microblaze.h (CC1_SPEC): Remove %{save-temps: }.
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by A. Lichnewsky (lich@inria.inria.fr).
6 Changed by Michael Meissner (meissner@osf.org).
7 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
8 Brendan Eich (brendan@microunity.com).
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GCC is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26
27 #include "config/vxworks-dummy.h"
28
29 #ifdef GENERATOR_FILE
30 /* This is used in some insn conditions, so needs to be declared, but
31 does not need to be defined. */
32 extern int target_flags_explicit;
33 #endif
34
35 /* MIPS external variables defined in mips.c. */
36
37 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
38 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
39 to work on a 64-bit machine. */
40
41 #define ABI_32 0
42 #define ABI_N32 1
43 #define ABI_64 2
44 #define ABI_EABI 3
45 #define ABI_O64 4
46
47 /* Masks that affect tuning.
48
49 PTF_AVOID_BRANCHLIKELY
50 Set if it is usually not profitable to use branch-likely instructions
51 for this target, typically because the branches are always predicted
52 taken and so incur a large overhead when not taken. */
53 #define PTF_AVOID_BRANCHLIKELY 0x1
54
55 /* Information about one recognized processor. Defined here for the
56 benefit of TARGET_CPU_CPP_BUILTINS. */
57 struct mips_cpu_info {
58 /* The 'canonical' name of the processor as far as GCC is concerned.
59 It's typically a manufacturer's prefix followed by a numerical
60 designation. It should be lowercase. */
61 const char *name;
62
63 /* The internal processor number that most closely matches this
64 entry. Several processors can have the same value, if there's no
65 difference between them from GCC's point of view. */
66 enum processor cpu;
67
68 /* The ISA level that the processor implements. */
69 int isa;
70
71 /* A mask of PTF_* values. */
72 unsigned int tune_flags;
73 };
74
75 /* Enumerates the setting of the -mcode-readable option. */
76 enum mips_code_readable_setting {
77 CODE_READABLE_NO,
78 CODE_READABLE_PCREL,
79 CODE_READABLE_YES
80 };
81
82 /* Macros to silence warnings about numbers being signed in traditional
83 C and unsigned in ISO C when compiled on 32-bit hosts. */
84
85 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
86 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
87 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
88
89 \f
90 /* Run-time compilation parameters selecting different hardware subsets. */
91
92 /* True if we are generating position-independent VxWorks RTP code. */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
94
95 /* True if the output file is marked as ".abicalls; .option pic0"
96 (-call_nonpic). */
97 #define TARGET_ABICALLS_PIC0 \
98 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
99
100 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
101 #define TARGET_ABICALLS_PIC2 \
102 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
103
104 /* True if the call patterns should be split into a jalr followed by
105 an instruction to restore $gp. It is only safe to split the load
106 from the call when every use of $gp is explicit.
107
108 See mips_must_initialize_gp_p for details about how we manage the
109 global pointer. */
110
111 #define TARGET_SPLIT_CALLS \
112 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
113
114 /* True if we're generating a form of -mabicalls in which we can use
115 operators like %hi and %lo to refer to locally-binding symbols.
116 We can only do this for -mno-shared, and only then if we can use
117 relocation operations instead of assembly macros. It isn't really
118 worth using absolute sequences for 64-bit symbols because GOT
119 accesses are so much shorter. */
120
121 #define TARGET_ABSOLUTE_ABICALLS \
122 (TARGET_ABICALLS \
123 && !TARGET_SHARED \
124 && TARGET_EXPLICIT_RELOCS \
125 && !ABI_HAS_64BIT_SYMBOLS)
126
127 /* True if we can optimize sibling calls. For simplicity, we only
128 handle cases in which call_insn_operand will reject invalid
129 sibcall addresses. There are two cases in which this isn't true:
130
131 - TARGET_MIPS16. call_insn_operand accepts constant addresses
132 but there is no direct jump instruction. It isn't worth
133 using sibling calls in this case anyway; they would usually
134 be longer than normal calls.
135
136 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
137 accepts global constants, but all sibcalls must be indirect. */
138 #define TARGET_SIBCALLS \
139 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
140
141 /* True if we need to use a global offset table to access some symbols. */
142 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
143
144 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
145 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
146
147 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
148 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
149
150 /* True if we should use .cprestore to store to the cprestore slot.
151
152 We continue to use .cprestore for explicit-reloc code so that JALs
153 inside inline asms will work correctly. */
154 #define TARGET_CPRESTORE_DIRECTIVE \
155 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
156
157 /* True if we can use the J and JAL instructions. */
158 #define TARGET_ABSOLUTE_JUMPS \
159 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
160
161 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
162 This is true for both the PIC and non-PIC VxWorks RTP modes. */
163 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
164
165 /* True if .gpword or .gpdword should be used for switch tables.
166
167 Although GAS does understand .gpdword, the SGI linker mishandles
168 the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
169 We therefore disable GP-relative switch tables for n64 on IRIX targets. */
170 #define TARGET_GPWORD \
171 (TARGET_ABICALLS \
172 && !TARGET_ABSOLUTE_ABICALLS \
173 && !(mips_abi == ABI_64 && TARGET_IRIX6))
174
175 /* True if the output must have a writable .eh_frame.
176 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
177 #ifdef HAVE_LD_PERSONALITY_RELAXATION
178 #define TARGET_WRITABLE_EH_FRAME 0
179 #else
180 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
181 #endif
182
183 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
184 #ifdef HAVE_AS_DSPR1_MULT
185 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
186 #else
187 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
188 #endif
189
190 /* Generate mips16 code */
191 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
192 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
193 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
194 /* Generate mips16e register save/restore sequences. */
195 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
196
197 /* True if we're generating a form of MIPS16 code in which general
198 text loads are allowed. */
199 #define TARGET_MIPS16_TEXT_LOADS \
200 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
201
202 /* True if we're generating a form of MIPS16 code in which PC-relative
203 loads are allowed. */
204 #define TARGET_MIPS16_PCREL_LOADS \
205 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
206
207 /* Generic ISA defines. */
208 #define ISA_MIPS1 (mips_isa == 1)
209 #define ISA_MIPS2 (mips_isa == 2)
210 #define ISA_MIPS3 (mips_isa == 3)
211 #define ISA_MIPS4 (mips_isa == 4)
212 #define ISA_MIPS32 (mips_isa == 32)
213 #define ISA_MIPS32R2 (mips_isa == 33)
214 #define ISA_MIPS64 (mips_isa == 64)
215 #define ISA_MIPS64R2 (mips_isa == 65)
216
217 /* Architecture target defines. */
218 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
219 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
220 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
221 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
222 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
223 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
224 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
225 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
226 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
227 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
228 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
229 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
230 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON)
231 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
232 || mips_arch == PROCESSOR_SB1A)
233 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
234
235 /* Scheduling target defines. */
236 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
237 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
238 || mips_tune == PROCESSOR_24KF2_1 \
239 || mips_tune == PROCESSOR_24KF1_1)
240 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
241 || mips_tune == PROCESSOR_74KF2_1 \
242 || mips_tune == PROCESSOR_74KF1_1 \
243 || mips_tune == PROCESSOR_74KF3_2)
244 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
245 || mips_tune == PROCESSOR_LOONGSON_2F)
246 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
247 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
248 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
249 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
250 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
251 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
252 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
253 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
254 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
255 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
256 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
257 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
258 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON)
259 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
260 || mips_tune == PROCESSOR_SB1A)
261
262 /* Whether vector modes and intrinsics for ST Microelectronics
263 Loongson-2E/2F processors should be enabled. In o32 pairs of
264 floating-point registers provide 64-bit values. */
265 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
266 && (TARGET_LOONGSON_2EF \
267 || TARGET_LOONGSON_3A))
268
269 /* True if the pre-reload scheduler should try to create chains of
270 multiply-add or multiply-subtract instructions. For example,
271 suppose we have:
272
273 t1 = a * b
274 t2 = t1 + c * d
275 t3 = e * f
276 t4 = t3 - g * h
277
278 t1 will have a higher priority than t2 and t3 will have a higher
279 priority than t4. However, before reload, there is no dependence
280 between t1 and t3, and they can often have similar priorities.
281 The scheduler will then tend to prefer:
282
283 t1 = a * b
284 t3 = e * f
285 t2 = t1 + c * d
286 t4 = t3 - g * h
287
288 which stops us from making full use of macc/madd-style instructions.
289 This sort of situation occurs frequently in Fourier transforms and
290 in unrolled loops.
291
292 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
293 queue so that chained multiply-add and multiply-subtract instructions
294 appear ahead of any other instruction that is likely to clobber lo.
295 In the example above, if t2 and t3 become ready at the same time,
296 the code ensures that t2 is scheduled first.
297
298 Multiply-accumulate instructions are a bigger win for some targets
299 than others, so this macro is defined on an opt-in basis. */
300 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
301 || TUNE_MIPS4120 \
302 || TUNE_MIPS4130 \
303 || TUNE_24K)
304
305 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
306 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
307
308 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
309 directly accessible, while the command-line options select
310 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
311 in use. */
312 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
313 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
314
315 /* False if SC acts as a memory barrier with respect to itself,
316 otherwise a SYNC will be emitted after SC for atomic operations
317 that require ordering between the SC and following loads and
318 stores. It does not tell anything about ordering of loads and
319 stores prior to and following the SC, only about the SC itself and
320 those loads and stores follow it. */
321 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON)
322
323 /* IRIX specific stuff. */
324 #define TARGET_IRIX6 0
325
326 /* Define preprocessor macros for the -march and -mtune options.
327 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
328 processor. If INFO's canonical name is "foo", define PREFIX to
329 be "foo", and define an additional macro PREFIX_FOO. */
330 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
331 do \
332 { \
333 char *macro, *p; \
334 \
335 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
336 for (p = macro; *p != 0; p++) \
337 *p = TOUPPER (*p); \
338 \
339 builtin_define (macro); \
340 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
341 free (macro); \
342 } \
343 while (0)
344
345 /* Target CPU builtins. */
346 #define TARGET_CPU_CPP_BUILTINS() \
347 do \
348 { \
349 /* Everyone but IRIX defines this to mips. */ \
350 if (!TARGET_IRIX6) \
351 builtin_assert ("machine=mips"); \
352 \
353 builtin_assert ("cpu=mips"); \
354 builtin_define ("__mips__"); \
355 builtin_define ("_mips"); \
356 \
357 /* We do this here because __mips is defined below and so we \
358 can't use builtin_define_std. We don't ever want to define \
359 "mips" for VxWorks because some of the VxWorks headers \
360 construct include filenames from a root directory macro, \
361 an architecture macro and a filename, where the architecture \
362 macro expands to 'mips'. If we define 'mips' to 1, the \
363 architecture macro expands to 1 as well. */ \
364 if (!flag_iso && !TARGET_VXWORKS) \
365 builtin_define ("mips"); \
366 \
367 if (TARGET_64BIT) \
368 builtin_define ("__mips64"); \
369 \
370 if (!TARGET_IRIX6) \
371 { \
372 /* Treat _R3000 and _R4000 like register-size \
373 defines, which is how they've historically \
374 been used. */ \
375 if (TARGET_64BIT) \
376 { \
377 builtin_define_std ("R4000"); \
378 builtin_define ("_R4000"); \
379 } \
380 else \
381 { \
382 builtin_define_std ("R3000"); \
383 builtin_define ("_R3000"); \
384 } \
385 } \
386 if (TARGET_FLOAT64) \
387 builtin_define ("__mips_fpr=64"); \
388 else \
389 builtin_define ("__mips_fpr=32"); \
390 \
391 if (mips_base_mips16) \
392 builtin_define ("__mips16"); \
393 \
394 if (TARGET_MIPS3D) \
395 builtin_define ("__mips3d"); \
396 \
397 if (TARGET_SMARTMIPS) \
398 builtin_define ("__mips_smartmips"); \
399 \
400 if (TARGET_DSP) \
401 { \
402 builtin_define ("__mips_dsp"); \
403 if (TARGET_DSPR2) \
404 { \
405 builtin_define ("__mips_dspr2"); \
406 builtin_define ("__mips_dsp_rev=2"); \
407 } \
408 else \
409 builtin_define ("__mips_dsp_rev=1"); \
410 } \
411 \
412 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
413 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
414 \
415 if (ISA_MIPS1) \
416 { \
417 builtin_define ("__mips=1"); \
418 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
419 } \
420 else if (ISA_MIPS2) \
421 { \
422 builtin_define ("__mips=2"); \
423 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
424 } \
425 else if (ISA_MIPS3) \
426 { \
427 builtin_define ("__mips=3"); \
428 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
429 } \
430 else if (ISA_MIPS4) \
431 { \
432 builtin_define ("__mips=4"); \
433 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
434 } \
435 else if (ISA_MIPS32) \
436 { \
437 builtin_define ("__mips=32"); \
438 builtin_define ("__mips_isa_rev=1"); \
439 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
440 } \
441 else if (ISA_MIPS32R2) \
442 { \
443 builtin_define ("__mips=32"); \
444 builtin_define ("__mips_isa_rev=2"); \
445 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
446 } \
447 else if (ISA_MIPS64) \
448 { \
449 builtin_define ("__mips=64"); \
450 builtin_define ("__mips_isa_rev=1"); \
451 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
452 } \
453 else if (ISA_MIPS64R2) \
454 { \
455 builtin_define ("__mips=64"); \
456 builtin_define ("__mips_isa_rev=2"); \
457 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
458 } \
459 \
460 switch (mips_abi) \
461 { \
462 case ABI_32: \
463 builtin_define ("_ABIO32=1"); \
464 builtin_define ("_MIPS_SIM=_ABIO32"); \
465 break; \
466 \
467 case ABI_N32: \
468 builtin_define ("_ABIN32=2"); \
469 builtin_define ("_MIPS_SIM=_ABIN32"); \
470 break; \
471 \
472 case ABI_64: \
473 builtin_define ("_ABI64=3"); \
474 builtin_define ("_MIPS_SIM=_ABI64"); \
475 break; \
476 \
477 case ABI_O64: \
478 builtin_define ("_ABIO64=4"); \
479 builtin_define ("_MIPS_SIM=_ABIO64"); \
480 break; \
481 } \
482 \
483 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
484 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
485 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
486 builtin_define_with_int_value ("_MIPS_FPSET", \
487 32 / MAX_FPRS_PER_FMT); \
488 \
489 /* These defines reflect the ABI in use, not whether the \
490 FPU is directly accessible. */ \
491 if (TARGET_NO_FLOAT) \
492 builtin_define ("__mips_no_float"); \
493 else if (TARGET_HARD_FLOAT_ABI) \
494 builtin_define ("__mips_hard_float"); \
495 else \
496 builtin_define ("__mips_soft_float"); \
497 \
498 if (TARGET_SINGLE_FLOAT) \
499 builtin_define ("__mips_single_float"); \
500 \
501 if (TARGET_PAIRED_SINGLE_FLOAT) \
502 builtin_define ("__mips_paired_single_float"); \
503 \
504 if (TARGET_BIG_ENDIAN) \
505 { \
506 builtin_define_std ("MIPSEB"); \
507 builtin_define ("_MIPSEB"); \
508 } \
509 else \
510 { \
511 builtin_define_std ("MIPSEL"); \
512 builtin_define ("_MIPSEL"); \
513 } \
514 \
515 /* Whether calls should go through $25. The separate __PIC__ \
516 macro indicates whether abicalls code might use a GOT. */ \
517 if (TARGET_ABICALLS) \
518 builtin_define ("__mips_abicalls"); \
519 \
520 /* Whether Loongson vector modes are enabled. */ \
521 if (TARGET_LOONGSON_VECTORS) \
522 builtin_define ("__mips_loongson_vector_rev"); \
523 \
524 /* Historical Octeon macro. */ \
525 if (TARGET_OCTEON) \
526 builtin_define ("__OCTEON__"); \
527 \
528 /* Macros dependent on the C dialect. */ \
529 if (preprocessing_asm_p ()) \
530 { \
531 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
532 builtin_define ("_LANGUAGE_ASSEMBLY"); \
533 } \
534 else if (c_dialect_cxx ()) \
535 { \
536 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
537 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
538 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
539 } \
540 else \
541 { \
542 builtin_define_std ("LANGUAGE_C"); \
543 builtin_define ("_LANGUAGE_C"); \
544 } \
545 if (c_dialect_objc ()) \
546 { \
547 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
548 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
549 /* Bizarre, but needed at least for Irix. */ \
550 builtin_define_std ("LANGUAGE_C"); \
551 builtin_define ("_LANGUAGE_C"); \
552 } \
553 \
554 if (mips_abi == ABI_EABI) \
555 builtin_define ("__mips_eabi"); \
556 \
557 if (TARGET_CACHE_BUILTIN) \
558 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
559 } \
560 while (0)
561
562 /* Default target_flags if no switches are specified */
563
564 #ifndef TARGET_DEFAULT
565 #define TARGET_DEFAULT 0
566 #endif
567
568 #ifndef TARGET_CPU_DEFAULT
569 #define TARGET_CPU_DEFAULT 0
570 #endif
571
572 #ifndef TARGET_ENDIAN_DEFAULT
573 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
574 #endif
575
576 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
577 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
578 #endif
579
580 /* 'from-abi' makes a good default: you get whatever the ABI requires. */
581 #ifndef MIPS_ISA_DEFAULT
582 #ifndef MIPS_CPU_STRING_DEFAULT
583 #define MIPS_CPU_STRING_DEFAULT "from-abi"
584 #endif
585 #endif
586
587 #ifdef IN_LIBGCC2
588 #undef TARGET_64BIT
589 /* Make this compile time constant for libgcc2 */
590 #ifdef __mips64
591 #define TARGET_64BIT 1
592 #else
593 #define TARGET_64BIT 0
594 #endif
595 #endif /* IN_LIBGCC2 */
596
597 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
598 when compiled with hardware floating point. This is because MIPS16
599 code cannot save and restore the floating-point registers, which is
600 important if in a mixed MIPS16/non-MIPS16 environment. */
601
602 #ifdef IN_LIBGCC2
603 #if __mips_hard_float
604 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
605 #endif
606 #endif /* IN_LIBGCC2 */
607
608 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
609
610 #ifndef MULTILIB_ENDIAN_DEFAULT
611 #if TARGET_ENDIAN_DEFAULT == 0
612 #define MULTILIB_ENDIAN_DEFAULT "EL"
613 #else
614 #define MULTILIB_ENDIAN_DEFAULT "EB"
615 #endif
616 #endif
617
618 #ifndef MULTILIB_ISA_DEFAULT
619 # if MIPS_ISA_DEFAULT == 1
620 # define MULTILIB_ISA_DEFAULT "mips1"
621 # else
622 # if MIPS_ISA_DEFAULT == 2
623 # define MULTILIB_ISA_DEFAULT "mips2"
624 # else
625 # if MIPS_ISA_DEFAULT == 3
626 # define MULTILIB_ISA_DEFAULT "mips3"
627 # else
628 # if MIPS_ISA_DEFAULT == 4
629 # define MULTILIB_ISA_DEFAULT "mips4"
630 # else
631 # if MIPS_ISA_DEFAULT == 32
632 # define MULTILIB_ISA_DEFAULT "mips32"
633 # else
634 # if MIPS_ISA_DEFAULT == 33
635 # define MULTILIB_ISA_DEFAULT "mips32r2"
636 # else
637 # if MIPS_ISA_DEFAULT == 64
638 # define MULTILIB_ISA_DEFAULT "mips64"
639 # else
640 # if MIPS_ISA_DEFAULT == 65
641 # define MULTILIB_ISA_DEFAULT "mips64r2"
642 # else
643 # define MULTILIB_ISA_DEFAULT "mips1"
644 # endif
645 # endif
646 # endif
647 # endif
648 # endif
649 # endif
650 # endif
651 # endif
652 #endif
653
654 #ifndef MIPS_ABI_DEFAULT
655 #define MIPS_ABI_DEFAULT ABI_32
656 #endif
657
658 /* Use the most portable ABI flag for the ASM specs. */
659
660 #if MIPS_ABI_DEFAULT == ABI_32
661 #define MULTILIB_ABI_DEFAULT "mabi=32"
662 #endif
663
664 #if MIPS_ABI_DEFAULT == ABI_O64
665 #define MULTILIB_ABI_DEFAULT "mabi=o64"
666 #endif
667
668 #if MIPS_ABI_DEFAULT == ABI_N32
669 #define MULTILIB_ABI_DEFAULT "mabi=n32"
670 #endif
671
672 #if MIPS_ABI_DEFAULT == ABI_64
673 #define MULTILIB_ABI_DEFAULT "mabi=64"
674 #endif
675
676 #if MIPS_ABI_DEFAULT == ABI_EABI
677 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
678 #endif
679
680 #ifndef MULTILIB_DEFAULTS
681 #define MULTILIB_DEFAULTS \
682 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
683 #endif
684
685 /* We must pass -EL to the linker by default for little endian embedded
686 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
687 linker will default to using big-endian output files. The OUTPUT_FORMAT
688 line must be in the linker script, otherwise -EB/-EL will not work. */
689
690 #ifndef ENDIAN_SPEC
691 #if TARGET_ENDIAN_DEFAULT == 0
692 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
693 #else
694 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
695 #endif
696 #endif
697
698 /* A spec condition that matches all non-mips16 -mips arguments. */
699
700 #define MIPS_ISA_LEVEL_OPTION_SPEC \
701 "mips1|mips2|mips3|mips4|mips32*|mips64*"
702
703 /* A spec condition that matches all non-mips16 architecture arguments. */
704
705 #define MIPS_ARCH_OPTION_SPEC \
706 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
707
708 /* A spec that infers a -mips argument from an -march argument,
709 or injects the default if no architecture is specified. */
710
711 #define MIPS_ISA_LEVEL_SPEC \
712 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
713 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
714 %{march=mips2|march=r6000:-mips2} \
715 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
716 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
717 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
718 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
719 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
720 |march=34k*|march=74k*|march=1004k*: -mips32r2} \
721 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
722 |march=xlr|march=loongson3a: -mips64} \
723 %{march=mips64r2|march=octeon: -mips64r2} \
724 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
725
726 /* A spec that infers a -mhard-float or -msoft-float setting from an
727 -march argument. Note that soft-float and hard-float code are not
728 link-compatible. */
729
730 #define MIPS_ARCH_FLOAT_SPEC \
731 "%{mhard-float|msoft-float|march=mips*:; \
732 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
733 |march=34kc|march=74kc|march=1004kc|march=5kc \
734 |march=octeon|march=xlr: -msoft-float; \
735 march=*: -mhard-float}"
736
737 /* A spec condition that matches 32-bit options. It only works if
738 MIPS_ISA_LEVEL_SPEC has been applied. */
739
740 #define MIPS_32BIT_OPTION_SPEC \
741 "mips1|mips2|mips32*|mgp32"
742
743 #if MIPS_ABI_DEFAULT == ABI_O64 \
744 || MIPS_ABI_DEFAULT == ABI_N32 \
745 || MIPS_ABI_DEFAULT == ABI_64
746 #define OPT_ARCH64 "mabi=32|mgp32:;"
747 #define OPT_ARCH32 "mabi=32|mgp32"
748 #else
749 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
750 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
751 #endif
752
753 /* Support for a compile-time default CPU, et cetera. The rules are:
754 --with-arch is ignored if -march is specified or a -mips is specified
755 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
756 --with-tune is ignored if -mtune is specified; likewise
757 --with-tune-32 and --with-tune-64.
758 --with-abi is ignored if -mabi is specified.
759 --with-float is ignored if -mhard-float or -msoft-float are
760 specified.
761 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
762 specified. */
763 #define OPTION_DEFAULT_SPECS \
764 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
765 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
766 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
767 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
768 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
769 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
770 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
771 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
772 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
773 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
774 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
775 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
776
777
778 /* A spec that infers the -mdsp setting from an -march argument. */
779 #define BASE_DRIVER_SELF_SPECS \
780 "%{!mno-dsp: \
781 %{march=24ke*|march=34k*|march=1004k*: -mdsp} \
782 %{march=74k*:%{!mno-dspr2: -mdspr2 -mdsp}}}"
783
784 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
785
786 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
787 && ISA_HAS_COND_TRAP)
788
789 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
790
791 /* True if the ABI can only work with 64-bit integer registers. We
792 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
793 otherwise floating-point registers must also be 64-bit. */
794 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
795
796 /* Likewise for 32-bit regs. */
797 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
798
799 /* True if the file format uses 64-bit symbols. At present, this is
800 only true for n64, which uses 64-bit ELF. */
801 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
802
803 /* True if symbols are 64 bits wide. This is usually determined by
804 the ABI's file format, but it can be overridden by -msym32. Note that
805 overriding the size with -msym32 changes the ABI of relocatable objects,
806 although it doesn't change the ABI of a fully-linked object. */
807 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS && !TARGET_SYM32)
808
809 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
810 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
811 || ISA_MIPS4 \
812 || ISA_MIPS64 \
813 || ISA_MIPS64R2)
814
815 /* ISA has branch likely instructions (e.g. mips2). */
816 /* Disable branchlikely for tx39 until compare rewrite. They haven't
817 been generated up to this point. */
818 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
819
820 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
821 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
822 || TARGET_MIPS5400 \
823 || TARGET_MIPS5500 \
824 || TARGET_MIPS7000 \
825 || TARGET_MIPS9000 \
826 || TARGET_MAD \
827 || ISA_MIPS32 \
828 || ISA_MIPS32R2 \
829 || ISA_MIPS64 \
830 || ISA_MIPS64R2) \
831 && !TARGET_MIPS16)
832
833 /* ISA has a three-operand multiplication instruction. */
834 #define ISA_HAS_DMUL3 (TARGET_64BIT \
835 && TARGET_OCTEON \
836 && !TARGET_MIPS16)
837
838 /* ISA has the floating-point conditional move instructions introduced
839 in mips4. */
840 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
841 || ISA_MIPS32 \
842 || ISA_MIPS32R2 \
843 || ISA_MIPS64 \
844 || ISA_MIPS64R2) \
845 && !TARGET_MIPS5500 \
846 && !TARGET_MIPS16)
847
848 /* ISA has the integer conditional move instructions introduced in mips4 and
849 ST Loongson 2E/2F. */
850 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE || TARGET_LOONGSON_2EF)
851
852 /* ISA has LDC1 and SDC1. */
853 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 && !TARGET_MIPS16)
854
855 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
856 branch on CC, and move (both FP and non-FP) on CC. */
857 #define ISA_HAS_8CC (ISA_MIPS4 \
858 || ISA_MIPS32 \
859 || ISA_MIPS32R2 \
860 || ISA_MIPS64 \
861 || ISA_MIPS64R2)
862
863 /* This is a catch all for other mips4 instructions: indexed load, the
864 FP madd and msub instructions, and the FP recip and recip sqrt
865 instructions. */
866 #define ISA_HAS_FP4 ((ISA_MIPS4 \
867 || (ISA_MIPS32R2 && TARGET_FLOAT64) \
868 || ISA_MIPS64 \
869 || ISA_MIPS64R2) \
870 && !TARGET_MIPS16)
871
872 /* ISA has paired-single instructions. */
873 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
874
875 /* ISA has conditional trap instructions. */
876 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
877 && !TARGET_MIPS16)
878
879 /* ISA has integer multiply-accumulate instructions, madd and msub. */
880 #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
881 || ISA_MIPS32R2 \
882 || ISA_MIPS64 \
883 || ISA_MIPS64R2) \
884 && !TARGET_MIPS16)
885
886 /* Integer multiply-accumulate instructions should be generated. */
887 #define GENERATE_MADD_MSUB (ISA_HAS_MADD_MSUB && !TUNE_74K)
888
889 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
890 #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
891
892 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
893 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
894
895 /* ISA has floating-point nmadd and nmsub instructions
896 'd = -((a * b) [+-] c)'. */
897 #define ISA_HAS_NMADD4_NMSUB4(MODE) \
898 ((ISA_MIPS4 \
899 || (ISA_MIPS32R2 && (MODE) == V2SFmode) \
900 || ISA_MIPS64 \
901 || ISA_MIPS64R2) \
902 && (!TARGET_MIPS5400 || TARGET_MAD) \
903 && !TARGET_MIPS16)
904
905 /* ISA has floating-point nmadd and nmsub instructions
906 'c = -((a * b) [+-] c)'. */
907 #define ISA_HAS_NMADD3_NMSUB3(MODE) \
908 TARGET_LOONGSON_2EF
909
910 /* ISA has count leading zeroes/ones instruction (not implemented). */
911 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
912 || ISA_MIPS32R2 \
913 || ISA_MIPS64 \
914 || ISA_MIPS64R2) \
915 && !TARGET_MIPS16)
916
917 /* ISA has three operand multiply instructions that put
918 the high part in an accumulator: mulhi or mulhiu. */
919 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
920 || TARGET_MIPS5500 \
921 || TARGET_SR71K) \
922 && !TARGET_MIPS16)
923
924 /* ISA has three operand multiply instructions that
925 negates the result and puts the result in an accumulator. */
926 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
927 || TARGET_MIPS5500 \
928 || TARGET_SR71K) \
929 && !TARGET_MIPS16)
930
931 /* ISA has three operand multiply instructions that subtracts the
932 result from a 4th operand and puts the result in an accumulator. */
933 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
934 || TARGET_MIPS5500 \
935 || TARGET_SR71K) \
936 && !TARGET_MIPS16)
937
938 /* ISA has three operand multiply instructions that the result
939 from a 4th operand and puts the result in an accumulator. */
940 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
941 || TARGET_MIPS4130 \
942 || TARGET_MIPS5400 \
943 || TARGET_MIPS5500 \
944 || TARGET_SR71K) \
945 && !TARGET_MIPS16)
946
947 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
948 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
949 || TARGET_MIPS4130) \
950 && !TARGET_MIPS16)
951
952 /* ISA has the "ror" (rotate right) instructions. */
953 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
954 || ISA_MIPS64R2 \
955 || TARGET_MIPS5400 \
956 || TARGET_MIPS5500 \
957 || TARGET_SR71K \
958 || TARGET_SMARTMIPS) \
959 && !TARGET_MIPS16)
960
961 /* ISA has data prefetch instructions. This controls use of 'pref'. */
962 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
963 || TARGET_LOONGSON_2EF \
964 || ISA_MIPS32 \
965 || ISA_MIPS32R2 \
966 || ISA_MIPS64 \
967 || ISA_MIPS64R2) \
968 && !TARGET_MIPS16)
969
970 /* ISA has data indexed prefetch instructions. This controls use of
971 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
972 (prefx is a cop1x instruction, so can only be used if FP is
973 enabled.) */
974 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
975 || ISA_MIPS32R2 \
976 || ISA_MIPS64 \
977 || ISA_MIPS64R2) \
978 && !TARGET_MIPS16)
979
980 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
981 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
982 also requires TARGET_DOUBLE_FLOAT. */
983 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
984
985 /* ISA includes the MIPS32r2 seb and seh instructions. */
986 #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \
987 || ISA_MIPS64R2) \
988 && !TARGET_MIPS16)
989
990 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
991 #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \
992 || ISA_MIPS64R2) \
993 && !TARGET_MIPS16)
994
995 /* ISA has instructions for accessing top part of 64-bit fp regs. */
996 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \
997 && (ISA_MIPS32R2 \
998 || ISA_MIPS64R2))
999
1000 /* ISA has lwxs instruction (load w/scaled index address. */
1001 #define ISA_HAS_LWXS (TARGET_SMARTMIPS && !TARGET_MIPS16)
1002
1003 /* The DSP ASE is available. */
1004 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1005
1006 /* Revision 2 of the DSP ASE is available. */
1007 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1008
1009 /* True if the result of a load is not available to the next instruction.
1010 A nop will then be needed between instructions like "lw $4,..."
1011 and "addiu $4,$4,1". */
1012 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1013 && !TARGET_MIPS3900 \
1014 && !TARGET_MIPS16)
1015
1016 /* Likewise mtc1 and mfc1. */
1017 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1018 && !TARGET_LOONGSON_2EF)
1019
1020 /* Likewise floating-point comparisons. */
1021 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1022 && !TARGET_LOONGSON_2EF)
1023
1024 /* True if mflo and mfhi can be immediately followed by instructions
1025 which write to the HI and LO registers.
1026
1027 According to MIPS specifications, MIPS ISAs I, II, and III need
1028 (at least) two instructions between the reads of HI/LO and
1029 instructions which write them, and later ISAs do not. Contradicting
1030 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1031 the UM for the NEC Vr5000) document needing the instructions between
1032 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1033 MIPS64 and later ISAs to have the interlocks, plus any specific
1034 earlier-ISA CPUs for which CPU documentation declares that the
1035 instructions are really interlocked. */
1036 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1037 || ISA_MIPS32R2 \
1038 || ISA_MIPS64 \
1039 || ISA_MIPS64R2 \
1040 || TARGET_MIPS5500 \
1041 || TARGET_LOONGSON_2EF)
1042
1043 /* ISA includes synci, jr.hb and jalr.hb. */
1044 #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \
1045 || ISA_MIPS64R2) \
1046 && !TARGET_MIPS16)
1047
1048 /* ISA includes sync. */
1049 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1050 #define GENERATE_SYNC \
1051 (target_flags_explicit & MASK_LLSC \
1052 ? TARGET_LLSC && !TARGET_MIPS16 \
1053 : ISA_HAS_SYNC)
1054
1055 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1056 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1057 instructions. */
1058 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS16)
1059 #define GENERATE_LL_SC \
1060 (target_flags_explicit & MASK_LLSC \
1061 ? TARGET_LLSC && !TARGET_MIPS16 \
1062 : ISA_HAS_LL_SC)
1063
1064 /* ISA includes the baddu instruction. */
1065 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1066
1067 /* ISA includes the bbit* instructions. */
1068 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1069
1070 /* ISA includes the cins instruction. */
1071 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1072
1073 /* ISA includes the exts instruction. */
1074 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1075
1076 /* ISA includes the seq and sne instructions. */
1077 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1078
1079 /* ISA includes the pop instruction. */
1080 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1081
1082 /* The CACHE instruction is available in non-MIPS16 code. */
1083 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1084
1085 /* The CACHE instruction is available. */
1086 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1087 \f
1088 /* Tell collect what flags to pass to nm. */
1089 #ifndef NM_FLAGS
1090 #define NM_FLAGS "-Bn"
1091 #endif
1092
1093 \f
1094 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
1095 to the assembler. It may be overridden by subtargets. */
1096 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
1097 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
1098 %{noasmopt:-O0} \
1099 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
1100 #endif
1101
1102 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1103 the assembler. It may be overridden by subtargets.
1104
1105 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1106 COFF debugging info. */
1107
1108 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1109 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1110 %{g} %{g0} %{g1} %{g2} %{g3} \
1111 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1112 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1113 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1114 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1115 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1116 #endif
1117
1118 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1119 overridden by subtargets. */
1120
1121 #ifndef SUBTARGET_ASM_SPEC
1122 #define SUBTARGET_ASM_SPEC ""
1123 #endif
1124
1125 #undef ASM_SPEC
1126 #define ASM_SPEC "\
1127 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1128 %{mips32*} %{mips64*} \
1129 %{mips16} %{mno-mips16:-no-mips16} \
1130 %{mips3d} %{mno-mips3d:-no-mips3d} \
1131 %{mdmx} %{mno-mdmx:-no-mdmx} \
1132 %{mdsp} %{mno-dsp} \
1133 %{mdspr2} %{mno-dspr2} \
1134 %{msmartmips} %{mno-smartmips} \
1135 %{mmt} %{mno-mt} \
1136 %{mfix-vr4120} %{mfix-vr4130} \
1137 %(subtarget_asm_optimizing_spec) \
1138 %(subtarget_asm_debugging_spec) \
1139 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1140 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1141 %{mfp32} %{mfp64} \
1142 %{mshared} %{mno-shared} \
1143 %{msym32} %{mno-sym32} \
1144 %{mtune=*} \
1145 %(subtarget_asm_spec)"
1146
1147 /* Extra switches sometimes passed to the linker. */
1148 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
1149 will interpret it as a -b option. */
1150
1151 #ifndef LINK_SPEC
1152 #define LINK_SPEC "\
1153 %(endian_spec) \
1154 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1155 %{bestGnum} %{shared} %{non_shared}"
1156 #endif /* LINK_SPEC defined */
1157
1158
1159 /* Specs for the compiler proper */
1160
1161 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1162 overridden by subtargets. */
1163 #ifndef SUBTARGET_CC1_SPEC
1164 #define SUBTARGET_CC1_SPEC ""
1165 #endif
1166
1167 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1168
1169 #undef CC1_SPEC
1170 #define CC1_SPEC "\
1171 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
1172 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1173 %(subtarget_cc1_spec)"
1174
1175 /* Preprocessor specs. */
1176
1177 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1178 overridden by subtargets. */
1179 #ifndef SUBTARGET_CPP_SPEC
1180 #define SUBTARGET_CPP_SPEC ""
1181 #endif
1182
1183 #define CPP_SPEC "%(subtarget_cpp_spec)"
1184
1185 /* This macro defines names of additional specifications to put in the specs
1186 that can be used in various specifications like CC1_SPEC. Its definition
1187 is an initializer with a subgrouping for each command option.
1188
1189 Each subgrouping contains a string constant, that defines the
1190 specification name, and a string constant that used by the GCC driver
1191 program.
1192
1193 Do not define this macro if it does not need to do anything. */
1194
1195 #define EXTRA_SPECS \
1196 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1197 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1198 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1199 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1200 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1201 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1202 { "endian_spec", ENDIAN_SPEC }, \
1203 SUBTARGET_EXTRA_SPECS
1204
1205 #ifndef SUBTARGET_EXTRA_SPECS
1206 #define SUBTARGET_EXTRA_SPECS
1207 #endif
1208 \f
1209 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1210 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1211
1212 #ifndef PREFERRED_DEBUGGING_TYPE
1213 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1214 #endif
1215
1216 /* The size of DWARF addresses should be the same as the size of symbols
1217 in the target file format. They shouldn't depend on things like -msym32,
1218 because many DWARF consumers do not allow the mixture of address sizes
1219 that one would then get from linking -msym32 code with -msym64 code.
1220
1221 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1222 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1223 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1224
1225 /* By default, turn on GDB extensions. */
1226 #define DEFAULT_GDB_EXTENSIONS 1
1227
1228 /* Local compiler-generated symbols must have a prefix that the assembler
1229 understands. By default, this is $, although some targets (e.g.,
1230 NetBSD-ELF) need to override this. */
1231
1232 #ifndef LOCAL_LABEL_PREFIX
1233 #define LOCAL_LABEL_PREFIX "$"
1234 #endif
1235
1236 /* By default on the mips, external symbols do not have an underscore
1237 prepended, but some targets (e.g., NetBSD) require this. */
1238
1239 #ifndef USER_LABEL_PREFIX
1240 #define USER_LABEL_PREFIX ""
1241 #endif
1242
1243 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1244 since the length can run past this up to a continuation point. */
1245 #undef DBX_CONTIN_LENGTH
1246 #define DBX_CONTIN_LENGTH 1500
1247
1248 /* How to renumber registers for dbx and gdb. */
1249 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1250
1251 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1252 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1253
1254 /* The DWARF 2 CFA column which tracks the return address. */
1255 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1256
1257 /* Before the prologue, RA lives in r31. */
1258 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1259
1260 /* Describe how we implement __builtin_eh_return. */
1261 #define EH_RETURN_DATA_REGNO(N) \
1262 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1263
1264 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1265
1266 #define EH_USES(N) mips_eh_uses (N)
1267
1268 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1269 The default for this in 64-bit mode is 8, which causes problems with
1270 SFmode register saves. */
1271 #define DWARF_CIE_DATA_ALIGNMENT -4
1272
1273 /* Correct the offset of automatic variables and arguments. Note that
1274 the MIPS debug format wants all automatic variables and arguments
1275 to be in terms of the virtual frame pointer (stack pointer before
1276 any adjustment in the function), while the MIPS 3.0 linker wants
1277 the frame pointer to be the stack pointer after the initial
1278 adjustment. */
1279
1280 #define DEBUGGER_AUTO_OFFSET(X) \
1281 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1282 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1283 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1284 \f
1285 /* Target machine storage layout */
1286
1287 #define BITS_BIG_ENDIAN 0
1288 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1289 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1290
1291 #define MAX_BITS_PER_WORD 64
1292
1293 /* Width of a word, in units (bytes). */
1294 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1295 #ifndef IN_LIBGCC2
1296 #define MIN_UNITS_PER_WORD 4
1297 #endif
1298
1299 /* For MIPS, width of a floating point register. */
1300 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1301
1302 /* The number of consecutive floating-point registers needed to store the
1303 largest format supported by the FPU. */
1304 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1305
1306 /* The number of consecutive floating-point registers needed to store the
1307 smallest format supported by the FPU. */
1308 #define MIN_FPRS_PER_FMT \
1309 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1310 ? 1 : MAX_FPRS_PER_FMT)
1311
1312 /* The largest size of value that can be held in floating-point
1313 registers and moved with a single instruction. */
1314 #define UNITS_PER_HWFPVALUE \
1315 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1316
1317 /* The largest size of value that can be held in floating-point
1318 registers. */
1319 #define UNITS_PER_FPVALUE \
1320 (TARGET_SOFT_FLOAT_ABI ? 0 \
1321 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1322 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1323
1324 /* The number of bytes in a double. */
1325 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1326
1327 /* Set the sizes of the core types. */
1328 #define SHORT_TYPE_SIZE 16
1329 #define INT_TYPE_SIZE 32
1330 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1331 #define LONG_LONG_TYPE_SIZE 64
1332
1333 #define FLOAT_TYPE_SIZE 32
1334 #define DOUBLE_TYPE_SIZE 64
1335 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1336
1337 /* Define the sizes of fixed-point types. */
1338 #define SHORT_FRACT_TYPE_SIZE 8
1339 #define FRACT_TYPE_SIZE 16
1340 #define LONG_FRACT_TYPE_SIZE 32
1341 #define LONG_LONG_FRACT_TYPE_SIZE 64
1342
1343 #define SHORT_ACCUM_TYPE_SIZE 16
1344 #define ACCUM_TYPE_SIZE 32
1345 #define LONG_ACCUM_TYPE_SIZE 64
1346 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1347 doesn't support 128-bit integers for MIPS32 currently. */
1348 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1349
1350 /* long double is not a fixed mode, but the idea is that, if we
1351 support long double, we also want a 128-bit integer type. */
1352 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1353
1354 #ifdef IN_LIBGCC2
1355 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1356 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1357 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1358 # else
1359 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1360 # endif
1361 #endif
1362
1363 /* Width in bits of a pointer. */
1364 #ifndef POINTER_SIZE
1365 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1366 #endif
1367
1368 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1369 #define PARM_BOUNDARY BITS_PER_WORD
1370
1371 /* Allocation boundary (in *bits*) for the code of a function. */
1372 #define FUNCTION_BOUNDARY 32
1373
1374 /* Alignment of field after `int : 0' in a structure. */
1375 #define EMPTY_FIELD_BOUNDARY 32
1376
1377 /* Every structure's size must be a multiple of this. */
1378 /* 8 is observed right on a DECstation and on riscos 4.02. */
1379 #define STRUCTURE_SIZE_BOUNDARY 8
1380
1381 /* There is no point aligning anything to a rounder boundary than this. */
1382 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1383
1384 /* All accesses must be aligned. */
1385 #define STRICT_ALIGNMENT 1
1386
1387 /* Define this if you wish to imitate the way many other C compilers
1388 handle alignment of bitfields and the structures that contain
1389 them.
1390
1391 The behavior is that the type written for a bit-field (`int',
1392 `short', or other integer type) imposes an alignment for the
1393 entire structure, as if the structure really did contain an
1394 ordinary field of that type. In addition, the bit-field is placed
1395 within the structure so that it would fit within such a field,
1396 not crossing a boundary for it.
1397
1398 Thus, on most machines, a bit-field whose type is written as `int'
1399 would not cross a four-byte boundary, and would force four-byte
1400 alignment for the whole structure. (The alignment used may not
1401 be four bytes; it is controlled by the other alignment
1402 parameters.)
1403
1404 If the macro is defined, its definition should be a C expression;
1405 a nonzero value for the expression enables this behavior. */
1406
1407 #define PCC_BITFIELD_TYPE_MATTERS 1
1408
1409 /* If defined, a C expression to compute the alignment given to a
1410 constant that is being placed in memory. CONSTANT is the constant
1411 and ALIGN is the alignment that the object would ordinarily have.
1412 The value of this macro is used instead of that alignment to align
1413 the object.
1414
1415 If this macro is not defined, then ALIGN is used.
1416
1417 The typical use of this macro is to increase alignment for string
1418 constants to be word aligned so that `strcpy' calls that copy
1419 constants can be done inline. */
1420
1421 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1422 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1423 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1424
1425 /* If defined, a C expression to compute the alignment for a static
1426 variable. TYPE is the data type, and ALIGN is the alignment that
1427 the object would ordinarily have. The value of this macro is used
1428 instead of that alignment to align the object.
1429
1430 If this macro is not defined, then ALIGN is used.
1431
1432 One use of this macro is to increase alignment of medium-size
1433 data to make it all fit in fewer cache lines. Another is to
1434 cause character arrays to be word-aligned so that `strcpy' calls
1435 that copy constants to character arrays can be done inline. */
1436
1437 #undef DATA_ALIGNMENT
1438 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1439 ((((ALIGN) < BITS_PER_WORD) \
1440 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1441 || TREE_CODE (TYPE) == UNION_TYPE \
1442 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1443
1444 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1445 character arrays to be word-aligned so that `strcpy' calls that copy
1446 constants to character arrays can be done inline, and 'strcmp' can be
1447 optimised to use word loads. */
1448 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1449 DATA_ALIGNMENT (TYPE, ALIGN)
1450
1451 #define PAD_VARARGS_DOWN \
1452 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1453
1454 /* Define if operations between registers always perform the operation
1455 on the full register even if a narrower mode is specified. */
1456 #define WORD_REGISTER_OPERATIONS
1457
1458 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1459 moves. All other references are zero extended. */
1460 #define LOAD_EXTEND_OP(MODE) \
1461 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1462 ? SIGN_EXTEND : ZERO_EXTEND)
1463
1464 /* Define this macro if it is advisable to hold scalars in registers
1465 in a wider mode than that declared by the program. In such cases,
1466 the value is constrained to be within the bounds of the declared
1467 type, but kept valid in the wider mode. The signedness of the
1468 extension may differ from that of the type. */
1469
1470 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1471 if (GET_MODE_CLASS (MODE) == MODE_INT \
1472 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1473 { \
1474 if ((MODE) == SImode) \
1475 (UNSIGNEDP) = 0; \
1476 (MODE) = Pmode; \
1477 }
1478
1479 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1480 Extensions of pointers to word_mode must be signed. */
1481 #define POINTERS_EXTEND_UNSIGNED false
1482
1483 /* Define if loading short immediate values into registers sign extends. */
1484 #define SHORT_IMMEDIATES_SIGN_EXTEND
1485
1486 /* The [d]clz instructions have the natural values at 0. */
1487
1488 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1489 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1490 \f
1491 /* Standard register usage. */
1492
1493 /* Number of hardware registers. We have:
1494
1495 - 32 integer registers
1496 - 32 floating point registers
1497 - 8 condition code registers
1498 - 2 accumulator registers (hi and lo)
1499 - 32 registers each for coprocessors 0, 2 and 3
1500 - 4 fake registers:
1501 - ARG_POINTER_REGNUM
1502 - FRAME_POINTER_REGNUM
1503 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1504 - CPRESTORE_SLOT_REGNUM
1505 - 2 dummy entries that were used at various times in the past.
1506 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1507 - 6 DSP control registers */
1508
1509 #define FIRST_PSEUDO_REGISTER 188
1510
1511 /* By default, fix the kernel registers ($26 and $27), the global
1512 pointer ($28) and the stack pointer ($29). This can change
1513 depending on the command-line options.
1514
1515 Regarding coprocessor registers: without evidence to the contrary,
1516 it's best to assume that each coprocessor register has a unique
1517 use. This can be overridden, in, e.g., mips_option_override or
1518 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1519 inappropriate for a particular target. */
1520
1521 #define FIXED_REGISTERS \
1522 { \
1523 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1524 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1525 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1526 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1527 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1528 /* COP0 registers */ \
1529 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1530 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1531 /* COP2 registers */ \
1532 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1533 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1534 /* COP3 registers */ \
1535 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1536 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1537 /* 6 DSP accumulator registers & 6 control registers */ \
1538 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1539 }
1540
1541
1542 /* Set up this array for o32 by default.
1543
1544 Note that we don't mark $31 as a call-clobbered register. The idea is
1545 that it's really the call instructions themselves which clobber $31.
1546 We don't care what the called function does with it afterwards.
1547
1548 This approach makes it easier to implement sibcalls. Unlike normal
1549 calls, sibcalls don't clobber $31, so the register reaches the
1550 called function in tact. EPILOGUE_USES says that $31 is useful
1551 to the called function. */
1552
1553 #define CALL_USED_REGISTERS \
1554 { \
1555 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1556 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1557 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1558 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1559 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1560 /* COP0 registers */ \
1561 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1562 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1563 /* COP2 registers */ \
1564 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1565 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1566 /* COP3 registers */ \
1567 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1568 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1569 /* 6 DSP accumulator registers & 6 control registers */ \
1570 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1571 }
1572
1573
1574 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1575
1576 #define CALL_REALLY_USED_REGISTERS \
1577 { /* General registers. */ \
1578 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1579 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1580 /* Floating-point registers. */ \
1581 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1582 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1583 /* Others. */ \
1584 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1585 /* COP0 registers */ \
1586 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1587 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1588 /* COP2 registers */ \
1589 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1590 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1591 /* COP3 registers */ \
1592 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1593 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1594 /* 6 DSP accumulator registers & 6 control registers */ \
1595 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1596 }
1597
1598 /* Internal macros to classify a register number as to whether it's a
1599 general purpose register, a floating point register, a
1600 multiply/divide register, or a status register. */
1601
1602 #define GP_REG_FIRST 0
1603 #define GP_REG_LAST 31
1604 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1605 #define GP_DBX_FIRST 0
1606 #define K0_REG_NUM (GP_REG_FIRST + 26)
1607 #define K1_REG_NUM (GP_REG_FIRST + 27)
1608 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1609
1610 #define FP_REG_FIRST 32
1611 #define FP_REG_LAST 63
1612 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1613 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1614
1615 #define MD_REG_FIRST 64
1616 #define MD_REG_LAST 65
1617 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1618 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1619
1620 /* The DWARF 2 CFA column which tracks the return address from a
1621 signal handler context. This means that to maintain backwards
1622 compatibility, no hard register can be assigned this column if it
1623 would need to be handled by the DWARF unwinder. */
1624 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1625
1626 #define ST_REG_FIRST 67
1627 #define ST_REG_LAST 74
1628 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1629
1630
1631 /* FIXME: renumber. */
1632 #define COP0_REG_FIRST 80
1633 #define COP0_REG_LAST 111
1634 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1635
1636 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1637 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1638 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1639
1640 #define COP2_REG_FIRST 112
1641 #define COP2_REG_LAST 143
1642 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1643
1644 #define COP3_REG_FIRST 144
1645 #define COP3_REG_LAST 175
1646 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1647 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1648 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1649
1650 #define DSP_ACC_REG_FIRST 176
1651 #define DSP_ACC_REG_LAST 181
1652 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1653
1654 #define AT_REGNUM (GP_REG_FIRST + 1)
1655 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1656 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1657
1658 /* A few bitfield locations for the coprocessor registers. */
1659 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1660 the cause register for the EIC interrupt mode. */
1661 #define CAUSE_IPL 10
1662 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1663 #define SR_IPL 10
1664 /* Exception Level is at bit 1 of the status register. */
1665 #define SR_EXL 1
1666 /* Interrupt Enable is at bit 0 of the status register. */
1667 #define SR_IE 0
1668
1669 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1670 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1671 should be used instead. */
1672 #define FPSW_REGNUM ST_REG_FIRST
1673
1674 #define GP_REG_P(REGNO) \
1675 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1676 #define M16_REG_P(REGNO) \
1677 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1678 #define FP_REG_P(REGNO) \
1679 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1680 #define MD_REG_P(REGNO) \
1681 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1682 #define ST_REG_P(REGNO) \
1683 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1684 #define COP0_REG_P(REGNO) \
1685 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1686 #define COP2_REG_P(REGNO) \
1687 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1688 #define COP3_REG_P(REGNO) \
1689 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1690 #define ALL_COP_REG_P(REGNO) \
1691 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1692 /* Test if REGNO is one of the 6 new DSP accumulators. */
1693 #define DSP_ACC_REG_P(REGNO) \
1694 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1695 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1696 #define ACC_REG_P(REGNO) \
1697 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1698
1699 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1700
1701 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1702 to initialize the mips16 gp pseudo register. */
1703 #define CONST_GP_P(X) \
1704 (GET_CODE (X) == CONST \
1705 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1706 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1707
1708 /* Return coprocessor number from register number. */
1709
1710 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1711 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1712 : COP3_REG_P (REGNO) ? '3' : '?')
1713
1714
1715 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1716
1717 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1718 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1719
1720 #define MODES_TIEABLE_P mips_modes_tieable_p
1721
1722 /* Register to use for pushing function arguments. */
1723 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1724
1725 /* These two registers don't really exist: they get eliminated to either
1726 the stack or hard frame pointer. */
1727 #define ARG_POINTER_REGNUM 77
1728 #define FRAME_POINTER_REGNUM 78
1729
1730 /* $30 is not available on the mips16, so we use $17 as the frame
1731 pointer. */
1732 #define HARD_FRAME_POINTER_REGNUM \
1733 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1734
1735 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1736 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1737
1738 /* Register in which static-chain is passed to a function. */
1739 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1740
1741 /* Registers used as temporaries in prologue/epilogue code:
1742
1743 - If a MIPS16 PIC function needs access to _gp, it first loads
1744 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1745
1746 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1747 register. The register must not conflict with MIPS16_PIC_TEMP.
1748
1749 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1750 register.
1751
1752 If we're generating MIPS16 code, these registers must come from the
1753 core set of 8. The prologue registers mustn't conflict with any
1754 incoming arguments, the static chain pointer, or the frame pointer.
1755 The epilogue temporary mustn't conflict with the return registers,
1756 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1757 or the EH data registers.
1758
1759 If we're generating interrupt handlers, we use K0 as a temporary register
1760 in prologue/epilogue code. */
1761
1762 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1763 #define MIPS_PROLOGUE_TEMP_REGNUM \
1764 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1765 #define MIPS_EPILOGUE_TEMP_REGNUM \
1766 (cfun->machine->interrupt_handler_p \
1767 ? K0_REG_NUM \
1768 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1769
1770 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1771 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1772 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1773
1774 /* Define this macro if it is as good or better to call a constant
1775 function address than to call an address kept in a register. */
1776 #define NO_FUNCTION_CSE 1
1777
1778 /* The ABI-defined global pointer. Sometimes we use a different
1779 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1780 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1781
1782 /* We normally use $28 as the global pointer. However, when generating
1783 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1784 register instead. They can then avoid saving and restoring $28
1785 and perhaps avoid using a frame at all.
1786
1787 When a leaf function uses something other than $28, mips_expand_prologue
1788 will modify pic_offset_table_rtx in place. Take the register number
1789 from there after reload. */
1790 #define PIC_OFFSET_TABLE_REGNUM \
1791 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1792
1793 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1794 \f
1795 /* Define the classes of registers for register constraints in the
1796 machine description. Also define ranges of constants.
1797
1798 One of the classes must always be named ALL_REGS and include all hard regs.
1799 If there is more than one class, another class must be named NO_REGS
1800 and contain no registers.
1801
1802 The name GENERAL_REGS must be the name of a class (or an alias for
1803 another name such as ALL_REGS). This is the class of registers
1804 that is allowed by "g" or "r" in a register constraint.
1805 Also, registers outside this class are allocated only when
1806 instructions express preferences for them.
1807
1808 The classes must be numbered in nondecreasing order; that is,
1809 a larger-numbered class must never be contained completely
1810 in a smaller-numbered class.
1811
1812 For any two classes, it is very desirable that there be another
1813 class that represents their union. */
1814
1815 enum reg_class
1816 {
1817 NO_REGS, /* no registers in set */
1818 M16_REGS, /* mips16 directly accessible registers */
1819 T_REG, /* mips16 T register ($24) */
1820 M16_T_REGS, /* mips16 registers plus T register */
1821 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1822 V1_REG, /* Register $v1 ($3) used for TLS access. */
1823 LEA_REGS, /* Every GPR except $25 */
1824 GR_REGS, /* integer registers */
1825 FP_REGS, /* floating point registers */
1826 MD0_REG, /* first multiply/divide register */
1827 MD1_REG, /* second multiply/divide register */
1828 MD_REGS, /* multiply/divide registers (hi/lo) */
1829 COP0_REGS, /* generic coprocessor classes */
1830 COP2_REGS,
1831 COP3_REGS,
1832 ST_REGS, /* status registers (fp status) */
1833 DSP_ACC_REGS, /* DSP accumulator registers */
1834 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1835 FRAME_REGS, /* $arg and $frame */
1836 GR_AND_MD0_REGS, /* union classes */
1837 GR_AND_MD1_REGS,
1838 GR_AND_MD_REGS,
1839 GR_AND_ACC_REGS,
1840 ALL_REGS, /* all registers */
1841 LIM_REG_CLASSES /* max value + 1 */
1842 };
1843
1844 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1845
1846 #define GENERAL_REGS GR_REGS
1847
1848 /* An initializer containing the names of the register classes as C
1849 string constants. These names are used in writing some of the
1850 debugging dumps. */
1851
1852 #define REG_CLASS_NAMES \
1853 { \
1854 "NO_REGS", \
1855 "M16_REGS", \
1856 "T_REG", \
1857 "M16_T_REGS", \
1858 "PIC_FN_ADDR_REG", \
1859 "V1_REG", \
1860 "LEA_REGS", \
1861 "GR_REGS", \
1862 "FP_REGS", \
1863 "MD0_REG", \
1864 "MD1_REG", \
1865 "MD_REGS", \
1866 /* coprocessor registers */ \
1867 "COP0_REGS", \
1868 "COP2_REGS", \
1869 "COP3_REGS", \
1870 "ST_REGS", \
1871 "DSP_ACC_REGS", \
1872 "ACC_REGS", \
1873 "FRAME_REGS", \
1874 "GR_AND_MD0_REGS", \
1875 "GR_AND_MD1_REGS", \
1876 "GR_AND_MD_REGS", \
1877 "GR_AND_ACC_REGS", \
1878 "ALL_REGS" \
1879 }
1880
1881 /* An initializer containing the contents of the register classes,
1882 as integers which are bit masks. The Nth integer specifies the
1883 contents of class N. The way the integer MASK is interpreted is
1884 that register R is in the class if `MASK & (1 << R)' is 1.
1885
1886 When the machine has more than 32 registers, an integer does not
1887 suffice. Then the integers are replaced by sub-initializers,
1888 braced groupings containing several integers. Each
1889 sub-initializer must be suitable as an initializer for the type
1890 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1891
1892 #define REG_CLASS_CONTENTS \
1893 { \
1894 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1895 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1896 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1897 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1898 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1899 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1900 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1901 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1902 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1903 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1904 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1905 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1906 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1907 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1908 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1909 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1910 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1911 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1912 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1913 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1914 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1915 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1916 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1917 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1918 }
1919
1920
1921 /* A C expression whose value is a register class containing hard
1922 register REGNO. In general there is more that one such class;
1923 choose a class which is "minimal", meaning that no smaller class
1924 also contains the register. */
1925
1926 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1927
1928 /* A macro whose definition is the name of the class to which a
1929 valid base register must belong. A base register is one used in
1930 an address which is the register value plus a displacement. */
1931
1932 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1933
1934 /* A macro whose definition is the name of the class to which a
1935 valid index register must belong. An index register is one used
1936 in an address where its value is either multiplied by a scale
1937 factor or added to another register (as well as added to a
1938 displacement). */
1939
1940 #define INDEX_REG_CLASS NO_REGS
1941
1942 /* We generally want to put call-clobbered registers ahead of
1943 call-saved ones. (IRA expects this.) */
1944
1945 #define REG_ALLOC_ORDER \
1946 { /* Accumulator registers. When GPRs and accumulators have equal \
1947 cost, we generally prefer to use accumulators. For example, \
1948 a division of multiplication result is better allocated to LO, \
1949 so that we put the MFLO at the point of use instead of at the \
1950 point of definition. It's also needed if we're to take advantage \
1951 of the extra accumulators available with -mdspr2. In some cases, \
1952 it can also help to reduce register pressure. */ \
1953 64, 65,176,177,178,179,180,181, \
1954 /* Call-clobbered GPRs. */ \
1955 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1956 24, 25, 31, \
1957 /* The global pointer. This is call-clobbered for o32 and o64 \
1958 abicalls, call-saved for n32 and n64 abicalls, and a program \
1959 invariant otherwise. Putting it between the call-clobbered \
1960 and call-saved registers should cope with all eventualities. */ \
1961 28, \
1962 /* Call-saved GPRs. */ \
1963 16, 17, 18, 19, 20, 21, 22, 23, 30, \
1964 /* GPRs that can never be exposed to the register allocator. */ \
1965 0, 26, 27, 29, \
1966 /* Call-clobbered FPRs. */ \
1967 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1968 48, 49, 50, 51, \
1969 /* FPRs that are usually call-saved. The odd ones are actually \
1970 call-clobbered for n32, but listing them ahead of the even \
1971 registers might encourage the register allocator to fragment \
1972 the available FPR pairs. We need paired FPRs to store long \
1973 doubles, so it isn't clear that using a different order \
1974 for n32 would be a win. */ \
1975 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1976 /* None of the remaining classes have defined call-saved \
1977 registers. */ \
1978 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
1979 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
1980 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
1981 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
1982 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
1983 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
1984 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
1985 182,183,184,185,186,187 \
1986 }
1987
1988 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1989 to be rearranged based on a particular function. On the mips16, we
1990 want to allocate $24 (T_REG) before other registers for
1991 instructions for which it is possible. */
1992
1993 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
1994
1995 /* True if VALUE is an unsigned 6-bit number. */
1996
1997 #define UIMM6_OPERAND(VALUE) \
1998 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1999
2000 /* True if VALUE is a signed 10-bit number. */
2001
2002 #define IMM10_OPERAND(VALUE) \
2003 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2004
2005 /* True if VALUE is a signed 16-bit number. */
2006
2007 #define SMALL_OPERAND(VALUE) \
2008 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2009
2010 /* True if VALUE is an unsigned 16-bit number. */
2011
2012 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2013 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2014
2015 /* True if VALUE can be loaded into a register using LUI. */
2016
2017 #define LUI_OPERAND(VALUE) \
2018 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2019 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2020
2021 /* Return a value X with the low 16 bits clear, and such that
2022 VALUE - X is a signed 16-bit value. */
2023
2024 #define CONST_HIGH_PART(VALUE) \
2025 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2026
2027 #define CONST_LOW_PART(VALUE) \
2028 ((VALUE) - CONST_HIGH_PART (VALUE))
2029
2030 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2031 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2032 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2033
2034 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
2035 mips_preferred_reload_class (X, CLASS)
2036
2037 /* The HI and LO registers can only be reloaded via the general
2038 registers. Condition code registers can only be loaded to the
2039 general registers, and from the floating point registers. */
2040
2041 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2042 mips_secondary_reload_class (CLASS, MODE, X, true)
2043 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2044 mips_secondary_reload_class (CLASS, MODE, X, false)
2045
2046 /* Return the maximum number of consecutive registers
2047 needed to represent mode MODE in a register of class CLASS. */
2048
2049 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2050
2051 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2052 mips_cannot_change_mode_class (FROM, TO, CLASS)
2053 \f
2054 /* Stack layout; function entry, exit and calling. */
2055
2056 #define STACK_GROWS_DOWNWARD
2057
2058 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2059
2060 /* Size of the area allocated in the frame to save the GP. */
2061
2062 #define MIPS_GP_SAVE_AREA_SIZE \
2063 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2064
2065 /* The offset of the first local variable from the frame pointer. See
2066 mips_compute_frame_info for details about the frame layout. */
2067
2068 #define STARTING_FRAME_OFFSET \
2069 (FRAME_GROWS_DOWNWARD \
2070 ? 0 \
2071 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2072
2073 #define RETURN_ADDR_RTX mips_return_addr
2074
2075 /* Mask off the MIPS16 ISA bit in unwind addresses.
2076
2077 The reason for this is a little subtle. When unwinding a call,
2078 we are given the call's return address, which on most targets
2079 is the address of the following instruction. However, what we
2080 actually want to find is the EH region for the call itself.
2081 The target-independent unwind code therefore searches for "RA - 1".
2082
2083 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2084 RA - 1 is therefore the real (even-valued) start of the return
2085 instruction. EH region labels are usually odd-valued MIPS16 symbols
2086 too, so a search for an even address within a MIPS16 region would
2087 usually work.
2088
2089 However, there is an exception. If the end of an EH region is also
2090 the end of a function, the end label is allowed to be even. This is
2091 necessary because a following non-MIPS16 function may also need EH
2092 information for its first instruction.
2093
2094 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2095 non-ISA-encoded address. This probably isn't ideal, but it is
2096 the traditional (legacy) behavior. It is therefore only safe
2097 to search MIPS EH regions for an _odd-valued_ address.
2098
2099 Masking off the ISA bit means that the target-independent code
2100 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2101 #define MASK_RETURN_ADDR GEN_INT (-2)
2102
2103
2104 /* Similarly, don't use the least-significant bit to tell pointers to
2105 code from vtable index. */
2106
2107 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2108
2109 /* The eliminations to $17 are only used for mips16 code. See the
2110 definition of HARD_FRAME_POINTER_REGNUM. */
2111
2112 #define ELIMINABLE_REGS \
2113 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2114 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2115 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2116 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2117 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2118 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2119
2120 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2121 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2122
2123 /* Allocate stack space for arguments at the beginning of each function. */
2124 #define ACCUMULATE_OUTGOING_ARGS 1
2125
2126 /* The argument pointer always points to the first argument. */
2127 #define FIRST_PARM_OFFSET(FNDECL) 0
2128
2129 /* o32 and o64 reserve stack space for all argument registers. */
2130 #define REG_PARM_STACK_SPACE(FNDECL) \
2131 (TARGET_OLDABI \
2132 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2133 : 0)
2134
2135 /* Define this if it is the responsibility of the caller to
2136 allocate the area reserved for arguments passed in registers.
2137 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2138 of this macro is to determine whether the space is included in
2139 `crtl->outgoing_args_size'. */
2140 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2141
2142 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2143 \f
2144 /* Symbolic macros for the registers used to return integer and floating
2145 point values. */
2146
2147 #define GP_RETURN (GP_REG_FIRST + 2)
2148 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2149
2150 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2151
2152 /* Symbolic macros for the first/last argument registers. */
2153
2154 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2155 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2156 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2157 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2158
2159 #define LIBCALL_VALUE(MODE) \
2160 mips_function_value (NULL_TREE, NULL_TREE, MODE)
2161
2162 #define FUNCTION_VALUE(VALTYPE, FUNC) \
2163 mips_function_value (VALTYPE, FUNC, VOIDmode)
2164
2165 /* 1 if N is a possible register number for a function value.
2166 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2167 Currently, R2 and F0 are only implemented here (C has no complex type) */
2168
2169 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
2170 || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
2171 && (N) == FP_RETURN + 2))
2172
2173 /* 1 if N is a possible register number for function argument passing.
2174 We have no FP argument registers when soft-float. When FP registers
2175 are 32 bits, we can't directly reference the odd numbered ones. */
2176
2177 #define FUNCTION_ARG_REGNO_P(N) \
2178 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2179 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2180 && !fixed_regs[N])
2181 \f
2182 /* This structure has to cope with two different argument allocation
2183 schemes. Most MIPS ABIs view the arguments as a structure, of which
2184 the first N words go in registers and the rest go on the stack. If I
2185 < N, the Ith word might go in Ith integer argument register or in a
2186 floating-point register. For these ABIs, we only need to remember
2187 the offset of the current argument into the structure.
2188
2189 The EABI instead allocates the integer and floating-point arguments
2190 separately. The first N words of FP arguments go in FP registers,
2191 the rest go on the stack. Likewise, the first N words of the other
2192 arguments go in integer registers, and the rest go on the stack. We
2193 need to maintain three counts: the number of integer registers used,
2194 the number of floating-point registers used, and the number of words
2195 passed on the stack.
2196
2197 We could keep separate information for the two ABIs (a word count for
2198 the standard ABIs, and three separate counts for the EABI). But it
2199 seems simpler to view the standard ABIs as forms of EABI that do not
2200 allocate floating-point registers.
2201
2202 So for the standard ABIs, the first N words are allocated to integer
2203 registers, and mips_function_arg decides on an argument-by-argument
2204 basis whether that argument should really go in an integer register,
2205 or in a floating-point one. */
2206
2207 typedef struct mips_args {
2208 /* Always true for varargs functions. Otherwise true if at least
2209 one argument has been passed in an integer register. */
2210 int gp_reg_found;
2211
2212 /* The number of arguments seen so far. */
2213 unsigned int arg_number;
2214
2215 /* The number of integer registers used so far. For all ABIs except
2216 EABI, this is the number of words that have been added to the
2217 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2218 unsigned int num_gprs;
2219
2220 /* For EABI, the number of floating-point registers used so far. */
2221 unsigned int num_fprs;
2222
2223 /* The number of words passed on the stack. */
2224 unsigned int stack_words;
2225
2226 /* On the mips16, we need to keep track of which floating point
2227 arguments were passed in general registers, but would have been
2228 passed in the FP regs if this were a 32-bit function, so that we
2229 can move them to the FP regs if we wind up calling a 32-bit
2230 function. We record this information in fp_code, encoded in base
2231 four. A zero digit means no floating point argument, a one digit
2232 means an SFmode argument, and a two digit means a DFmode argument,
2233 and a three digit is not used. The low order digit is the first
2234 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2235 an SFmode argument. ??? A more sophisticated approach will be
2236 needed if MIPS_ABI != ABI_32. */
2237 int fp_code;
2238
2239 /* True if the function has a prototype. */
2240 int prototype;
2241 } CUMULATIVE_ARGS;
2242
2243 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2244 for a call to a function whose data type is FNTYPE.
2245 For a library call, FNTYPE is 0. */
2246
2247 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2248 mips_init_cumulative_args (&CUM, FNTYPE)
2249
2250 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2251 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2252
2253 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2254 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2255
2256 /* True if using EABI and varargs can be passed in floating-point
2257 registers. Under these conditions, we need a more complex form
2258 of va_list, which tracks GPR, FPR and stack arguments separately. */
2259 #define EABI_FLOAT_VARARGS_P \
2260 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2261
2262 \f
2263 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2264
2265 /* Treat LOC as a byte offset from the stack pointer and round it up
2266 to the next fully-aligned offset. */
2267 #define MIPS_STACK_ALIGN(LOC) \
2268 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2269
2270 \f
2271 /* Output assembler code to FILE to increment profiler label # LABELNO
2272 for profiling a function entry. */
2273
2274 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2275
2276 /* The profiler preserves all interesting registers, including $31. */
2277 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2278
2279 /* No mips port has ever used the profiler counter word, so don't emit it
2280 or the label for it. */
2281
2282 #define NO_PROFILE_COUNTERS 1
2283
2284 /* Define this macro if the code for function profiling should come
2285 before the function prologue. Normally, the profiling code comes
2286 after. */
2287
2288 /* #define PROFILE_BEFORE_PROLOGUE */
2289
2290 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2291 the stack pointer does not matter. The value is tested only in
2292 functions that have frame pointers.
2293 No definition is equivalent to always zero. */
2294
2295 #define EXIT_IGNORE_STACK 1
2296
2297 \f
2298 /* Trampolines are a block of code followed by two pointers. */
2299
2300 #define TRAMPOLINE_SIZE \
2301 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2302
2303 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2304 pointers from a single LUI base. */
2305
2306 #define TRAMPOLINE_ALIGNMENT 64
2307
2308 /* mips_trampoline_init calls this library function to flush
2309 program and data caches. */
2310
2311 #ifndef CACHE_FLUSH_FUNC
2312 #define CACHE_FLUSH_FUNC "_flush_cache"
2313 #endif
2314
2315 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2316 /* Flush both caches. We need to flush the data cache in case \
2317 the system has a write-back cache. */ \
2318 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2319 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2320 GEN_INT (3), TYPE_MODE (integer_type_node))
2321
2322 \f
2323 /* Addressing modes, and classification of registers for them. */
2324
2325 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2326 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2327 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2328
2329 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2330 and check its validity for a certain class.
2331 We have two alternate definitions for each of them.
2332 The usual definition accepts all pseudo regs; the other rejects them all.
2333 The symbol REG_OK_STRICT causes the latter definition to be used.
2334
2335 Most source files want to accept pseudo regs in the hope that
2336 they will get allocated to the class that the insn wants them to be in.
2337 Some source files that are used after register allocation
2338 need to be strict. */
2339
2340 #ifndef REG_OK_STRICT
2341 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2342 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2343 #else
2344 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2345 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2346 #endif
2347
2348 #define REG_OK_FOR_INDEX_P(X) 0
2349
2350 \f
2351 /* Maximum number of registers that can appear in a valid memory address. */
2352
2353 #define MAX_REGS_PER_ADDRESS 1
2354
2355 /* Check for constness inline but use mips_legitimate_address_p
2356 to check whether a constant really is an address. */
2357
2358 #define CONSTANT_ADDRESS_P(X) \
2359 (CONSTANT_P (X) && memory_address_p (SImode, X))
2360
2361 #define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2362
2363 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2364 'the start of the function that this code is output in'. */
2365
2366 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2367 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2368 asm_fprintf ((FILE), "%U%s", \
2369 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2370 else \
2371 asm_fprintf ((FILE), "%U%s", (NAME))
2372 \f
2373 /* Flag to mark a function decl symbol that requires a long call. */
2374 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2375 #define SYMBOL_REF_LONG_CALL_P(X) \
2376 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2377
2378 /* This flag marks functions that cannot be lazily bound. */
2379 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2380 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2381 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2382
2383 /* True if we're generating a form of MIPS16 code in which jump tables
2384 are stored in the text section and encoded as 16-bit PC-relative
2385 offsets. This is only possible when general text loads are allowed,
2386 since the table access itself will be an "lh" instruction. */
2387 /* ??? 16-bit offsets can overflow in large functions. */
2388 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2389
2390 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2391
2392 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? HImode : ptr_mode)
2393
2394 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2395
2396 /* Define this as 1 if `char' should by default be signed; else as 0. */
2397 #ifndef DEFAULT_SIGNED_CHAR
2398 #define DEFAULT_SIGNED_CHAR 1
2399 #endif
2400
2401 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2402 we generally don't want to use them for copying arbitrary data.
2403 A single N-word move is usually the same cost as N single-word moves. */
2404 #define MOVE_MAX UNITS_PER_WORD
2405 #define MAX_MOVE_MAX 8
2406
2407 /* Define this macro as a C expression which is nonzero if
2408 accessing less than a word of memory (i.e. a `char' or a
2409 `short') is no faster than accessing a word of memory, i.e., if
2410 such access require more than one instruction or if there is no
2411 difference in cost between byte and (aligned) word loads.
2412
2413 On RISC machines, it tends to generate better code to define
2414 this as 1, since it avoids making a QI or HI mode register.
2415
2416 But, generating word accesses for -mips16 is generally bad as shifts
2417 (often extended) would be needed for byte accesses. */
2418 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2419
2420 /* Standard MIPS integer shifts truncate the shift amount to the
2421 width of the shifted operand. However, Loongson vector shifts
2422 do not truncate the shift amount at all. */
2423 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2424
2425 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2426 is done just by pretending it is already truncated. */
2427 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2428 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2429
2430
2431 /* Specify the machine mode that pointers have.
2432 After generation of rtl, the compiler makes no further distinction
2433 between pointers and any other objects of this machine mode. */
2434
2435 #ifndef Pmode
2436 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2437 #endif
2438
2439 /* Give call MEMs SImode since it is the "most permissive" mode
2440 for both 32-bit and 64-bit targets. */
2441
2442 #define FUNCTION_MODE SImode
2443
2444 \f
2445
2446 /* Define if copies to/from condition code registers should be avoided.
2447
2448 This is needed for the MIPS because reload_outcc is not complete;
2449 it needs to handle cases where the source is a general or another
2450 condition code register. */
2451 #define AVOID_CCMODE_COPIES
2452
2453 /* A C expression for the cost of a branch instruction. A value of
2454 1 is the default; other values are interpreted relative to that. */
2455
2456 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2457 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2458
2459 /* If defined, modifies the length assigned to instruction INSN as a
2460 function of the context in which it is used. LENGTH is an lvalue
2461 that contains the initially computed length of the insn and should
2462 be updated with the correct length of the insn. */
2463 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2464 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2465
2466 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2467 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2468 its operands. */
2469 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2470 "%*" OPCODE "%?\t" OPERANDS "%/"
2471
2472 /* Return an asm string that forces INSN to be treated as an absolute
2473 J or JAL instruction instead of an assembler macro. */
2474 #define MIPS_ABSOLUTE_JUMP(INSN) \
2475 (TARGET_ABICALLS_PIC2 \
2476 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2477 : INSN)
2478
2479 /* Return the asm template for a call. INSN is the instruction's mnemonic
2480 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2481 number of the target. SIZE_OPNO is the operand number of the argument size
2482 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2483 -1 and the call is indirect, use the function symbol from the call
2484 attributes to attach a R_MIPS_JALR relocation to the call.
2485
2486 When generating GOT code without explicit relocation operators,
2487 all calls should use assembly macros. Otherwise, all indirect
2488 calls should use "jr" or "jalr"; we will arrange to restore $gp
2489 afterwards if necessary. Finally, we can only generate direct
2490 calls for -mabicalls by temporarily switching to non-PIC mode. */
2491 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2492 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2493 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2494 : (REG_P (OPERANDS[TARGET_OPNO]) \
2495 && mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO)) \
2496 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2497 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2498 : REG_P (OPERANDS[TARGET_OPNO]) \
2499 ? "%*" INSN "r\t%" #TARGET_OPNO "%/" \
2500 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/"))
2501 \f
2502 /* Control the assembler format that we output. */
2503
2504 /* Output to assembler file text saying following lines
2505 may contain character constants, extra white space, comments, etc. */
2506
2507 #ifndef ASM_APP_ON
2508 #define ASM_APP_ON " #APP\n"
2509 #endif
2510
2511 /* Output to assembler file text saying following lines
2512 no longer contain unusual constructs. */
2513
2514 #ifndef ASM_APP_OFF
2515 #define ASM_APP_OFF " #NO_APP\n"
2516 #endif
2517
2518 #define REGISTER_NAMES \
2519 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2520 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2521 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2522 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2523 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2524 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2525 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2526 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2527 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2528 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2529 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2530 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2531 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2532 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2533 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2534 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2535 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2536 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2537 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2538 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2539 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2540 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2541 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2542 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2543
2544 /* List the "software" names for each register. Also list the numerical
2545 names for $fp and $sp. */
2546
2547 #define ADDITIONAL_REGISTER_NAMES \
2548 { \
2549 { "$29", 29 + GP_REG_FIRST }, \
2550 { "$30", 30 + GP_REG_FIRST }, \
2551 { "at", 1 + GP_REG_FIRST }, \
2552 { "v0", 2 + GP_REG_FIRST }, \
2553 { "v1", 3 + GP_REG_FIRST }, \
2554 { "a0", 4 + GP_REG_FIRST }, \
2555 { "a1", 5 + GP_REG_FIRST }, \
2556 { "a2", 6 + GP_REG_FIRST }, \
2557 { "a3", 7 + GP_REG_FIRST }, \
2558 { "t0", 8 + GP_REG_FIRST }, \
2559 { "t1", 9 + GP_REG_FIRST }, \
2560 { "t2", 10 + GP_REG_FIRST }, \
2561 { "t3", 11 + GP_REG_FIRST }, \
2562 { "t4", 12 + GP_REG_FIRST }, \
2563 { "t5", 13 + GP_REG_FIRST }, \
2564 { "t6", 14 + GP_REG_FIRST }, \
2565 { "t7", 15 + GP_REG_FIRST }, \
2566 { "s0", 16 + GP_REG_FIRST }, \
2567 { "s1", 17 + GP_REG_FIRST }, \
2568 { "s2", 18 + GP_REG_FIRST }, \
2569 { "s3", 19 + GP_REG_FIRST }, \
2570 { "s4", 20 + GP_REG_FIRST }, \
2571 { "s5", 21 + GP_REG_FIRST }, \
2572 { "s6", 22 + GP_REG_FIRST }, \
2573 { "s7", 23 + GP_REG_FIRST }, \
2574 { "t8", 24 + GP_REG_FIRST }, \
2575 { "t9", 25 + GP_REG_FIRST }, \
2576 { "k0", 26 + GP_REG_FIRST }, \
2577 { "k1", 27 + GP_REG_FIRST }, \
2578 { "gp", 28 + GP_REG_FIRST }, \
2579 { "sp", 29 + GP_REG_FIRST }, \
2580 { "fp", 30 + GP_REG_FIRST }, \
2581 { "ra", 31 + GP_REG_FIRST }, \
2582 ALL_COP_ADDITIONAL_REGISTER_NAMES \
2583 }
2584
2585 /* This is meant to be redefined in the host dependent files. It is a
2586 set of alternative names and regnums for mips coprocessors. */
2587
2588 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
2589
2590 #define DBR_OUTPUT_SEQEND(STREAM) \
2591 do \
2592 { \
2593 /* Undo the effect of '%*'. */ \
2594 mips_pop_asm_switch (&mips_nomacro); \
2595 mips_pop_asm_switch (&mips_noreorder); \
2596 /* Emit a blank line after the delay slot for emphasis. */ \
2597 fputs ("\n", STREAM); \
2598 } \
2599 while (0)
2600
2601 /* mips-tfile does not understand .stabd directives. */
2602 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
2603 dbxout_begin_stabn_sline (LINE); \
2604 dbxout_stab_value_internal_label ("LM", &COUNTER); \
2605 } while (0)
2606
2607 /* Use .loc directives for SDB line numbers. */
2608 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2609 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2610
2611 /* The MIPS implementation uses some labels for its own purpose. The
2612 following lists what labels are created, and are all formed by the
2613 pattern $L[a-z].*. The machine independent portion of GCC creates
2614 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2615
2616 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2617 $Lb[0-9]+ Begin blocks for MIPS debug support
2618 $Lc[0-9]+ Label for use in s<xx> operation.
2619 $Le[0-9]+ End blocks for MIPS debug support */
2620
2621 #undef ASM_DECLARE_OBJECT_NAME
2622 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2623 mips_declare_object (STREAM, NAME, "", ":\n")
2624
2625 /* Globalizing directive for a label. */
2626 #define GLOBAL_ASM_OP "\t.globl\t"
2627
2628 /* This says how to define a global common symbol. */
2629
2630 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2631
2632 /* This says how to define a local common symbol (i.e., not visible to
2633 linker). */
2634
2635 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2636 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2637 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2638 #endif
2639
2640 /* This says how to output an external. It would be possible not to
2641 output anything and let undefined symbol become external. However
2642 the assembler uses length information on externals to allocate in
2643 data/sdata bss/sbss, thereby saving exec time. */
2644
2645 #undef ASM_OUTPUT_EXTERNAL
2646 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2647 mips_output_external(STREAM,DECL,NAME)
2648
2649 /* This is how to declare a function name. The actual work of
2650 emitting the label is moved to function_prologue, so that we can
2651 get the line number correctly emitted before the .ent directive,
2652 and after any .file directives. Define as empty so that the function
2653 is not declared before the .ent directive elsewhere. */
2654
2655 #undef ASM_DECLARE_FUNCTION_NAME
2656 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2657
2658 /* This is how to store into the string LABEL
2659 the symbol_ref name of an internal numbered label where
2660 PREFIX is the class of label and NUM is the number within the class.
2661 This is suitable for output with `assemble_name'. */
2662
2663 #undef ASM_GENERATE_INTERNAL_LABEL
2664 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2665 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2666
2667 /* Print debug labels as "foo = ." rather than "foo:" because they should
2668 represent a byte pointer rather than an ISA-encoded address. This is
2669 particularly important for code like:
2670
2671 $LFBxxx = .
2672 .cfi_startproc
2673 ...
2674 .section .gcc_except_table,...
2675 ...
2676 .uleb128 foo-$LFBxxx
2677
2678 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2679 likewise a byte pointer rather than an ISA-encoded address.
2680
2681 At the time of writing, this hook is not used for the function end
2682 label:
2683
2684 $LFExxx:
2685 .end foo
2686
2687 But this doesn't matter, because GAS doesn't treat a pre-.end label
2688 as a MIPS16 one anyway. */
2689
2690 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2691 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2692
2693 /* This is how to output an element of a case-vector that is absolute. */
2694
2695 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2696 fprintf (STREAM, "\t%s\t%sL%d\n", \
2697 ptr_mode == DImode ? ".dword" : ".word", \
2698 LOCAL_LABEL_PREFIX, \
2699 VALUE)
2700
2701 /* This is how to output an element of a case-vector. We can make the
2702 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2703 is supported. */
2704
2705 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2706 do { \
2707 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2708 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2709 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2710 else if (TARGET_GPWORD) \
2711 fprintf (STREAM, "\t%s\t%sL%d\n", \
2712 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2713 LOCAL_LABEL_PREFIX, VALUE); \
2714 else if (TARGET_RTP_PIC) \
2715 { \
2716 /* Make the entry relative to the start of the function. */ \
2717 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2718 fprintf (STREAM, "\t%s\t%sL%d-", \
2719 Pmode == DImode ? ".dword" : ".word", \
2720 LOCAL_LABEL_PREFIX, VALUE); \
2721 assemble_name (STREAM, XSTR (fnsym, 0)); \
2722 fprintf (STREAM, "\n"); \
2723 } \
2724 else \
2725 fprintf (STREAM, "\t%s\t%sL%d\n", \
2726 ptr_mode == DImode ? ".dword" : ".word", \
2727 LOCAL_LABEL_PREFIX, VALUE); \
2728 } while (0)
2729
2730 /* This is how to output an assembler line
2731 that says to advance the location counter
2732 to a multiple of 2**LOG bytes. */
2733
2734 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2735 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2736
2737 /* This is how to output an assembler line to advance the location
2738 counter by SIZE bytes. */
2739
2740 #undef ASM_OUTPUT_SKIP
2741 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2742 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2743
2744 /* This is how to output a string. */
2745 #undef ASM_OUTPUT_ASCII
2746 #define ASM_OUTPUT_ASCII mips_output_ascii
2747
2748 /* Output #ident as a in the read-only data section. */
2749 #undef ASM_OUTPUT_IDENT
2750 #define ASM_OUTPUT_IDENT(FILE, STRING) \
2751 { \
2752 const char *p = STRING; \
2753 int size = strlen (p) + 1; \
2754 switch_to_section (readonly_data_section); \
2755 assemble_string (p, size); \
2756 }
2757 \f
2758 /* Default to -G 8 */
2759 #ifndef MIPS_DEFAULT_GVALUE
2760 #define MIPS_DEFAULT_GVALUE 8
2761 #endif
2762
2763 /* Define the strings to put out for each section in the object file. */
2764 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2765 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2766
2767 #undef READONLY_DATA_SECTION_ASM_OP
2768 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2769 \f
2770 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2771 do \
2772 { \
2773 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2774 TARGET_64BIT ? "daddiu" : "addiu", \
2775 reg_names[STACK_POINTER_REGNUM], \
2776 reg_names[STACK_POINTER_REGNUM], \
2777 TARGET_64BIT ? "sd" : "sw", \
2778 reg_names[REGNO], \
2779 reg_names[STACK_POINTER_REGNUM]); \
2780 } \
2781 while (0)
2782
2783 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2784 do \
2785 { \
2786 mips_push_asm_switch (&mips_noreorder); \
2787 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2788 TARGET_64BIT ? "ld" : "lw", \
2789 reg_names[REGNO], \
2790 reg_names[STACK_POINTER_REGNUM], \
2791 TARGET_64BIT ? "daddu" : "addu", \
2792 reg_names[STACK_POINTER_REGNUM], \
2793 reg_names[STACK_POINTER_REGNUM]); \
2794 mips_pop_asm_switch (&mips_noreorder); \
2795 } \
2796 while (0)
2797
2798 /* How to start an assembler comment.
2799 The leading space is important (the mips native assembler requires it). */
2800 #ifndef ASM_COMMENT_START
2801 #define ASM_COMMENT_START " #"
2802 #endif
2803 \f
2804 #undef SIZE_TYPE
2805 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2806
2807 #undef PTRDIFF_TYPE
2808 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2809
2810 /* The maximum number of bytes that can be copied by one iteration of
2811 a movmemsi loop; see mips_block_move_loop. */
2812 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2813 (UNITS_PER_WORD * 4)
2814
2815 /* The maximum number of bytes that can be copied by a straight-line
2816 implementation of movmemsi; see mips_block_move_straight. We want
2817 to make sure that any loop-based implementation will iterate at
2818 least twice. */
2819 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2820 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2821
2822 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2823 values were determined experimentally by benchmarking with CSiBE.
2824 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2825 for o32 where we have to restore $gp afterwards as well as make an
2826 indirect call), but in practice, bumping this up higher for
2827 TARGET_ABICALLS doesn't make much difference to code size. */
2828
2829 #define MIPS_CALL_RATIO 8
2830
2831 /* Any loop-based implementation of movmemsi will have at least
2832 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2833 moves, so allow individual copies of fewer elements.
2834
2835 When movmemsi is not available, use a value approximating
2836 the length of a memcpy call sequence, so that move_by_pieces
2837 will generate inline code if it is shorter than a function call.
2838 Since move_by_pieces_ninsns counts memory-to-memory moves, but
2839 we'll have to generate a load/store pair for each, halve the
2840 value of MIPS_CALL_RATIO to take that into account. */
2841
2842 #define MOVE_RATIO(speed) \
2843 (HAVE_movmemsi \
2844 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
2845 : MIPS_CALL_RATIO / 2)
2846
2847 /* movmemsi is meant to generate code that is at least as good as
2848 move_by_pieces. However, movmemsi effectively uses a by-pieces
2849 implementation both for moves smaller than a word and for word-aligned
2850 moves of no more than MIPS_MAX_MOVE_BYTES_STRAIGHT bytes. We should
2851 allow the tree-level optimisers to do such moves by pieces, as it
2852 often exposes other optimization opportunities. We might as well
2853 continue to use movmemsi at the rtl level though, as it produces
2854 better code when scheduling is disabled (such as at -O). */
2855
2856 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2857 (HAVE_movmemsi \
2858 ? (!currently_expanding_to_rtl \
2859 && ((ALIGN) < BITS_PER_WORD \
2860 ? (SIZE) < UNITS_PER_WORD \
2861 : (SIZE) <= MIPS_MAX_MOVE_BYTES_STRAIGHT)) \
2862 : (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
2863 < (unsigned int) MOVE_RATIO (false)))
2864
2865 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2866 of the length of a memset call, but use the default otherwise. */
2867
2868 #define CLEAR_RATIO(speed)\
2869 ((speed) ? 15 : MIPS_CALL_RATIO)
2870
2871 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2872 optimizing for size adjust the ratio to account for the overhead of
2873 loading the constant and replicating it across the word. */
2874
2875 #define SET_RATIO(speed) \
2876 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2877
2878 /* STORE_BY_PIECES_P can be used when copying a constant string, but
2879 in that case each word takes 3 insns (lui, ori, sw), or more in
2880 64-bit mode, instead of 2 (lw, sw). For now we always fail this
2881 and let the move_by_pieces code copy the string from read-only
2882 memory. In the future, this could be tuned further for multi-issue
2883 CPUs that can issue stores down one pipe and arithmetic instructions
2884 down another; in that case, the lui/ori/sw combination would be a
2885 win for long enough strings. */
2886
2887 #define STORE_BY_PIECES_P(SIZE, ALIGN) 0
2888 \f
2889 #ifndef __mips16
2890 /* Since the bits of the _init and _fini function is spread across
2891 many object files, each potentially with its own GP, we must assume
2892 we need to load our GP. We don't preserve $gp or $ra, since each
2893 init/fini chunk is supposed to initialize $gp, and crti/crtn
2894 already take care of preserving $ra and, when appropriate, $gp. */
2895 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2896 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2897 asm (SECTION_OP "\n\
2898 .set noreorder\n\
2899 bal 1f\n\
2900 nop\n\
2901 1: .cpload $31\n\
2902 .set reorder\n\
2903 jal " USER_LABEL_PREFIX #FUNC "\n\
2904 " TEXT_SECTION_ASM_OP);
2905 #endif /* Switch to #elif when we're no longer limited by K&R C. */
2906 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2907 || (defined _ABI64 && _MIPS_SIM == _ABI64)
2908 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2909 asm (SECTION_OP "\n\
2910 .set noreorder\n\
2911 bal 1f\n\
2912 nop\n\
2913 1: .set reorder\n\
2914 .cpsetup $31, $2, 1b\n\
2915 jal " USER_LABEL_PREFIX #FUNC "\n\
2916 " TEXT_SECTION_ASM_OP);
2917 #endif
2918 #endif
2919
2920 #ifndef HAVE_AS_TLS
2921 #define HAVE_AS_TLS 0
2922 #endif
2923
2924 #ifndef USED_FOR_TARGET
2925 /* Information about ".set noFOO; ...; .set FOO" blocks. */
2926 struct mips_asm_switch {
2927 /* The FOO in the description above. */
2928 const char *name;
2929
2930 /* The current block nesting level, or 0 if we aren't in a block. */
2931 int nesting_level;
2932 };
2933
2934 extern const enum reg_class mips_regno_to_class[];
2935 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
2936 extern const char *current_function_file; /* filename current function is in */
2937 extern int num_source_filenames; /* current .file # */
2938 extern struct mips_asm_switch mips_noreorder;
2939 extern struct mips_asm_switch mips_nomacro;
2940 extern struct mips_asm_switch mips_noat;
2941 extern int mips_dbx_regno[];
2942 extern int mips_dwarf_regno[];
2943 extern bool mips_split_p[];
2944 extern bool mips_split_hi_p[];
2945 extern enum processor mips_arch; /* which cpu to codegen for */
2946 extern enum processor mips_tune; /* which cpu to schedule for */
2947 extern int mips_isa; /* architectural level */
2948 extern int mips_abi; /* which ABI to use */
2949 extern const struct mips_cpu_info *mips_arch_info;
2950 extern const struct mips_cpu_info *mips_tune_info;
2951 extern bool mips_base_mips16;
2952 extern enum mips_code_readable_setting mips_code_readable;
2953 extern GTY(()) struct target_globals *mips16_globals;
2954 #endif
2955
2956 /* Enable querying of DFA units. */
2957 #define CPU_UNITS_QUERY 1
2958
2959 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2960 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2961
2962 /* As on most targets, we want the .eh_frame section to be read-only where
2963 possible. And as on most targets, this means two things:
2964
2965 (a) Non-locally-binding pointers must have an indirect encoding,
2966 so that the addresses in the .eh_frame section itself become
2967 locally-binding.
2968
2969 (b) A shared library's .eh_frame section must encode locally-binding
2970 pointers in a relative (relocation-free) form.
2971
2972 However, MIPS has traditionally not allowed directives like:
2973
2974 .long x-.
2975
2976 in cases where "x" is in a different section, or is not defined in the
2977 same assembly file. We are therefore unable to emit the PC-relative
2978 form required by (b) at assembly time.
2979
2980 Fortunately, the linker is able to convert absolute addresses into
2981 PC-relative addresses on our behalf. Unfortunately, only certain
2982 versions of the linker know how to do this for indirect pointers,
2983 and for personality data. We must fall back on using writable
2984 .eh_frame sections for shared libraries if the linker does not
2985 support this feature. */
2986 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2987 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
2988
2989 /* For switching between MIPS16 and non-MIPS16 modes. */
2990 #define SWITCHABLE_TARGET 1