constraints.md: Add new register constraint "kb".
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989-2014 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24
25 #include "config/vxworks-dummy.h"
26
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30 extern int target_flags_explicit;
31 #endif
32
33 /* MIPS external variables defined in mips.c. */
34
35 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
37 to work on a 64-bit machine. */
38
39 #define ABI_32 0
40 #define ABI_N32 1
41 #define ABI_64 2
42 #define ABI_EABI 3
43 #define ABI_O64 4
44
45 /* Masks that affect tuning.
46
47 PTF_AVOID_BRANCHLIKELY
48 Set if it is usually not profitable to use branch-likely instructions
49 for this target, typically because the branches are always predicted
50 taken and so incur a large overhead when not taken.
51
52 PTF_AVOID_IMADD
53 Set if it is usually not profitable to use the integer MADD or MSUB
54 instructions because of the overhead of getting the result out of
55 the HI/LO registers. */
56
57 #define PTF_AVOID_BRANCHLIKELY 0x1
58 #define PTF_AVOID_IMADD 0x2
59
60 /* Information about one recognized processor. Defined here for the
61 benefit of TARGET_CPU_CPP_BUILTINS. */
62 struct mips_cpu_info {
63 /* The 'canonical' name of the processor as far as GCC is concerned.
64 It's typically a manufacturer's prefix followed by a numerical
65 designation. It should be lowercase. */
66 const char *name;
67
68 /* The internal processor number that most closely matches this
69 entry. Several processors can have the same value, if there's no
70 difference between them from GCC's point of view. */
71 enum processor cpu;
72
73 /* The ISA level that the processor implements. */
74 int isa;
75
76 /* A mask of PTF_* values. */
77 unsigned int tune_flags;
78 };
79
80 #include "config/mips/mips-opts.h"
81
82 /* Macros to silence warnings about numbers being signed in traditional
83 C and unsigned in ISO C when compiled on 32-bit hosts. */
84
85 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
86 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
87 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
88
89 \f
90 /* Run-time compilation parameters selecting different hardware subsets. */
91
92 /* True if we are generating position-independent VxWorks RTP code. */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
94
95 /* True if the output file is marked as ".abicalls; .option pic0"
96 (-call_nonpic). */
97 #define TARGET_ABICALLS_PIC0 \
98 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
99
100 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
101 #define TARGET_ABICALLS_PIC2 \
102 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
103
104 /* True if the call patterns should be split into a jalr followed by
105 an instruction to restore $gp. It is only safe to split the load
106 from the call when every use of $gp is explicit.
107
108 See mips_must_initialize_gp_p for details about how we manage the
109 global pointer. */
110
111 #define TARGET_SPLIT_CALLS \
112 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
113
114 /* True if we're generating a form of -mabicalls in which we can use
115 operators like %hi and %lo to refer to locally-binding symbols.
116 We can only do this for -mno-shared, and only then if we can use
117 relocation operations instead of assembly macros. It isn't really
118 worth using absolute sequences for 64-bit symbols because GOT
119 accesses are so much shorter. */
120
121 #define TARGET_ABSOLUTE_ABICALLS \
122 (TARGET_ABICALLS \
123 && !TARGET_SHARED \
124 && TARGET_EXPLICIT_RELOCS \
125 && !ABI_HAS_64BIT_SYMBOLS)
126
127 /* True if we can optimize sibling calls. For simplicity, we only
128 handle cases in which call_insn_operand will reject invalid
129 sibcall addresses. There are two cases in which this isn't true:
130
131 - TARGET_MIPS16. call_insn_operand accepts constant addresses
132 but there is no direct jump instruction. It isn't worth
133 using sibling calls in this case anyway; they would usually
134 be longer than normal calls.
135
136 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
137 accepts global constants, but all sibcalls must be indirect. */
138 #define TARGET_SIBCALLS \
139 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
140
141 /* True if we need to use a global offset table to access some symbols. */
142 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
143
144 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
145 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
146
147 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
148 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
149
150 /* True if we should use .cprestore to store to the cprestore slot.
151
152 We continue to use .cprestore for explicit-reloc code so that JALs
153 inside inline asms will work correctly. */
154 #define TARGET_CPRESTORE_DIRECTIVE \
155 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
156
157 /* True if we can use the J and JAL instructions. */
158 #define TARGET_ABSOLUTE_JUMPS \
159 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
160
161 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
162 This is true for both the PIC and non-PIC VxWorks RTP modes. */
163 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
164
165 /* True if .gpword or .gpdword should be used for switch tables. */
166 #define TARGET_GPWORD \
167 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
168
169 /* True if the output must have a writable .eh_frame.
170 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
171 #ifdef HAVE_LD_PERSONALITY_RELAXATION
172 #define TARGET_WRITABLE_EH_FRAME 0
173 #else
174 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
175 #endif
176
177 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
178 #ifdef HAVE_AS_DSPR1_MULT
179 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
180 #else
181 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
182 #endif
183
184 /* The ISA compression flags that are currently in effect. */
185 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
186
187 /* Generate mips16 code */
188 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
189 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
190 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
191 /* Generate mips16e register save/restore sequences. */
192 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
193
194 /* True if we're generating a form of MIPS16 code in which general
195 text loads are allowed. */
196 #define TARGET_MIPS16_TEXT_LOADS \
197 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
198
199 /* True if we're generating a form of MIPS16 code in which PC-relative
200 loads are allowed. */
201 #define TARGET_MIPS16_PCREL_LOADS \
202 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
203
204 /* Generic ISA defines. */
205 #define ISA_MIPS1 (mips_isa == 1)
206 #define ISA_MIPS2 (mips_isa == 2)
207 #define ISA_MIPS3 (mips_isa == 3)
208 #define ISA_MIPS4 (mips_isa == 4)
209 #define ISA_MIPS32 (mips_isa == 32)
210 #define ISA_MIPS32R2 (mips_isa == 33)
211 #define ISA_MIPS64 (mips_isa == 64)
212 #define ISA_MIPS64R2 (mips_isa == 65)
213
214 /* Architecture target defines. */
215 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
216 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
217 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
218 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
219 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
220 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
221 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
222 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
223 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
224 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
225 #define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
226 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
227 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
228 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
229 || mips_arch == PROCESSOR_OCTEON2)
230 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2)
231 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
232 || mips_arch == PROCESSOR_SB1A)
233 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
234 #define TARGET_XLP (mips_arch == PROCESSOR_XLP)
235
236 /* Scheduling target defines. */
237 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
238 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
239 || mips_tune == PROCESSOR_24KF2_1 \
240 || mips_tune == PROCESSOR_24KF1_1)
241 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
242 || mips_tune == PROCESSOR_74KF2_1 \
243 || mips_tune == PROCESSOR_74KF1_1 \
244 || mips_tune == PROCESSOR_74KF3_2)
245 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
246 || mips_tune == PROCESSOR_LOONGSON_2F)
247 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
248 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
249 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
250 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
251 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
252 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
253 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
254 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
255 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
256 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
257 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
258 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
259 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
260 || mips_tune == PROCESSOR_OCTEON2)
261 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
262 || mips_tune == PROCESSOR_SB1A)
263
264 /* Whether vector modes and intrinsics for ST Microelectronics
265 Loongson-2E/2F processors should be enabled. In o32 pairs of
266 floating-point registers provide 64-bit values. */
267 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
268 && (TARGET_LOONGSON_2EF \
269 || TARGET_LOONGSON_3A))
270
271 /* True if the pre-reload scheduler should try to create chains of
272 multiply-add or multiply-subtract instructions. For example,
273 suppose we have:
274
275 t1 = a * b
276 t2 = t1 + c * d
277 t3 = e * f
278 t4 = t3 - g * h
279
280 t1 will have a higher priority than t2 and t3 will have a higher
281 priority than t4. However, before reload, there is no dependence
282 between t1 and t3, and they can often have similar priorities.
283 The scheduler will then tend to prefer:
284
285 t1 = a * b
286 t3 = e * f
287 t2 = t1 + c * d
288 t4 = t3 - g * h
289
290 which stops us from making full use of macc/madd-style instructions.
291 This sort of situation occurs frequently in Fourier transforms and
292 in unrolled loops.
293
294 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
295 queue so that chained multiply-add and multiply-subtract instructions
296 appear ahead of any other instruction that is likely to clobber lo.
297 In the example above, if t2 and t3 become ready at the same time,
298 the code ensures that t2 is scheduled first.
299
300 Multiply-accumulate instructions are a bigger win for some targets
301 than others, so this macro is defined on an opt-in basis. */
302 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
303 || TUNE_MIPS4120 \
304 || TUNE_MIPS4130 \
305 || TUNE_24K)
306
307 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
308 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
309
310 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
311 directly accessible, while the command-line options select
312 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
313 in use. */
314 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
315 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
316
317 /* False if SC acts as a memory barrier with respect to itself,
318 otherwise a SYNC will be emitted after SC for atomic operations
319 that require ordering between the SC and following loads and
320 stores. It does not tell anything about ordering of loads and
321 stores prior to and following the SC, only about the SC itself and
322 those loads and stores follow it. */
323 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
324
325 /* Define preprocessor macros for the -march and -mtune options.
326 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
327 processor. If INFO's canonical name is "foo", define PREFIX to
328 be "foo", and define an additional macro PREFIX_FOO. */
329 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
330 do \
331 { \
332 char *macro, *p; \
333 \
334 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
335 for (p = macro; *p != 0; p++) \
336 if (*p == '+') \
337 *p = 'P'; \
338 else \
339 *p = TOUPPER (*p); \
340 \
341 builtin_define (macro); \
342 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
343 free (macro); \
344 } \
345 while (0)
346
347 /* Target CPU builtins. */
348 #define TARGET_CPU_CPP_BUILTINS() \
349 do \
350 { \
351 builtin_assert ("machine=mips"); \
352 builtin_assert ("cpu=mips"); \
353 builtin_define ("__mips__"); \
354 builtin_define ("_mips"); \
355 \
356 /* We do this here because __mips is defined below and so we \
357 can't use builtin_define_std. We don't ever want to define \
358 "mips" for VxWorks because some of the VxWorks headers \
359 construct include filenames from a root directory macro, \
360 an architecture macro and a filename, where the architecture \
361 macro expands to 'mips'. If we define 'mips' to 1, the \
362 architecture macro expands to 1 as well. */ \
363 if (!flag_iso && !TARGET_VXWORKS) \
364 builtin_define ("mips"); \
365 \
366 if (TARGET_64BIT) \
367 builtin_define ("__mips64"); \
368 \
369 /* Treat _R3000 and _R4000 like register-size \
370 defines, which is how they've historically \
371 been used. */ \
372 if (TARGET_64BIT) \
373 { \
374 builtin_define_std ("R4000"); \
375 builtin_define ("_R4000"); \
376 } \
377 else \
378 { \
379 builtin_define_std ("R3000"); \
380 builtin_define ("_R3000"); \
381 } \
382 \
383 if (TARGET_FLOAT64) \
384 builtin_define ("__mips_fpr=64"); \
385 else \
386 builtin_define ("__mips_fpr=32"); \
387 \
388 if (mips_base_compression_flags & MASK_MIPS16) \
389 builtin_define ("__mips16"); \
390 \
391 if (TARGET_MIPS3D) \
392 builtin_define ("__mips3d"); \
393 \
394 if (TARGET_SMARTMIPS) \
395 builtin_define ("__mips_smartmips"); \
396 \
397 if (mips_base_compression_flags & MASK_MICROMIPS) \
398 builtin_define ("__mips_micromips"); \
399 \
400 if (TARGET_MCU) \
401 builtin_define ("__mips_mcu"); \
402 \
403 if (TARGET_EVA) \
404 builtin_define ("__mips_eva"); \
405 \
406 if (TARGET_DSP) \
407 { \
408 builtin_define ("__mips_dsp"); \
409 if (TARGET_DSPR2) \
410 { \
411 builtin_define ("__mips_dspr2"); \
412 builtin_define ("__mips_dsp_rev=2"); \
413 } \
414 else \
415 builtin_define ("__mips_dsp_rev=1"); \
416 } \
417 \
418 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
419 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
420 \
421 if (ISA_MIPS1) \
422 { \
423 builtin_define ("__mips=1"); \
424 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
425 } \
426 else if (ISA_MIPS2) \
427 { \
428 builtin_define ("__mips=2"); \
429 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
430 } \
431 else if (ISA_MIPS3) \
432 { \
433 builtin_define ("__mips=3"); \
434 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
435 } \
436 else if (ISA_MIPS4) \
437 { \
438 builtin_define ("__mips=4"); \
439 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
440 } \
441 else if (ISA_MIPS32) \
442 { \
443 builtin_define ("__mips=32"); \
444 builtin_define ("__mips_isa_rev=1"); \
445 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
446 } \
447 else if (ISA_MIPS32R2) \
448 { \
449 builtin_define ("__mips=32"); \
450 builtin_define ("__mips_isa_rev=2"); \
451 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
452 } \
453 else if (ISA_MIPS64) \
454 { \
455 builtin_define ("__mips=64"); \
456 builtin_define ("__mips_isa_rev=1"); \
457 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
458 } \
459 else if (ISA_MIPS64R2) \
460 { \
461 builtin_define ("__mips=64"); \
462 builtin_define ("__mips_isa_rev=2"); \
463 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
464 } \
465 \
466 switch (mips_abi) \
467 { \
468 case ABI_32: \
469 builtin_define ("_ABIO32=1"); \
470 builtin_define ("_MIPS_SIM=_ABIO32"); \
471 break; \
472 \
473 case ABI_N32: \
474 builtin_define ("_ABIN32=2"); \
475 builtin_define ("_MIPS_SIM=_ABIN32"); \
476 break; \
477 \
478 case ABI_64: \
479 builtin_define ("_ABI64=3"); \
480 builtin_define ("_MIPS_SIM=_ABI64"); \
481 break; \
482 \
483 case ABI_O64: \
484 builtin_define ("_ABIO64=4"); \
485 builtin_define ("_MIPS_SIM=_ABIO64"); \
486 break; \
487 } \
488 \
489 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
490 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
491 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
492 builtin_define_with_int_value ("_MIPS_FPSET", \
493 32 / MAX_FPRS_PER_FMT); \
494 \
495 /* These defines reflect the ABI in use, not whether the \
496 FPU is directly accessible. */ \
497 if (TARGET_NO_FLOAT) \
498 builtin_define ("__mips_no_float"); \
499 else if (TARGET_HARD_FLOAT_ABI) \
500 builtin_define ("__mips_hard_float"); \
501 else \
502 builtin_define ("__mips_soft_float"); \
503 \
504 if (TARGET_SINGLE_FLOAT) \
505 builtin_define ("__mips_single_float"); \
506 \
507 if (TARGET_PAIRED_SINGLE_FLOAT) \
508 builtin_define ("__mips_paired_single_float"); \
509 \
510 if (mips_abs == MIPS_IEEE_754_2008) \
511 builtin_define ("__mips_abs2008"); \
512 \
513 if (mips_nan == MIPS_IEEE_754_2008) \
514 builtin_define ("__mips_nan2008"); \
515 \
516 if (TARGET_BIG_ENDIAN) \
517 { \
518 builtin_define_std ("MIPSEB"); \
519 builtin_define ("_MIPSEB"); \
520 } \
521 else \
522 { \
523 builtin_define_std ("MIPSEL"); \
524 builtin_define ("_MIPSEL"); \
525 } \
526 \
527 /* Whether calls should go through $25. The separate __PIC__ \
528 macro indicates whether abicalls code might use a GOT. */ \
529 if (TARGET_ABICALLS) \
530 builtin_define ("__mips_abicalls"); \
531 \
532 /* Whether Loongson vector modes are enabled. */ \
533 if (TARGET_LOONGSON_VECTORS) \
534 builtin_define ("__mips_loongson_vector_rev"); \
535 \
536 /* Historical Octeon macro. */ \
537 if (TARGET_OCTEON) \
538 builtin_define ("__OCTEON__"); \
539 \
540 if (TARGET_SYNCI) \
541 builtin_define ("__mips_synci"); \
542 \
543 /* Macros dependent on the C dialect. */ \
544 if (preprocessing_asm_p ()) \
545 { \
546 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
547 builtin_define ("_LANGUAGE_ASSEMBLY"); \
548 } \
549 else if (c_dialect_cxx ()) \
550 { \
551 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
552 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
553 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
554 } \
555 else \
556 { \
557 builtin_define_std ("LANGUAGE_C"); \
558 builtin_define ("_LANGUAGE_C"); \
559 } \
560 if (c_dialect_objc ()) \
561 { \
562 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
563 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
564 /* Bizarre, but retained for backwards compatibility. */ \
565 builtin_define_std ("LANGUAGE_C"); \
566 builtin_define ("_LANGUAGE_C"); \
567 } \
568 \
569 if (mips_abi == ABI_EABI) \
570 builtin_define ("__mips_eabi"); \
571 \
572 if (TARGET_CACHE_BUILTIN) \
573 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
574 } \
575 while (0)
576
577 /* Default target_flags if no switches are specified */
578
579 #ifndef TARGET_DEFAULT
580 #define TARGET_DEFAULT 0
581 #endif
582
583 #ifndef TARGET_CPU_DEFAULT
584 #define TARGET_CPU_DEFAULT 0
585 #endif
586
587 #ifndef TARGET_ENDIAN_DEFAULT
588 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
589 #endif
590
591 #ifdef IN_LIBGCC2
592 #undef TARGET_64BIT
593 /* Make this compile time constant for libgcc2 */
594 #ifdef __mips64
595 #define TARGET_64BIT 1
596 #else
597 #define TARGET_64BIT 0
598 #endif
599 #endif /* IN_LIBGCC2 */
600
601 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
602 when compiled with hardware floating point. This is because MIPS16
603 code cannot save and restore the floating-point registers, which is
604 important if in a mixed MIPS16/non-MIPS16 environment. */
605
606 #ifdef IN_LIBGCC2
607 #if __mips_hard_float
608 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
609 #endif
610 #endif /* IN_LIBGCC2 */
611
612 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
613
614 #ifndef MULTILIB_ENDIAN_DEFAULT
615 #if TARGET_ENDIAN_DEFAULT == 0
616 #define MULTILIB_ENDIAN_DEFAULT "EL"
617 #else
618 #define MULTILIB_ENDIAN_DEFAULT "EB"
619 #endif
620 #endif
621
622 #ifndef MULTILIB_ISA_DEFAULT
623 #if MIPS_ISA_DEFAULT == 1
624 #define MULTILIB_ISA_DEFAULT "mips1"
625 #elif MIPS_ISA_DEFAULT == 2
626 #define MULTILIB_ISA_DEFAULT "mips2"
627 #elif MIPS_ISA_DEFAULT == 3
628 #define MULTILIB_ISA_DEFAULT "mips3"
629 #elif MIPS_ISA_DEFAULT == 4
630 #define MULTILIB_ISA_DEFAULT "mips4"
631 #elif MIPS_ISA_DEFAULT == 32
632 #define MULTILIB_ISA_DEFAULT "mips32"
633 #elif MIPS_ISA_DEFAULT == 33
634 #define MULTILIB_ISA_DEFAULT "mips32r2"
635 #elif MIPS_ISA_DEFAULT == 64
636 #define MULTILIB_ISA_DEFAULT "mips64"
637 #elif MIPS_ISA_DEFAULT == 65
638 #define MULTILIB_ISA_DEFAULT "mips64r2"
639 #else
640 #define MULTILIB_ISA_DEFAULT "mips1"
641 #endif
642 #endif
643
644 #ifndef MIPS_ABI_DEFAULT
645 #define MIPS_ABI_DEFAULT ABI_32
646 #endif
647
648 /* Use the most portable ABI flag for the ASM specs. */
649
650 #if MIPS_ABI_DEFAULT == ABI_32
651 #define MULTILIB_ABI_DEFAULT "mabi=32"
652 #elif MIPS_ABI_DEFAULT == ABI_O64
653 #define MULTILIB_ABI_DEFAULT "mabi=o64"
654 #elif MIPS_ABI_DEFAULT == ABI_N32
655 #define MULTILIB_ABI_DEFAULT "mabi=n32"
656 #elif MIPS_ABI_DEFAULT == ABI_64
657 #define MULTILIB_ABI_DEFAULT "mabi=64"
658 #elif MIPS_ABI_DEFAULT == ABI_EABI
659 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
660 #endif
661
662 #ifndef MULTILIB_DEFAULTS
663 #define MULTILIB_DEFAULTS \
664 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
665 #endif
666
667 /* We must pass -EL to the linker by default for little endian embedded
668 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
669 linker will default to using big-endian output files. The OUTPUT_FORMAT
670 line must be in the linker script, otherwise -EB/-EL will not work. */
671
672 #ifndef ENDIAN_SPEC
673 #if TARGET_ENDIAN_DEFAULT == 0
674 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
675 #else
676 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
677 #endif
678 #endif
679
680 /* A spec condition that matches all non-mips16 -mips arguments. */
681
682 #define MIPS_ISA_LEVEL_OPTION_SPEC \
683 "mips1|mips2|mips3|mips4|mips32*|mips64*"
684
685 /* A spec condition that matches all non-mips16 architecture arguments. */
686
687 #define MIPS_ARCH_OPTION_SPEC \
688 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
689
690 /* A spec that infers a -mips argument from an -march argument,
691 or injects the default if no architecture is specified. */
692
693 #define MIPS_ISA_LEVEL_SPEC \
694 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
695 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
696 %{march=mips2|march=r6000:-mips2} \
697 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
698 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
699 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
700 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
701 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
702 |march=34k*|march=74k*|march=m14k*|march=1004k*: -mips32r2} \
703 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
704 |march=xlr: -mips64} \
705 %{march=mips64r2|march=loongson3a|march=octeon|march=xlp: -mips64r2} \
706 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
707
708 /* A spec that infers a -mhard-float or -msoft-float setting from an
709 -march argument. Note that soft-float and hard-float code are not
710 link-compatible. */
711
712 #define MIPS_ARCH_FLOAT_SPEC \
713 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
714 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
715 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
716 |march=m14k*|march=octeon|march=xlr: -msoft-float; \
717 march=*: -mhard-float}"
718
719 /* A spec condition that matches 32-bit options. It only works if
720 MIPS_ISA_LEVEL_SPEC has been applied. */
721
722 #define MIPS_32BIT_OPTION_SPEC \
723 "mips1|mips2|mips32*|mgp32"
724
725 /* Infer a -msynci setting from a -mips argument, on the assumption that
726 -msynci is desired where possible. */
727 #define MIPS_ISA_SYNCI_SPEC \
728 "%{msynci|mno-synci:;:%{mips32r2|mips64r2:-msynci;:-mno-synci}}"
729
730 #if (MIPS_ABI_DEFAULT == ABI_O64 \
731 || MIPS_ABI_DEFAULT == ABI_N32 \
732 || MIPS_ABI_DEFAULT == ABI_64)
733 #define OPT_ARCH64 "mabi=32|mgp32:;"
734 #define OPT_ARCH32 "mabi=32|mgp32"
735 #else
736 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
737 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
738 #endif
739
740 /* Support for a compile-time default CPU, et cetera. The rules are:
741 --with-arch is ignored if -march is specified or a -mips is specified
742 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
743 --with-tune is ignored if -mtune is specified; likewise
744 --with-tune-32 and --with-tune-64.
745 --with-abi is ignored if -mabi is specified.
746 --with-float is ignored if -mhard-float or -msoft-float are
747 specified.
748 --with-nan is ignored if -mnan is specified.
749 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
750 specified. */
751 #define OPTION_DEFAULT_SPECS \
752 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
753 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
754 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
755 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
756 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
757 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
758 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
759 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
760 {"fpu", "%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}" }, \
761 {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
762 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
763 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
764 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
765 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
766
767 /* A spec that infers the -mdsp setting from an -march argument. */
768 #define BASE_DRIVER_SELF_SPECS \
769 "%{!mno-dsp: \
770 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k*: -mdsp} \
771 %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
772
773 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
774
775 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
776 && ISA_HAS_COND_TRAP)
777
778 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
779
780 /* True if the ABI can only work with 64-bit integer registers. We
781 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
782 otherwise floating-point registers must also be 64-bit. */
783 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
784
785 /* Likewise for 32-bit regs. */
786 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
787
788 /* True if the file format uses 64-bit symbols. At present, this is
789 only true for n64, which uses 64-bit ELF. */
790 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
791
792 /* True if symbols are 64 bits wide. This is usually determined by
793 the ABI's file format, but it can be overridden by -msym32. Note that
794 overriding the size with -msym32 changes the ABI of relocatable objects,
795 although it doesn't change the ABI of a fully-linked object. */
796 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
797 && Pmode == DImode \
798 && !TARGET_SYM32)
799
800 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
801 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
802 || ISA_MIPS4 \
803 || ISA_MIPS64 \
804 || ISA_MIPS64R2)
805
806 /* ISA has branch likely instructions (e.g. mips2). */
807 /* Disable branchlikely for tx39 until compare rewrite. They haven't
808 been generated up to this point. */
809 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
810
811 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
812 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
813 || TARGET_MIPS5400 \
814 || TARGET_MIPS5500 \
815 || TARGET_MIPS5900 \
816 || TARGET_MIPS7000 \
817 || TARGET_MIPS9000 \
818 || TARGET_MAD \
819 || ISA_MIPS32 \
820 || ISA_MIPS32R2 \
821 || ISA_MIPS64 \
822 || ISA_MIPS64R2) \
823 && !TARGET_MIPS16)
824
825 /* ISA has a three-operand multiplication instruction. */
826 #define ISA_HAS_DMUL3 (TARGET_64BIT \
827 && TARGET_OCTEON \
828 && !TARGET_MIPS16)
829
830 /* ISA supports instructions DMULT and DMULTU. */
831 #define ISA_HAS_DMULT (TARGET_64BIT && !TARGET_MIPS5900)
832
833 /* ISA supports instructions MULT and MULTU.
834 This is always true, but the macro is needed for ISA_HAS_<D>MULT
835 in mips.md. */
836 #define ISA_HAS_MULT (1)
837
838 /* ISA supports instructions DDIV and DDIVU. */
839 #define ISA_HAS_DDIV (TARGET_64BIT && !TARGET_MIPS5900)
840
841 /* ISA supports instructions DIV and DIVU.
842 This is always true, but the macro is needed for ISA_HAS_<D>DIV
843 in mips.md. */
844 #define ISA_HAS_DIV (1)
845
846 #define ISA_HAS_DIV3 ((TARGET_LOONGSON_2EF \
847 || TARGET_LOONGSON_3A) \
848 && !TARGET_MIPS16)
849
850 /* ISA has the floating-point conditional move instructions introduced
851 in mips4. */
852 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
853 || ISA_MIPS32 \
854 || ISA_MIPS32R2 \
855 || ISA_MIPS64 \
856 || ISA_MIPS64R2) \
857 && !TARGET_MIPS5500 \
858 && !TARGET_MIPS16)
859
860 /* ISA has the integer conditional move instructions introduced in mips4 and
861 ST Loongson 2E/2F. */
862 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
863 || TARGET_MIPS5900 \
864 || TARGET_LOONGSON_2EF)
865
866 /* ISA has LDC1 and SDC1. */
867 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
868 && !TARGET_MIPS5900 \
869 && !TARGET_MIPS16)
870
871 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
872 branch on CC, and move (both FP and non-FP) on CC. */
873 #define ISA_HAS_8CC (ISA_MIPS4 \
874 || ISA_MIPS32 \
875 || ISA_MIPS32R2 \
876 || ISA_MIPS64 \
877 || ISA_MIPS64R2)
878
879 /* This is a catch all for other mips4 instructions: indexed load, the
880 FP madd and msub instructions, and the FP recip and recip sqrt
881 instructions. Note that this macro should only be used by other
882 ISA_HAS_* macros. */
883 #define ISA_HAS_FP4 ((ISA_MIPS4 \
884 || ISA_MIPS32R2 \
885 || ISA_MIPS64 \
886 || ISA_MIPS64R2) \
887 && !TARGET_MIPS16)
888
889 /* ISA has floating-point indexed load and store instructions
890 (LWXC1, LDXC1, SWXC1 and SDXC1). */
891 #define ISA_HAS_LXC1_SXC1 ISA_HAS_FP4
892
893 /* ISA has paired-single instructions. */
894 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
895
896 /* ISA has conditional trap instructions. */
897 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
898 && !TARGET_MIPS16)
899
900 /* ISA has integer multiply-accumulate instructions, madd and msub. */
901 #define ISA_HAS_MADD_MSUB (ISA_MIPS32 \
902 || ISA_MIPS32R2 \
903 || ISA_MIPS64 \
904 || ISA_MIPS64R2)
905
906 /* Integer multiply-accumulate instructions should be generated. */
907 #define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
908
909 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
910 #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
911
912 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
913 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
914
915 /* ISA has floating-point nmadd and nmsub instructions
916 'd = -((a * b) [+-] c)'. */
917 #define ISA_HAS_NMADD4_NMSUB4 ISA_HAS_FP4
918
919 /* ISA has floating-point nmadd and nmsub instructions
920 'c = -((a * b) [+-] c)'. */
921 #define ISA_HAS_NMADD3_NMSUB3 TARGET_LOONGSON_2EF
922
923 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The
924 MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
925 doubles are stored in pairs of FPRs, so for safety's sake, we apply
926 this restriction to the MIPS IV ISA too. */
927 #define ISA_HAS_FP_RECIP_RSQRT(MODE) \
928 (((ISA_HAS_FP4 \
929 && ((MODE) == SFmode \
930 || ((TARGET_FLOAT64 \
931 || ISA_MIPS32R2 \
932 || ISA_MIPS64R2) \
933 && (MODE) == DFmode))) \
934 || (TARGET_SB1 \
935 && (MODE) == V2SFmode)) \
936 && !TARGET_MIPS16)
937
938 /* ISA has count leading zeroes/ones instruction (not implemented). */
939 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
940 || ISA_MIPS32R2 \
941 || ISA_MIPS64 \
942 || ISA_MIPS64R2) \
943 && !TARGET_MIPS16)
944
945 /* ISA has three operand multiply instructions that put
946 the high part in an accumulator: mulhi or mulhiu. */
947 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
948 || TARGET_MIPS5500 \
949 || TARGET_SR71K) \
950 && !TARGET_MIPS16)
951
952 /* ISA has three operand multiply instructions that negate the
953 result and put the result in an accumulator. */
954 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
955 || TARGET_MIPS5500 \
956 || TARGET_SR71K) \
957 && !TARGET_MIPS16)
958
959 /* ISA has three operand multiply instructions that subtract the
960 result from a 4th operand and put the result in an accumulator. */
961 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
962 || TARGET_MIPS5500 \
963 || TARGET_SR71K) \
964 && !TARGET_MIPS16)
965
966 /* ISA has three operand multiply instructions that add the result
967 to a 4th operand and put the result in an accumulator. */
968 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
969 || TARGET_MIPS4130 \
970 || TARGET_MIPS5400 \
971 || TARGET_MIPS5500 \
972 || TARGET_SR71K) \
973 && !TARGET_MIPS16)
974
975 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
976 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
977 || TARGET_MIPS4130) \
978 && !TARGET_MIPS16)
979
980 /* ISA has the "ror" (rotate right) instructions. */
981 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
982 || ISA_MIPS64R2 \
983 || TARGET_MIPS5400 \
984 || TARGET_MIPS5500 \
985 || TARGET_SR71K \
986 || TARGET_SMARTMIPS) \
987 && !TARGET_MIPS16)
988
989 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
990 64-bit targets also provide DSBH and DSHD. */
991 #define ISA_HAS_WSBH ((ISA_MIPS32R2 || ISA_MIPS64R2) \
992 && !TARGET_MIPS16)
993
994 /* ISA has data prefetch instructions. This controls use of 'pref'. */
995 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
996 || TARGET_LOONGSON_2EF \
997 || TARGET_MIPS5900 \
998 || ISA_MIPS32 \
999 || ISA_MIPS32R2 \
1000 || ISA_MIPS64 \
1001 || ISA_MIPS64R2) \
1002 && !TARGET_MIPS16)
1003
1004 /* ISA has data indexed prefetch instructions. This controls use of
1005 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1006 (prefx is a cop1x instruction, so can only be used if FP is
1007 enabled.) */
1008 #define ISA_HAS_PREFETCHX ISA_HAS_FP4
1009
1010 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
1011 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
1012 also requires TARGET_DOUBLE_FLOAT. */
1013 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
1014
1015 /* ISA includes the MIPS32r2 seb and seh instructions. */
1016 #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \
1017 || ISA_MIPS64R2) \
1018 && !TARGET_MIPS16)
1019
1020 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
1021 #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \
1022 || ISA_MIPS64R2) \
1023 && !TARGET_MIPS16)
1024
1025 /* ISA has instructions for accessing top part of 64-bit fp regs. */
1026 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \
1027 && (ISA_MIPS32R2 \
1028 || ISA_MIPS64R2))
1029
1030 /* ISA has lwxs instruction (load w/scaled index address. */
1031 #define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1032 && !TARGET_MIPS16)
1033
1034 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1035 #define ISA_HAS_LBX (TARGET_OCTEON2)
1036 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1037 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1038 #define ISA_HAS_LHUX (TARGET_OCTEON2)
1039 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1040 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1041 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1042 && TARGET_64BIT)
1043
1044 /* The DSP ASE is available. */
1045 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1046
1047 /* Revision 2 of the DSP ASE is available. */
1048 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1049
1050 /* True if the result of a load is not available to the next instruction.
1051 A nop will then be needed between instructions like "lw $4,..."
1052 and "addiu $4,$4,1". */
1053 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1054 && !TARGET_MIPS3900 \
1055 && !TARGET_MIPS5900 \
1056 && !TARGET_MIPS16 \
1057 && !TARGET_MICROMIPS)
1058
1059 /* Likewise mtc1 and mfc1. */
1060 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1061 && !TARGET_MIPS5900 \
1062 && !TARGET_LOONGSON_2EF)
1063
1064 /* Likewise floating-point comparisons. */
1065 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1066 && !TARGET_MIPS5900 \
1067 && !TARGET_LOONGSON_2EF)
1068
1069 /* True if mflo and mfhi can be immediately followed by instructions
1070 which write to the HI and LO registers.
1071
1072 According to MIPS specifications, MIPS ISAs I, II, and III need
1073 (at least) two instructions between the reads of HI/LO and
1074 instructions which write them, and later ISAs do not. Contradicting
1075 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1076 the UM for the NEC Vr5000) document needing the instructions between
1077 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1078 MIPS64 and later ISAs to have the interlocks, plus any specific
1079 earlier-ISA CPUs for which CPU documentation declares that the
1080 instructions are really interlocked. */
1081 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1082 || ISA_MIPS32R2 \
1083 || ISA_MIPS64 \
1084 || ISA_MIPS64R2 \
1085 || TARGET_MIPS5500 \
1086 || TARGET_MIPS5900 \
1087 || TARGET_LOONGSON_2EF)
1088
1089 /* ISA includes synci, jr.hb and jalr.hb. */
1090 #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \
1091 || ISA_MIPS64R2) \
1092 && !TARGET_MIPS16)
1093
1094 /* ISA includes sync. */
1095 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1096 #define GENERATE_SYNC \
1097 (target_flags_explicit & MASK_LLSC \
1098 ? TARGET_LLSC && !TARGET_MIPS16 \
1099 : ISA_HAS_SYNC)
1100
1101 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1102 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1103 instructions. */
1104 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1105 #define GENERATE_LL_SC \
1106 (target_flags_explicit & MASK_LLSC \
1107 ? TARGET_LLSC && !TARGET_MIPS16 \
1108 : ISA_HAS_LL_SC)
1109
1110 #define ISA_HAS_SWAP (TARGET_XLP)
1111 #define ISA_HAS_LDADD (TARGET_XLP)
1112
1113 /* ISA includes the baddu instruction. */
1114 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1115
1116 /* ISA includes the bbit* instructions. */
1117 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1118
1119 /* ISA includes the cins instruction. */
1120 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1121
1122 /* ISA includes the exts instruction. */
1123 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1124
1125 /* ISA includes the seq and sne instructions. */
1126 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1127
1128 /* ISA includes the pop instruction. */
1129 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1130
1131 /* The CACHE instruction is available in non-MIPS16 code. */
1132 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1133
1134 /* The CACHE instruction is available. */
1135 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1136 \f
1137 /* Tell collect what flags to pass to nm. */
1138 #ifndef NM_FLAGS
1139 #define NM_FLAGS "-Bn"
1140 #endif
1141
1142 \f
1143 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1144 the assembler. It may be overridden by subtargets.
1145
1146 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1147 COFF debugging info. */
1148
1149 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1150 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1151 %{g} %{g0} %{g1} %{g2} %{g3} \
1152 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1153 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1154 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1155 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1156 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1157 #endif
1158
1159 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1160 overridden by subtargets. */
1161
1162 #ifndef SUBTARGET_ASM_SPEC
1163 #define SUBTARGET_ASM_SPEC ""
1164 #endif
1165
1166 #undef ASM_SPEC
1167 #define ASM_SPEC "\
1168 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1169 %{mips32*} %{mips64*} \
1170 %{mips16} %{mno-mips16:-no-mips16} \
1171 %{mmicromips} %{mno-micromips} \
1172 %{mips3d} %{mno-mips3d:-no-mips3d} \
1173 %{mdmx} %{mno-mdmx:-no-mdmx} \
1174 %{mdsp} %{mno-dsp} \
1175 %{mdspr2} %{mno-dspr2} \
1176 %{mmcu} %{mno-mcu} \
1177 %{meva} %{mno-eva} \
1178 %{mvirt} %{mno-virt} \
1179 %{msmartmips} %{mno-smartmips} \
1180 %{mmt} %{mno-mt} \
1181 %{mfix-rm7000} %{mno-fix-rm7000} \
1182 %{mfix-vr4120} %{mfix-vr4130} \
1183 %{mfix-24k} \
1184 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1185 %(subtarget_asm_debugging_spec) \
1186 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1187 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1188 %{mfp32} %{mfp64} %{mnan=*} \
1189 %{mshared} %{mno-shared} \
1190 %{msym32} %{mno-sym32} \
1191 %{mtune=*} \
1192 %(subtarget_asm_spec)"
1193
1194 /* Extra switches sometimes passed to the linker. */
1195
1196 #ifndef LINK_SPEC
1197 #define LINK_SPEC "\
1198 %(endian_spec) \
1199 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1200 %{shared}"
1201 #endif /* LINK_SPEC defined */
1202
1203
1204 /* Specs for the compiler proper */
1205
1206 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1207 overridden by subtargets. */
1208 #ifndef SUBTARGET_CC1_SPEC
1209 #define SUBTARGET_CC1_SPEC ""
1210 #endif
1211
1212 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1213
1214 #undef CC1_SPEC
1215 #define CC1_SPEC "\
1216 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1217 %(subtarget_cc1_spec)"
1218
1219 /* Preprocessor specs. */
1220
1221 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1222 overridden by subtargets. */
1223 #ifndef SUBTARGET_CPP_SPEC
1224 #define SUBTARGET_CPP_SPEC ""
1225 #endif
1226
1227 #define CPP_SPEC "%(subtarget_cpp_spec)"
1228
1229 /* This macro defines names of additional specifications to put in the specs
1230 that can be used in various specifications like CC1_SPEC. Its definition
1231 is an initializer with a subgrouping for each command option.
1232
1233 Each subgrouping contains a string constant, that defines the
1234 specification name, and a string constant that used by the GCC driver
1235 program.
1236
1237 Do not define this macro if it does not need to do anything. */
1238
1239 #define EXTRA_SPECS \
1240 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1241 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1242 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1243 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1244 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1245 { "endian_spec", ENDIAN_SPEC }, \
1246 SUBTARGET_EXTRA_SPECS
1247
1248 #ifndef SUBTARGET_EXTRA_SPECS
1249 #define SUBTARGET_EXTRA_SPECS
1250 #endif
1251 \f
1252 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1253 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1254
1255 #ifndef PREFERRED_DEBUGGING_TYPE
1256 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1257 #endif
1258
1259 /* The size of DWARF addresses should be the same as the size of symbols
1260 in the target file format. They shouldn't depend on things like -msym32,
1261 because many DWARF consumers do not allow the mixture of address sizes
1262 that one would then get from linking -msym32 code with -msym64 code.
1263
1264 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1265 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1266 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1267
1268 /* By default, turn on GDB extensions. */
1269 #define DEFAULT_GDB_EXTENSIONS 1
1270
1271 /* Local compiler-generated symbols must have a prefix that the assembler
1272 understands. By default, this is $, although some targets (e.g.,
1273 NetBSD-ELF) need to override this. */
1274
1275 #ifndef LOCAL_LABEL_PREFIX
1276 #define LOCAL_LABEL_PREFIX "$"
1277 #endif
1278
1279 /* By default on the mips, external symbols do not have an underscore
1280 prepended, but some targets (e.g., NetBSD) require this. */
1281
1282 #ifndef USER_LABEL_PREFIX
1283 #define USER_LABEL_PREFIX ""
1284 #endif
1285
1286 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1287 since the length can run past this up to a continuation point. */
1288 #undef DBX_CONTIN_LENGTH
1289 #define DBX_CONTIN_LENGTH 1500
1290
1291 /* How to renumber registers for dbx and gdb. */
1292 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1293
1294 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1295 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1296
1297 /* The DWARF 2 CFA column which tracks the return address. */
1298 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1299
1300 /* Before the prologue, RA lives in r31. */
1301 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1302
1303 /* Describe how we implement __builtin_eh_return. */
1304 #define EH_RETURN_DATA_REGNO(N) \
1305 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1306
1307 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1308
1309 #define EH_USES(N) mips_eh_uses (N)
1310
1311 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1312 The default for this in 64-bit mode is 8, which causes problems with
1313 SFmode register saves. */
1314 #define DWARF_CIE_DATA_ALIGNMENT -4
1315
1316 /* Correct the offset of automatic variables and arguments. Note that
1317 the MIPS debug format wants all automatic variables and arguments
1318 to be in terms of the virtual frame pointer (stack pointer before
1319 any adjustment in the function), while the MIPS 3.0 linker wants
1320 the frame pointer to be the stack pointer after the initial
1321 adjustment. */
1322
1323 #define DEBUGGER_AUTO_OFFSET(X) \
1324 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1325 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1326 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1327 \f
1328 /* Target machine storage layout */
1329
1330 #define BITS_BIG_ENDIAN 0
1331 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1332 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1333
1334 #define MAX_BITS_PER_WORD 64
1335
1336 /* Width of a word, in units (bytes). */
1337 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1338 #ifndef IN_LIBGCC2
1339 #define MIN_UNITS_PER_WORD 4
1340 #endif
1341
1342 /* For MIPS, width of a floating point register. */
1343 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1344
1345 /* The number of consecutive floating-point registers needed to store the
1346 largest format supported by the FPU. */
1347 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1348
1349 /* The number of consecutive floating-point registers needed to store the
1350 smallest format supported by the FPU. */
1351 #define MIN_FPRS_PER_FMT \
1352 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1353 ? 1 : MAX_FPRS_PER_FMT)
1354
1355 /* The largest size of value that can be held in floating-point
1356 registers and moved with a single instruction. */
1357 #define UNITS_PER_HWFPVALUE \
1358 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1359
1360 /* The largest size of value that can be held in floating-point
1361 registers. */
1362 #define UNITS_PER_FPVALUE \
1363 (TARGET_SOFT_FLOAT_ABI ? 0 \
1364 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1365 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1366
1367 /* The number of bytes in a double. */
1368 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1369
1370 /* Set the sizes of the core types. */
1371 #define SHORT_TYPE_SIZE 16
1372 #define INT_TYPE_SIZE 32
1373 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1374 #define LONG_LONG_TYPE_SIZE 64
1375
1376 #define FLOAT_TYPE_SIZE 32
1377 #define DOUBLE_TYPE_SIZE 64
1378 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1379
1380 /* Define the sizes of fixed-point types. */
1381 #define SHORT_FRACT_TYPE_SIZE 8
1382 #define FRACT_TYPE_SIZE 16
1383 #define LONG_FRACT_TYPE_SIZE 32
1384 #define LONG_LONG_FRACT_TYPE_SIZE 64
1385
1386 #define SHORT_ACCUM_TYPE_SIZE 16
1387 #define ACCUM_TYPE_SIZE 32
1388 #define LONG_ACCUM_TYPE_SIZE 64
1389 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1390 doesn't support 128-bit integers for MIPS32 currently. */
1391 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1392
1393 /* long double is not a fixed mode, but the idea is that, if we
1394 support long double, we also want a 128-bit integer type. */
1395 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1396
1397 #ifdef IN_LIBGCC2
1398 #if ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1399 || (defined _ABI64 && _MIPS_SIM == _ABI64))
1400 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1401 # else
1402 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1403 # endif
1404 #endif
1405
1406 /* Width in bits of a pointer. */
1407 #ifndef POINTER_SIZE
1408 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1409 #endif
1410
1411 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1412 #define PARM_BOUNDARY BITS_PER_WORD
1413
1414 /* Allocation boundary (in *bits*) for the code of a function. */
1415 #define FUNCTION_BOUNDARY 32
1416
1417 /* Alignment of field after `int : 0' in a structure. */
1418 #define EMPTY_FIELD_BOUNDARY 32
1419
1420 /* Every structure's size must be a multiple of this. */
1421 /* 8 is observed right on a DECstation and on riscos 4.02. */
1422 #define STRUCTURE_SIZE_BOUNDARY 8
1423
1424 /* There is no point aligning anything to a rounder boundary than this. */
1425 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1426
1427 /* All accesses must be aligned. */
1428 #define STRICT_ALIGNMENT 1
1429
1430 /* Define this if you wish to imitate the way many other C compilers
1431 handle alignment of bitfields and the structures that contain
1432 them.
1433
1434 The behavior is that the type written for a bit-field (`int',
1435 `short', or other integer type) imposes an alignment for the
1436 entire structure, as if the structure really did contain an
1437 ordinary field of that type. In addition, the bit-field is placed
1438 within the structure so that it would fit within such a field,
1439 not crossing a boundary for it.
1440
1441 Thus, on most machines, a bit-field whose type is written as `int'
1442 would not cross a four-byte boundary, and would force four-byte
1443 alignment for the whole structure. (The alignment used may not
1444 be four bytes; it is controlled by the other alignment
1445 parameters.)
1446
1447 If the macro is defined, its definition should be a C expression;
1448 a nonzero value for the expression enables this behavior. */
1449
1450 #define PCC_BITFIELD_TYPE_MATTERS 1
1451
1452 /* If defined, a C expression to compute the alignment given to a
1453 constant that is being placed in memory. CONSTANT is the constant
1454 and ALIGN is the alignment that the object would ordinarily have.
1455 The value of this macro is used instead of that alignment to align
1456 the object.
1457
1458 If this macro is not defined, then ALIGN is used.
1459
1460 The typical use of this macro is to increase alignment for string
1461 constants to be word aligned so that `strcpy' calls that copy
1462 constants can be done inline. */
1463
1464 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1465 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1466 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1467
1468 /* If defined, a C expression to compute the alignment for a static
1469 variable. TYPE is the data type, and ALIGN is the alignment that
1470 the object would ordinarily have. The value of this macro is used
1471 instead of that alignment to align the object.
1472
1473 If this macro is not defined, then ALIGN is used.
1474
1475 One use of this macro is to increase alignment of medium-size
1476 data to make it all fit in fewer cache lines. Another is to
1477 cause character arrays to be word-aligned so that `strcpy' calls
1478 that copy constants to character arrays can be done inline. */
1479
1480 #undef DATA_ALIGNMENT
1481 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1482 ((((ALIGN) < BITS_PER_WORD) \
1483 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1484 || TREE_CODE (TYPE) == UNION_TYPE \
1485 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1486
1487 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1488 character arrays to be word-aligned so that `strcpy' calls that copy
1489 constants to character arrays can be done inline, and 'strcmp' can be
1490 optimised to use word loads. */
1491 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1492 DATA_ALIGNMENT (TYPE, ALIGN)
1493
1494 #define PAD_VARARGS_DOWN \
1495 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1496
1497 /* Define if operations between registers always perform the operation
1498 on the full register even if a narrower mode is specified. */
1499 #define WORD_REGISTER_OPERATIONS
1500
1501 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1502 moves. All other references are zero extended. */
1503 #define LOAD_EXTEND_OP(MODE) \
1504 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1505 ? SIGN_EXTEND : ZERO_EXTEND)
1506
1507 /* Define this macro if it is advisable to hold scalars in registers
1508 in a wider mode than that declared by the program. In such cases,
1509 the value is constrained to be within the bounds of the declared
1510 type, but kept valid in the wider mode. The signedness of the
1511 extension may differ from that of the type. */
1512
1513 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1514 if (GET_MODE_CLASS (MODE) == MODE_INT \
1515 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1516 { \
1517 if ((MODE) == SImode) \
1518 (UNSIGNEDP) = 0; \
1519 (MODE) = Pmode; \
1520 }
1521
1522 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1523 Extensions of pointers to word_mode must be signed. */
1524 #define POINTERS_EXTEND_UNSIGNED false
1525
1526 /* Define if loading short immediate values into registers sign extends. */
1527 #define SHORT_IMMEDIATES_SIGN_EXTEND
1528
1529 /* The [d]clz instructions have the natural values at 0. */
1530
1531 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1532 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1533 \f
1534 /* Standard register usage. */
1535
1536 /* Number of hardware registers. We have:
1537
1538 - 32 integer registers
1539 - 32 floating point registers
1540 - 8 condition code registers
1541 - 2 accumulator registers (hi and lo)
1542 - 32 registers each for coprocessors 0, 2 and 3
1543 - 4 fake registers:
1544 - ARG_POINTER_REGNUM
1545 - FRAME_POINTER_REGNUM
1546 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1547 - CPRESTORE_SLOT_REGNUM
1548 - 2 dummy entries that were used at various times in the past.
1549 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1550 - 6 DSP control registers */
1551
1552 #define FIRST_PSEUDO_REGISTER 188
1553
1554 /* By default, fix the kernel registers ($26 and $27), the global
1555 pointer ($28) and the stack pointer ($29). This can change
1556 depending on the command-line options.
1557
1558 Regarding coprocessor registers: without evidence to the contrary,
1559 it's best to assume that each coprocessor register has a unique
1560 use. This can be overridden, in, e.g., mips_option_override or
1561 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1562 inappropriate for a particular target. */
1563
1564 #define FIXED_REGISTERS \
1565 { \
1566 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1567 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1568 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1569 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1570 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1571 /* COP0 registers */ \
1572 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1573 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1574 /* COP2 registers */ \
1575 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1576 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1577 /* COP3 registers */ \
1578 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1579 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1580 /* 6 DSP accumulator registers & 6 control registers */ \
1581 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1582 }
1583
1584
1585 /* Set up this array for o32 by default.
1586
1587 Note that we don't mark $31 as a call-clobbered register. The idea is
1588 that it's really the call instructions themselves which clobber $31.
1589 We don't care what the called function does with it afterwards.
1590
1591 This approach makes it easier to implement sibcalls. Unlike normal
1592 calls, sibcalls don't clobber $31, so the register reaches the
1593 called function in tact. EPILOGUE_USES says that $31 is useful
1594 to the called function. */
1595
1596 #define CALL_USED_REGISTERS \
1597 { \
1598 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1599 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1600 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1601 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1602 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1603 /* COP0 registers */ \
1604 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1605 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1606 /* COP2 registers */ \
1607 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1608 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1609 /* COP3 registers */ \
1610 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1611 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1612 /* 6 DSP accumulator registers & 6 control registers */ \
1613 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1614 }
1615
1616
1617 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1618
1619 #define CALL_REALLY_USED_REGISTERS \
1620 { /* General registers. */ \
1621 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1622 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1623 /* Floating-point registers. */ \
1624 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1625 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1626 /* Others. */ \
1627 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1628 /* COP0 registers */ \
1629 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1630 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1631 /* COP2 registers */ \
1632 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1633 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1634 /* COP3 registers */ \
1635 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1636 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1637 /* 6 DSP accumulator registers & 6 control registers */ \
1638 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1639 }
1640
1641 /* Internal macros to classify a register number as to whether it's a
1642 general purpose register, a floating point register, a
1643 multiply/divide register, or a status register. */
1644
1645 #define GP_REG_FIRST 0
1646 #define GP_REG_LAST 31
1647 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1648 #define GP_DBX_FIRST 0
1649 #define K0_REG_NUM (GP_REG_FIRST + 26)
1650 #define K1_REG_NUM (GP_REG_FIRST + 27)
1651 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1652
1653 #define FP_REG_FIRST 32
1654 #define FP_REG_LAST 63
1655 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1656 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1657
1658 #define MD_REG_FIRST 64
1659 #define MD_REG_LAST 65
1660 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1661 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1662
1663 /* The DWARF 2 CFA column which tracks the return address from a
1664 signal handler context. This means that to maintain backwards
1665 compatibility, no hard register can be assigned this column if it
1666 would need to be handled by the DWARF unwinder. */
1667 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1668
1669 #define ST_REG_FIRST 67
1670 #define ST_REG_LAST 74
1671 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1672
1673
1674 /* FIXME: renumber. */
1675 #define COP0_REG_FIRST 80
1676 #define COP0_REG_LAST 111
1677 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1678
1679 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1680 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1681 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1682
1683 #define COP2_REG_FIRST 112
1684 #define COP2_REG_LAST 143
1685 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1686
1687 #define COP3_REG_FIRST 144
1688 #define COP3_REG_LAST 175
1689 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1690
1691 /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1692 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1693 #define ALL_COP_REG_LAST COP3_REG_LAST
1694 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1695
1696 #define DSP_ACC_REG_FIRST 176
1697 #define DSP_ACC_REG_LAST 181
1698 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1699
1700 #define AT_REGNUM (GP_REG_FIRST + 1)
1701 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1702 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1703
1704 /* A few bitfield locations for the coprocessor registers. */
1705 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1706 the cause register for the EIC interrupt mode. */
1707 #define CAUSE_IPL 10
1708 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1709 #define SR_IPL 10
1710 /* Exception Level is at bit 1 of the status register. */
1711 #define SR_EXL 1
1712 /* Interrupt Enable is at bit 0 of the status register. */
1713 #define SR_IE 0
1714
1715 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1716 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1717 should be used instead. */
1718 #define FPSW_REGNUM ST_REG_FIRST
1719
1720 #define GP_REG_P(REGNO) \
1721 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1722 #define M16_REG_P(REGNO) \
1723 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1724 #define M16STORE_REG_P(REGNO) \
1725 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1726 #define FP_REG_P(REGNO) \
1727 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1728 #define MD_REG_P(REGNO) \
1729 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1730 #define ST_REG_P(REGNO) \
1731 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1732 #define COP0_REG_P(REGNO) \
1733 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1734 #define COP2_REG_P(REGNO) \
1735 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1736 #define COP3_REG_P(REGNO) \
1737 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1738 #define ALL_COP_REG_P(REGNO) \
1739 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1740 /* Test if REGNO is one of the 6 new DSP accumulators. */
1741 #define DSP_ACC_REG_P(REGNO) \
1742 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1743 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1744 #define ACC_REG_P(REGNO) \
1745 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1746
1747 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1748
1749 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1750 to initialize the mips16 gp pseudo register. */
1751 #define CONST_GP_P(X) \
1752 (GET_CODE (X) == CONST \
1753 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1754 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1755
1756 /* Return coprocessor number from register number. */
1757
1758 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1759 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1760 : COP3_REG_P (REGNO) ? '3' : '?')
1761
1762
1763 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1764
1765 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1766 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1767
1768 #define MODES_TIEABLE_P mips_modes_tieable_p
1769
1770 /* Register to use for pushing function arguments. */
1771 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1772
1773 /* These two registers don't really exist: they get eliminated to either
1774 the stack or hard frame pointer. */
1775 #define ARG_POINTER_REGNUM 77
1776 #define FRAME_POINTER_REGNUM 78
1777
1778 /* $30 is not available on the mips16, so we use $17 as the frame
1779 pointer. */
1780 #define HARD_FRAME_POINTER_REGNUM \
1781 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1782
1783 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1784 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1785
1786 /* Register in which static-chain is passed to a function. */
1787 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1788
1789 /* Registers used as temporaries in prologue/epilogue code:
1790
1791 - If a MIPS16 PIC function needs access to _gp, it first loads
1792 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1793
1794 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1795 register. The register must not conflict with MIPS16_PIC_TEMP.
1796
1797 - If we aren't generating MIPS16 code, the prologue can also use
1798 MIPS_PROLOGUE_TEMP2 as a general temporary register.
1799
1800 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1801 register.
1802
1803 If we're generating MIPS16 code, these registers must come from the
1804 core set of 8. The prologue registers mustn't conflict with any
1805 incoming arguments, the static chain pointer, or the frame pointer.
1806 The epilogue temporary mustn't conflict with the return registers,
1807 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1808 or the EH data registers.
1809
1810 If we're generating interrupt handlers, we use K0 as a temporary register
1811 in prologue/epilogue code. */
1812
1813 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1814 #define MIPS_PROLOGUE_TEMP_REGNUM \
1815 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1816 #define MIPS_PROLOGUE_TEMP2_REGNUM \
1817 (TARGET_MIPS16 \
1818 ? (gcc_unreachable (), INVALID_REGNUM) \
1819 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
1820 #define MIPS_EPILOGUE_TEMP_REGNUM \
1821 (cfun->machine->interrupt_handler_p \
1822 ? K0_REG_NUM \
1823 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1824
1825 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1826 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1827 #define MIPS_PROLOGUE_TEMP2(MODE) \
1828 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
1829 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1830
1831 /* Define this macro if it is as good or better to call a constant
1832 function address than to call an address kept in a register. */
1833 #define NO_FUNCTION_CSE 1
1834
1835 /* The ABI-defined global pointer. Sometimes we use a different
1836 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1837 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1838
1839 /* We normally use $28 as the global pointer. However, when generating
1840 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1841 register instead. They can then avoid saving and restoring $28
1842 and perhaps avoid using a frame at all.
1843
1844 When a leaf function uses something other than $28, mips_expand_prologue
1845 will modify pic_offset_table_rtx in place. Take the register number
1846 from there after reload. */
1847 #define PIC_OFFSET_TABLE_REGNUM \
1848 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1849 \f
1850 /* Define the classes of registers for register constraints in the
1851 machine description. Also define ranges of constants.
1852
1853 One of the classes must always be named ALL_REGS and include all hard regs.
1854 If there is more than one class, another class must be named NO_REGS
1855 and contain no registers.
1856
1857 The name GENERAL_REGS must be the name of a class (or an alias for
1858 another name such as ALL_REGS). This is the class of registers
1859 that is allowed by "g" or "r" in a register constraint.
1860 Also, registers outside this class are allocated only when
1861 instructions express preferences for them.
1862
1863 The classes must be numbered in nondecreasing order; that is,
1864 a larger-numbered class must never be contained completely
1865 in a smaller-numbered class.
1866
1867 For any two classes, it is very desirable that there be another
1868 class that represents their union. */
1869
1870 enum reg_class
1871 {
1872 NO_REGS, /* no registers in set */
1873 M16_STORE_REGS, /* microMIPS store registers */
1874 M16_REGS, /* mips16 directly accessible registers */
1875 T_REG, /* mips16 T register ($24) */
1876 M16_T_REGS, /* mips16 registers plus T register */
1877 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1878 V1_REG, /* Register $v1 ($3) used for TLS access. */
1879 LEA_REGS, /* Every GPR except $25 */
1880 GR_REGS, /* integer registers */
1881 FP_REGS, /* floating point registers */
1882 MD0_REG, /* first multiply/divide register */
1883 MD1_REG, /* second multiply/divide register */
1884 MD_REGS, /* multiply/divide registers (hi/lo) */
1885 COP0_REGS, /* generic coprocessor classes */
1886 COP2_REGS,
1887 COP3_REGS,
1888 ST_REGS, /* status registers (fp status) */
1889 DSP_ACC_REGS, /* DSP accumulator registers */
1890 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1891 FRAME_REGS, /* $arg and $frame */
1892 GR_AND_MD0_REGS, /* union classes */
1893 GR_AND_MD1_REGS,
1894 GR_AND_MD_REGS,
1895 GR_AND_ACC_REGS,
1896 ALL_REGS, /* all registers */
1897 LIM_REG_CLASSES /* max value + 1 */
1898 };
1899
1900 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1901
1902 #define GENERAL_REGS GR_REGS
1903
1904 /* An initializer containing the names of the register classes as C
1905 string constants. These names are used in writing some of the
1906 debugging dumps. */
1907
1908 #define REG_CLASS_NAMES \
1909 { \
1910 "NO_REGS", \
1911 "M16_STORE_REGS", \
1912 "M16_REGS", \
1913 "T_REG", \
1914 "M16_T_REGS", \
1915 "PIC_FN_ADDR_REG", \
1916 "V1_REG", \
1917 "LEA_REGS", \
1918 "GR_REGS", \
1919 "FP_REGS", \
1920 "MD0_REG", \
1921 "MD1_REG", \
1922 "MD_REGS", \
1923 /* coprocessor registers */ \
1924 "COP0_REGS", \
1925 "COP2_REGS", \
1926 "COP3_REGS", \
1927 "ST_REGS", \
1928 "DSP_ACC_REGS", \
1929 "ACC_REGS", \
1930 "FRAME_REGS", \
1931 "GR_AND_MD0_REGS", \
1932 "GR_AND_MD1_REGS", \
1933 "GR_AND_MD_REGS", \
1934 "GR_AND_ACC_REGS", \
1935 "ALL_REGS" \
1936 }
1937
1938 /* An initializer containing the contents of the register classes,
1939 as integers which are bit masks. The Nth integer specifies the
1940 contents of class N. The way the integer MASK is interpreted is
1941 that register R is in the class if `MASK & (1 << R)' is 1.
1942
1943 When the machine has more than 32 registers, an integer does not
1944 suffice. Then the integers are replaced by sub-initializers,
1945 braced groupings containing several integers. Each
1946 sub-initializer must be suitable as an initializer for the type
1947 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1948
1949 #define REG_CLASS_CONTENTS \
1950 { \
1951 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1952 { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_STORE_REGS */ \
1953 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1954 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1955 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1956 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1957 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1958 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1959 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1960 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1961 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1962 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1963 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1964 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1965 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1966 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1967 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1968 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1969 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1970 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1971 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1972 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1973 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1974 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1975 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1976 }
1977
1978
1979 /* A C expression whose value is a register class containing hard
1980 register REGNO. In general there is more that one such class;
1981 choose a class which is "minimal", meaning that no smaller class
1982 also contains the register. */
1983
1984 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1985
1986 /* A macro whose definition is the name of the class to which a
1987 valid base register must belong. A base register is one used in
1988 an address which is the register value plus a displacement. */
1989
1990 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1991
1992 /* A macro whose definition is the name of the class to which a
1993 valid index register must belong. An index register is one used
1994 in an address where its value is either multiplied by a scale
1995 factor or added to another register (as well as added to a
1996 displacement). */
1997
1998 #define INDEX_REG_CLASS NO_REGS
1999
2000 /* We generally want to put call-clobbered registers ahead of
2001 call-saved ones. (IRA expects this.) */
2002
2003 #define REG_ALLOC_ORDER \
2004 { /* Accumulator registers. When GPRs and accumulators have equal \
2005 cost, we generally prefer to use accumulators. For example, \
2006 a division of multiplication result is better allocated to LO, \
2007 so that we put the MFLO at the point of use instead of at the \
2008 point of definition. It's also needed if we're to take advantage \
2009 of the extra accumulators available with -mdspr2. In some cases, \
2010 it can also help to reduce register pressure. */ \
2011 64, 65,176,177,178,179,180,181, \
2012 /* Call-clobbered GPRs. */ \
2013 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2014 24, 25, 31, \
2015 /* The global pointer. This is call-clobbered for o32 and o64 \
2016 abicalls, call-saved for n32 and n64 abicalls, and a program \
2017 invariant otherwise. Putting it between the call-clobbered \
2018 and call-saved registers should cope with all eventualities. */ \
2019 28, \
2020 /* Call-saved GPRs. */ \
2021 16, 17, 18, 19, 20, 21, 22, 23, 30, \
2022 /* GPRs that can never be exposed to the register allocator. */ \
2023 0, 26, 27, 29, \
2024 /* Call-clobbered FPRs. */ \
2025 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2026 48, 49, 50, 51, \
2027 /* FPRs that are usually call-saved. The odd ones are actually \
2028 call-clobbered for n32, but listing them ahead of the even \
2029 registers might encourage the register allocator to fragment \
2030 the available FPR pairs. We need paired FPRs to store long \
2031 doubles, so it isn't clear that using a different order \
2032 for n32 would be a win. */ \
2033 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2034 /* None of the remaining classes have defined call-saved \
2035 registers. */ \
2036 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2037 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2038 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2039 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2040 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2041 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2042 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
2043 182,183,184,185,186,187 \
2044 }
2045
2046 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
2047 to be rearranged based on a particular function. On the mips16, we
2048 want to allocate $24 (T_REG) before other registers for
2049 instructions for which it is possible. */
2050
2051 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
2052
2053 /* True if VALUE is an unsigned 6-bit number. */
2054
2055 #define UIMM6_OPERAND(VALUE) \
2056 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2057
2058 /* True if VALUE is a signed 10-bit number. */
2059
2060 #define IMM10_OPERAND(VALUE) \
2061 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2062
2063 /* True if VALUE is a signed 16-bit number. */
2064
2065 #define SMALL_OPERAND(VALUE) \
2066 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2067
2068 /* True if VALUE is an unsigned 16-bit number. */
2069
2070 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2071 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2072
2073 /* True if VALUE can be loaded into a register using LUI. */
2074
2075 #define LUI_OPERAND(VALUE) \
2076 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2077 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2078
2079 /* Return a value X with the low 16 bits clear, and such that
2080 VALUE - X is a signed 16-bit value. */
2081
2082 #define CONST_HIGH_PART(VALUE) \
2083 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2084
2085 #define CONST_LOW_PART(VALUE) \
2086 ((VALUE) - CONST_HIGH_PART (VALUE))
2087
2088 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2089 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2090 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2091 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2092
2093 /* The HI and LO registers can only be reloaded via the general
2094 registers. Condition code registers can only be loaded to the
2095 general registers, and from the floating point registers. */
2096
2097 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2098 mips_secondary_reload_class (CLASS, MODE, X, true)
2099 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2100 mips_secondary_reload_class (CLASS, MODE, X, false)
2101
2102 /* Return the maximum number of consecutive registers
2103 needed to represent mode MODE in a register of class CLASS. */
2104
2105 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2106
2107 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2108 mips_cannot_change_mode_class (FROM, TO, CLASS)
2109 \f
2110 /* Stack layout; function entry, exit and calling. */
2111
2112 #define STACK_GROWS_DOWNWARD
2113
2114 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2115
2116 /* Size of the area allocated in the frame to save the GP. */
2117
2118 #define MIPS_GP_SAVE_AREA_SIZE \
2119 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2120
2121 /* The offset of the first local variable from the frame pointer. See
2122 mips_compute_frame_info for details about the frame layout. */
2123
2124 #define STARTING_FRAME_OFFSET \
2125 (FRAME_GROWS_DOWNWARD \
2126 ? 0 \
2127 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2128
2129 #define RETURN_ADDR_RTX mips_return_addr
2130
2131 /* Mask off the MIPS16 ISA bit in unwind addresses.
2132
2133 The reason for this is a little subtle. When unwinding a call,
2134 we are given the call's return address, which on most targets
2135 is the address of the following instruction. However, what we
2136 actually want to find is the EH region for the call itself.
2137 The target-independent unwind code therefore searches for "RA - 1".
2138
2139 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2140 RA - 1 is therefore the real (even-valued) start of the return
2141 instruction. EH region labels are usually odd-valued MIPS16 symbols
2142 too, so a search for an even address within a MIPS16 region would
2143 usually work.
2144
2145 However, there is an exception. If the end of an EH region is also
2146 the end of a function, the end label is allowed to be even. This is
2147 necessary because a following non-MIPS16 function may also need EH
2148 information for its first instruction.
2149
2150 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2151 non-ISA-encoded address. This probably isn't ideal, but it is
2152 the traditional (legacy) behavior. It is therefore only safe
2153 to search MIPS EH regions for an _odd-valued_ address.
2154
2155 Masking off the ISA bit means that the target-independent code
2156 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2157 #define MASK_RETURN_ADDR GEN_INT (-2)
2158
2159
2160 /* Similarly, don't use the least-significant bit to tell pointers to
2161 code from vtable index. */
2162
2163 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2164
2165 /* The eliminations to $17 are only used for mips16 code. See the
2166 definition of HARD_FRAME_POINTER_REGNUM. */
2167
2168 #define ELIMINABLE_REGS \
2169 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2170 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2171 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2172 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2173 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2174 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2175
2176 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2177 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2178
2179 /* Allocate stack space for arguments at the beginning of each function. */
2180 #define ACCUMULATE_OUTGOING_ARGS 1
2181
2182 /* The argument pointer always points to the first argument. */
2183 #define FIRST_PARM_OFFSET(FNDECL) 0
2184
2185 /* o32 and o64 reserve stack space for all argument registers. */
2186 #define REG_PARM_STACK_SPACE(FNDECL) \
2187 (TARGET_OLDABI \
2188 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2189 : 0)
2190
2191 /* Define this if it is the responsibility of the caller to
2192 allocate the area reserved for arguments passed in registers.
2193 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2194 of this macro is to determine whether the space is included in
2195 `crtl->outgoing_args_size'. */
2196 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2197
2198 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2199 \f
2200 /* Symbolic macros for the registers used to return integer and floating
2201 point values. */
2202
2203 #define GP_RETURN (GP_REG_FIRST + 2)
2204 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2205
2206 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2207
2208 /* Symbolic macros for the first/last argument registers. */
2209
2210 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2211 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2212 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2213 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2214
2215 /* 1 if N is a possible register number for function argument passing.
2216 We have no FP argument registers when soft-float. When FP registers
2217 are 32 bits, we can't directly reference the odd numbered ones. */
2218
2219 #define FUNCTION_ARG_REGNO_P(N) \
2220 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2221 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2222 && !fixed_regs[N])
2223 \f
2224 /* This structure has to cope with two different argument allocation
2225 schemes. Most MIPS ABIs view the arguments as a structure, of which
2226 the first N words go in registers and the rest go on the stack. If I
2227 < N, the Ith word might go in Ith integer argument register or in a
2228 floating-point register. For these ABIs, we only need to remember
2229 the offset of the current argument into the structure.
2230
2231 The EABI instead allocates the integer and floating-point arguments
2232 separately. The first N words of FP arguments go in FP registers,
2233 the rest go on the stack. Likewise, the first N words of the other
2234 arguments go in integer registers, and the rest go on the stack. We
2235 need to maintain three counts: the number of integer registers used,
2236 the number of floating-point registers used, and the number of words
2237 passed on the stack.
2238
2239 We could keep separate information for the two ABIs (a word count for
2240 the standard ABIs, and three separate counts for the EABI). But it
2241 seems simpler to view the standard ABIs as forms of EABI that do not
2242 allocate floating-point registers.
2243
2244 So for the standard ABIs, the first N words are allocated to integer
2245 registers, and mips_function_arg decides on an argument-by-argument
2246 basis whether that argument should really go in an integer register,
2247 or in a floating-point one. */
2248
2249 typedef struct mips_args {
2250 /* Always true for varargs functions. Otherwise true if at least
2251 one argument has been passed in an integer register. */
2252 int gp_reg_found;
2253
2254 /* The number of arguments seen so far. */
2255 unsigned int arg_number;
2256
2257 /* The number of integer registers used so far. For all ABIs except
2258 EABI, this is the number of words that have been added to the
2259 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2260 unsigned int num_gprs;
2261
2262 /* For EABI, the number of floating-point registers used so far. */
2263 unsigned int num_fprs;
2264
2265 /* The number of words passed on the stack. */
2266 unsigned int stack_words;
2267
2268 /* On the mips16, we need to keep track of which floating point
2269 arguments were passed in general registers, but would have been
2270 passed in the FP regs if this were a 32-bit function, so that we
2271 can move them to the FP regs if we wind up calling a 32-bit
2272 function. We record this information in fp_code, encoded in base
2273 four. A zero digit means no floating point argument, a one digit
2274 means an SFmode argument, and a two digit means a DFmode argument,
2275 and a three digit is not used. The low order digit is the first
2276 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2277 an SFmode argument. ??? A more sophisticated approach will be
2278 needed if MIPS_ABI != ABI_32. */
2279 int fp_code;
2280
2281 /* True if the function has a prototype. */
2282 int prototype;
2283 } CUMULATIVE_ARGS;
2284
2285 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2286 for a call to a function whose data type is FNTYPE.
2287 For a library call, FNTYPE is 0. */
2288
2289 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2290 mips_init_cumulative_args (&CUM, FNTYPE)
2291
2292 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2293 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2294
2295 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2296 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2297
2298 /* True if using EABI and varargs can be passed in floating-point
2299 registers. Under these conditions, we need a more complex form
2300 of va_list, which tracks GPR, FPR and stack arguments separately. */
2301 #define EABI_FLOAT_VARARGS_P \
2302 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2303
2304 \f
2305 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2306
2307 /* Treat LOC as a byte offset from the stack pointer and round it up
2308 to the next fully-aligned offset. */
2309 #define MIPS_STACK_ALIGN(LOC) \
2310 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2311
2312 \f
2313 /* Output assembler code to FILE to increment profiler label # LABELNO
2314 for profiling a function entry. */
2315
2316 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2317
2318 /* The profiler preserves all interesting registers, including $31. */
2319 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2320
2321 /* No mips port has ever used the profiler counter word, so don't emit it
2322 or the label for it. */
2323
2324 #define NO_PROFILE_COUNTERS 1
2325
2326 /* Define this macro if the code for function profiling should come
2327 before the function prologue. Normally, the profiling code comes
2328 after. */
2329
2330 /* #define PROFILE_BEFORE_PROLOGUE */
2331
2332 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2333 the stack pointer does not matter. The value is tested only in
2334 functions that have frame pointers.
2335 No definition is equivalent to always zero. */
2336
2337 #define EXIT_IGNORE_STACK 1
2338
2339 \f
2340 /* Trampolines are a block of code followed by two pointers. */
2341
2342 #define TRAMPOLINE_SIZE \
2343 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2344
2345 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2346 pointers from a single LUI base. */
2347
2348 #define TRAMPOLINE_ALIGNMENT 64
2349
2350 /* mips_trampoline_init calls this library function to flush
2351 program and data caches. */
2352
2353 #ifndef CACHE_FLUSH_FUNC
2354 #define CACHE_FLUSH_FUNC "_flush_cache"
2355 #endif
2356
2357 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2358 /* Flush both caches. We need to flush the data cache in case \
2359 the system has a write-back cache. */ \
2360 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2361 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2362 GEN_INT (3), TYPE_MODE (integer_type_node))
2363
2364 \f
2365 /* Addressing modes, and classification of registers for them. */
2366
2367 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2368 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2369 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2370 \f
2371 /* Maximum number of registers that can appear in a valid memory address. */
2372
2373 #define MAX_REGS_PER_ADDRESS 1
2374
2375 /* Check for constness inline but use mips_legitimate_address_p
2376 to check whether a constant really is an address. */
2377
2378 #define CONSTANT_ADDRESS_P(X) \
2379 (CONSTANT_P (X) && memory_address_p (SImode, X))
2380
2381 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2382 'the start of the function that this code is output in'. */
2383
2384 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2385 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2386 asm_fprintf ((FILE), "%U%s", \
2387 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2388 else \
2389 asm_fprintf ((FILE), "%U%s", (NAME))
2390 \f
2391 /* Flag to mark a function decl symbol that requires a long call. */
2392 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2393 #define SYMBOL_REF_LONG_CALL_P(X) \
2394 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2395
2396 /* This flag marks functions that cannot be lazily bound. */
2397 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2398 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2399 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2400
2401 /* True if we're generating a form of MIPS16 code in which jump tables
2402 are stored in the text section and encoded as 16-bit PC-relative
2403 offsets. This is only possible when general text loads are allowed,
2404 since the table access itself will be an "lh" instruction. If the
2405 PC-relative offsets grow too large, 32-bit offsets are used instead. */
2406 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2407
2408 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2409
2410 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2411
2412 /* Only use short offsets if their range will not overflow. */
2413 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2414 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2415 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2416 : SImode)
2417
2418 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2419
2420 /* Define this as 1 if `char' should by default be signed; else as 0. */
2421 #ifndef DEFAULT_SIGNED_CHAR
2422 #define DEFAULT_SIGNED_CHAR 1
2423 #endif
2424
2425 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2426 we generally don't want to use them for copying arbitrary data.
2427 A single N-word move is usually the same cost as N single-word moves. */
2428 #define MOVE_MAX UNITS_PER_WORD
2429 #define MAX_MOVE_MAX 8
2430
2431 /* Define this macro as a C expression which is nonzero if
2432 accessing less than a word of memory (i.e. a `char' or a
2433 `short') is no faster than accessing a word of memory, i.e., if
2434 such access require more than one instruction or if there is no
2435 difference in cost between byte and (aligned) word loads.
2436
2437 On RISC machines, it tends to generate better code to define
2438 this as 1, since it avoids making a QI or HI mode register.
2439
2440 But, generating word accesses for -mips16 is generally bad as shifts
2441 (often extended) would be needed for byte accesses. */
2442 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2443
2444 /* Standard MIPS integer shifts truncate the shift amount to the
2445 width of the shifted operand. However, Loongson vector shifts
2446 do not truncate the shift amount at all. */
2447 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2448
2449 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2450 is done just by pretending it is already truncated. */
2451 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2452 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2453
2454
2455 /* Specify the machine mode that pointers have.
2456 After generation of rtl, the compiler makes no further distinction
2457 between pointers and any other objects of this machine mode. */
2458
2459 #ifndef Pmode
2460 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2461 #endif
2462
2463 /* Give call MEMs SImode since it is the "most permissive" mode
2464 for both 32-bit and 64-bit targets. */
2465
2466 #define FUNCTION_MODE SImode
2467
2468 \f
2469 /* We allocate $fcc registers by hand and can't cope with moves of
2470 CCmode registers to and from pseudos (or memory). */
2471 #define AVOID_CCMODE_COPIES
2472
2473 /* A C expression for the cost of a branch instruction. A value of
2474 1 is the default; other values are interpreted relative to that. */
2475
2476 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2477 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2478
2479 /* The MIPS port has several functions that return an instruction count.
2480 Multiplying the count by this value gives the number of bytes that
2481 the instructions occupy. */
2482 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2483
2484 /* The length of a NOP in bytes. */
2485 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2486
2487 /* If defined, modifies the length assigned to instruction INSN as a
2488 function of the context in which it is used. LENGTH is an lvalue
2489 that contains the initially computed length of the insn and should
2490 be updated with the correct length of the insn. */
2491 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2492 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2493
2494 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2495 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2496 its operands. */
2497 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2498 "%*" OPCODE "%?\t" OPERANDS "%/"
2499
2500 /* Return an asm string that forces INSN to be treated as an absolute
2501 J or JAL instruction instead of an assembler macro. */
2502 #define MIPS_ABSOLUTE_JUMP(INSN) \
2503 (TARGET_ABICALLS_PIC2 \
2504 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2505 : INSN)
2506
2507 /* Return the asm template for a call. INSN is the instruction's mnemonic
2508 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2509 number of the target. SIZE_OPNO is the operand number of the argument size
2510 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2511 -1 and the call is indirect, use the function symbol from the call
2512 attributes to attach a R_MIPS_JALR relocation to the call.
2513
2514 When generating GOT code without explicit relocation operators,
2515 all calls should use assembly macros. Otherwise, all indirect
2516 calls should use "jr" or "jalr"; we will arrange to restore $gp
2517 afterwards if necessary. Finally, we can only generate direct
2518 calls for -mabicalls by temporarily switching to non-PIC mode.
2519
2520 For microMIPS jal(r), we try to generate jal(r)s when a 16-bit
2521 instruction is in the delay slot of jal(r). */
2522 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2523 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2524 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2525 : REG_P (OPERANDS[TARGET_OPNO]) \
2526 ? (mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO) \
2527 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2528 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2529 : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
2530 ? "%*" INSN "r%!\t%" #TARGET_OPNO "%/" \
2531 : "%*" INSN "r\t%" #TARGET_OPNO "%/") \
2532 : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
2533 ? MIPS_ABSOLUTE_JUMP ("%*" INSN "%!\t%" #TARGET_OPNO "%/") \
2534 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/")) \
2535
2536 /* Similar to MIPS_CALL, but this is for MICROMIPS "j" to generate
2537 "jrc" when nop is in the delay slot of "jr". */
2538
2539 #define MICROMIPS_J(INSN, OPERANDS, OPNO) \
2540 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2541 ? "%*j\t%" #OPNO "%/" \
2542 : REG_P (OPERANDS[OPNO]) \
2543 ? "%*jr%:\t%" #OPNO \
2544 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #OPNO "%/"))
2545
2546 \f
2547 /* Control the assembler format that we output. */
2548
2549 /* Output to assembler file text saying following lines
2550 may contain character constants, extra white space, comments, etc. */
2551
2552 #ifndef ASM_APP_ON
2553 #define ASM_APP_ON " #APP\n"
2554 #endif
2555
2556 /* Output to assembler file text saying following lines
2557 no longer contain unusual constructs. */
2558
2559 #ifndef ASM_APP_OFF
2560 #define ASM_APP_OFF " #NO_APP\n"
2561 #endif
2562
2563 #define REGISTER_NAMES \
2564 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2565 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2566 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2567 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2568 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2569 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2570 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2571 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2572 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2573 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2574 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2575 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2576 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2577 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2578 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2579 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2580 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2581 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2582 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2583 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2584 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2585 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2586 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2587 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2588
2589 /* List the "software" names for each register. Also list the numerical
2590 names for $fp and $sp. */
2591
2592 #define ADDITIONAL_REGISTER_NAMES \
2593 { \
2594 { "$29", 29 + GP_REG_FIRST }, \
2595 { "$30", 30 + GP_REG_FIRST }, \
2596 { "at", 1 + GP_REG_FIRST }, \
2597 { "v0", 2 + GP_REG_FIRST }, \
2598 { "v1", 3 + GP_REG_FIRST }, \
2599 { "a0", 4 + GP_REG_FIRST }, \
2600 { "a1", 5 + GP_REG_FIRST }, \
2601 { "a2", 6 + GP_REG_FIRST }, \
2602 { "a3", 7 + GP_REG_FIRST }, \
2603 { "t0", 8 + GP_REG_FIRST }, \
2604 { "t1", 9 + GP_REG_FIRST }, \
2605 { "t2", 10 + GP_REG_FIRST }, \
2606 { "t3", 11 + GP_REG_FIRST }, \
2607 { "t4", 12 + GP_REG_FIRST }, \
2608 { "t5", 13 + GP_REG_FIRST }, \
2609 { "t6", 14 + GP_REG_FIRST }, \
2610 { "t7", 15 + GP_REG_FIRST }, \
2611 { "s0", 16 + GP_REG_FIRST }, \
2612 { "s1", 17 + GP_REG_FIRST }, \
2613 { "s2", 18 + GP_REG_FIRST }, \
2614 { "s3", 19 + GP_REG_FIRST }, \
2615 { "s4", 20 + GP_REG_FIRST }, \
2616 { "s5", 21 + GP_REG_FIRST }, \
2617 { "s6", 22 + GP_REG_FIRST }, \
2618 { "s7", 23 + GP_REG_FIRST }, \
2619 { "t8", 24 + GP_REG_FIRST }, \
2620 { "t9", 25 + GP_REG_FIRST }, \
2621 { "k0", 26 + GP_REG_FIRST }, \
2622 { "k1", 27 + GP_REG_FIRST }, \
2623 { "gp", 28 + GP_REG_FIRST }, \
2624 { "sp", 29 + GP_REG_FIRST }, \
2625 { "fp", 30 + GP_REG_FIRST }, \
2626 { "ra", 31 + GP_REG_FIRST } \
2627 }
2628
2629 #define DBR_OUTPUT_SEQEND(STREAM) \
2630 do \
2631 { \
2632 /* Undo the effect of '%*'. */ \
2633 mips_pop_asm_switch (&mips_nomacro); \
2634 mips_pop_asm_switch (&mips_noreorder); \
2635 /* Emit a blank line after the delay slot for emphasis. */ \
2636 fputs ("\n", STREAM); \
2637 } \
2638 while (0)
2639
2640 /* The MIPS implementation uses some labels for its own purpose. The
2641 following lists what labels are created, and are all formed by the
2642 pattern $L[a-z].*. The machine independent portion of GCC creates
2643 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2644
2645 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2646 $Lb[0-9]+ Begin blocks for MIPS debug support
2647 $Lc[0-9]+ Label for use in s<xx> operation.
2648 $Le[0-9]+ End blocks for MIPS debug support */
2649
2650 #undef ASM_DECLARE_OBJECT_NAME
2651 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2652 mips_declare_object (STREAM, NAME, "", ":\n")
2653
2654 /* Globalizing directive for a label. */
2655 #define GLOBAL_ASM_OP "\t.globl\t"
2656
2657 /* This says how to define a global common symbol. */
2658
2659 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2660
2661 /* This says how to define a local common symbol (i.e., not visible to
2662 linker). */
2663
2664 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2665 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2666 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2667 #endif
2668
2669 /* This says how to output an external. It would be possible not to
2670 output anything and let undefined symbol become external. However
2671 the assembler uses length information on externals to allocate in
2672 data/sdata bss/sbss, thereby saving exec time. */
2673
2674 #undef ASM_OUTPUT_EXTERNAL
2675 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2676 mips_output_external(STREAM,DECL,NAME)
2677
2678 /* This is how to declare a function name. The actual work of
2679 emitting the label is moved to function_prologue, so that we can
2680 get the line number correctly emitted before the .ent directive,
2681 and after any .file directives. Define as empty so that the function
2682 is not declared before the .ent directive elsewhere. */
2683
2684 #undef ASM_DECLARE_FUNCTION_NAME
2685 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2686
2687 /* This is how to store into the string LABEL
2688 the symbol_ref name of an internal numbered label where
2689 PREFIX is the class of label and NUM is the number within the class.
2690 This is suitable for output with `assemble_name'. */
2691
2692 #undef ASM_GENERATE_INTERNAL_LABEL
2693 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2694 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2695
2696 /* Print debug labels as "foo = ." rather than "foo:" because they should
2697 represent a byte pointer rather than an ISA-encoded address. This is
2698 particularly important for code like:
2699
2700 $LFBxxx = .
2701 .cfi_startproc
2702 ...
2703 .section .gcc_except_table,...
2704 ...
2705 .uleb128 foo-$LFBxxx
2706
2707 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2708 likewise a byte pointer rather than an ISA-encoded address.
2709
2710 At the time of writing, this hook is not used for the function end
2711 label:
2712
2713 $LFExxx:
2714 .end foo
2715
2716 But this doesn't matter, because GAS doesn't treat a pre-.end label
2717 as a MIPS16 one anyway. */
2718
2719 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2720 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2721
2722 /* This is how to output an element of a case-vector that is absolute. */
2723
2724 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2725 fprintf (STREAM, "\t%s\t%sL%d\n", \
2726 ptr_mode == DImode ? ".dword" : ".word", \
2727 LOCAL_LABEL_PREFIX, \
2728 VALUE)
2729
2730 /* This is how to output an element of a case-vector. We can make the
2731 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2732 is supported. */
2733
2734 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2735 do { \
2736 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2737 { \
2738 if (GET_MODE (BODY) == HImode) \
2739 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2740 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2741 else \
2742 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2743 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2744 } \
2745 else if (TARGET_GPWORD) \
2746 fprintf (STREAM, "\t%s\t%sL%d\n", \
2747 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2748 LOCAL_LABEL_PREFIX, VALUE); \
2749 else if (TARGET_RTP_PIC) \
2750 { \
2751 /* Make the entry relative to the start of the function. */ \
2752 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2753 fprintf (STREAM, "\t%s\t%sL%d-", \
2754 Pmode == DImode ? ".dword" : ".word", \
2755 LOCAL_LABEL_PREFIX, VALUE); \
2756 assemble_name (STREAM, XSTR (fnsym, 0)); \
2757 fprintf (STREAM, "\n"); \
2758 } \
2759 else \
2760 fprintf (STREAM, "\t%s\t%sL%d\n", \
2761 ptr_mode == DImode ? ".dword" : ".word", \
2762 LOCAL_LABEL_PREFIX, VALUE); \
2763 } while (0)
2764
2765 /* This is how to output an assembler line
2766 that says to advance the location counter
2767 to a multiple of 2**LOG bytes. */
2768
2769 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2770 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2771
2772 /* This is how to output an assembler line to advance the location
2773 counter by SIZE bytes. */
2774
2775 #undef ASM_OUTPUT_SKIP
2776 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2777 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2778
2779 /* This is how to output a string. */
2780 #undef ASM_OUTPUT_ASCII
2781 #define ASM_OUTPUT_ASCII mips_output_ascii
2782
2783 \f
2784 /* Default to -G 8 */
2785 #ifndef MIPS_DEFAULT_GVALUE
2786 #define MIPS_DEFAULT_GVALUE 8
2787 #endif
2788
2789 /* Define the strings to put out for each section in the object file. */
2790 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2791 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2792
2793 #undef READONLY_DATA_SECTION_ASM_OP
2794 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2795 \f
2796 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2797 do \
2798 { \
2799 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2800 TARGET_64BIT ? "daddiu" : "addiu", \
2801 reg_names[STACK_POINTER_REGNUM], \
2802 reg_names[STACK_POINTER_REGNUM], \
2803 TARGET_64BIT ? "sd" : "sw", \
2804 reg_names[REGNO], \
2805 reg_names[STACK_POINTER_REGNUM]); \
2806 } \
2807 while (0)
2808
2809 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2810 do \
2811 { \
2812 mips_push_asm_switch (&mips_noreorder); \
2813 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2814 TARGET_64BIT ? "ld" : "lw", \
2815 reg_names[REGNO], \
2816 reg_names[STACK_POINTER_REGNUM], \
2817 TARGET_64BIT ? "daddu" : "addu", \
2818 reg_names[STACK_POINTER_REGNUM], \
2819 reg_names[STACK_POINTER_REGNUM]); \
2820 mips_pop_asm_switch (&mips_noreorder); \
2821 } \
2822 while (0)
2823
2824 /* How to start an assembler comment.
2825 The leading space is important (the mips native assembler requires it). */
2826 #ifndef ASM_COMMENT_START
2827 #define ASM_COMMENT_START " #"
2828 #endif
2829 \f
2830 #undef SIZE_TYPE
2831 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2832
2833 #undef PTRDIFF_TYPE
2834 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2835
2836 /* The maximum number of bytes that can be copied by one iteration of
2837 a movmemsi loop; see mips_block_move_loop. */
2838 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2839 (UNITS_PER_WORD * 4)
2840
2841 /* The maximum number of bytes that can be copied by a straight-line
2842 implementation of movmemsi; see mips_block_move_straight. We want
2843 to make sure that any loop-based implementation will iterate at
2844 least twice. */
2845 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2846 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2847
2848 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2849 values were determined experimentally by benchmarking with CSiBE.
2850 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2851 for o32 where we have to restore $gp afterwards as well as make an
2852 indirect call), but in practice, bumping this up higher for
2853 TARGET_ABICALLS doesn't make much difference to code size. */
2854
2855 #define MIPS_CALL_RATIO 8
2856
2857 /* Any loop-based implementation of movmemsi will have at least
2858 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2859 moves, so allow individual copies of fewer elements.
2860
2861 When movmemsi is not available, use a value approximating
2862 the length of a memcpy call sequence, so that move_by_pieces
2863 will generate inline code if it is shorter than a function call.
2864 Since move_by_pieces_ninsns counts memory-to-memory moves, but
2865 we'll have to generate a load/store pair for each, halve the
2866 value of MIPS_CALL_RATIO to take that into account. */
2867
2868 #define MOVE_RATIO(speed) \
2869 (HAVE_movmemsi \
2870 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
2871 : MIPS_CALL_RATIO / 2)
2872
2873 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2874 mips_move_by_pieces_p (SIZE, ALIGN)
2875
2876 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2877 of the length of a memset call, but use the default otherwise. */
2878
2879 #define CLEAR_RATIO(speed)\
2880 ((speed) ? 15 : MIPS_CALL_RATIO)
2881
2882 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2883 optimizing for size adjust the ratio to account for the overhead of
2884 loading the constant and replicating it across the word. */
2885
2886 #define SET_RATIO(speed) \
2887 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2888
2889 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
2890 mips_store_by_pieces_p (SIZE, ALIGN)
2891 \f
2892 /* Since the bits of the _init and _fini function is spread across
2893 many object files, each potentially with its own GP, we must assume
2894 we need to load our GP. We don't preserve $gp or $ra, since each
2895 init/fini chunk is supposed to initialize $gp, and crti/crtn
2896 already take care of preserving $ra and, when appropriate, $gp. */
2897 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2898 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2899 asm (SECTION_OP "\n\
2900 .set push\n\
2901 .set nomips16\n\
2902 .set noreorder\n\
2903 bal 1f\n\
2904 nop\n\
2905 1: .cpload $31\n\
2906 .set reorder\n\
2907 jal " USER_LABEL_PREFIX #FUNC "\n\
2908 .set pop\n\
2909 " TEXT_SECTION_ASM_OP);
2910 #elif ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2911 || (defined _ABI64 && _MIPS_SIM == _ABI64))
2912 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2913 asm (SECTION_OP "\n\
2914 .set push\n\
2915 .set nomips16\n\
2916 .set noreorder\n\
2917 bal 1f\n\
2918 nop\n\
2919 1: .set reorder\n\
2920 .cpsetup $31, $2, 1b\n\
2921 jal " USER_LABEL_PREFIX #FUNC "\n\
2922 .set pop\n\
2923 " TEXT_SECTION_ASM_OP);
2924 #endif
2925
2926 #ifndef HAVE_AS_TLS
2927 #define HAVE_AS_TLS 0
2928 #endif
2929
2930 #ifndef HAVE_AS_NAN
2931 #define HAVE_AS_NAN 0
2932 #endif
2933
2934 #ifndef USED_FOR_TARGET
2935 /* Information about ".set noFOO; ...; .set FOO" blocks. */
2936 struct mips_asm_switch {
2937 /* The FOO in the description above. */
2938 const char *name;
2939
2940 /* The current block nesting level, or 0 if we aren't in a block. */
2941 int nesting_level;
2942 };
2943
2944 extern const enum reg_class mips_regno_to_class[];
2945 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
2946 extern const char *current_function_file; /* filename current function is in */
2947 extern int num_source_filenames; /* current .file # */
2948 extern struct mips_asm_switch mips_noreorder;
2949 extern struct mips_asm_switch mips_nomacro;
2950 extern struct mips_asm_switch mips_noat;
2951 extern int mips_dbx_regno[];
2952 extern int mips_dwarf_regno[];
2953 extern bool mips_split_p[];
2954 extern bool mips_split_hi_p[];
2955 extern bool mips_use_pcrel_pool_p[];
2956 extern const char *mips_lo_relocs[];
2957 extern const char *mips_hi_relocs[];
2958 extern enum processor mips_arch; /* which cpu to codegen for */
2959 extern enum processor mips_tune; /* which cpu to schedule for */
2960 extern int mips_isa; /* architectural level */
2961 extern const struct mips_cpu_info *mips_arch_info;
2962 extern const struct mips_cpu_info *mips_tune_info;
2963 extern unsigned int mips_base_compression_flags;
2964 extern GTY(()) struct target_globals *mips16_globals;
2965 #endif
2966
2967 /* Enable querying of DFA units. */
2968 #define CPU_UNITS_QUERY 1
2969
2970 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2971 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2972
2973 /* As on most targets, we want the .eh_frame section to be read-only where
2974 possible. And as on most targets, this means two things:
2975
2976 (a) Non-locally-binding pointers must have an indirect encoding,
2977 so that the addresses in the .eh_frame section itself become
2978 locally-binding.
2979
2980 (b) A shared library's .eh_frame section must encode locally-binding
2981 pointers in a relative (relocation-free) form.
2982
2983 However, MIPS has traditionally not allowed directives like:
2984
2985 .long x-.
2986
2987 in cases where "x" is in a different section, or is not defined in the
2988 same assembly file. We are therefore unable to emit the PC-relative
2989 form required by (b) at assembly time.
2990
2991 Fortunately, the linker is able to convert absolute addresses into
2992 PC-relative addresses on our behalf. Unfortunately, only certain
2993 versions of the linker know how to do this for indirect pointers,
2994 and for personality data. We must fall back on using writable
2995 .eh_frame sections for shared libraries if the linker does not
2996 support this feature. */
2997 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2998 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
2999
3000 /* For switching between MIPS16 and non-MIPS16 modes. */
3001 #define SWITCHABLE_TARGET 1
3002
3003 /* Several named MIPS patterns depend on Pmode. These patterns have the
3004 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3005 Add the appropriate suffix to generator function NAME and invoke it
3006 with arguments ARGS. */
3007 #define PMODE_INSN(NAME, ARGS) \
3008 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)