invoke.texi (MIPS Options): Add loongson3a processor.
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by A. Lichnewsky (lich@inria.inria.fr).
6 Changed by Michael Meissner (meissner@osf.org).
7 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
8 Brendan Eich (brendan@microunity.com).
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GCC is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26
27 #include "config/vxworks-dummy.h"
28
29 #ifdef GENERATOR_FILE
30 /* This is used in some insn conditions, so needs to be declared, but
31 does not need to be defined. */
32 extern int target_flags_explicit;
33 #endif
34
35 /* MIPS external variables defined in mips.c. */
36
37 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
38 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
39 to work on a 64-bit machine. */
40
41 #define ABI_32 0
42 #define ABI_N32 1
43 #define ABI_64 2
44 #define ABI_EABI 3
45 #define ABI_O64 4
46
47 /* Masks that affect tuning.
48
49 PTF_AVOID_BRANCHLIKELY
50 Set if it is usually not profitable to use branch-likely instructions
51 for this target, typically because the branches are always predicted
52 taken and so incur a large overhead when not taken. */
53 #define PTF_AVOID_BRANCHLIKELY 0x1
54
55 /* Information about one recognized processor. Defined here for the
56 benefit of TARGET_CPU_CPP_BUILTINS. */
57 struct mips_cpu_info {
58 /* The 'canonical' name of the processor as far as GCC is concerned.
59 It's typically a manufacturer's prefix followed by a numerical
60 designation. It should be lowercase. */
61 const char *name;
62
63 /* The internal processor number that most closely matches this
64 entry. Several processors can have the same value, if there's no
65 difference between them from GCC's point of view. */
66 enum processor cpu;
67
68 /* The ISA level that the processor implements. */
69 int isa;
70
71 /* A mask of PTF_* values. */
72 unsigned int tune_flags;
73 };
74
75 /* Enumerates the setting of the -mcode-readable option. */
76 enum mips_code_readable_setting {
77 CODE_READABLE_NO,
78 CODE_READABLE_PCREL,
79 CODE_READABLE_YES
80 };
81
82 /* Macros to silence warnings about numbers being signed in traditional
83 C and unsigned in ISO C when compiled on 32-bit hosts. */
84
85 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
86 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
87 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
88
89 \f
90 /* Run-time compilation parameters selecting different hardware subsets. */
91
92 /* True if we are generating position-independent VxWorks RTP code. */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
94
95 /* True if the output file is marked as ".abicalls; .option pic0"
96 (-call_nonpic). */
97 #define TARGET_ABICALLS_PIC0 \
98 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
99
100 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
101 #define TARGET_ABICALLS_PIC2 \
102 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
103
104 /* True if the call patterns should be split into a jalr followed by
105 an instruction to restore $gp. It is only safe to split the load
106 from the call when every use of $gp is explicit.
107
108 See mips_must_initialize_gp_p for details about how we manage the
109 global pointer. */
110
111 #define TARGET_SPLIT_CALLS \
112 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
113
114 /* True if we're generating a form of -mabicalls in which we can use
115 operators like %hi and %lo to refer to locally-binding symbols.
116 We can only do this for -mno-shared, and only then if we can use
117 relocation operations instead of assembly macros. It isn't really
118 worth using absolute sequences for 64-bit symbols because GOT
119 accesses are so much shorter. */
120
121 #define TARGET_ABSOLUTE_ABICALLS \
122 (TARGET_ABICALLS \
123 && !TARGET_SHARED \
124 && TARGET_EXPLICIT_RELOCS \
125 && !ABI_HAS_64BIT_SYMBOLS)
126
127 /* True if we can optimize sibling calls. For simplicity, we only
128 handle cases in which call_insn_operand will reject invalid
129 sibcall addresses. There are two cases in which this isn't true:
130
131 - TARGET_MIPS16. call_insn_operand accepts constant addresses
132 but there is no direct jump instruction. It isn't worth
133 using sibling calls in this case anyway; they would usually
134 be longer than normal calls.
135
136 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
137 accepts global constants, but all sibcalls must be indirect. */
138 #define TARGET_SIBCALLS \
139 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
140
141 /* True if we need to use a global offset table to access some symbols. */
142 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
143
144 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
145 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
146
147 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
148 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
149
150 /* True if we should use .cprestore to store to the cprestore slot.
151
152 We continue to use .cprestore for explicit-reloc code so that JALs
153 inside inline asms will work correctly. */
154 #define TARGET_CPRESTORE_DIRECTIVE \
155 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
156
157 /* True if we can use the J and JAL instructions. */
158 #define TARGET_ABSOLUTE_JUMPS \
159 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
160
161 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
162 This is true for both the PIC and non-PIC VxWorks RTP modes. */
163 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
164
165 /* True if .gpword or .gpdword should be used for switch tables.
166
167 Although GAS does understand .gpdword, the SGI linker mishandles
168 the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
169 We therefore disable GP-relative switch tables for n64 on IRIX targets. */
170 #define TARGET_GPWORD \
171 (TARGET_ABICALLS \
172 && !TARGET_ABSOLUTE_ABICALLS \
173 && !(mips_abi == ABI_64 && TARGET_IRIX6))
174
175 /* True if the output must have a writable .eh_frame.
176 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
177 #ifdef HAVE_LD_PERSONALITY_RELAXATION
178 #define TARGET_WRITABLE_EH_FRAME 0
179 #else
180 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
181 #endif
182
183 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
184 #ifdef HAVE_AS_DSPR1_MULT
185 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
186 #else
187 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
188 #endif
189
190 /* Generate mips16 code */
191 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
192 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
193 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
194 /* Generate mips16e register save/restore sequences. */
195 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
196
197 /* True if we're generating a form of MIPS16 code in which general
198 text loads are allowed. */
199 #define TARGET_MIPS16_TEXT_LOADS \
200 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
201
202 /* True if we're generating a form of MIPS16 code in which PC-relative
203 loads are allowed. */
204 #define TARGET_MIPS16_PCREL_LOADS \
205 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
206
207 /* Generic ISA defines. */
208 #define ISA_MIPS1 (mips_isa == 1)
209 #define ISA_MIPS2 (mips_isa == 2)
210 #define ISA_MIPS3 (mips_isa == 3)
211 #define ISA_MIPS4 (mips_isa == 4)
212 #define ISA_MIPS32 (mips_isa == 32)
213 #define ISA_MIPS32R2 (mips_isa == 33)
214 #define ISA_MIPS64 (mips_isa == 64)
215 #define ISA_MIPS64R2 (mips_isa == 65)
216
217 /* Architecture target defines. */
218 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
219 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
220 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
221 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
222 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
223 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
224 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
225 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
226 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
227 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
228 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
229 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
230 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON)
231 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
232 || mips_arch == PROCESSOR_SB1A)
233 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
234
235 /* Scheduling target defines. */
236 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
237 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
238 || mips_tune == PROCESSOR_24KF2_1 \
239 || mips_tune == PROCESSOR_24KF1_1)
240 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
241 || mips_tune == PROCESSOR_74KF2_1 \
242 || mips_tune == PROCESSOR_74KF1_1 \
243 || mips_tune == PROCESSOR_74KF3_2)
244 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
245 || mips_tune == PROCESSOR_LOONGSON_2F)
246 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
247 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
248 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
249 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
250 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
251 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
252 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
253 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
254 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
255 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
256 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
257 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
258 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON)
259 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
260 || mips_tune == PROCESSOR_SB1A)
261
262 /* Whether vector modes and intrinsics for ST Microelectronics
263 Loongson-2E/2F processors should be enabled. In o32 pairs of
264 floating-point registers provide 64-bit values. */
265 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
266 && (TARGET_LOONGSON_2EF \
267 || TARGET_LOONGSON_3A))
268
269 /* True if the pre-reload scheduler should try to create chains of
270 multiply-add or multiply-subtract instructions. For example,
271 suppose we have:
272
273 t1 = a * b
274 t2 = t1 + c * d
275 t3 = e * f
276 t4 = t3 - g * h
277
278 t1 will have a higher priority than t2 and t3 will have a higher
279 priority than t4. However, before reload, there is no dependence
280 between t1 and t3, and they can often have similar priorities.
281 The scheduler will then tend to prefer:
282
283 t1 = a * b
284 t3 = e * f
285 t2 = t1 + c * d
286 t4 = t3 - g * h
287
288 which stops us from making full use of macc/madd-style instructions.
289 This sort of situation occurs frequently in Fourier transforms and
290 in unrolled loops.
291
292 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
293 queue so that chained multiply-add and multiply-subtract instructions
294 appear ahead of any other instruction that is likely to clobber lo.
295 In the example above, if t2 and t3 become ready at the same time,
296 the code ensures that t2 is scheduled first.
297
298 Multiply-accumulate instructions are a bigger win for some targets
299 than others, so this macro is defined on an opt-in basis. */
300 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
301 || TUNE_MIPS4120 \
302 || TUNE_MIPS4130 \
303 || TUNE_24K)
304
305 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
306 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
307
308 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
309 directly accessible, while the command-line options select
310 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
311 in use. */
312 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
313 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
314
315 /* False if SC acts as a memory barrier with respect to itself,
316 otherwise a SYNC will be emitted after SC for atomic operations
317 that require ordering between the SC and following loads and
318 stores. It does not tell anything about ordering of loads and
319 stores prior to and following the SC, only about the SC itself and
320 those loads and stores follow it. */
321 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON)
322
323 /* IRIX specific stuff. */
324 #define TARGET_IRIX6 0
325
326 /* Define preprocessor macros for the -march and -mtune options.
327 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
328 processor. If INFO's canonical name is "foo", define PREFIX to
329 be "foo", and define an additional macro PREFIX_FOO. */
330 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
331 do \
332 { \
333 char *macro, *p; \
334 \
335 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
336 for (p = macro; *p != 0; p++) \
337 *p = TOUPPER (*p); \
338 \
339 builtin_define (macro); \
340 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
341 free (macro); \
342 } \
343 while (0)
344
345 /* Target CPU builtins. */
346 #define TARGET_CPU_CPP_BUILTINS() \
347 do \
348 { \
349 /* Everyone but IRIX defines this to mips. */ \
350 if (!TARGET_IRIX6) \
351 builtin_assert ("machine=mips"); \
352 \
353 builtin_assert ("cpu=mips"); \
354 builtin_define ("__mips__"); \
355 builtin_define ("_mips"); \
356 \
357 /* We do this here because __mips is defined below and so we \
358 can't use builtin_define_std. We don't ever want to define \
359 "mips" for VxWorks because some of the VxWorks headers \
360 construct include filenames from a root directory macro, \
361 an architecture macro and a filename, where the architecture \
362 macro expands to 'mips'. If we define 'mips' to 1, the \
363 architecture macro expands to 1 as well. */ \
364 if (!flag_iso && !TARGET_VXWORKS) \
365 builtin_define ("mips"); \
366 \
367 if (TARGET_64BIT) \
368 builtin_define ("__mips64"); \
369 \
370 if (!TARGET_IRIX6) \
371 { \
372 /* Treat _R3000 and _R4000 like register-size \
373 defines, which is how they've historically \
374 been used. */ \
375 if (TARGET_64BIT) \
376 { \
377 builtin_define_std ("R4000"); \
378 builtin_define ("_R4000"); \
379 } \
380 else \
381 { \
382 builtin_define_std ("R3000"); \
383 builtin_define ("_R3000"); \
384 } \
385 } \
386 if (TARGET_FLOAT64) \
387 builtin_define ("__mips_fpr=64"); \
388 else \
389 builtin_define ("__mips_fpr=32"); \
390 \
391 if (mips_base_mips16) \
392 builtin_define ("__mips16"); \
393 \
394 if (TARGET_MIPS3D) \
395 builtin_define ("__mips3d"); \
396 \
397 if (TARGET_SMARTMIPS) \
398 builtin_define ("__mips_smartmips"); \
399 \
400 if (TARGET_DSP) \
401 { \
402 builtin_define ("__mips_dsp"); \
403 if (TARGET_DSPR2) \
404 { \
405 builtin_define ("__mips_dspr2"); \
406 builtin_define ("__mips_dsp_rev=2"); \
407 } \
408 else \
409 builtin_define ("__mips_dsp_rev=1"); \
410 } \
411 \
412 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
413 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
414 \
415 if (ISA_MIPS1) \
416 { \
417 builtin_define ("__mips=1"); \
418 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
419 } \
420 else if (ISA_MIPS2) \
421 { \
422 builtin_define ("__mips=2"); \
423 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
424 } \
425 else if (ISA_MIPS3) \
426 { \
427 builtin_define ("__mips=3"); \
428 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
429 } \
430 else if (ISA_MIPS4) \
431 { \
432 builtin_define ("__mips=4"); \
433 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
434 } \
435 else if (ISA_MIPS32) \
436 { \
437 builtin_define ("__mips=32"); \
438 builtin_define ("__mips_isa_rev=1"); \
439 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
440 } \
441 else if (ISA_MIPS32R2) \
442 { \
443 builtin_define ("__mips=32"); \
444 builtin_define ("__mips_isa_rev=2"); \
445 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
446 } \
447 else if (ISA_MIPS64) \
448 { \
449 builtin_define ("__mips=64"); \
450 builtin_define ("__mips_isa_rev=1"); \
451 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
452 } \
453 else if (ISA_MIPS64R2) \
454 { \
455 builtin_define ("__mips=64"); \
456 builtin_define ("__mips_isa_rev=2"); \
457 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
458 } \
459 \
460 switch (mips_abi) \
461 { \
462 case ABI_32: \
463 builtin_define ("_ABIO32=1"); \
464 builtin_define ("_MIPS_SIM=_ABIO32"); \
465 break; \
466 \
467 case ABI_N32: \
468 builtin_define ("_ABIN32=2"); \
469 builtin_define ("_MIPS_SIM=_ABIN32"); \
470 break; \
471 \
472 case ABI_64: \
473 builtin_define ("_ABI64=3"); \
474 builtin_define ("_MIPS_SIM=_ABI64"); \
475 break; \
476 \
477 case ABI_O64: \
478 builtin_define ("_ABIO64=4"); \
479 builtin_define ("_MIPS_SIM=_ABIO64"); \
480 break; \
481 } \
482 \
483 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
484 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
485 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
486 builtin_define_with_int_value ("_MIPS_FPSET", \
487 32 / MAX_FPRS_PER_FMT); \
488 \
489 /* These defines reflect the ABI in use, not whether the \
490 FPU is directly accessible. */ \
491 if (TARGET_NO_FLOAT) \
492 builtin_define ("__mips_no_float"); \
493 else if (TARGET_HARD_FLOAT_ABI) \
494 builtin_define ("__mips_hard_float"); \
495 else \
496 builtin_define ("__mips_soft_float"); \
497 \
498 if (TARGET_SINGLE_FLOAT) \
499 builtin_define ("__mips_single_float"); \
500 \
501 if (TARGET_PAIRED_SINGLE_FLOAT) \
502 builtin_define ("__mips_paired_single_float"); \
503 \
504 if (TARGET_BIG_ENDIAN) \
505 { \
506 builtin_define_std ("MIPSEB"); \
507 builtin_define ("_MIPSEB"); \
508 } \
509 else \
510 { \
511 builtin_define_std ("MIPSEL"); \
512 builtin_define ("_MIPSEL"); \
513 } \
514 \
515 /* Whether calls should go through $25. The separate __PIC__ \
516 macro indicates whether abicalls code might use a GOT. */ \
517 if (TARGET_ABICALLS) \
518 builtin_define ("__mips_abicalls"); \
519 \
520 /* Whether Loongson vector modes are enabled. */ \
521 if (TARGET_LOONGSON_VECTORS) \
522 builtin_define ("__mips_loongson_vector_rev"); \
523 \
524 /* Historical Octeon macro. */ \
525 if (TARGET_OCTEON) \
526 builtin_define ("__OCTEON__"); \
527 \
528 /* Macros dependent on the C dialect. */ \
529 if (preprocessing_asm_p ()) \
530 { \
531 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
532 builtin_define ("_LANGUAGE_ASSEMBLY"); \
533 } \
534 else if (c_dialect_cxx ()) \
535 { \
536 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
537 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
538 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
539 } \
540 else \
541 { \
542 builtin_define_std ("LANGUAGE_C"); \
543 builtin_define ("_LANGUAGE_C"); \
544 } \
545 if (c_dialect_objc ()) \
546 { \
547 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
548 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
549 /* Bizarre, but needed at least for Irix. */ \
550 builtin_define_std ("LANGUAGE_C"); \
551 builtin_define ("_LANGUAGE_C"); \
552 } \
553 \
554 if (mips_abi == ABI_EABI) \
555 builtin_define ("__mips_eabi"); \
556 \
557 if (TARGET_CACHE_BUILTIN) \
558 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
559 } \
560 while (0)
561
562 /* Default target_flags if no switches are specified */
563
564 #ifndef TARGET_DEFAULT
565 #define TARGET_DEFAULT 0
566 #endif
567
568 #ifndef TARGET_CPU_DEFAULT
569 #define TARGET_CPU_DEFAULT 0
570 #endif
571
572 #ifndef TARGET_ENDIAN_DEFAULT
573 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
574 #endif
575
576 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
577 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
578 #endif
579
580 /* 'from-abi' makes a good default: you get whatever the ABI requires. */
581 #ifndef MIPS_ISA_DEFAULT
582 #ifndef MIPS_CPU_STRING_DEFAULT
583 #define MIPS_CPU_STRING_DEFAULT "from-abi"
584 #endif
585 #endif
586
587 #ifdef IN_LIBGCC2
588 #undef TARGET_64BIT
589 /* Make this compile time constant for libgcc2 */
590 #ifdef __mips64
591 #define TARGET_64BIT 1
592 #else
593 #define TARGET_64BIT 0
594 #endif
595 #endif /* IN_LIBGCC2 */
596
597 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
598 when compiled with hardware floating point. This is because MIPS16
599 code cannot save and restore the floating-point registers, which is
600 important if in a mixed MIPS16/non-MIPS16 environment. */
601
602 #ifdef IN_LIBGCC2
603 #if __mips_hard_float
604 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
605 #endif
606 #endif /* IN_LIBGCC2 */
607
608 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
609
610 #ifndef MULTILIB_ENDIAN_DEFAULT
611 #if TARGET_ENDIAN_DEFAULT == 0
612 #define MULTILIB_ENDIAN_DEFAULT "EL"
613 #else
614 #define MULTILIB_ENDIAN_DEFAULT "EB"
615 #endif
616 #endif
617
618 #ifndef MULTILIB_ISA_DEFAULT
619 # if MIPS_ISA_DEFAULT == 1
620 # define MULTILIB_ISA_DEFAULT "mips1"
621 # else
622 # if MIPS_ISA_DEFAULT == 2
623 # define MULTILIB_ISA_DEFAULT "mips2"
624 # else
625 # if MIPS_ISA_DEFAULT == 3
626 # define MULTILIB_ISA_DEFAULT "mips3"
627 # else
628 # if MIPS_ISA_DEFAULT == 4
629 # define MULTILIB_ISA_DEFAULT "mips4"
630 # else
631 # if MIPS_ISA_DEFAULT == 32
632 # define MULTILIB_ISA_DEFAULT "mips32"
633 # else
634 # if MIPS_ISA_DEFAULT == 33
635 # define MULTILIB_ISA_DEFAULT "mips32r2"
636 # else
637 # if MIPS_ISA_DEFAULT == 64
638 # define MULTILIB_ISA_DEFAULT "mips64"
639 # else
640 # if MIPS_ISA_DEFAULT == 65
641 # define MULTILIB_ISA_DEFAULT "mips64r2"
642 # else
643 # define MULTILIB_ISA_DEFAULT "mips1"
644 # endif
645 # endif
646 # endif
647 # endif
648 # endif
649 # endif
650 # endif
651 # endif
652 #endif
653
654 #ifndef MIPS_ABI_DEFAULT
655 #define MIPS_ABI_DEFAULT ABI_32
656 #endif
657
658 /* Use the most portable ABI flag for the ASM specs. */
659
660 #if MIPS_ABI_DEFAULT == ABI_32
661 #define MULTILIB_ABI_DEFAULT "mabi=32"
662 #endif
663
664 #if MIPS_ABI_DEFAULT == ABI_O64
665 #define MULTILIB_ABI_DEFAULT "mabi=o64"
666 #endif
667
668 #if MIPS_ABI_DEFAULT == ABI_N32
669 #define MULTILIB_ABI_DEFAULT "mabi=n32"
670 #endif
671
672 #if MIPS_ABI_DEFAULT == ABI_64
673 #define MULTILIB_ABI_DEFAULT "mabi=64"
674 #endif
675
676 #if MIPS_ABI_DEFAULT == ABI_EABI
677 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
678 #endif
679
680 #ifndef MULTILIB_DEFAULTS
681 #define MULTILIB_DEFAULTS \
682 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
683 #endif
684
685 /* We must pass -EL to the linker by default for little endian embedded
686 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
687 linker will default to using big-endian output files. The OUTPUT_FORMAT
688 line must be in the linker script, otherwise -EB/-EL will not work. */
689
690 #ifndef ENDIAN_SPEC
691 #if TARGET_ENDIAN_DEFAULT == 0
692 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
693 #else
694 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
695 #endif
696 #endif
697
698 /* A spec condition that matches all non-mips16 -mips arguments. */
699
700 #define MIPS_ISA_LEVEL_OPTION_SPEC \
701 "mips1|mips2|mips3|mips4|mips32*|mips64*"
702
703 /* A spec condition that matches all non-mips16 architecture arguments. */
704
705 #define MIPS_ARCH_OPTION_SPEC \
706 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
707
708 /* A spec that infers a -mips argument from an -march argument,
709 or injects the default if no architecture is specified. */
710
711 #define MIPS_ISA_LEVEL_SPEC \
712 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
713 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
714 %{march=mips2|march=r6000:-mips2} \
715 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
716 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
717 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
718 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
719 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
720 |march=34k*|march=74k*|march=1004k*: -mips32r2} \
721 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
722 |march=xlr|march=loongson3a: -mips64} \
723 %{march=mips64r2|march=octeon: -mips64r2} \
724 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
725
726 /* A spec that infers a -mhard-float or -msoft-float setting from an
727 -march argument. Note that soft-float and hard-float code are not
728 link-compatible. */
729
730 #define MIPS_ARCH_FLOAT_SPEC \
731 "%{mhard-float|msoft-float|march=mips*:; \
732 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
733 |march=34kc|march=74kc|march=1004kc|march=5kc \
734 |march=octeon|march=xlr: -msoft-float; \
735 march=*: -mhard-float}"
736
737 /* A spec condition that matches 32-bit options. It only works if
738 MIPS_ISA_LEVEL_SPEC has been applied. */
739
740 #define MIPS_32BIT_OPTION_SPEC \
741 "mips1|mips2|mips32*|mgp32"
742
743 #if MIPS_ABI_DEFAULT == ABI_O64 \
744 || MIPS_ABI_DEFAULT == ABI_N32 \
745 || MIPS_ABI_DEFAULT == ABI_64
746 #define OPT_ARCH64 "mabi=32|mgp32:;"
747 #define OPT_ARCH32 "mabi=32|mgp32"
748 #else
749 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
750 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
751 #endif
752
753 /* Support for a compile-time default CPU, et cetera. The rules are:
754 --with-arch is ignored if -march is specified or a -mips is specified
755 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
756 --with-tune is ignored if -mtune is specified; likewise
757 --with-tune-32 and --with-tune-64.
758 --with-abi is ignored if -mabi is specified.
759 --with-float is ignored if -mhard-float or -msoft-float are
760 specified.
761 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
762 specified. */
763 #define OPTION_DEFAULT_SPECS \
764 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
765 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
766 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
767 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
768 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
769 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
770 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
771 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
772 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
773 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
774 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
775 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
776
777
778 /* A spec that infers the -mdsp setting from an -march argument. */
779 #define BASE_DRIVER_SELF_SPECS \
780 "%{!mno-dsp: \
781 %{march=24ke*|march=34k*|march=1004k*: -mdsp} \
782 %{march=74k*:%{!mno-dspr2: -mdspr2 -mdsp}}}"
783
784 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
785
786 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
787 && ISA_HAS_COND_TRAP)
788
789 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
790
791 /* True if the ABI can only work with 64-bit integer registers. We
792 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
793 otherwise floating-point registers must also be 64-bit. */
794 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
795
796 /* Likewise for 32-bit regs. */
797 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
798
799 /* True if the file format uses 64-bit symbols. At present, this is
800 only true for n64, which uses 64-bit ELF. */
801 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
802
803 /* True if symbols are 64 bits wide. This is usually determined by
804 the ABI's file format, but it can be overridden by -msym32. Note that
805 overriding the size with -msym32 changes the ABI of relocatable objects,
806 although it doesn't change the ABI of a fully-linked object. */
807 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS && !TARGET_SYM32)
808
809 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
810 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
811 || ISA_MIPS4 \
812 || ISA_MIPS64 \
813 || ISA_MIPS64R2)
814
815 /* ISA has branch likely instructions (e.g. mips2). */
816 /* Disable branchlikely for tx39 until compare rewrite. They haven't
817 been generated up to this point. */
818 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
819
820 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
821 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
822 || TARGET_MIPS5400 \
823 || TARGET_MIPS5500 \
824 || TARGET_MIPS7000 \
825 || TARGET_MIPS9000 \
826 || TARGET_MAD \
827 || ISA_MIPS32 \
828 || ISA_MIPS32R2 \
829 || ISA_MIPS64 \
830 || ISA_MIPS64R2) \
831 && !TARGET_MIPS16)
832
833 /* ISA has a three-operand multiplication instruction. */
834 #define ISA_HAS_DMUL3 (TARGET_64BIT \
835 && TARGET_OCTEON \
836 && !TARGET_MIPS16)
837
838 /* ISA has the floating-point conditional move instructions introduced
839 in mips4. */
840 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
841 || ISA_MIPS32 \
842 || ISA_MIPS32R2 \
843 || ISA_MIPS64 \
844 || ISA_MIPS64R2) \
845 && !TARGET_MIPS5500 \
846 && !TARGET_MIPS16)
847
848 /* ISA has the integer conditional move instructions introduced in mips4 and
849 ST Loongson 2E/2F. */
850 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE || TARGET_LOONGSON_2EF)
851
852 /* ISA has LDC1 and SDC1. */
853 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 && !TARGET_MIPS16)
854
855 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
856 branch on CC, and move (both FP and non-FP) on CC. */
857 #define ISA_HAS_8CC (ISA_MIPS4 \
858 || ISA_MIPS32 \
859 || ISA_MIPS32R2 \
860 || ISA_MIPS64 \
861 || ISA_MIPS64R2)
862
863 /* This is a catch all for other mips4 instructions: indexed load, the
864 FP madd and msub instructions, and the FP recip and recip sqrt
865 instructions. */
866 #define ISA_HAS_FP4 ((ISA_MIPS4 \
867 || (ISA_MIPS32R2 && TARGET_FLOAT64) \
868 || ISA_MIPS64 \
869 || ISA_MIPS64R2) \
870 && !TARGET_MIPS16)
871
872 /* ISA has paired-single instructions. */
873 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
874
875 /* ISA has conditional trap instructions. */
876 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
877 && !TARGET_MIPS16)
878
879 /* ISA has integer multiply-accumulate instructions, madd and msub. */
880 #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
881 || ISA_MIPS32R2 \
882 || ISA_MIPS64 \
883 || ISA_MIPS64R2) \
884 && !TARGET_MIPS16)
885
886 /* Integer multiply-accumulate instructions should be generated. */
887 #define GENERATE_MADD_MSUB (ISA_HAS_MADD_MSUB && !TUNE_74K)
888
889 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
890 #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
891
892 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
893 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
894
895 /* ISA has floating-point nmadd and nmsub instructions
896 'd = -((a * b) [+-] c)'. */
897 #define ISA_HAS_NMADD4_NMSUB4(MODE) \
898 ((ISA_MIPS4 \
899 || (ISA_MIPS32R2 && (MODE) == V2SFmode) \
900 || ISA_MIPS64 \
901 || ISA_MIPS64R2) \
902 && (!TARGET_MIPS5400 || TARGET_MAD) \
903 && !TARGET_MIPS16)
904
905 /* ISA has floating-point nmadd and nmsub instructions
906 'c = -((a * b) [+-] c)'. */
907 #define ISA_HAS_NMADD3_NMSUB3(MODE) \
908 TARGET_LOONGSON_2EF
909
910 /* ISA has count leading zeroes/ones instruction (not implemented). */
911 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
912 || ISA_MIPS32R2 \
913 || ISA_MIPS64 \
914 || ISA_MIPS64R2) \
915 && !TARGET_MIPS16)
916
917 /* ISA has three operand multiply instructions that put
918 the high part in an accumulator: mulhi or mulhiu. */
919 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
920 || TARGET_MIPS5500 \
921 || TARGET_SR71K) \
922 && !TARGET_MIPS16)
923
924 /* ISA has three operand multiply instructions that
925 negates the result and puts the result in an accumulator. */
926 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
927 || TARGET_MIPS5500 \
928 || TARGET_SR71K) \
929 && !TARGET_MIPS16)
930
931 /* ISA has three operand multiply instructions that subtracts the
932 result from a 4th operand and puts the result in an accumulator. */
933 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
934 || TARGET_MIPS5500 \
935 || TARGET_SR71K) \
936 && !TARGET_MIPS16)
937
938 /* ISA has three operand multiply instructions that the result
939 from a 4th operand and puts the result in an accumulator. */
940 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
941 || TARGET_MIPS4130 \
942 || TARGET_MIPS5400 \
943 || TARGET_MIPS5500 \
944 || TARGET_SR71K) \
945 && !TARGET_MIPS16)
946
947 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
948 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
949 || TARGET_MIPS4130) \
950 && !TARGET_MIPS16)
951
952 /* ISA has the "ror" (rotate right) instructions. */
953 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
954 || ISA_MIPS64R2 \
955 || TARGET_MIPS5400 \
956 || TARGET_MIPS5500 \
957 || TARGET_SR71K \
958 || TARGET_SMARTMIPS) \
959 && !TARGET_MIPS16)
960
961 /* ISA has data prefetch instructions. This controls use of 'pref'. */
962 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
963 || TARGET_LOONGSON_2EF \
964 || ISA_MIPS32 \
965 || ISA_MIPS32R2 \
966 || ISA_MIPS64 \
967 || ISA_MIPS64R2) \
968 && !TARGET_MIPS16)
969
970 /* ISA has data indexed prefetch instructions. This controls use of
971 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
972 (prefx is a cop1x instruction, so can only be used if FP is
973 enabled.) */
974 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
975 || ISA_MIPS32R2 \
976 || ISA_MIPS64 \
977 || ISA_MIPS64R2) \
978 && !TARGET_MIPS16)
979
980 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
981 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
982 also requires TARGET_DOUBLE_FLOAT. */
983 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
984
985 /* ISA includes the MIPS32r2 seb and seh instructions. */
986 #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \
987 || ISA_MIPS64R2) \
988 && !TARGET_MIPS16)
989
990 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
991 #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \
992 || ISA_MIPS64R2) \
993 && !TARGET_MIPS16)
994
995 /* ISA has instructions for accessing top part of 64-bit fp regs. */
996 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \
997 && (ISA_MIPS32R2 \
998 || ISA_MIPS64R2))
999
1000 /* ISA has lwxs instruction (load w/scaled index address. */
1001 #define ISA_HAS_LWXS (TARGET_SMARTMIPS && !TARGET_MIPS16)
1002
1003 /* The DSP ASE is available. */
1004 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1005
1006 /* Revision 2 of the DSP ASE is available. */
1007 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1008
1009 /* True if the result of a load is not available to the next instruction.
1010 A nop will then be needed between instructions like "lw $4,..."
1011 and "addiu $4,$4,1". */
1012 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1013 && !TARGET_MIPS3900 \
1014 && !TARGET_MIPS16)
1015
1016 /* Likewise mtc1 and mfc1. */
1017 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1018 && !TARGET_LOONGSON_2EF)
1019
1020 /* Likewise floating-point comparisons. */
1021 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1022 && !TARGET_LOONGSON_2EF)
1023
1024 /* True if mflo and mfhi can be immediately followed by instructions
1025 which write to the HI and LO registers.
1026
1027 According to MIPS specifications, MIPS ISAs I, II, and III need
1028 (at least) two instructions between the reads of HI/LO and
1029 instructions which write them, and later ISAs do not. Contradicting
1030 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1031 the UM for the NEC Vr5000) document needing the instructions between
1032 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1033 MIPS64 and later ISAs to have the interlocks, plus any specific
1034 earlier-ISA CPUs for which CPU documentation declares that the
1035 instructions are really interlocked. */
1036 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1037 || ISA_MIPS32R2 \
1038 || ISA_MIPS64 \
1039 || ISA_MIPS64R2 \
1040 || TARGET_MIPS5500 \
1041 || TARGET_LOONGSON_2EF)
1042
1043 /* ISA includes synci, jr.hb and jalr.hb. */
1044 #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \
1045 || ISA_MIPS64R2) \
1046 && !TARGET_MIPS16)
1047
1048 /* ISA includes sync. */
1049 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1050 #define GENERATE_SYNC \
1051 (target_flags_explicit & MASK_LLSC \
1052 ? TARGET_LLSC && !TARGET_MIPS16 \
1053 : ISA_HAS_SYNC)
1054
1055 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1056 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1057 instructions. */
1058 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS16)
1059 #define GENERATE_LL_SC \
1060 (target_flags_explicit & MASK_LLSC \
1061 ? TARGET_LLSC && !TARGET_MIPS16 \
1062 : ISA_HAS_LL_SC)
1063
1064 /* ISA includes the baddu instruction. */
1065 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1066
1067 /* ISA includes the bbit* instructions. */
1068 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1069
1070 /* ISA includes the cins instruction. */
1071 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1072
1073 /* ISA includes the exts instruction. */
1074 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1075
1076 /* ISA includes the seq and sne instructions. */
1077 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1078
1079 /* ISA includes the pop instruction. */
1080 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1081
1082 /* The CACHE instruction is available in non-MIPS16 code. */
1083 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1084
1085 /* The CACHE instruction is available. */
1086 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1087 \f
1088 #define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
1089 \f
1090 /* Tell collect what flags to pass to nm. */
1091 #ifndef NM_FLAGS
1092 #define NM_FLAGS "-Bn"
1093 #endif
1094
1095 \f
1096 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
1097 to the assembler. It may be overridden by subtargets. */
1098 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
1099 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
1100 %{noasmopt:-O0} \
1101 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
1102 #endif
1103
1104 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1105 the assembler. It may be overridden by subtargets.
1106
1107 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1108 COFF debugging info. */
1109
1110 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1111 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1112 %{g} %{g0} %{g1} %{g2} %{g3} \
1113 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1114 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1115 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1116 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1117 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1118 #endif
1119
1120 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1121 overridden by subtargets. */
1122
1123 #ifndef SUBTARGET_ASM_SPEC
1124 #define SUBTARGET_ASM_SPEC ""
1125 #endif
1126
1127 #undef ASM_SPEC
1128 #define ASM_SPEC "\
1129 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1130 %{mips32*} %{mips64*} \
1131 %{mips16} %{mno-mips16:-no-mips16} \
1132 %{mips3d} %{mno-mips3d:-no-mips3d} \
1133 %{mdmx} %{mno-mdmx:-no-mdmx} \
1134 %{mdsp} %{mno-dsp} \
1135 %{mdspr2} %{mno-dspr2} \
1136 %{msmartmips} %{mno-smartmips} \
1137 %{mmt} %{mno-mt} \
1138 %{mfix-vr4120} %{mfix-vr4130} \
1139 %(subtarget_asm_optimizing_spec) \
1140 %(subtarget_asm_debugging_spec) \
1141 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1142 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1143 %{mfp32} %{mfp64} \
1144 %{mshared} %{mno-shared} \
1145 %{msym32} %{mno-sym32} \
1146 %{mtune=*} %{v} \
1147 %(subtarget_asm_spec)"
1148
1149 /* Extra switches sometimes passed to the linker. */
1150 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
1151 will interpret it as a -b option. */
1152
1153 #ifndef LINK_SPEC
1154 #define LINK_SPEC "\
1155 %(endian_spec) \
1156 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1157 %{bestGnum} %{shared} %{non_shared}"
1158 #endif /* LINK_SPEC defined */
1159
1160
1161 /* Specs for the compiler proper */
1162
1163 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1164 overridden by subtargets. */
1165 #ifndef SUBTARGET_CC1_SPEC
1166 #define SUBTARGET_CC1_SPEC ""
1167 #endif
1168
1169 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1170
1171 #undef CC1_SPEC
1172 #define CC1_SPEC "\
1173 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
1174 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1175 %{save-temps: } \
1176 %(subtarget_cc1_spec)"
1177
1178 /* Preprocessor specs. */
1179
1180 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1181 overridden by subtargets. */
1182 #ifndef SUBTARGET_CPP_SPEC
1183 #define SUBTARGET_CPP_SPEC ""
1184 #endif
1185
1186 #define CPP_SPEC "%(subtarget_cpp_spec)"
1187
1188 /* This macro defines names of additional specifications to put in the specs
1189 that can be used in various specifications like CC1_SPEC. Its definition
1190 is an initializer with a subgrouping for each command option.
1191
1192 Each subgrouping contains a string constant, that defines the
1193 specification name, and a string constant that used by the GCC driver
1194 program.
1195
1196 Do not define this macro if it does not need to do anything. */
1197
1198 #define EXTRA_SPECS \
1199 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1200 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1201 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1202 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1203 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1204 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1205 { "endian_spec", ENDIAN_SPEC }, \
1206 SUBTARGET_EXTRA_SPECS
1207
1208 #ifndef SUBTARGET_EXTRA_SPECS
1209 #define SUBTARGET_EXTRA_SPECS
1210 #endif
1211 \f
1212 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1213 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1214
1215 #ifndef PREFERRED_DEBUGGING_TYPE
1216 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1217 #endif
1218
1219 /* The size of DWARF addresses should be the same as the size of symbols
1220 in the target file format. They shouldn't depend on things like -msym32,
1221 because many DWARF consumers do not allow the mixture of address sizes
1222 that one would then get from linking -msym32 code with -msym64 code.
1223
1224 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1225 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1226 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1227
1228 /* By default, turn on GDB extensions. */
1229 #define DEFAULT_GDB_EXTENSIONS 1
1230
1231 /* Local compiler-generated symbols must have a prefix that the assembler
1232 understands. By default, this is $, although some targets (e.g.,
1233 NetBSD-ELF) need to override this. */
1234
1235 #ifndef LOCAL_LABEL_PREFIX
1236 #define LOCAL_LABEL_PREFIX "$"
1237 #endif
1238
1239 /* By default on the mips, external symbols do not have an underscore
1240 prepended, but some targets (e.g., NetBSD) require this. */
1241
1242 #ifndef USER_LABEL_PREFIX
1243 #define USER_LABEL_PREFIX ""
1244 #endif
1245
1246 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1247 since the length can run past this up to a continuation point. */
1248 #undef DBX_CONTIN_LENGTH
1249 #define DBX_CONTIN_LENGTH 1500
1250
1251 /* How to renumber registers for dbx and gdb. */
1252 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1253
1254 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1255 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1256
1257 /* The DWARF 2 CFA column which tracks the return address. */
1258 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1259
1260 /* Before the prologue, RA lives in r31. */
1261 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1262
1263 /* Describe how we implement __builtin_eh_return. */
1264 #define EH_RETURN_DATA_REGNO(N) \
1265 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1266
1267 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1268
1269 #define EH_USES(N) mips_eh_uses (N)
1270
1271 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1272 The default for this in 64-bit mode is 8, which causes problems with
1273 SFmode register saves. */
1274 #define DWARF_CIE_DATA_ALIGNMENT -4
1275
1276 /* Correct the offset of automatic variables and arguments. Note that
1277 the MIPS debug format wants all automatic variables and arguments
1278 to be in terms of the virtual frame pointer (stack pointer before
1279 any adjustment in the function), while the MIPS 3.0 linker wants
1280 the frame pointer to be the stack pointer after the initial
1281 adjustment. */
1282
1283 #define DEBUGGER_AUTO_OFFSET(X) \
1284 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1285 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1286 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1287 \f
1288 /* Target machine storage layout */
1289
1290 #define BITS_BIG_ENDIAN 0
1291 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1292 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1293
1294 #define MAX_BITS_PER_WORD 64
1295
1296 /* Width of a word, in units (bytes). */
1297 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1298 #ifndef IN_LIBGCC2
1299 #define MIN_UNITS_PER_WORD 4
1300 #endif
1301
1302 /* For MIPS, width of a floating point register. */
1303 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1304
1305 /* The number of consecutive floating-point registers needed to store the
1306 largest format supported by the FPU. */
1307 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1308
1309 /* The number of consecutive floating-point registers needed to store the
1310 smallest format supported by the FPU. */
1311 #define MIN_FPRS_PER_FMT \
1312 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1313 ? 1 : MAX_FPRS_PER_FMT)
1314
1315 /* The largest size of value that can be held in floating-point
1316 registers and moved with a single instruction. */
1317 #define UNITS_PER_HWFPVALUE \
1318 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1319
1320 /* The largest size of value that can be held in floating-point
1321 registers. */
1322 #define UNITS_PER_FPVALUE \
1323 (TARGET_SOFT_FLOAT_ABI ? 0 \
1324 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1325 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1326
1327 /* The number of bytes in a double. */
1328 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1329
1330 /* Set the sizes of the core types. */
1331 #define SHORT_TYPE_SIZE 16
1332 #define INT_TYPE_SIZE 32
1333 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1334 #define LONG_LONG_TYPE_SIZE 64
1335
1336 #define FLOAT_TYPE_SIZE 32
1337 #define DOUBLE_TYPE_SIZE 64
1338 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1339
1340 /* Define the sizes of fixed-point types. */
1341 #define SHORT_FRACT_TYPE_SIZE 8
1342 #define FRACT_TYPE_SIZE 16
1343 #define LONG_FRACT_TYPE_SIZE 32
1344 #define LONG_LONG_FRACT_TYPE_SIZE 64
1345
1346 #define SHORT_ACCUM_TYPE_SIZE 16
1347 #define ACCUM_TYPE_SIZE 32
1348 #define LONG_ACCUM_TYPE_SIZE 64
1349 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1350 doesn't support 128-bit integers for MIPS32 currently. */
1351 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1352
1353 /* long double is not a fixed mode, but the idea is that, if we
1354 support long double, we also want a 128-bit integer type. */
1355 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1356
1357 #ifdef IN_LIBGCC2
1358 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1359 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1360 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1361 # else
1362 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1363 # endif
1364 #endif
1365
1366 /* Width in bits of a pointer. */
1367 #ifndef POINTER_SIZE
1368 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1369 #endif
1370
1371 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1372 #define PARM_BOUNDARY BITS_PER_WORD
1373
1374 /* Allocation boundary (in *bits*) for the code of a function. */
1375 #define FUNCTION_BOUNDARY 32
1376
1377 /* Alignment of field after `int : 0' in a structure. */
1378 #define EMPTY_FIELD_BOUNDARY 32
1379
1380 /* Every structure's size must be a multiple of this. */
1381 /* 8 is observed right on a DECstation and on riscos 4.02. */
1382 #define STRUCTURE_SIZE_BOUNDARY 8
1383
1384 /* There is no point aligning anything to a rounder boundary than this. */
1385 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1386
1387 /* All accesses must be aligned. */
1388 #define STRICT_ALIGNMENT 1
1389
1390 /* Define this if you wish to imitate the way many other C compilers
1391 handle alignment of bitfields and the structures that contain
1392 them.
1393
1394 The behavior is that the type written for a bit-field (`int',
1395 `short', or other integer type) imposes an alignment for the
1396 entire structure, as if the structure really did contain an
1397 ordinary field of that type. In addition, the bit-field is placed
1398 within the structure so that it would fit within such a field,
1399 not crossing a boundary for it.
1400
1401 Thus, on most machines, a bit-field whose type is written as `int'
1402 would not cross a four-byte boundary, and would force four-byte
1403 alignment for the whole structure. (The alignment used may not
1404 be four bytes; it is controlled by the other alignment
1405 parameters.)
1406
1407 If the macro is defined, its definition should be a C expression;
1408 a nonzero value for the expression enables this behavior. */
1409
1410 #define PCC_BITFIELD_TYPE_MATTERS 1
1411
1412 /* If defined, a C expression to compute the alignment given to a
1413 constant that is being placed in memory. CONSTANT is the constant
1414 and ALIGN is the alignment that the object would ordinarily have.
1415 The value of this macro is used instead of that alignment to align
1416 the object.
1417
1418 If this macro is not defined, then ALIGN is used.
1419
1420 The typical use of this macro is to increase alignment for string
1421 constants to be word aligned so that `strcpy' calls that copy
1422 constants can be done inline. */
1423
1424 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1425 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1426 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1427
1428 /* If defined, a C expression to compute the alignment for a static
1429 variable. TYPE is the data type, and ALIGN is the alignment that
1430 the object would ordinarily have. The value of this macro is used
1431 instead of that alignment to align the object.
1432
1433 If this macro is not defined, then ALIGN is used.
1434
1435 One use of this macro is to increase alignment of medium-size
1436 data to make it all fit in fewer cache lines. Another is to
1437 cause character arrays to be word-aligned so that `strcpy' calls
1438 that copy constants to character arrays can be done inline. */
1439
1440 #undef DATA_ALIGNMENT
1441 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1442 ((((ALIGN) < BITS_PER_WORD) \
1443 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1444 || TREE_CODE (TYPE) == UNION_TYPE \
1445 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1446
1447 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1448 character arrays to be word-aligned so that `strcpy' calls that copy
1449 constants to character arrays can be done inline, and 'strcmp' can be
1450 optimised to use word loads. */
1451 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1452 DATA_ALIGNMENT (TYPE, ALIGN)
1453
1454 #define PAD_VARARGS_DOWN \
1455 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1456
1457 /* Define if operations between registers always perform the operation
1458 on the full register even if a narrower mode is specified. */
1459 #define WORD_REGISTER_OPERATIONS
1460
1461 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1462 moves. All other references are zero extended. */
1463 #define LOAD_EXTEND_OP(MODE) \
1464 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1465 ? SIGN_EXTEND : ZERO_EXTEND)
1466
1467 /* Define this macro if it is advisable to hold scalars in registers
1468 in a wider mode than that declared by the program. In such cases,
1469 the value is constrained to be within the bounds of the declared
1470 type, but kept valid in the wider mode. The signedness of the
1471 extension may differ from that of the type. */
1472
1473 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1474 if (GET_MODE_CLASS (MODE) == MODE_INT \
1475 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1476 { \
1477 if ((MODE) == SImode) \
1478 (UNSIGNEDP) = 0; \
1479 (MODE) = Pmode; \
1480 }
1481
1482 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1483 Extensions of pointers to word_mode must be signed. */
1484 #define POINTERS_EXTEND_UNSIGNED false
1485
1486 /* Define if loading short immediate values into registers sign extends. */
1487 #define SHORT_IMMEDIATES_SIGN_EXTEND
1488
1489 /* The [d]clz instructions have the natural values at 0. */
1490
1491 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1492 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1493 \f
1494 /* Standard register usage. */
1495
1496 /* Number of hardware registers. We have:
1497
1498 - 32 integer registers
1499 - 32 floating point registers
1500 - 8 condition code registers
1501 - 2 accumulator registers (hi and lo)
1502 - 32 registers each for coprocessors 0, 2 and 3
1503 - 4 fake registers:
1504 - ARG_POINTER_REGNUM
1505 - FRAME_POINTER_REGNUM
1506 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1507 - CPRESTORE_SLOT_REGNUM
1508 - 2 dummy entries that were used at various times in the past.
1509 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1510 - 6 DSP control registers */
1511
1512 #define FIRST_PSEUDO_REGISTER 188
1513
1514 /* By default, fix the kernel registers ($26 and $27), the global
1515 pointer ($28) and the stack pointer ($29). This can change
1516 depending on the command-line options.
1517
1518 Regarding coprocessor registers: without evidence to the contrary,
1519 it's best to assume that each coprocessor register has a unique
1520 use. This can be overridden, in, e.g., mips_option_override or
1521 CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1522 for a particular target. */
1523
1524 #define FIXED_REGISTERS \
1525 { \
1526 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1527 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1528 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1529 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1530 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1531 /* COP0 registers */ \
1532 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1533 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1534 /* COP2 registers */ \
1535 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1536 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1537 /* COP3 registers */ \
1538 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1539 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1540 /* 6 DSP accumulator registers & 6 control registers */ \
1541 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1542 }
1543
1544
1545 /* Set up this array for o32 by default.
1546
1547 Note that we don't mark $31 as a call-clobbered register. The idea is
1548 that it's really the call instructions themselves which clobber $31.
1549 We don't care what the called function does with it afterwards.
1550
1551 This approach makes it easier to implement sibcalls. Unlike normal
1552 calls, sibcalls don't clobber $31, so the register reaches the
1553 called function in tact. EPILOGUE_USES says that $31 is useful
1554 to the called function. */
1555
1556 #define CALL_USED_REGISTERS \
1557 { \
1558 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1559 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1560 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1561 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1562 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1563 /* COP0 registers */ \
1564 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1565 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1566 /* COP2 registers */ \
1567 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1568 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1569 /* COP3 registers */ \
1570 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1571 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1572 /* 6 DSP accumulator registers & 6 control registers */ \
1573 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1574 }
1575
1576
1577 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1578
1579 #define CALL_REALLY_USED_REGISTERS \
1580 { /* General registers. */ \
1581 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1582 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1583 /* Floating-point registers. */ \
1584 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1585 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1586 /* Others. */ \
1587 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1588 /* COP0 registers */ \
1589 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1590 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1591 /* COP2 registers */ \
1592 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1593 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1594 /* COP3 registers */ \
1595 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1596 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1597 /* 6 DSP accumulator registers & 6 control registers */ \
1598 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1599 }
1600
1601 /* Internal macros to classify a register number as to whether it's a
1602 general purpose register, a floating point register, a
1603 multiply/divide register, or a status register. */
1604
1605 #define GP_REG_FIRST 0
1606 #define GP_REG_LAST 31
1607 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1608 #define GP_DBX_FIRST 0
1609 #define K0_REG_NUM (GP_REG_FIRST + 26)
1610 #define K1_REG_NUM (GP_REG_FIRST + 27)
1611 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1612
1613 #define FP_REG_FIRST 32
1614 #define FP_REG_LAST 63
1615 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1616 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1617
1618 #define MD_REG_FIRST 64
1619 #define MD_REG_LAST 65
1620 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1621 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1622
1623 /* The DWARF 2 CFA column which tracks the return address from a
1624 signal handler context. This means that to maintain backwards
1625 compatibility, no hard register can be assigned this column if it
1626 would need to be handled by the DWARF unwinder. */
1627 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1628
1629 #define ST_REG_FIRST 67
1630 #define ST_REG_LAST 74
1631 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1632
1633
1634 /* FIXME: renumber. */
1635 #define COP0_REG_FIRST 80
1636 #define COP0_REG_LAST 111
1637 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1638
1639 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1640 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1641 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1642
1643 #define COP2_REG_FIRST 112
1644 #define COP2_REG_LAST 143
1645 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1646
1647 #define COP3_REG_FIRST 144
1648 #define COP3_REG_LAST 175
1649 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1650 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1651 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1652
1653 #define DSP_ACC_REG_FIRST 176
1654 #define DSP_ACC_REG_LAST 181
1655 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1656
1657 #define AT_REGNUM (GP_REG_FIRST + 1)
1658 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1659 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1660
1661 /* A few bitfield locations for the coprocessor registers. */
1662 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1663 the cause register for the EIC interrupt mode. */
1664 #define CAUSE_IPL 10
1665 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1666 #define SR_IPL 10
1667 /* Exception Level is at bit 1 of the status register. */
1668 #define SR_EXL 1
1669 /* Interrupt Enable is at bit 0 of the status register. */
1670 #define SR_IE 0
1671
1672 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1673 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1674 should be used instead. */
1675 #define FPSW_REGNUM ST_REG_FIRST
1676
1677 #define GP_REG_P(REGNO) \
1678 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1679 #define M16_REG_P(REGNO) \
1680 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1681 #define FP_REG_P(REGNO) \
1682 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1683 #define MD_REG_P(REGNO) \
1684 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1685 #define ST_REG_P(REGNO) \
1686 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1687 #define COP0_REG_P(REGNO) \
1688 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1689 #define COP2_REG_P(REGNO) \
1690 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1691 #define COP3_REG_P(REGNO) \
1692 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1693 #define ALL_COP_REG_P(REGNO) \
1694 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1695 /* Test if REGNO is one of the 6 new DSP accumulators. */
1696 #define DSP_ACC_REG_P(REGNO) \
1697 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1698 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1699 #define ACC_REG_P(REGNO) \
1700 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1701
1702 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1703
1704 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1705 to initialize the mips16 gp pseudo register. */
1706 #define CONST_GP_P(X) \
1707 (GET_CODE (X) == CONST \
1708 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1709 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1710
1711 /* Return coprocessor number from register number. */
1712
1713 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1714 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1715 : COP3_REG_P (REGNO) ? '3' : '?')
1716
1717
1718 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1719
1720 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1721 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1722
1723 #define MODES_TIEABLE_P mips_modes_tieable_p
1724
1725 /* Register to use for pushing function arguments. */
1726 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1727
1728 /* These two registers don't really exist: they get eliminated to either
1729 the stack or hard frame pointer. */
1730 #define ARG_POINTER_REGNUM 77
1731 #define FRAME_POINTER_REGNUM 78
1732
1733 /* $30 is not available on the mips16, so we use $17 as the frame
1734 pointer. */
1735 #define HARD_FRAME_POINTER_REGNUM \
1736 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1737
1738 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1739 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1740
1741 /* Register in which static-chain is passed to a function. */
1742 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1743
1744 /* Registers used as temporaries in prologue/epilogue code:
1745
1746 - If a MIPS16 PIC function needs access to _gp, it first loads
1747 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1748
1749 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1750 register. The register must not conflict with MIPS16_PIC_TEMP.
1751
1752 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1753 register.
1754
1755 If we're generating MIPS16 code, these registers must come from the
1756 core set of 8. The prologue registers mustn't conflict with any
1757 incoming arguments, the static chain pointer, or the frame pointer.
1758 The epilogue temporary mustn't conflict with the return registers,
1759 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1760 or the EH data registers.
1761
1762 If we're generating interrupt handlers, we use K0 as a temporary register
1763 in prologue/epilogue code. */
1764
1765 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1766 #define MIPS_PROLOGUE_TEMP_REGNUM \
1767 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1768 #define MIPS_EPILOGUE_TEMP_REGNUM \
1769 (cfun->machine->interrupt_handler_p \
1770 ? K0_REG_NUM \
1771 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1772
1773 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1774 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1775 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1776
1777 /* Define this macro if it is as good or better to call a constant
1778 function address than to call an address kept in a register. */
1779 #define NO_FUNCTION_CSE 1
1780
1781 /* The ABI-defined global pointer. Sometimes we use a different
1782 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1783 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1784
1785 /* We normally use $28 as the global pointer. However, when generating
1786 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1787 register instead. They can then avoid saving and restoring $28
1788 and perhaps avoid using a frame at all.
1789
1790 When a leaf function uses something other than $28, mips_expand_prologue
1791 will modify pic_offset_table_rtx in place. Take the register number
1792 from there after reload. */
1793 #define PIC_OFFSET_TABLE_REGNUM \
1794 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1795
1796 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1797 \f
1798 /* Define the classes of registers for register constraints in the
1799 machine description. Also define ranges of constants.
1800
1801 One of the classes must always be named ALL_REGS and include all hard regs.
1802 If there is more than one class, another class must be named NO_REGS
1803 and contain no registers.
1804
1805 The name GENERAL_REGS must be the name of a class (or an alias for
1806 another name such as ALL_REGS). This is the class of registers
1807 that is allowed by "g" or "r" in a register constraint.
1808 Also, registers outside this class are allocated only when
1809 instructions express preferences for them.
1810
1811 The classes must be numbered in nondecreasing order; that is,
1812 a larger-numbered class must never be contained completely
1813 in a smaller-numbered class.
1814
1815 For any two classes, it is very desirable that there be another
1816 class that represents their union. */
1817
1818 enum reg_class
1819 {
1820 NO_REGS, /* no registers in set */
1821 M16_REGS, /* mips16 directly accessible registers */
1822 T_REG, /* mips16 T register ($24) */
1823 M16_T_REGS, /* mips16 registers plus T register */
1824 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1825 V1_REG, /* Register $v1 ($3) used for TLS access. */
1826 LEA_REGS, /* Every GPR except $25 */
1827 GR_REGS, /* integer registers */
1828 FP_REGS, /* floating point registers */
1829 MD0_REG, /* first multiply/divide register */
1830 MD1_REG, /* second multiply/divide register */
1831 MD_REGS, /* multiply/divide registers (hi/lo) */
1832 COP0_REGS, /* generic coprocessor classes */
1833 COP2_REGS,
1834 COP3_REGS,
1835 ST_REGS, /* status registers (fp status) */
1836 DSP_ACC_REGS, /* DSP accumulator registers */
1837 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1838 FRAME_REGS, /* $arg and $frame */
1839 GR_AND_MD0_REGS, /* union classes */
1840 GR_AND_MD1_REGS,
1841 GR_AND_MD_REGS,
1842 GR_AND_ACC_REGS,
1843 ALL_REGS, /* all registers */
1844 LIM_REG_CLASSES /* max value + 1 */
1845 };
1846
1847 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1848
1849 #define GENERAL_REGS GR_REGS
1850
1851 /* An initializer containing the names of the register classes as C
1852 string constants. These names are used in writing some of the
1853 debugging dumps. */
1854
1855 #define REG_CLASS_NAMES \
1856 { \
1857 "NO_REGS", \
1858 "M16_REGS", \
1859 "T_REG", \
1860 "M16_T_REGS", \
1861 "PIC_FN_ADDR_REG", \
1862 "V1_REG", \
1863 "LEA_REGS", \
1864 "GR_REGS", \
1865 "FP_REGS", \
1866 "MD0_REG", \
1867 "MD1_REG", \
1868 "MD_REGS", \
1869 /* coprocessor registers */ \
1870 "COP0_REGS", \
1871 "COP2_REGS", \
1872 "COP3_REGS", \
1873 "ST_REGS", \
1874 "DSP_ACC_REGS", \
1875 "ACC_REGS", \
1876 "FRAME_REGS", \
1877 "GR_AND_MD0_REGS", \
1878 "GR_AND_MD1_REGS", \
1879 "GR_AND_MD_REGS", \
1880 "GR_AND_ACC_REGS", \
1881 "ALL_REGS" \
1882 }
1883
1884 /* An initializer containing the contents of the register classes,
1885 as integers which are bit masks. The Nth integer specifies the
1886 contents of class N. The way the integer MASK is interpreted is
1887 that register R is in the class if `MASK & (1 << R)' is 1.
1888
1889 When the machine has more than 32 registers, an integer does not
1890 suffice. Then the integers are replaced by sub-initializers,
1891 braced groupings containing several integers. Each
1892 sub-initializer must be suitable as an initializer for the type
1893 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1894
1895 #define REG_CLASS_CONTENTS \
1896 { \
1897 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1898 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1899 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1900 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1901 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1902 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1903 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1904 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1905 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1906 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1907 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1908 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1909 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1910 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1911 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1912 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1913 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1914 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1915 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1916 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1917 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1918 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1919 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1920 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1921 }
1922
1923
1924 /* A C expression whose value is a register class containing hard
1925 register REGNO. In general there is more that one such class;
1926 choose a class which is "minimal", meaning that no smaller class
1927 also contains the register. */
1928
1929 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1930
1931 /* A macro whose definition is the name of the class to which a
1932 valid base register must belong. A base register is one used in
1933 an address which is the register value plus a displacement. */
1934
1935 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1936
1937 /* A macro whose definition is the name of the class to which a
1938 valid index register must belong. An index register is one used
1939 in an address where its value is either multiplied by a scale
1940 factor or added to another register (as well as added to a
1941 displacement). */
1942
1943 #define INDEX_REG_CLASS NO_REGS
1944
1945 /* We generally want to put call-clobbered registers ahead of
1946 call-saved ones. (IRA expects this.) */
1947
1948 #define REG_ALLOC_ORDER \
1949 { /* Accumulator registers. When GPRs and accumulators have equal \
1950 cost, we generally prefer to use accumulators. For example, \
1951 a division of multiplication result is better allocated to LO, \
1952 so that we put the MFLO at the point of use instead of at the \
1953 point of definition. It's also needed if we're to take advantage \
1954 of the extra accumulators available with -mdspr2. In some cases, \
1955 it can also help to reduce register pressure. */ \
1956 64, 65,176,177,178,179,180,181, \
1957 /* Call-clobbered GPRs. */ \
1958 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1959 24, 25, 31, \
1960 /* The global pointer. This is call-clobbered for o32 and o64 \
1961 abicalls, call-saved for n32 and n64 abicalls, and a program \
1962 invariant otherwise. Putting it between the call-clobbered \
1963 and call-saved registers should cope with all eventualities. */ \
1964 28, \
1965 /* Call-saved GPRs. */ \
1966 16, 17, 18, 19, 20, 21, 22, 23, 30, \
1967 /* GPRs that can never be exposed to the register allocator. */ \
1968 0, 26, 27, 29, \
1969 /* Call-clobbered FPRs. */ \
1970 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1971 48, 49, 50, 51, \
1972 /* FPRs that are usually call-saved. The odd ones are actually \
1973 call-clobbered for n32, but listing them ahead of the even \
1974 registers might encourage the register allocator to fragment \
1975 the available FPR pairs. We need paired FPRs to store long \
1976 doubles, so it isn't clear that using a different order \
1977 for n32 would be a win. */ \
1978 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1979 /* None of the remaining classes have defined call-saved \
1980 registers. */ \
1981 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
1982 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
1983 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
1984 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
1985 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
1986 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
1987 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
1988 182,183,184,185,186,187 \
1989 }
1990
1991 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1992 to be rearranged based on a particular function. On the mips16, we
1993 want to allocate $24 (T_REG) before other registers for
1994 instructions for which it is possible. */
1995
1996 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
1997
1998 /* True if VALUE is an unsigned 6-bit number. */
1999
2000 #define UIMM6_OPERAND(VALUE) \
2001 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2002
2003 /* True if VALUE is a signed 10-bit number. */
2004
2005 #define IMM10_OPERAND(VALUE) \
2006 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2007
2008 /* True if VALUE is a signed 16-bit number. */
2009
2010 #define SMALL_OPERAND(VALUE) \
2011 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2012
2013 /* True if VALUE is an unsigned 16-bit number. */
2014
2015 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2016 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2017
2018 /* True if VALUE can be loaded into a register using LUI. */
2019
2020 #define LUI_OPERAND(VALUE) \
2021 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2022 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2023
2024 /* Return a value X with the low 16 bits clear, and such that
2025 VALUE - X is a signed 16-bit value. */
2026
2027 #define CONST_HIGH_PART(VALUE) \
2028 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2029
2030 #define CONST_LOW_PART(VALUE) \
2031 ((VALUE) - CONST_HIGH_PART (VALUE))
2032
2033 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2034 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2035 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2036
2037 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
2038 mips_preferred_reload_class (X, CLASS)
2039
2040 /* The HI and LO registers can only be reloaded via the general
2041 registers. Condition code registers can only be loaded to the
2042 general registers, and from the floating point registers. */
2043
2044 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2045 mips_secondary_reload_class (CLASS, MODE, X, true)
2046 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2047 mips_secondary_reload_class (CLASS, MODE, X, false)
2048
2049 /* Return the maximum number of consecutive registers
2050 needed to represent mode MODE in a register of class CLASS. */
2051
2052 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2053
2054 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2055 mips_cannot_change_mode_class (FROM, TO, CLASS)
2056 \f
2057 /* Stack layout; function entry, exit and calling. */
2058
2059 #define STACK_GROWS_DOWNWARD
2060
2061 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2062
2063 /* Size of the area allocated in the frame to save the GP. */
2064
2065 #define MIPS_GP_SAVE_AREA_SIZE \
2066 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2067
2068 /* The offset of the first local variable from the frame pointer. See
2069 mips_compute_frame_info for details about the frame layout. */
2070
2071 #define STARTING_FRAME_OFFSET \
2072 (FRAME_GROWS_DOWNWARD \
2073 ? 0 \
2074 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2075
2076 #define RETURN_ADDR_RTX mips_return_addr
2077
2078 /* Mask off the MIPS16 ISA bit in unwind addresses.
2079
2080 The reason for this is a little subtle. When unwinding a call,
2081 we are given the call's return address, which on most targets
2082 is the address of the following instruction. However, what we
2083 actually want to find is the EH region for the call itself.
2084 The target-independent unwind code therefore searches for "RA - 1".
2085
2086 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2087 RA - 1 is therefore the real (even-valued) start of the return
2088 instruction. EH region labels are usually odd-valued MIPS16 symbols
2089 too, so a search for an even address within a MIPS16 region would
2090 usually work.
2091
2092 However, there is an exception. If the end of an EH region is also
2093 the end of a function, the end label is allowed to be even. This is
2094 necessary because a following non-MIPS16 function may also need EH
2095 information for its first instruction.
2096
2097 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2098 non-ISA-encoded address. This probably isn't ideal, but it is
2099 the traditional (legacy) behavior. It is therefore only safe
2100 to search MIPS EH regions for an _odd-valued_ address.
2101
2102 Masking off the ISA bit means that the target-independent code
2103 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2104 #define MASK_RETURN_ADDR GEN_INT (-2)
2105
2106
2107 /* Similarly, don't use the least-significant bit to tell pointers to
2108 code from vtable index. */
2109
2110 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2111
2112 /* The eliminations to $17 are only used for mips16 code. See the
2113 definition of HARD_FRAME_POINTER_REGNUM. */
2114
2115 #define ELIMINABLE_REGS \
2116 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2117 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2118 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2119 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2120 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2121 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2122
2123 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2124 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2125
2126 /* Allocate stack space for arguments at the beginning of each function. */
2127 #define ACCUMULATE_OUTGOING_ARGS 1
2128
2129 /* The argument pointer always points to the first argument. */
2130 #define FIRST_PARM_OFFSET(FNDECL) 0
2131
2132 /* o32 and o64 reserve stack space for all argument registers. */
2133 #define REG_PARM_STACK_SPACE(FNDECL) \
2134 (TARGET_OLDABI \
2135 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2136 : 0)
2137
2138 /* Define this if it is the responsibility of the caller to
2139 allocate the area reserved for arguments passed in registers.
2140 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2141 of this macro is to determine whether the space is included in
2142 `crtl->outgoing_args_size'. */
2143 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2144
2145 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2146 \f
2147 /* Symbolic macros for the registers used to return integer and floating
2148 point values. */
2149
2150 #define GP_RETURN (GP_REG_FIRST + 2)
2151 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2152
2153 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2154
2155 /* Symbolic macros for the first/last argument registers. */
2156
2157 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2158 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2159 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2160 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2161
2162 #define LIBCALL_VALUE(MODE) \
2163 mips_function_value (NULL_TREE, NULL_TREE, MODE)
2164
2165 #define FUNCTION_VALUE(VALTYPE, FUNC) \
2166 mips_function_value (VALTYPE, FUNC, VOIDmode)
2167
2168 /* 1 if N is a possible register number for a function value.
2169 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2170 Currently, R2 and F0 are only implemented here (C has no complex type) */
2171
2172 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
2173 || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
2174 && (N) == FP_RETURN + 2))
2175
2176 /* 1 if N is a possible register number for function argument passing.
2177 We have no FP argument registers when soft-float. When FP registers
2178 are 32 bits, we can't directly reference the odd numbered ones. */
2179
2180 #define FUNCTION_ARG_REGNO_P(N) \
2181 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2182 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2183 && !fixed_regs[N])
2184 \f
2185 /* This structure has to cope with two different argument allocation
2186 schemes. Most MIPS ABIs view the arguments as a structure, of which
2187 the first N words go in registers and the rest go on the stack. If I
2188 < N, the Ith word might go in Ith integer argument register or in a
2189 floating-point register. For these ABIs, we only need to remember
2190 the offset of the current argument into the structure.
2191
2192 The EABI instead allocates the integer and floating-point arguments
2193 separately. The first N words of FP arguments go in FP registers,
2194 the rest go on the stack. Likewise, the first N words of the other
2195 arguments go in integer registers, and the rest go on the stack. We
2196 need to maintain three counts: the number of integer registers used,
2197 the number of floating-point registers used, and the number of words
2198 passed on the stack.
2199
2200 We could keep separate information for the two ABIs (a word count for
2201 the standard ABIs, and three separate counts for the EABI). But it
2202 seems simpler to view the standard ABIs as forms of EABI that do not
2203 allocate floating-point registers.
2204
2205 So for the standard ABIs, the first N words are allocated to integer
2206 registers, and mips_function_arg decides on an argument-by-argument
2207 basis whether that argument should really go in an integer register,
2208 or in a floating-point one. */
2209
2210 typedef struct mips_args {
2211 /* Always true for varargs functions. Otherwise true if at least
2212 one argument has been passed in an integer register. */
2213 int gp_reg_found;
2214
2215 /* The number of arguments seen so far. */
2216 unsigned int arg_number;
2217
2218 /* The number of integer registers used so far. For all ABIs except
2219 EABI, this is the number of words that have been added to the
2220 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2221 unsigned int num_gprs;
2222
2223 /* For EABI, the number of floating-point registers used so far. */
2224 unsigned int num_fprs;
2225
2226 /* The number of words passed on the stack. */
2227 unsigned int stack_words;
2228
2229 /* On the mips16, we need to keep track of which floating point
2230 arguments were passed in general registers, but would have been
2231 passed in the FP regs if this were a 32-bit function, so that we
2232 can move them to the FP regs if we wind up calling a 32-bit
2233 function. We record this information in fp_code, encoded in base
2234 four. A zero digit means no floating point argument, a one digit
2235 means an SFmode argument, and a two digit means a DFmode argument,
2236 and a three digit is not used. The low order digit is the first
2237 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2238 an SFmode argument. ??? A more sophisticated approach will be
2239 needed if MIPS_ABI != ABI_32. */
2240 int fp_code;
2241
2242 /* True if the function has a prototype. */
2243 int prototype;
2244 } CUMULATIVE_ARGS;
2245
2246 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2247 for a call to a function whose data type is FNTYPE.
2248 For a library call, FNTYPE is 0. */
2249
2250 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2251 mips_init_cumulative_args (&CUM, FNTYPE)
2252
2253 #define FUNCTION_ARG_BOUNDARY mips_function_arg_boundary
2254
2255 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2256 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2257
2258 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2259 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2260
2261 /* True if using EABI and varargs can be passed in floating-point
2262 registers. Under these conditions, we need a more complex form
2263 of va_list, which tracks GPR, FPR and stack arguments separately. */
2264 #define EABI_FLOAT_VARARGS_P \
2265 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2266
2267 \f
2268 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2269
2270 /* Treat LOC as a byte offset from the stack pointer and round it up
2271 to the next fully-aligned offset. */
2272 #define MIPS_STACK_ALIGN(LOC) \
2273 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2274
2275 \f
2276 /* Output assembler code to FILE to increment profiler label # LABELNO
2277 for profiling a function entry. */
2278
2279 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2280
2281 /* The profiler preserves all interesting registers, including $31. */
2282 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2283
2284 /* No mips port has ever used the profiler counter word, so don't emit it
2285 or the label for it. */
2286
2287 #define NO_PROFILE_COUNTERS 1
2288
2289 /* Define this macro if the code for function profiling should come
2290 before the function prologue. Normally, the profiling code comes
2291 after. */
2292
2293 /* #define PROFILE_BEFORE_PROLOGUE */
2294
2295 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2296 the stack pointer does not matter. The value is tested only in
2297 functions that have frame pointers.
2298 No definition is equivalent to always zero. */
2299
2300 #define EXIT_IGNORE_STACK 1
2301
2302 \f
2303 /* Trampolines are a block of code followed by two pointers. */
2304
2305 #define TRAMPOLINE_SIZE \
2306 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2307
2308 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2309 pointers from a single LUI base. */
2310
2311 #define TRAMPOLINE_ALIGNMENT 64
2312
2313 /* mips_trampoline_init calls this library function to flush
2314 program and data caches. */
2315
2316 #ifndef CACHE_FLUSH_FUNC
2317 #define CACHE_FLUSH_FUNC "_flush_cache"
2318 #endif
2319
2320 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2321 /* Flush both caches. We need to flush the data cache in case \
2322 the system has a write-back cache. */ \
2323 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2324 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2325 GEN_INT (3), TYPE_MODE (integer_type_node))
2326
2327 \f
2328 /* Addressing modes, and classification of registers for them. */
2329
2330 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2331 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2332 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2333
2334 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2335 and check its validity for a certain class.
2336 We have two alternate definitions for each of them.
2337 The usual definition accepts all pseudo regs; the other rejects them all.
2338 The symbol REG_OK_STRICT causes the latter definition to be used.
2339
2340 Most source files want to accept pseudo regs in the hope that
2341 they will get allocated to the class that the insn wants them to be in.
2342 Some source files that are used after register allocation
2343 need to be strict. */
2344
2345 #ifndef REG_OK_STRICT
2346 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2347 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2348 #else
2349 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2350 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2351 #endif
2352
2353 #define REG_OK_FOR_INDEX_P(X) 0
2354
2355 \f
2356 /* Maximum number of registers that can appear in a valid memory address. */
2357
2358 #define MAX_REGS_PER_ADDRESS 1
2359
2360 /* Check for constness inline but use mips_legitimate_address_p
2361 to check whether a constant really is an address. */
2362
2363 #define CONSTANT_ADDRESS_P(X) \
2364 (CONSTANT_P (X) && memory_address_p (SImode, X))
2365
2366 #define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2367
2368 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2369 'the start of the function that this code is output in'. */
2370
2371 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2372 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2373 asm_fprintf ((FILE), "%U%s", \
2374 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2375 else \
2376 asm_fprintf ((FILE), "%U%s", (NAME))
2377 \f
2378 /* Flag to mark a function decl symbol that requires a long call. */
2379 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2380 #define SYMBOL_REF_LONG_CALL_P(X) \
2381 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2382
2383 /* This flag marks functions that cannot be lazily bound. */
2384 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2385 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2386 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2387
2388 /* True if we're generating a form of MIPS16 code in which jump tables
2389 are stored in the text section and encoded as 16-bit PC-relative
2390 offsets. This is only possible when general text loads are allowed,
2391 since the table access itself will be an "lh" instruction. */
2392 /* ??? 16-bit offsets can overflow in large functions. */
2393 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2394
2395 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2396
2397 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? HImode : ptr_mode)
2398
2399 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2400
2401 /* Define this as 1 if `char' should by default be signed; else as 0. */
2402 #ifndef DEFAULT_SIGNED_CHAR
2403 #define DEFAULT_SIGNED_CHAR 1
2404 #endif
2405
2406 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2407 we generally don't want to use them for copying arbitrary data.
2408 A single N-word move is usually the same cost as N single-word moves. */
2409 #define MOVE_MAX UNITS_PER_WORD
2410 #define MAX_MOVE_MAX 8
2411
2412 /* Define this macro as a C expression which is nonzero if
2413 accessing less than a word of memory (i.e. a `char' or a
2414 `short') is no faster than accessing a word of memory, i.e., if
2415 such access require more than one instruction or if there is no
2416 difference in cost between byte and (aligned) word loads.
2417
2418 On RISC machines, it tends to generate better code to define
2419 this as 1, since it avoids making a QI or HI mode register.
2420
2421 But, generating word accesses for -mips16 is generally bad as shifts
2422 (often extended) would be needed for byte accesses. */
2423 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2424
2425 /* Standard MIPS integer shifts truncate the shift amount to the
2426 width of the shifted operand. However, Loongson vector shifts
2427 do not truncate the shift amount at all. */
2428 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_2EF)
2429
2430 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2431 is done just by pretending it is already truncated. */
2432 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2433 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2434
2435
2436 /* Specify the machine mode that pointers have.
2437 After generation of rtl, the compiler makes no further distinction
2438 between pointers and any other objects of this machine mode. */
2439
2440 #ifndef Pmode
2441 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2442 #endif
2443
2444 /* Give call MEMs SImode since it is the "most permissive" mode
2445 for both 32-bit and 64-bit targets. */
2446
2447 #define FUNCTION_MODE SImode
2448
2449 \f
2450
2451 /* Define if copies to/from condition code registers should be avoided.
2452
2453 This is needed for the MIPS because reload_outcc is not complete;
2454 it needs to handle cases where the source is a general or another
2455 condition code register. */
2456 #define AVOID_CCMODE_COPIES
2457
2458 /* A C expression for the cost of a branch instruction. A value of
2459 1 is the default; other values are interpreted relative to that. */
2460
2461 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2462 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2463
2464 /* If defined, modifies the length assigned to instruction INSN as a
2465 function of the context in which it is used. LENGTH is an lvalue
2466 that contains the initially computed length of the insn and should
2467 be updated with the correct length of the insn. */
2468 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2469 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2470
2471 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2472 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2473 its operands. */
2474 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2475 "%*" OPCODE "%?\t" OPERANDS "%/"
2476
2477 /* Return an asm string that forces INSN to be treated as an absolute
2478 J or JAL instruction instead of an assembler macro. */
2479 #define MIPS_ABSOLUTE_JUMP(INSN) \
2480 (TARGET_ABICALLS_PIC2 \
2481 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2482 : INSN)
2483
2484 /* Return the asm template for a call. INSN is the instruction's mnemonic
2485 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2486 number of the target. SIZE_OPNO is the operand number of the argument size
2487 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2488 -1 and the call is indirect, use the function symbol from the call
2489 attributes to attach a R_MIPS_JALR relocation to the call.
2490
2491 When generating GOT code without explicit relocation operators,
2492 all calls should use assembly macros. Otherwise, all indirect
2493 calls should use "jr" or "jalr"; we will arrange to restore $gp
2494 afterwards if necessary. Finally, we can only generate direct
2495 calls for -mabicalls by temporarily switching to non-PIC mode. */
2496 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2497 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2498 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2499 : (REG_P (OPERANDS[TARGET_OPNO]) \
2500 && mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO)) \
2501 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2502 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2503 : REG_P (OPERANDS[TARGET_OPNO]) \
2504 ? "%*" INSN "r\t%" #TARGET_OPNO "%/" \
2505 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/"))
2506 \f
2507 /* Control the assembler format that we output. */
2508
2509 /* Output to assembler file text saying following lines
2510 may contain character constants, extra white space, comments, etc. */
2511
2512 #ifndef ASM_APP_ON
2513 #define ASM_APP_ON " #APP\n"
2514 #endif
2515
2516 /* Output to assembler file text saying following lines
2517 no longer contain unusual constructs. */
2518
2519 #ifndef ASM_APP_OFF
2520 #define ASM_APP_OFF " #NO_APP\n"
2521 #endif
2522
2523 #define REGISTER_NAMES \
2524 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2525 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2526 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2527 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2528 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2529 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2530 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2531 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2532 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2533 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2534 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2535 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2536 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2537 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2538 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2539 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2540 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2541 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2542 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2543 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2544 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2545 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2546 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2547 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2548
2549 /* List the "software" names for each register. Also list the numerical
2550 names for $fp and $sp. */
2551
2552 #define ADDITIONAL_REGISTER_NAMES \
2553 { \
2554 { "$29", 29 + GP_REG_FIRST }, \
2555 { "$30", 30 + GP_REG_FIRST }, \
2556 { "at", 1 + GP_REG_FIRST }, \
2557 { "v0", 2 + GP_REG_FIRST }, \
2558 { "v1", 3 + GP_REG_FIRST }, \
2559 { "a0", 4 + GP_REG_FIRST }, \
2560 { "a1", 5 + GP_REG_FIRST }, \
2561 { "a2", 6 + GP_REG_FIRST }, \
2562 { "a3", 7 + GP_REG_FIRST }, \
2563 { "t0", 8 + GP_REG_FIRST }, \
2564 { "t1", 9 + GP_REG_FIRST }, \
2565 { "t2", 10 + GP_REG_FIRST }, \
2566 { "t3", 11 + GP_REG_FIRST }, \
2567 { "t4", 12 + GP_REG_FIRST }, \
2568 { "t5", 13 + GP_REG_FIRST }, \
2569 { "t6", 14 + GP_REG_FIRST }, \
2570 { "t7", 15 + GP_REG_FIRST }, \
2571 { "s0", 16 + GP_REG_FIRST }, \
2572 { "s1", 17 + GP_REG_FIRST }, \
2573 { "s2", 18 + GP_REG_FIRST }, \
2574 { "s3", 19 + GP_REG_FIRST }, \
2575 { "s4", 20 + GP_REG_FIRST }, \
2576 { "s5", 21 + GP_REG_FIRST }, \
2577 { "s6", 22 + GP_REG_FIRST }, \
2578 { "s7", 23 + GP_REG_FIRST }, \
2579 { "t8", 24 + GP_REG_FIRST }, \
2580 { "t9", 25 + GP_REG_FIRST }, \
2581 { "k0", 26 + GP_REG_FIRST }, \
2582 { "k1", 27 + GP_REG_FIRST }, \
2583 { "gp", 28 + GP_REG_FIRST }, \
2584 { "sp", 29 + GP_REG_FIRST }, \
2585 { "fp", 30 + GP_REG_FIRST }, \
2586 { "ra", 31 + GP_REG_FIRST }, \
2587 ALL_COP_ADDITIONAL_REGISTER_NAMES \
2588 }
2589
2590 /* This is meant to be redefined in the host dependent files. It is a
2591 set of alternative names and regnums for mips coprocessors. */
2592
2593 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
2594
2595 #define DBR_OUTPUT_SEQEND(STREAM) \
2596 do \
2597 { \
2598 /* Undo the effect of '%*'. */ \
2599 mips_pop_asm_switch (&mips_nomacro); \
2600 mips_pop_asm_switch (&mips_noreorder); \
2601 /* Emit a blank line after the delay slot for emphasis. */ \
2602 fputs ("\n", STREAM); \
2603 } \
2604 while (0)
2605
2606 /* mips-tfile does not understand .stabd directives. */
2607 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
2608 dbxout_begin_stabn_sline (LINE); \
2609 dbxout_stab_value_internal_label ("LM", &COUNTER); \
2610 } while (0)
2611
2612 /* Use .loc directives for SDB line numbers. */
2613 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2614 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2615
2616 /* The MIPS implementation uses some labels for its own purpose. The
2617 following lists what labels are created, and are all formed by the
2618 pattern $L[a-z].*. The machine independent portion of GCC creates
2619 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2620
2621 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2622 $Lb[0-9]+ Begin blocks for MIPS debug support
2623 $Lc[0-9]+ Label for use in s<xx> operation.
2624 $Le[0-9]+ End blocks for MIPS debug support */
2625
2626 #undef ASM_DECLARE_OBJECT_NAME
2627 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2628 mips_declare_object (STREAM, NAME, "", ":\n")
2629
2630 /* Globalizing directive for a label. */
2631 #define GLOBAL_ASM_OP "\t.globl\t"
2632
2633 /* This says how to define a global common symbol. */
2634
2635 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2636
2637 /* This says how to define a local common symbol (i.e., not visible to
2638 linker). */
2639
2640 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2641 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2642 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2643 #endif
2644
2645 /* This says how to output an external. It would be possible not to
2646 output anything and let undefined symbol become external. However
2647 the assembler uses length information on externals to allocate in
2648 data/sdata bss/sbss, thereby saving exec time. */
2649
2650 #undef ASM_OUTPUT_EXTERNAL
2651 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2652 mips_output_external(STREAM,DECL,NAME)
2653
2654 /* This is how to declare a function name. The actual work of
2655 emitting the label is moved to function_prologue, so that we can
2656 get the line number correctly emitted before the .ent directive,
2657 and after any .file directives. Define as empty so that the function
2658 is not declared before the .ent directive elsewhere. */
2659
2660 #undef ASM_DECLARE_FUNCTION_NAME
2661 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2662
2663 /* This is how to store into the string LABEL
2664 the symbol_ref name of an internal numbered label where
2665 PREFIX is the class of label and NUM is the number within the class.
2666 This is suitable for output with `assemble_name'. */
2667
2668 #undef ASM_GENERATE_INTERNAL_LABEL
2669 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2670 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2671
2672 /* Print debug labels as "foo = ." rather than "foo:" because they should
2673 represent a byte pointer rather than an ISA-encoded address. This is
2674 particularly important for code like:
2675
2676 $LFBxxx = .
2677 .cfi_startproc
2678 ...
2679 .section .gcc_except_table,...
2680 ...
2681 .uleb128 foo-$LFBxxx
2682
2683 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2684 likewise a byte pointer rather than an ISA-encoded address.
2685
2686 At the time of writing, this hook is not used for the function end
2687 label:
2688
2689 $LFExxx:
2690 .end foo
2691
2692 But this doesn't matter, because GAS doesn't treat a pre-.end label
2693 as a MIPS16 one anyway. */
2694
2695 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2696 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2697
2698 /* This is how to output an element of a case-vector that is absolute. */
2699
2700 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2701 fprintf (STREAM, "\t%s\t%sL%d\n", \
2702 ptr_mode == DImode ? ".dword" : ".word", \
2703 LOCAL_LABEL_PREFIX, \
2704 VALUE)
2705
2706 /* This is how to output an element of a case-vector. We can make the
2707 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2708 is supported. */
2709
2710 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2711 do { \
2712 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2713 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2714 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2715 else if (TARGET_GPWORD) \
2716 fprintf (STREAM, "\t%s\t%sL%d\n", \
2717 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2718 LOCAL_LABEL_PREFIX, VALUE); \
2719 else if (TARGET_RTP_PIC) \
2720 { \
2721 /* Make the entry relative to the start of the function. */ \
2722 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2723 fprintf (STREAM, "\t%s\t%sL%d-", \
2724 Pmode == DImode ? ".dword" : ".word", \
2725 LOCAL_LABEL_PREFIX, VALUE); \
2726 assemble_name (STREAM, XSTR (fnsym, 0)); \
2727 fprintf (STREAM, "\n"); \
2728 } \
2729 else \
2730 fprintf (STREAM, "\t%s\t%sL%d\n", \
2731 ptr_mode == DImode ? ".dword" : ".word", \
2732 LOCAL_LABEL_PREFIX, VALUE); \
2733 } while (0)
2734
2735 /* This is how to output an assembler line
2736 that says to advance the location counter
2737 to a multiple of 2**LOG bytes. */
2738
2739 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2740 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2741
2742 /* This is how to output an assembler line to advance the location
2743 counter by SIZE bytes. */
2744
2745 #undef ASM_OUTPUT_SKIP
2746 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2747 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2748
2749 /* This is how to output a string. */
2750 #undef ASM_OUTPUT_ASCII
2751 #define ASM_OUTPUT_ASCII mips_output_ascii
2752
2753 /* Output #ident as a in the read-only data section. */
2754 #undef ASM_OUTPUT_IDENT
2755 #define ASM_OUTPUT_IDENT(FILE, STRING) \
2756 { \
2757 const char *p = STRING; \
2758 int size = strlen (p) + 1; \
2759 switch_to_section (readonly_data_section); \
2760 assemble_string (p, size); \
2761 }
2762 \f
2763 /* Default to -G 8 */
2764 #ifndef MIPS_DEFAULT_GVALUE
2765 #define MIPS_DEFAULT_GVALUE 8
2766 #endif
2767
2768 /* Define the strings to put out for each section in the object file. */
2769 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2770 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2771
2772 #undef READONLY_DATA_SECTION_ASM_OP
2773 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2774 \f
2775 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2776 do \
2777 { \
2778 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2779 TARGET_64BIT ? "daddiu" : "addiu", \
2780 reg_names[STACK_POINTER_REGNUM], \
2781 reg_names[STACK_POINTER_REGNUM], \
2782 TARGET_64BIT ? "sd" : "sw", \
2783 reg_names[REGNO], \
2784 reg_names[STACK_POINTER_REGNUM]); \
2785 } \
2786 while (0)
2787
2788 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2789 do \
2790 { \
2791 mips_push_asm_switch (&mips_noreorder); \
2792 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2793 TARGET_64BIT ? "ld" : "lw", \
2794 reg_names[REGNO], \
2795 reg_names[STACK_POINTER_REGNUM], \
2796 TARGET_64BIT ? "daddu" : "addu", \
2797 reg_names[STACK_POINTER_REGNUM], \
2798 reg_names[STACK_POINTER_REGNUM]); \
2799 mips_pop_asm_switch (&mips_noreorder); \
2800 } \
2801 while (0)
2802
2803 /* How to start an assembler comment.
2804 The leading space is important (the mips native assembler requires it). */
2805 #ifndef ASM_COMMENT_START
2806 #define ASM_COMMENT_START " #"
2807 #endif
2808 \f
2809 /* Default definitions for size_t and ptrdiff_t. We must override the
2810 definitions from ../svr4.h on mips-*-linux-gnu. */
2811
2812 #undef SIZE_TYPE
2813 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2814
2815 #undef PTRDIFF_TYPE
2816 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2817
2818 /* The maximum number of bytes that can be copied by one iteration of
2819 a movmemsi loop; see mips_block_move_loop. */
2820 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2821 (UNITS_PER_WORD * 4)
2822
2823 /* The maximum number of bytes that can be copied by a straight-line
2824 implementation of movmemsi; see mips_block_move_straight. We want
2825 to make sure that any loop-based implementation will iterate at
2826 least twice. */
2827 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2828 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2829
2830 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2831 values were determined experimentally by benchmarking with CSiBE.
2832 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2833 for o32 where we have to restore $gp afterwards as well as make an
2834 indirect call), but in practice, bumping this up higher for
2835 TARGET_ABICALLS doesn't make much difference to code size. */
2836
2837 #define MIPS_CALL_RATIO 8
2838
2839 /* Any loop-based implementation of movmemsi will have at least
2840 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2841 moves, so allow individual copies of fewer elements.
2842
2843 When movmemsi is not available, use a value approximating
2844 the length of a memcpy call sequence, so that move_by_pieces
2845 will generate inline code if it is shorter than a function call.
2846 Since move_by_pieces_ninsns counts memory-to-memory moves, but
2847 we'll have to generate a load/store pair for each, halve the
2848 value of MIPS_CALL_RATIO to take that into account. */
2849
2850 #define MOVE_RATIO(speed) \
2851 (HAVE_movmemsi \
2852 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
2853 : MIPS_CALL_RATIO / 2)
2854
2855 /* movmemsi is meant to generate code that is at least as good as
2856 move_by_pieces. However, movmemsi effectively uses a by-pieces
2857 implementation both for moves smaller than a word and for word-aligned
2858 moves of no more than MIPS_MAX_MOVE_BYTES_STRAIGHT bytes. We should
2859 allow the tree-level optimisers to do such moves by pieces, as it
2860 often exposes other optimization opportunities. We might as well
2861 continue to use movmemsi at the rtl level though, as it produces
2862 better code when scheduling is disabled (such as at -O). */
2863
2864 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2865 (HAVE_movmemsi \
2866 ? (!currently_expanding_to_rtl \
2867 && ((ALIGN) < BITS_PER_WORD \
2868 ? (SIZE) < UNITS_PER_WORD \
2869 : (SIZE) <= MIPS_MAX_MOVE_BYTES_STRAIGHT)) \
2870 : (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
2871 < (unsigned int) MOVE_RATIO (false)))
2872
2873 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2874 of the length of a memset call, but use the default otherwise. */
2875
2876 #define CLEAR_RATIO(speed)\
2877 ((speed) ? 15 : MIPS_CALL_RATIO)
2878
2879 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2880 optimizing for size adjust the ratio to account for the overhead of
2881 loading the constant and replicating it across the word. */
2882
2883 #define SET_RATIO(speed) \
2884 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2885
2886 /* STORE_BY_PIECES_P can be used when copying a constant string, but
2887 in that case each word takes 3 insns (lui, ori, sw), or more in
2888 64-bit mode, instead of 2 (lw, sw). For now we always fail this
2889 and let the move_by_pieces code copy the string from read-only
2890 memory. In the future, this could be tuned further for multi-issue
2891 CPUs that can issue stores down one pipe and arithmetic instructions
2892 down another; in that case, the lui/ori/sw combination would be a
2893 win for long enough strings. */
2894
2895 #define STORE_BY_PIECES_P(SIZE, ALIGN) 0
2896 \f
2897 #ifndef __mips16
2898 /* Since the bits of the _init and _fini function is spread across
2899 many object files, each potentially with its own GP, we must assume
2900 we need to load our GP. We don't preserve $gp or $ra, since each
2901 init/fini chunk is supposed to initialize $gp, and crti/crtn
2902 already take care of preserving $ra and, when appropriate, $gp. */
2903 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2904 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2905 asm (SECTION_OP "\n\
2906 .set noreorder\n\
2907 bal 1f\n\
2908 nop\n\
2909 1: .cpload $31\n\
2910 .set reorder\n\
2911 jal " USER_LABEL_PREFIX #FUNC "\n\
2912 " TEXT_SECTION_ASM_OP);
2913 #endif /* Switch to #elif when we're no longer limited by K&R C. */
2914 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2915 || (defined _ABI64 && _MIPS_SIM == _ABI64)
2916 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2917 asm (SECTION_OP "\n\
2918 .set noreorder\n\
2919 bal 1f\n\
2920 nop\n\
2921 1: .set reorder\n\
2922 .cpsetup $31, $2, 1b\n\
2923 jal " USER_LABEL_PREFIX #FUNC "\n\
2924 " TEXT_SECTION_ASM_OP);
2925 #endif
2926 #endif
2927
2928 #ifndef HAVE_AS_TLS
2929 #define HAVE_AS_TLS 0
2930 #endif
2931
2932 #ifndef USED_FOR_TARGET
2933 /* Information about ".set noFOO; ...; .set FOO" blocks. */
2934 struct mips_asm_switch {
2935 /* The FOO in the description above. */
2936 const char *name;
2937
2938 /* The current block nesting level, or 0 if we aren't in a block. */
2939 int nesting_level;
2940 };
2941
2942 extern const enum reg_class mips_regno_to_class[];
2943 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
2944 extern const char *current_function_file; /* filename current function is in */
2945 extern int num_source_filenames; /* current .file # */
2946 extern struct mips_asm_switch mips_noreorder;
2947 extern struct mips_asm_switch mips_nomacro;
2948 extern struct mips_asm_switch mips_noat;
2949 extern int mips_dbx_regno[];
2950 extern int mips_dwarf_regno[];
2951 extern bool mips_split_p[];
2952 extern bool mips_split_hi_p[];
2953 extern enum processor mips_arch; /* which cpu to codegen for */
2954 extern enum processor mips_tune; /* which cpu to schedule for */
2955 extern int mips_isa; /* architectural level */
2956 extern int mips_abi; /* which ABI to use */
2957 extern const struct mips_cpu_info *mips_arch_info;
2958 extern const struct mips_cpu_info *mips_tune_info;
2959 extern bool mips_base_mips16;
2960 extern enum mips_code_readable_setting mips_code_readable;
2961 extern GTY(()) struct target_globals *mips16_globals;
2962 #endif
2963
2964 /* Enable querying of DFA units. */
2965 #define CPU_UNITS_QUERY 1
2966
2967 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2968 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2969
2970 /* As on most targets, we want the .eh_frame section to be read-only where
2971 possible. And as on most targets, this means two things:
2972
2973 (a) Non-locally-binding pointers must have an indirect encoding,
2974 so that the addresses in the .eh_frame section itself become
2975 locally-binding.
2976
2977 (b) A shared library's .eh_frame section must encode locally-binding
2978 pointers in a relative (relocation-free) form.
2979
2980 However, MIPS has traditionally not allowed directives like:
2981
2982 .long x-.
2983
2984 in cases where "x" is in a different section, or is not defined in the
2985 same assembly file. We are therefore unable to emit the PC-relative
2986 form required by (b) at assembly time.
2987
2988 Fortunately, the linker is able to convert absolute addresses into
2989 PC-relative addresses on our behalf. Unfortunately, only certain
2990 versions of the linker know how to do this for indirect pointers,
2991 and for personality data. We must fall back on using writable
2992 .eh_frame sections for shared libraries if the linker does not
2993 support this feature. */
2994 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2995 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
2996
2997 /* For switching between MIPS16 and non-MIPS16 modes. */
2998 #define SWITCHABLE_TARGET 1