNO "%/") \
2506 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/"))
2507
2508 /* Similar to MIPS_CALL, but this is for MICROMIPS "j" to generate
2509 "jrc" when nop is in the delay slot of "jr". */
2510
2511 #define MICROMIPS_J(INSN, OPERANDS, OPNO) \
2512 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2513 ? "%*j\t%" #OPNO "%/" \
2514 : REG_P (OPERANDS[OPNO]) \
2515 ? "%*jr%:\t%" #OPNO \
2516 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #OPNO "%/"))
2517
2518 \f
2519 /* Control the assembler format that we output. */
2520
2521 /* Output to assembler file text saying following lines
2522 may contain character constants, extra white space, comments, etc. */
2523
2524 #ifndef ASM_APP_ON
2525 #define ASM_APP_ON " #APP\n"
2526 #endif
2527
2528 /* Output to assembler file text saying following lines
2529 no longer contain unusual constructs. */
2530
2531 #ifndef ASM_APP_OFF
2532 #define ASM_APP_OFF " #NO_APP\n"
2533 #endif
2534
2535 #define REGISTER_NAMES \
2536 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2537 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2538 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2539 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2540 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2541 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2542 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2543 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2544 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2545 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2546 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2547 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2548 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2549 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2550 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2551 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2552 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2553 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2554 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2555 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2556 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2557 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2558 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2559 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2560
2561 /* List the "software" names for each register. Also list the numerical
2562 names for $fp and $sp. */
2563
2564 #define ADDITIONAL_REGISTER_NAMES \
2565 { \
2566 { "$29", 29 + GP_REG_FIRST }, \
2567 { "$30", 30 + GP_REG_FIRST }, \
2568 { "at", 1 + GP_REG_FIRST }, \
2569 { "v0", 2 + GP_REG_FIRST }, \
2570 { "v1", 3 + GP_REG_FIRST }, \
2571 { "a0", 4 + GP_REG_FIRST }, \
2572 { "a1", 5 + GP_REG_FIRST }, \
2573 { "a2", 6 + GP_REG_FIRST }, \
2574 { "a3", 7 + GP_REG_FIRST }, \
2575 { "t0", 8 + GP_REG_FIRST }, \
2576 { "t1", 9 + GP_REG_FIRST }, \
2577 { "t2", 10 + GP_REG_FIRST }, \
2578 { "t3", 11 + GP_REG_FIRST }, \
2579 { "t4", 12 + GP_REG_FIRST }, \
2580 { "t5", 13 + GP_REG_FIRST }, \
2581 { "t6", 14 + GP_REG_FIRST }, \
2582 { "t7", 15 + GP_REG_FIRST }, \
2583 { "s0", 16 + GP_REG_FIRST }, \
2584 { "s1", 17 + GP_REG_FIRST }, \
2585 { "s2", 18 + GP_REG_FIRST }, \
2586 { "s3", 19 + GP_REG_FIRST }, \
2587 { "s4", 20 + GP_REG_FIRST }, \
2588 { "s5", 21 + GP_REG_FIRST }, \
2589 { "s6", 22 + GP_REG_FIRST }, \
2590 { "s7", 23 + GP_REG_FIRST }, \
2591 { "t8", 24 + GP_REG_FIRST }, \
2592 { "t9", 25 + GP_REG_FIRST }, \
2593 { "k0", 26 + GP_REG_FIRST }, \
2594 { "k1", 27 + GP_REG_FIRST }, \
2595 { "gp", 28 + GP_REG_FIRST }, \
2596 { "sp", 29 + GP_REG_FIRST }, \
2597 { "fp", 30 + GP_REG_FIRST }, \
2598 { "ra", 31 + GP_REG_FIRST } \
2599 }
2600
2601 #define DBR_OUTPUT_SEQEND(STREAM) \
2602 do \
2603 { \
2604 /* Undo the effect of '%*'. */ \
2605 mips_pop_asm_switch (&mips_nomacro); \
2606 mips_pop_asm_switch (&mips_noreorder); \
2607 /* Emit a blank line after the delay slot for emphasis. */ \
2608 fputs ("\n", STREAM); \
2609 } \
2610 while (0)
2611
2612 /* The MIPS implementation uses some labels for its own purpose. The
2613 following lists what labels are created, and are all formed by the
2614 pattern $L[a-z].*. The machine independent portion of GCC creates
2615 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2616
2617 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2618 $Lb[0-9]+ Begin blocks for MIPS debug support
2619 $Lc[0-9]+ Label for use in s<xx> operation.
2620 $Le[0-9]+ End blocks for MIPS debug support */
2621
2622 #undef ASM_DECLARE_OBJECT_NAME
2623 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2624 mips_declare_object (STREAM, NAME, "", ":\n")
2625
2626 /* Globalizing directive for a label. */
2627 #define GLOBAL_ASM_OP "\t.globl\t"
2628
2629 /* This says how to define a global common symbol. */
2630
2631 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2632
2633 /* This says how to define a local common symbol (i.e., not visible to
2634 linker). */
2635
2636 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2637 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2638 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2639 #endif
2640
2641 /* This says how to output an external. It would be possible not to
2642 output anything and let undefined symbol become external. However
2643 the assembler uses length information on externals to allocate in
2644 data/sdata bss/sbss, thereby saving exec time. */
2645
2646 #undef ASM_OUTPUT_EXTERNAL
2647 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2648 mips_output_external(STREAM,DECL,NAME)
2649
2650 /* This is how to declare a function name. The actual work of
2651 emitting the label is moved to function_prologue, so that we can
2652 get the line number correctly emitted before the .ent directive,
2653 and after any .file directives. Define as empty so that the function
2654 is not declared before the .ent directive elsewhere. */
2655
2656 #undef ASM_DECLARE_FUNCTION_NAME
2657 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2658
2659 /* This is how to store into the string LABEL
2660 the symbol_ref name of an internal numbered label where
2661 PREFIX is the class of label and NUM is the number within the class.
2662 This is suitable for output with `assemble_name'. */
2663
2664 #undef ASM_GENERATE_INTERNAL_LABEL
2665 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2666 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2667
2668 /* Print debug labels as "foo = ." rather than "foo:" because they should
2669 represent a byte pointer rather than an ISA-encoded address. This is
2670 particularly important for code like:
2671
2672 $LFBxxx = .
2673 .cfi_startproc
2674 ...
2675 .section .gcc_except_table,...
2676 ...
2677 .uleb128 foo-$LFBxxx
2678
2679 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2680 likewise a byte pointer rather than an ISA-encoded address.
2681
2682 At the time of writing, this hook is not used for the function end
2683 label:
2684
2685 $LFExxx:
2686 .end foo
2687
2688 But this doesn't matter, because GAS doesn't treat a pre-.end label
2689 as a MIPS16 one anyway. */
2690
2691 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2692 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2693
2694 /* This is how to output an element of a case-vector that is absolute. */
2695
2696 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2697 fprintf (STREAM, "\t%s\t%sL%d\n", \
2698 ptr_mode == DImode ? ".dword" : ".word", \
2699 LOCAL_LABEL_PREFIX, \
2700 VALUE)
2701
2702 /* This is how to output an element of a case-vector. We can make the
2703 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2704 is supported. */
2705
2706 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2707 do { \
2708 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2709 { \
2710 if (GET_MODE (BODY) == HImode) \
2711 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2712 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2713 else \
2714 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2715 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2716 } \
2717 else if (TARGET_GPWORD) \
2718 fprintf (STREAM, "\t%s\t%sL%d\n", \
2719 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2720 LOCAL_LABEL_PREFIX, VALUE); \
2721 else if (TARGET_RTP_PIC) \
2722 { \
2723 /* Make the entry relative to the start of the function. */ \
2724 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2725 fprintf (STREAM, "\t%s\t%sL%d-", \
2726 Pmode == DImode ? ".dword" : ".word", \
2727 LOCAL_LABEL_PREFIX, VALUE); \
2728 assemble_name (STREAM, XSTR (fnsym, 0)); \
2729 fprintf (STREAM, "\n"); \
2730 } \
2731 else \
2732 fprintf (STREAM, "\t%s\t%sL%d\n", \
2733 ptr_mode == DImode ? ".dword" : ".word", \
2734 LOCAL_LABEL_PREFIX, VALUE); \
2735 } while (0)
2736
2737 /* This is how to output an assembler line
2738 that says to advance the location counter
2739 to a multiple of 2**LOG bytes. */
2740
2741 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2742 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2743
2744 /* This is how to output an assembler line to advance the location
2745 counter by SIZE bytes. */
2746
2747 #undef ASM_OUTPUT_SKIP
2748 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2749 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2750
2751 /* This is how to output a string. */
2752 #undef ASM_OUTPUT_ASCII
2753 #define ASM_OUTPUT_ASCII mips_output_ascii
2754
2755 \f
2756 /* Default to -G 8 */
2757 #ifndef MIPS_DEFAULT_GVALUE
2758 #define MIPS_DEFAULT_GVALUE 8
2759 #endif
2760
2761 /* Define the strings to put out for each section in the object file. */
2762 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2763 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2764
2765 #undef READONLY_DATA_SECTION_ASM_OP
2766 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2767 \f
2768 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2769 do \
2770 { \
2771 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2772 TARGET_64BIT ? "daddiu" : "addiu", \
2773 reg_names[STACK_POINTER_REGNUM], \
2774 reg_names[STACK_POINTER_REGNUM], \
2775 TARGET_64BIT ? "sd" : "sw", \
2776 reg_names[REGNO], \
2777 reg_names[STACK_POINTER_REGNUM]); \
2778 } \
2779 while (0)
2780
2781 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2782 do \
2783 { \
2784 mips_push_asm_switch (&mips_noreorder); \
2785 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2786 TARGET_64BIT ? "ld" : "lw", \
2787 reg_names[REGNO], \
2788 reg_names[STACK_POINTER_REGNUM], \
2789 TARGET_64BIT ? "daddu" : "addu", \
2790 reg_names[STACK_POINTER_REGNUM], \
2791 reg_names[STACK_POINTER_REGNUM]); \
2792 mips_pop_asm_switch (&mips_noreorder); \
2793 } \
2794 while (0)
2795
2796 /* How to start an assembler comment.
2797 The leading space is important (the mips native assembler requires it). */
2798 #ifndef ASM_COMMENT_START
2799 #define ASM_COMMENT_START " #"
2800 #endif
2801 \f
2802 #undef SIZE_TYPE
2803 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2804
2805 #undef PTRDIFF_TYPE
2806 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2807
2808 /* The maximum number of bytes that can be copied by one iteration of
2809 a movmemsi loop; see mips_block_move_loop. */
2810 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2811 (UNITS_PER_WORD * 4)
2812
2813 /* The maximum number of bytes that can be copied by a straight-line
2814 implementation of movmemsi; see mips_block_move_straight. We want
2815 to make sure that any loop-based implementation will iterate at
2816 least twice. */
2817 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2818 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2819
2820 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2821 values were determined experimentally by benchmarking with CSiBE.
2822 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2823 for o32 where we have to restore $gp afterwards as well as make an
2824 indirect call), but in practice, bumping this up higher for
2825 TARGET_ABICALLS doesn't make much difference to code size. */
2826
2827 #define MIPS_CALL_RATIO 8
2828
2829 /* Any loop-based implementation of movmemsi will have at least
2830 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2831 moves, so allow individual copies of fewer elements.
2832
2833 When movmemsi is not available, use a value approximating
2834 the length of a memcpy call sequence, so that move_by_pieces
2835 will generate inline code if it is shorter than a function call.
2836 Since move_by_pieces_ninsns counts memory-to-memory moves, but
2837 we'll have to generate a load/store pair for each, halve the
2838 value of MIPS_CALL_RATIO to take that into account. */
2839
2840 #define MOVE_RATIO(speed) \
2841 (HAVE_movmemsi \
2842 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
2843 : MIPS_CALL_RATIO / 2)
2844
2845 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2846 mips_move_by_pieces_p (SIZE, ALIGN)
2847
2848 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2849 of the length of a memset call, but use the default otherwise. */
2850
2851 #define CLEAR_RATIO(speed)\
2852 ((speed) ? 15 : MIPS_CALL_RATIO)
2853
2854 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2855 optimizing for size adjust the ratio to account for the overhead of
2856 loading the constant and replicating it across the word. */
2857
2858 #define SET_RATIO(speed) \
2859 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2860
2861 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
2862 mips_store_by_pieces_p (SIZE, ALIGN)
2863 \f
2864 /* Since the bits of the _init and _fini function is spread across
2865 many object files, each potentially with its own GP, we must assume
2866 we need to load our GP. We don't preserve $gp or $ra, since each
2867 init/fini chunk is supposed to initialize $gp, and crti/crtn
2868 already take care of preserving $ra and, when appropriate, $gp. */
2869 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2870 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2871 asm (SECTION_OP "\n\
2872 .set push\n\
2873 .set nomips16\n\
2874 .set noreorder\n\
2875 bal 1f\n\
2876 nop\n\
2877 1: .cpload $31\n\
2878 .set reorder\n\
2879 jal " USER_LABEL_PREFIX #FUNC "\n\
2880 .set pop\n\
2881 " TEXT_SECTION_ASM_OP);
2882 #elif ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2883 || (defined _ABI64 && _MIPS_SIM == _ABI64))
2884 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2885 asm (SECTION_OP "\n\
2886 .set push\n\
2887 .set nomips16\n\
2888 .set noreorder\n\
2889 bal 1f\n\
2890 nop\n\
2891 1: .set reorder\n\
2892 .cpsetup $31, $2, 1b\n\
2893 jal " USER_LABEL_PREFIX #FUNC "\n\
2894 .set pop\n\
2895 " TEXT_SECTION_ASM_OP);
2896 #endif
2897
2898 #ifndef HAVE_AS_TLS
2899 #define HAVE_AS_TLS 0
2900 #endif
2901
2902 #ifndef USED_FOR_TARGET
2903 /* Information about ".set noFOO; ...; .set FOO" blocks. */
2904 struct mips_asm_switch {
2905 /* The FOO in the description above. */
2906 const char *name;
2907
2908 /* The current block nesting level, or 0 if we aren't in a block. */
2909 int nesting_level;
2910 };
2911
2912 extern const enum reg_class mips_regno_to_class[];
2913 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
2914 extern const char *current_function_file; /* filename current function is in */
2915 extern int num_source_filenames; /* current .file # */
2916 extern struct mips_asm_switch mips_noreorder;
2917 extern struct mips_asm_switch mips_nomacro;
2918 extern struct mips_asm_switch mips_noat;
2919 extern int mips_dbx_regno[];
2920 extern int mips_dwarf_regno[];
2921 extern bool mips_split_p[];
2922 extern bool mips_split_hi_p[];
2923 extern bool mips_use_pcrel_pool_p[];
2924 extern const char *mips_lo_relocs[];
2925 extern const char *mips_hi_relocs[];
2926 extern enum processor mips_arch; /* which cpu to codegen for */
2927 extern enum processor mips_tune; /* which cpu to schedule for */
2928 extern int mips_isa; /* architectural level */
2929 extern const struct mips_cpu_info *mips_arch_info;
2930 extern const struct mips_cpu_info *mips_tune_info;
2931 extern unsigned int mips_base_compression_flags;
2932 extern GTY(()) struct target_globals *mips16_globals;
2933 #endif
2934
2935 /* Enable querying of DFA units. */
2936 #define CPU_UNITS_QUERY 1
2937
2938 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2939 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2940
2941 /* As on most targets, we want the .eh_frame section to be read-only where
2942 possible. And as on most targets, this means two things:
2943
2944 (a) Non-locally-binding pointers must have an indirect encoding,
2945 so that the addresses in the .eh_frame section itself become
2946 locally-binding.
2947
2948 (b) A shared library's .eh_frame section must encode locally-binding
2949 pointers in a relative (relocation-free) form.
2950
2951 However, MIPS has traditionally not allowed directives like:
2952
2953 .long x-.
2954
2955 in cases where "x" is in a different section, or is not defined in the
2956 same assembly file. We are therefore unable to emit the PC-relative
2957 form required by (b) at assembly time.
2958
2959 Fortunately, the linker is able to convert absolute addresses into
2960 PC-relative addresses on our behalf. Unfortunately, only certain
2961 versions of the linker know how to do this for indirect pointers,
2962 and for personality data. We must fall back on using writable
2963 .eh_frame sections for shared libraries if the linker does not
2964 support this feature. */
2965 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2966 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
2967
2968 /* For switching between MIPS16 and non-MIPS16 modes. */
2969 #define SWITCHABLE_TARGET 1
2970
2971 /* Several named MIPS patterns depend on Pmode. These patterns have the
2972 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
2973 Add the appropriate suffix to generator function NAME and invoke it
2974 with arguments ARGS. */
2975 #define PMODE_INSN(NAME, ARGS) \
2976 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)