target.def (conditional_register_usage): Define.
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by A. Lichnewsky (lich@inria.inria.fr).
6 Changed by Michael Meissner (meissner@osf.org).
7 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
8 Brendan Eich (brendan@microunity.com).
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GCC is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26
27 #include "config/vxworks-dummy.h"
28
29 #ifdef GENERATOR_FILE
30 /* This is used in some insn conditions, so needs to be declared, but
31 does not need to be defined. */
32 extern int target_flags_explicit;
33 #endif
34
35 /* MIPS external variables defined in mips.c. */
36
37 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
38 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
39 to work on a 64-bit machine. */
40
41 #define ABI_32 0
42 #define ABI_N32 1
43 #define ABI_64 2
44 #define ABI_EABI 3
45 #define ABI_O64 4
46
47 /* Masks that affect tuning.
48
49 PTF_AVOID_BRANCHLIKELY
50 Set if it is usually not profitable to use branch-likely instructions
51 for this target, typically because the branches are always predicted
52 taken and so incur a large overhead when not taken. */
53 #define PTF_AVOID_BRANCHLIKELY 0x1
54
55 /* Information about one recognized processor. Defined here for the
56 benefit of TARGET_CPU_CPP_BUILTINS. */
57 struct mips_cpu_info {
58 /* The 'canonical' name of the processor as far as GCC is concerned.
59 It's typically a manufacturer's prefix followed by a numerical
60 designation. It should be lowercase. */
61 const char *name;
62
63 /* The internal processor number that most closely matches this
64 entry. Several processors can have the same value, if there's no
65 difference between them from GCC's point of view. */
66 enum processor cpu;
67
68 /* The ISA level that the processor implements. */
69 int isa;
70
71 /* A mask of PTF_* values. */
72 unsigned int tune_flags;
73 };
74
75 /* Enumerates the setting of the -mcode-readable option. */
76 enum mips_code_readable_setting {
77 CODE_READABLE_NO,
78 CODE_READABLE_PCREL,
79 CODE_READABLE_YES
80 };
81
82 /* Macros to silence warnings about numbers being signed in traditional
83 C and unsigned in ISO C when compiled on 32-bit hosts. */
84
85 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
86 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
87 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
88
89 \f
90 /* Run-time compilation parameters selecting different hardware subsets. */
91
92 /* True if we are generating position-independent VxWorks RTP code. */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
94
95 /* True if the output file is marked as ".abicalls; .option pic0"
96 (-call_nonpic). */
97 #define TARGET_ABICALLS_PIC0 \
98 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
99
100 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
101 #define TARGET_ABICALLS_PIC2 \
102 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
103
104 /* True if the call patterns should be split into a jalr followed by
105 an instruction to restore $gp. It is only safe to split the load
106 from the call when every use of $gp is explicit.
107
108 See mips_must_initialize_gp_p for details about how we manage the
109 global pointer. */
110
111 #define TARGET_SPLIT_CALLS \
112 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
113
114 /* True if we're generating a form of -mabicalls in which we can use
115 operators like %hi and %lo to refer to locally-binding symbols.
116 We can only do this for -mno-shared, and only then if we can use
117 relocation operations instead of assembly macros. It isn't really
118 worth using absolute sequences for 64-bit symbols because GOT
119 accesses are so much shorter. */
120
121 #define TARGET_ABSOLUTE_ABICALLS \
122 (TARGET_ABICALLS \
123 && !TARGET_SHARED \
124 && TARGET_EXPLICIT_RELOCS \
125 && !ABI_HAS_64BIT_SYMBOLS)
126
127 /* True if we can optimize sibling calls. For simplicity, we only
128 handle cases in which call_insn_operand will reject invalid
129 sibcall addresses. There are two cases in which this isn't true:
130
131 - TARGET_MIPS16. call_insn_operand accepts constant addresses
132 but there is no direct jump instruction. It isn't worth
133 using sibling calls in this case anyway; they would usually
134 be longer than normal calls.
135
136 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
137 accepts global constants, but all sibcalls must be indirect. */
138 #define TARGET_SIBCALLS \
139 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
140
141 /* True if we need to use a global offset table to access some symbols. */
142 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
143
144 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
145 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
146
147 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
148 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
149
150 /* True if we should use .cprestore to store to the cprestore slot.
151
152 We continue to use .cprestore for explicit-reloc code so that JALs
153 inside inline asms will work correctly. */
154 #define TARGET_CPRESTORE_DIRECTIVE \
155 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
156
157 /* True if we can use the J and JAL instructions. */
158 #define TARGET_ABSOLUTE_JUMPS \
159 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
160
161 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
162 This is true for both the PIC and non-PIC VxWorks RTP modes. */
163 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
164
165 /* True if .gpword or .gpdword should be used for switch tables.
166
167 Although GAS does understand .gpdword, the SGI linker mishandles
168 the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
169 We therefore disable GP-relative switch tables for n64 on IRIX targets. */
170 #define TARGET_GPWORD \
171 (TARGET_ABICALLS \
172 && !TARGET_ABSOLUTE_ABICALLS \
173 && !(mips_abi == ABI_64 && TARGET_IRIX6))
174
175 /* True if the output must have a writable .eh_frame.
176 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
177 #ifdef HAVE_LD_PERSONALITY_RELAXATION
178 #define TARGET_WRITABLE_EH_FRAME 0
179 #else
180 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
181 #endif
182
183 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
184 #ifdef HAVE_AS_DSPR1_MULT
185 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
186 #else
187 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
188 #endif
189
190 /* Generate mips16 code */
191 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
192 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
193 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
194 /* Generate mips16e register save/restore sequences. */
195 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
196
197 /* True if we're generating a form of MIPS16 code in which general
198 text loads are allowed. */
199 #define TARGET_MIPS16_TEXT_LOADS \
200 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
201
202 /* True if we're generating a form of MIPS16 code in which PC-relative
203 loads are allowed. */
204 #define TARGET_MIPS16_PCREL_LOADS \
205 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
206
207 /* Generic ISA defines. */
208 #define ISA_MIPS1 (mips_isa == 1)
209 #define ISA_MIPS2 (mips_isa == 2)
210 #define ISA_MIPS3 (mips_isa == 3)
211 #define ISA_MIPS4 (mips_isa == 4)
212 #define ISA_MIPS32 (mips_isa == 32)
213 #define ISA_MIPS32R2 (mips_isa == 33)
214 #define ISA_MIPS64 (mips_isa == 64)
215 #define ISA_MIPS64R2 (mips_isa == 65)
216
217 /* Architecture target defines. */
218 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
219 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
220 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
221 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
222 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
223 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
224 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
225 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
226 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
227 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
228 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
229 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
230 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON)
231 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
232 || mips_arch == PROCESSOR_SB1A)
233 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
234
235 /* Scheduling target defines. */
236 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
237 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
238 || mips_tune == PROCESSOR_24KF2_1 \
239 || mips_tune == PROCESSOR_24KF1_1)
240 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
241 || mips_tune == PROCESSOR_74KF2_1 \
242 || mips_tune == PROCESSOR_74KF1_1 \
243 || mips_tune == PROCESSOR_74KF3_2)
244 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
245 || mips_tune == PROCESSOR_LOONGSON_2F)
246 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
247 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
248 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
249 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
250 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
251 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
252 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
253 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
254 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
255 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
256 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
257 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
258 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON)
259 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
260 || mips_tune == PROCESSOR_SB1A)
261
262 /* Whether vector modes and intrinsics for ST Microelectronics
263 Loongson-2E/2F processors should be enabled. In o32 pairs of
264 floating-point registers provide 64-bit values. */
265 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
266 && (TARGET_LOONGSON_2EF \
267 || TARGET_LOONGSON_3A))
268
269 /* True if the pre-reload scheduler should try to create chains of
270 multiply-add or multiply-subtract instructions. For example,
271 suppose we have:
272
273 t1 = a * b
274 t2 = t1 + c * d
275 t3 = e * f
276 t4 = t3 - g * h
277
278 t1 will have a higher priority than t2 and t3 will have a higher
279 priority than t4. However, before reload, there is no dependence
280 between t1 and t3, and they can often have similar priorities.
281 The scheduler will then tend to prefer:
282
283 t1 = a * b
284 t3 = e * f
285 t2 = t1 + c * d
286 t4 = t3 - g * h
287
288 which stops us from making full use of macc/madd-style instructions.
289 This sort of situation occurs frequently in Fourier transforms and
290 in unrolled loops.
291
292 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
293 queue so that chained multiply-add and multiply-subtract instructions
294 appear ahead of any other instruction that is likely to clobber lo.
295 In the example above, if t2 and t3 become ready at the same time,
296 the code ensures that t2 is scheduled first.
297
298 Multiply-accumulate instructions are a bigger win for some targets
299 than others, so this macro is defined on an opt-in basis. */
300 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
301 || TUNE_MIPS4120 \
302 || TUNE_MIPS4130 \
303 || TUNE_24K)
304
305 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
306 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
307
308 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
309 directly accessible, while the command-line options select
310 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
311 in use. */
312 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
313 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
314
315 /* False if SC acts as a memory barrier with respect to itself,
316 otherwise a SYNC will be emitted after SC for atomic operations
317 that require ordering between the SC and following loads and
318 stores. It does not tell anything about ordering of loads and
319 stores prior to and following the SC, only about the SC itself and
320 those loads and stores follow it. */
321 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON)
322
323 /* IRIX specific stuff. */
324 #define TARGET_IRIX6 0
325
326 /* Define preprocessor macros for the -march and -mtune options.
327 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
328 processor. If INFO's canonical name is "foo", define PREFIX to
329 be "foo", and define an additional macro PREFIX_FOO. */
330 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
331 do \
332 { \
333 char *macro, *p; \
334 \
335 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
336 for (p = macro; *p != 0; p++) \
337 *p = TOUPPER (*p); \
338 \
339 builtin_define (macro); \
340 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
341 free (macro); \
342 } \
343 while (0)
344
345 /* Target CPU builtins. */
346 #define TARGET_CPU_CPP_BUILTINS() \
347 do \
348 { \
349 /* Everyone but IRIX defines this to mips. */ \
350 if (!TARGET_IRIX6) \
351 builtin_assert ("machine=mips"); \
352 \
353 builtin_assert ("cpu=mips"); \
354 builtin_define ("__mips__"); \
355 builtin_define ("_mips"); \
356 \
357 /* We do this here because __mips is defined below and so we \
358 can't use builtin_define_std. We don't ever want to define \
359 "mips" for VxWorks because some of the VxWorks headers \
360 construct include filenames from a root directory macro, \
361 an architecture macro and a filename, where the architecture \
362 macro expands to 'mips'. If we define 'mips' to 1, the \
363 architecture macro expands to 1 as well. */ \
364 if (!flag_iso && !TARGET_VXWORKS) \
365 builtin_define ("mips"); \
366 \
367 if (TARGET_64BIT) \
368 builtin_define ("__mips64"); \
369 \
370 if (!TARGET_IRIX6) \
371 { \
372 /* Treat _R3000 and _R4000 like register-size \
373 defines, which is how they've historically \
374 been used. */ \
375 if (TARGET_64BIT) \
376 { \
377 builtin_define_std ("R4000"); \
378 builtin_define ("_R4000"); \
379 } \
380 else \
381 { \
382 builtin_define_std ("R3000"); \
383 builtin_define ("_R3000"); \
384 } \
385 } \
386 if (TARGET_FLOAT64) \
387 builtin_define ("__mips_fpr=64"); \
388 else \
389 builtin_define ("__mips_fpr=32"); \
390 \
391 if (mips_base_mips16) \
392 builtin_define ("__mips16"); \
393 \
394 if (TARGET_MIPS3D) \
395 builtin_define ("__mips3d"); \
396 \
397 if (TARGET_SMARTMIPS) \
398 builtin_define ("__mips_smartmips"); \
399 \
400 if (TARGET_DSP) \
401 { \
402 builtin_define ("__mips_dsp"); \
403 if (TARGET_DSPR2) \
404 { \
405 builtin_define ("__mips_dspr2"); \
406 builtin_define ("__mips_dsp_rev=2"); \
407 } \
408 else \
409 builtin_define ("__mips_dsp_rev=1"); \
410 } \
411 \
412 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
413 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
414 \
415 if (ISA_MIPS1) \
416 { \
417 builtin_define ("__mips=1"); \
418 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
419 } \
420 else if (ISA_MIPS2) \
421 { \
422 builtin_define ("__mips=2"); \
423 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
424 } \
425 else if (ISA_MIPS3) \
426 { \
427 builtin_define ("__mips=3"); \
428 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
429 } \
430 else if (ISA_MIPS4) \
431 { \
432 builtin_define ("__mips=4"); \
433 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
434 } \
435 else if (ISA_MIPS32) \
436 { \
437 builtin_define ("__mips=32"); \
438 builtin_define ("__mips_isa_rev=1"); \
439 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
440 } \
441 else if (ISA_MIPS32R2) \
442 { \
443 builtin_define ("__mips=32"); \
444 builtin_define ("__mips_isa_rev=2"); \
445 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
446 } \
447 else if (ISA_MIPS64) \
448 { \
449 builtin_define ("__mips=64"); \
450 builtin_define ("__mips_isa_rev=1"); \
451 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
452 } \
453 else if (ISA_MIPS64R2) \
454 { \
455 builtin_define ("__mips=64"); \
456 builtin_define ("__mips_isa_rev=2"); \
457 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
458 } \
459 \
460 switch (mips_abi) \
461 { \
462 case ABI_32: \
463 builtin_define ("_ABIO32=1"); \
464 builtin_define ("_MIPS_SIM=_ABIO32"); \
465 break; \
466 \
467 case ABI_N32: \
468 builtin_define ("_ABIN32=2"); \
469 builtin_define ("_MIPS_SIM=_ABIN32"); \
470 break; \
471 \
472 case ABI_64: \
473 builtin_define ("_ABI64=3"); \
474 builtin_define ("_MIPS_SIM=_ABI64"); \
475 break; \
476 \
477 case ABI_O64: \
478 builtin_define ("_ABIO64=4"); \
479 builtin_define ("_MIPS_SIM=_ABIO64"); \
480 break; \
481 } \
482 \
483 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
484 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
485 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
486 builtin_define_with_int_value ("_MIPS_FPSET", \
487 32 / MAX_FPRS_PER_FMT); \
488 \
489 /* These defines reflect the ABI in use, not whether the \
490 FPU is directly accessible. */ \
491 if (TARGET_NO_FLOAT) \
492 builtin_define ("__mips_no_float"); \
493 else if (TARGET_HARD_FLOAT_ABI) \
494 builtin_define ("__mips_hard_float"); \
495 else \
496 builtin_define ("__mips_soft_float"); \
497 \
498 if (TARGET_SINGLE_FLOAT) \
499 builtin_define ("__mips_single_float"); \
500 \
501 if (TARGET_PAIRED_SINGLE_FLOAT) \
502 builtin_define ("__mips_paired_single_float"); \
503 \
504 if (TARGET_BIG_ENDIAN) \
505 { \
506 builtin_define_std ("MIPSEB"); \
507 builtin_define ("_MIPSEB"); \
508 } \
509 else \
510 { \
511 builtin_define_std ("MIPSEL"); \
512 builtin_define ("_MIPSEL"); \
513 } \
514 \
515 /* Whether calls should go through $25. The separate __PIC__ \
516 macro indicates whether abicalls code might use a GOT. */ \
517 if (TARGET_ABICALLS) \
518 builtin_define ("__mips_abicalls"); \
519 \
520 /* Whether Loongson vector modes are enabled. */ \
521 if (TARGET_LOONGSON_VECTORS) \
522 builtin_define ("__mips_loongson_vector_rev"); \
523 \
524 /* Historical Octeon macro. */ \
525 if (TARGET_OCTEON) \
526 builtin_define ("__OCTEON__"); \
527 \
528 /* Macros dependent on the C dialect. */ \
529 if (preprocessing_asm_p ()) \
530 { \
531 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
532 builtin_define ("_LANGUAGE_ASSEMBLY"); \
533 } \
534 else if (c_dialect_cxx ()) \
535 { \
536 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
537 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
538 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
539 } \
540 else \
541 { \
542 builtin_define_std ("LANGUAGE_C"); \
543 builtin_define ("_LANGUAGE_C"); \
544 } \
545 if (c_dialect_objc ()) \
546 { \
547 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
548 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
549 /* Bizarre, but needed at least for Irix. */ \
550 builtin_define_std ("LANGUAGE_C"); \
551 builtin_define ("_LANGUAGE_C"); \
552 } \
553 \
554 if (mips_abi == ABI_EABI) \
555 builtin_define ("__mips_eabi"); \
556 \
557 if (TARGET_CACHE_BUILTIN) \
558 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
559 } \
560 while (0)
561
562 /* Default target_flags if no switches are specified */
563
564 #ifndef TARGET_DEFAULT
565 #define TARGET_DEFAULT 0
566 #endif
567
568 #ifndef TARGET_CPU_DEFAULT
569 #define TARGET_CPU_DEFAULT 0
570 #endif
571
572 #ifndef TARGET_ENDIAN_DEFAULT
573 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
574 #endif
575
576 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
577 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
578 #endif
579
580 /* 'from-abi' makes a good default: you get whatever the ABI requires. */
581 #ifndef MIPS_ISA_DEFAULT
582 #ifndef MIPS_CPU_STRING_DEFAULT
583 #define MIPS_CPU_STRING_DEFAULT "from-abi"
584 #endif
585 #endif
586
587 #ifdef IN_LIBGCC2
588 #undef TARGET_64BIT
589 /* Make this compile time constant for libgcc2 */
590 #ifdef __mips64
591 #define TARGET_64BIT 1
592 #else
593 #define TARGET_64BIT 0
594 #endif
595 #endif /* IN_LIBGCC2 */
596
597 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
598 when compiled with hardware floating point. This is because MIPS16
599 code cannot save and restore the floating-point registers, which is
600 important if in a mixed MIPS16/non-MIPS16 environment. */
601
602 #ifdef IN_LIBGCC2
603 #if __mips_hard_float
604 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
605 #endif
606 #endif /* IN_LIBGCC2 */
607
608 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
609
610 #ifndef MULTILIB_ENDIAN_DEFAULT
611 #if TARGET_ENDIAN_DEFAULT == 0
612 #define MULTILIB_ENDIAN_DEFAULT "EL"
613 #else
614 #define MULTILIB_ENDIAN_DEFAULT "EB"
615 #endif
616 #endif
617
618 #ifndef MULTILIB_ISA_DEFAULT
619 # if MIPS_ISA_DEFAULT == 1
620 # define MULTILIB_ISA_DEFAULT "mips1"
621 # else
622 # if MIPS_ISA_DEFAULT == 2
623 # define MULTILIB_ISA_DEFAULT "mips2"
624 # else
625 # if MIPS_ISA_DEFAULT == 3
626 # define MULTILIB_ISA_DEFAULT "mips3"
627 # else
628 # if MIPS_ISA_DEFAULT == 4
629 # define MULTILIB_ISA_DEFAULT "mips4"
630 # else
631 # if MIPS_ISA_DEFAULT == 32
632 # define MULTILIB_ISA_DEFAULT "mips32"
633 # else
634 # if MIPS_ISA_DEFAULT == 33
635 # define MULTILIB_ISA_DEFAULT "mips32r2"
636 # else
637 # if MIPS_ISA_DEFAULT == 64
638 # define MULTILIB_ISA_DEFAULT "mips64"
639 # else
640 # if MIPS_ISA_DEFAULT == 65
641 # define MULTILIB_ISA_DEFAULT "mips64r2"
642 # else
643 # define MULTILIB_ISA_DEFAULT "mips1"
644 # endif
645 # endif
646 # endif
647 # endif
648 # endif
649 # endif
650 # endif
651 # endif
652 #endif
653
654 #ifndef MIPS_ABI_DEFAULT
655 #define MIPS_ABI_DEFAULT ABI_32
656 #endif
657
658 /* Use the most portable ABI flag for the ASM specs. */
659
660 #if MIPS_ABI_DEFAULT == ABI_32
661 #define MULTILIB_ABI_DEFAULT "mabi=32"
662 #endif
663
664 #if MIPS_ABI_DEFAULT == ABI_O64
665 #define MULTILIB_ABI_DEFAULT "mabi=o64"
666 #endif
667
668 #if MIPS_ABI_DEFAULT == ABI_N32
669 #define MULTILIB_ABI_DEFAULT "mabi=n32"
670 #endif
671
672 #if MIPS_ABI_DEFAULT == ABI_64
673 #define MULTILIB_ABI_DEFAULT "mabi=64"
674 #endif
675
676 #if MIPS_ABI_DEFAULT == ABI_EABI
677 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
678 #endif
679
680 #ifndef MULTILIB_DEFAULTS
681 #define MULTILIB_DEFAULTS \
682 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
683 #endif
684
685 /* We must pass -EL to the linker by default for little endian embedded
686 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
687 linker will default to using big-endian output files. The OUTPUT_FORMAT
688 line must be in the linker script, otherwise -EB/-EL will not work. */
689
690 #ifndef ENDIAN_SPEC
691 #if TARGET_ENDIAN_DEFAULT == 0
692 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
693 #else
694 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
695 #endif
696 #endif
697
698 /* A spec condition that matches all non-mips16 -mips arguments. */
699
700 #define MIPS_ISA_LEVEL_OPTION_SPEC \
701 "mips1|mips2|mips3|mips4|mips32*|mips64*"
702
703 /* A spec condition that matches all non-mips16 architecture arguments. */
704
705 #define MIPS_ARCH_OPTION_SPEC \
706 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
707
708 /* A spec that infers a -mips argument from an -march argument,
709 or injects the default if no architecture is specified. */
710
711 #define MIPS_ISA_LEVEL_SPEC \
712 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
713 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
714 %{march=mips2|march=r6000:-mips2} \
715 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
716 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
717 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
718 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
719 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
720 |march=34k*|march=74k*|march=1004k*: -mips32r2} \
721 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
722 |march=xlr|march=loongson3a: -mips64} \
723 %{march=mips64r2|march=octeon: -mips64r2} \
724 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
725
726 /* A spec that infers a -mhard-float or -msoft-float setting from an
727 -march argument. Note that soft-float and hard-float code are not
728 link-compatible. */
729
730 #define MIPS_ARCH_FLOAT_SPEC \
731 "%{mhard-float|msoft-float|march=mips*:; \
732 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
733 |march=34kc|march=74kc|march=1004kc|march=5kc \
734 |march=octeon|march=xlr: -msoft-float; \
735 march=*: -mhard-float}"
736
737 /* A spec condition that matches 32-bit options. It only works if
738 MIPS_ISA_LEVEL_SPEC has been applied. */
739
740 #define MIPS_32BIT_OPTION_SPEC \
741 "mips1|mips2|mips32*|mgp32"
742
743 #if MIPS_ABI_DEFAULT == ABI_O64 \
744 || MIPS_ABI_DEFAULT == ABI_N32 \
745 || MIPS_ABI_DEFAULT == ABI_64
746 #define OPT_ARCH64 "mabi=32|mgp32:;"
747 #define OPT_ARCH32 "mabi=32|mgp32"
748 #else
749 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
750 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
751 #endif
752
753 /* Support for a compile-time default CPU, et cetera. The rules are:
754 --with-arch is ignored if -march is specified or a -mips is specified
755 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
756 --with-tune is ignored if -mtune is specified; likewise
757 --with-tune-32 and --with-tune-64.
758 --with-abi is ignored if -mabi is specified.
759 --with-float is ignored if -mhard-float or -msoft-float are
760 specified.
761 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
762 specified. */
763 #define OPTION_DEFAULT_SPECS \
764 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
765 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
766 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
767 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
768 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
769 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
770 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
771 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
772 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
773 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
774 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
775 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
776
777
778 /* A spec that infers the -mdsp setting from an -march argument. */
779 #define BASE_DRIVER_SELF_SPECS \
780 "%{!mno-dsp: \
781 %{march=24ke*|march=34k*|march=1004k*: -mdsp} \
782 %{march=74k*:%{!mno-dspr2: -mdspr2 -mdsp}}}"
783
784 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
785
786 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
787 && ISA_HAS_COND_TRAP)
788
789 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
790
791 /* True if the ABI can only work with 64-bit integer registers. We
792 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
793 otherwise floating-point registers must also be 64-bit. */
794 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
795
796 /* Likewise for 32-bit regs. */
797 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
798
799 /* True if the file format uses 64-bit symbols. At present, this is
800 only true for n64, which uses 64-bit ELF. */
801 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
802
803 /* True if symbols are 64 bits wide. This is usually determined by
804 the ABI's file format, but it can be overridden by -msym32. Note that
805 overriding the size with -msym32 changes the ABI of relocatable objects,
806 although it doesn't change the ABI of a fully-linked object. */
807 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS && !TARGET_SYM32)
808
809 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
810 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
811 || ISA_MIPS4 \
812 || ISA_MIPS64 \
813 || ISA_MIPS64R2)
814
815 /* ISA has branch likely instructions (e.g. mips2). */
816 /* Disable branchlikely for tx39 until compare rewrite. They haven't
817 been generated up to this point. */
818 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
819
820 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
821 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
822 || TARGET_MIPS5400 \
823 || TARGET_MIPS5500 \
824 || TARGET_MIPS7000 \
825 || TARGET_MIPS9000 \
826 || TARGET_MAD \
827 || ISA_MIPS32 \
828 || ISA_MIPS32R2 \
829 || ISA_MIPS64 \
830 || ISA_MIPS64R2) \
831 && !TARGET_MIPS16)
832
833 /* ISA has a three-operand multiplication instruction. */
834 #define ISA_HAS_DMUL3 (TARGET_64BIT \
835 && TARGET_OCTEON \
836 && !TARGET_MIPS16)
837
838 /* ISA has the floating-point conditional move instructions introduced
839 in mips4. */
840 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
841 || ISA_MIPS32 \
842 || ISA_MIPS32R2 \
843 || ISA_MIPS64 \
844 || ISA_MIPS64R2) \
845 && !TARGET_MIPS5500 \
846 && !TARGET_MIPS16)
847
848 /* ISA has the integer conditional move instructions introduced in mips4 and
849 ST Loongson 2E/2F. */
850 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE || TARGET_LOONGSON_2EF)
851
852 /* ISA has LDC1 and SDC1. */
853 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 && !TARGET_MIPS16)
854
855 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
856 branch on CC, and move (both FP and non-FP) on CC. */
857 #define ISA_HAS_8CC (ISA_MIPS4 \
858 || ISA_MIPS32 \
859 || ISA_MIPS32R2 \
860 || ISA_MIPS64 \
861 || ISA_MIPS64R2)
862
863 /* This is a catch all for other mips4 instructions: indexed load, the
864 FP madd and msub instructions, and the FP recip and recip sqrt
865 instructions. */
866 #define ISA_HAS_FP4 ((ISA_MIPS4 \
867 || (ISA_MIPS32R2 && TARGET_FLOAT64) \
868 || ISA_MIPS64 \
869 || ISA_MIPS64R2) \
870 && !TARGET_MIPS16)
871
872 /* ISA has paired-single instructions. */
873 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
874
875 /* ISA has conditional trap instructions. */
876 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
877 && !TARGET_MIPS16)
878
879 /* ISA has integer multiply-accumulate instructions, madd and msub. */
880 #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
881 || ISA_MIPS32R2 \
882 || ISA_MIPS64 \
883 || ISA_MIPS64R2) \
884 && !TARGET_MIPS16)
885
886 /* Integer multiply-accumulate instructions should be generated. */
887 #define GENERATE_MADD_MSUB (ISA_HAS_MADD_MSUB && !TUNE_74K)
888
889 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
890 #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
891
892 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
893 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
894
895 /* ISA has floating-point nmadd and nmsub instructions
896 'd = -((a * b) [+-] c)'. */
897 #define ISA_HAS_NMADD4_NMSUB4(MODE) \
898 ((ISA_MIPS4 \
899 || (ISA_MIPS32R2 && (MODE) == V2SFmode) \
900 || ISA_MIPS64 \
901 || ISA_MIPS64R2) \
902 && (!TARGET_MIPS5400 || TARGET_MAD) \
903 && !TARGET_MIPS16)
904
905 /* ISA has floating-point nmadd and nmsub instructions
906 'c = -((a * b) [+-] c)'. */
907 #define ISA_HAS_NMADD3_NMSUB3(MODE) \
908 TARGET_LOONGSON_2EF
909
910 /* ISA has count leading zeroes/ones instruction (not implemented). */
911 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
912 || ISA_MIPS32R2 \
913 || ISA_MIPS64 \
914 || ISA_MIPS64R2) \
915 && !TARGET_MIPS16)
916
917 /* ISA has three operand multiply instructions that put
918 the high part in an accumulator: mulhi or mulhiu. */
919 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
920 || TARGET_MIPS5500 \
921 || TARGET_SR71K) \
922 && !TARGET_MIPS16)
923
924 /* ISA has three operand multiply instructions that
925 negates the result and puts the result in an accumulator. */
926 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
927 || TARGET_MIPS5500 \
928 || TARGET_SR71K) \
929 && !TARGET_MIPS16)
930
931 /* ISA has three operand multiply instructions that subtracts the
932 result from a 4th operand and puts the result in an accumulator. */
933 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
934 || TARGET_MIPS5500 \
935 || TARGET_SR71K) \
936 && !TARGET_MIPS16)
937
938 /* ISA has three operand multiply instructions that the result
939 from a 4th operand and puts the result in an accumulator. */
940 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
941 || TARGET_MIPS4130 \
942 || TARGET_MIPS5400 \
943 || TARGET_MIPS5500 \
944 || TARGET_SR71K) \
945 && !TARGET_MIPS16)
946
947 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
948 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
949 || TARGET_MIPS4130) \
950 && !TARGET_MIPS16)
951
952 /* ISA has the "ror" (rotate right) instructions. */
953 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
954 || ISA_MIPS64R2 \
955 || TARGET_MIPS5400 \
956 || TARGET_MIPS5500 \
957 || TARGET_SR71K \
958 || TARGET_SMARTMIPS) \
959 && !TARGET_MIPS16)
960
961 /* ISA has data prefetch instructions. This controls use of 'pref'. */
962 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
963 || TARGET_LOONGSON_2EF \
964 || ISA_MIPS32 \
965 || ISA_MIPS32R2 \
966 || ISA_MIPS64 \
967 || ISA_MIPS64R2) \
968 && !TARGET_MIPS16)
969
970 /* ISA has data indexed prefetch instructions. This controls use of
971 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
972 (prefx is a cop1x instruction, so can only be used if FP is
973 enabled.) */
974 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
975 || ISA_MIPS32R2 \
976 || ISA_MIPS64 \
977 || ISA_MIPS64R2) \
978 && !TARGET_MIPS16)
979
980 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
981 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
982 also requires TARGET_DOUBLE_FLOAT. */
983 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
984
985 /* ISA includes the MIPS32r2 seb and seh instructions. */
986 #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \
987 || ISA_MIPS64R2) \
988 && !TARGET_MIPS16)
989
990 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
991 #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \
992 || ISA_MIPS64R2) \
993 && !TARGET_MIPS16)
994
995 /* ISA has instructions for accessing top part of 64-bit fp regs. */
996 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \
997 && (ISA_MIPS32R2 \
998 || ISA_MIPS64R2))
999
1000 /* ISA has lwxs instruction (load w/scaled index address. */
1001 #define ISA_HAS_LWXS (TARGET_SMARTMIPS && !TARGET_MIPS16)
1002
1003 /* The DSP ASE is available. */
1004 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1005
1006 /* Revision 2 of the DSP ASE is available. */
1007 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1008
1009 /* True if the result of a load is not available to the next instruction.
1010 A nop will then be needed between instructions like "lw $4,..."
1011 and "addiu $4,$4,1". */
1012 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1013 && !TARGET_MIPS3900 \
1014 && !TARGET_MIPS16)
1015
1016 /* Likewise mtc1 and mfc1. */
1017 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1018 && !TARGET_LOONGSON_2EF)
1019
1020 /* Likewise floating-point comparisons. */
1021 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1022 && !TARGET_LOONGSON_2EF)
1023
1024 /* True if mflo and mfhi can be immediately followed by instructions
1025 which write to the HI and LO registers.
1026
1027 According to MIPS specifications, MIPS ISAs I, II, and III need
1028 (at least) two instructions between the reads of HI/LO and
1029 instructions which write them, and later ISAs do not. Contradicting
1030 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1031 the UM for the NEC Vr5000) document needing the instructions between
1032 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1033 MIPS64 and later ISAs to have the interlocks, plus any specific
1034 earlier-ISA CPUs for which CPU documentation declares that the
1035 instructions are really interlocked. */
1036 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1037 || ISA_MIPS32R2 \
1038 || ISA_MIPS64 \
1039 || ISA_MIPS64R2 \
1040 || TARGET_MIPS5500 \
1041 || TARGET_LOONGSON_2EF)
1042
1043 /* ISA includes synci, jr.hb and jalr.hb. */
1044 #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \
1045 || ISA_MIPS64R2) \
1046 && !TARGET_MIPS16)
1047
1048 /* ISA includes sync. */
1049 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1050 #define GENERATE_SYNC \
1051 (target_flags_explicit & MASK_LLSC \
1052 ? TARGET_LLSC && !TARGET_MIPS16 \
1053 : ISA_HAS_SYNC)
1054
1055 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1056 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1057 instructions. */
1058 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS16)
1059 #define GENERATE_LL_SC \
1060 (target_flags_explicit & MASK_LLSC \
1061 ? TARGET_LLSC && !TARGET_MIPS16 \
1062 : ISA_HAS_LL_SC)
1063
1064 /* ISA includes the baddu instruction. */
1065 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1066
1067 /* ISA includes the bbit* instructions. */
1068 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1069
1070 /* ISA includes the cins instruction. */
1071 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1072
1073 /* ISA includes the exts instruction. */
1074 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1075
1076 /* ISA includes the seq and sne instructions. */
1077 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1078
1079 /* ISA includes the pop instruction. */
1080 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1081
1082 /* The CACHE instruction is available in non-MIPS16 code. */
1083 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1084
1085 /* The CACHE instruction is available. */
1086 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1087 \f
1088 /* Tell collect what flags to pass to nm. */
1089 #ifndef NM_FLAGS
1090 #define NM_FLAGS "-Bn"
1091 #endif
1092
1093 \f
1094 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
1095 to the assembler. It may be overridden by subtargets. */
1096 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
1097 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
1098 %{noasmopt:-O0} \
1099 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
1100 #endif
1101
1102 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1103 the assembler. It may be overridden by subtargets.
1104
1105 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1106 COFF debugging info. */
1107
1108 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1109 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1110 %{g} %{g0} %{g1} %{g2} %{g3} \
1111 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1112 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1113 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1114 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1115 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1116 #endif
1117
1118 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1119 overridden by subtargets. */
1120
1121 #ifndef SUBTARGET_ASM_SPEC
1122 #define SUBTARGET_ASM_SPEC ""
1123 #endif
1124
1125 #undef ASM_SPEC
1126 #define ASM_SPEC "\
1127 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1128 %{mips32*} %{mips64*} \
1129 %{mips16} %{mno-mips16:-no-mips16} \
1130 %{mips3d} %{mno-mips3d:-no-mips3d} \
1131 %{mdmx} %{mno-mdmx:-no-mdmx} \
1132 %{mdsp} %{mno-dsp} \
1133 %{mdspr2} %{mno-dspr2} \
1134 %{msmartmips} %{mno-smartmips} \
1135 %{mmt} %{mno-mt} \
1136 %{mfix-vr4120} %{mfix-vr4130} \
1137 %(subtarget_asm_optimizing_spec) \
1138 %(subtarget_asm_debugging_spec) \
1139 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1140 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1141 %{mfp32} %{mfp64} \
1142 %{mshared} %{mno-shared} \
1143 %{msym32} %{mno-sym32} \
1144 %{mtune=*} %{v} \
1145 %(subtarget_asm_spec)"
1146
1147 /* Extra switches sometimes passed to the linker. */
1148 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
1149 will interpret it as a -b option. */
1150
1151 #ifndef LINK_SPEC
1152 #define LINK_SPEC "\
1153 %(endian_spec) \
1154 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1155 %{bestGnum} %{shared} %{non_shared}"
1156 #endif /* LINK_SPEC defined */
1157
1158
1159 /* Specs for the compiler proper */
1160
1161 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1162 overridden by subtargets. */
1163 #ifndef SUBTARGET_CC1_SPEC
1164 #define SUBTARGET_CC1_SPEC ""
1165 #endif
1166
1167 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1168
1169 #undef CC1_SPEC
1170 #define CC1_SPEC "\
1171 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
1172 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1173 %{save-temps: } \
1174 %(subtarget_cc1_spec)"
1175
1176 /* Preprocessor specs. */
1177
1178 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1179 overridden by subtargets. */
1180 #ifndef SUBTARGET_CPP_SPEC
1181 #define SUBTARGET_CPP_SPEC ""
1182 #endif
1183
1184 #define CPP_SPEC "%(subtarget_cpp_spec)"
1185
1186 /* This macro defines names of additional specifications to put in the specs
1187 that can be used in various specifications like CC1_SPEC. Its definition
1188 is an initializer with a subgrouping for each command option.
1189
1190 Each subgrouping contains a string constant, that defines the
1191 specification name, and a string constant that used by the GCC driver
1192 program.
1193
1194 Do not define this macro if it does not need to do anything. */
1195
1196 #define EXTRA_SPECS \
1197 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1198 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1199 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1200 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1201 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1202 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1203 { "endian_spec", ENDIAN_SPEC }, \
1204 SUBTARGET_EXTRA_SPECS
1205
1206 #ifndef SUBTARGET_EXTRA_SPECS
1207 #define SUBTARGET_EXTRA_SPECS
1208 #endif
1209 \f
1210 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1211 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1212
1213 #ifndef PREFERRED_DEBUGGING_TYPE
1214 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1215 #endif
1216
1217 /* The size of DWARF addresses should be the same as the size of symbols
1218 in the target file format. They shouldn't depend on things like -msym32,
1219 because many DWARF consumers do not allow the mixture of address sizes
1220 that one would then get from linking -msym32 code with -msym64 code.
1221
1222 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1223 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1224 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1225
1226 /* By default, turn on GDB extensions. */
1227 #define DEFAULT_GDB_EXTENSIONS 1
1228
1229 /* Local compiler-generated symbols must have a prefix that the assembler
1230 understands. By default, this is $, although some targets (e.g.,
1231 NetBSD-ELF) need to override this. */
1232
1233 #ifndef LOCAL_LABEL_PREFIX
1234 #define LOCAL_LABEL_PREFIX "$"
1235 #endif
1236
1237 /* By default on the mips, external symbols do not have an underscore
1238 prepended, but some targets (e.g., NetBSD) require this. */
1239
1240 #ifndef USER_LABEL_PREFIX
1241 #define USER_LABEL_PREFIX ""
1242 #endif
1243
1244 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1245 since the length can run past this up to a continuation point. */
1246 #undef DBX_CONTIN_LENGTH
1247 #define DBX_CONTIN_LENGTH 1500
1248
1249 /* How to renumber registers for dbx and gdb. */
1250 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1251
1252 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1253 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1254
1255 /* The DWARF 2 CFA column which tracks the return address. */
1256 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1257
1258 /* Before the prologue, RA lives in r31. */
1259 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1260
1261 /* Describe how we implement __builtin_eh_return. */
1262 #define EH_RETURN_DATA_REGNO(N) \
1263 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1264
1265 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1266
1267 #define EH_USES(N) mips_eh_uses (N)
1268
1269 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1270 The default for this in 64-bit mode is 8, which causes problems with
1271 SFmode register saves. */
1272 #define DWARF_CIE_DATA_ALIGNMENT -4
1273
1274 /* Correct the offset of automatic variables and arguments. Note that
1275 the MIPS debug format wants all automatic variables and arguments
1276 to be in terms of the virtual frame pointer (stack pointer before
1277 any adjustment in the function), while the MIPS 3.0 linker wants
1278 the frame pointer to be the stack pointer after the initial
1279 adjustment. */
1280
1281 #define DEBUGGER_AUTO_OFFSET(X) \
1282 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1283 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1284 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1285 \f
1286 /* Target machine storage layout */
1287
1288 #define BITS_BIG_ENDIAN 0
1289 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1290 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1291
1292 #define MAX_BITS_PER_WORD 64
1293
1294 /* Width of a word, in units (bytes). */
1295 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1296 #ifndef IN_LIBGCC2
1297 #define MIN_UNITS_PER_WORD 4
1298 #endif
1299
1300 /* For MIPS, width of a floating point register. */
1301 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1302
1303 /* The number of consecutive floating-point registers needed to store the
1304 largest format supported by the FPU. */
1305 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1306
1307 /* The number of consecutive floating-point registers needed to store the
1308 smallest format supported by the FPU. */
1309 #define MIN_FPRS_PER_FMT \
1310 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1311 ? 1 : MAX_FPRS_PER_FMT)
1312
1313 /* The largest size of value that can be held in floating-point
1314 registers and moved with a single instruction. */
1315 #define UNITS_PER_HWFPVALUE \
1316 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1317
1318 /* The largest size of value that can be held in floating-point
1319 registers. */
1320 #define UNITS_PER_FPVALUE \
1321 (TARGET_SOFT_FLOAT_ABI ? 0 \
1322 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1323 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1324
1325 /* The number of bytes in a double. */
1326 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1327
1328 /* Set the sizes of the core types. */
1329 #define SHORT_TYPE_SIZE 16
1330 #define INT_TYPE_SIZE 32
1331 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1332 #define LONG_LONG_TYPE_SIZE 64
1333
1334 #define FLOAT_TYPE_SIZE 32
1335 #define DOUBLE_TYPE_SIZE 64
1336 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1337
1338 /* Define the sizes of fixed-point types. */
1339 #define SHORT_FRACT_TYPE_SIZE 8
1340 #define FRACT_TYPE_SIZE 16
1341 #define LONG_FRACT_TYPE_SIZE 32
1342 #define LONG_LONG_FRACT_TYPE_SIZE 64
1343
1344 #define SHORT_ACCUM_TYPE_SIZE 16
1345 #define ACCUM_TYPE_SIZE 32
1346 #define LONG_ACCUM_TYPE_SIZE 64
1347 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1348 doesn't support 128-bit integers for MIPS32 currently. */
1349 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1350
1351 /* long double is not a fixed mode, but the idea is that, if we
1352 support long double, we also want a 128-bit integer type. */
1353 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1354
1355 #ifdef IN_LIBGCC2
1356 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1357 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1358 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1359 # else
1360 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1361 # endif
1362 #endif
1363
1364 /* Width in bits of a pointer. */
1365 #ifndef POINTER_SIZE
1366 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1367 #endif
1368
1369 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1370 #define PARM_BOUNDARY BITS_PER_WORD
1371
1372 /* Allocation boundary (in *bits*) for the code of a function. */
1373 #define FUNCTION_BOUNDARY 32
1374
1375 /* Alignment of field after `int : 0' in a structure. */
1376 #define EMPTY_FIELD_BOUNDARY 32
1377
1378 /* Every structure's size must be a multiple of this. */
1379 /* 8 is observed right on a DECstation and on riscos 4.02. */
1380 #define STRUCTURE_SIZE_BOUNDARY 8
1381
1382 /* There is no point aligning anything to a rounder boundary than this. */
1383 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1384
1385 /* All accesses must be aligned. */
1386 #define STRICT_ALIGNMENT 1
1387
1388 /* Define this if you wish to imitate the way many other C compilers
1389 handle alignment of bitfields and the structures that contain
1390 them.
1391
1392 The behavior is that the type written for a bit-field (`int',
1393 `short', or other integer type) imposes an alignment for the
1394 entire structure, as if the structure really did contain an
1395 ordinary field of that type. In addition, the bit-field is placed
1396 within the structure so that it would fit within such a field,
1397 not crossing a boundary for it.
1398
1399 Thus, on most machines, a bit-field whose type is written as `int'
1400 would not cross a four-byte boundary, and would force four-byte
1401 alignment for the whole structure. (The alignment used may not
1402 be four bytes; it is controlled by the other alignment
1403 parameters.)
1404
1405 If the macro is defined, its definition should be a C expression;
1406 a nonzero value for the expression enables this behavior. */
1407
1408 #define PCC_BITFIELD_TYPE_MATTERS 1
1409
1410 /* If defined, a C expression to compute the alignment given to a
1411 constant that is being placed in memory. CONSTANT is the constant
1412 and ALIGN is the alignment that the object would ordinarily have.
1413 The value of this macro is used instead of that alignment to align
1414 the object.
1415
1416 If this macro is not defined, then ALIGN is used.
1417
1418 The typical use of this macro is to increase alignment for string
1419 constants to be word aligned so that `strcpy' calls that copy
1420 constants can be done inline. */
1421
1422 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1423 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1424 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1425
1426 /* If defined, a C expression to compute the alignment for a static
1427 variable. TYPE is the data type, and ALIGN is the alignment that
1428 the object would ordinarily have. The value of this macro is used
1429 instead of that alignment to align the object.
1430
1431 If this macro is not defined, then ALIGN is used.
1432
1433 One use of this macro is to increase alignment of medium-size
1434 data to make it all fit in fewer cache lines. Another is to
1435 cause character arrays to be word-aligned so that `strcpy' calls
1436 that copy constants to character arrays can be done inline. */
1437
1438 #undef DATA_ALIGNMENT
1439 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1440 ((((ALIGN) < BITS_PER_WORD) \
1441 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1442 || TREE_CODE (TYPE) == UNION_TYPE \
1443 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1444
1445 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1446 character arrays to be word-aligned so that `strcpy' calls that copy
1447 constants to character arrays can be done inline, and 'strcmp' can be
1448 optimised to use word loads. */
1449 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1450 DATA_ALIGNMENT (TYPE, ALIGN)
1451
1452 #define PAD_VARARGS_DOWN \
1453 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1454
1455 /* Define if operations between registers always perform the operation
1456 on the full register even if a narrower mode is specified. */
1457 #define WORD_REGISTER_OPERATIONS
1458
1459 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1460 moves. All other references are zero extended. */
1461 #define LOAD_EXTEND_OP(MODE) \
1462 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1463 ? SIGN_EXTEND : ZERO_EXTEND)
1464
1465 /* Define this macro if it is advisable to hold scalars in registers
1466 in a wider mode than that declared by the program. In such cases,
1467 the value is constrained to be within the bounds of the declared
1468 type, but kept valid in the wider mode. The signedness of the
1469 extension may differ from that of the type. */
1470
1471 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1472 if (GET_MODE_CLASS (MODE) == MODE_INT \
1473 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1474 { \
1475 if ((MODE) == SImode) \
1476 (UNSIGNEDP) = 0; \
1477 (MODE) = Pmode; \
1478 }
1479
1480 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1481 Extensions of pointers to word_mode must be signed. */
1482 #define POINTERS_EXTEND_UNSIGNED false
1483
1484 /* Define if loading short immediate values into registers sign extends. */
1485 #define SHORT_IMMEDIATES_SIGN_EXTEND
1486
1487 /* The [d]clz instructions have the natural values at 0. */
1488
1489 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1490 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1491 \f
1492 /* Standard register usage. */
1493
1494 /* Number of hardware registers. We have:
1495
1496 - 32 integer registers
1497 - 32 floating point registers
1498 - 8 condition code registers
1499 - 2 accumulator registers (hi and lo)
1500 - 32 registers each for coprocessors 0, 2 and 3
1501 - 4 fake registers:
1502 - ARG_POINTER_REGNUM
1503 - FRAME_POINTER_REGNUM
1504 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1505 - CPRESTORE_SLOT_REGNUM
1506 - 2 dummy entries that were used at various times in the past.
1507 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1508 - 6 DSP control registers */
1509
1510 #define FIRST_PSEUDO_REGISTER 188
1511
1512 /* By default, fix the kernel registers ($26 and $27), the global
1513 pointer ($28) and the stack pointer ($29). This can change
1514 depending on the command-line options.
1515
1516 Regarding coprocessor registers: without evidence to the contrary,
1517 it's best to assume that each coprocessor register has a unique
1518 use. This can be overridden, in, e.g., mips_option_override or
1519 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1520 inappropriate for a particular target. */
1521
1522 #define FIXED_REGISTERS \
1523 { \
1524 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1525 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1526 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1527 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1528 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1529 /* COP0 registers */ \
1530 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1531 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1532 /* COP2 registers */ \
1533 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1534 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1535 /* COP3 registers */ \
1536 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1537 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1538 /* 6 DSP accumulator registers & 6 control registers */ \
1539 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1540 }
1541
1542
1543 /* Set up this array for o32 by default.
1544
1545 Note that we don't mark $31 as a call-clobbered register. The idea is
1546 that it's really the call instructions themselves which clobber $31.
1547 We don't care what the called function does with it afterwards.
1548
1549 This approach makes it easier to implement sibcalls. Unlike normal
1550 calls, sibcalls don't clobber $31, so the register reaches the
1551 called function in tact. EPILOGUE_USES says that $31 is useful
1552 to the called function. */
1553
1554 #define CALL_USED_REGISTERS \
1555 { \
1556 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1557 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1558 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1559 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1560 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1561 /* COP0 registers */ \
1562 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1563 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1564 /* COP2 registers */ \
1565 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1566 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1567 /* COP3 registers */ \
1568 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1569 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1570 /* 6 DSP accumulator registers & 6 control registers */ \
1571 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1572 }
1573
1574
1575 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1576
1577 #define CALL_REALLY_USED_REGISTERS \
1578 { /* General registers. */ \
1579 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1580 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1581 /* Floating-point registers. */ \
1582 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1583 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1584 /* Others. */ \
1585 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1586 /* COP0 registers */ \
1587 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1588 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1589 /* COP2 registers */ \
1590 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1591 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1592 /* COP3 registers */ \
1593 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1594 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1595 /* 6 DSP accumulator registers & 6 control registers */ \
1596 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1597 }
1598
1599 /* Internal macros to classify a register number as to whether it's a
1600 general purpose register, a floating point register, a
1601 multiply/divide register, or a status register. */
1602
1603 #define GP_REG_FIRST 0
1604 #define GP_REG_LAST 31
1605 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1606 #define GP_DBX_FIRST 0
1607 #define K0_REG_NUM (GP_REG_FIRST + 26)
1608 #define K1_REG_NUM (GP_REG_FIRST + 27)
1609 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1610
1611 #define FP_REG_FIRST 32
1612 #define FP_REG_LAST 63
1613 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1614 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1615
1616 #define MD_REG_FIRST 64
1617 #define MD_REG_LAST 65
1618 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1619 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1620
1621 /* The DWARF 2 CFA column which tracks the return address from a
1622 signal handler context. This means that to maintain backwards
1623 compatibility, no hard register can be assigned this column if it
1624 would need to be handled by the DWARF unwinder. */
1625 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1626
1627 #define ST_REG_FIRST 67
1628 #define ST_REG_LAST 74
1629 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1630
1631
1632 /* FIXME: renumber. */
1633 #define COP0_REG_FIRST 80
1634 #define COP0_REG_LAST 111
1635 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1636
1637 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1638 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1639 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1640
1641 #define COP2_REG_FIRST 112
1642 #define COP2_REG_LAST 143
1643 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1644
1645 #define COP3_REG_FIRST 144
1646 #define COP3_REG_LAST 175
1647 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1648 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1649 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1650
1651 #define DSP_ACC_REG_FIRST 176
1652 #define DSP_ACC_REG_LAST 181
1653 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1654
1655 #define AT_REGNUM (GP_REG_FIRST + 1)
1656 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1657 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1658
1659 /* A few bitfield locations for the coprocessor registers. */
1660 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1661 the cause register for the EIC interrupt mode. */
1662 #define CAUSE_IPL 10
1663 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1664 #define SR_IPL 10
1665 /* Exception Level is at bit 1 of the status register. */
1666 #define SR_EXL 1
1667 /* Interrupt Enable is at bit 0 of the status register. */
1668 #define SR_IE 0
1669
1670 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1671 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1672 should be used instead. */
1673 #define FPSW_REGNUM ST_REG_FIRST
1674
1675 #define GP_REG_P(REGNO) \
1676 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1677 #define M16_REG_P(REGNO) \
1678 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1679 #define FP_REG_P(REGNO) \
1680 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1681 #define MD_REG_P(REGNO) \
1682 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1683 #define ST_REG_P(REGNO) \
1684 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1685 #define COP0_REG_P(REGNO) \
1686 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1687 #define COP2_REG_P(REGNO) \
1688 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1689 #define COP3_REG_P(REGNO) \
1690 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1691 #define ALL_COP_REG_P(REGNO) \
1692 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1693 /* Test if REGNO is one of the 6 new DSP accumulators. */
1694 #define DSP_ACC_REG_P(REGNO) \
1695 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1696 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1697 #define ACC_REG_P(REGNO) \
1698 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1699
1700 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1701
1702 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1703 to initialize the mips16 gp pseudo register. */
1704 #define CONST_GP_P(X) \
1705 (GET_CODE (X) == CONST \
1706 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1707 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1708
1709 /* Return coprocessor number from register number. */
1710
1711 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1712 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1713 : COP3_REG_P (REGNO) ? '3' : '?')
1714
1715
1716 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1717
1718 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1719 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1720
1721 #define MODES_TIEABLE_P mips_modes_tieable_p
1722
1723 /* Register to use for pushing function arguments. */
1724 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1725
1726 /* These two registers don't really exist: they get eliminated to either
1727 the stack or hard frame pointer. */
1728 #define ARG_POINTER_REGNUM 77
1729 #define FRAME_POINTER_REGNUM 78
1730
1731 /* $30 is not available on the mips16, so we use $17 as the frame
1732 pointer. */
1733 #define HARD_FRAME_POINTER_REGNUM \
1734 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1735
1736 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1737 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1738
1739 /* Register in which static-chain is passed to a function. */
1740 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1741
1742 /* Registers used as temporaries in prologue/epilogue code:
1743
1744 - If a MIPS16 PIC function needs access to _gp, it first loads
1745 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1746
1747 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1748 register. The register must not conflict with MIPS16_PIC_TEMP.
1749
1750 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1751 register.
1752
1753 If we're generating MIPS16 code, these registers must come from the
1754 core set of 8. The prologue registers mustn't conflict with any
1755 incoming arguments, the static chain pointer, or the frame pointer.
1756 The epilogue temporary mustn't conflict with the return registers,
1757 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1758 or the EH data registers.
1759
1760 If we're generating interrupt handlers, we use K0 as a temporary register
1761 in prologue/epilogue code. */
1762
1763 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1764 #define MIPS_PROLOGUE_TEMP_REGNUM \
1765 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1766 #define MIPS_EPILOGUE_TEMP_REGNUM \
1767 (cfun->machine->interrupt_handler_p \
1768 ? K0_REG_NUM \
1769 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1770
1771 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1772 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1773 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1774
1775 /* Define this macro if it is as good or better to call a constant
1776 function address than to call an address kept in a register. */
1777 #define NO_FUNCTION_CSE 1
1778
1779 /* The ABI-defined global pointer. Sometimes we use a different
1780 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1781 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1782
1783 /* We normally use $28 as the global pointer. However, when generating
1784 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1785 register instead. They can then avoid saving and restoring $28
1786 and perhaps avoid using a frame at all.
1787
1788 When a leaf function uses something other than $28, mips_expand_prologue
1789 will modify pic_offset_table_rtx in place. Take the register number
1790 from there after reload. */
1791 #define PIC_OFFSET_TABLE_REGNUM \
1792 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1793
1794 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1795 \f
1796 /* Define the classes of registers for register constraints in the
1797 machine description. Also define ranges of constants.
1798
1799 One of the classes must always be named ALL_REGS and include all hard regs.
1800 If there is more than one class, another class must be named NO_REGS
1801 and contain no registers.
1802
1803 The name GENERAL_REGS must be the name of a class (or an alias for
1804 another name such as ALL_REGS). This is the class of registers
1805 that is allowed by "g" or "r" in a register constraint.
1806 Also, registers outside this class are allocated only when
1807 instructions express preferences for them.
1808
1809 The classes must be numbered in nondecreasing order; that is,
1810 a larger-numbered class must never be contained completely
1811 in a smaller-numbered class.
1812
1813 For any two classes, it is very desirable that there be another
1814 class that represents their union. */
1815
1816 enum reg_class
1817 {
1818 NO_REGS, /* no registers in set */
1819 M16_REGS, /* mips16 directly accessible registers */
1820 T_REG, /* mips16 T register ($24) */
1821 M16_T_REGS, /* mips16 registers plus T register */
1822 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1823 V1_REG, /* Register $v1 ($3) used for TLS access. */
1824 LEA_REGS, /* Every GPR except $25 */
1825 GR_REGS, /* integer registers */
1826 FP_REGS, /* floating point registers */
1827 MD0_REG, /* first multiply/divide register */
1828 MD1_REG, /* second multiply/divide register */
1829 MD_REGS, /* multiply/divide registers (hi/lo) */
1830 COP0_REGS, /* generic coprocessor classes */
1831 COP2_REGS,
1832 COP3_REGS,
1833 ST_REGS, /* status registers (fp status) */
1834 DSP_ACC_REGS, /* DSP accumulator registers */
1835 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1836 FRAME_REGS, /* $arg and $frame */
1837 GR_AND_MD0_REGS, /* union classes */
1838 GR_AND_MD1_REGS,
1839 GR_AND_MD_REGS,
1840 GR_AND_ACC_REGS,
1841 ALL_REGS, /* all registers */
1842 LIM_REG_CLASSES /* max value + 1 */
1843 };
1844
1845 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1846
1847 #define GENERAL_REGS GR_REGS
1848
1849 /* An initializer containing the names of the register classes as C
1850 string constants. These names are used in writing some of the
1851 debugging dumps. */
1852
1853 #define REG_CLASS_NAMES \
1854 { \
1855 "NO_REGS", \
1856 "M16_REGS", \
1857 "T_REG", \
1858 "M16_T_REGS", \
1859 "PIC_FN_ADDR_REG", \
1860 "V1_REG", \
1861 "LEA_REGS", \
1862 "GR_REGS", \
1863 "FP_REGS", \
1864 "MD0_REG", \
1865 "MD1_REG", \
1866 "MD_REGS", \
1867 /* coprocessor registers */ \
1868 "COP0_REGS", \
1869 "COP2_REGS", \
1870 "COP3_REGS", \
1871 "ST_REGS", \
1872 "DSP_ACC_REGS", \
1873 "ACC_REGS", \
1874 "FRAME_REGS", \
1875 "GR_AND_MD0_REGS", \
1876 "GR_AND_MD1_REGS", \
1877 "GR_AND_MD_REGS", \
1878 "GR_AND_ACC_REGS", \
1879 "ALL_REGS" \
1880 }
1881
1882 /* An initializer containing the contents of the register classes,
1883 as integers which are bit masks. The Nth integer specifies the
1884 contents of class N. The way the integer MASK is interpreted is
1885 that register R is in the class if `MASK & (1 << R)' is 1.
1886
1887 When the machine has more than 32 registers, an integer does not
1888 suffice. Then the integers are replaced by sub-initializers,
1889 braced groupings containing several integers. Each
1890 sub-initializer must be suitable as an initializer for the type
1891 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1892
1893 #define REG_CLASS_CONTENTS \
1894 { \
1895 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1896 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1897 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1898 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1899 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1900 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1901 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1902 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1903 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1904 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1905 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1906 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1907 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1908 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1909 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1910 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1911 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1912 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1913 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1914 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1915 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1916 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1917 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1918 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1919 }
1920
1921
1922 /* A C expression whose value is a register class containing hard
1923 register REGNO. In general there is more that one such class;
1924 choose a class which is "minimal", meaning that no smaller class
1925 also contains the register. */
1926
1927 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1928
1929 /* A macro whose definition is the name of the class to which a
1930 valid base register must belong. A base register is one used in
1931 an address which is the register value plus a displacement. */
1932
1933 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1934
1935 /* A macro whose definition is the name of the class to which a
1936 valid index register must belong. An index register is one used
1937 in an address where its value is either multiplied by a scale
1938 factor or added to another register (as well as added to a
1939 displacement). */
1940
1941 #define INDEX_REG_CLASS NO_REGS
1942
1943 /* We generally want to put call-clobbered registers ahead of
1944 call-saved ones. (IRA expects this.) */
1945
1946 #define REG_ALLOC_ORDER \
1947 { /* Accumulator registers. When GPRs and accumulators have equal \
1948 cost, we generally prefer to use accumulators. For example, \
1949 a division of multiplication result is better allocated to LO, \
1950 so that we put the MFLO at the point of use instead of at the \
1951 point of definition. It's also needed if we're to take advantage \
1952 of the extra accumulators available with -mdspr2. In some cases, \
1953 it can also help to reduce register pressure. */ \
1954 64, 65,176,177,178,179,180,181, \
1955 /* Call-clobbered GPRs. */ \
1956 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1957 24, 25, 31, \
1958 /* The global pointer. This is call-clobbered for o32 and o64 \
1959 abicalls, call-saved for n32 and n64 abicalls, and a program \
1960 invariant otherwise. Putting it between the call-clobbered \
1961 and call-saved registers should cope with all eventualities. */ \
1962 28, \
1963 /* Call-saved GPRs. */ \
1964 16, 17, 18, 19, 20, 21, 22, 23, 30, \
1965 /* GPRs that can never be exposed to the register allocator. */ \
1966 0, 26, 27, 29, \
1967 /* Call-clobbered FPRs. */ \
1968 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1969 48, 49, 50, 51, \
1970 /* FPRs that are usually call-saved. The odd ones are actually \
1971 call-clobbered for n32, but listing them ahead of the even \
1972 registers might encourage the register allocator to fragment \
1973 the available FPR pairs. We need paired FPRs to store long \
1974 doubles, so it isn't clear that using a different order \
1975 for n32 would be a win. */ \
1976 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1977 /* None of the remaining classes have defined call-saved \
1978 registers. */ \
1979 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
1980 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
1981 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
1982 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
1983 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
1984 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
1985 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
1986 182,183,184,185,186,187 \
1987 }
1988
1989 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1990 to be rearranged based on a particular function. On the mips16, we
1991 want to allocate $24 (T_REG) before other registers for
1992 instructions for which it is possible. */
1993
1994 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
1995
1996 /* True if VALUE is an unsigned 6-bit number. */
1997
1998 #define UIMM6_OPERAND(VALUE) \
1999 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2000
2001 /* True if VALUE is a signed 10-bit number. */
2002
2003 #define IMM10_OPERAND(VALUE) \
2004 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2005
2006 /* True if VALUE is a signed 16-bit number. */
2007
2008 #define SMALL_OPERAND(VALUE) \
2009 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2010
2011 /* True if VALUE is an unsigned 16-bit number. */
2012
2013 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2014 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2015
2016 /* True if VALUE can be loaded into a register using LUI. */
2017
2018 #define LUI_OPERAND(VALUE) \
2019 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2020 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2021
2022 /* Return a value X with the low 16 bits clear, and such that
2023 VALUE - X is a signed 16-bit value. */
2024
2025 #define CONST_HIGH_PART(VALUE) \
2026 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2027
2028 #define CONST_LOW_PART(VALUE) \
2029 ((VALUE) - CONST_HIGH_PART (VALUE))
2030
2031 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2032 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2033 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2034
2035 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
2036 mips_preferred_reload_class (X, CLASS)
2037
2038 /* The HI and LO registers can only be reloaded via the general
2039 registers. Condition code registers can only be loaded to the
2040 general registers, and from the floating point registers. */
2041
2042 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2043 mips_secondary_reload_class (CLASS, MODE, X, true)
2044 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2045 mips_secondary_reload_class (CLASS, MODE, X, false)
2046
2047 /* Return the maximum number of consecutive registers
2048 needed to represent mode MODE in a register of class CLASS. */
2049
2050 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2051
2052 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2053 mips_cannot_change_mode_class (FROM, TO, CLASS)
2054 \f
2055 /* Stack layout; function entry, exit and calling. */
2056
2057 #define STACK_GROWS_DOWNWARD
2058
2059 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2060
2061 /* Size of the area allocated in the frame to save the GP. */
2062
2063 #define MIPS_GP_SAVE_AREA_SIZE \
2064 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2065
2066 /* The offset of the first local variable from the frame pointer. See
2067 mips_compute_frame_info for details about the frame layout. */
2068
2069 #define STARTING_FRAME_OFFSET \
2070 (FRAME_GROWS_DOWNWARD \
2071 ? 0 \
2072 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2073
2074 #define RETURN_ADDR_RTX mips_return_addr
2075
2076 /* Mask off the MIPS16 ISA bit in unwind addresses.
2077
2078 The reason for this is a little subtle. When unwinding a call,
2079 we are given the call's return address, which on most targets
2080 is the address of the following instruction. However, what we
2081 actually want to find is the EH region for the call itself.
2082 The target-independent unwind code therefore searches for "RA - 1".
2083
2084 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2085 RA - 1 is therefore the real (even-valued) start of the return
2086 instruction. EH region labels are usually odd-valued MIPS16 symbols
2087 too, so a search for an even address within a MIPS16 region would
2088 usually work.
2089
2090 However, there is an exception. If the end of an EH region is also
2091 the end of a function, the end label is allowed to be even. This is
2092 necessary because a following non-MIPS16 function may also need EH
2093 information for its first instruction.
2094
2095 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2096 non-ISA-encoded address. This probably isn't ideal, but it is
2097 the traditional (legacy) behavior. It is therefore only safe
2098 to search MIPS EH regions for an _odd-valued_ address.
2099
2100 Masking off the ISA bit means that the target-independent code
2101 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2102 #define MASK_RETURN_ADDR GEN_INT (-2)
2103
2104
2105 /* Similarly, don't use the least-significant bit to tell pointers to
2106 code from vtable index. */
2107
2108 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2109
2110 /* The eliminations to $17 are only used for mips16 code. See the
2111 definition of HARD_FRAME_POINTER_REGNUM. */
2112
2113 #define ELIMINABLE_REGS \
2114 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2115 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2116 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2117 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2118 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2119 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2120
2121 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2122 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2123
2124 /* Allocate stack space for arguments at the beginning of each function. */
2125 #define ACCUMULATE_OUTGOING_ARGS 1
2126
2127 /* The argument pointer always points to the first argument. */
2128 #define FIRST_PARM_OFFSET(FNDECL) 0
2129
2130 /* o32 and o64 reserve stack space for all argument registers. */
2131 #define REG_PARM_STACK_SPACE(FNDECL) \
2132 (TARGET_OLDABI \
2133 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2134 : 0)
2135
2136 /* Define this if it is the responsibility of the caller to
2137 allocate the area reserved for arguments passed in registers.
2138 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2139 of this macro is to determine whether the space is included in
2140 `crtl->outgoing_args_size'. */
2141 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2142
2143 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2144 \f
2145 /* Symbolic macros for the registers used to return integer and floating
2146 point values. */
2147
2148 #define GP_RETURN (GP_REG_FIRST + 2)
2149 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2150
2151 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2152
2153 /* Symbolic macros for the first/last argument registers. */
2154
2155 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2156 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2157 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2158 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2159
2160 #define LIBCALL_VALUE(MODE) \
2161 mips_function_value (NULL_TREE, NULL_TREE, MODE)
2162
2163 #define FUNCTION_VALUE(VALTYPE, FUNC) \
2164 mips_function_value (VALTYPE, FUNC, VOIDmode)
2165
2166 /* 1 if N is a possible register number for a function value.
2167 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2168 Currently, R2 and F0 are only implemented here (C has no complex type) */
2169
2170 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
2171 || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
2172 && (N) == FP_RETURN + 2))
2173
2174 /* 1 if N is a possible register number for function argument passing.
2175 We have no FP argument registers when soft-float. When FP registers
2176 are 32 bits, we can't directly reference the odd numbered ones. */
2177
2178 #define FUNCTION_ARG_REGNO_P(N) \
2179 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2180 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2181 && !fixed_regs[N])
2182 \f
2183 /* This structure has to cope with two different argument allocation
2184 schemes. Most MIPS ABIs view the arguments as a structure, of which
2185 the first N words go in registers and the rest go on the stack. If I
2186 < N, the Ith word might go in Ith integer argument register or in a
2187 floating-point register. For these ABIs, we only need to remember
2188 the offset of the current argument into the structure.
2189
2190 The EABI instead allocates the integer and floating-point arguments
2191 separately. The first N words of FP arguments go in FP registers,
2192 the rest go on the stack. Likewise, the first N words of the other
2193 arguments go in integer registers, and the rest go on the stack. We
2194 need to maintain three counts: the number of integer registers used,
2195 the number of floating-point registers used, and the number of words
2196 passed on the stack.
2197
2198 We could keep separate information for the two ABIs (a word count for
2199 the standard ABIs, and three separate counts for the EABI). But it
2200 seems simpler to view the standard ABIs as forms of EABI that do not
2201 allocate floating-point registers.
2202
2203 So for the standard ABIs, the first N words are allocated to integer
2204 registers, and mips_function_arg decides on an argument-by-argument
2205 basis whether that argument should really go in an integer register,
2206 or in a floating-point one. */
2207
2208 typedef struct mips_args {
2209 /* Always true for varargs functions. Otherwise true if at least
2210 one argument has been passed in an integer register. */
2211 int gp_reg_found;
2212
2213 /* The number of arguments seen so far. */
2214 unsigned int arg_number;
2215
2216 /* The number of integer registers used so far. For all ABIs except
2217 EABI, this is the number of words that have been added to the
2218 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2219 unsigned int num_gprs;
2220
2221 /* For EABI, the number of floating-point registers used so far. */
2222 unsigned int num_fprs;
2223
2224 /* The number of words passed on the stack. */
2225 unsigned int stack_words;
2226
2227 /* On the mips16, we need to keep track of which floating point
2228 arguments were passed in general registers, but would have been
2229 passed in the FP regs if this were a 32-bit function, so that we
2230 can move them to the FP regs if we wind up calling a 32-bit
2231 function. We record this information in fp_code, encoded in base
2232 four. A zero digit means no floating point argument, a one digit
2233 means an SFmode argument, and a two digit means a DFmode argument,
2234 and a three digit is not used. The low order digit is the first
2235 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2236 an SFmode argument. ??? A more sophisticated approach will be
2237 needed if MIPS_ABI != ABI_32. */
2238 int fp_code;
2239
2240 /* True if the function has a prototype. */
2241 int prototype;
2242 } CUMULATIVE_ARGS;
2243
2244 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2245 for a call to a function whose data type is FNTYPE.
2246 For a library call, FNTYPE is 0. */
2247
2248 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2249 mips_init_cumulative_args (&CUM, FNTYPE)
2250
2251 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2252 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2253
2254 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2255 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2256
2257 /* True if using EABI and varargs can be passed in floating-point
2258 registers. Under these conditions, we need a more complex form
2259 of va_list, which tracks GPR, FPR and stack arguments separately. */
2260 #define EABI_FLOAT_VARARGS_P \
2261 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2262
2263 \f
2264 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2265
2266 /* Treat LOC as a byte offset from the stack pointer and round it up
2267 to the next fully-aligned offset. */
2268 #define MIPS_STACK_ALIGN(LOC) \
2269 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2270
2271 \f
2272 /* Output assembler code to FILE to increment profiler label # LABELNO
2273 for profiling a function entry. */
2274
2275 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2276
2277 /* The profiler preserves all interesting registers, including $31. */
2278 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2279
2280 /* No mips port has ever used the profiler counter word, so don't emit it
2281 or the label for it. */
2282
2283 #define NO_PROFILE_COUNTERS 1
2284
2285 /* Define this macro if the code for function profiling should come
2286 before the function prologue. Normally, the profiling code comes
2287 after. */
2288
2289 /* #define PROFILE_BEFORE_PROLOGUE */
2290
2291 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2292 the stack pointer does not matter. The value is tested only in
2293 functions that have frame pointers.
2294 No definition is equivalent to always zero. */
2295
2296 #define EXIT_IGNORE_STACK 1
2297
2298 \f
2299 /* Trampolines are a block of code followed by two pointers. */
2300
2301 #define TRAMPOLINE_SIZE \
2302 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2303
2304 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2305 pointers from a single LUI base. */
2306
2307 #define TRAMPOLINE_ALIGNMENT 64
2308
2309 /* mips_trampoline_init calls this library function to flush
2310 program and data caches. */
2311
2312 #ifndef CACHE_FLUSH_FUNC
2313 #define CACHE_FLUSH_FUNC "_flush_cache"
2314 #endif
2315
2316 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2317 /* Flush both caches. We need to flush the data cache in case \
2318 the system has a write-back cache. */ \
2319 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2320 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2321 GEN_INT (3), TYPE_MODE (integer_type_node))
2322
2323 \f
2324 /* Addressing modes, and classification of registers for them. */
2325
2326 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2327 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2328 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2329
2330 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2331 and check its validity for a certain class.
2332 We have two alternate definitions for each of them.
2333 The usual definition accepts all pseudo regs; the other rejects them all.
2334 The symbol REG_OK_STRICT causes the latter definition to be used.
2335
2336 Most source files want to accept pseudo regs in the hope that
2337 they will get allocated to the class that the insn wants them to be in.
2338 Some source files that are used after register allocation
2339 need to be strict. */
2340
2341 #ifndef REG_OK_STRICT
2342 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2343 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2344 #else
2345 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2346 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2347 #endif
2348
2349 #define REG_OK_FOR_INDEX_P(X) 0
2350
2351 \f
2352 /* Maximum number of registers that can appear in a valid memory address. */
2353
2354 #define MAX_REGS_PER_ADDRESS 1
2355
2356 /* Check for constness inline but use mips_legitimate_address_p
2357 to check whether a constant really is an address. */
2358
2359 #define CONSTANT_ADDRESS_P(X) \
2360 (CONSTANT_P (X) && memory_address_p (SImode, X))
2361
2362 #define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2363
2364 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2365 'the start of the function that this code is output in'. */
2366
2367 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2368 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2369 asm_fprintf ((FILE), "%U%s", \
2370 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2371 else \
2372 asm_fprintf ((FILE), "%U%s", (NAME))
2373 \f
2374 /* Flag to mark a function decl symbol that requires a long call. */
2375 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2376 #define SYMBOL_REF_LONG_CALL_P(X) \
2377 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2378
2379 /* This flag marks functions that cannot be lazily bound. */
2380 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2381 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2382 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2383
2384 /* True if we're generating a form of MIPS16 code in which jump tables
2385 are stored in the text section and encoded as 16-bit PC-relative
2386 offsets. This is only possible when general text loads are allowed,
2387 since the table access itself will be an "lh" instruction. */
2388 /* ??? 16-bit offsets can overflow in large functions. */
2389 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2390
2391 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2392
2393 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? HImode : ptr_mode)
2394
2395 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2396
2397 /* Define this as 1 if `char' should by default be signed; else as 0. */
2398 #ifndef DEFAULT_SIGNED_CHAR
2399 #define DEFAULT_SIGNED_CHAR 1
2400 #endif
2401
2402 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2403 we generally don't want to use them for copying arbitrary data.
2404 A single N-word move is usually the same cost as N single-word moves. */
2405 #define MOVE_MAX UNITS_PER_WORD
2406 #define MAX_MOVE_MAX 8
2407
2408 /* Define this macro as a C expression which is nonzero if
2409 accessing less than a word of memory (i.e. a `char' or a
2410 `short') is no faster than accessing a word of memory, i.e., if
2411 such access require more than one instruction or if there is no
2412 difference in cost between byte and (aligned) word loads.
2413
2414 On RISC machines, it tends to generate better code to define
2415 this as 1, since it avoids making a QI or HI mode register.
2416
2417 But, generating word accesses for -mips16 is generally bad as shifts
2418 (often extended) would be needed for byte accesses. */
2419 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2420
2421 /* Standard MIPS integer shifts truncate the shift amount to the
2422 width of the shifted operand. However, Loongson vector shifts
2423 do not truncate the shift amount at all. */
2424 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_2EF)
2425
2426 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2427 is done just by pretending it is already truncated. */
2428 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2429 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2430
2431
2432 /* Specify the machine mode that pointers have.
2433 After generation of rtl, the compiler makes no further distinction
2434 between pointers and any other objects of this machine mode. */
2435
2436 #ifndef Pmode
2437 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2438 #endif
2439
2440 /* Give call MEMs SImode since it is the "most permissive" mode
2441 for both 32-bit and 64-bit targets. */
2442
2443 #define FUNCTION_MODE SImode
2444
2445 \f
2446
2447 /* Define if copies to/from condition code registers should be avoided.
2448
2449 This is needed for the MIPS because reload_outcc is not complete;
2450 it needs to handle cases where the source is a general or another
2451 condition code register. */
2452 #define AVOID_CCMODE_COPIES
2453
2454 /* A C expression for the cost of a branch instruction. A value of
2455 1 is the default; other values are interpreted relative to that. */
2456
2457 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2458 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2459
2460 /* If defined, modifies the length assigned to instruction INSN as a
2461 function of the context in which it is used. LENGTH is an lvalue
2462 that contains the initially computed length of the insn and should
2463 be updated with the correct length of the insn. */
2464 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2465 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2466
2467 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2468 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2469 its operands. */
2470 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2471 "%*" OPCODE "%?\t" OPERANDS "%/"
2472
2473 /* Return an asm string that forces INSN to be treated as an absolute
2474 J or JAL instruction instead of an assembler macro. */
2475 #define MIPS_ABSOLUTE_JUMP(INSN) \
2476 (TARGET_ABICALLS_PIC2 \
2477 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2478 : INSN)
2479
2480 /* Return the asm template for a call. INSN is the instruction's mnemonic
2481 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2482 number of the target. SIZE_OPNO is the operand number of the argument size
2483 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2484 -1 and the call is indirect, use the function symbol from the call
2485 attributes to attach a R_MIPS_JALR relocation to the call.
2486
2487 When generating GOT code without explicit relocation operators,
2488 all calls should use assembly macros. Otherwise, all indirect
2489 calls should use "jr" or "jalr"; we will arrange to restore $gp
2490 afterwards if necessary. Finally, we can only generate direct
2491 calls for -mabicalls by temporarily switching to non-PIC mode. */
2492 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2493 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2494 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2495 : (REG_P (OPERANDS[TARGET_OPNO]) \
2496 && mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO)) \
2497 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2498 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2499 : REG_P (OPERANDS[TARGET_OPNO]) \
2500 ? "%*" INSN "r\t%" #TARGET_OPNO "%/" \
2501 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/"))
2502 \f
2503 /* Control the assembler format that we output. */
2504
2505 /* Output to assembler file text saying following lines
2506 may contain character constants, extra white space, comments, etc. */
2507
2508 #ifndef ASM_APP_ON
2509 #define ASM_APP_ON " #APP\n"
2510 #endif
2511
2512 /* Output to assembler file text saying following lines
2513 no longer contain unusual constructs. */
2514
2515 #ifndef ASM_APP_OFF
2516 #define ASM_APP_OFF " #NO_APP\n"
2517 #endif
2518
2519 #define REGISTER_NAMES \
2520 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2521 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2522 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2523 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2524 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2525 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2526 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2527 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2528 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2529 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2530 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2531 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2532 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2533 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2534 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2535 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2536 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2537 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2538 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2539 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2540 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2541 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2542 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2543 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2544
2545 /* List the "software" names for each register. Also list the numerical
2546 names for $fp and $sp. */
2547
2548 #define ADDITIONAL_REGISTER_NAMES \
2549 { \
2550 { "$29", 29 + GP_REG_FIRST }, \
2551 { "$30", 30 + GP_REG_FIRST }, \
2552 { "at", 1 + GP_REG_FIRST }, \
2553 { "v0", 2 + GP_REG_FIRST }, \
2554 { "v1", 3 + GP_REG_FIRST }, \
2555 { "a0", 4 + GP_REG_FIRST }, \
2556 { "a1", 5 + GP_REG_FIRST }, \
2557 { "a2", 6 + GP_REG_FIRST }, \
2558 { "a3", 7 + GP_REG_FIRST }, \
2559 { "t0", 8 + GP_REG_FIRST }, \
2560 { "t1", 9 + GP_REG_FIRST }, \
2561 { "t2", 10 + GP_REG_FIRST }, \
2562 { "t3", 11 + GP_REG_FIRST }, \
2563 { "t4", 12 + GP_REG_FIRST }, \
2564 { "t5", 13 + GP_REG_FIRST }, \
2565 { "t6", 14 + GP_REG_FIRST }, \
2566 { "t7", 15 + GP_REG_FIRST }, \
2567 { "s0", 16 + GP_REG_FIRST }, \
2568 { "s1", 17 + GP_REG_FIRST }, \
2569 { "s2", 18 + GP_REG_FIRST }, \
2570 { "s3", 19 + GP_REG_FIRST }, \
2571 { "s4", 20 + GP_REG_FIRST }, \
2572 { "s5", 21 + GP_REG_FIRST }, \
2573 { "s6", 22 + GP_REG_FIRST }, \
2574 { "s7", 23 + GP_REG_FIRST }, \
2575 { "t8", 24 + GP_REG_FIRST }, \
2576 { "t9", 25 + GP_REG_FIRST }, \
2577 { "k0", 26 + GP_REG_FIRST }, \
2578 { "k1", 27 + GP_REG_FIRST }, \
2579 { "gp", 28 + GP_REG_FIRST }, \
2580 { "sp", 29 + GP_REG_FIRST }, \
2581 { "fp", 30 + GP_REG_FIRST }, \
2582 { "ra", 31 + GP_REG_FIRST }, \
2583 ALL_COP_ADDITIONAL_REGISTER_NAMES \
2584 }
2585
2586 /* This is meant to be redefined in the host dependent files. It is a
2587 set of alternative names and regnums for mips coprocessors. */
2588
2589 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
2590
2591 #define DBR_OUTPUT_SEQEND(STREAM) \
2592 do \
2593 { \
2594 /* Undo the effect of '%*'. */ \
2595 mips_pop_asm_switch (&mips_nomacro); \
2596 mips_pop_asm_switch (&mips_noreorder); \
2597 /* Emit a blank line after the delay slot for emphasis. */ \
2598 fputs ("\n", STREAM); \
2599 } \
2600 while (0)
2601
2602 /* mips-tfile does not understand .stabd directives. */
2603 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
2604 dbxout_begin_stabn_sline (LINE); \
2605 dbxout_stab_value_internal_label ("LM", &COUNTER); \
2606 } while (0)
2607
2608 /* Use .loc directives for SDB line numbers. */
2609 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2610 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2611
2612 /* The MIPS implementation uses some labels for its own purpose. The
2613 following lists what labels are created, and are all formed by the
2614 pattern $L[a-z].*. The machine independent portion of GCC creates
2615 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2616
2617 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2618 $Lb[0-9]+ Begin blocks for MIPS debug support
2619 $Lc[0-9]+ Label for use in s<xx> operation.
2620 $Le[0-9]+ End blocks for MIPS debug support */
2621
2622 #undef ASM_DECLARE_OBJECT_NAME
2623 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2624 mips_declare_object (STREAM, NAME, "", ":\n")
2625
2626 /* Globalizing directive for a label. */
2627 #define GLOBAL_ASM_OP "\t.globl\t"
2628
2629 /* This says how to define a global common symbol. */
2630
2631 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2632
2633 /* This says how to define a local common symbol (i.e., not visible to
2634 linker). */
2635
2636 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2637 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2638 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2639 #endif
2640
2641 /* This says how to output an external. It would be possible not to
2642 output anything and let undefined symbol become external. However
2643 the assembler uses length information on externals to allocate in
2644 data/sdata bss/sbss, thereby saving exec time. */
2645
2646 #undef ASM_OUTPUT_EXTERNAL
2647 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2648 mips_output_external(STREAM,DECL,NAME)
2649
2650 /* This is how to declare a function name. The actual work of
2651 emitting the label is moved to function_prologue, so that we can
2652 get the line number correctly emitted before the .ent directive,
2653 and after any .file directives. Define as empty so that the function
2654 is not declared before the .ent directive elsewhere. */
2655
2656 #undef ASM_DECLARE_FUNCTION_NAME
2657 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2658
2659 /* This is how to store into the string LABEL
2660 the symbol_ref name of an internal numbered label where
2661 PREFIX is the class of label and NUM is the number within the class.
2662 This is suitable for output with `assemble_name'. */
2663
2664 #undef ASM_GENERATE_INTERNAL_LABEL
2665 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2666 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2667
2668 /* Print debug labels as "foo = ." rather than "foo:" because they should
2669 represent a byte pointer rather than an ISA-encoded address. This is
2670 particularly important for code like:
2671
2672 $LFBxxx = .
2673 .cfi_startproc
2674 ...
2675 .section .gcc_except_table,...
2676 ...
2677 .uleb128 foo-$LFBxxx
2678
2679 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2680 likewise a byte pointer rather than an ISA-encoded address.
2681
2682 At the time of writing, this hook is not used for the function end
2683 label:
2684
2685 $LFExxx:
2686 .end foo
2687
2688 But this doesn't matter, because GAS doesn't treat a pre-.end label
2689 as a MIPS16 one anyway. */
2690
2691 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2692 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2693
2694 /* This is how to output an element of a case-vector that is absolute. */
2695
2696 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2697 fprintf (STREAM, "\t%s\t%sL%d\n", \
2698 ptr_mode == DImode ? ".dword" : ".word", \
2699 LOCAL_LABEL_PREFIX, \
2700 VALUE)
2701
2702 /* This is how to output an element of a case-vector. We can make the
2703 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2704 is supported. */
2705
2706 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2707 do { \
2708 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2709 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2710 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2711 else if (TARGET_GPWORD) \
2712 fprintf (STREAM, "\t%s\t%sL%d\n", \
2713 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2714 LOCAL_LABEL_PREFIX, VALUE); \
2715 else if (TARGET_RTP_PIC) \
2716 { \
2717 /* Make the entry relative to the start of the function. */ \
2718 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2719 fprintf (STREAM, "\t%s\t%sL%d-", \
2720 Pmode == DImode ? ".dword" : ".word", \
2721 LOCAL_LABEL_PREFIX, VALUE); \
2722 assemble_name (STREAM, XSTR (fnsym, 0)); \
2723 fprintf (STREAM, "\n"); \
2724 } \
2725 else \
2726 fprintf (STREAM, "\t%s\t%sL%d\n", \
2727 ptr_mode == DImode ? ".dword" : ".word", \
2728 LOCAL_LABEL_PREFIX, VALUE); \
2729 } while (0)
2730
2731 /* This is how to output an assembler line
2732 that says to advance the location counter
2733 to a multiple of 2**LOG bytes. */
2734
2735 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2736 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2737
2738 /* This is how to output an assembler line to advance the location
2739 counter by SIZE bytes. */
2740
2741 #undef ASM_OUTPUT_SKIP
2742 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2743 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2744
2745 /* This is how to output a string. */
2746 #undef ASM_OUTPUT_ASCII
2747 #define ASM_OUTPUT_ASCII mips_output_ascii
2748
2749 /* Output #ident as a in the read-only data section. */
2750 #undef ASM_OUTPUT_IDENT
2751 #define ASM_OUTPUT_IDENT(FILE, STRING) \
2752 { \
2753 const char *p = STRING; \
2754 int size = strlen (p) + 1; \
2755 switch_to_section (readonly_data_section); \
2756 assemble_string (p, size); \
2757 }
2758 \f
2759 /* Default to -G 8 */
2760 #ifndef MIPS_DEFAULT_GVALUE
2761 #define MIPS_DEFAULT_GVALUE 8
2762 #endif
2763
2764 /* Define the strings to put out for each section in the object file. */
2765 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2766 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2767
2768 #undef READONLY_DATA_SECTION_ASM_OP
2769 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2770 \f
2771 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2772 do \
2773 { \
2774 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2775 TARGET_64BIT ? "daddiu" : "addiu", \
2776 reg_names[STACK_POINTER_REGNUM], \
2777 reg_names[STACK_POINTER_REGNUM], \
2778 TARGET_64BIT ? "sd" : "sw", \
2779 reg_names[REGNO], \
2780 reg_names[STACK_POINTER_REGNUM]); \
2781 } \
2782 while (0)
2783
2784 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2785 do \
2786 { \
2787 mips_push_asm_switch (&mips_noreorder); \
2788 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2789 TARGET_64BIT ? "ld" : "lw", \
2790 reg_names[REGNO], \
2791 reg_names[STACK_POINTER_REGNUM], \
2792 TARGET_64BIT ? "daddu" : "addu", \
2793 reg_names[STACK_POINTER_REGNUM], \
2794 reg_names[STACK_POINTER_REGNUM]); \
2795 mips_pop_asm_switch (&mips_noreorder); \
2796 } \
2797 while (0)
2798
2799 /* How to start an assembler comment.
2800 The leading space is important (the mips native assembler requires it). */
2801 #ifndef ASM_COMMENT_START
2802 #define ASM_COMMENT_START " #"
2803 #endif
2804 \f
2805 /* Default definitions for size_t and ptrdiff_t. We must override the
2806 definitions from ../svr4.h on mips-*-linux-gnu. */
2807
2808 #undef SIZE_TYPE
2809 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2810
2811 #undef PTRDIFF_TYPE
2812 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2813
2814 /* The maximum number of bytes that can be copied by one iteration of
2815 a movmemsi loop; see mips_block_move_loop. */
2816 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2817 (UNITS_PER_WORD * 4)
2818
2819 /* The maximum number of bytes that can be copied by a straight-line
2820 implementation of movmemsi; see mips_block_move_straight. We want
2821 to make sure that any loop-based implementation will iterate at
2822 least twice. */
2823 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2824 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2825
2826 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2827 values were determined experimentally by benchmarking with CSiBE.
2828 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2829 for o32 where we have to restore $gp afterwards as well as make an
2830 indirect call), but in practice, bumping this up higher for
2831 TARGET_ABICALLS doesn't make much difference to code size. */
2832
2833 #define MIPS_CALL_RATIO 8
2834
2835 /* Any loop-based implementation of movmemsi will have at least
2836 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2837 moves, so allow individual copies of fewer elements.
2838
2839 When movmemsi is not available, use a value approximating
2840 the length of a memcpy call sequence, so that move_by_pieces
2841 will generate inline code if it is shorter than a function call.
2842 Since move_by_pieces_ninsns counts memory-to-memory moves, but
2843 we'll have to generate a load/store pair for each, halve the
2844 value of MIPS_CALL_RATIO to take that into account. */
2845
2846 #define MOVE_RATIO(speed) \
2847 (HAVE_movmemsi \
2848 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
2849 : MIPS_CALL_RATIO / 2)
2850
2851 /* movmemsi is meant to generate code that is at least as good as
2852 move_by_pieces. However, movmemsi effectively uses a by-pieces
2853 implementation both for moves smaller than a word and for word-aligned
2854 moves of no more than MIPS_MAX_MOVE_BYTES_STRAIGHT bytes. We should
2855 allow the tree-level optimisers to do such moves by pieces, as it
2856 often exposes other optimization opportunities. We might as well
2857 continue to use movmemsi at the rtl level though, as it produces
2858 better code when scheduling is disabled (such as at -O). */
2859
2860 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2861 (HAVE_movmemsi \
2862 ? (!currently_expanding_to_rtl \
2863 && ((ALIGN) < BITS_PER_WORD \
2864 ? (SIZE) < UNITS_PER_WORD \
2865 : (SIZE) <= MIPS_MAX_MOVE_BYTES_STRAIGHT)) \
2866 : (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
2867 < (unsigned int) MOVE_RATIO (false)))
2868
2869 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2870 of the length of a memset call, but use the default otherwise. */
2871
2872 #define CLEAR_RATIO(speed)\
2873 ((speed) ? 15 : MIPS_CALL_RATIO)
2874
2875 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2876 optimizing for size adjust the ratio to account for the overhead of
2877 loading the constant and replicating it across the word. */
2878
2879 #define SET_RATIO(speed) \
2880 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2881
2882 /* STORE_BY_PIECES_P can be used when copying a constant string, but
2883 in that case each word takes 3 insns (lui, ori, sw), or more in
2884 64-bit mode, instead of 2 (lw, sw). For now we always fail this
2885 and let the move_by_pieces code copy the string from read-only
2886 memory. In the future, this could be tuned further for multi-issue
2887 CPUs that can issue stores down one pipe and arithmetic instructions
2888 down another; in that case, the lui/ori/sw combination would be a
2889 win for long enough strings. */
2890
2891 #define STORE_BY_PIECES_P(SIZE, ALIGN) 0
2892 \f
2893 #ifndef __mips16
2894 /* Since the bits of the _init and _fini function is spread across
2895 many object files, each potentially with its own GP, we must assume
2896 we need to load our GP. We don't preserve $gp or $ra, since each
2897 init/fini chunk is supposed to initialize $gp, and crti/crtn
2898 already take care of preserving $ra and, when appropriate, $gp. */
2899 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2900 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2901 asm (SECTION_OP "\n\
2902 .set noreorder\n\
2903 bal 1f\n\
2904 nop\n\
2905 1: .cpload $31\n\
2906 .set reorder\n\
2907 jal " USER_LABEL_PREFIX #FUNC "\n\
2908 " TEXT_SECTION_ASM_OP);
2909 #endif /* Switch to #elif when we're no longer limited by K&R C. */
2910 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2911 || (defined _ABI64 && _MIPS_SIM == _ABI64)
2912 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2913 asm (SECTION_OP "\n\
2914 .set noreorder\n\
2915 bal 1f\n\
2916 nop\n\
2917 1: .set reorder\n\
2918 .cpsetup $31, $2, 1b\n\
2919 jal " USER_LABEL_PREFIX #FUNC "\n\
2920 " TEXT_SECTION_ASM_OP);
2921 #endif
2922 #endif
2923
2924 #ifndef HAVE_AS_TLS
2925 #define HAVE_AS_TLS 0
2926 #endif
2927
2928 #ifndef USED_FOR_TARGET
2929 /* Information about ".set noFOO; ...; .set FOO" blocks. */
2930 struct mips_asm_switch {
2931 /* The FOO in the description above. */
2932 const char *name;
2933
2934 /* The current block nesting level, or 0 if we aren't in a block. */
2935 int nesting_level;
2936 };
2937
2938 extern const enum reg_class mips_regno_to_class[];
2939 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
2940 extern const char *current_function_file; /* filename current function is in */
2941 extern int num_source_filenames; /* current .file # */
2942 extern struct mips_asm_switch mips_noreorder;
2943 extern struct mips_asm_switch mips_nomacro;
2944 extern struct mips_asm_switch mips_noat;
2945 extern int mips_dbx_regno[];
2946 extern int mips_dwarf_regno[];
2947 extern bool mips_split_p[];
2948 extern bool mips_split_hi_p[];
2949 extern enum processor mips_arch; /* which cpu to codegen for */
2950 extern enum processor mips_tune; /* which cpu to schedule for */
2951 extern int mips_isa; /* architectural level */
2952 extern int mips_abi; /* which ABI to use */
2953 extern const struct mips_cpu_info *mips_arch_info;
2954 extern const struct mips_cpu_info *mips_tune_info;
2955 extern bool mips_base_mips16;
2956 extern enum mips_code_readable_setting mips_code_readable;
2957 extern GTY(()) struct target_globals *mips16_globals;
2958 #endif
2959
2960 /* Enable querying of DFA units. */
2961 #define CPU_UNITS_QUERY 1
2962
2963 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2964 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2965
2966 /* As on most targets, we want the .eh_frame section to be read-only where
2967 possible. And as on most targets, this means two things:
2968
2969 (a) Non-locally-binding pointers must have an indirect encoding,
2970 so that the addresses in the .eh_frame section itself become
2971 locally-binding.
2972
2973 (b) A shared library's .eh_frame section must encode locally-binding
2974 pointers in a relative (relocation-free) form.
2975
2976 However, MIPS has traditionally not allowed directives like:
2977
2978 .long x-.
2979
2980 in cases where "x" is in a different section, or is not defined in the
2981 same assembly file. We are therefore unable to emit the PC-relative
2982 form required by (b) at assembly time.
2983
2984 Fortunately, the linker is able to convert absolute addresses into
2985 PC-relative addresses on our behalf. Unfortunately, only certain
2986 versions of the linker know how to do this for indirect pointers,
2987 and for personality data. We must fall back on using writable
2988 .eh_frame sections for shared libraries if the linker does not
2989 support this feature. */
2990 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2991 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
2992
2993 /* For switching between MIPS16 and non-MIPS16 modes. */
2994 #define SWITCHABLE_TARGET 1