mips.h (ISA_HAS_FP_RECIP_RSQRT): New macro.
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989-2013 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24
25 #include "config/vxworks-dummy.h"
26
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30 extern int target_flags_explicit;
31 #endif
32
33 /* MIPS external variables defined in mips.c. */
34
35 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
37 to work on a 64-bit machine. */
38
39 #define ABI_32 0
40 #define ABI_N32 1
41 #define ABI_64 2
42 #define ABI_EABI 3
43 #define ABI_O64 4
44
45 /* Masks that affect tuning.
46
47 PTF_AVOID_BRANCHLIKELY
48 Set if it is usually not profitable to use branch-likely instructions
49 for this target, typically because the branches are always predicted
50 taken and so incur a large overhead when not taken.
51
52 PTF_AVOID_IMADD
53 Set if it is usually not profitable to use the integer MADD or MSUB
54 instructions because of the overhead of getting the result out of
55 the HI/LO registers. */
56
57 #define PTF_AVOID_BRANCHLIKELY 0x1
58 #define PTF_AVOID_IMADD 0x2
59
60 /* Information about one recognized processor. Defined here for the
61 benefit of TARGET_CPU_CPP_BUILTINS. */
62 struct mips_cpu_info {
63 /* The 'canonical' name of the processor as far as GCC is concerned.
64 It's typically a manufacturer's prefix followed by a numerical
65 designation. It should be lowercase. */
66 const char *name;
67
68 /* The internal processor number that most closely matches this
69 entry. Several processors can have the same value, if there's no
70 difference between them from GCC's point of view. */
71 enum processor cpu;
72
73 /* The ISA level that the processor implements. */
74 int isa;
75
76 /* A mask of PTF_* values. */
77 unsigned int tune_flags;
78 };
79
80 #include "config/mips/mips-opts.h"
81
82 /* Macros to silence warnings about numbers being signed in traditional
83 C and unsigned in ISO C when compiled on 32-bit hosts. */
84
85 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
86 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
87 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
88
89 \f
90 /* Run-time compilation parameters selecting different hardware subsets. */
91
92 /* True if we are generating position-independent VxWorks RTP code. */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
94
95 /* True if the output file is marked as ".abicalls; .option pic0"
96 (-call_nonpic). */
97 #define TARGET_ABICALLS_PIC0 \
98 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
99
100 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
101 #define TARGET_ABICALLS_PIC2 \
102 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
103
104 /* True if the call patterns should be split into a jalr followed by
105 an instruction to restore $gp. It is only safe to split the load
106 from the call when every use of $gp is explicit.
107
108 See mips_must_initialize_gp_p for details about how we manage the
109 global pointer. */
110
111 #define TARGET_SPLIT_CALLS \
112 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
113
114 /* True if we're generating a form of -mabicalls in which we can use
115 operators like %hi and %lo to refer to locally-binding symbols.
116 We can only do this for -mno-shared, and only then if we can use
117 relocation operations instead of assembly macros. It isn't really
118 worth using absolute sequences for 64-bit symbols because GOT
119 accesses are so much shorter. */
120
121 #define TARGET_ABSOLUTE_ABICALLS \
122 (TARGET_ABICALLS \
123 && !TARGET_SHARED \
124 && TARGET_EXPLICIT_RELOCS \
125 && !ABI_HAS_64BIT_SYMBOLS)
126
127 /* True if we can optimize sibling calls. For simplicity, we only
128 handle cases in which call_insn_operand will reject invalid
129 sibcall addresses. There are two cases in which this isn't true:
130
131 - TARGET_MIPS16. call_insn_operand accepts constant addresses
132 but there is no direct jump instruction. It isn't worth
133 using sibling calls in this case anyway; they would usually
134 be longer than normal calls.
135
136 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
137 accepts global constants, but all sibcalls must be indirect. */
138 #define TARGET_SIBCALLS \
139 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
140
141 /* True if we need to use a global offset table to access some symbols. */
142 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
143
144 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
145 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
146
147 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
148 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
149
150 /* True if we should use .cprestore to store to the cprestore slot.
151
152 We continue to use .cprestore for explicit-reloc code so that JALs
153 inside inline asms will work correctly. */
154 #define TARGET_CPRESTORE_DIRECTIVE \
155 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
156
157 /* True if we can use the J and JAL instructions. */
158 #define TARGET_ABSOLUTE_JUMPS \
159 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
160
161 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
162 This is true for both the PIC and non-PIC VxWorks RTP modes. */
163 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
164
165 /* True if .gpword or .gpdword should be used for switch tables. */
166 #define TARGET_GPWORD \
167 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
168
169 /* True if the output must have a writable .eh_frame.
170 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
171 #ifdef HAVE_LD_PERSONALITY_RELAXATION
172 #define TARGET_WRITABLE_EH_FRAME 0
173 #else
174 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
175 #endif
176
177 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
178 #ifdef HAVE_AS_DSPR1_MULT
179 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
180 #else
181 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
182 #endif
183
184 /* The ISA compression flags that are currently in effect. */
185 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
186
187 /* Generate mips16 code */
188 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
189 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
190 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
191 /* Generate mips16e register save/restore sequences. */
192 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
193
194 /* True if we're generating a form of MIPS16 code in which general
195 text loads are allowed. */
196 #define TARGET_MIPS16_TEXT_LOADS \
197 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
198
199 /* True if we're generating a form of MIPS16 code in which PC-relative
200 loads are allowed. */
201 #define TARGET_MIPS16_PCREL_LOADS \
202 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
203
204 /* Generic ISA defines. */
205 #define ISA_MIPS1 (mips_isa == 1)
206 #define ISA_MIPS2 (mips_isa == 2)
207 #define ISA_MIPS3 (mips_isa == 3)
208 #define ISA_MIPS4 (mips_isa == 4)
209 #define ISA_MIPS32 (mips_isa == 32)
210 #define ISA_MIPS32R2 (mips_isa == 33)
211 #define ISA_MIPS64 (mips_isa == 64)
212 #define ISA_MIPS64R2 (mips_isa == 65)
213
214 /* Architecture target defines. */
215 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
216 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
217 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
218 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
219 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
220 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
221 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
222 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
223 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
224 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
225 #define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
226 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
227 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
228 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
229 || mips_arch == PROCESSOR_OCTEON2)
230 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2)
231 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
232 || mips_arch == PROCESSOR_SB1A)
233 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
234 #define TARGET_XLP (mips_arch == PROCESSOR_XLP)
235
236 /* Scheduling target defines. */
237 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
238 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
239 || mips_tune == PROCESSOR_24KF2_1 \
240 || mips_tune == PROCESSOR_24KF1_1)
241 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
242 || mips_tune == PROCESSOR_74KF2_1 \
243 || mips_tune == PROCESSOR_74KF1_1 \
244 || mips_tune == PROCESSOR_74KF3_2)
245 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
246 || mips_tune == PROCESSOR_LOONGSON_2F)
247 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
248 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
249 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
250 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
251 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
252 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
253 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
254 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
255 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
256 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
257 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
258 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
259 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
260 || mips_tune == PROCESSOR_OCTEON2)
261 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
262 || mips_tune == PROCESSOR_SB1A)
263
264 /* Whether vector modes and intrinsics for ST Microelectronics
265 Loongson-2E/2F processors should be enabled. In o32 pairs of
266 floating-point registers provide 64-bit values. */
267 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
268 && (TARGET_LOONGSON_2EF \
269 || TARGET_LOONGSON_3A))
270
271 /* True if the pre-reload scheduler should try to create chains of
272 multiply-add or multiply-subtract instructions. For example,
273 suppose we have:
274
275 t1 = a * b
276 t2 = t1 + c * d
277 t3 = e * f
278 t4 = t3 - g * h
279
280 t1 will have a higher priority than t2 and t3 will have a higher
281 priority than t4. However, before reload, there is no dependence
282 between t1 and t3, and they can often have similar priorities.
283 The scheduler will then tend to prefer:
284
285 t1 = a * b
286 t3 = e * f
287 t2 = t1 + c * d
288 t4 = t3 - g * h
289
290 which stops us from making full use of macc/madd-style instructions.
291 This sort of situation occurs frequently in Fourier transforms and
292 in unrolled loops.
293
294 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
295 queue so that chained multiply-add and multiply-subtract instructions
296 appear ahead of any other instruction that is likely to clobber lo.
297 In the example above, if t2 and t3 become ready at the same time,
298 the code ensures that t2 is scheduled first.
299
300 Multiply-accumulate instructions are a bigger win for some targets
301 than others, so this macro is defined on an opt-in basis. */
302 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
303 || TUNE_MIPS4120 \
304 || TUNE_MIPS4130 \
305 || TUNE_24K)
306
307 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
308 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
309
310 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
311 directly accessible, while the command-line options select
312 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
313 in use. */
314 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
315 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
316
317 /* False if SC acts as a memory barrier with respect to itself,
318 otherwise a SYNC will be emitted after SC for atomic operations
319 that require ordering between the SC and following loads and
320 stores. It does not tell anything about ordering of loads and
321 stores prior to and following the SC, only about the SC itself and
322 those loads and stores follow it. */
323 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
324
325 /* Define preprocessor macros for the -march and -mtune options.
326 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
327 processor. If INFO's canonical name is "foo", define PREFIX to
328 be "foo", and define an additional macro PREFIX_FOO. */
329 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
330 do \
331 { \
332 char *macro, *p; \
333 \
334 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
335 for (p = macro; *p != 0; p++) \
336 if (*p == '+') \
337 *p = 'P'; \
338 else \
339 *p = TOUPPER (*p); \
340 \
341 builtin_define (macro); \
342 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
343 free (macro); \
344 } \
345 while (0)
346
347 /* Target CPU builtins. */
348 #define TARGET_CPU_CPP_BUILTINS() \
349 do \
350 { \
351 builtin_assert ("machine=mips"); \
352 builtin_assert ("cpu=mips"); \
353 builtin_define ("__mips__"); \
354 builtin_define ("_mips"); \
355 \
356 /* We do this here because __mips is defined below and so we \
357 can't use builtin_define_std. We don't ever want to define \
358 "mips" for VxWorks because some of the VxWorks headers \
359 construct include filenames from a root directory macro, \
360 an architecture macro and a filename, where the architecture \
361 macro expands to 'mips'. If we define 'mips' to 1, the \
362 architecture macro expands to 1 as well. */ \
363 if (!flag_iso && !TARGET_VXWORKS) \
364 builtin_define ("mips"); \
365 \
366 if (TARGET_64BIT) \
367 builtin_define ("__mips64"); \
368 \
369 /* Treat _R3000 and _R4000 like register-size \
370 defines, which is how they've historically \
371 been used. */ \
372 if (TARGET_64BIT) \
373 { \
374 builtin_define_std ("R4000"); \
375 builtin_define ("_R4000"); \
376 } \
377 else \
378 { \
379 builtin_define_std ("R3000"); \
380 builtin_define ("_R3000"); \
381 } \
382 \
383 if (TARGET_FLOAT64) \
384 builtin_define ("__mips_fpr=64"); \
385 else \
386 builtin_define ("__mips_fpr=32"); \
387 \
388 if (mips_base_compression_flags & MASK_MIPS16) \
389 builtin_define ("__mips16"); \
390 \
391 if (TARGET_MIPS3D) \
392 builtin_define ("__mips3d"); \
393 \
394 if (TARGET_SMARTMIPS) \
395 builtin_define ("__mips_smartmips"); \
396 \
397 if (mips_base_compression_flags & MASK_MICROMIPS) \
398 builtin_define ("__mips_micromips"); \
399 \
400 if (TARGET_MCU) \
401 builtin_define ("__mips_mcu"); \
402 \
403 if (TARGET_EVA) \
404 builtin_define ("__mips_eva"); \
405 \
406 if (TARGET_DSP) \
407 { \
408 builtin_define ("__mips_dsp"); \
409 if (TARGET_DSPR2) \
410 { \
411 builtin_define ("__mips_dspr2"); \
412 builtin_define ("__mips_dsp_rev=2"); \
413 } \
414 else \
415 builtin_define ("__mips_dsp_rev=1"); \
416 } \
417 \
418 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
419 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
420 \
421 if (ISA_MIPS1) \
422 { \
423 builtin_define ("__mips=1"); \
424 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
425 } \
426 else if (ISA_MIPS2) \
427 { \
428 builtin_define ("__mips=2"); \
429 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
430 } \
431 else if (ISA_MIPS3) \
432 { \
433 builtin_define ("__mips=3"); \
434 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
435 } \
436 else if (ISA_MIPS4) \
437 { \
438 builtin_define ("__mips=4"); \
439 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
440 } \
441 else if (ISA_MIPS32) \
442 { \
443 builtin_define ("__mips=32"); \
444 builtin_define ("__mips_isa_rev=1"); \
445 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
446 } \
447 else if (ISA_MIPS32R2) \
448 { \
449 builtin_define ("__mips=32"); \
450 builtin_define ("__mips_isa_rev=2"); \
451 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
452 } \
453 else if (ISA_MIPS64) \
454 { \
455 builtin_define ("__mips=64"); \
456 builtin_define ("__mips_isa_rev=1"); \
457 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
458 } \
459 else if (ISA_MIPS64R2) \
460 { \
461 builtin_define ("__mips=64"); \
462 builtin_define ("__mips_isa_rev=2"); \
463 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
464 } \
465 \
466 switch (mips_abi) \
467 { \
468 case ABI_32: \
469 builtin_define ("_ABIO32=1"); \
470 builtin_define ("_MIPS_SIM=_ABIO32"); \
471 break; \
472 \
473 case ABI_N32: \
474 builtin_define ("_ABIN32=2"); \
475 builtin_define ("_MIPS_SIM=_ABIN32"); \
476 break; \
477 \
478 case ABI_64: \
479 builtin_define ("_ABI64=3"); \
480 builtin_define ("_MIPS_SIM=_ABI64"); \
481 break; \
482 \
483 case ABI_O64: \
484 builtin_define ("_ABIO64=4"); \
485 builtin_define ("_MIPS_SIM=_ABIO64"); \
486 break; \
487 } \
488 \
489 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
490 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
491 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
492 builtin_define_with_int_value ("_MIPS_FPSET", \
493 32 / MAX_FPRS_PER_FMT); \
494 \
495 /* These defines reflect the ABI in use, not whether the \
496 FPU is directly accessible. */ \
497 if (TARGET_NO_FLOAT) \
498 builtin_define ("__mips_no_float"); \
499 else if (TARGET_HARD_FLOAT_ABI) \
500 builtin_define ("__mips_hard_float"); \
501 else \
502 builtin_define ("__mips_soft_float"); \
503 \
504 if (TARGET_SINGLE_FLOAT) \
505 builtin_define ("__mips_single_float"); \
506 \
507 if (TARGET_PAIRED_SINGLE_FLOAT) \
508 builtin_define ("__mips_paired_single_float"); \
509 \
510 if (mips_abs == MIPS_IEEE_754_2008) \
511 builtin_define ("__mips_abs2008"); \
512 \
513 if (mips_nan == MIPS_IEEE_754_2008) \
514 builtin_define ("__mips_nan2008"); \
515 \
516 if (TARGET_BIG_ENDIAN) \
517 { \
518 builtin_define_std ("MIPSEB"); \
519 builtin_define ("_MIPSEB"); \
520 } \
521 else \
522 { \
523 builtin_define_std ("MIPSEL"); \
524 builtin_define ("_MIPSEL"); \
525 } \
526 \
527 /* Whether calls should go through $25. The separate __PIC__ \
528 macro indicates whether abicalls code might use a GOT. */ \
529 if (TARGET_ABICALLS) \
530 builtin_define ("__mips_abicalls"); \
531 \
532 /* Whether Loongson vector modes are enabled. */ \
533 if (TARGET_LOONGSON_VECTORS) \
534 builtin_define ("__mips_loongson_vector_rev"); \
535 \
536 /* Historical Octeon macro. */ \
537 if (TARGET_OCTEON) \
538 builtin_define ("__OCTEON__"); \
539 \
540 if (TARGET_SYNCI) \
541 builtin_define ("__mips_synci"); \
542 \
543 /* Macros dependent on the C dialect. */ \
544 if (preprocessing_asm_p ()) \
545 { \
546 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
547 builtin_define ("_LANGUAGE_ASSEMBLY"); \
548 } \
549 else if (c_dialect_cxx ()) \
550 { \
551 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
552 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
553 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
554 } \
555 else \
556 { \
557 builtin_define_std ("LANGUAGE_C"); \
558 builtin_define ("_LANGUAGE_C"); \
559 } \
560 if (c_dialect_objc ()) \
561 { \
562 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
563 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
564 /* Bizarre, but retained for backwards compatibility. */ \
565 builtin_define_std ("LANGUAGE_C"); \
566 builtin_define ("_LANGUAGE_C"); \
567 } \
568 \
569 if (mips_abi == ABI_EABI) \
570 builtin_define ("__mips_eabi"); \
571 \
572 if (TARGET_CACHE_BUILTIN) \
573 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
574 } \
575 while (0)
576
577 /* Default target_flags if no switches are specified */
578
579 #ifndef TARGET_DEFAULT
580 #define TARGET_DEFAULT 0
581 #endif
582
583 #ifndef TARGET_CPU_DEFAULT
584 #define TARGET_CPU_DEFAULT 0
585 #endif
586
587 #ifndef TARGET_ENDIAN_DEFAULT
588 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
589 #endif
590
591 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
592 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
593 #endif
594
595 #ifdef IN_LIBGCC2
596 #undef TARGET_64BIT
597 /* Make this compile time constant for libgcc2 */
598 #ifdef __mips64
599 #define TARGET_64BIT 1
600 #else
601 #define TARGET_64BIT 0
602 #endif
603 #endif /* IN_LIBGCC2 */
604
605 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
606 when compiled with hardware floating point. This is because MIPS16
607 code cannot save and restore the floating-point registers, which is
608 important if in a mixed MIPS16/non-MIPS16 environment. */
609
610 #ifdef IN_LIBGCC2
611 #if __mips_hard_float
612 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
613 #endif
614 #endif /* IN_LIBGCC2 */
615
616 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
617
618 #ifndef MULTILIB_ENDIAN_DEFAULT
619 #if TARGET_ENDIAN_DEFAULT == 0
620 #define MULTILIB_ENDIAN_DEFAULT "EL"
621 #else
622 #define MULTILIB_ENDIAN_DEFAULT "EB"
623 #endif
624 #endif
625
626 #ifndef MULTILIB_ISA_DEFAULT
627 #if MIPS_ISA_DEFAULT == 1
628 #define MULTILIB_ISA_DEFAULT "mips1"
629 #elif MIPS_ISA_DEFAULT == 2
630 #define MULTILIB_ISA_DEFAULT "mips2"
631 #elif MIPS_ISA_DEFAULT == 3
632 #define MULTILIB_ISA_DEFAULT "mips3"
633 #elif MIPS_ISA_DEFAULT == 4
634 #define MULTILIB_ISA_DEFAULT "mips4"
635 #elif MIPS_ISA_DEFAULT == 32
636 #define MULTILIB_ISA_DEFAULT "mips32"
637 #elif MIPS_ISA_DEFAULT == 33
638 #define MULTILIB_ISA_DEFAULT "mips32r2"
639 #elif MIPS_ISA_DEFAULT == 64
640 #define MULTILIB_ISA_DEFAULT "mips64"
641 #elif MIPS_ISA_DEFAULT == 65
642 #define MULTILIB_ISA_DEFAULT "mips64r2"
643 #else
644 #define MULTILIB_ISA_DEFAULT "mips1"
645 #endif
646 #endif
647
648 #ifndef MIPS_ABI_DEFAULT
649 #define MIPS_ABI_DEFAULT ABI_32
650 #endif
651
652 /* Use the most portable ABI flag for the ASM specs. */
653
654 #if MIPS_ABI_DEFAULT == ABI_32
655 #define MULTILIB_ABI_DEFAULT "mabi=32"
656 #elif MIPS_ABI_DEFAULT == ABI_O64
657 #define MULTILIB_ABI_DEFAULT "mabi=o64"
658 #elif MIPS_ABI_DEFAULT == ABI_N32
659 #define MULTILIB_ABI_DEFAULT "mabi=n32"
660 #elif MIPS_ABI_DEFAULT == ABI_64
661 #define MULTILIB_ABI_DEFAULT "mabi=64"
662 #elif MIPS_ABI_DEFAULT == ABI_EABI
663 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
664 #endif
665
666 #ifndef MULTILIB_DEFAULTS
667 #define MULTILIB_DEFAULTS \
668 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
669 #endif
670
671 /* We must pass -EL to the linker by default for little endian embedded
672 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
673 linker will default to using big-endian output files. The OUTPUT_FORMAT
674 line must be in the linker script, otherwise -EB/-EL will not work. */
675
676 #ifndef ENDIAN_SPEC
677 #if TARGET_ENDIAN_DEFAULT == 0
678 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
679 #else
680 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
681 #endif
682 #endif
683
684 /* A spec condition that matches all non-mips16 -mips arguments. */
685
686 #define MIPS_ISA_LEVEL_OPTION_SPEC \
687 "mips1|mips2|mips3|mips4|mips32*|mips64*"
688
689 /* A spec condition that matches all non-mips16 architecture arguments. */
690
691 #define MIPS_ARCH_OPTION_SPEC \
692 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
693
694 /* A spec that infers a -mips argument from an -march argument,
695 or injects the default if no architecture is specified. */
696
697 #define MIPS_ISA_LEVEL_SPEC \
698 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
699 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
700 %{march=mips2|march=r6000:-mips2} \
701 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
702 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
703 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
704 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
705 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
706 |march=34k*|march=74k*|march=m14k*|march=1004k*: -mips32r2} \
707 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
708 |march=xlr|march=loongson3a: -mips64} \
709 %{march=mips64r2|march=octeon|march=xlp: -mips64r2} \
710 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
711
712 /* A spec that infers a -mhard-float or -msoft-float setting from an
713 -march argument. Note that soft-float and hard-float code are not
714 link-compatible. */
715
716 #define MIPS_ARCH_FLOAT_SPEC \
717 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
718 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
719 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
720 |march=m14k*|march=octeon|march=xlr: -msoft-float; \
721 march=*: -mhard-float}"
722
723 /* A spec condition that matches 32-bit options. It only works if
724 MIPS_ISA_LEVEL_SPEC has been applied. */
725
726 #define MIPS_32BIT_OPTION_SPEC \
727 "mips1|mips2|mips32*|mgp32"
728
729 /* Infer a -msynci setting from a -mips argument, on the assumption that
730 -msynci is desired where possible. */
731 #define MIPS_ISA_SYNCI_SPEC \
732 "%{msynci|mno-synci:;:%{mips32r2|mips64r2:-msynci;:-mno-synci}}"
733
734 #if (MIPS_ABI_DEFAULT == ABI_O64 \
735 || MIPS_ABI_DEFAULT == ABI_N32 \
736 || MIPS_ABI_DEFAULT == ABI_64)
737 #define OPT_ARCH64 "mabi=32|mgp32:;"
738 #define OPT_ARCH32 "mabi=32|mgp32"
739 #else
740 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
741 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
742 #endif
743
744 /* Support for a compile-time default CPU, et cetera. The rules are:
745 --with-arch is ignored if -march is specified or a -mips is specified
746 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
747 --with-tune is ignored if -mtune is specified; likewise
748 --with-tune-32 and --with-tune-64.
749 --with-abi is ignored if -mabi is specified.
750 --with-float is ignored if -mhard-float or -msoft-float are
751 specified.
752 --with-nan is ignored if -mnan is specified.
753 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
754 specified. */
755 #define OPTION_DEFAULT_SPECS \
756 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
757 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
758 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
759 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
760 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
761 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
762 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
763 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
764 {"fpu", "%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}" }, \
765 {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
766 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
767 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
768 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
769 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
770
771 /* A spec that infers the -mdsp setting from an -march argument. */
772 #define BASE_DRIVER_SELF_SPECS \
773 "%{!mno-dsp: \
774 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k*: -mdsp} \
775 %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
776
777 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
778
779 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
780 && ISA_HAS_COND_TRAP)
781
782 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
783
784 /* True if the ABI can only work with 64-bit integer registers. We
785 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
786 otherwise floating-point registers must also be 64-bit. */
787 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
788
789 /* Likewise for 32-bit regs. */
790 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
791
792 /* True if the file format uses 64-bit symbols. At present, this is
793 only true for n64, which uses 64-bit ELF. */
794 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
795
796 /* True if symbols are 64 bits wide. This is usually determined by
797 the ABI's file format, but it can be overridden by -msym32. Note that
798 overriding the size with -msym32 changes the ABI of relocatable objects,
799 although it doesn't change the ABI of a fully-linked object. */
800 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
801 && Pmode == DImode \
802 && !TARGET_SYM32)
803
804 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
805 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
806 || ISA_MIPS4 \
807 || ISA_MIPS64 \
808 || ISA_MIPS64R2)
809
810 /* ISA has branch likely instructions (e.g. mips2). */
811 /* Disable branchlikely for tx39 until compare rewrite. They haven't
812 been generated up to this point. */
813 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
814
815 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
816 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
817 || TARGET_MIPS5400 \
818 || TARGET_MIPS5500 \
819 || TARGET_MIPS5900 \
820 || TARGET_MIPS7000 \
821 || TARGET_MIPS9000 \
822 || TARGET_MAD \
823 || ISA_MIPS32 \
824 || ISA_MIPS32R2 \
825 || ISA_MIPS64 \
826 || ISA_MIPS64R2) \
827 && !TARGET_MIPS16)
828
829 /* ISA has a three-operand multiplication instruction. */
830 #define ISA_HAS_DMUL3 (TARGET_64BIT \
831 && TARGET_OCTEON \
832 && !TARGET_MIPS16)
833
834 /* ISA supports instructions DMULT and DMULTU. */
835 #define ISA_HAS_DMULT (TARGET_64BIT && !TARGET_MIPS5900)
836
837 /* ISA supports instructions MULT and MULTU.
838 This is always true, but the macro is needed for ISA_HAS_<D>MULT
839 in mips.md. */
840 #define ISA_HAS_MULT (1)
841
842 /* ISA supports instructions DDIV and DDIVU. */
843 #define ISA_HAS_DDIV (TARGET_64BIT && !TARGET_MIPS5900)
844
845 /* ISA supports instructions DIV and DIVU.
846 This is always true, but the macro is needed for ISA_HAS_<D>DIV
847 in mips.md. */
848 #define ISA_HAS_DIV (1)
849
850 #define ISA_HAS_DIV3 ((TARGET_LOONGSON_2EF \
851 || TARGET_LOONGSON_3A) \
852 && !TARGET_MIPS16)
853
854 /* ISA has the floating-point conditional move instructions introduced
855 in mips4. */
856 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
857 || ISA_MIPS32 \
858 || ISA_MIPS32R2 \
859 || ISA_MIPS64 \
860 || ISA_MIPS64R2) \
861 && !TARGET_MIPS5500 \
862 && !TARGET_MIPS16)
863
864 /* ISA has the integer conditional move instructions introduced in mips4 and
865 ST Loongson 2E/2F. */
866 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
867 || TARGET_MIPS5900 \
868 || TARGET_LOONGSON_2EF)
869
870 /* ISA has LDC1 and SDC1. */
871 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
872 && !TARGET_MIPS5900 \
873 && !TARGET_MIPS16)
874
875 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
876 branch on CC, and move (both FP and non-FP) on CC. */
877 #define ISA_HAS_8CC (ISA_MIPS4 \
878 || ISA_MIPS32 \
879 || ISA_MIPS32R2 \
880 || ISA_MIPS64 \
881 || ISA_MIPS64R2)
882
883 /* This is a catch all for other mips4 instructions: indexed load, the
884 FP madd and msub instructions, and the FP recip and recip sqrt
885 instructions. */
886 #define ISA_HAS_FP4 ((ISA_MIPS4 \
887 || (ISA_MIPS32R2 && TARGET_FLOAT64) \
888 || ISA_MIPS64 \
889 || ISA_MIPS64R2) \
890 && !TARGET_MIPS16)
891
892 /* ISA has paired-single instructions. */
893 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
894
895 /* ISA has conditional trap instructions. */
896 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
897 && !TARGET_MIPS16)
898
899 /* ISA has integer multiply-accumulate instructions, madd and msub. */
900 #define ISA_HAS_MADD_MSUB (ISA_MIPS32 \
901 || ISA_MIPS32R2 \
902 || ISA_MIPS64 \
903 || ISA_MIPS64R2)
904
905 /* Integer multiply-accumulate instructions should be generated. */
906 #define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
907
908 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
909 #define ISA_HAS_FP_MADD4_MSUB4 (ISA_HAS_FP4 \
910 || (ISA_MIPS32R2 && !TARGET_MIPS16))
911
912 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
913 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
914
915 /* ISA has floating-point nmadd and nmsub instructions
916 'd = -((a * b) [+-] c)'. */
917 #define ISA_HAS_NMADD4_NMSUB4 (ISA_HAS_FP4 \
918 || (ISA_MIPS32R2 && !TARGET_MIPS16))
919
920 /* ISA has floating-point nmadd and nmsub instructions
921 'c = -((a * b) [+-] c)'. */
922 #define ISA_HAS_NMADD3_NMSUB3 TARGET_LOONGSON_2EF
923
924 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The
925 MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
926 doubles are stored in pairs of FPRs, so for safety's sake, we apply
927 this restriction to the MIPS IV ISA too. */
928 #define ISA_HAS_FP_RECIP_RSQRT(MODE) \
929 ((((ISA_HAS_FP4 || ISA_MIPS32R2) \
930 && ((MODE) == SFmode \
931 || ((TARGET_FLOAT64 \
932 || ISA_MIPS32R2 \
933 || ISA_MIPS64R2) \
934 && (MODE) == DFmode))) \
935 || (TARGET_SB1 \
936 && (MODE) == V2SFmode)) \
937 && !TARGET_MIPS16)
938
939 /* ISA has count leading zeroes/ones instruction (not implemented). */
940 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
941 || ISA_MIPS32R2 \
942 || ISA_MIPS64 \
943 || ISA_MIPS64R2) \
944 && !TARGET_MIPS16)
945
946 /* ISA has three operand multiply instructions that put
947 the high part in an accumulator: mulhi or mulhiu. */
948 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
949 || TARGET_MIPS5500 \
950 || TARGET_SR71K) \
951 && !TARGET_MIPS16)
952
953 /* ISA has three operand multiply instructions that negate the
954 result and put the result in an accumulator. */
955 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
956 || TARGET_MIPS5500 \
957 || TARGET_SR71K) \
958 && !TARGET_MIPS16)
959
960 /* ISA has three operand multiply instructions that subtract the
961 result from a 4th operand and put the result in an accumulator. */
962 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
963 || TARGET_MIPS5500 \
964 || TARGET_SR71K) \
965 && !TARGET_MIPS16)
966
967 /* ISA has three operand multiply instructions that add the result
968 to a 4th operand and put the result in an accumulator. */
969 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
970 || TARGET_MIPS4130 \
971 || TARGET_MIPS5400 \
972 || TARGET_MIPS5500 \
973 || TARGET_SR71K) \
974 && !TARGET_MIPS16)
975
976 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
977 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
978 || TARGET_MIPS4130) \
979 && !TARGET_MIPS16)
980
981 /* ISA has the "ror" (rotate right) instructions. */
982 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
983 || ISA_MIPS64R2 \
984 || TARGET_MIPS5400 \
985 || TARGET_MIPS5500 \
986 || TARGET_SR71K \
987 || TARGET_SMARTMIPS) \
988 && !TARGET_MIPS16)
989
990 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
991 64-bit targets also provide DSBH and DSHD. */
992 #define ISA_HAS_WSBH ((ISA_MIPS32R2 || ISA_MIPS64R2) \
993 && !TARGET_MIPS16)
994
995 /* ISA has data prefetch instructions. This controls use of 'pref'. */
996 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
997 || TARGET_LOONGSON_2EF \
998 || TARGET_MIPS5900 \
999 || ISA_MIPS32 \
1000 || ISA_MIPS32R2 \
1001 || ISA_MIPS64 \
1002 || ISA_MIPS64R2) \
1003 && !TARGET_MIPS16)
1004
1005 /* ISA has data indexed prefetch instructions. This controls use of
1006 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1007 (prefx is a cop1x instruction, so can only be used if FP is
1008 enabled.) */
1009 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
1010 || ISA_MIPS32R2 \
1011 || ISA_MIPS64 \
1012 || ISA_MIPS64R2) \
1013 && !TARGET_MIPS16)
1014
1015 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
1016 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
1017 also requires TARGET_DOUBLE_FLOAT. */
1018 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
1019
1020 /* ISA includes the MIPS32r2 seb and seh instructions. */
1021 #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \
1022 || ISA_MIPS64R2) \
1023 && !TARGET_MIPS16)
1024
1025 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
1026 #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \
1027 || ISA_MIPS64R2) \
1028 && !TARGET_MIPS16)
1029
1030 /* ISA has instructions for accessing top part of 64-bit fp regs. */
1031 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \
1032 && (ISA_MIPS32R2 \
1033 || ISA_MIPS64R2))
1034
1035 /* ISA has lwxs instruction (load w/scaled index address. */
1036 #define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1037 && !TARGET_MIPS16)
1038
1039 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1040 #define ISA_HAS_LBX (TARGET_OCTEON2)
1041 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1042 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1043 #define ISA_HAS_LHUX (TARGET_OCTEON2)
1044 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1045 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1046 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1047 && TARGET_64BIT)
1048
1049 /* The DSP ASE is available. */
1050 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1051
1052 /* Revision 2 of the DSP ASE is available. */
1053 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1054
1055 /* True if the result of a load is not available to the next instruction.
1056 A nop will then be needed between instructions like "lw $4,..."
1057 and "addiu $4,$4,1". */
1058 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1059 && !TARGET_MIPS3900 \
1060 && !TARGET_MIPS5900 \
1061 && !TARGET_MIPS16 \
1062 && !TARGET_MICROMIPS)
1063
1064 /* Likewise mtc1 and mfc1. */
1065 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1066 && !TARGET_MIPS5900 \
1067 && !TARGET_LOONGSON_2EF)
1068
1069 /* Likewise floating-point comparisons. */
1070 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1071 && !TARGET_MIPS5900 \
1072 && !TARGET_LOONGSON_2EF)
1073
1074 /* True if mflo and mfhi can be immediately followed by instructions
1075 which write to the HI and LO registers.
1076
1077 According to MIPS specifications, MIPS ISAs I, II, and III need
1078 (at least) two instructions between the reads of HI/LO and
1079 instructions which write them, and later ISAs do not. Contradicting
1080 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1081 the UM for the NEC Vr5000) document needing the instructions between
1082 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1083 MIPS64 and later ISAs to have the interlocks, plus any specific
1084 earlier-ISA CPUs for which CPU documentation declares that the
1085 instructions are really interlocked. */
1086 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1087 || ISA_MIPS32R2 \
1088 || ISA_MIPS64 \
1089 || ISA_MIPS64R2 \
1090 || TARGET_MIPS5500 \
1091 || TARGET_MIPS5900 \
1092 || TARGET_LOONGSON_2EF)
1093
1094 /* ISA includes synci, jr.hb and jalr.hb. */
1095 #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \
1096 || ISA_MIPS64R2) \
1097 && !TARGET_MIPS16)
1098
1099 /* ISA includes sync. */
1100 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1101 #define GENERATE_SYNC \
1102 (target_flags_explicit & MASK_LLSC \
1103 ? TARGET_LLSC && !TARGET_MIPS16 \
1104 : ISA_HAS_SYNC)
1105
1106 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1107 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1108 instructions. */
1109 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1110 #define GENERATE_LL_SC \
1111 (target_flags_explicit & MASK_LLSC \
1112 ? TARGET_LLSC && !TARGET_MIPS16 \
1113 : ISA_HAS_LL_SC)
1114
1115 #define ISA_HAS_SWAP (TARGET_XLP)
1116 #define ISA_HAS_LDADD (TARGET_XLP)
1117
1118 /* ISA includes the baddu instruction. */
1119 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1120
1121 /* ISA includes the bbit* instructions. */
1122 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1123
1124 /* ISA includes the cins instruction. */
1125 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1126
1127 /* ISA includes the exts instruction. */
1128 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1129
1130 /* ISA includes the seq and sne instructions. */
1131 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1132
1133 /* ISA includes the pop instruction. */
1134 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1135
1136 /* The CACHE instruction is available in non-MIPS16 code. */
1137 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1138
1139 /* The CACHE instruction is available. */
1140 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1141 \f
1142 /* Tell collect what flags to pass to nm. */
1143 #ifndef NM_FLAGS
1144 #define NM_FLAGS "-Bn"
1145 #endif
1146
1147 \f
1148 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1149 the assembler. It may be overridden by subtargets.
1150
1151 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1152 COFF debugging info. */
1153
1154 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1155 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1156 %{g} %{g0} %{g1} %{g2} %{g3} \
1157 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1158 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1159 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1160 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1161 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1162 #endif
1163
1164 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1165 overridden by subtargets. */
1166
1167 #ifndef SUBTARGET_ASM_SPEC
1168 #define SUBTARGET_ASM_SPEC ""
1169 #endif
1170
1171 #undef ASM_SPEC
1172 #define ASM_SPEC "\
1173 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1174 %{mips32*} %{mips64*} \
1175 %{mips16} %{mno-mips16:-no-mips16} \
1176 %{mmicromips} %{mno-micromips} \
1177 %{mips3d} %{mno-mips3d:-no-mips3d} \
1178 %{mdmx} %{mno-mdmx:-no-mdmx} \
1179 %{mdsp} %{mno-dsp} \
1180 %{mdspr2} %{mno-dspr2} \
1181 %{mmcu} %{mno-mcu} \
1182 %{meva} %{mno-eva} \
1183 %{msmartmips} %{mno-smartmips} \
1184 %{mmt} %{mno-mt} \
1185 %{mfix-rm7000} %{mno-fix-rm7000} \
1186 %{mfix-vr4120} %{mfix-vr4130} \
1187 %{mfix-24k} \
1188 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1189 %(subtarget_asm_debugging_spec) \
1190 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1191 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1192 %{mfp32} %{mfp64} %{mnan=*} \
1193 %{mshared} %{mno-shared} \
1194 %{msym32} %{mno-sym32} \
1195 %{mtune=*} \
1196 %(subtarget_asm_spec)"
1197
1198 /* Extra switches sometimes passed to the linker. */
1199
1200 #ifndef LINK_SPEC
1201 #define LINK_SPEC "\
1202 %(endian_spec) \
1203 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1204 %{shared}"
1205 #endif /* LINK_SPEC defined */
1206
1207
1208 /* Specs for the compiler proper */
1209
1210 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1211 overridden by subtargets. */
1212 #ifndef SUBTARGET_CC1_SPEC
1213 #define SUBTARGET_CC1_SPEC ""
1214 #endif
1215
1216 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1217
1218 #undef CC1_SPEC
1219 #define CC1_SPEC "\
1220 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1221 %(subtarget_cc1_spec)"
1222
1223 /* Preprocessor specs. */
1224
1225 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1226 overridden by subtargets. */
1227 #ifndef SUBTARGET_CPP_SPEC
1228 #define SUBTARGET_CPP_SPEC ""
1229 #endif
1230
1231 #define CPP_SPEC "%(subtarget_cpp_spec)"
1232
1233 /* This macro defines names of additional specifications to put in the specs
1234 that can be used in various specifications like CC1_SPEC. Its definition
1235 is an initializer with a subgrouping for each command option.
1236
1237 Each subgrouping contains a string constant, that defines the
1238 specification name, and a string constant that used by the GCC driver
1239 program.
1240
1241 Do not define this macro if it does not need to do anything. */
1242
1243 #define EXTRA_SPECS \
1244 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1245 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1246 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1247 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1248 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1249 { "endian_spec", ENDIAN_SPEC }, \
1250 SUBTARGET_EXTRA_SPECS
1251
1252 #ifndef SUBTARGET_EXTRA_SPECS
1253 #define SUBTARGET_EXTRA_SPECS
1254 #endif
1255 \f
1256 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1257 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1258
1259 #ifndef PREFERRED_DEBUGGING_TYPE
1260 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1261 #endif
1262
1263 /* The size of DWARF addresses should be the same as the size of symbols
1264 in the target file format. They shouldn't depend on things like -msym32,
1265 because many DWARF consumers do not allow the mixture of address sizes
1266 that one would then get from linking -msym32 code with -msym64 code.
1267
1268 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1269 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1270 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1271
1272 /* By default, turn on GDB extensions. */
1273 #define DEFAULT_GDB_EXTENSIONS 1
1274
1275 /* Local compiler-generated symbols must have a prefix that the assembler
1276 understands. By default, this is $, although some targets (e.g.,
1277 NetBSD-ELF) need to override this. */
1278
1279 #ifndef LOCAL_LABEL_PREFIX
1280 #define LOCAL_LABEL_PREFIX "$"
1281 #endif
1282
1283 /* By default on the mips, external symbols do not have an underscore
1284 prepended, but some targets (e.g., NetBSD) require this. */
1285
1286 #ifndef USER_LABEL_PREFIX
1287 #define USER_LABEL_PREFIX ""
1288 #endif
1289
1290 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1291 since the length can run past this up to a continuation point. */
1292 #undef DBX_CONTIN_LENGTH
1293 #define DBX_CONTIN_LENGTH 1500
1294
1295 /* How to renumber registers for dbx and gdb. */
1296 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1297
1298 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1299 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1300
1301 /* The DWARF 2 CFA column which tracks the return address. */
1302 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1303
1304 /* Before the prologue, RA lives in r31. */
1305 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1306
1307 /* Describe how we implement __builtin_eh_return. */
1308 #define EH_RETURN_DATA_REGNO(N) \
1309 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1310
1311 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1312
1313 #define EH_USES(N) mips_eh_uses (N)
1314
1315 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1316 The default for this in 64-bit mode is 8, which causes problems with
1317 SFmode register saves. */
1318 #define DWARF_CIE_DATA_ALIGNMENT -4
1319
1320 /* Correct the offset of automatic variables and arguments. Note that
1321 the MIPS debug format wants all automatic variables and arguments
1322 to be in terms of the virtual frame pointer (stack pointer before
1323 any adjustment in the function), while the MIPS 3.0 linker wants
1324 the frame pointer to be the stack pointer after the initial
1325 adjustment. */
1326
1327 #define DEBUGGER_AUTO_OFFSET(X) \
1328 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1329 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1330 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1331 \f
1332 /* Target machine storage layout */
1333
1334 #define BITS_BIG_ENDIAN 0
1335 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1336 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1337
1338 #define MAX_BITS_PER_WORD 64
1339
1340 /* Width of a word, in units (bytes). */
1341 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1342 #ifndef IN_LIBGCC2
1343 #define MIN_UNITS_PER_WORD 4
1344 #endif
1345
1346 /* For MIPS, width of a floating point register. */
1347 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1348
1349 /* The number of consecutive floating-point registers needed to store the
1350 largest format supported by the FPU. */
1351 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1352
1353 /* The number of consecutive floating-point registers needed to store the
1354 smallest format supported by the FPU. */
1355 #define MIN_FPRS_PER_FMT \
1356 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1357 ? 1 : MAX_FPRS_PER_FMT)
1358
1359 /* The largest size of value that can be held in floating-point
1360 registers and moved with a single instruction. */
1361 #define UNITS_PER_HWFPVALUE \
1362 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1363
1364 /* The largest size of value that can be held in floating-point
1365 registers. */
1366 #define UNITS_PER_FPVALUE \
1367 (TARGET_SOFT_FLOAT_ABI ? 0 \
1368 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1369 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1370
1371 /* The number of bytes in a double. */
1372 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1373
1374 /* Set the sizes of the core types. */
1375 #define SHORT_TYPE_SIZE 16
1376 #define INT_TYPE_SIZE 32
1377 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1378 #define LONG_LONG_TYPE_SIZE 64
1379
1380 #define FLOAT_TYPE_SIZE 32
1381 #define DOUBLE_TYPE_SIZE 64
1382 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1383
1384 /* Define the sizes of fixed-point types. */
1385 #define SHORT_FRACT_TYPE_SIZE 8
1386 #define FRACT_TYPE_SIZE 16
1387 #define LONG_FRACT_TYPE_SIZE 32
1388 #define LONG_LONG_FRACT_TYPE_SIZE 64
1389
1390 #define SHORT_ACCUM_TYPE_SIZE 16
1391 #define ACCUM_TYPE_SIZE 32
1392 #define LONG_ACCUM_TYPE_SIZE 64
1393 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1394 doesn't support 128-bit integers for MIPS32 currently. */
1395 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1396
1397 /* long double is not a fixed mode, but the idea is that, if we
1398 support long double, we also want a 128-bit integer type. */
1399 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1400
1401 #ifdef IN_LIBGCC2
1402 #if ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1403 || (defined _ABI64 && _MIPS_SIM == _ABI64))
1404 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1405 # else
1406 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1407 # endif
1408 #endif
1409
1410 /* Width in bits of a pointer. */
1411 #ifndef POINTER_SIZE
1412 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1413 #endif
1414
1415 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1416 #define PARM_BOUNDARY BITS_PER_WORD
1417
1418 /* Allocation boundary (in *bits*) for the code of a function. */
1419 #define FUNCTION_BOUNDARY 32
1420
1421 /* Alignment of field after `int : 0' in a structure. */
1422 #define EMPTY_FIELD_BOUNDARY 32
1423
1424 /* Every structure's size must be a multiple of this. */
1425 /* 8 is observed right on a DECstation and on riscos 4.02. */
1426 #define STRUCTURE_SIZE_BOUNDARY 8
1427
1428 /* There is no point aligning anything to a rounder boundary than this. */
1429 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1430
1431 /* All accesses must be aligned. */
1432 #define STRICT_ALIGNMENT 1
1433
1434 /* Define this if you wish to imitate the way many other C compilers
1435 handle alignment of bitfields and the structures that contain
1436 them.
1437
1438 The behavior is that the type written for a bit-field (`int',
1439 `short', or other integer type) imposes an alignment for the
1440 entire structure, as if the structure really did contain an
1441 ordinary field of that type. In addition, the bit-field is placed
1442 within the structure so that it would fit within such a field,
1443 not crossing a boundary for it.
1444
1445 Thus, on most machines, a bit-field whose type is written as `int'
1446 would not cross a four-byte boundary, and would force four-byte
1447 alignment for the whole structure. (The alignment used may not
1448 be four bytes; it is controlled by the other alignment
1449 parameters.)
1450
1451 If the macro is defined, its definition should be a C expression;
1452 a nonzero value for the expression enables this behavior. */
1453
1454 #define PCC_BITFIELD_TYPE_MATTERS 1
1455
1456 /* If defined, a C expression to compute the alignment given to a
1457 constant that is being placed in memory. CONSTANT is the constant
1458 and ALIGN is the alignment that the object would ordinarily have.
1459 The value of this macro is used instead of that alignment to align
1460 the object.
1461
1462 If this macro is not defined, then ALIGN is used.
1463
1464 The typical use of this macro is to increase alignment for string
1465 constants to be word aligned so that `strcpy' calls that copy
1466 constants can be done inline. */
1467
1468 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1469 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1470 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1471
1472 /* If defined, a C expression to compute the alignment for a static
1473 variable. TYPE is the data type, and ALIGN is the alignment that
1474 the object would ordinarily have. The value of this macro is used
1475 instead of that alignment to align the object.
1476
1477 If this macro is not defined, then ALIGN is used.
1478
1479 One use of this macro is to increase alignment of medium-size
1480 data to make it all fit in fewer cache lines. Another is to
1481 cause character arrays to be word-aligned so that `strcpy' calls
1482 that copy constants to character arrays can be done inline. */
1483
1484 #undef DATA_ALIGNMENT
1485 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1486 ((((ALIGN) < BITS_PER_WORD) \
1487 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1488 || TREE_CODE (TYPE) == UNION_TYPE \
1489 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1490
1491 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1492 character arrays to be word-aligned so that `strcpy' calls that copy
1493 constants to character arrays can be done inline, and 'strcmp' can be
1494 optimised to use word loads. */
1495 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1496 DATA_ALIGNMENT (TYPE, ALIGN)
1497
1498 #define PAD_VARARGS_DOWN \
1499 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1500
1501 /* Define if operations between registers always perform the operation
1502 on the full register even if a narrower mode is specified. */
1503 #define WORD_REGISTER_OPERATIONS
1504
1505 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1506 moves. All other references are zero extended. */
1507 #define LOAD_EXTEND_OP(MODE) \
1508 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1509 ? SIGN_EXTEND : ZERO_EXTEND)
1510
1511 /* Define this macro if it is advisable to hold scalars in registers
1512 in a wider mode than that declared by the program. In such cases,
1513 the value is constrained to be within the bounds of the declared
1514 type, but kept valid in the wider mode. The signedness of the
1515 extension may differ from that of the type. */
1516
1517 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1518 if (GET_MODE_CLASS (MODE) == MODE_INT \
1519 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1520 { \
1521 if ((MODE) == SImode) \
1522 (UNSIGNEDP) = 0; \
1523 (MODE) = Pmode; \
1524 }
1525
1526 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1527 Extensions of pointers to word_mode must be signed. */
1528 #define POINTERS_EXTEND_UNSIGNED false
1529
1530 /* Define if loading short immediate values into registers sign extends. */
1531 #define SHORT_IMMEDIATES_SIGN_EXTEND
1532
1533 /* The [d]clz instructions have the natural values at 0. */
1534
1535 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1536 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1537 \f
1538 /* Standard register usage. */
1539
1540 /* Number of hardware registers. We have:
1541
1542 - 32 integer registers
1543 - 32 floating point registers
1544 - 8 condition code registers
1545 - 2 accumulator registers (hi and lo)
1546 - 32 registers each for coprocessors 0, 2 and 3
1547 - 4 fake registers:
1548 - ARG_POINTER_REGNUM
1549 - FRAME_POINTER_REGNUM
1550 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1551 - CPRESTORE_SLOT_REGNUM
1552 - 2 dummy entries that were used at various times in the past.
1553 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1554 - 6 DSP control registers */
1555
1556 #define FIRST_PSEUDO_REGISTER 188
1557
1558 /* By default, fix the kernel registers ($26 and $27), the global
1559 pointer ($28) and the stack pointer ($29). This can change
1560 depending on the command-line options.
1561
1562 Regarding coprocessor registers: without evidence to the contrary,
1563 it's best to assume that each coprocessor register has a unique
1564 use. This can be overridden, in, e.g., mips_option_override or
1565 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1566 inappropriate for a particular target. */
1567
1568 #define FIXED_REGISTERS \
1569 { \
1570 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1571 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1572 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1573 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1574 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1575 /* COP0 registers */ \
1576 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1577 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1578 /* COP2 registers */ \
1579 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1580 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1581 /* COP3 registers */ \
1582 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1583 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1584 /* 6 DSP accumulator registers & 6 control registers */ \
1585 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1586 }
1587
1588
1589 /* Set up this array for o32 by default.
1590
1591 Note that we don't mark $31 as a call-clobbered register. The idea is
1592 that it's really the call instructions themselves which clobber $31.
1593 We don't care what the called function does with it afterwards.
1594
1595 This approach makes it easier to implement sibcalls. Unlike normal
1596 calls, sibcalls don't clobber $31, so the register reaches the
1597 called function in tact. EPILOGUE_USES says that $31 is useful
1598 to the called function. */
1599
1600 #define CALL_USED_REGISTERS \
1601 { \
1602 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1603 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1604 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1605 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1606 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1607 /* COP0 registers */ \
1608 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1609 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1610 /* COP2 registers */ \
1611 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1612 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1613 /* COP3 registers */ \
1614 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1615 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1616 /* 6 DSP accumulator registers & 6 control registers */ \
1617 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1618 }
1619
1620
1621 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1622
1623 #define CALL_REALLY_USED_REGISTERS \
1624 { /* General registers. */ \
1625 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1626 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1627 /* Floating-point registers. */ \
1628 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1629 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1630 /* Others. */ \
1631 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1632 /* COP0 registers */ \
1633 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1634 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1635 /* COP2 registers */ \
1636 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1637 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1638 /* COP3 registers */ \
1639 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1640 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1641 /* 6 DSP accumulator registers & 6 control registers */ \
1642 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1643 }
1644
1645 /* Internal macros to classify a register number as to whether it's a
1646 general purpose register, a floating point register, a
1647 multiply/divide register, or a status register. */
1648
1649 #define GP_REG_FIRST 0
1650 #define GP_REG_LAST 31
1651 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1652 #define GP_DBX_FIRST 0
1653 #define K0_REG_NUM (GP_REG_FIRST + 26)
1654 #define K1_REG_NUM (GP_REG_FIRST + 27)
1655 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1656
1657 #define FP_REG_FIRST 32
1658 #define FP_REG_LAST 63
1659 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1660 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1661
1662 #define MD_REG_FIRST 64
1663 #define MD_REG_LAST 65
1664 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1665 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1666
1667 /* The DWARF 2 CFA column which tracks the return address from a
1668 signal handler context. This means that to maintain backwards
1669 compatibility, no hard register can be assigned this column if it
1670 would need to be handled by the DWARF unwinder. */
1671 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1672
1673 #define ST_REG_FIRST 67
1674 #define ST_REG_LAST 74
1675 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1676
1677
1678 /* FIXME: renumber. */
1679 #define COP0_REG_FIRST 80
1680 #define COP0_REG_LAST 111
1681 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1682
1683 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1684 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1685 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1686
1687 #define COP2_REG_FIRST 112
1688 #define COP2_REG_LAST 143
1689 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1690
1691 #define COP3_REG_FIRST 144
1692 #define COP3_REG_LAST 175
1693 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1694
1695 /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1696 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1697 #define ALL_COP_REG_LAST COP3_REG_LAST
1698 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1699
1700 #define DSP_ACC_REG_FIRST 176
1701 #define DSP_ACC_REG_LAST 181
1702 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1703
1704 #define AT_REGNUM (GP_REG_FIRST + 1)
1705 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1706 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1707
1708 /* A few bitfield locations for the coprocessor registers. */
1709 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1710 the cause register for the EIC interrupt mode. */
1711 #define CAUSE_IPL 10
1712 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1713 #define SR_IPL 10
1714 /* Exception Level is at bit 1 of the status register. */
1715 #define SR_EXL 1
1716 /* Interrupt Enable is at bit 0 of the status register. */
1717 #define SR_IE 0
1718
1719 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1720 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1721 should be used instead. */
1722 #define FPSW_REGNUM ST_REG_FIRST
1723
1724 #define GP_REG_P(REGNO) \
1725 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1726 #define M16_REG_P(REGNO) \
1727 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1728 #define M16STORE_REG_P(REGNO) \
1729 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1730 #define FP_REG_P(REGNO) \
1731 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1732 #define MD_REG_P(REGNO) \
1733 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1734 #define ST_REG_P(REGNO) \
1735 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1736 #define COP0_REG_P(REGNO) \
1737 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1738 #define COP2_REG_P(REGNO) \
1739 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1740 #define COP3_REG_P(REGNO) \
1741 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1742 #define ALL_COP_REG_P(REGNO) \
1743 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1744 /* Test if REGNO is one of the 6 new DSP accumulators. */
1745 #define DSP_ACC_REG_P(REGNO) \
1746 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1747 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1748 #define ACC_REG_P(REGNO) \
1749 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1750
1751 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1752
1753 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1754 to initialize the mips16 gp pseudo register. */
1755 #define CONST_GP_P(X) \
1756 (GET_CODE (X) == CONST \
1757 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1758 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1759
1760 /* Return coprocessor number from register number. */
1761
1762 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1763 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1764 : COP3_REG_P (REGNO) ? '3' : '?')
1765
1766
1767 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1768
1769 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1770 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1771
1772 #define MODES_TIEABLE_P mips_modes_tieable_p
1773
1774 /* Register to use for pushing function arguments. */
1775 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1776
1777 /* These two registers don't really exist: they get eliminated to either
1778 the stack or hard frame pointer. */
1779 #define ARG_POINTER_REGNUM 77
1780 #define FRAME_POINTER_REGNUM 78
1781
1782 /* $30 is not available on the mips16, so we use $17 as the frame
1783 pointer. */
1784 #define HARD_FRAME_POINTER_REGNUM \
1785 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1786
1787 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1788 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1789
1790 /* Register in which static-chain is passed to a function. */
1791 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1792
1793 /* Registers used as temporaries in prologue/epilogue code:
1794
1795 - If a MIPS16 PIC function needs access to _gp, it first loads
1796 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1797
1798 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1799 register. The register must not conflict with MIPS16_PIC_TEMP.
1800
1801 - If we aren't generating MIPS16 code, the prologue can also use
1802 MIPS_PROLOGUE_TEMP2 as a general temporary register.
1803
1804 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1805 register.
1806
1807 If we're generating MIPS16 code, these registers must come from the
1808 core set of 8. The prologue registers mustn't conflict with any
1809 incoming arguments, the static chain pointer, or the frame pointer.
1810 The epilogue temporary mustn't conflict with the return registers,
1811 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1812 or the EH data registers.
1813
1814 If we're generating interrupt handlers, we use K0 as a temporary register
1815 in prologue/epilogue code. */
1816
1817 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1818 #define MIPS_PROLOGUE_TEMP_REGNUM \
1819 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1820 #define MIPS_PROLOGUE_TEMP2_REGNUM \
1821 (TARGET_MIPS16 \
1822 ? (gcc_unreachable (), INVALID_REGNUM) \
1823 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
1824 #define MIPS_EPILOGUE_TEMP_REGNUM \
1825 (cfun->machine->interrupt_handler_p \
1826 ? K0_REG_NUM \
1827 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1828
1829 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1830 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1831 #define MIPS_PROLOGUE_TEMP2(MODE) \
1832 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
1833 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1834
1835 /* Define this macro if it is as good or better to call a constant
1836 function address than to call an address kept in a register. */
1837 #define NO_FUNCTION_CSE 1
1838
1839 /* The ABI-defined global pointer. Sometimes we use a different
1840 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1841 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1842
1843 /* We normally use $28 as the global pointer. However, when generating
1844 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1845 register instead. They can then avoid saving and restoring $28
1846 and perhaps avoid using a frame at all.
1847
1848 When a leaf function uses something other than $28, mips_expand_prologue
1849 will modify pic_offset_table_rtx in place. Take the register number
1850 from there after reload. */
1851 #define PIC_OFFSET_TABLE_REGNUM \
1852 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1853 \f
1854 /* Define the classes of registers for register constraints in the
1855 machine description. Also define ranges of constants.
1856
1857 One of the classes must always be named ALL_REGS and include all hard regs.
1858 If there is more than one class, another class must be named NO_REGS
1859 and contain no registers.
1860
1861 The name GENERAL_REGS must be the name of a class (or an alias for
1862 another name such as ALL_REGS). This is the class of registers
1863 that is allowed by "g" or "r" in a register constraint.
1864 Also, registers outside this class are allocated only when
1865 instructions express preferences for them.
1866
1867 The classes must be numbered in nondecreasing order; that is,
1868 a larger-numbered class must never be contained completely
1869 in a smaller-numbered class.
1870
1871 For any two classes, it is very desirable that there be another
1872 class that represents their union. */
1873
1874 enum reg_class
1875 {
1876 NO_REGS, /* no registers in set */
1877 M16_REGS, /* mips16 directly accessible registers */
1878 T_REG, /* mips16 T register ($24) */
1879 M16_T_REGS, /* mips16 registers plus T register */
1880 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1881 V1_REG, /* Register $v1 ($3) used for TLS access. */
1882 LEA_REGS, /* Every GPR except $25 */
1883 GR_REGS, /* integer registers */
1884 FP_REGS, /* floating point registers */
1885 MD0_REG, /* first multiply/divide register */
1886 MD1_REG, /* second multiply/divide register */
1887 MD_REGS, /* multiply/divide registers (hi/lo) */
1888 COP0_REGS, /* generic coprocessor classes */
1889 COP2_REGS,
1890 COP3_REGS,
1891 ST_REGS, /* status registers (fp status) */
1892 DSP_ACC_REGS, /* DSP accumulator registers */
1893 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1894 FRAME_REGS, /* $arg and $frame */
1895 GR_AND_MD0_REGS, /* union classes */
1896 GR_AND_MD1_REGS,
1897 GR_AND_MD_REGS,
1898 GR_AND_ACC_REGS,
1899 ALL_REGS, /* all registers */
1900 LIM_REG_CLASSES /* max value + 1 */
1901 };
1902
1903 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1904
1905 #define GENERAL_REGS GR_REGS
1906
1907 /* An initializer containing the names of the register classes as C
1908 string constants. These names are used in writing some of the
1909 debugging dumps. */
1910
1911 #define REG_CLASS_NAMES \
1912 { \
1913 "NO_REGS", \
1914 "M16_REGS", \
1915 "T_REG", \
1916 "M16_T_REGS", \
1917 "PIC_FN_ADDR_REG", \
1918 "V1_REG", \
1919 "LEA_REGS", \
1920 "GR_REGS", \
1921 "FP_REGS", \
1922 "MD0_REG", \
1923 "MD1_REG", \
1924 "MD_REGS", \
1925 /* coprocessor registers */ \
1926 "COP0_REGS", \
1927 "COP2_REGS", \
1928 "COP3_REGS", \
1929 "ST_REGS", \
1930 "DSP_ACC_REGS", \
1931 "ACC_REGS", \
1932 "FRAME_REGS", \
1933 "GR_AND_MD0_REGS", \
1934 "GR_AND_MD1_REGS", \
1935 "GR_AND_MD_REGS", \
1936 "GR_AND_ACC_REGS", \
1937 "ALL_REGS" \
1938 }
1939
1940 /* An initializer containing the contents of the register classes,
1941 as integers which are bit masks. The Nth integer specifies the
1942 contents of class N. The way the integer MASK is interpreted is
1943 that register R is in the class if `MASK & (1 << R)' is 1.
1944
1945 When the machine has more than 32 registers, an integer does not
1946 suffice. Then the integers are replaced by sub-initializers,
1947 braced groupings containing several integers. Each
1948 sub-initializer must be suitable as an initializer for the type
1949 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1950
1951 #define REG_CLASS_CONTENTS \
1952 { \
1953 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1954 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1955 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1956 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1957 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1958 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1959 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1960 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1961 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1962 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1963 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1964 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1965 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1966 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1967 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1968 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1969 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1970 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1971 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1972 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1973 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1974 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1975 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1976 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1977 }
1978
1979
1980 /* A C expression whose value is a register class containing hard
1981 register REGNO. In general there is more that one such class;
1982 choose a class which is "minimal", meaning that no smaller class
1983 also contains the register. */
1984
1985 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1986
1987 /* A macro whose definition is the name of the class to which a
1988 valid base register must belong. A base register is one used in
1989 an address which is the register value plus a displacement. */
1990
1991 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1992
1993 /* A macro whose definition is the name of the class to which a
1994 valid index register must belong. An index register is one used
1995 in an address where its value is either multiplied by a scale
1996 factor or added to another register (as well as added to a
1997 displacement). */
1998
1999 #define INDEX_REG_CLASS NO_REGS
2000
2001 /* We generally want to put call-clobbered registers ahead of
2002 call-saved ones. (IRA expects this.) */
2003
2004 #define REG_ALLOC_ORDER \
2005 { /* Accumulator registers. When GPRs and accumulators have equal \
2006 cost, we generally prefer to use accumulators. For example, \
2007 a division of multiplication result is better allocated to LO, \
2008 so that we put the MFLO at the point of use instead of at the \
2009 point of definition. It's also needed if we're to take advantage \
2010 of the extra accumulators available with -mdspr2. In some cases, \
2011 it can also help to reduce register pressure. */ \
2012 64, 65,176,177,178,179,180,181, \
2013 /* Call-clobbered GPRs. */ \
2014 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2015 24, 25, 31, \
2016 /* The global pointer. This is call-clobbered for o32 and o64 \
2017 abicalls, call-saved for n32 and n64 abicalls, and a program \
2018 invariant otherwise. Putting it between the call-clobbered \
2019 and call-saved registers should cope with all eventualities. */ \
2020 28, \
2021 /* Call-saved GPRs. */ \
2022 16, 17, 18, 19, 20, 21, 22, 23, 30, \
2023 /* GPRs that can never be exposed to the register allocator. */ \
2024 0, 26, 27, 29, \
2025 /* Call-clobbered FPRs. */ \
2026 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2027 48, 49, 50, 51, \
2028 /* FPRs that are usually call-saved. The odd ones are actually \
2029 call-clobbered for n32, but listing them ahead of the even \
2030 registers might encourage the register allocator to fragment \
2031 the available FPR pairs. We need paired FPRs to store long \
2032 doubles, so it isn't clear that using a different order \
2033 for n32 would be a win. */ \
2034 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2035 /* None of the remaining classes have defined call-saved \
2036 registers. */ \
2037 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2038 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2039 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2040 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2041 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2042 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2043 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
2044 182,183,184,185,186,187 \
2045 }
2046
2047 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
2048 to be rearranged based on a particular function. On the mips16, we
2049 want to allocate $24 (T_REG) before other registers for
2050 instructions for which it is possible. */
2051
2052 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
2053
2054 /* True if VALUE is an unsigned 6-bit number. */
2055
2056 #define UIMM6_OPERAND(VALUE) \
2057 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2058
2059 /* True if VALUE is a signed 10-bit number. */
2060
2061 #define IMM10_OPERAND(VALUE) \
2062 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2063
2064 /* True if VALUE is a signed 16-bit number. */
2065
2066 #define SMALL_OPERAND(VALUE) \
2067 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2068
2069 /* True if VALUE is an unsigned 16-bit number. */
2070
2071 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2072 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2073
2074 /* True if VALUE can be loaded into a register using LUI. */
2075
2076 #define LUI_OPERAND(VALUE) \
2077 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2078 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2079
2080 /* Return a value X with the low 16 bits clear, and such that
2081 VALUE - X is a signed 16-bit value. */
2082
2083 #define CONST_HIGH_PART(VALUE) \
2084 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2085
2086 #define CONST_LOW_PART(VALUE) \
2087 ((VALUE) - CONST_HIGH_PART (VALUE))
2088
2089 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2090 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2091 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2092 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2093
2094 /* The HI and LO registers can only be reloaded via the general
2095 registers. Condition code registers can only be loaded to the
2096 general registers, and from the floating point registers. */
2097
2098 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2099 mips_secondary_reload_class (CLASS, MODE, X, true)
2100 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2101 mips_secondary_reload_class (CLASS, MODE, X, false)
2102
2103 /* Return the maximum number of consecutive registers
2104 needed to represent mode MODE in a register of class CLASS. */
2105
2106 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2107
2108 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2109 mips_cannot_change_mode_class (FROM, TO, CLASS)
2110 \f
2111 /* Stack layout; function entry, exit and calling. */
2112
2113 #define STACK_GROWS_DOWNWARD
2114
2115 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2116
2117 /* Size of the area allocated in the frame to save the GP. */
2118
2119 #define MIPS_GP_SAVE_AREA_SIZE \
2120 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2121
2122 /* The offset of the first local variable from the frame pointer. See
2123 mips_compute_frame_info for details about the frame layout. */
2124
2125 #define STARTING_FRAME_OFFSET \
2126 (FRAME_GROWS_DOWNWARD \
2127 ? 0 \
2128 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2129
2130 #define RETURN_ADDR_RTX mips_return_addr
2131
2132 /* Mask off the MIPS16 ISA bit in unwind addresses.
2133
2134 The reason for this is a little subtle. When unwinding a call,
2135 we are given the call's return address, which on most targets
2136 is the address of the following instruction. However, what we
2137 actually want to find is the EH region for the call itself.
2138 The target-independent unwind code therefore searches for "RA - 1".
2139
2140 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2141 RA - 1 is therefore the real (even-valued) start of the return
2142 instruction. EH region labels are usually odd-valued MIPS16 symbols
2143 too, so a search for an even address within a MIPS16 region would
2144 usually work.
2145
2146 However, there is an exception. If the end of an EH region is also
2147 the end of a function, the end label is allowed to be even. This is
2148 necessary because a following non-MIPS16 function may also need EH
2149 information for its first instruction.
2150
2151 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2152 non-ISA-encoded address. This probably isn't ideal, but it is
2153 the traditional (legacy) behavior. It is therefore only safe
2154 to search MIPS EH regions for an _odd-valued_ address.
2155
2156 Masking off the ISA bit means that the target-independent code
2157 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2158 #define MASK_RETURN_ADDR GEN_INT (-2)
2159
2160
2161 /* Similarly, don't use the least-significant bit to tell pointers to
2162 code from vtable index. */
2163
2164 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2165
2166 /* The eliminations to $17 are only used for mips16 code. See the
2167 definition of HARD_FRAME_POINTER_REGNUM. */
2168
2169 #define ELIMINABLE_REGS \
2170 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2171 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2172 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2173 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2174 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2175 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2176
2177 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2178 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2179
2180 /* Allocate stack space for arguments at the beginning of each function. */
2181 #define ACCUMULATE_OUTGOING_ARGS 1
2182
2183 /* The argument pointer always points to the first argument. */
2184 #define FIRST_PARM_OFFSET(FNDECL) 0
2185
2186 /* o32 and o64 reserve stack space for all argument registers. */
2187 #define REG_PARM_STACK_SPACE(FNDECL) \
2188 (TARGET_OLDABI \
2189 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2190 : 0)
2191
2192 /* Define this if it is the responsibility of the caller to
2193 allocate the area reserved for arguments passed in registers.
2194 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2195 of this macro is to determine whether the space is included in
2196 `crtl->outgoing_args_size'. */
2197 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2198
2199 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2200 \f
2201 /* Symbolic macros for the registers used to return integer and floating
2202 point values. */
2203
2204 #define GP_RETURN (GP_REG_FIRST + 2)
2205 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2206
2207 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2208
2209 /* Symbolic macros for the first/last argument registers. */
2210
2211 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2212 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2213 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2214 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2215
2216 /* 1 if N is a possible register number for function argument passing.
2217 We have no FP argument registers when soft-float. When FP registers
2218 are 32 bits, we can't directly reference the odd numbered ones. */
2219
2220 #define FUNCTION_ARG_REGNO_P(N) \
2221 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2222 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2223 && !fixed_regs[N])
2224 \f
2225 /* This structure has to cope with two different argument allocation
2226 schemes. Most MIPS ABIs view the arguments as a structure, of which
2227 the first N words go in registers and the rest go on the stack. If I
2228 < N, the Ith word might go in Ith integer argument register or in a
2229 floating-point register. For these ABIs, we only need to remember
2230 the offset of the current argument into the structure.
2231
2232 The EABI instead allocates the integer and floating-point arguments
2233 separately. The first N words of FP arguments go in FP registers,
2234 the rest go on the stack. Likewise, the first N words of the other
2235 arguments go in integer registers, and the rest go on the stack. We
2236 need to maintain three counts: the number of integer registers used,
2237 the number of floating-point registers used, and the number of words
2238 passed on the stack.
2239
2240 We could keep separate information for the two ABIs (a word count for
2241 the standard ABIs, and three separate counts for the EABI). But it
2242 seems simpler to view the standard ABIs as forms of EABI that do not
2243 allocate floating-point registers.
2244
2245 So for the standard ABIs, the first N words are allocated to integer
2246 registers, and mips_function_arg decides on an argument-by-argument
2247 basis whether that argument should really go in an integer register,
2248 or in a floating-point one. */
2249
2250 typedef struct mips_args {
2251 /* Always true for varargs functions. Otherwise true if at least
2252 one argument has been passed in an integer register. */
2253 int gp_reg_found;
2254
2255 /* The number of arguments seen so far. */
2256 unsigned int arg_number;
2257
2258 /* The number of integer registers used so far. For all ABIs except
2259 EABI, this is the number of words that have been added to the
2260 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2261 unsigned int num_gprs;
2262
2263 /* For EABI, the number of floating-point registers used so far. */
2264 unsigned int num_fprs;
2265
2266 /* The number of words passed on the stack. */
2267 unsigned int stack_words;
2268
2269 /* On the mips16, we need to keep track of which floating point
2270 arguments were passed in general registers, but would have been
2271 passed in the FP regs if this were a 32-bit function, so that we
2272 can move them to the FP regs if we wind up calling a 32-bit
2273 function. We record this information in fp_code, encoded in base
2274 four. A zero digit means no floating point argument, a one digit
2275 means an SFmode argument, and a two digit means a DFmode argument,
2276 and a three digit is not used. The low order digit is the first
2277 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2278 an SFmode argument. ??? A more sophisticated approach will be
2279 needed if MIPS_ABI != ABI_32. */
2280 int fp_code;
2281
2282 /* True if the function has a prototype. */
2283 int prototype;
2284 } CUMULATIVE_ARGS;
2285
2286 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2287 for a call to a function whose data type is FNTYPE.
2288 For a library call, FNTYPE is 0. */
2289
2290 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2291 mips_init_cumulative_args (&CUM, FNTYPE)
2292
2293 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2294 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2295
2296 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2297 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2298
2299 /* True if using EABI and varargs can be passed in floating-point
2300 registers. Under these conditions, we need a more complex form
2301 of va_list, which tracks GPR, FPR and stack arguments separately. */
2302 #define EABI_FLOAT_VARARGS_P \
2303 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2304
2305 \f
2306 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2307
2308 /* Treat LOC as a byte offset from the stack pointer and round it up
2309 to the next fully-aligned offset. */
2310 #define MIPS_STACK_ALIGN(LOC) \
2311 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2312
2313 \f
2314 /* Output assembler code to FILE to increment profiler label # LABELNO
2315 for profiling a function entry. */
2316
2317 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2318
2319 /* The profiler preserves all interesting registers, including $31. */
2320 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2321
2322 /* No mips port has ever used the profiler counter word, so don't emit it
2323 or the label for it. */
2324
2325 #define NO_PROFILE_COUNTERS 1
2326
2327 /* Define this macro if the code for function profiling should come
2328 before the function prologue. Normally, the profiling code comes
2329 after. */
2330
2331 /* #define PROFILE_BEFORE_PROLOGUE */
2332
2333 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2334 the stack pointer does not matter. The value is tested only in
2335 functions that have frame pointers.
2336 No definition is equivalent to always zero. */
2337
2338 #define EXIT_IGNORE_STACK 1
2339
2340 \f
2341 /* Trampolines are a block of code followed by two pointers. */
2342
2343 #define TRAMPOLINE_SIZE \
2344 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2345
2346 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2347 pointers from a single LUI base. */
2348
2349 #define TRAMPOLINE_ALIGNMENT 64
2350
2351 /* mips_trampoline_init calls this library function to flush
2352 program and data caches. */
2353
2354 #ifndef CACHE_FLUSH_FUNC
2355 #define CACHE_FLUSH_FUNC "_flush_cache"
2356 #endif
2357
2358 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2359 /* Flush both caches. We need to flush the data cache in case \
2360 the system has a write-back cache. */ \
2361 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2362 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2363 GEN_INT (3), TYPE_MODE (integer_type_node))
2364
2365 \f
2366 /* Addressing modes, and classification of registers for them. */
2367
2368 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2369 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2370 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2371 \f
2372 /* Maximum number of registers that can appear in a valid memory address. */
2373
2374 #define MAX_REGS_PER_ADDRESS 1
2375
2376 /* Check for constness inline but use mips_legitimate_address_p
2377 to check whether a constant really is an address. */
2378
2379 #define CONSTANT_ADDRESS_P(X) \
2380 (CONSTANT_P (X) && memory_address_p (SImode, X))
2381
2382 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2383 'the start of the function that this code is output in'. */
2384
2385 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2386 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2387 asm_fprintf ((FILE), "%U%s", \
2388 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2389 else \
2390 asm_fprintf ((FILE), "%U%s", (NAME))
2391 \f
2392 /* Flag to mark a function decl symbol that requires a long call. */
2393 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2394 #define SYMBOL_REF_LONG_CALL_P(X) \
2395 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2396
2397 /* This flag marks functions that cannot be lazily bound. */
2398 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2399 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2400 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2401
2402 /* True if we're generating a form of MIPS16 code in which jump tables
2403 are stored in the text section and encoded as 16-bit PC-relative
2404 offsets. This is only possible when general text loads are allowed,
2405 since the table access itself will be an "lh" instruction. If the
2406 PC-relative offsets grow too large, 32-bit offsets are used instead. */
2407 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2408
2409 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2410
2411 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2412
2413 /* Only use short offsets if their range will not overflow. */
2414 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2415 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2416 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2417 : SImode)
2418
2419 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2420
2421 /* Define this as 1 if `char' should by default be signed; else as 0. */
2422 #ifndef DEFAULT_SIGNED_CHAR
2423 #define DEFAULT_SIGNED_CHAR 1
2424 #endif
2425
2426 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2427 we generally don't want to use them for copying arbitrary data.
2428 A single N-word move is usually the same cost as N single-word moves. */
2429 #define MOVE_MAX UNITS_PER_WORD
2430 #define MAX_MOVE_MAX 8
2431
2432 /* Define this macro as a C expression which is nonzero if
2433 accessing less than a word of memory (i.e. a `char' or a
2434 `short') is no faster than accessing a word of memory, i.e., if
2435 such access require more than one instruction or if there is no
2436 difference in cost between byte and (aligned) word loads.
2437
2438 On RISC machines, it tends to generate better code to define
2439 this as 1, since it avoids making a QI or HI mode register.
2440
2441 But, generating word accesses for -mips16 is generally bad as shifts
2442 (often extended) would be needed for byte accesses. */
2443 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2444
2445 /* Standard MIPS integer shifts truncate the shift amount to the
2446 width of the shifted operand. However, Loongson vector shifts
2447 do not truncate the shift amount at all. */
2448 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2449
2450 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2451 is done just by pretending it is already truncated. */
2452 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2453 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2454
2455
2456 /* Specify the machine mode that pointers have.
2457 After generation of rtl, the compiler makes no further distinction
2458 between pointers and any other objects of this machine mode. */
2459
2460 #ifndef Pmode
2461 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2462 #endif
2463
2464 /* Give call MEMs SImode since it is the "most permissive" mode
2465 for both 32-bit and 64-bit targets. */
2466
2467 #define FUNCTION_MODE SImode
2468
2469 \f
2470 /* We allocate $fcc registers by hand and can't cope with moves of
2471 CCmode registers to and from pseudos (or memory). */
2472 #define AVOID_CCMODE_COPIES
2473
2474 /* A C expression for the cost of a branch instruction. A value of
2475 1 is the default; other values are interpreted relative to that. */
2476
2477 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2478 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2479
2480 /* The MIPS port has several functions that return an instruction count.
2481 Multiplying the count by this value gives the number of bytes that
2482 the instructions occupy. */
2483 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2484
2485 /* The length of a NOP in bytes. */
2486 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2487
2488 /* If defined, modifies the length assigned to instruction INSN as a
2489 function of the context in which it is used. LENGTH is an lvalue
2490 that contains the initially computed length of the insn and should
2491 be updated with the correct length of the insn. */
2492 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2493 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2494
2495 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2496 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2497 its operands. */
2498 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2499 "%*" OPCODE "%?\t" OPERANDS "%/"
2500
2501 /* Return an asm string that forces INSN to be treated as an absolute
2502 J or JAL instruction instead of an assembler macro. */
2503 #define MIPS_ABSOLUTE_JUMP(INSN) \
2504 (TARGET_ABICALLS_PIC2 \
2505 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2506 : INSN)
2507
2508 /* Return the asm template for a call. INSN is the instruction's mnemonic
2509 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2510 number of the target. SIZE_OPNO is the operand number of the argument size
2511 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2512 -1 and the call is indirect, use the function symbol from the call
2513 attributes to attach a R_MIPS_JALR relocation to the call.
2514
2515 When generating GOT code without explicit relocation operators,
2516 all calls should use assembly macros. Otherwise, all indirect
2517 calls should use "jr" or "jalr"; we will arrange to restore $gp
2518 afterwards if necessary. Finally, we can only generate direct
2519 calls for -mabicalls by temporarily switching to non-PIC mode.
2520
2521 For microMIPS jal(r), we try to generate jal(r)s when a 16-bit
2522 instruction is in the delay slot of jal(r). */
2523 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2524 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2525 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2526 : REG_P (OPERANDS[TARGET_OPNO]) \
2527 ? (mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO) \
2528 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2529 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2530 : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
2531 ? "%*" INSN "r%!\t%" #TARGET_OPNO "%/" \
2532 : "%*" INSN "r\t%" #TARGET_OPNO "%/") \
2533 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/"))
2534
2535 /* Similar to MIPS_CALL, but this is for MICROMIPS "j" to generate
2536 "jrc" when nop is in the delay slot of "jr". */
2537
2538 #define MICROMIPS_J(INSN, OPERANDS, OPNO) \
2539 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2540 ? "%*j\t%" #OPNO "%/" \
2541 : REG_P (OPERANDS[OPNO]) \
2542 ? "%*jr%:\t%" #OPNO \
2543 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #OPNO "%/"))
2544
2545 \f
2546 /* Control the assembler format that we output. */
2547
2548 /* Output to assembler file text saying following lines
2549 may contain character constants, extra white space, comments, etc. */
2550
2551 #ifndef ASM_APP_ON
2552 #define ASM_APP_ON " #APP\n"
2553 #endif
2554
2555 /* Output to assembler file text saying following lines
2556 no longer contain unusual constructs. */
2557
2558 #ifndef ASM_APP_OFF
2559 #define ASM_APP_OFF " #NO_APP\n"
2560 #endif
2561
2562 #define REGISTER_NAMES \
2563 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2564 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2565 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2566 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2567 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2568 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2569 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2570 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2571 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2572 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2573 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2574 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2575 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2576 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2577 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2578 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2579 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2580 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2581 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2582 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2583 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2584 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2585 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2586 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2587
2588 /* List the "software" names for each register. Also list the numerical
2589 names for $fp and $sp. */
2590
2591 #define ADDITIONAL_REGISTER_NAMES \
2592 { \
2593 { "$29", 29 + GP_REG_FIRST }, \
2594 { "$30", 30 + GP_REG_FIRST }, \
2595 { "at", 1 + GP_REG_FIRST }, \
2596 { "v0", 2 + GP_REG_FIRST }, \
2597 { "v1", 3 + GP_REG_FIRST }, \
2598 { "a0", 4 + GP_REG_FIRST }, \
2599 { "a1", 5 + GP_REG_FIRST }, \
2600 { "a2", 6 + GP_REG_FIRST }, \
2601 { "a3", 7 + GP_REG_FIRST }, \
2602 { "t0", 8 + GP_REG_FIRST }, \
2603 { "t1", 9 + GP_REG_FIRST }, \
2604 { "t2", 10 + GP_REG_FIRST }, \
2605 { "t3", 11 + GP_REG_FIRST }, \
2606 { "t4", 12 + GP_REG_FIRST }, \
2607 { "t5", 13 + GP_REG_FIRST }, \
2608 { "t6", 14 + GP_REG_FIRST }, \
2609 { "t7", 15 + GP_REG_FIRST }, \
2610 { "s0", 16 + GP_REG_FIRST }, \
2611 { "s1", 17 + GP_REG_FIRST }, \
2612 { "s2", 18 + GP_REG_FIRST }, \
2613 { "s3", 19 + GP_REG_FIRST }, \
2614 { "s4", 20 + GP_REG_FIRST }, \
2615 { "s5", 21 + GP_REG_FIRST }, \
2616 { "s6", 22 + GP_REG_FIRST }, \
2617 { "s7", 23 + GP_REG_FIRST }, \
2618 { "t8", 24 + GP_REG_FIRST }, \
2619 { "t9", 25 + GP_REG_FIRST }, \
2620 { "k0", 26 + GP_REG_FIRST }, \
2621 { "k1", 27 + GP_REG_FIRST }, \
2622 { "gp", 28 + GP_REG_FIRST }, \
2623 { "sp", 29 + GP_REG_FIRST }, \
2624 { "fp", 30 + GP_REG_FIRST }, \
2625 { "ra", 31 + GP_REG_FIRST } \
2626 }
2627
2628 #define DBR_OUTPUT_SEQEND(STREAM) \
2629 do \
2630 { \
2631 /* Undo the effect of '%*'. */ \
2632 mips_pop_asm_switch (&mips_nomacro); \
2633 mips_pop_asm_switch (&mips_noreorder); \
2634 /* Emit a blank line after the delay slot for emphasis. */ \
2635 fputs ("\n", STREAM); \
2636 } \
2637 while (0)
2638
2639 /* The MIPS implementation uses some labels for its own purpose. The
2640 following lists what labels are created, and are all formed by the
2641 pattern $L[a-z].*. The machine independent portion of GCC creates
2642 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2643
2644 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2645 $Lb[0-9]+ Begin blocks for MIPS debug support
2646 $Lc[0-9]+ Label for use in s<xx> operation.
2647 $Le[0-9]+ End blocks for MIPS debug support */
2648
2649 #undef ASM_DECLARE_OBJECT_NAME
2650 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2651 mips_declare_object (STREAM, NAME, "", ":\n")
2652
2653 /* Globalizing directive for a label. */
2654 #define GLOBAL_ASM_OP "\t.globl\t"
2655
2656 /* This says how to define a global common symbol. */
2657
2658 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2659
2660 /* This says how to define a local common symbol (i.e., not visible to
2661 linker). */
2662
2663 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2664 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2665 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2666 #endif
2667
2668 /* This says how to output an external. It would be possible not to
2669 output anything and let undefined symbol become external. However
2670 the assembler uses length information on externals to allocate in
2671 data/sdata bss/sbss, thereby saving exec time. */
2672
2673 #undef ASM_OUTPUT_EXTERNAL
2674 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2675 mips_output_external(STREAM,DECL,NAME)
2676
2677 /* This is how to declare a function name. The actual work of
2678 emitting the label is moved to function_prologue, so that we can
2679 get the line number correctly emitted before the .ent directive,
2680 and after any .file directives. Define as empty so that the function
2681 is not declared before the .ent directive elsewhere. */
2682
2683 #undef ASM_DECLARE_FUNCTION_NAME
2684 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2685
2686 /* This is how to store into the string LABEL
2687 the symbol_ref name of an internal numbered label where
2688 PREFIX is the class of label and NUM is the number within the class.
2689 This is suitable for output with `assemble_name'. */
2690
2691 #undef ASM_GENERATE_INTERNAL_LABEL
2692 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2693 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2694
2695 /* Print debug labels as "foo = ." rather than "foo:" because they should
2696 represent a byte pointer rather than an ISA-encoded address. This is
2697 particularly important for code like:
2698
2699 $LFBxxx = .
2700 .cfi_startproc
2701 ...
2702 .section .gcc_except_table,...
2703 ...
2704 .uleb128 foo-$LFBxxx
2705
2706 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2707 likewise a byte pointer rather than an ISA-encoded address.
2708
2709 At the time of writing, this hook is not used for the function end
2710 label:
2711
2712 $LFExxx:
2713 .end foo
2714
2715 But this doesn't matter, because GAS doesn't treat a pre-.end label
2716 as a MIPS16 one anyway. */
2717
2718 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2719 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2720
2721 /* This is how to output an element of a case-vector that is absolute. */
2722
2723 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2724 fprintf (STREAM, "\t%s\t%sL%d\n", \
2725 ptr_mode == DImode ? ".dword" : ".word", \
2726 LOCAL_LABEL_PREFIX, \
2727 VALUE)
2728
2729 /* This is how to output an element of a case-vector. We can make the
2730 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2731 is supported. */
2732
2733 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2734 do { \
2735 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2736 { \
2737 if (GET_MODE (BODY) == HImode) \
2738 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2739 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2740 else \
2741 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2742 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2743 } \
2744 else if (TARGET_GPWORD) \
2745 fprintf (STREAM, "\t%s\t%sL%d\n", \
2746 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2747 LOCAL_LABEL_PREFIX, VALUE); \
2748 else if (TARGET_RTP_PIC) \
2749 { \
2750 /* Make the entry relative to the start of the function. */ \
2751 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2752 fprintf (STREAM, "\t%s\t%sL%d-", \
2753 Pmode == DImode ? ".dword" : ".word", \
2754 LOCAL_LABEL_PREFIX, VALUE); \
2755 assemble_name (STREAM, XSTR (fnsym, 0)); \
2756 fprintf (STREAM, "\n"); \
2757 } \
2758 else \
2759 fprintf (STREAM, "\t%s\t%sL%d\n", \
2760 ptr_mode == DImode ? ".dword" : ".word", \
2761 LOCAL_LABEL_PREFIX, VALUE); \
2762 } while (0)
2763
2764 /* This is how to output an assembler line
2765 that says to advance the location counter
2766 to a multiple of 2**LOG bytes. */
2767
2768 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2769 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2770
2771 /* This is how to output an assembler line to advance the location
2772 counter by SIZE bytes. */
2773
2774 #undef ASM_OUTPUT_SKIP
2775 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2776 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2777
2778 /* This is how to output a string. */
2779 #undef ASM_OUTPUT_ASCII
2780 #define ASM_OUTPUT_ASCII mips_output_ascii
2781
2782 \f
2783 /* Default to -G 8 */
2784 #ifndef MIPS_DEFAULT_GVALUE
2785 #define MIPS_DEFAULT_GVALUE 8
2786 #endif
2787
2788 /* Define the strings to put out for each section in the object file. */
2789 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2790 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2791
2792 #undef READONLY_DATA_SECTION_ASM_OP
2793 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2794 \f
2795 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2796 do \
2797 { \
2798 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2799 TARGET_64BIT ? "daddiu" : "addiu", \
2800 reg_names[STACK_POINTER_REGNUM], \
2801 reg_names[STACK_POINTER_REGNUM], \
2802 TARGET_64BIT ? "sd" : "sw", \
2803 reg_names[REGNO], \
2804 reg_names[STACK_POINTER_REGNUM]); \
2805 } \
2806 while (0)
2807
2808 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2809 do \
2810 { \
2811 mips_push_asm_switch (&mips_noreorder); \
2812 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2813 TARGET_64BIT ? "ld" : "lw", \
2814 reg_names[REGNO], \
2815 reg_names[STACK_POINTER_REGNUM], \
2816 TARGET_64BIT ? "daddu" : "addu", \
2817 reg_names[STACK_POINTER_REGNUM], \
2818 reg_names[STACK_POINTER_REGNUM]); \
2819 mips_pop_asm_switch (&mips_noreorder); \
2820 } \
2821 while (0)
2822
2823 /* How to start an assembler comment.
2824 The leading space is important (the mips native assembler requires it). */
2825 #ifndef ASM_COMMENT_START
2826 #define ASM_COMMENT_START " #"
2827 #endif
2828 \f
2829 #undef SIZE_TYPE
2830 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2831
2832 #undef PTRDIFF_TYPE
2833 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2834
2835 /* The maximum number of bytes that can be copied by one iteration of
2836 a movmemsi loop; see mips_block_move_loop. */
2837 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2838 (UNITS_PER_WORD * 4)
2839
2840 /* The maximum number of bytes that can be copied by a straight-line
2841 implementation of movmemsi; see mips_block_move_straight. We want
2842 to make sure that any loop-based implementation will iterate at
2843 least twice. */
2844 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2845 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2846
2847 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2848 values were determined experimentally by benchmarking with CSiBE.
2849 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2850 for o32 where we have to restore $gp afterwards as well as make an
2851 indirect call), but in practice, bumping this up higher for
2852 TARGET_ABICALLS doesn't make much difference to code size. */
2853
2854 #define MIPS_CALL_RATIO 8
2855
2856 /* Any loop-based implementation of movmemsi will have at least
2857 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2858 moves, so allow individual copies of fewer elements.
2859
2860 When movmemsi is not available, use a value approximating
2861 the length of a memcpy call sequence, so that move_by_pieces
2862 will generate inline code if it is shorter than a function call.
2863 Since move_by_pieces_ninsns counts memory-to-memory moves, but
2864 we'll have to generate a load/store pair for each, halve the
2865 value of MIPS_CALL_RATIO to take that into account. */
2866
2867 #define MOVE_RATIO(speed) \
2868 (HAVE_movmemsi \
2869 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
2870 : MIPS_CALL_RATIO / 2)
2871
2872 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2873 mips_move_by_pieces_p (SIZE, ALIGN)
2874
2875 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2876 of the length of a memset call, but use the default otherwise. */
2877
2878 #define CLEAR_RATIO(speed)\
2879 ((speed) ? 15 : MIPS_CALL_RATIO)
2880
2881 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2882 optimizing for size adjust the ratio to account for the overhead of
2883 loading the constant and replicating it across the word. */
2884
2885 #define SET_RATIO(speed) \
2886 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2887
2888 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
2889 mips_store_by_pieces_p (SIZE, ALIGN)
2890 \f
2891 /* Since the bits of the _init and _fini function is spread across
2892 many object files, each potentially with its own GP, we must assume
2893 we need to load our GP. We don't preserve $gp or $ra, since each
2894 init/fini chunk is supposed to initialize $gp, and crti/crtn
2895 already take care of preserving $ra and, when appropriate, $gp. */
2896 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2897 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2898 asm (SECTION_OP "\n\
2899 .set push\n\
2900 .set nomips16\n\
2901 .set noreorder\n\
2902 bal 1f\n\
2903 nop\n\
2904 1: .cpload $31\n\
2905 .set reorder\n\
2906 jal " USER_LABEL_PREFIX #FUNC "\n\
2907 .set pop\n\
2908 " TEXT_SECTION_ASM_OP);
2909 #elif ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2910 || (defined _ABI64 && _MIPS_SIM == _ABI64))
2911 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2912 asm (SECTION_OP "\n\
2913 .set push\n\
2914 .set nomips16\n\
2915 .set noreorder\n\
2916 bal 1f\n\
2917 nop\n\
2918 1: .set reorder\n\
2919 .cpsetup $31, $2, 1b\n\
2920 jal " USER_LABEL_PREFIX #FUNC "\n\
2921 .set pop\n\
2922 " TEXT_SECTION_ASM_OP);
2923 #endif
2924
2925 #ifndef HAVE_AS_TLS
2926 #define HAVE_AS_TLS 0
2927 #endif
2928
2929 #ifndef HAVE_AS_NAN
2930 #define HAVE_AS_NAN 0
2931 #endif
2932
2933 #ifndef USED_FOR_TARGET
2934 /* Information about ".set noFOO; ...; .set FOO" blocks. */
2935 struct mips_asm_switch {
2936 /* The FOO in the description above. */
2937 const char *name;
2938
2939 /* The current block nesting level, or 0 if we aren't in a block. */
2940 int nesting_level;
2941 };
2942
2943 extern const enum reg_class mips_regno_to_class[];
2944 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
2945 extern const char *current_function_file; /* filename current function is in */
2946 extern int num_source_filenames; /* current .file # */
2947 extern struct mips_asm_switch mips_noreorder;
2948 extern struct mips_asm_switch mips_nomacro;
2949 extern struct mips_asm_switch mips_noat;
2950 extern int mips_dbx_regno[];
2951 extern int mips_dwarf_regno[];
2952 extern bool mips_split_p[];
2953 extern bool mips_split_hi_p[];
2954 extern bool mips_use_pcrel_pool_p[];
2955 extern const char *mips_lo_relocs[];
2956 extern const char *mips_hi_relocs[];
2957 extern enum processor mips_arch; /* which cpu to codegen for */
2958 extern enum processor mips_tune; /* which cpu to schedule for */
2959 extern int mips_isa; /* architectural level */
2960 extern const struct mips_cpu_info *mips_arch_info;
2961 extern const struct mips_cpu_info *mips_tune_info;
2962 extern unsigned int mips_base_compression_flags;
2963 extern GTY(()) struct target_globals *mips16_globals;
2964 #endif
2965
2966 /* Enable querying of DFA units. */
2967 #define CPU_UNITS_QUERY 1
2968
2969 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2970 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2971
2972 /* As on most targets, we want the .eh_frame section to be read-only where
2973 possible. And as on most targets, this means two things:
2974
2975 (a) Non-locally-binding pointers must have an indirect encoding,
2976 so that the addresses in the .eh_frame section itself become
2977 locally-binding.
2978
2979 (b) A shared library's .eh_frame section must encode locally-binding
2980 pointers in a relative (relocation-free) form.
2981
2982 However, MIPS has traditionally not allowed directives like:
2983
2984 .long x-.
2985
2986 in cases where "x" is in a different section, or is not defined in the
2987 same assembly file. We are therefore unable to emit the PC-relative
2988 form required by (b) at assembly time.
2989
2990 Fortunately, the linker is able to convert absolute addresses into
2991 PC-relative addresses on our behalf. Unfortunately, only certain
2992 versions of the linker know how to do this for indirect pointers,
2993 and for personality data. We must fall back on using writable
2994 .eh_frame sections for shared libraries if the linker does not
2995 support this feature. */
2996 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2997 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
2998
2999 /* For switching between MIPS16 and non-MIPS16 modes. */
3000 #define SWITCHABLE_TARGET 1
3001
3002 /* Several named MIPS patterns depend on Pmode. These patterns have the
3003 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3004 Add the appropriate suffix to generator function NAME and invoke it
3005 with arguments ARGS. */
3006 #define PMODE_INSN(NAME, ARGS) \
3007 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)