MIPS: Only pass floating-point options to the assembler when necessary
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989-2015 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24
25 #include "config/vxworks-dummy.h"
26
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30 extern int target_flags_explicit;
31 #endif
32
33 /* MIPS external variables defined in mips.c. */
34
35 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
37 to work on a 64-bit machine. */
38
39 #define ABI_32 0
40 #define ABI_N32 1
41 #define ABI_64 2
42 #define ABI_EABI 3
43 #define ABI_O64 4
44
45 /* Masks that affect tuning.
46
47 PTF_AVOID_BRANCHLIKELY
48 Set if it is usually not profitable to use branch-likely instructions
49 for this target, typically because the branches are always predicted
50 taken and so incur a large overhead when not taken.
51
52 PTF_AVOID_IMADD
53 Set if it is usually not profitable to use the integer MADD or MSUB
54 instructions because of the overhead of getting the result out of
55 the HI/LO registers. */
56
57 #define PTF_AVOID_BRANCHLIKELY 0x1
58 #define PTF_AVOID_IMADD 0x2
59
60 /* Information about one recognized processor. Defined here for the
61 benefit of TARGET_CPU_CPP_BUILTINS. */
62 struct mips_cpu_info {
63 /* The 'canonical' name of the processor as far as GCC is concerned.
64 It's typically a manufacturer's prefix followed by a numerical
65 designation. It should be lowercase. */
66 const char *name;
67
68 /* The internal processor number that most closely matches this
69 entry. Several processors can have the same value, if there's no
70 difference between them from GCC's point of view. */
71 enum processor cpu;
72
73 /* The ISA level that the processor implements. */
74 int isa;
75
76 /* A mask of PTF_* values. */
77 unsigned int tune_flags;
78 };
79
80 #include "config/mips/mips-opts.h"
81
82 /* Macros to silence warnings about numbers being signed in traditional
83 C and unsigned in ISO C when compiled on 32-bit hosts. */
84
85 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
86 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
87 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
88
89 \f
90 /* Run-time compilation parameters selecting different hardware subsets. */
91
92 /* True if we are generating position-independent VxWorks RTP code. */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
94
95 /* True if the output file is marked as ".abicalls; .option pic0"
96 (-call_nonpic). */
97 #define TARGET_ABICALLS_PIC0 \
98 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
99
100 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
101 #define TARGET_ABICALLS_PIC2 \
102 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
103
104 /* True if the call patterns should be split into a jalr followed by
105 an instruction to restore $gp. It is only safe to split the load
106 from the call when every use of $gp is explicit.
107
108 See mips_must_initialize_gp_p for details about how we manage the
109 global pointer. */
110
111 #define TARGET_SPLIT_CALLS \
112 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
113
114 /* True if we're generating a form of -mabicalls in which we can use
115 operators like %hi and %lo to refer to locally-binding symbols.
116 We can only do this for -mno-shared, and only then if we can use
117 relocation operations instead of assembly macros. It isn't really
118 worth using absolute sequences for 64-bit symbols because GOT
119 accesses are so much shorter. */
120
121 #define TARGET_ABSOLUTE_ABICALLS \
122 (TARGET_ABICALLS \
123 && !TARGET_SHARED \
124 && TARGET_EXPLICIT_RELOCS \
125 && !ABI_HAS_64BIT_SYMBOLS)
126
127 /* True if we can optimize sibling calls. For simplicity, we only
128 handle cases in which call_insn_operand will reject invalid
129 sibcall addresses. There are two cases in which this isn't true:
130
131 - TARGET_MIPS16. call_insn_operand accepts constant addresses
132 but there is no direct jump instruction. It isn't worth
133 using sibling calls in this case anyway; they would usually
134 be longer than normal calls.
135
136 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
137 accepts global constants, but all sibcalls must be indirect. */
138 #define TARGET_SIBCALLS \
139 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
140
141 /* True if we need to use a global offset table to access some symbols. */
142 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
143
144 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
145 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
146
147 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
148 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
149
150 /* True if we should use .cprestore to store to the cprestore slot.
151
152 We continue to use .cprestore for explicit-reloc code so that JALs
153 inside inline asms will work correctly. */
154 #define TARGET_CPRESTORE_DIRECTIVE \
155 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
156
157 /* True if we can use the J and JAL instructions. */
158 #define TARGET_ABSOLUTE_JUMPS \
159 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
160
161 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
162 This is true for both the PIC and non-PIC VxWorks RTP modes. */
163 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
164
165 /* True if .gpword or .gpdword should be used for switch tables. */
166 #define TARGET_GPWORD \
167 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
168
169 /* True if the output must have a writable .eh_frame.
170 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
171 #ifdef HAVE_LD_PERSONALITY_RELAXATION
172 #define TARGET_WRITABLE_EH_FRAME 0
173 #else
174 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
175 #endif
176
177 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
178 #ifdef HAVE_AS_DSPR1_MULT
179 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
180 #else
181 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
182 #endif
183
184 /* ISA has LSA available. */
185 #define ISA_HAS_LSA (mips_isa_rev >= 6)
186
187 /* ISA has DLSA available. */
188 #define ISA_HAS_DLSA (TARGET_64BIT && mips_isa_rev >= 6)
189
190 /* The ISA compression flags that are currently in effect. */
191 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
192
193 /* Generate mips16 code */
194 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
195 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
196 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
197 /* Generate mips16e register save/restore sequences. */
198 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
199
200 /* True if we're generating a form of MIPS16 code in which general
201 text loads are allowed. */
202 #define TARGET_MIPS16_TEXT_LOADS \
203 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
204
205 /* True if we're generating a form of MIPS16 code in which PC-relative
206 loads are allowed. */
207 #define TARGET_MIPS16_PCREL_LOADS \
208 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
209
210 /* Generic ISA defines. */
211 #define ISA_MIPS1 (mips_isa == 1)
212 #define ISA_MIPS2 (mips_isa == 2)
213 #define ISA_MIPS3 (mips_isa == 3)
214 #define ISA_MIPS4 (mips_isa == 4)
215 #define ISA_MIPS32 (mips_isa == 32)
216 #define ISA_MIPS32R2 (mips_isa == 33)
217 #define ISA_MIPS32R3 (mips_isa == 34)
218 #define ISA_MIPS32R5 (mips_isa == 36)
219 #define ISA_MIPS32R6 (mips_isa == 37)
220 #define ISA_MIPS64 (mips_isa == 64)
221 #define ISA_MIPS64R2 (mips_isa == 65)
222 #define ISA_MIPS64R3 (mips_isa == 66)
223 #define ISA_MIPS64R5 (mips_isa == 68)
224 #define ISA_MIPS64R6 (mips_isa == 69)
225
226 /* Architecture target defines. */
227 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
228 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
229 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
230 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
231 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
232 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
233 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
234 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
235 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
236 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
237 #define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
238 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
239 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
240 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
241 || mips_arch == PROCESSOR_OCTEON2 \
242 || mips_arch == PROCESSOR_OCTEON3)
243 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2 \
244 || mips_arch == PROCESSOR_OCTEON3)
245 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
246 || mips_arch == PROCESSOR_SB1A)
247 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
248 #define TARGET_XLP (mips_arch == PROCESSOR_XLP)
249
250 /* Scheduling target defines. */
251 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
252 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
253 || mips_tune == PROCESSOR_24KF2_1 \
254 || mips_tune == PROCESSOR_24KF1_1)
255 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
256 || mips_tune == PROCESSOR_74KF2_1 \
257 || mips_tune == PROCESSOR_74KF1_1 \
258 || mips_tune == PROCESSOR_74KF3_2)
259 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
260 || mips_tune == PROCESSOR_LOONGSON_2F)
261 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
262 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
263 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
264 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
265 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
266 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
267 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
268 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
269 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
270 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
271 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
272 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
273 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
274 || mips_tune == PROCESSOR_OCTEON2 \
275 || mips_tune == PROCESSOR_OCTEON3)
276 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
277 || mips_tune == PROCESSOR_SB1A)
278 #define TUNE_P5600 (mips_tune == PROCESSOR_P5600)
279
280 /* Whether vector modes and intrinsics for ST Microelectronics
281 Loongson-2E/2F processors should be enabled. In o32 pairs of
282 floating-point registers provide 64-bit values. */
283 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
284 && (TARGET_LOONGSON_2EF \
285 || TARGET_LOONGSON_3A))
286
287 /* True if the pre-reload scheduler should try to create chains of
288 multiply-add or multiply-subtract instructions. For example,
289 suppose we have:
290
291 t1 = a * b
292 t2 = t1 + c * d
293 t3 = e * f
294 t4 = t3 - g * h
295
296 t1 will have a higher priority than t2 and t3 will have a higher
297 priority than t4. However, before reload, there is no dependence
298 between t1 and t3, and they can often have similar priorities.
299 The scheduler will then tend to prefer:
300
301 t1 = a * b
302 t3 = e * f
303 t2 = t1 + c * d
304 t4 = t3 - g * h
305
306 which stops us from making full use of macc/madd-style instructions.
307 This sort of situation occurs frequently in Fourier transforms and
308 in unrolled loops.
309
310 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
311 queue so that chained multiply-add and multiply-subtract instructions
312 appear ahead of any other instruction that is likely to clobber lo.
313 In the example above, if t2 and t3 become ready at the same time,
314 the code ensures that t2 is scheduled first.
315
316 Multiply-accumulate instructions are a bigger win for some targets
317 than others, so this macro is defined on an opt-in basis. */
318 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
319 || TUNE_MIPS4120 \
320 || TUNE_MIPS4130 \
321 || TUNE_24K \
322 || TUNE_P5600)
323
324 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
325 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
326
327 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
328 directly accessible, while the command-line options select
329 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
330 in use. */
331 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
332 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
333
334 /* TARGET_FLOAT64 represents -mfp64 and TARGET_FLOATXX represents
335 -mfpxx, derive TARGET_FLOAT32 to represent -mfp32. */
336 #define TARGET_FLOAT32 (!TARGET_FLOAT64 && !TARGET_FLOATXX)
337
338 /* TARGET_O32_FP64A_ABI represents all the conditions that form the
339 o32 FP64A ABI extension (-mabi=32 -mfp64 -mno-odd-spreg). */
340 #define TARGET_O32_FP64A_ABI (mips_abi == ABI_32 && TARGET_FLOAT64 \
341 && !TARGET_ODD_SPREG)
342
343 /* False if SC acts as a memory barrier with respect to itself,
344 otherwise a SYNC will be emitted after SC for atomic operations
345 that require ordering between the SC and following loads and
346 stores. It does not tell anything about ordering of loads and
347 stores prior to and following the SC, only about the SC itself and
348 those loads and stores follow it. */
349 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
350
351 /* Define preprocessor macros for the -march and -mtune options.
352 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
353 processor. If INFO's canonical name is "foo", define PREFIX to
354 be "foo", and define an additional macro PREFIX_FOO. */
355 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
356 do \
357 { \
358 char *macro, *p; \
359 \
360 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
361 for (p = macro; *p != 0; p++) \
362 if (*p == '+') \
363 *p = 'P'; \
364 else \
365 *p = TOUPPER (*p); \
366 \
367 builtin_define (macro); \
368 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
369 free (macro); \
370 } \
371 while (0)
372
373 /* Target CPU builtins. */
374 #define TARGET_CPU_CPP_BUILTINS() \
375 do \
376 { \
377 builtin_assert ("machine=mips"); \
378 builtin_assert ("cpu=mips"); \
379 builtin_define ("__mips__"); \
380 builtin_define ("_mips"); \
381 \
382 /* We do this here because __mips is defined below and so we \
383 can't use builtin_define_std. We don't ever want to define \
384 "mips" for VxWorks because some of the VxWorks headers \
385 construct include filenames from a root directory macro, \
386 an architecture macro and a filename, where the architecture \
387 macro expands to 'mips'. If we define 'mips' to 1, the \
388 architecture macro expands to 1 as well. */ \
389 if (!flag_iso && !TARGET_VXWORKS) \
390 builtin_define ("mips"); \
391 \
392 if (TARGET_64BIT) \
393 builtin_define ("__mips64"); \
394 \
395 /* Treat _R3000 and _R4000 like register-size \
396 defines, which is how they've historically \
397 been used. */ \
398 if (TARGET_64BIT) \
399 { \
400 builtin_define_std ("R4000"); \
401 builtin_define ("_R4000"); \
402 } \
403 else \
404 { \
405 builtin_define_std ("R3000"); \
406 builtin_define ("_R3000"); \
407 } \
408 \
409 if (TARGET_FLOAT64) \
410 builtin_define ("__mips_fpr=64"); \
411 else if (TARGET_FLOATXX) \
412 builtin_define ("__mips_fpr=0"); \
413 else \
414 builtin_define ("__mips_fpr=32"); \
415 \
416 if (mips_base_compression_flags & MASK_MIPS16) \
417 builtin_define ("__mips16"); \
418 \
419 if (TARGET_MIPS3D) \
420 builtin_define ("__mips3d"); \
421 \
422 if (TARGET_SMARTMIPS) \
423 builtin_define ("__mips_smartmips"); \
424 \
425 if (mips_base_compression_flags & MASK_MICROMIPS) \
426 builtin_define ("__mips_micromips"); \
427 \
428 if (TARGET_MCU) \
429 builtin_define ("__mips_mcu"); \
430 \
431 if (TARGET_EVA) \
432 builtin_define ("__mips_eva"); \
433 \
434 if (TARGET_DSP) \
435 { \
436 builtin_define ("__mips_dsp"); \
437 if (TARGET_DSPR2) \
438 { \
439 builtin_define ("__mips_dspr2"); \
440 builtin_define ("__mips_dsp_rev=2"); \
441 } \
442 else \
443 builtin_define ("__mips_dsp_rev=1"); \
444 } \
445 \
446 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
447 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
448 \
449 if (ISA_MIPS1) \
450 { \
451 builtin_define ("__mips=1"); \
452 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
453 } \
454 else if (ISA_MIPS2) \
455 { \
456 builtin_define ("__mips=2"); \
457 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
458 } \
459 else if (ISA_MIPS3) \
460 { \
461 builtin_define ("__mips=3"); \
462 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
463 } \
464 else if (ISA_MIPS4) \
465 { \
466 builtin_define ("__mips=4"); \
467 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
468 } \
469 else if (mips_isa >= 32 && mips_isa < 64) \
470 { \
471 builtin_define ("__mips=32"); \
472 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
473 } \
474 else if (mips_isa >= 64) \
475 { \
476 builtin_define ("__mips=64"); \
477 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
478 } \
479 if (mips_isa_rev > 0) \
480 builtin_define_with_int_value ("__mips_isa_rev", \
481 mips_isa_rev); \
482 \
483 switch (mips_abi) \
484 { \
485 case ABI_32: \
486 builtin_define ("_ABIO32=1"); \
487 builtin_define ("_MIPS_SIM=_ABIO32"); \
488 break; \
489 \
490 case ABI_N32: \
491 builtin_define ("_ABIN32=2"); \
492 builtin_define ("_MIPS_SIM=_ABIN32"); \
493 break; \
494 \
495 case ABI_64: \
496 builtin_define ("_ABI64=3"); \
497 builtin_define ("_MIPS_SIM=_ABI64"); \
498 break; \
499 \
500 case ABI_O64: \
501 builtin_define ("_ABIO64=4"); \
502 builtin_define ("_MIPS_SIM=_ABIO64"); \
503 break; \
504 } \
505 \
506 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
507 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
508 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
509 builtin_define_with_int_value ("_MIPS_FPSET", \
510 32 / MAX_FPRS_PER_FMT); \
511 builtin_define_with_int_value ("_MIPS_SPFPSET", \
512 TARGET_ODD_SPREG ? 32 : 16); \
513 \
514 /* These defines reflect the ABI in use, not whether the \
515 FPU is directly accessible. */ \
516 if (TARGET_NO_FLOAT) \
517 builtin_define ("__mips_no_float"); \
518 else if (TARGET_HARD_FLOAT_ABI) \
519 builtin_define ("__mips_hard_float"); \
520 else \
521 builtin_define ("__mips_soft_float"); \
522 \
523 if (TARGET_SINGLE_FLOAT) \
524 builtin_define ("__mips_single_float"); \
525 \
526 if (TARGET_PAIRED_SINGLE_FLOAT) \
527 builtin_define ("__mips_paired_single_float"); \
528 \
529 if (mips_abs == MIPS_IEEE_754_2008) \
530 builtin_define ("__mips_abs2008"); \
531 \
532 if (mips_nan == MIPS_IEEE_754_2008) \
533 builtin_define ("__mips_nan2008"); \
534 \
535 if (TARGET_BIG_ENDIAN) \
536 { \
537 builtin_define_std ("MIPSEB"); \
538 builtin_define ("_MIPSEB"); \
539 } \
540 else \
541 { \
542 builtin_define_std ("MIPSEL"); \
543 builtin_define ("_MIPSEL"); \
544 } \
545 \
546 /* Whether calls should go through $25. The separate __PIC__ \
547 macro indicates whether abicalls code might use a GOT. */ \
548 if (TARGET_ABICALLS) \
549 builtin_define ("__mips_abicalls"); \
550 \
551 /* Whether Loongson vector modes are enabled. */ \
552 if (TARGET_LOONGSON_VECTORS) \
553 builtin_define ("__mips_loongson_vector_rev"); \
554 \
555 /* Historical Octeon macro. */ \
556 if (TARGET_OCTEON) \
557 builtin_define ("__OCTEON__"); \
558 \
559 if (TARGET_SYNCI) \
560 builtin_define ("__mips_synci"); \
561 \
562 /* Macros dependent on the C dialect. */ \
563 if (preprocessing_asm_p ()) \
564 { \
565 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
566 builtin_define ("_LANGUAGE_ASSEMBLY"); \
567 } \
568 else if (c_dialect_cxx ()) \
569 { \
570 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
571 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
572 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
573 } \
574 else \
575 { \
576 builtin_define_std ("LANGUAGE_C"); \
577 builtin_define ("_LANGUAGE_C"); \
578 } \
579 if (c_dialect_objc ()) \
580 { \
581 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
582 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
583 /* Bizarre, but retained for backwards compatibility. */ \
584 builtin_define_std ("LANGUAGE_C"); \
585 builtin_define ("_LANGUAGE_C"); \
586 } \
587 \
588 if (mips_abi == ABI_EABI) \
589 builtin_define ("__mips_eabi"); \
590 \
591 if (TARGET_CACHE_BUILTIN) \
592 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
593 } \
594 while (0)
595
596 /* Default target_flags if no switches are specified */
597
598 #ifndef TARGET_DEFAULT
599 #define TARGET_DEFAULT 0
600 #endif
601
602 #ifndef TARGET_CPU_DEFAULT
603 #define TARGET_CPU_DEFAULT 0
604 #endif
605
606 #ifndef TARGET_ENDIAN_DEFAULT
607 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
608 #endif
609
610 #ifdef IN_LIBGCC2
611 #undef TARGET_64BIT
612 /* Make this compile time constant for libgcc2 */
613 #ifdef __mips64
614 #define TARGET_64BIT 1
615 #else
616 #define TARGET_64BIT 0
617 #endif
618 #endif /* IN_LIBGCC2 */
619
620 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
621 when compiled with hardware floating point. This is because MIPS16
622 code cannot save and restore the floating-point registers, which is
623 important if in a mixed MIPS16/non-MIPS16 environment. */
624
625 #ifdef IN_LIBGCC2
626 #if __mips_hard_float
627 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
628 #endif
629 #endif /* IN_LIBGCC2 */
630
631 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
632
633 #ifndef MULTILIB_ENDIAN_DEFAULT
634 #if TARGET_ENDIAN_DEFAULT == 0
635 #define MULTILIB_ENDIAN_DEFAULT "EL"
636 #else
637 #define MULTILIB_ENDIAN_DEFAULT "EB"
638 #endif
639 #endif
640
641 #ifndef MULTILIB_ISA_DEFAULT
642 #if MIPS_ISA_DEFAULT == 1
643 #define MULTILIB_ISA_DEFAULT "mips1"
644 #elif MIPS_ISA_DEFAULT == 2
645 #define MULTILIB_ISA_DEFAULT "mips2"
646 #elif MIPS_ISA_DEFAULT == 3
647 #define MULTILIB_ISA_DEFAULT "mips3"
648 #elif MIPS_ISA_DEFAULT == 4
649 #define MULTILIB_ISA_DEFAULT "mips4"
650 #elif MIPS_ISA_DEFAULT == 32
651 #define MULTILIB_ISA_DEFAULT "mips32"
652 #elif MIPS_ISA_DEFAULT == 33
653 #define MULTILIB_ISA_DEFAULT "mips32r2"
654 #elif MIPS_ISA_DEFAULT == 37
655 #define MULTILIB_ISA_DEFAULT "mips32r6"
656 #elif MIPS_ISA_DEFAULT == 64
657 #define MULTILIB_ISA_DEFAULT "mips64"
658 #elif MIPS_ISA_DEFAULT == 65
659 #define MULTILIB_ISA_DEFAULT "mips64r2"
660 #elif MIPS_ISA_DEFAULT == 69
661 #define MULTILIB_ISA_DEFAULT "mips64r6"
662 #else
663 #define MULTILIB_ISA_DEFAULT "mips1"
664 #endif
665 #endif
666
667 #ifndef MIPS_ABI_DEFAULT
668 #define MIPS_ABI_DEFAULT ABI_32
669 #endif
670
671 /* Use the most portable ABI flag for the ASM specs. */
672
673 #if MIPS_ABI_DEFAULT == ABI_32
674 #define MULTILIB_ABI_DEFAULT "mabi=32"
675 #elif MIPS_ABI_DEFAULT == ABI_O64
676 #define MULTILIB_ABI_DEFAULT "mabi=o64"
677 #elif MIPS_ABI_DEFAULT == ABI_N32
678 #define MULTILIB_ABI_DEFAULT "mabi=n32"
679 #elif MIPS_ABI_DEFAULT == ABI_64
680 #define MULTILIB_ABI_DEFAULT "mabi=64"
681 #elif MIPS_ABI_DEFAULT == ABI_EABI
682 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
683 #endif
684
685 #ifndef MULTILIB_DEFAULTS
686 #define MULTILIB_DEFAULTS \
687 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
688 #endif
689
690 /* We must pass -EL to the linker by default for little endian embedded
691 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
692 linker will default to using big-endian output files. The OUTPUT_FORMAT
693 line must be in the linker script, otherwise -EB/-EL will not work. */
694
695 #ifndef ENDIAN_SPEC
696 #if TARGET_ENDIAN_DEFAULT == 0
697 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
698 #else
699 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
700 #endif
701 #endif
702
703 /* A spec condition that matches all non-mips16 -mips arguments. */
704
705 #define MIPS_ISA_LEVEL_OPTION_SPEC \
706 "mips1|mips2|mips3|mips4|mips32*|mips64*"
707
708 /* A spec condition that matches all non-mips16 architecture arguments. */
709
710 #define MIPS_ARCH_OPTION_SPEC \
711 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
712
713 /* A spec that infers a -mips argument from an -march argument. */
714
715 #define MIPS_ISA_LEVEL_SPEC \
716 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
717 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
718 %{march=mips2|march=r6000:-mips2} \
719 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
720 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
721 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
722 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
723 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
724 |march=34k*|march=74k*|march=m14k*|march=1004k*: -mips32r2} \
725 %{march=mips32r3: -mips32r3} \
726 %{march=mips32r5|march=p5600: -mips32r5} \
727 %{march=mips32r6: -mips32r6} \
728 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
729 |march=xlr: -mips64} \
730 %{march=mips64r2|march=loongson3a|march=octeon|march=xlp: -mips64r2} \
731 %{march=mips64r3: -mips64r3} \
732 %{march=mips64r5: -mips64r5} \
733 %{march=mips64r6: -mips64r6}}"
734
735 /* A spec that injects the default multilib ISA if no architecture is
736 specified. */
737
738 #define MIPS_DEFAULT_ISA_LEVEL_SPEC \
739 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
740 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
741
742 /* A spec that infers a -mhard-float or -msoft-float setting from an
743 -march argument. Note that soft-float and hard-float code are not
744 link-compatible. */
745
746 #define MIPS_ARCH_FLOAT_SPEC \
747 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
748 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
749 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
750 |march=m14k*|march=octeon|march=xlr: -msoft-float; \
751 march=*: -mhard-float}"
752
753 /* A spec condition that matches 32-bit options. It only works if
754 MIPS_ISA_LEVEL_SPEC has been applied. */
755
756 #define MIPS_32BIT_OPTION_SPEC \
757 "mips1|mips2|mips32*|mgp32"
758
759 /* A spec condition that matches architectures should be targeted with
760 o32 FPXX for compatibility reasons. */
761 #define MIPS_FPXX_OPTION_SPEC \
762 "mips2|mips3|mips4|mips5|mips32|mips32r2|mips32r3|mips32r5| \
763 mips64|mips64r2|mips64r3|mips64r5"
764
765 /* Infer a -msynci setting from a -mips argument, on the assumption that
766 -msynci is desired where possible. */
767 #define MIPS_ISA_SYNCI_SPEC \
768 "%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips32r6|mips64r2 \
769 |mips64r3|mips64r5|mips64r6:-msynci;:-mno-synci}}"
770
771 /* Infer a -mnan=2008 setting from a -mips argument. */
772 #define MIPS_ISA_NAN2008_SPEC \
773 "%{mnan*:;mips32r6|mips64r6:-mnan=2008}"
774
775 #if (MIPS_ABI_DEFAULT == ABI_O64 \
776 || MIPS_ABI_DEFAULT == ABI_N32 \
777 || MIPS_ABI_DEFAULT == ABI_64)
778 #define OPT_ARCH64 "mabi=32|mgp32:;"
779 #define OPT_ARCH32 "mabi=32|mgp32"
780 #else
781 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
782 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
783 #endif
784
785 /* Support for a compile-time default CPU, et cetera. The rules are:
786 --with-arch is ignored if -march is specified or a -mips is specified
787 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
788 --with-tune is ignored if -mtune is specified; likewise
789 --with-tune-32 and --with-tune-64.
790 --with-abi is ignored if -mabi is specified.
791 --with-float is ignored if -mhard-float or -msoft-float are
792 specified.
793 --with-fpu is ignored if -msoft-float, -msingle-float or -mdouble-float are
794 specified.
795 --with-nan is ignored if -mnan is specified.
796 --with-fp-32 is ignored if -msoft-float, -msingle-float or -mfp are specified.
797 --with-odd-spreg-32 is ignored if -msoft-float, -msingle-float, -modd-spreg
798 or -mno-odd-spreg are specified.
799 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
800 specified. */
801 #define OPTION_DEFAULT_SPECS \
802 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
803 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
804 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
805 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
806 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
807 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
808 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
809 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
810 {"fpu", "%{!msoft-float:%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}}" }, \
811 {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
812 {"fp_32", "%{" OPT_ARCH32 \
813 ":%{!msoft-float:%{!msingle-float:%{!mfp*:-mfp%(VALUE)}}}}" }, \
814 {"odd_spreg_32", "%{" OPT_ARCH32 ":%{!msoft-float:%{!msingle-float:" \
815 "%{!modd-spreg:%{!mno-odd-spreg:-m%(VALUE)}}}}}" }, \
816 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
817 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
818 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
819 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
820
821 /* A spec that infers the:
822 -mnan=2008 setting from a -mips argument,
823 -mdsp setting from a -march argument. */
824 #define BASE_DRIVER_SELF_SPECS \
825 MIPS_ISA_NAN2008_SPEC, \
826 "%{!mno-dsp: \
827 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k*: -mdsp} \
828 %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
829
830 #define DRIVER_SELF_SPECS \
831 MIPS_ISA_LEVEL_SPEC, \
832 BASE_DRIVER_SELF_SPECS
833
834 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
835 && ISA_HAS_COND_TRAP)
836
837 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
838
839 /* True if the ABI can only work with 64-bit integer registers. We
840 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
841 otherwise floating-point registers must also be 64-bit. */
842 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
843
844 /* Likewise for 32-bit regs. */
845 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
846
847 /* True if the file format uses 64-bit symbols. At present, this is
848 only true for n64, which uses 64-bit ELF. */
849 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
850
851 /* True if symbols are 64 bits wide. This is usually determined by
852 the ABI's file format, but it can be overridden by -msym32. Note that
853 overriding the size with -msym32 changes the ABI of relocatable objects,
854 although it doesn't change the ABI of a fully-linked object. */
855 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
856 && Pmode == DImode \
857 && !TARGET_SYM32)
858
859 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
860 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
861 || ISA_MIPS4 \
862 || ISA_MIPS64 \
863 || ISA_MIPS64R2 \
864 || ISA_MIPS64R3 \
865 || ISA_MIPS64R5 \
866 || ISA_MIPS64R6)
867
868 #define ISA_HAS_JR (mips_isa_rev <= 5)
869
870 /* ISA has branch likely instructions (e.g. mips2). */
871 /* Disable branchlikely for tx39 until compare rewrite. They haven't
872 been generated up to this point. */
873 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1 && mips_isa_rev <= 5)
874
875 /* ISA has 32 single-precision registers. */
876 #define ISA_HAS_ODD_SPREG ((mips_isa_rev >= 1 \
877 && !TARGET_LOONGSON_3A) \
878 || TARGET_FLOAT64 \
879 || TARGET_MIPS5900)
880
881 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
882 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
883 || TARGET_MIPS5400 \
884 || TARGET_MIPS5500 \
885 || TARGET_MIPS5900 \
886 || TARGET_MIPS7000 \
887 || TARGET_MIPS9000 \
888 || TARGET_MAD \
889 || (mips_isa_rev >= 1 \
890 && mips_isa_rev <= 5)) \
891 && !TARGET_MIPS16)
892
893 /* ISA has a three-operand multiplication instruction. */
894 #define ISA_HAS_DMUL3 (TARGET_64BIT \
895 && TARGET_OCTEON \
896 && !TARGET_MIPS16)
897
898 /* ISA has HI and LO registers. */
899 #define ISA_HAS_HILO (mips_isa_rev <= 5)
900
901 /* ISA supports instructions DMULT and DMULTU. */
902 #define ISA_HAS_DMULT (TARGET_64BIT \
903 && !TARGET_MIPS5900 \
904 && mips_isa_rev <= 5)
905
906 /* ISA supports instructions MULT and MULTU. */
907 #define ISA_HAS_MULT (mips_isa_rev <= 5)
908
909 /* ISA supports instructions MUL, MULU, MUH, MUHU. */
910 #define ISA_HAS_R6MUL (mips_isa_rev >= 6)
911
912 /* ISA supports instructions DMUL, DMULU, DMUH, DMUHU. */
913 #define ISA_HAS_R6DMUL (TARGET_64BIT && mips_isa_rev >= 6)
914
915 /* ISA supports instructions DDIV and DDIVU. */
916 #define ISA_HAS_DDIV (TARGET_64BIT \
917 && !TARGET_MIPS5900 \
918 && mips_isa_rev <= 5)
919
920 /* ISA supports instructions DIV and DIVU.
921 This is always true, but the macro is needed for ISA_HAS_<D>DIV
922 in mips.md. */
923 #define ISA_HAS_DIV (mips_isa_rev <= 5)
924
925 #define ISA_HAS_DIV3 ((TARGET_LOONGSON_2EF \
926 || TARGET_LOONGSON_3A) \
927 && !TARGET_MIPS16)
928
929 /* ISA supports instructions DIV, DIVU, MOD and MODU. */
930 #define ISA_HAS_R6DIV (mips_isa_rev >= 6)
931
932 /* ISA supports instructions DDIV, DDIVU, DMOD and DMODU. */
933 #define ISA_HAS_R6DDIV (TARGET_64BIT && mips_isa_rev >= 6)
934
935 /* ISA has the floating-point conditional move instructions introduced
936 in mips4. */
937 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
938 || (mips_isa_rev >= 1 \
939 && mips_isa_rev <= 5)) \
940 && !TARGET_MIPS5500 \
941 && !TARGET_MIPS16)
942
943 /* ISA has the integer conditional move instructions introduced in mips4 and
944 ST Loongson 2E/2F. */
945 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
946 || TARGET_MIPS5900 \
947 || TARGET_LOONGSON_2EF)
948
949 /* ISA has LDC1 and SDC1. */
950 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
951 && !TARGET_MIPS5900 \
952 && !TARGET_MIPS16)
953
954 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
955 branch on CC, and move (both FP and non-FP) on CC. */
956 #define ISA_HAS_8CC (ISA_MIPS4 \
957 || (mips_isa_rev >= 1 \
958 && mips_isa_rev <= 5))
959
960 /* ISA has the FP condition code instructions that store the flag in an
961 FP register. */
962 #define ISA_HAS_CCF (mips_isa_rev >= 6)
963
964 #define ISA_HAS_SEL (mips_isa_rev >= 6)
965
966 /* This is a catch all for other mips4 instructions: indexed load, the
967 FP madd and msub instructions, and the FP recip and recip sqrt
968 instructions. Note that this macro should only be used by other
969 ISA_HAS_* macros. */
970 #define ISA_HAS_FP4 ((ISA_MIPS4 \
971 || ISA_MIPS64 \
972 || (mips_isa_rev >= 2 \
973 && mips_isa_rev <= 5)) \
974 && !TARGET_MIPS16)
975
976 /* ISA has floating-point indexed load and store instructions
977 (LWXC1, LDXC1, SWXC1 and SDXC1). */
978 #define ISA_HAS_LXC1_SXC1 ISA_HAS_FP4
979
980 /* ISA has paired-single instructions. */
981 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS64 \
982 || (mips_isa_rev >= 2 \
983 && mips_isa_rev <= 5))
984
985 /* ISA has conditional trap instructions. */
986 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
987 && !TARGET_MIPS16)
988
989 /* ISA has conditional trap with immediate instructions. */
990 #define ISA_HAS_COND_TRAPI (!ISA_MIPS1 \
991 && mips_isa_rev <= 5 \
992 && !TARGET_MIPS16)
993
994 /* ISA has integer multiply-accumulate instructions, madd and msub. */
995 #define ISA_HAS_MADD_MSUB (mips_isa_rev >= 1 \
996 && mips_isa_rev <= 5)
997
998 /* Integer multiply-accumulate instructions should be generated. */
999 #define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
1000
1001 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
1002 #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
1003
1004 /* ISA has floating-point MADDF and MSUBF instructions 'd = d [+-] a * b'. */
1005 #define ISA_HAS_FP_MADDF_MSUBF (mips_isa_rev >= 6)
1006
1007 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
1008 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
1009
1010 /* ISA has floating-point nmadd and nmsub instructions
1011 'd = -((a * b) [+-] c)'. */
1012 #define ISA_HAS_NMADD4_NMSUB4 ISA_HAS_FP4
1013
1014 /* ISA has floating-point nmadd and nmsub instructions
1015 'c = -((a * b) [+-] c)'. */
1016 #define ISA_HAS_NMADD3_NMSUB3 TARGET_LOONGSON_2EF
1017
1018 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The
1019 MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
1020 doubles are stored in pairs of FPRs, so for safety's sake, we apply
1021 this restriction to the MIPS IV ISA too. */
1022 #define ISA_HAS_FP_RECIP_RSQRT(MODE) \
1023 (((ISA_HAS_FP4 \
1024 && ((MODE) == SFmode \
1025 || ((TARGET_FLOAT64 \
1026 || mips_isa_rev >= 2) \
1027 && (MODE) == DFmode))) \
1028 || (((MODE) == SFmode \
1029 || (MODE) == DFmode) \
1030 && (mips_isa_rev >= 6)) \
1031 || (TARGET_SB1 \
1032 && (MODE) == V2SFmode)) \
1033 && !TARGET_MIPS16)
1034
1035 #define ISA_HAS_LWL_LWR (mips_isa_rev <= 5 && !TARGET_MIPS16)
1036
1037 #define ISA_HAS_IEEE_754_LEGACY (mips_isa_rev <= 5)
1038
1039 #define ISA_HAS_IEEE_754_2008 (mips_isa_rev >= 2)
1040
1041 /* ISA has count leading zeroes/ones instruction (not implemented). */
1042 #define ISA_HAS_CLZ_CLO (mips_isa_rev >= 1 && !TARGET_MIPS16)
1043
1044 /* ISA has three operand multiply instructions that put
1045 the high part in an accumulator: mulhi or mulhiu. */
1046 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
1047 || TARGET_MIPS5500 \
1048 || TARGET_SR71K) \
1049 && !TARGET_MIPS16)
1050
1051 /* ISA has three operand multiply instructions that negate the
1052 result and put the result in an accumulator. */
1053 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
1054 || TARGET_MIPS5500 \
1055 || TARGET_SR71K) \
1056 && !TARGET_MIPS16)
1057
1058 /* ISA has three operand multiply instructions that subtract the
1059 result from a 4th operand and put the result in an accumulator. */
1060 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
1061 || TARGET_MIPS5500 \
1062 || TARGET_SR71K) \
1063 && !TARGET_MIPS16)
1064
1065 /* ISA has three operand multiply instructions that add the result
1066 to a 4th operand and put the result in an accumulator. */
1067 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
1068 || TARGET_MIPS4130 \
1069 || TARGET_MIPS5400 \
1070 || TARGET_MIPS5500 \
1071 || TARGET_SR71K) \
1072 && !TARGET_MIPS16)
1073
1074 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
1075 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
1076 || TARGET_MIPS4130) \
1077 && !TARGET_MIPS16)
1078
1079 /* ISA has the "ror" (rotate right) instructions. */
1080 #define ISA_HAS_ROR ((mips_isa_rev >= 2 \
1081 || TARGET_MIPS5400 \
1082 || TARGET_MIPS5500 \
1083 || TARGET_SR71K \
1084 || TARGET_SMARTMIPS) \
1085 && !TARGET_MIPS16)
1086
1087 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
1088 64-bit targets also provide DSBH and DSHD. */
1089 #define ISA_HAS_WSBH (mips_isa_rev >= 2 && !TARGET_MIPS16)
1090
1091 /* ISA has data prefetch instructions. This controls use of 'pref'. */
1092 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
1093 || TARGET_LOONGSON_2EF \
1094 || TARGET_MIPS5900 \
1095 || mips_isa_rev >= 1) \
1096 && !TARGET_MIPS16)
1097
1098 /* ISA has data prefetch, LL and SC with limited 9-bit displacement. */
1099 #define ISA_HAS_9BIT_DISPLACEMENT (mips_isa_rev >= 6)
1100
1101 /* ISA has data indexed prefetch instructions. This controls use of
1102 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1103 (prefx is a cop1x instruction, so can only be used if FP is
1104 enabled.) */
1105 #define ISA_HAS_PREFETCHX ISA_HAS_FP4
1106
1107 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
1108 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
1109 also requires TARGET_DOUBLE_FLOAT. */
1110 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
1111
1112 /* ISA includes the MIPS32r2 seb and seh instructions. */
1113 #define ISA_HAS_SEB_SEH (mips_isa_rev >= 2 && !TARGET_MIPS16)
1114
1115 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
1116 #define ISA_HAS_EXT_INS (mips_isa_rev >= 2 && !TARGET_MIPS16)
1117
1118 /* ISA has instructions for accessing top part of 64-bit fp regs. */
1119 #define ISA_HAS_MXHC1 (!TARGET_FLOAT32 \
1120 && mips_isa_rev >= 2)
1121
1122 /* ISA has lwxs instruction (load w/scaled index address. */
1123 #define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1124 && !TARGET_MIPS16)
1125
1126 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1127 #define ISA_HAS_LBX (TARGET_OCTEON2)
1128 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1129 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1130 #define ISA_HAS_LHUX (TARGET_OCTEON2)
1131 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1132 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1133 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1134 && TARGET_64BIT)
1135
1136 /* The DSP ASE is available. */
1137 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1138
1139 /* Revision 2 of the DSP ASE is available. */
1140 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1141
1142 /* True if the result of a load is not available to the next instruction.
1143 A nop will then be needed between instructions like "lw $4,..."
1144 and "addiu $4,$4,1". */
1145 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1146 && !TARGET_MIPS3900 \
1147 && !TARGET_MIPS5900 \
1148 && !TARGET_MIPS16 \
1149 && !TARGET_MICROMIPS)
1150
1151 /* Likewise mtc1 and mfc1. */
1152 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1153 && !TARGET_MIPS5900 \
1154 && !TARGET_LOONGSON_2EF)
1155
1156 /* Likewise floating-point comparisons. */
1157 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1158 && !TARGET_MIPS5900 \
1159 && !TARGET_LOONGSON_2EF)
1160
1161 /* True if mflo and mfhi can be immediately followed by instructions
1162 which write to the HI and LO registers.
1163
1164 According to MIPS specifications, MIPS ISAs I, II, and III need
1165 (at least) two instructions between the reads of HI/LO and
1166 instructions which write them, and later ISAs do not. Contradicting
1167 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1168 the UM for the NEC Vr5000) document needing the instructions between
1169 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1170 MIPS64 and later ISAs to have the interlocks, plus any specific
1171 earlier-ISA CPUs for which CPU documentation declares that the
1172 instructions are really interlocked. */
1173 #define ISA_HAS_HILO_INTERLOCKS (mips_isa_rev >= 1 \
1174 || TARGET_MIPS5500 \
1175 || TARGET_MIPS5900 \
1176 || TARGET_LOONGSON_2EF)
1177
1178 /* ISA includes synci, jr.hb and jalr.hb. */
1179 #define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
1180
1181 /* ISA includes sync. */
1182 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1183 #define GENERATE_SYNC \
1184 (target_flags_explicit & MASK_LLSC \
1185 ? TARGET_LLSC && !TARGET_MIPS16 \
1186 : ISA_HAS_SYNC)
1187
1188 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1189 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1190 instructions. */
1191 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1192 #define GENERATE_LL_SC \
1193 (target_flags_explicit & MASK_LLSC \
1194 ? TARGET_LLSC && !TARGET_MIPS16 \
1195 : ISA_HAS_LL_SC)
1196
1197 #define ISA_HAS_SWAP (TARGET_XLP)
1198 #define ISA_HAS_LDADD (TARGET_XLP)
1199
1200 /* ISA includes the baddu instruction. */
1201 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1202
1203 /* ISA includes the bbit* instructions. */
1204 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1205
1206 /* ISA includes the cins instruction. */
1207 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1208
1209 /* ISA includes the exts instruction. */
1210 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1211
1212 /* ISA includes the seq and sne instructions. */
1213 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1214
1215 /* ISA includes the pop instruction. */
1216 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1217
1218 /* The CACHE instruction is available in non-MIPS16 code. */
1219 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1220
1221 /* The CACHE instruction is available. */
1222 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1223 \f
1224 /* Tell collect what flags to pass to nm. */
1225 #ifndef NM_FLAGS
1226 #define NM_FLAGS "-Bn"
1227 #endif
1228
1229 \f
1230 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1231 the assembler. It may be overridden by subtargets.
1232
1233 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1234 COFF debugging info. */
1235
1236 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1237 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1238 %{g} %{g0} %{g1} %{g2} %{g3} \
1239 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1240 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1241 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1242 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1243 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1244 #endif
1245
1246 /* FP_ASM_SPEC represents the floating-point options that must be passed
1247 to the assembler when FPXX support exists. Prior to that point the
1248 assembler could accept the options but were not required for
1249 correctness. We only add the options when absolutely necessary
1250 because passing -msoft-float to the assembler will cause it to reject
1251 all hard-float instructions which may require some user code to be
1252 updated. */
1253
1254 #ifdef HAVE_AS_DOT_MODULE
1255 #define FP_ASM_SPEC "\
1256 %{mhard-float} %{msoft-float} \
1257 %{msingle-float} %{mdouble-float}"
1258 #else
1259 #define FP_ASM_SPEC
1260 #endif
1261
1262 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1263 overridden by subtargets. */
1264
1265 #ifndef SUBTARGET_ASM_SPEC
1266 #define SUBTARGET_ASM_SPEC ""
1267 #endif
1268
1269 #undef ASM_SPEC
1270 #define ASM_SPEC "\
1271 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1272 %{mips32*} %{mips64*} \
1273 %{mips16} %{mno-mips16:-no-mips16} \
1274 %{mmicromips} %{mno-micromips} \
1275 %{mips3d} %{mno-mips3d:-no-mips3d} \
1276 %{mdmx} %{mno-mdmx:-no-mdmx} \
1277 %{mdsp} %{mno-dsp} \
1278 %{mdspr2} %{mno-dspr2} \
1279 %{mmcu} %{mno-mcu} \
1280 %{meva} %{mno-eva} \
1281 %{mvirt} %{mno-virt} \
1282 %{mxpa} %{mno-xpa} \
1283 %{msmartmips} %{mno-smartmips} \
1284 %{mmt} %{mno-mt} \
1285 %{mfix-rm7000} %{mno-fix-rm7000} \
1286 %{mfix-vr4120} %{mfix-vr4130} \
1287 %{mfix-24k} \
1288 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1289 %(subtarget_asm_debugging_spec) \
1290 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1291 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1292 %{mfp32} %{mfpxx} %{mfp64} %{mnan=*} \
1293 %{modd-spreg} %{mno-odd-spreg} \
1294 %{mshared} %{mno-shared} \
1295 %{msym32} %{mno-sym32} \
1296 %{mtune=*}" \
1297 FP_ASM_SPEC "\
1298 %(subtarget_asm_spec)"
1299
1300 /* Extra switches sometimes passed to the linker. */
1301
1302 #ifndef LINK_SPEC
1303 #define LINK_SPEC "\
1304 %(endian_spec) \
1305 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1306 %{shared}"
1307 #endif /* LINK_SPEC defined */
1308
1309
1310 /* Specs for the compiler proper */
1311
1312 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1313 overridden by subtargets. */
1314 #ifndef SUBTARGET_CC1_SPEC
1315 #define SUBTARGET_CC1_SPEC ""
1316 #endif
1317
1318 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1319
1320 #undef CC1_SPEC
1321 #define CC1_SPEC "\
1322 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1323 %(subtarget_cc1_spec)"
1324
1325 /* Preprocessor specs. */
1326
1327 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1328 overridden by subtargets. */
1329 #ifndef SUBTARGET_CPP_SPEC
1330 #define SUBTARGET_CPP_SPEC ""
1331 #endif
1332
1333 #define CPP_SPEC "%(subtarget_cpp_spec)"
1334
1335 /* This macro defines names of additional specifications to put in the specs
1336 that can be used in various specifications like CC1_SPEC. Its definition
1337 is an initializer with a subgrouping for each command option.
1338
1339 Each subgrouping contains a string constant, that defines the
1340 specification name, and a string constant that used by the GCC driver
1341 program.
1342
1343 Do not define this macro if it does not need to do anything. */
1344
1345 #define EXTRA_SPECS \
1346 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1347 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1348 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1349 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1350 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1351 { "endian_spec", ENDIAN_SPEC }, \
1352 SUBTARGET_EXTRA_SPECS
1353
1354 #ifndef SUBTARGET_EXTRA_SPECS
1355 #define SUBTARGET_EXTRA_SPECS
1356 #endif
1357 \f
1358 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1359 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1360
1361 #ifndef PREFERRED_DEBUGGING_TYPE
1362 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1363 #endif
1364
1365 /* The size of DWARF addresses should be the same as the size of symbols
1366 in the target file format. They shouldn't depend on things like -msym32,
1367 because many DWARF consumers do not allow the mixture of address sizes
1368 that one would then get from linking -msym32 code with -msym64 code.
1369
1370 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1371 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1372 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1373
1374 /* By default, turn on GDB extensions. */
1375 #define DEFAULT_GDB_EXTENSIONS 1
1376
1377 /* Registers may have a prefix which can be ignored when matching
1378 user asm and register definitions. */
1379 #ifndef REGISTER_PREFIX
1380 #define REGISTER_PREFIX "$"
1381 #endif
1382
1383 /* Local compiler-generated symbols must have a prefix that the assembler
1384 understands. By default, this is $, although some targets (e.g.,
1385 NetBSD-ELF) need to override this. */
1386
1387 #ifndef LOCAL_LABEL_PREFIX
1388 #define LOCAL_LABEL_PREFIX "$"
1389 #endif
1390
1391 /* By default on the mips, external symbols do not have an underscore
1392 prepended, but some targets (e.g., NetBSD) require this. */
1393
1394 #ifndef USER_LABEL_PREFIX
1395 #define USER_LABEL_PREFIX ""
1396 #endif
1397
1398 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1399 since the length can run past this up to a continuation point. */
1400 #undef DBX_CONTIN_LENGTH
1401 #define DBX_CONTIN_LENGTH 1500
1402
1403 /* How to renumber registers for dbx and gdb. */
1404 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1405
1406 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1407 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1408
1409 /* The DWARF 2 CFA column which tracks the return address. */
1410 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1411
1412 /* Before the prologue, RA lives in r31. */
1413 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1414
1415 /* Describe how we implement __builtin_eh_return. */
1416 #define EH_RETURN_DATA_REGNO(N) \
1417 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1418
1419 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1420
1421 #define EH_USES(N) mips_eh_uses (N)
1422
1423 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1424 The default for this in 64-bit mode is 8, which causes problems with
1425 SFmode register saves. */
1426 #define DWARF_CIE_DATA_ALIGNMENT -4
1427
1428 /* Correct the offset of automatic variables and arguments. Note that
1429 the MIPS debug format wants all automatic variables and arguments
1430 to be in terms of the virtual frame pointer (stack pointer before
1431 any adjustment in the function), while the MIPS 3.0 linker wants
1432 the frame pointer to be the stack pointer after the initial
1433 adjustment. */
1434
1435 #define DEBUGGER_AUTO_OFFSET(X) \
1436 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1437 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1438 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1439 \f
1440 /* Target machine storage layout */
1441
1442 #define BITS_BIG_ENDIAN 0
1443 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1444 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1445
1446 #define MAX_BITS_PER_WORD 64
1447
1448 /* Width of a word, in units (bytes). */
1449 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1450 #ifndef IN_LIBGCC2
1451 #define MIN_UNITS_PER_WORD 4
1452 #endif
1453
1454 /* For MIPS, width of a floating point register. */
1455 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1456
1457 /* The number of consecutive floating-point registers needed to store the
1458 largest format supported by the FPU. */
1459 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1460
1461 /* The number of consecutive floating-point registers needed to store the
1462 smallest format supported by the FPU. */
1463 #define MIN_FPRS_PER_FMT \
1464 (TARGET_ODD_SPREG ? 1 : MAX_FPRS_PER_FMT)
1465
1466 /* The largest size of value that can be held in floating-point
1467 registers and moved with a single instruction. */
1468 #define UNITS_PER_HWFPVALUE \
1469 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1470
1471 /* The largest size of value that can be held in floating-point
1472 registers. */
1473 #define UNITS_PER_FPVALUE \
1474 (TARGET_SOFT_FLOAT_ABI ? 0 \
1475 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1476 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1477
1478 /* The number of bytes in a double. */
1479 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1480
1481 /* Set the sizes of the core types. */
1482 #define SHORT_TYPE_SIZE 16
1483 #define INT_TYPE_SIZE 32
1484 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1485 #define LONG_LONG_TYPE_SIZE 64
1486
1487 #define FLOAT_TYPE_SIZE 32
1488 #define DOUBLE_TYPE_SIZE 64
1489 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1490
1491 /* Define the sizes of fixed-point types. */
1492 #define SHORT_FRACT_TYPE_SIZE 8
1493 #define FRACT_TYPE_SIZE 16
1494 #define LONG_FRACT_TYPE_SIZE 32
1495 #define LONG_LONG_FRACT_TYPE_SIZE 64
1496
1497 #define SHORT_ACCUM_TYPE_SIZE 16
1498 #define ACCUM_TYPE_SIZE 32
1499 #define LONG_ACCUM_TYPE_SIZE 64
1500 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1501 doesn't support 128-bit integers for MIPS32 currently. */
1502 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1503
1504 /* long double is not a fixed mode, but the idea is that, if we
1505 support long double, we also want a 128-bit integer type. */
1506 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1507
1508 /* Width in bits of a pointer. */
1509 #ifndef POINTER_SIZE
1510 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1511 #endif
1512
1513 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1514 #define PARM_BOUNDARY BITS_PER_WORD
1515
1516 /* Allocation boundary (in *bits*) for the code of a function. */
1517 #define FUNCTION_BOUNDARY 32
1518
1519 /* Alignment of field after `int : 0' in a structure. */
1520 #define EMPTY_FIELD_BOUNDARY 32
1521
1522 /* Every structure's size must be a multiple of this. */
1523 /* 8 is observed right on a DECstation and on riscos 4.02. */
1524 #define STRUCTURE_SIZE_BOUNDARY 8
1525
1526 /* There is no point aligning anything to a rounder boundary than this. */
1527 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1528
1529 /* All accesses must be aligned. */
1530 #define STRICT_ALIGNMENT 1
1531
1532 /* Define this if you wish to imitate the way many other C compilers
1533 handle alignment of bitfields and the structures that contain
1534 them.
1535
1536 The behavior is that the type written for a bit-field (`int',
1537 `short', or other integer type) imposes an alignment for the
1538 entire structure, as if the structure really did contain an
1539 ordinary field of that type. In addition, the bit-field is placed
1540 within the structure so that it would fit within such a field,
1541 not crossing a boundary for it.
1542
1543 Thus, on most machines, a bit-field whose type is written as `int'
1544 would not cross a four-byte boundary, and would force four-byte
1545 alignment for the whole structure. (The alignment used may not
1546 be four bytes; it is controlled by the other alignment
1547 parameters.)
1548
1549 If the macro is defined, its definition should be a C expression;
1550 a nonzero value for the expression enables this behavior. */
1551
1552 #define PCC_BITFIELD_TYPE_MATTERS 1
1553
1554 /* If defined, a C expression to compute the alignment given to a
1555 constant that is being placed in memory. CONSTANT is the constant
1556 and ALIGN is the alignment that the object would ordinarily have.
1557 The value of this macro is used instead of that alignment to align
1558 the object.
1559
1560 If this macro is not defined, then ALIGN is used.
1561
1562 The typical use of this macro is to increase alignment for string
1563 constants to be word aligned so that `strcpy' calls that copy
1564 constants can be done inline. */
1565
1566 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1567 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1568 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1569
1570 /* If defined, a C expression to compute the alignment for a static
1571 variable. TYPE is the data type, and ALIGN is the alignment that
1572 the object would ordinarily have. The value of this macro is used
1573 instead of that alignment to align the object.
1574
1575 If this macro is not defined, then ALIGN is used.
1576
1577 One use of this macro is to increase alignment of medium-size
1578 data to make it all fit in fewer cache lines. Another is to
1579 cause character arrays to be word-aligned so that `strcpy' calls
1580 that copy constants to character arrays can be done inline. */
1581
1582 #undef DATA_ALIGNMENT
1583 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1584 ((((ALIGN) < BITS_PER_WORD) \
1585 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1586 || TREE_CODE (TYPE) == UNION_TYPE \
1587 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1588
1589 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1590 character arrays to be word-aligned so that `strcpy' calls that copy
1591 constants to character arrays can be done inline, and 'strcmp' can be
1592 optimised to use word loads. */
1593 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1594 DATA_ALIGNMENT (TYPE, ALIGN)
1595
1596 #define PAD_VARARGS_DOWN \
1597 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1598
1599 /* Define if operations between registers always perform the operation
1600 on the full register even if a narrower mode is specified. */
1601 #define WORD_REGISTER_OPERATIONS
1602
1603 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1604 moves. All other references are zero extended. */
1605 #define LOAD_EXTEND_OP(MODE) \
1606 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1607 ? SIGN_EXTEND : ZERO_EXTEND)
1608
1609 /* Define this macro if it is advisable to hold scalars in registers
1610 in a wider mode than that declared by the program. In such cases,
1611 the value is constrained to be within the bounds of the declared
1612 type, but kept valid in the wider mode. The signedness of the
1613 extension may differ from that of the type. */
1614
1615 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1616 if (GET_MODE_CLASS (MODE) == MODE_INT \
1617 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1618 { \
1619 if ((MODE) == SImode) \
1620 (UNSIGNEDP) = 0; \
1621 (MODE) = Pmode; \
1622 }
1623
1624 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1625 Extensions of pointers to word_mode must be signed. */
1626 #define POINTERS_EXTEND_UNSIGNED false
1627
1628 /* Define if loading short immediate values into registers sign extends. */
1629 #define SHORT_IMMEDIATES_SIGN_EXTEND
1630
1631 /* The [d]clz instructions have the natural values at 0. */
1632
1633 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1634 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1635 \f
1636 /* Standard register usage. */
1637
1638 /* Number of hardware registers. We have:
1639
1640 - 32 integer registers
1641 - 32 floating point registers
1642 - 8 condition code registers
1643 - 2 accumulator registers (hi and lo)
1644 - 32 registers each for coprocessors 0, 2 and 3
1645 - 4 fake registers:
1646 - ARG_POINTER_REGNUM
1647 - FRAME_POINTER_REGNUM
1648 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1649 - CPRESTORE_SLOT_REGNUM
1650 - 2 dummy entries that were used at various times in the past.
1651 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1652 - 6 DSP control registers */
1653
1654 #define FIRST_PSEUDO_REGISTER 188
1655
1656 /* By default, fix the kernel registers ($26 and $27), the global
1657 pointer ($28) and the stack pointer ($29). This can change
1658 depending on the command-line options.
1659
1660 Regarding coprocessor registers: without evidence to the contrary,
1661 it's best to assume that each coprocessor register has a unique
1662 use. This can be overridden, in, e.g., mips_option_override or
1663 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1664 inappropriate for a particular target. */
1665
1666 #define FIXED_REGISTERS \
1667 { \
1668 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1669 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1670 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1671 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1672 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1673 /* COP0 registers */ \
1674 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1675 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1676 /* COP2 registers */ \
1677 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1678 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1679 /* COP3 registers */ \
1680 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1681 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1682 /* 6 DSP accumulator registers & 6 control registers */ \
1683 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1684 }
1685
1686
1687 /* Set up this array for o32 by default.
1688
1689 Note that we don't mark $31 as a call-clobbered register. The idea is
1690 that it's really the call instructions themselves which clobber $31.
1691 We don't care what the called function does with it afterwards.
1692
1693 This approach makes it easier to implement sibcalls. Unlike normal
1694 calls, sibcalls don't clobber $31, so the register reaches the
1695 called function in tact. EPILOGUE_USES says that $31 is useful
1696 to the called function. */
1697
1698 #define CALL_USED_REGISTERS \
1699 { \
1700 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1701 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1702 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1703 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1704 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1705 /* COP0 registers */ \
1706 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1707 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1708 /* COP2 registers */ \
1709 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1710 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1711 /* COP3 registers */ \
1712 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1713 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1714 /* 6 DSP accumulator registers & 6 control registers */ \
1715 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1716 }
1717
1718
1719 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1720
1721 #define CALL_REALLY_USED_REGISTERS \
1722 { /* General registers. */ \
1723 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1724 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1725 /* Floating-point registers. */ \
1726 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1727 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1728 /* Others. */ \
1729 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1730 /* COP0 registers */ \
1731 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1732 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1733 /* COP2 registers */ \
1734 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1735 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1736 /* COP3 registers */ \
1737 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1738 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1739 /* 6 DSP accumulator registers & 6 control registers */ \
1740 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1741 }
1742
1743 /* Internal macros to classify a register number as to whether it's a
1744 general purpose register, a floating point register, a
1745 multiply/divide register, or a status register. */
1746
1747 #define GP_REG_FIRST 0
1748 #define GP_REG_LAST 31
1749 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1750 #define GP_DBX_FIRST 0
1751 #define K0_REG_NUM (GP_REG_FIRST + 26)
1752 #define K1_REG_NUM (GP_REG_FIRST + 27)
1753 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1754
1755 #define FP_REG_FIRST 32
1756 #define FP_REG_LAST 63
1757 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1758 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1759
1760 #define MD_REG_FIRST 64
1761 #define MD_REG_LAST 65
1762 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1763 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1764
1765 /* The DWARF 2 CFA column which tracks the return address from a
1766 signal handler context. This means that to maintain backwards
1767 compatibility, no hard register can be assigned this column if it
1768 would need to be handled by the DWARF unwinder. */
1769 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1770
1771 #define ST_REG_FIRST 67
1772 #define ST_REG_LAST 74
1773 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1774
1775
1776 /* FIXME: renumber. */
1777 #define COP0_REG_FIRST 80
1778 #define COP0_REG_LAST 111
1779 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1780
1781 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1782 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1783 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1784
1785 #define COP2_REG_FIRST 112
1786 #define COP2_REG_LAST 143
1787 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1788
1789 #define COP3_REG_FIRST 144
1790 #define COP3_REG_LAST 175
1791 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1792
1793 /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1794 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1795 #define ALL_COP_REG_LAST COP3_REG_LAST
1796 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1797
1798 #define DSP_ACC_REG_FIRST 176
1799 #define DSP_ACC_REG_LAST 181
1800 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1801
1802 #define AT_REGNUM (GP_REG_FIRST + 1)
1803 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1804 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1805
1806 /* A few bitfield locations for the coprocessor registers. */
1807 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1808 the cause register for the EIC interrupt mode. */
1809 #define CAUSE_IPL 10
1810 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1811 #define SR_IPL 10
1812 /* Exception Level is at bit 1 of the status register. */
1813 #define SR_EXL 1
1814 /* Interrupt Enable is at bit 0 of the status register. */
1815 #define SR_IE 0
1816
1817 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1818 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1819 should be used instead. */
1820 #define FPSW_REGNUM ST_REG_FIRST
1821
1822 #define GP_REG_P(REGNO) \
1823 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1824 #define M16_REG_P(REGNO) \
1825 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1826 #define M16STORE_REG_P(REGNO) \
1827 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1828 #define FP_REG_P(REGNO) \
1829 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1830 #define MD_REG_P(REGNO) \
1831 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1832 #define ST_REG_P(REGNO) \
1833 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1834 #define COP0_REG_P(REGNO) \
1835 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1836 #define COP2_REG_P(REGNO) \
1837 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1838 #define COP3_REG_P(REGNO) \
1839 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1840 #define ALL_COP_REG_P(REGNO) \
1841 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1842 /* Test if REGNO is one of the 6 new DSP accumulators. */
1843 #define DSP_ACC_REG_P(REGNO) \
1844 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1845 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1846 #define ACC_REG_P(REGNO) \
1847 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1848
1849 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1850
1851 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1852 to initialize the mips16 gp pseudo register. */
1853 #define CONST_GP_P(X) \
1854 (GET_CODE (X) == CONST \
1855 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1856 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1857
1858 /* Return coprocessor number from register number. */
1859
1860 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1861 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1862 : COP3_REG_P (REGNO) ? '3' : '?')
1863
1864
1865 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1866
1867 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1868 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1869
1870 /* Select a register mode required for caller save of hard regno REGNO. */
1871 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1872 mips_hard_regno_caller_save_mode (REGNO, NREGS, MODE)
1873
1874 /* Odd-numbered single-precision registers are not considered callee-saved
1875 for o32 FPXX as they will be clobbered when run on an FR=1 FPU. */
1876 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1877 (TARGET_FLOATXX && hard_regno_nregs[REGNO][MODE] == 1 \
1878 && FP_REG_P (REGNO) && ((REGNO) & 1))
1879
1880 #define MODES_TIEABLE_P mips_modes_tieable_p
1881
1882 /* Register to use for pushing function arguments. */
1883 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1884
1885 /* These two registers don't really exist: they get eliminated to either
1886 the stack or hard frame pointer. */
1887 #define ARG_POINTER_REGNUM 77
1888 #define FRAME_POINTER_REGNUM 78
1889
1890 /* $30 is not available on the mips16, so we use $17 as the frame
1891 pointer. */
1892 #define HARD_FRAME_POINTER_REGNUM \
1893 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1894
1895 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1896 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1897
1898 /* Register in which static-chain is passed to a function. */
1899 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1900
1901 /* Registers used as temporaries in prologue/epilogue code:
1902
1903 - If a MIPS16 PIC function needs access to _gp, it first loads
1904 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1905
1906 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1907 register. The register must not conflict with MIPS16_PIC_TEMP.
1908
1909 - If we aren't generating MIPS16 code, the prologue can also use
1910 MIPS_PROLOGUE_TEMP2 as a general temporary register.
1911
1912 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1913 register.
1914
1915 If we're generating MIPS16 code, these registers must come from the
1916 core set of 8. The prologue registers mustn't conflict with any
1917 incoming arguments, the static chain pointer, or the frame pointer.
1918 The epilogue temporary mustn't conflict with the return registers,
1919 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1920 or the EH data registers.
1921
1922 If we're generating interrupt handlers, we use K0 as a temporary register
1923 in prologue/epilogue code. */
1924
1925 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1926 #define MIPS_PROLOGUE_TEMP_REGNUM \
1927 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1928 #define MIPS_PROLOGUE_TEMP2_REGNUM \
1929 (TARGET_MIPS16 \
1930 ? (gcc_unreachable (), INVALID_REGNUM) \
1931 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
1932 #define MIPS_EPILOGUE_TEMP_REGNUM \
1933 (cfun->machine->interrupt_handler_p \
1934 ? K0_REG_NUM \
1935 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1936
1937 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1938 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1939 #define MIPS_PROLOGUE_TEMP2(MODE) \
1940 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
1941 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1942
1943 /* Define this macro if it is as good or better to call a constant
1944 function address than to call an address kept in a register. */
1945 #define NO_FUNCTION_CSE 1
1946
1947 /* The ABI-defined global pointer. Sometimes we use a different
1948 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1949 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1950
1951 /* We normally use $28 as the global pointer. However, when generating
1952 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1953 register instead. They can then avoid saving and restoring $28
1954 and perhaps avoid using a frame at all.
1955
1956 When a leaf function uses something other than $28, mips_expand_prologue
1957 will modify pic_offset_table_rtx in place. Take the register number
1958 from there after reload. */
1959 #define PIC_OFFSET_TABLE_REGNUM \
1960 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1961 \f
1962 /* Define the classes of registers for register constraints in the
1963 machine description. Also define ranges of constants.
1964
1965 One of the classes must always be named ALL_REGS and include all hard regs.
1966 If there is more than one class, another class must be named NO_REGS
1967 and contain no registers.
1968
1969 The name GENERAL_REGS must be the name of a class (or an alias for
1970 another name such as ALL_REGS). This is the class of registers
1971 that is allowed by "g" or "r" in a register constraint.
1972 Also, registers outside this class are allocated only when
1973 instructions express preferences for them.
1974
1975 The classes must be numbered in nondecreasing order; that is,
1976 a larger-numbered class must never be contained completely
1977 in a smaller-numbered class.
1978
1979 For any two classes, it is very desirable that there be another
1980 class that represents their union. */
1981
1982 enum reg_class
1983 {
1984 NO_REGS, /* no registers in set */
1985 M16_STORE_REGS, /* microMIPS store registers */
1986 M16_REGS, /* mips16 directly accessible registers */
1987 M16_SP_REGS, /* mips16 + $sp */
1988 T_REG, /* mips16 T register ($24) */
1989 M16_T_REGS, /* mips16 registers plus T register */
1990 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1991 V1_REG, /* Register $v1 ($3) used for TLS access. */
1992 SPILL_REGS, /* All but $sp and call preserved regs are in here */
1993 LEA_REGS, /* Every GPR except $25 */
1994 GR_REGS, /* integer registers */
1995 FP_REGS, /* floating point registers */
1996 MD0_REG, /* first multiply/divide register */
1997 MD1_REG, /* second multiply/divide register */
1998 MD_REGS, /* multiply/divide registers (hi/lo) */
1999 COP0_REGS, /* generic coprocessor classes */
2000 COP2_REGS,
2001 COP3_REGS,
2002 ST_REGS, /* status registers (fp status) */
2003 DSP_ACC_REGS, /* DSP accumulator registers */
2004 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
2005 FRAME_REGS, /* $arg and $frame */
2006 GR_AND_MD0_REGS, /* union classes */
2007 GR_AND_MD1_REGS,
2008 GR_AND_MD_REGS,
2009 GR_AND_ACC_REGS,
2010 ALL_REGS, /* all registers */
2011 LIM_REG_CLASSES /* max value + 1 */
2012 };
2013
2014 #define N_REG_CLASSES (int) LIM_REG_CLASSES
2015
2016 #define GENERAL_REGS GR_REGS
2017
2018 /* An initializer containing the names of the register classes as C
2019 string constants. These names are used in writing some of the
2020 debugging dumps. */
2021
2022 #define REG_CLASS_NAMES \
2023 { \
2024 "NO_REGS", \
2025 "M16_STORE_REGS", \
2026 "M16_REGS", \
2027 "M16_SP_REGS", \
2028 "T_REG", \
2029 "M16_T_REGS", \
2030 "PIC_FN_ADDR_REG", \
2031 "V1_REG", \
2032 "SPILL_REGS", \
2033 "LEA_REGS", \
2034 "GR_REGS", \
2035 "FP_REGS", \
2036 "MD0_REG", \
2037 "MD1_REG", \
2038 "MD_REGS", \
2039 /* coprocessor registers */ \
2040 "COP0_REGS", \
2041 "COP2_REGS", \
2042 "COP3_REGS", \
2043 "ST_REGS", \
2044 "DSP_ACC_REGS", \
2045 "ACC_REGS", \
2046 "FRAME_REGS", \
2047 "GR_AND_MD0_REGS", \
2048 "GR_AND_MD1_REGS", \
2049 "GR_AND_MD_REGS", \
2050 "GR_AND_ACC_REGS", \
2051 "ALL_REGS" \
2052 }
2053
2054 /* An initializer containing the contents of the register classes,
2055 as integers which are bit masks. The Nth integer specifies the
2056 contents of class N. The way the integer MASK is interpreted is
2057 that register R is in the class if `MASK & (1 << R)' is 1.
2058
2059 When the machine has more than 32 registers, an integer does not
2060 suffice. Then the integers are replaced by sub-initializers,
2061 braced groupings containing several integers. Each
2062 sub-initializer must be suitable as an initializer for the type
2063 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
2064
2065 #define REG_CLASS_CONTENTS \
2066 { \
2067 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
2068 { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_STORE_REGS */ \
2069 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
2070 { 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_SP_REGS */ \
2071 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
2072 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
2073 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
2074 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
2075 { 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SPILL_REGS */ \
2076 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
2077 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
2078 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
2079 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
2080 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
2081 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
2082 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
2083 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
2084 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
2085 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
2086 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
2087 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
2088 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
2089 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
2090 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
2091 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
2092 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
2093 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
2094 }
2095
2096
2097 /* A C expression whose value is a register class containing hard
2098 register REGNO. In general there is more that one such class;
2099 choose a class which is "minimal", meaning that no smaller class
2100 also contains the register. */
2101
2102 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2103
2104 /* A macro whose definition is the name of the class to which a
2105 valid base register must belong. A base register is one used in
2106 an address which is the register value plus a displacement. */
2107
2108 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS)
2109
2110 /* A macro whose definition is the name of the class to which a
2111 valid index register must belong. An index register is one used
2112 in an address where its value is either multiplied by a scale
2113 factor or added to another register (as well as added to a
2114 displacement). */
2115
2116 #define INDEX_REG_CLASS NO_REGS
2117
2118 /* We generally want to put call-clobbered registers ahead of
2119 call-saved ones. (IRA expects this.) */
2120
2121 #define REG_ALLOC_ORDER \
2122 { /* Accumulator registers. When GPRs and accumulators have equal \
2123 cost, we generally prefer to use accumulators. For example, \
2124 a division of multiplication result is better allocated to LO, \
2125 so that we put the MFLO at the point of use instead of at the \
2126 point of definition. It's also needed if we're to take advantage \
2127 of the extra accumulators available with -mdspr2. In some cases, \
2128 it can also help to reduce register pressure. */ \
2129 64, 65,176,177,178,179,180,181, \
2130 /* Call-clobbered GPRs. */ \
2131 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2132 24, 25, 31, \
2133 /* The global pointer. This is call-clobbered for o32 and o64 \
2134 abicalls, call-saved for n32 and n64 abicalls, and a program \
2135 invariant otherwise. Putting it between the call-clobbered \
2136 and call-saved registers should cope with all eventualities. */ \
2137 28, \
2138 /* Call-saved GPRs. */ \
2139 16, 17, 18, 19, 20, 21, 22, 23, 30, \
2140 /* GPRs that can never be exposed to the register allocator. */ \
2141 0, 26, 27, 29, \
2142 /* Call-clobbered FPRs. */ \
2143 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2144 48, 49, 50, 51, \
2145 /* FPRs that are usually call-saved. The odd ones are actually \
2146 call-clobbered for n32, but listing them ahead of the even \
2147 registers might encourage the register allocator to fragment \
2148 the available FPR pairs. We need paired FPRs to store long \
2149 doubles, so it isn't clear that using a different order \
2150 for n32 would be a win. */ \
2151 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2152 /* None of the remaining classes have defined call-saved \
2153 registers. */ \
2154 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2155 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2156 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2157 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2158 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2159 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2160 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
2161 182,183,184,185,186,187 \
2162 }
2163
2164 /* True if VALUE is an unsigned 6-bit number. */
2165
2166 #define UIMM6_OPERAND(VALUE) \
2167 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2168
2169 /* True if VALUE is a signed 10-bit number. */
2170
2171 #define IMM10_OPERAND(VALUE) \
2172 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2173
2174 /* True if VALUE is a signed 16-bit number. */
2175
2176 #define SMALL_OPERAND(VALUE) \
2177 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2178
2179 /* True if VALUE is an unsigned 16-bit number. */
2180
2181 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2182 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2183
2184 /* True if VALUE can be loaded into a register using LUI. */
2185
2186 #define LUI_OPERAND(VALUE) \
2187 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2188 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2189
2190 /* Return a value X with the low 16 bits clear, and such that
2191 VALUE - X is a signed 16-bit value. */
2192
2193 #define CONST_HIGH_PART(VALUE) \
2194 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2195
2196 #define CONST_LOW_PART(VALUE) \
2197 ((VALUE) - CONST_HIGH_PART (VALUE))
2198
2199 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2200 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2201 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2202 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2203 #define MIPS_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255))
2204
2205 /* The HI and LO registers can only be reloaded via the general
2206 registers. Condition code registers can only be loaded to the
2207 general registers, and from the floating point registers. */
2208
2209 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2210 mips_secondary_reload_class (CLASS, MODE, X, true)
2211 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2212 mips_secondary_reload_class (CLASS, MODE, X, false)
2213
2214 /* When targeting the o32 FPXX ABI, all moves with a length of doubleword
2215 or greater must be performed by FR-mode-aware instructions.
2216 This can be achieved using MFHC1/MTHC1 when these instructions are
2217 available but otherwise moves must go via memory.
2218 For the o32 FP64A ABI, all odd-numbered moves with a length of
2219 doubleword or greater are required to use memory. Using MTC1/MFC1
2220 to access the lower-half of these registers would require a forbidden
2221 single-precision access. We require all double-word moves to use
2222 memory because adding even and odd floating-point registers classes
2223 would have a significant impact on the backend. */
2224 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
2225 mips_secondary_memory_needed ((CLASS1), (CLASS2), (MODE))
2226
2227 /* Return the maximum number of consecutive registers
2228 needed to represent mode MODE in a register of class CLASS. */
2229
2230 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2231
2232 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2233 mips_cannot_change_mode_class (FROM, TO, CLASS)
2234 \f
2235 /* Stack layout; function entry, exit and calling. */
2236
2237 #define STACK_GROWS_DOWNWARD
2238
2239 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2240
2241 /* Size of the area allocated in the frame to save the GP. */
2242
2243 #define MIPS_GP_SAVE_AREA_SIZE \
2244 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2245
2246 /* The offset of the first local variable from the frame pointer. See
2247 mips_compute_frame_info for details about the frame layout. */
2248
2249 #define STARTING_FRAME_OFFSET \
2250 (FRAME_GROWS_DOWNWARD \
2251 ? 0 \
2252 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2253
2254 #define RETURN_ADDR_RTX mips_return_addr
2255
2256 /* Mask off the MIPS16 ISA bit in unwind addresses.
2257
2258 The reason for this is a little subtle. When unwinding a call,
2259 we are given the call's return address, which on most targets
2260 is the address of the following instruction. However, what we
2261 actually want to find is the EH region for the call itself.
2262 The target-independent unwind code therefore searches for "RA - 1".
2263
2264 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2265 RA - 1 is therefore the real (even-valued) start of the return
2266 instruction. EH region labels are usually odd-valued MIPS16 symbols
2267 too, so a search for an even address within a MIPS16 region would
2268 usually work.
2269
2270 However, there is an exception. If the end of an EH region is also
2271 the end of a function, the end label is allowed to be even. This is
2272 necessary because a following non-MIPS16 function may also need EH
2273 information for its first instruction.
2274
2275 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2276 non-ISA-encoded address. This probably isn't ideal, but it is
2277 the traditional (legacy) behavior. It is therefore only safe
2278 to search MIPS EH regions for an _odd-valued_ address.
2279
2280 Masking off the ISA bit means that the target-independent code
2281 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2282 #define MASK_RETURN_ADDR GEN_INT (-2)
2283
2284
2285 /* Similarly, don't use the least-significant bit to tell pointers to
2286 code from vtable index. */
2287
2288 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2289
2290 /* The eliminations to $17 are only used for mips16 code. See the
2291 definition of HARD_FRAME_POINTER_REGNUM. */
2292
2293 #define ELIMINABLE_REGS \
2294 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2295 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2296 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2297 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2298 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2299 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2300
2301 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2302 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2303
2304 /* Allocate stack space for arguments at the beginning of each function. */
2305 #define ACCUMULATE_OUTGOING_ARGS 1
2306
2307 /* The argument pointer always points to the first argument. */
2308 #define FIRST_PARM_OFFSET(FNDECL) 0
2309
2310 /* o32 and o64 reserve stack space for all argument registers. */
2311 #define REG_PARM_STACK_SPACE(FNDECL) \
2312 (TARGET_OLDABI \
2313 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2314 : 0)
2315
2316 /* Define this if it is the responsibility of the caller to
2317 allocate the area reserved for arguments passed in registers.
2318 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2319 of this macro is to determine whether the space is included in
2320 `crtl->outgoing_args_size'. */
2321 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2322
2323 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2324 \f
2325 /* Symbolic macros for the registers used to return integer and floating
2326 point values. */
2327
2328 #define GP_RETURN (GP_REG_FIRST + 2)
2329 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2330
2331 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2332
2333 /* Symbolic macros for the first/last argument registers. */
2334
2335 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2336 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2337 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2338 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2339
2340 /* Temporary register that is used when restoring $gp after a call. $4 and $5
2341 are used for returning complex double values in soft-float code, so $6 is the
2342 first suitable candidate for TARGET_MIPS16. For !TARGET_MIPS16 we can use
2343 $gp itself as the temporary. */
2344 #define POST_CALL_TMP_REG \
2345 (TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM)
2346
2347 /* 1 if N is a possible register number for function argument passing.
2348 We have no FP argument registers when soft-float. Special handling
2349 is required for O32 where only even numbered registers are used for
2350 O32-FPXX and O32-FP64. */
2351
2352 #define FUNCTION_ARG_REGNO_P(N) \
2353 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2354 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) \
2355 && (mips_abi != ABI_32 \
2356 || TARGET_FLOAT32 \
2357 || ((N) % 2 == 0)))) \
2358 && !fixed_regs[N])
2359 \f
2360 /* This structure has to cope with two different argument allocation
2361 schemes. Most MIPS ABIs view the arguments as a structure, of which
2362 the first N words go in registers and the rest go on the stack. If I
2363 < N, the Ith word might go in Ith integer argument register or in a
2364 floating-point register. For these ABIs, we only need to remember
2365 the offset of the current argument into the structure.
2366
2367 The EABI instead allocates the integer and floating-point arguments
2368 separately. The first N words of FP arguments go in FP registers,
2369 the rest go on the stack. Likewise, the first N words of the other
2370 arguments go in integer registers, and the rest go on the stack. We
2371 need to maintain three counts: the number of integer registers used,
2372 the number of floating-point registers used, and the number of words
2373 passed on the stack.
2374
2375 We could keep separate information for the two ABIs (a word count for
2376 the standard ABIs, and three separate counts for the EABI). But it
2377 seems simpler to view the standard ABIs as forms of EABI that do not
2378 allocate floating-point registers.
2379
2380 So for the standard ABIs, the first N words are allocated to integer
2381 registers, and mips_function_arg decides on an argument-by-argument
2382 basis whether that argument should really go in an integer register,
2383 or in a floating-point one. */
2384
2385 typedef struct mips_args {
2386 /* Always true for varargs functions. Otherwise true if at least
2387 one argument has been passed in an integer register. */
2388 int gp_reg_found;
2389
2390 /* The number of arguments seen so far. */
2391 unsigned int arg_number;
2392
2393 /* The number of integer registers used so far. For all ABIs except
2394 EABI, this is the number of words that have been added to the
2395 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2396 unsigned int num_gprs;
2397
2398 /* For EABI, the number of floating-point registers used so far. */
2399 unsigned int num_fprs;
2400
2401 /* The number of words passed on the stack. */
2402 unsigned int stack_words;
2403
2404 /* On the mips16, we need to keep track of which floating point
2405 arguments were passed in general registers, but would have been
2406 passed in the FP regs if this were a 32-bit function, so that we
2407 can move them to the FP regs if we wind up calling a 32-bit
2408 function. We record this information in fp_code, encoded in base
2409 four. A zero digit means no floating point argument, a one digit
2410 means an SFmode argument, and a two digit means a DFmode argument,
2411 and a three digit is not used. The low order digit is the first
2412 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2413 an SFmode argument. ??? A more sophisticated approach will be
2414 needed if MIPS_ABI != ABI_32. */
2415 int fp_code;
2416
2417 /* True if the function has a prototype. */
2418 int prototype;
2419 } CUMULATIVE_ARGS;
2420
2421 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2422 for a call to a function whose data type is FNTYPE.
2423 For a library call, FNTYPE is 0. */
2424
2425 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2426 mips_init_cumulative_args (&CUM, FNTYPE)
2427
2428 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2429 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2430
2431 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2432 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2433
2434 /* True if using EABI and varargs can be passed in floating-point
2435 registers. Under these conditions, we need a more complex form
2436 of va_list, which tracks GPR, FPR and stack arguments separately. */
2437 #define EABI_FLOAT_VARARGS_P \
2438 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2439
2440 \f
2441 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2442
2443 /* Treat LOC as a byte offset from the stack pointer and round it up
2444 to the next fully-aligned offset. */
2445 #define MIPS_STACK_ALIGN(LOC) \
2446 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2447
2448 \f
2449 /* Output assembler code to FILE to increment profiler label # LABELNO
2450 for profiling a function entry. */
2451
2452 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2453
2454 /* The profiler preserves all interesting registers, including $31. */
2455 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2456
2457 /* No mips port has ever used the profiler counter word, so don't emit it
2458 or the label for it. */
2459
2460 #define NO_PROFILE_COUNTERS 1
2461
2462 /* Define this macro if the code for function profiling should come
2463 before the function prologue. Normally, the profiling code comes
2464 after. */
2465
2466 /* #define PROFILE_BEFORE_PROLOGUE */
2467
2468 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2469 the stack pointer does not matter. The value is tested only in
2470 functions that have frame pointers.
2471 No definition is equivalent to always zero. */
2472
2473 #define EXIT_IGNORE_STACK 1
2474
2475 \f
2476 /* Trampolines are a block of code followed by two pointers. */
2477
2478 #define TRAMPOLINE_SIZE \
2479 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2480
2481 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2482 pointers from a single LUI base. */
2483
2484 #define TRAMPOLINE_ALIGNMENT 64
2485
2486 /* mips_trampoline_init calls this library function to flush
2487 program and data caches. */
2488
2489 #ifndef CACHE_FLUSH_FUNC
2490 #define CACHE_FLUSH_FUNC "_flush_cache"
2491 #endif
2492
2493 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2494 /* Flush both caches. We need to flush the data cache in case \
2495 the system has a write-back cache. */ \
2496 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2497 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2498 GEN_INT (3), TYPE_MODE (integer_type_node))
2499
2500 \f
2501 /* Addressing modes, and classification of registers for them. */
2502
2503 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2504 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2505 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2506 \f
2507 /* Maximum number of registers that can appear in a valid memory address. */
2508
2509 #define MAX_REGS_PER_ADDRESS 1
2510
2511 /* Check for constness inline but use mips_legitimate_address_p
2512 to check whether a constant really is an address. */
2513
2514 #define CONSTANT_ADDRESS_P(X) \
2515 (CONSTANT_P (X) && memory_address_p (SImode, X))
2516
2517 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2518 'the start of the function that this code is output in'. */
2519
2520 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2521 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2522 asm_fprintf ((FILE), "%U%s", \
2523 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2524 else \
2525 asm_fprintf ((FILE), "%U%s", (NAME))
2526 \f
2527 /* Flag to mark a function decl symbol that requires a long call. */
2528 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2529 #define SYMBOL_REF_LONG_CALL_P(X) \
2530 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2531
2532 /* This flag marks functions that cannot be lazily bound. */
2533 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2534 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2535 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2536
2537 /* True if we're generating a form of MIPS16 code in which jump tables
2538 are stored in the text section and encoded as 16-bit PC-relative
2539 offsets. This is only possible when general text loads are allowed,
2540 since the table access itself will be an "lh" instruction. If the
2541 PC-relative offsets grow too large, 32-bit offsets are used instead. */
2542 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2543
2544 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2545
2546 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2547
2548 /* Only use short offsets if their range will not overflow. */
2549 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2550 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2551 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2552 : SImode)
2553
2554 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2555
2556 /* Define this as 1 if `char' should by default be signed; else as 0. */
2557 #ifndef DEFAULT_SIGNED_CHAR
2558 #define DEFAULT_SIGNED_CHAR 1
2559 #endif
2560
2561 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2562 we generally don't want to use them for copying arbitrary data.
2563 A single N-word move is usually the same cost as N single-word moves. */
2564 #define MOVE_MAX UNITS_PER_WORD
2565 #define MAX_MOVE_MAX 8
2566
2567 /* Define this macro as a C expression which is nonzero if
2568 accessing less than a word of memory (i.e. a `char' or a
2569 `short') is no faster than accessing a word of memory, i.e., if
2570 such access require more than one instruction or if there is no
2571 difference in cost between byte and (aligned) word loads.
2572
2573 On RISC machines, it tends to generate better code to define
2574 this as 1, since it avoids making a QI or HI mode register.
2575
2576 But, generating word accesses for -mips16 is generally bad as shifts
2577 (often extended) would be needed for byte accesses. */
2578 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2579
2580 /* Standard MIPS integer shifts truncate the shift amount to the
2581 width of the shifted operand. However, Loongson vector shifts
2582 do not truncate the shift amount at all. */
2583 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2584
2585 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2586 is done just by pretending it is already truncated. */
2587 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2588 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2589
2590
2591 /* Specify the machine mode that pointers have.
2592 After generation of rtl, the compiler makes no further distinction
2593 between pointers and any other objects of this machine mode. */
2594
2595 #ifndef Pmode
2596 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2597 #endif
2598
2599 /* Give call MEMs SImode since it is the "most permissive" mode
2600 for both 32-bit and 64-bit targets. */
2601
2602 #define FUNCTION_MODE SImode
2603
2604 \f
2605 /* We allocate $fcc registers by hand and can't cope with moves of
2606 CCmode registers to and from pseudos (or memory). */
2607 #define AVOID_CCMODE_COPIES
2608
2609 /* A C expression for the cost of a branch instruction. A value of
2610 1 is the default; other values are interpreted relative to that. */
2611
2612 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2613 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2614
2615 /* The MIPS port has several functions that return an instruction count.
2616 Multiplying the count by this value gives the number of bytes that
2617 the instructions occupy. */
2618 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2619
2620 /* The length of a NOP in bytes. */
2621 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2622
2623 /* If defined, modifies the length assigned to instruction INSN as a
2624 function of the context in which it is used. LENGTH is an lvalue
2625 that contains the initially computed length of the insn and should
2626 be updated with the correct length of the insn. */
2627 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2628 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2629
2630 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2631 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2632 its operands. */
2633 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2634 "%*" OPCODE "%?\t" OPERANDS "%/"
2635
2636 /* Return an asm string that forces INSN to be treated as an absolute
2637 J or JAL instruction instead of an assembler macro. */
2638 #define MIPS_ABSOLUTE_JUMP(INSN) \
2639 (TARGET_ABICALLS_PIC2 \
2640 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2641 : INSN)
2642
2643 /* Return the asm template for a call. INSN is the instruction's mnemonic
2644 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2645 number of the target. SIZE_OPNO is the operand number of the argument size
2646 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2647 -1 and the call is indirect, use the function symbol from the call
2648 attributes to attach a R_MIPS_JALR relocation to the call.
2649
2650 When generating GOT code without explicit relocation operators,
2651 all calls should use assembly macros. Otherwise, all indirect
2652 calls should use "jr" or "jalr"; we will arrange to restore $gp
2653 afterwards if necessary. Finally, we can only generate direct
2654 calls for -mabicalls by temporarily switching to non-PIC mode.
2655
2656 For microMIPS jal(r), we try to generate jal(r)s when a 16-bit
2657 instruction is in the delay slot of jal(r). */
2658 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2659 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2660 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2661 : REG_P (OPERANDS[TARGET_OPNO]) \
2662 ? (mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO) \
2663 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2664 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2665 : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
2666 ? "%*" INSN "r%!\t%" #TARGET_OPNO "%/" \
2667 : "%*" INSN "r\t%" #TARGET_OPNO "%/") \
2668 : TARGET_MICROMIPS && !TARGET_INTERLINK_COMPRESSED \
2669 ? MIPS_ABSOLUTE_JUMP ("%*" INSN "%!\t%" #TARGET_OPNO "%/") \
2670 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/")) \
2671
2672 /* Similar to MIPS_CALL, but this is for MICROMIPS "j" to generate
2673 "jrc" when nop is in the delay slot of "jr". */
2674
2675 #define MICROMIPS_J(INSN, OPERANDS, OPNO) \
2676 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2677 ? "%*j\t%" #OPNO "%/" \
2678 : REG_P (OPERANDS[OPNO]) \
2679 ? "%*jr%:\t%" #OPNO \
2680 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #OPNO "%/"))
2681
2682 \f
2683 /* Control the assembler format that we output. */
2684
2685 /* Output to assembler file text saying following lines
2686 may contain character constants, extra white space, comments, etc. */
2687
2688 #ifndef ASM_APP_ON
2689 #define ASM_APP_ON " #APP\n"
2690 #endif
2691
2692 /* Output to assembler file text saying following lines
2693 no longer contain unusual constructs. */
2694
2695 #ifndef ASM_APP_OFF
2696 #define ASM_APP_OFF " #NO_APP\n"
2697 #endif
2698
2699 #define REGISTER_NAMES \
2700 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2701 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2702 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2703 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2704 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2705 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2706 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2707 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2708 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2709 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2710 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2711 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2712 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2713 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2714 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2715 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2716 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2717 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2718 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2719 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2720 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2721 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2722 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2723 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2724
2725 /* List the "software" names for each register. Also list the numerical
2726 names for $fp and $sp. */
2727
2728 #define ADDITIONAL_REGISTER_NAMES \
2729 { \
2730 { "$29", 29 + GP_REG_FIRST }, \
2731 { "$30", 30 + GP_REG_FIRST }, \
2732 { "at", 1 + GP_REG_FIRST }, \
2733 { "v0", 2 + GP_REG_FIRST }, \
2734 { "v1", 3 + GP_REG_FIRST }, \
2735 { "a0", 4 + GP_REG_FIRST }, \
2736 { "a1", 5 + GP_REG_FIRST }, \
2737 { "a2", 6 + GP_REG_FIRST }, \
2738 { "a3", 7 + GP_REG_FIRST }, \
2739 { "t0", 8 + GP_REG_FIRST }, \
2740 { "t1", 9 + GP_REG_FIRST }, \
2741 { "t2", 10 + GP_REG_FIRST }, \
2742 { "t3", 11 + GP_REG_FIRST }, \
2743 { "t4", 12 + GP_REG_FIRST }, \
2744 { "t5", 13 + GP_REG_FIRST }, \
2745 { "t6", 14 + GP_REG_FIRST }, \
2746 { "t7", 15 + GP_REG_FIRST }, \
2747 { "s0", 16 + GP_REG_FIRST }, \
2748 { "s1", 17 + GP_REG_FIRST }, \
2749 { "s2", 18 + GP_REG_FIRST }, \
2750 { "s3", 19 + GP_REG_FIRST }, \
2751 { "s4", 20 + GP_REG_FIRST }, \
2752 { "s5", 21 + GP_REG_FIRST }, \
2753 { "s6", 22 + GP_REG_FIRST }, \
2754 { "s7", 23 + GP_REG_FIRST }, \
2755 { "t8", 24 + GP_REG_FIRST }, \
2756 { "t9", 25 + GP_REG_FIRST }, \
2757 { "k0", 26 + GP_REG_FIRST }, \
2758 { "k1", 27 + GP_REG_FIRST }, \
2759 { "gp", 28 + GP_REG_FIRST }, \
2760 { "sp", 29 + GP_REG_FIRST }, \
2761 { "fp", 30 + GP_REG_FIRST }, \
2762 { "ra", 31 + GP_REG_FIRST } \
2763 }
2764
2765 #define DBR_OUTPUT_SEQEND(STREAM) \
2766 do \
2767 { \
2768 /* Undo the effect of '%*'. */ \
2769 mips_pop_asm_switch (&mips_nomacro); \
2770 mips_pop_asm_switch (&mips_noreorder); \
2771 /* Emit a blank line after the delay slot for emphasis. */ \
2772 fputs ("\n", STREAM); \
2773 } \
2774 while (0)
2775
2776 /* The MIPS implementation uses some labels for its own purpose. The
2777 following lists what labels are created, and are all formed by the
2778 pattern $L[a-z].*. The machine independent portion of GCC creates
2779 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2780
2781 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2782 $Lb[0-9]+ Begin blocks for MIPS debug support
2783 $Lc[0-9]+ Label for use in s<xx> operation.
2784 $Le[0-9]+ End blocks for MIPS debug support */
2785
2786 #undef ASM_DECLARE_OBJECT_NAME
2787 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2788 mips_declare_object (STREAM, NAME, "", ":\n")
2789
2790 /* Globalizing directive for a label. */
2791 #define GLOBAL_ASM_OP "\t.globl\t"
2792
2793 /* This says how to define a global common symbol. */
2794
2795 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2796
2797 /* This says how to define a local common symbol (i.e., not visible to
2798 linker). */
2799
2800 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2801 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2802 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2803 #endif
2804
2805 /* This says how to output an external. It would be possible not to
2806 output anything and let undefined symbol become external. However
2807 the assembler uses length information on externals to allocate in
2808 data/sdata bss/sbss, thereby saving exec time. */
2809
2810 #undef ASM_OUTPUT_EXTERNAL
2811 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2812 mips_output_external(STREAM,DECL,NAME)
2813
2814 /* This is how to declare a function name. The actual work of
2815 emitting the label is moved to function_prologue, so that we can
2816 get the line number correctly emitted before the .ent directive,
2817 and after any .file directives. Define as empty so that the function
2818 is not declared before the .ent directive elsewhere. */
2819
2820 #undef ASM_DECLARE_FUNCTION_NAME
2821 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2822
2823 /* This is how to store into the string LABEL
2824 the symbol_ref name of an internal numbered label where
2825 PREFIX is the class of label and NUM is the number within the class.
2826 This is suitable for output with `assemble_name'. */
2827
2828 #undef ASM_GENERATE_INTERNAL_LABEL
2829 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2830 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2831
2832 /* Print debug labels as "foo = ." rather than "foo:" because they should
2833 represent a byte pointer rather than an ISA-encoded address. This is
2834 particularly important for code like:
2835
2836 $LFBxxx = .
2837 .cfi_startproc
2838 ...
2839 .section .gcc_except_table,...
2840 ...
2841 .uleb128 foo-$LFBxxx
2842
2843 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2844 likewise a byte pointer rather than an ISA-encoded address.
2845
2846 At the time of writing, this hook is not used for the function end
2847 label:
2848
2849 $LFExxx:
2850 .end foo
2851
2852 But this doesn't matter, because GAS doesn't treat a pre-.end label
2853 as a MIPS16 one anyway. */
2854
2855 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2856 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2857
2858 /* This is how to output an element of a case-vector that is absolute. */
2859
2860 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2861 fprintf (STREAM, "\t%s\t%sL%d\n", \
2862 ptr_mode == DImode ? ".dword" : ".word", \
2863 LOCAL_LABEL_PREFIX, \
2864 VALUE)
2865
2866 /* This is how to output an element of a case-vector. We can make the
2867 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2868 is supported. */
2869
2870 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2871 do { \
2872 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2873 { \
2874 if (GET_MODE (BODY) == HImode) \
2875 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2876 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2877 else \
2878 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2879 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2880 } \
2881 else if (TARGET_GPWORD) \
2882 fprintf (STREAM, "\t%s\t%sL%d\n", \
2883 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2884 LOCAL_LABEL_PREFIX, VALUE); \
2885 else if (TARGET_RTP_PIC) \
2886 { \
2887 /* Make the entry relative to the start of the function. */ \
2888 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2889 fprintf (STREAM, "\t%s\t%sL%d-", \
2890 Pmode == DImode ? ".dword" : ".word", \
2891 LOCAL_LABEL_PREFIX, VALUE); \
2892 assemble_name (STREAM, XSTR (fnsym, 0)); \
2893 fprintf (STREAM, "\n"); \
2894 } \
2895 else \
2896 fprintf (STREAM, "\t%s\t%sL%d\n", \
2897 ptr_mode == DImode ? ".dword" : ".word", \
2898 LOCAL_LABEL_PREFIX, VALUE); \
2899 } while (0)
2900
2901 /* This is how to output an assembler line
2902 that says to advance the location counter
2903 to a multiple of 2**LOG bytes. */
2904
2905 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2906 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2907
2908 /* This is how to output an assembler line to advance the location
2909 counter by SIZE bytes. */
2910
2911 #undef ASM_OUTPUT_SKIP
2912 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2913 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2914
2915 /* This is how to output a string. */
2916 #undef ASM_OUTPUT_ASCII
2917 #define ASM_OUTPUT_ASCII mips_output_ascii
2918
2919 \f
2920 /* Default to -G 8 */
2921 #ifndef MIPS_DEFAULT_GVALUE
2922 #define MIPS_DEFAULT_GVALUE 8
2923 #endif
2924
2925 /* Define the strings to put out for each section in the object file. */
2926 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2927 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2928
2929 #undef READONLY_DATA_SECTION_ASM_OP
2930 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2931 \f
2932 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2933 do \
2934 { \
2935 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2936 TARGET_64BIT ? "daddiu" : "addiu", \
2937 reg_names[STACK_POINTER_REGNUM], \
2938 reg_names[STACK_POINTER_REGNUM], \
2939 TARGET_64BIT ? "sd" : "sw", \
2940 reg_names[REGNO], \
2941 reg_names[STACK_POINTER_REGNUM]); \
2942 } \
2943 while (0)
2944
2945 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2946 do \
2947 { \
2948 mips_push_asm_switch (&mips_noreorder); \
2949 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2950 TARGET_64BIT ? "ld" : "lw", \
2951 reg_names[REGNO], \
2952 reg_names[STACK_POINTER_REGNUM], \
2953 TARGET_64BIT ? "daddu" : "addu", \
2954 reg_names[STACK_POINTER_REGNUM], \
2955 reg_names[STACK_POINTER_REGNUM]); \
2956 mips_pop_asm_switch (&mips_noreorder); \
2957 } \
2958 while (0)
2959
2960 /* How to start an assembler comment.
2961 The leading space is important (the mips native assembler requires it). */
2962 #ifndef ASM_COMMENT_START
2963 #define ASM_COMMENT_START " #"
2964 #endif
2965 \f
2966 #undef SIZE_TYPE
2967 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2968
2969 #undef PTRDIFF_TYPE
2970 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2971
2972 /* The maximum number of bytes that can be copied by one iteration of
2973 a movmemsi loop; see mips_block_move_loop. */
2974 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2975 (UNITS_PER_WORD * 4)
2976
2977 /* The maximum number of bytes that can be copied by a straight-line
2978 implementation of movmemsi; see mips_block_move_straight. We want
2979 to make sure that any loop-based implementation will iterate at
2980 least twice. */
2981 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2982 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2983
2984 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2985 values were determined experimentally by benchmarking with CSiBE.
2986 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2987 for o32 where we have to restore $gp afterwards as well as make an
2988 indirect call), but in practice, bumping this up higher for
2989 TARGET_ABICALLS doesn't make much difference to code size. */
2990
2991 #define MIPS_CALL_RATIO 8
2992
2993 /* Any loop-based implementation of movmemsi will have at least
2994 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2995 moves, so allow individual copies of fewer elements.
2996
2997 When movmemsi is not available, use a value approximating
2998 the length of a memcpy call sequence, so that move_by_pieces
2999 will generate inline code if it is shorter than a function call.
3000 Since move_by_pieces_ninsns counts memory-to-memory moves, but
3001 we'll have to generate a load/store pair for each, halve the
3002 value of MIPS_CALL_RATIO to take that into account. */
3003
3004 #define MOVE_RATIO(speed) \
3005 (HAVE_movmemsi \
3006 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
3007 : MIPS_CALL_RATIO / 2)
3008
3009 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
3010 of the length of a memset call, but use the default otherwise. */
3011
3012 #define CLEAR_RATIO(speed)\
3013 ((speed) ? 15 : MIPS_CALL_RATIO)
3014
3015 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
3016 optimizing for size adjust the ratio to account for the overhead of
3017 loading the constant and replicating it across the word. */
3018
3019 #define SET_RATIO(speed) \
3020 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
3021 \f
3022 /* Since the bits of the _init and _fini function is spread across
3023 many object files, each potentially with its own GP, we must assume
3024 we need to load our GP. We don't preserve $gp or $ra, since each
3025 init/fini chunk is supposed to initialize $gp, and crti/crtn
3026 already take care of preserving $ra and, when appropriate, $gp. */
3027 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
3028 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3029 asm (SECTION_OP "\n\
3030 .set push\n\
3031 .set nomips16\n\
3032 .set noreorder\n\
3033 bal 1f\n\
3034 nop\n\
3035 1: .cpload $31\n\
3036 .set reorder\n\
3037 jal " USER_LABEL_PREFIX #FUNC "\n\
3038 .set pop\n\
3039 " TEXT_SECTION_ASM_OP);
3040 #elif ((defined _ABIN32 && _MIPS_SIM == _ABIN32) \
3041 || (defined _ABI64 && _MIPS_SIM == _ABI64))
3042 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3043 asm (SECTION_OP "\n\
3044 .set push\n\
3045 .set nomips16\n\
3046 .set noreorder\n\
3047 bal 1f\n\
3048 nop\n\
3049 1: .set reorder\n\
3050 .cpsetup $31, $2, 1b\n\
3051 jal " USER_LABEL_PREFIX #FUNC "\n\
3052 .set pop\n\
3053 " TEXT_SECTION_ASM_OP);
3054 #endif
3055
3056 #ifndef HAVE_AS_TLS
3057 #define HAVE_AS_TLS 0
3058 #endif
3059
3060 #ifndef HAVE_AS_NAN
3061 #define HAVE_AS_NAN 0
3062 #endif
3063
3064 #ifndef USED_FOR_TARGET
3065 /* Information about ".set noFOO; ...; .set FOO" blocks. */
3066 struct mips_asm_switch {
3067 /* The FOO in the description above. */
3068 const char *name;
3069
3070 /* The current block nesting level, or 0 if we aren't in a block. */
3071 int nesting_level;
3072 };
3073
3074 extern const enum reg_class mips_regno_to_class[];
3075 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
3076 extern const char *current_function_file; /* filename current function is in */
3077 extern int num_source_filenames; /* current .file # */
3078 extern struct mips_asm_switch mips_noreorder;
3079 extern struct mips_asm_switch mips_nomacro;
3080 extern struct mips_asm_switch mips_noat;
3081 extern int mips_dbx_regno[];
3082 extern int mips_dwarf_regno[];
3083 extern bool mips_split_p[];
3084 extern bool mips_split_hi_p[];
3085 extern bool mips_use_pcrel_pool_p[];
3086 extern const char *mips_lo_relocs[];
3087 extern const char *mips_hi_relocs[];
3088 extern enum processor mips_arch; /* which cpu to codegen for */
3089 extern enum processor mips_tune; /* which cpu to schedule for */
3090 extern int mips_isa; /* architectural level */
3091 extern int mips_isa_rev;
3092 extern const struct mips_cpu_info *mips_arch_info;
3093 extern const struct mips_cpu_info *mips_tune_info;
3094 extern unsigned int mips_base_compression_flags;
3095 extern GTY(()) struct target_globals *mips16_globals;
3096 #endif
3097
3098 /* Enable querying of DFA units. */
3099 #define CPU_UNITS_QUERY 1
3100
3101 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3102 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
3103
3104 /* As on most targets, we want the .eh_frame section to be read-only where
3105 possible. And as on most targets, this means two things:
3106
3107 (a) Non-locally-binding pointers must have an indirect encoding,
3108 so that the addresses in the .eh_frame section itself become
3109 locally-binding.
3110
3111 (b) A shared library's .eh_frame section must encode locally-binding
3112 pointers in a relative (relocation-free) form.
3113
3114 However, MIPS has traditionally not allowed directives like:
3115
3116 .long x-.
3117
3118 in cases where "x" is in a different section, or is not defined in the
3119 same assembly file. We are therefore unable to emit the PC-relative
3120 form required by (b) at assembly time.
3121
3122 Fortunately, the linker is able to convert absolute addresses into
3123 PC-relative addresses on our behalf. Unfortunately, only certain
3124 versions of the linker know how to do this for indirect pointers,
3125 and for personality data. We must fall back on using writable
3126 .eh_frame sections for shared libraries if the linker does not
3127 support this feature. */
3128 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
3129 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
3130
3131 /* For switching between MIPS16 and non-MIPS16 modes. */
3132 #define SWITCHABLE_TARGET 1
3133
3134 /* Several named MIPS patterns depend on Pmode. These patterns have the
3135 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3136 Add the appropriate suffix to generator function NAME and invoke it
3137 with arguments ARGS. */
3138 #define PMODE_INSN(NAME, ARGS) \
3139 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
3140
3141 /* If we are *not* using multilibs and the default ABI is not ABI_32 we
3142 need to change these from /lib and /usr/lib. */
3143 #if MIPS_ABI_DEFAULT == ABI_N32
3144 #define STANDARD_STARTFILE_PREFIX_1 "/lib32/"
3145 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/"
3146 #elif MIPS_ABI_DEFAULT == ABI_64
3147 #define STANDARD_STARTFILE_PREFIX_1 "/lib64/"
3148 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/"
3149 #endif