mips-protos.h (SYMBOL_FORCE_TO_MEM): Delete.
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
4 2012
5 Free Software Foundation, Inc.
6 Contributed by A. Lichnewsky (lich@inria.inria.fr).
7 Changed by Michael Meissner (meissner@osf.org).
8 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
9 Brendan Eich (brendan@microunity.com).
10
11 This file is part of GCC.
12
13 GCC is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GCC is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GCC; see the file COPYING3. If not see
25 <http://www.gnu.org/licenses/>. */
26
27
28 #include "config/vxworks-dummy.h"
29
30 #ifdef GENERATOR_FILE
31 /* This is used in some insn conditions, so needs to be declared, but
32 does not need to be defined. */
33 extern int target_flags_explicit;
34 #endif
35
36 /* MIPS external variables defined in mips.c. */
37
38 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
39 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
40 to work on a 64-bit machine. */
41
42 #define ABI_32 0
43 #define ABI_N32 1
44 #define ABI_64 2
45 #define ABI_EABI 3
46 #define ABI_O64 4
47
48 /* Masks that affect tuning.
49
50 PTF_AVOID_BRANCHLIKELY
51 Set if it is usually not profitable to use branch-likely instructions
52 for this target, typically because the branches are always predicted
53 taken and so incur a large overhead when not taken. */
54 #define PTF_AVOID_BRANCHLIKELY 0x1
55
56 /* Information about one recognized processor. Defined here for the
57 benefit of TARGET_CPU_CPP_BUILTINS. */
58 struct mips_cpu_info {
59 /* The 'canonical' name of the processor as far as GCC is concerned.
60 It's typically a manufacturer's prefix followed by a numerical
61 designation. It should be lowercase. */
62 const char *name;
63
64 /* The internal processor number that most closely matches this
65 entry. Several processors can have the same value, if there's no
66 difference between them from GCC's point of view. */
67 enum processor cpu;
68
69 /* The ISA level that the processor implements. */
70 int isa;
71
72 /* A mask of PTF_* values. */
73 unsigned int tune_flags;
74 };
75
76 #include "config/mips/mips-opts.h"
77
78 /* Macros to silence warnings about numbers being signed in traditional
79 C and unsigned in ISO C when compiled on 32-bit hosts. */
80
81 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
82 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
83 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
84
85 \f
86 /* Run-time compilation parameters selecting different hardware subsets. */
87
88 /* True if we are generating position-independent VxWorks RTP code. */
89 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
90
91 /* True if the output file is marked as ".abicalls; .option pic0"
92 (-call_nonpic). */
93 #define TARGET_ABICALLS_PIC0 \
94 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
95
96 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
97 #define TARGET_ABICALLS_PIC2 \
98 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
99
100 /* True if the call patterns should be split into a jalr followed by
101 an instruction to restore $gp. It is only safe to split the load
102 from the call when every use of $gp is explicit.
103
104 See mips_must_initialize_gp_p for details about how we manage the
105 global pointer. */
106
107 #define TARGET_SPLIT_CALLS \
108 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
109
110 /* True if we're generating a form of -mabicalls in which we can use
111 operators like %hi and %lo to refer to locally-binding symbols.
112 We can only do this for -mno-shared, and only then if we can use
113 relocation operations instead of assembly macros. It isn't really
114 worth using absolute sequences for 64-bit symbols because GOT
115 accesses are so much shorter. */
116
117 #define TARGET_ABSOLUTE_ABICALLS \
118 (TARGET_ABICALLS \
119 && !TARGET_SHARED \
120 && TARGET_EXPLICIT_RELOCS \
121 && !ABI_HAS_64BIT_SYMBOLS)
122
123 /* True if we can optimize sibling calls. For simplicity, we only
124 handle cases in which call_insn_operand will reject invalid
125 sibcall addresses. There are two cases in which this isn't true:
126
127 - TARGET_MIPS16. call_insn_operand accepts constant addresses
128 but there is no direct jump instruction. It isn't worth
129 using sibling calls in this case anyway; they would usually
130 be longer than normal calls.
131
132 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
133 accepts global constants, but all sibcalls must be indirect. */
134 #define TARGET_SIBCALLS \
135 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
136
137 /* True if we need to use a global offset table to access some symbols. */
138 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
139
140 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
141 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
142
143 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
144 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
145
146 /* True if we should use .cprestore to store to the cprestore slot.
147
148 We continue to use .cprestore for explicit-reloc code so that JALs
149 inside inline asms will work correctly. */
150 #define TARGET_CPRESTORE_DIRECTIVE \
151 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
152
153 /* True if we can use the J and JAL instructions. */
154 #define TARGET_ABSOLUTE_JUMPS \
155 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
156
157 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
158 This is true for both the PIC and non-PIC VxWorks RTP modes. */
159 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
160
161 /* True if .gpword or .gpdword should be used for switch tables.
162
163 Although GAS does understand .gpdword, the SGI linker mishandles
164 the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
165 We therefore disable GP-relative switch tables for n64 on IRIX targets. */
166 #define TARGET_GPWORD \
167 (TARGET_ABICALLS \
168 && !TARGET_ABSOLUTE_ABICALLS \
169 && !(mips_abi == ABI_64 && TARGET_IRIX6))
170
171 /* True if the output must have a writable .eh_frame.
172 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
173 #ifdef HAVE_LD_PERSONALITY_RELAXATION
174 #define TARGET_WRITABLE_EH_FRAME 0
175 #else
176 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
177 #endif
178
179 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
180 #ifdef HAVE_AS_DSPR1_MULT
181 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
182 #else
183 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
184 #endif
185
186 /* Generate mips16 code */
187 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
188 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
189 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
190 /* Generate mips16e register save/restore sequences. */
191 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
192
193 /* True if we're generating a form of MIPS16 code in which general
194 text loads are allowed. */
195 #define TARGET_MIPS16_TEXT_LOADS \
196 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
197
198 /* True if we're generating a form of MIPS16 code in which PC-relative
199 loads are allowed. */
200 #define TARGET_MIPS16_PCREL_LOADS \
201 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
202
203 /* Generic ISA defines. */
204 #define ISA_MIPS1 (mips_isa == 1)
205 #define ISA_MIPS2 (mips_isa == 2)
206 #define ISA_MIPS3 (mips_isa == 3)
207 #define ISA_MIPS4 (mips_isa == 4)
208 #define ISA_MIPS32 (mips_isa == 32)
209 #define ISA_MIPS32R2 (mips_isa == 33)
210 #define ISA_MIPS64 (mips_isa == 64)
211 #define ISA_MIPS64R2 (mips_isa == 65)
212
213 /* Architecture target defines. */
214 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
215 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
216 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
217 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
218 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
219 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
220 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
221 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
222 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
223 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
224 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
225 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
226 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
227 || mips_arch == PROCESSOR_OCTEON2)
228 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2)
229 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
230 || mips_arch == PROCESSOR_SB1A)
231 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
232
233 /* Scheduling target defines. */
234 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
235 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
236 || mips_tune == PROCESSOR_24KF2_1 \
237 || mips_tune == PROCESSOR_24KF1_1)
238 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
239 || mips_tune == PROCESSOR_74KF2_1 \
240 || mips_tune == PROCESSOR_74KF1_1 \
241 || mips_tune == PROCESSOR_74KF3_2)
242 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
243 || mips_tune == PROCESSOR_LOONGSON_2F)
244 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
245 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
246 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
247 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
248 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
249 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
250 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
251 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
252 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
253 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
254 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
255 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
256 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
257 || mips_tune == PROCESSOR_OCTEON2)
258 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
259 || mips_tune == PROCESSOR_SB1A)
260
261 /* Whether vector modes and intrinsics for ST Microelectronics
262 Loongson-2E/2F processors should be enabled. In o32 pairs of
263 floating-point registers provide 64-bit values. */
264 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
265 && (TARGET_LOONGSON_2EF \
266 || TARGET_LOONGSON_3A))
267
268 /* True if the pre-reload scheduler should try to create chains of
269 multiply-add or multiply-subtract instructions. For example,
270 suppose we have:
271
272 t1 = a * b
273 t2 = t1 + c * d
274 t3 = e * f
275 t4 = t3 - g * h
276
277 t1 will have a higher priority than t2 and t3 will have a higher
278 priority than t4. However, before reload, there is no dependence
279 between t1 and t3, and they can often have similar priorities.
280 The scheduler will then tend to prefer:
281
282 t1 = a * b
283 t3 = e * f
284 t2 = t1 + c * d
285 t4 = t3 - g * h
286
287 which stops us from making full use of macc/madd-style instructions.
288 This sort of situation occurs frequently in Fourier transforms and
289 in unrolled loops.
290
291 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
292 queue so that chained multiply-add and multiply-subtract instructions
293 appear ahead of any other instruction that is likely to clobber lo.
294 In the example above, if t2 and t3 become ready at the same time,
295 the code ensures that t2 is scheduled first.
296
297 Multiply-accumulate instructions are a bigger win for some targets
298 than others, so this macro is defined on an opt-in basis. */
299 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
300 || TUNE_MIPS4120 \
301 || TUNE_MIPS4130 \
302 || TUNE_24K)
303
304 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
305 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
306
307 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
308 directly accessible, while the command-line options select
309 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
310 in use. */
311 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
312 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
313
314 /* False if SC acts as a memory barrier with respect to itself,
315 otherwise a SYNC will be emitted after SC for atomic operations
316 that require ordering between the SC and following loads and
317 stores. It does not tell anything about ordering of loads and
318 stores prior to and following the SC, only about the SC itself and
319 those loads and stores follow it. */
320 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON)
321
322 /* IRIX specific stuff. */
323 #define TARGET_IRIX6 0
324
325 /* Define preprocessor macros for the -march and -mtune options.
326 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
327 processor. If INFO's canonical name is "foo", define PREFIX to
328 be "foo", and define an additional macro PREFIX_FOO. */
329 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
330 do \
331 { \
332 char *macro, *p; \
333 \
334 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
335 for (p = macro; *p != 0; p++) \
336 if (*p == '+') \
337 *p = 'P'; \
338 else \
339 *p = TOUPPER (*p); \
340 \
341 builtin_define (macro); \
342 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
343 free (macro); \
344 } \
345 while (0)
346
347 /* Target CPU builtins. */
348 #define TARGET_CPU_CPP_BUILTINS() \
349 do \
350 { \
351 /* Everyone but IRIX defines this to mips. */ \
352 if (!TARGET_IRIX6) \
353 builtin_assert ("machine=mips"); \
354 \
355 builtin_assert ("cpu=mips"); \
356 builtin_define ("__mips__"); \
357 builtin_define ("_mips"); \
358 \
359 /* We do this here because __mips is defined below and so we \
360 can't use builtin_define_std. We don't ever want to define \
361 "mips" for VxWorks because some of the VxWorks headers \
362 construct include filenames from a root directory macro, \
363 an architecture macro and a filename, where the architecture \
364 macro expands to 'mips'. If we define 'mips' to 1, the \
365 architecture macro expands to 1 as well. */ \
366 if (!flag_iso && !TARGET_VXWORKS) \
367 builtin_define ("mips"); \
368 \
369 if (TARGET_64BIT) \
370 builtin_define ("__mips64"); \
371 \
372 if (!TARGET_IRIX6) \
373 { \
374 /* Treat _R3000 and _R4000 like register-size \
375 defines, which is how they've historically \
376 been used. */ \
377 if (TARGET_64BIT) \
378 { \
379 builtin_define_std ("R4000"); \
380 builtin_define ("_R4000"); \
381 } \
382 else \
383 { \
384 builtin_define_std ("R3000"); \
385 builtin_define ("_R3000"); \
386 } \
387 } \
388 if (TARGET_FLOAT64) \
389 builtin_define ("__mips_fpr=64"); \
390 else \
391 builtin_define ("__mips_fpr=32"); \
392 \
393 if (mips_base_mips16) \
394 builtin_define ("__mips16"); \
395 \
396 if (TARGET_MIPS3D) \
397 builtin_define ("__mips3d"); \
398 \
399 if (TARGET_SMARTMIPS) \
400 builtin_define ("__mips_smartmips"); \
401 \
402 if (TARGET_DSP) \
403 { \
404 builtin_define ("__mips_dsp"); \
405 if (TARGET_DSPR2) \
406 { \
407 builtin_define ("__mips_dspr2"); \
408 builtin_define ("__mips_dsp_rev=2"); \
409 } \
410 else \
411 builtin_define ("__mips_dsp_rev=1"); \
412 } \
413 \
414 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
415 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
416 \
417 if (ISA_MIPS1) \
418 { \
419 builtin_define ("__mips=1"); \
420 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
421 } \
422 else if (ISA_MIPS2) \
423 { \
424 builtin_define ("__mips=2"); \
425 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
426 } \
427 else if (ISA_MIPS3) \
428 { \
429 builtin_define ("__mips=3"); \
430 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
431 } \
432 else if (ISA_MIPS4) \
433 { \
434 builtin_define ("__mips=4"); \
435 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
436 } \
437 else if (ISA_MIPS32) \
438 { \
439 builtin_define ("__mips=32"); \
440 builtin_define ("__mips_isa_rev=1"); \
441 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
442 } \
443 else if (ISA_MIPS32R2) \
444 { \
445 builtin_define ("__mips=32"); \
446 builtin_define ("__mips_isa_rev=2"); \
447 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
448 } \
449 else if (ISA_MIPS64) \
450 { \
451 builtin_define ("__mips=64"); \
452 builtin_define ("__mips_isa_rev=1"); \
453 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
454 } \
455 else if (ISA_MIPS64R2) \
456 { \
457 builtin_define ("__mips=64"); \
458 builtin_define ("__mips_isa_rev=2"); \
459 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
460 } \
461 \
462 switch (mips_abi) \
463 { \
464 case ABI_32: \
465 builtin_define ("_ABIO32=1"); \
466 builtin_define ("_MIPS_SIM=_ABIO32"); \
467 break; \
468 \
469 case ABI_N32: \
470 builtin_define ("_ABIN32=2"); \
471 builtin_define ("_MIPS_SIM=_ABIN32"); \
472 break; \
473 \
474 case ABI_64: \
475 builtin_define ("_ABI64=3"); \
476 builtin_define ("_MIPS_SIM=_ABI64"); \
477 break; \
478 \
479 case ABI_O64: \
480 builtin_define ("_ABIO64=4"); \
481 builtin_define ("_MIPS_SIM=_ABIO64"); \
482 break; \
483 } \
484 \
485 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
486 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
487 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
488 builtin_define_with_int_value ("_MIPS_FPSET", \
489 32 / MAX_FPRS_PER_FMT); \
490 \
491 /* These defines reflect the ABI in use, not whether the \
492 FPU is directly accessible. */ \
493 if (TARGET_NO_FLOAT) \
494 builtin_define ("__mips_no_float"); \
495 else if (TARGET_HARD_FLOAT_ABI) \
496 builtin_define ("__mips_hard_float"); \
497 else \
498 builtin_define ("__mips_soft_float"); \
499 \
500 if (TARGET_SINGLE_FLOAT) \
501 builtin_define ("__mips_single_float"); \
502 \
503 if (TARGET_PAIRED_SINGLE_FLOAT) \
504 builtin_define ("__mips_paired_single_float"); \
505 \
506 if (TARGET_BIG_ENDIAN) \
507 { \
508 builtin_define_std ("MIPSEB"); \
509 builtin_define ("_MIPSEB"); \
510 } \
511 else \
512 { \
513 builtin_define_std ("MIPSEL"); \
514 builtin_define ("_MIPSEL"); \
515 } \
516 \
517 /* Whether calls should go through $25. The separate __PIC__ \
518 macro indicates whether abicalls code might use a GOT. */ \
519 if (TARGET_ABICALLS) \
520 builtin_define ("__mips_abicalls"); \
521 \
522 /* Whether Loongson vector modes are enabled. */ \
523 if (TARGET_LOONGSON_VECTORS) \
524 builtin_define ("__mips_loongson_vector_rev"); \
525 \
526 /* Historical Octeon macro. */ \
527 if (TARGET_OCTEON) \
528 builtin_define ("__OCTEON__"); \
529 \
530 /* Macros dependent on the C dialect. */ \
531 if (preprocessing_asm_p ()) \
532 { \
533 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
534 builtin_define ("_LANGUAGE_ASSEMBLY"); \
535 } \
536 else if (c_dialect_cxx ()) \
537 { \
538 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
539 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
540 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
541 } \
542 else \
543 { \
544 builtin_define_std ("LANGUAGE_C"); \
545 builtin_define ("_LANGUAGE_C"); \
546 } \
547 if (c_dialect_objc ()) \
548 { \
549 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
550 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
551 /* Bizarre, but needed at least for Irix. */ \
552 builtin_define_std ("LANGUAGE_C"); \
553 builtin_define ("_LANGUAGE_C"); \
554 } \
555 \
556 if (mips_abi == ABI_EABI) \
557 builtin_define ("__mips_eabi"); \
558 \
559 if (TARGET_CACHE_BUILTIN) \
560 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
561 } \
562 while (0)
563
564 /* Default target_flags if no switches are specified */
565
566 #ifndef TARGET_DEFAULT
567 #define TARGET_DEFAULT 0
568 #endif
569
570 #ifndef TARGET_CPU_DEFAULT
571 #define TARGET_CPU_DEFAULT 0
572 #endif
573
574 #ifndef TARGET_ENDIAN_DEFAULT
575 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
576 #endif
577
578 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
579 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
580 #endif
581
582 #ifdef IN_LIBGCC2
583 #undef TARGET_64BIT
584 /* Make this compile time constant for libgcc2 */
585 #ifdef __mips64
586 #define TARGET_64BIT 1
587 #else
588 #define TARGET_64BIT 0
589 #endif
590 #endif /* IN_LIBGCC2 */
591
592 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
593 when compiled with hardware floating point. This is because MIPS16
594 code cannot save and restore the floating-point registers, which is
595 important if in a mixed MIPS16/non-MIPS16 environment. */
596
597 #ifdef IN_LIBGCC2
598 #if __mips_hard_float
599 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
600 #endif
601 #endif /* IN_LIBGCC2 */
602
603 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
604
605 #ifndef MULTILIB_ENDIAN_DEFAULT
606 #if TARGET_ENDIAN_DEFAULT == 0
607 #define MULTILIB_ENDIAN_DEFAULT "EL"
608 #else
609 #define MULTILIB_ENDIAN_DEFAULT "EB"
610 #endif
611 #endif
612
613 #ifndef MULTILIB_ISA_DEFAULT
614 # if MIPS_ISA_DEFAULT == 1
615 # define MULTILIB_ISA_DEFAULT "mips1"
616 # else
617 # if MIPS_ISA_DEFAULT == 2
618 # define MULTILIB_ISA_DEFAULT "mips2"
619 # else
620 # if MIPS_ISA_DEFAULT == 3
621 # define MULTILIB_ISA_DEFAULT "mips3"
622 # else
623 # if MIPS_ISA_DEFAULT == 4
624 # define MULTILIB_ISA_DEFAULT "mips4"
625 # else
626 # if MIPS_ISA_DEFAULT == 32
627 # define MULTILIB_ISA_DEFAULT "mips32"
628 # else
629 # if MIPS_ISA_DEFAULT == 33
630 # define MULTILIB_ISA_DEFAULT "mips32r2"
631 # else
632 # if MIPS_ISA_DEFAULT == 64
633 # define MULTILIB_ISA_DEFAULT "mips64"
634 # else
635 # if MIPS_ISA_DEFAULT == 65
636 # define MULTILIB_ISA_DEFAULT "mips64r2"
637 # else
638 # define MULTILIB_ISA_DEFAULT "mips1"
639 # endif
640 # endif
641 # endif
642 # endif
643 # endif
644 # endif
645 # endif
646 # endif
647 #endif
648
649 #ifndef MIPS_ABI_DEFAULT
650 #define MIPS_ABI_DEFAULT ABI_32
651 #endif
652
653 /* Use the most portable ABI flag for the ASM specs. */
654
655 #if MIPS_ABI_DEFAULT == ABI_32
656 #define MULTILIB_ABI_DEFAULT "mabi=32"
657 #endif
658
659 #if MIPS_ABI_DEFAULT == ABI_O64
660 #define MULTILIB_ABI_DEFAULT "mabi=o64"
661 #endif
662
663 #if MIPS_ABI_DEFAULT == ABI_N32
664 #define MULTILIB_ABI_DEFAULT "mabi=n32"
665 #endif
666
667 #if MIPS_ABI_DEFAULT == ABI_64
668 #define MULTILIB_ABI_DEFAULT "mabi=64"
669 #endif
670
671 #if MIPS_ABI_DEFAULT == ABI_EABI
672 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
673 #endif
674
675 #ifndef MULTILIB_DEFAULTS
676 #define MULTILIB_DEFAULTS \
677 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
678 #endif
679
680 /* We must pass -EL to the linker by default for little endian embedded
681 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
682 linker will default to using big-endian output files. The OUTPUT_FORMAT
683 line must be in the linker script, otherwise -EB/-EL will not work. */
684
685 #ifndef ENDIAN_SPEC
686 #if TARGET_ENDIAN_DEFAULT == 0
687 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
688 #else
689 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
690 #endif
691 #endif
692
693 /* A spec condition that matches all non-mips16 -mips arguments. */
694
695 #define MIPS_ISA_LEVEL_OPTION_SPEC \
696 "mips1|mips2|mips3|mips4|mips32*|mips64*"
697
698 /* A spec condition that matches all non-mips16 architecture arguments. */
699
700 #define MIPS_ARCH_OPTION_SPEC \
701 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
702
703 /* A spec that infers a -mips argument from an -march argument,
704 or injects the default if no architecture is specified. */
705
706 #define MIPS_ISA_LEVEL_SPEC \
707 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
708 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
709 %{march=mips2|march=r6000:-mips2} \
710 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
711 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
712 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
713 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
714 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
715 |march=34k*|march=74k*|march=1004k*: -mips32r2} \
716 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
717 |march=xlr|march=loongson3a: -mips64} \
718 %{march=mips64r2|march=octeon: -mips64r2} \
719 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
720
721 /* A spec that infers a -mhard-float or -msoft-float setting from an
722 -march argument. Note that soft-float and hard-float code are not
723 link-compatible. */
724
725 #define MIPS_ARCH_FLOAT_SPEC \
726 "%{mhard-float|msoft-float|march=mips*:; \
727 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
728 |march=34kc|march=74kc|march=1004kc|march=5kc \
729 |march=octeon|march=xlr: -msoft-float; \
730 march=*: -mhard-float}"
731
732 /* A spec condition that matches 32-bit options. It only works if
733 MIPS_ISA_LEVEL_SPEC has been applied. */
734
735 #define MIPS_32BIT_OPTION_SPEC \
736 "mips1|mips2|mips32*|mgp32"
737
738 #if MIPS_ABI_DEFAULT == ABI_O64 \
739 || MIPS_ABI_DEFAULT == ABI_N32 \
740 || MIPS_ABI_DEFAULT == ABI_64
741 #define OPT_ARCH64 "mabi=32|mgp32:;"
742 #define OPT_ARCH32 "mabi=32|mgp32"
743 #else
744 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
745 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
746 #endif
747
748 /* Support for a compile-time default CPU, et cetera. The rules are:
749 --with-arch is ignored if -march is specified or a -mips is specified
750 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
751 --with-tune is ignored if -mtune is specified; likewise
752 --with-tune-32 and --with-tune-64.
753 --with-abi is ignored if -mabi is specified.
754 --with-float is ignored if -mhard-float or -msoft-float are
755 specified.
756 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
757 specified. */
758 #define OPTION_DEFAULT_SPECS \
759 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
760 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
761 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
762 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
763 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
764 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
765 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
766 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
767 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
768 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
769 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
770 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
771
772
773 /* A spec that infers the -mdsp setting from an -march argument. */
774 #define BASE_DRIVER_SELF_SPECS \
775 "%{!mno-dsp: \
776 %{march=24ke*|march=34k*|march=1004k*: -mdsp} \
777 %{march=74k*:%{!mno-dspr2: -mdspr2 -mdsp}}}"
778
779 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
780
781 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
782 && ISA_HAS_COND_TRAP)
783
784 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
785
786 /* True if the ABI can only work with 64-bit integer registers. We
787 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
788 otherwise floating-point registers must also be 64-bit. */
789 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
790
791 /* Likewise for 32-bit regs. */
792 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
793
794 /* True if the file format uses 64-bit symbols. At present, this is
795 only true for n64, which uses 64-bit ELF. */
796 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
797
798 /* True if symbols are 64 bits wide. This is usually determined by
799 the ABI's file format, but it can be overridden by -msym32. Note that
800 overriding the size with -msym32 changes the ABI of relocatable objects,
801 although it doesn't change the ABI of a fully-linked object. */
802 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
803 && Pmode == DImode \
804 && !TARGET_SYM32)
805
806 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
807 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
808 || ISA_MIPS4 \
809 || ISA_MIPS64 \
810 || ISA_MIPS64R2)
811
812 /* ISA has branch likely instructions (e.g. mips2). */
813 /* Disable branchlikely for tx39 until compare rewrite. They haven't
814 been generated up to this point. */
815 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
816
817 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
818 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
819 || TARGET_MIPS5400 \
820 || TARGET_MIPS5500 \
821 || TARGET_MIPS7000 \
822 || TARGET_MIPS9000 \
823 || TARGET_MAD \
824 || ISA_MIPS32 \
825 || ISA_MIPS32R2 \
826 || ISA_MIPS64 \
827 || ISA_MIPS64R2) \
828 && !TARGET_MIPS16)
829
830 /* ISA has a three-operand multiplication instruction. */
831 #define ISA_HAS_DMUL3 (TARGET_64BIT \
832 && TARGET_OCTEON \
833 && !TARGET_MIPS16)
834
835 /* ISA has the floating-point conditional move instructions introduced
836 in mips4. */
837 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
838 || ISA_MIPS32 \
839 || ISA_MIPS32R2 \
840 || ISA_MIPS64 \
841 || ISA_MIPS64R2) \
842 && !TARGET_MIPS5500 \
843 && !TARGET_MIPS16)
844
845 /* ISA has the integer conditional move instructions introduced in mips4 and
846 ST Loongson 2E/2F. */
847 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE || TARGET_LOONGSON_2EF)
848
849 /* ISA has LDC1 and SDC1. */
850 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 && !TARGET_MIPS16)
851
852 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
853 branch on CC, and move (both FP and non-FP) on CC. */
854 #define ISA_HAS_8CC (ISA_MIPS4 \
855 || ISA_MIPS32 \
856 || ISA_MIPS32R2 \
857 || ISA_MIPS64 \
858 || ISA_MIPS64R2)
859
860 /* This is a catch all for other mips4 instructions: indexed load, the
861 FP madd and msub instructions, and the FP recip and recip sqrt
862 instructions. */
863 #define ISA_HAS_FP4 ((ISA_MIPS4 \
864 || (ISA_MIPS32R2 && TARGET_FLOAT64) \
865 || ISA_MIPS64 \
866 || ISA_MIPS64R2) \
867 && !TARGET_MIPS16)
868
869 /* ISA has paired-single instructions. */
870 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
871
872 /* ISA has conditional trap instructions. */
873 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
874 && !TARGET_MIPS16)
875
876 /* ISA has integer multiply-accumulate instructions, madd and msub. */
877 #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
878 || ISA_MIPS32R2 \
879 || ISA_MIPS64 \
880 || ISA_MIPS64R2) \
881 && !TARGET_MIPS16)
882
883 /* Integer multiply-accumulate instructions should be generated. */
884 #define GENERATE_MADD_MSUB (ISA_HAS_MADD_MSUB && !TUNE_74K)
885
886 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
887 #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
888
889 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
890 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
891
892 /* ISA has floating-point nmadd and nmsub instructions
893 'd = -((a * b) [+-] c)'. */
894 #define ISA_HAS_NMADD4_NMSUB4(MODE) \
895 ((ISA_MIPS4 \
896 || (ISA_MIPS32R2 && (MODE) == V2SFmode) \
897 || ISA_MIPS64 \
898 || ISA_MIPS64R2) \
899 && (!TARGET_MIPS5400 || TARGET_MAD) \
900 && !TARGET_MIPS16)
901
902 /* ISA has floating-point nmadd and nmsub instructions
903 'c = -((a * b) [+-] c)'. */
904 #define ISA_HAS_NMADD3_NMSUB3(MODE) \
905 TARGET_LOONGSON_2EF
906
907 /* ISA has count leading zeroes/ones instruction (not implemented). */
908 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
909 || ISA_MIPS32R2 \
910 || ISA_MIPS64 \
911 || ISA_MIPS64R2) \
912 && !TARGET_MIPS16)
913
914 /* ISA has three operand multiply instructions that put
915 the high part in an accumulator: mulhi or mulhiu. */
916 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
917 || TARGET_MIPS5500 \
918 || TARGET_SR71K) \
919 && !TARGET_MIPS16)
920
921 /* ISA has three operand multiply instructions that
922 negates the result and puts the result in an accumulator. */
923 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
924 || TARGET_MIPS5500 \
925 || TARGET_SR71K) \
926 && !TARGET_MIPS16)
927
928 /* ISA has three operand multiply instructions that subtracts the
929 result from a 4th operand and puts the result in an accumulator. */
930 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
931 || TARGET_MIPS5500 \
932 || TARGET_SR71K) \
933 && !TARGET_MIPS16)
934
935 /* ISA has three operand multiply instructions that the result
936 from a 4th operand and puts the result in an accumulator. */
937 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
938 || TARGET_MIPS4130 \
939 || TARGET_MIPS5400 \
940 || TARGET_MIPS5500 \
941 || TARGET_SR71K) \
942 && !TARGET_MIPS16)
943
944 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
945 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
946 || TARGET_MIPS4130) \
947 && !TARGET_MIPS16)
948
949 /* ISA has the "ror" (rotate right) instructions. */
950 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
951 || ISA_MIPS64R2 \
952 || TARGET_MIPS5400 \
953 || TARGET_MIPS5500 \
954 || TARGET_SR71K \
955 || TARGET_SMARTMIPS) \
956 && !TARGET_MIPS16)
957
958 /* ISA has data prefetch instructions. This controls use of 'pref'. */
959 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
960 || TARGET_LOONGSON_2EF \
961 || ISA_MIPS32 \
962 || ISA_MIPS32R2 \
963 || ISA_MIPS64 \
964 || ISA_MIPS64R2) \
965 && !TARGET_MIPS16)
966
967 /* ISA has data indexed prefetch instructions. This controls use of
968 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
969 (prefx is a cop1x instruction, so can only be used if FP is
970 enabled.) */
971 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
972 || ISA_MIPS32R2 \
973 || ISA_MIPS64 \
974 || ISA_MIPS64R2) \
975 && !TARGET_MIPS16)
976
977 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
978 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
979 also requires TARGET_DOUBLE_FLOAT. */
980 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
981
982 /* ISA includes the MIPS32r2 seb and seh instructions. */
983 #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \
984 || ISA_MIPS64R2) \
985 && !TARGET_MIPS16)
986
987 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
988 #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \
989 || ISA_MIPS64R2) \
990 && !TARGET_MIPS16)
991
992 /* ISA has instructions for accessing top part of 64-bit fp regs. */
993 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \
994 && (ISA_MIPS32R2 \
995 || ISA_MIPS64R2))
996
997 /* ISA has lwxs instruction (load w/scaled index address. */
998 #define ISA_HAS_LWXS (TARGET_SMARTMIPS && !TARGET_MIPS16)
999
1000 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1001 #define ISA_HAS_LBX (TARGET_OCTEON2)
1002 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1003 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1004 #define ISA_HAS_LHUX (TARGET_OCTEON2)
1005 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1006 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1007 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1008 && TARGET_64BIT)
1009
1010 /* The DSP ASE is available. */
1011 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1012
1013 /* Revision 2 of the DSP ASE is available. */
1014 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1015
1016 /* True if the result of a load is not available to the next instruction.
1017 A nop will then be needed between instructions like "lw $4,..."
1018 and "addiu $4,$4,1". */
1019 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1020 && !TARGET_MIPS3900 \
1021 && !TARGET_MIPS16)
1022
1023 /* Likewise mtc1 and mfc1. */
1024 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1025 && !TARGET_LOONGSON_2EF)
1026
1027 /* Likewise floating-point comparisons. */
1028 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1029 && !TARGET_LOONGSON_2EF)
1030
1031 /* True if mflo and mfhi can be immediately followed by instructions
1032 which write to the HI and LO registers.
1033
1034 According to MIPS specifications, MIPS ISAs I, II, and III need
1035 (at least) two instructions between the reads of HI/LO and
1036 instructions which write them, and later ISAs do not. Contradicting
1037 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1038 the UM for the NEC Vr5000) document needing the instructions between
1039 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1040 MIPS64 and later ISAs to have the interlocks, plus any specific
1041 earlier-ISA CPUs for which CPU documentation declares that the
1042 instructions are really interlocked. */
1043 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1044 || ISA_MIPS32R2 \
1045 || ISA_MIPS64 \
1046 || ISA_MIPS64R2 \
1047 || TARGET_MIPS5500 \
1048 || TARGET_LOONGSON_2EF)
1049
1050 /* ISA includes synci, jr.hb and jalr.hb. */
1051 #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \
1052 || ISA_MIPS64R2) \
1053 && !TARGET_MIPS16)
1054
1055 /* ISA includes sync. */
1056 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1057 #define GENERATE_SYNC \
1058 (target_flags_explicit & MASK_LLSC \
1059 ? TARGET_LLSC && !TARGET_MIPS16 \
1060 : ISA_HAS_SYNC)
1061
1062 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1063 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1064 instructions. */
1065 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS16)
1066 #define GENERATE_LL_SC \
1067 (target_flags_explicit & MASK_LLSC \
1068 ? TARGET_LLSC && !TARGET_MIPS16 \
1069 : ISA_HAS_LL_SC)
1070
1071 /* ISA includes the baddu instruction. */
1072 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1073
1074 /* ISA includes the bbit* instructions. */
1075 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1076
1077 /* ISA includes the cins instruction. */
1078 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1079
1080 /* ISA includes the exts instruction. */
1081 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1082
1083 /* ISA includes the seq and sne instructions. */
1084 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1085
1086 /* ISA includes the pop instruction. */
1087 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1088
1089 /* The CACHE instruction is available in non-MIPS16 code. */
1090 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1091
1092 /* The CACHE instruction is available. */
1093 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1094 \f
1095 /* Tell collect what flags to pass to nm. */
1096 #ifndef NM_FLAGS
1097 #define NM_FLAGS "-Bn"
1098 #endif
1099
1100 \f
1101 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1102 the assembler. It may be overridden by subtargets.
1103
1104 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1105 COFF debugging info. */
1106
1107 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1108 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1109 %{g} %{g0} %{g1} %{g2} %{g3} \
1110 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1111 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1112 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1113 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1114 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1115 #endif
1116
1117 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1118 overridden by subtargets. */
1119
1120 #ifndef SUBTARGET_ASM_SPEC
1121 #define SUBTARGET_ASM_SPEC ""
1122 #endif
1123
1124 #undef ASM_SPEC
1125 #define ASM_SPEC "\
1126 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1127 %{mips32*} %{mips64*} \
1128 %{mips16} %{mno-mips16:-no-mips16} \
1129 %{mips3d} %{mno-mips3d:-no-mips3d} \
1130 %{mdmx} %{mno-mdmx:-no-mdmx} \
1131 %{mdsp} %{mno-dsp} \
1132 %{mdspr2} %{mno-dspr2} \
1133 %{msmartmips} %{mno-smartmips} \
1134 %{mmt} %{mno-mt} \
1135 %{mfix-vr4120} %{mfix-vr4130} \
1136 %{mfix-24k} \
1137 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1138 %(subtarget_asm_debugging_spec) \
1139 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1140 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1141 %{mfp32} %{mfp64} \
1142 %{mshared} %{mno-shared} \
1143 %{msym32} %{mno-sym32} \
1144 %{mtune=*} \
1145 %(subtarget_asm_spec)"
1146
1147 /* Extra switches sometimes passed to the linker. */
1148
1149 #ifndef LINK_SPEC
1150 #define LINK_SPEC "\
1151 %(endian_spec) \
1152 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1153 %{shared}"
1154 #endif /* LINK_SPEC defined */
1155
1156
1157 /* Specs for the compiler proper */
1158
1159 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1160 overridden by subtargets. */
1161 #ifndef SUBTARGET_CC1_SPEC
1162 #define SUBTARGET_CC1_SPEC ""
1163 #endif
1164
1165 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1166
1167 #undef CC1_SPEC
1168 #define CC1_SPEC "\
1169 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1170 %(subtarget_cc1_spec)"
1171
1172 /* Preprocessor specs. */
1173
1174 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1175 overridden by subtargets. */
1176 #ifndef SUBTARGET_CPP_SPEC
1177 #define SUBTARGET_CPP_SPEC ""
1178 #endif
1179
1180 #define CPP_SPEC "%(subtarget_cpp_spec)"
1181
1182 /* This macro defines names of additional specifications to put in the specs
1183 that can be used in various specifications like CC1_SPEC. Its definition
1184 is an initializer with a subgrouping for each command option.
1185
1186 Each subgrouping contains a string constant, that defines the
1187 specification name, and a string constant that used by the GCC driver
1188 program.
1189
1190 Do not define this macro if it does not need to do anything. */
1191
1192 #define EXTRA_SPECS \
1193 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1194 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1195 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1196 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1197 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1198 { "endian_spec", ENDIAN_SPEC }, \
1199 SUBTARGET_EXTRA_SPECS
1200
1201 #ifndef SUBTARGET_EXTRA_SPECS
1202 #define SUBTARGET_EXTRA_SPECS
1203 #endif
1204 \f
1205 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1206 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1207
1208 #ifndef PREFERRED_DEBUGGING_TYPE
1209 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1210 #endif
1211
1212 /* The size of DWARF addresses should be the same as the size of symbols
1213 in the target file format. They shouldn't depend on things like -msym32,
1214 because many DWARF consumers do not allow the mixture of address sizes
1215 that one would then get from linking -msym32 code with -msym64 code.
1216
1217 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1218 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1219 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1220
1221 /* By default, turn on GDB extensions. */
1222 #define DEFAULT_GDB_EXTENSIONS 1
1223
1224 /* Local compiler-generated symbols must have a prefix that the assembler
1225 understands. By default, this is $, although some targets (e.g.,
1226 NetBSD-ELF) need to override this. */
1227
1228 #ifndef LOCAL_LABEL_PREFIX
1229 #define LOCAL_LABEL_PREFIX "$"
1230 #endif
1231
1232 /* By default on the mips, external symbols do not have an underscore
1233 prepended, but some targets (e.g., NetBSD) require this. */
1234
1235 #ifndef USER_LABEL_PREFIX
1236 #define USER_LABEL_PREFIX ""
1237 #endif
1238
1239 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1240 since the length can run past this up to a continuation point. */
1241 #undef DBX_CONTIN_LENGTH
1242 #define DBX_CONTIN_LENGTH 1500
1243
1244 /* How to renumber registers for dbx and gdb. */
1245 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1246
1247 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1248 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1249
1250 /* The DWARF 2 CFA column which tracks the return address. */
1251 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1252
1253 /* Before the prologue, RA lives in r31. */
1254 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1255
1256 /* Describe how we implement __builtin_eh_return. */
1257 #define EH_RETURN_DATA_REGNO(N) \
1258 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1259
1260 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1261
1262 #define EH_USES(N) mips_eh_uses (N)
1263
1264 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1265 The default for this in 64-bit mode is 8, which causes problems with
1266 SFmode register saves. */
1267 #define DWARF_CIE_DATA_ALIGNMENT -4
1268
1269 /* Correct the offset of automatic variables and arguments. Note that
1270 the MIPS debug format wants all automatic variables and arguments
1271 to be in terms of the virtual frame pointer (stack pointer before
1272 any adjustment in the function), while the MIPS 3.0 linker wants
1273 the frame pointer to be the stack pointer after the initial
1274 adjustment. */
1275
1276 #define DEBUGGER_AUTO_OFFSET(X) \
1277 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1278 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1279 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1280 \f
1281 /* Target machine storage layout */
1282
1283 #define BITS_BIG_ENDIAN 0
1284 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1285 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1286
1287 #define MAX_BITS_PER_WORD 64
1288
1289 /* Width of a word, in units (bytes). */
1290 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1291 #ifndef IN_LIBGCC2
1292 #define MIN_UNITS_PER_WORD 4
1293 #endif
1294
1295 /* For MIPS, width of a floating point register. */
1296 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1297
1298 /* The number of consecutive floating-point registers needed to store the
1299 largest format supported by the FPU. */
1300 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1301
1302 /* The number of consecutive floating-point registers needed to store the
1303 smallest format supported by the FPU. */
1304 #define MIN_FPRS_PER_FMT \
1305 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1306 ? 1 : MAX_FPRS_PER_FMT)
1307
1308 /* The largest size of value that can be held in floating-point
1309 registers and moved with a single instruction. */
1310 #define UNITS_PER_HWFPVALUE \
1311 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1312
1313 /* The largest size of value that can be held in floating-point
1314 registers. */
1315 #define UNITS_PER_FPVALUE \
1316 (TARGET_SOFT_FLOAT_ABI ? 0 \
1317 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1318 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1319
1320 /* The number of bytes in a double. */
1321 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1322
1323 /* Set the sizes of the core types. */
1324 #define SHORT_TYPE_SIZE 16
1325 #define INT_TYPE_SIZE 32
1326 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1327 #define LONG_LONG_TYPE_SIZE 64
1328
1329 #define FLOAT_TYPE_SIZE 32
1330 #define DOUBLE_TYPE_SIZE 64
1331 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1332
1333 /* Define the sizes of fixed-point types. */
1334 #define SHORT_FRACT_TYPE_SIZE 8
1335 #define FRACT_TYPE_SIZE 16
1336 #define LONG_FRACT_TYPE_SIZE 32
1337 #define LONG_LONG_FRACT_TYPE_SIZE 64
1338
1339 #define SHORT_ACCUM_TYPE_SIZE 16
1340 #define ACCUM_TYPE_SIZE 32
1341 #define LONG_ACCUM_TYPE_SIZE 64
1342 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1343 doesn't support 128-bit integers for MIPS32 currently. */
1344 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1345
1346 /* long double is not a fixed mode, but the idea is that, if we
1347 support long double, we also want a 128-bit integer type. */
1348 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1349
1350 #ifdef IN_LIBGCC2
1351 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1352 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1353 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1354 # else
1355 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1356 # endif
1357 #endif
1358
1359 /* Width in bits of a pointer. */
1360 #ifndef POINTER_SIZE
1361 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1362 #endif
1363
1364 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1365 #define PARM_BOUNDARY BITS_PER_WORD
1366
1367 /* Allocation boundary (in *bits*) for the code of a function. */
1368 #define FUNCTION_BOUNDARY 32
1369
1370 /* Alignment of field after `int : 0' in a structure. */
1371 #define EMPTY_FIELD_BOUNDARY 32
1372
1373 /* Every structure's size must be a multiple of this. */
1374 /* 8 is observed right on a DECstation and on riscos 4.02. */
1375 #define STRUCTURE_SIZE_BOUNDARY 8
1376
1377 /* There is no point aligning anything to a rounder boundary than this. */
1378 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1379
1380 /* All accesses must be aligned. */
1381 #define STRICT_ALIGNMENT 1
1382
1383 /* Define this if you wish to imitate the way many other C compilers
1384 handle alignment of bitfields and the structures that contain
1385 them.
1386
1387 The behavior is that the type written for a bit-field (`int',
1388 `short', or other integer type) imposes an alignment for the
1389 entire structure, as if the structure really did contain an
1390 ordinary field of that type. In addition, the bit-field is placed
1391 within the structure so that it would fit within such a field,
1392 not crossing a boundary for it.
1393
1394 Thus, on most machines, a bit-field whose type is written as `int'
1395 would not cross a four-byte boundary, and would force four-byte
1396 alignment for the whole structure. (The alignment used may not
1397 be four bytes; it is controlled by the other alignment
1398 parameters.)
1399
1400 If the macro is defined, its definition should be a C expression;
1401 a nonzero value for the expression enables this behavior. */
1402
1403 #define PCC_BITFIELD_TYPE_MATTERS 1
1404
1405 /* If defined, a C expression to compute the alignment given to a
1406 constant that is being placed in memory. CONSTANT is the constant
1407 and ALIGN is the alignment that the object would ordinarily have.
1408 The value of this macro is used instead of that alignment to align
1409 the object.
1410
1411 If this macro is not defined, then ALIGN is used.
1412
1413 The typical use of this macro is to increase alignment for string
1414 constants to be word aligned so that `strcpy' calls that copy
1415 constants can be done inline. */
1416
1417 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1418 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1419 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1420
1421 /* If defined, a C expression to compute the alignment for a static
1422 variable. TYPE is the data type, and ALIGN is the alignment that
1423 the object would ordinarily have. The value of this macro is used
1424 instead of that alignment to align the object.
1425
1426 If this macro is not defined, then ALIGN is used.
1427
1428 One use of this macro is to increase alignment of medium-size
1429 data to make it all fit in fewer cache lines. Another is to
1430 cause character arrays to be word-aligned so that `strcpy' calls
1431 that copy constants to character arrays can be done inline. */
1432
1433 #undef DATA_ALIGNMENT
1434 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1435 ((((ALIGN) < BITS_PER_WORD) \
1436 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1437 || TREE_CODE (TYPE) == UNION_TYPE \
1438 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1439
1440 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1441 character arrays to be word-aligned so that `strcpy' calls that copy
1442 constants to character arrays can be done inline, and 'strcmp' can be
1443 optimised to use word loads. */
1444 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1445 DATA_ALIGNMENT (TYPE, ALIGN)
1446
1447 #define PAD_VARARGS_DOWN \
1448 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1449
1450 /* Define if operations between registers always perform the operation
1451 on the full register even if a narrower mode is specified. */
1452 #define WORD_REGISTER_OPERATIONS
1453
1454 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1455 moves. All other references are zero extended. */
1456 #define LOAD_EXTEND_OP(MODE) \
1457 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1458 ? SIGN_EXTEND : ZERO_EXTEND)
1459
1460 /* Define this macro if it is advisable to hold scalars in registers
1461 in a wider mode than that declared by the program. In such cases,
1462 the value is constrained to be within the bounds of the declared
1463 type, but kept valid in the wider mode. The signedness of the
1464 extension may differ from that of the type. */
1465
1466 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1467 if (GET_MODE_CLASS (MODE) == MODE_INT \
1468 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1469 { \
1470 if ((MODE) == SImode) \
1471 (UNSIGNEDP) = 0; \
1472 (MODE) = Pmode; \
1473 }
1474
1475 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1476 Extensions of pointers to word_mode must be signed. */
1477 #define POINTERS_EXTEND_UNSIGNED false
1478
1479 /* Define if loading short immediate values into registers sign extends. */
1480 #define SHORT_IMMEDIATES_SIGN_EXTEND
1481
1482 /* The [d]clz instructions have the natural values at 0. */
1483
1484 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1485 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1486 \f
1487 /* Standard register usage. */
1488
1489 /* Number of hardware registers. We have:
1490
1491 - 32 integer registers
1492 - 32 floating point registers
1493 - 8 condition code registers
1494 - 2 accumulator registers (hi and lo)
1495 - 32 registers each for coprocessors 0, 2 and 3
1496 - 4 fake registers:
1497 - ARG_POINTER_REGNUM
1498 - FRAME_POINTER_REGNUM
1499 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1500 - CPRESTORE_SLOT_REGNUM
1501 - 2 dummy entries that were used at various times in the past.
1502 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1503 - 6 DSP control registers */
1504
1505 #define FIRST_PSEUDO_REGISTER 188
1506
1507 /* By default, fix the kernel registers ($26 and $27), the global
1508 pointer ($28) and the stack pointer ($29). This can change
1509 depending on the command-line options.
1510
1511 Regarding coprocessor registers: without evidence to the contrary,
1512 it's best to assume that each coprocessor register has a unique
1513 use. This can be overridden, in, e.g., mips_option_override or
1514 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1515 inappropriate for a particular target. */
1516
1517 #define FIXED_REGISTERS \
1518 { \
1519 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1520 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1521 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1522 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1523 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1524 /* COP0 registers */ \
1525 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1526 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1527 /* COP2 registers */ \
1528 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1529 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1530 /* COP3 registers */ \
1531 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1532 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1533 /* 6 DSP accumulator registers & 6 control registers */ \
1534 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1535 }
1536
1537
1538 /* Set up this array for o32 by default.
1539
1540 Note that we don't mark $31 as a call-clobbered register. The idea is
1541 that it's really the call instructions themselves which clobber $31.
1542 We don't care what the called function does with it afterwards.
1543
1544 This approach makes it easier to implement sibcalls. Unlike normal
1545 calls, sibcalls don't clobber $31, so the register reaches the
1546 called function in tact. EPILOGUE_USES says that $31 is useful
1547 to the called function. */
1548
1549 #define CALL_USED_REGISTERS \
1550 { \
1551 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1552 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1553 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1554 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1555 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1556 /* COP0 registers */ \
1557 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1558 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1559 /* COP2 registers */ \
1560 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1561 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1562 /* COP3 registers */ \
1563 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1564 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1565 /* 6 DSP accumulator registers & 6 control registers */ \
1566 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1567 }
1568
1569
1570 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1571
1572 #define CALL_REALLY_USED_REGISTERS \
1573 { /* General registers. */ \
1574 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1575 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1576 /* Floating-point registers. */ \
1577 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1578 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1579 /* Others. */ \
1580 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1581 /* COP0 registers */ \
1582 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1583 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1584 /* COP2 registers */ \
1585 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1586 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1587 /* COP3 registers */ \
1588 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1589 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1590 /* 6 DSP accumulator registers & 6 control registers */ \
1591 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1592 }
1593
1594 /* Internal macros to classify a register number as to whether it's a
1595 general purpose register, a floating point register, a
1596 multiply/divide register, or a status register. */
1597
1598 #define GP_REG_FIRST 0
1599 #define GP_REG_LAST 31
1600 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1601 #define GP_DBX_FIRST 0
1602 #define K0_REG_NUM (GP_REG_FIRST + 26)
1603 #define K1_REG_NUM (GP_REG_FIRST + 27)
1604 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1605
1606 #define FP_REG_FIRST 32
1607 #define FP_REG_LAST 63
1608 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1609 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1610
1611 #define MD_REG_FIRST 64
1612 #define MD_REG_LAST 65
1613 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1614 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1615
1616 /* The DWARF 2 CFA column which tracks the return address from a
1617 signal handler context. This means that to maintain backwards
1618 compatibility, no hard register can be assigned this column if it
1619 would need to be handled by the DWARF unwinder. */
1620 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1621
1622 #define ST_REG_FIRST 67
1623 #define ST_REG_LAST 74
1624 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1625
1626
1627 /* FIXME: renumber. */
1628 #define COP0_REG_FIRST 80
1629 #define COP0_REG_LAST 111
1630 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1631
1632 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1633 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1634 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1635
1636 #define COP2_REG_FIRST 112
1637 #define COP2_REG_LAST 143
1638 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1639
1640 #define COP3_REG_FIRST 144
1641 #define COP3_REG_LAST 175
1642 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1643 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1644 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1645
1646 #define DSP_ACC_REG_FIRST 176
1647 #define DSP_ACC_REG_LAST 181
1648 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1649
1650 #define AT_REGNUM (GP_REG_FIRST + 1)
1651 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1652 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1653
1654 /* A few bitfield locations for the coprocessor registers. */
1655 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1656 the cause register for the EIC interrupt mode. */
1657 #define CAUSE_IPL 10
1658 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1659 #define SR_IPL 10
1660 /* Exception Level is at bit 1 of the status register. */
1661 #define SR_EXL 1
1662 /* Interrupt Enable is at bit 0 of the status register. */
1663 #define SR_IE 0
1664
1665 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1666 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1667 should be used instead. */
1668 #define FPSW_REGNUM ST_REG_FIRST
1669
1670 #define GP_REG_P(REGNO) \
1671 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1672 #define M16_REG_P(REGNO) \
1673 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1674 #define FP_REG_P(REGNO) \
1675 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1676 #define MD_REG_P(REGNO) \
1677 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1678 #define ST_REG_P(REGNO) \
1679 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1680 #define COP0_REG_P(REGNO) \
1681 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1682 #define COP2_REG_P(REGNO) \
1683 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1684 #define COP3_REG_P(REGNO) \
1685 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1686 #define ALL_COP_REG_P(REGNO) \
1687 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1688 /* Test if REGNO is one of the 6 new DSP accumulators. */
1689 #define DSP_ACC_REG_P(REGNO) \
1690 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1691 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1692 #define ACC_REG_P(REGNO) \
1693 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1694
1695 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1696
1697 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1698 to initialize the mips16 gp pseudo register. */
1699 #define CONST_GP_P(X) \
1700 (GET_CODE (X) == CONST \
1701 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1702 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1703
1704 /* Return coprocessor number from register number. */
1705
1706 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1707 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1708 : COP3_REG_P (REGNO) ? '3' : '?')
1709
1710
1711 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1712
1713 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1714 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1715
1716 #define MODES_TIEABLE_P mips_modes_tieable_p
1717
1718 /* Register to use for pushing function arguments. */
1719 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1720
1721 /* These two registers don't really exist: they get eliminated to either
1722 the stack or hard frame pointer. */
1723 #define ARG_POINTER_REGNUM 77
1724 #define FRAME_POINTER_REGNUM 78
1725
1726 /* $30 is not available on the mips16, so we use $17 as the frame
1727 pointer. */
1728 #define HARD_FRAME_POINTER_REGNUM \
1729 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1730
1731 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1732 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1733
1734 /* Register in which static-chain is passed to a function. */
1735 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1736
1737 /* Registers used as temporaries in prologue/epilogue code:
1738
1739 - If a MIPS16 PIC function needs access to _gp, it first loads
1740 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1741
1742 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1743 register. The register must not conflict with MIPS16_PIC_TEMP.
1744
1745 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1746 register.
1747
1748 If we're generating MIPS16 code, these registers must come from the
1749 core set of 8. The prologue registers mustn't conflict with any
1750 incoming arguments, the static chain pointer, or the frame pointer.
1751 The epilogue temporary mustn't conflict with the return registers,
1752 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1753 or the EH data registers.
1754
1755 If we're generating interrupt handlers, we use K0 as a temporary register
1756 in prologue/epilogue code. */
1757
1758 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1759 #define MIPS_PROLOGUE_TEMP_REGNUM \
1760 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1761 #define MIPS_EPILOGUE_TEMP_REGNUM \
1762 (cfun->machine->interrupt_handler_p \
1763 ? K0_REG_NUM \
1764 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1765
1766 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1767 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1768 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1769
1770 /* Define this macro if it is as good or better to call a constant
1771 function address than to call an address kept in a register. */
1772 #define NO_FUNCTION_CSE 1
1773
1774 /* The ABI-defined global pointer. Sometimes we use a different
1775 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1776 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1777
1778 /* We normally use $28 as the global pointer. However, when generating
1779 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1780 register instead. They can then avoid saving and restoring $28
1781 and perhaps avoid using a frame at all.
1782
1783 When a leaf function uses something other than $28, mips_expand_prologue
1784 will modify pic_offset_table_rtx in place. Take the register number
1785 from there after reload. */
1786 #define PIC_OFFSET_TABLE_REGNUM \
1787 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1788 \f
1789 /* Define the classes of registers for register constraints in the
1790 machine description. Also define ranges of constants.
1791
1792 One of the classes must always be named ALL_REGS and include all hard regs.
1793 If there is more than one class, another class must be named NO_REGS
1794 and contain no registers.
1795
1796 The name GENERAL_REGS must be the name of a class (or an alias for
1797 another name such as ALL_REGS). This is the class of registers
1798 that is allowed by "g" or "r" in a register constraint.
1799 Also, registers outside this class are allocated only when
1800 instructions express preferences for them.
1801
1802 The classes must be numbered in nondecreasing order; that is,
1803 a larger-numbered class must never be contained completely
1804 in a smaller-numbered class.
1805
1806 For any two classes, it is very desirable that there be another
1807 class that represents their union. */
1808
1809 enum reg_class
1810 {
1811 NO_REGS, /* no registers in set */
1812 M16_REGS, /* mips16 directly accessible registers */
1813 T_REG, /* mips16 T register ($24) */
1814 M16_T_REGS, /* mips16 registers plus T register */
1815 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1816 V1_REG, /* Register $v1 ($3) used for TLS access. */
1817 LEA_REGS, /* Every GPR except $25 */
1818 GR_REGS, /* integer registers */
1819 FP_REGS, /* floating point registers */
1820 MD0_REG, /* first multiply/divide register */
1821 MD1_REG, /* second multiply/divide register */
1822 MD_REGS, /* multiply/divide registers (hi/lo) */
1823 COP0_REGS, /* generic coprocessor classes */
1824 COP2_REGS,
1825 COP3_REGS,
1826 ST_REGS, /* status registers (fp status) */
1827 DSP_ACC_REGS, /* DSP accumulator registers */
1828 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1829 FRAME_REGS, /* $arg and $frame */
1830 GR_AND_MD0_REGS, /* union classes */
1831 GR_AND_MD1_REGS,
1832 GR_AND_MD_REGS,
1833 GR_AND_ACC_REGS,
1834 ALL_REGS, /* all registers */
1835 LIM_REG_CLASSES /* max value + 1 */
1836 };
1837
1838 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1839
1840 #define GENERAL_REGS GR_REGS
1841
1842 /* An initializer containing the names of the register classes as C
1843 string constants. These names are used in writing some of the
1844 debugging dumps. */
1845
1846 #define REG_CLASS_NAMES \
1847 { \
1848 "NO_REGS", \
1849 "M16_REGS", \
1850 "T_REG", \
1851 "M16_T_REGS", \
1852 "PIC_FN_ADDR_REG", \
1853 "V1_REG", \
1854 "LEA_REGS", \
1855 "GR_REGS", \
1856 "FP_REGS", \
1857 "MD0_REG", \
1858 "MD1_REG", \
1859 "MD_REGS", \
1860 /* coprocessor registers */ \
1861 "COP0_REGS", \
1862 "COP2_REGS", \
1863 "COP3_REGS", \
1864 "ST_REGS", \
1865 "DSP_ACC_REGS", \
1866 "ACC_REGS", \
1867 "FRAME_REGS", \
1868 "GR_AND_MD0_REGS", \
1869 "GR_AND_MD1_REGS", \
1870 "GR_AND_MD_REGS", \
1871 "GR_AND_ACC_REGS", \
1872 "ALL_REGS" \
1873 }
1874
1875 /* An initializer containing the contents of the register classes,
1876 as integers which are bit masks. The Nth integer specifies the
1877 contents of class N. The way the integer MASK is interpreted is
1878 that register R is in the class if `MASK & (1 << R)' is 1.
1879
1880 When the machine has more than 32 registers, an integer does not
1881 suffice. Then the integers are replaced by sub-initializers,
1882 braced groupings containing several integers. Each
1883 sub-initializer must be suitable as an initializer for the type
1884 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1885
1886 #define REG_CLASS_CONTENTS \
1887 { \
1888 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1889 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1890 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1891 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1892 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1893 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1894 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1895 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1896 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1897 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1898 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1899 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1900 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1901 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1902 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1903 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1904 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1905 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1906 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1907 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1908 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1909 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1910 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1911 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1912 }
1913
1914
1915 /* A C expression whose value is a register class containing hard
1916 register REGNO. In general there is more that one such class;
1917 choose a class which is "minimal", meaning that no smaller class
1918 also contains the register. */
1919
1920 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1921
1922 /* A macro whose definition is the name of the class to which a
1923 valid base register must belong. A base register is one used in
1924 an address which is the register value plus a displacement. */
1925
1926 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1927
1928 /* A macro whose definition is the name of the class to which a
1929 valid index register must belong. An index register is one used
1930 in an address where its value is either multiplied by a scale
1931 factor or added to another register (as well as added to a
1932 displacement). */
1933
1934 #define INDEX_REG_CLASS NO_REGS
1935
1936 /* We generally want to put call-clobbered registers ahead of
1937 call-saved ones. (IRA expects this.) */
1938
1939 #define REG_ALLOC_ORDER \
1940 { /* Accumulator registers. When GPRs and accumulators have equal \
1941 cost, we generally prefer to use accumulators. For example, \
1942 a division of multiplication result is better allocated to LO, \
1943 so that we put the MFLO at the point of use instead of at the \
1944 point of definition. It's also needed if we're to take advantage \
1945 of the extra accumulators available with -mdspr2. In some cases, \
1946 it can also help to reduce register pressure. */ \
1947 64, 65,176,177,178,179,180,181, \
1948 /* Call-clobbered GPRs. */ \
1949 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1950 24, 25, 31, \
1951 /* The global pointer. This is call-clobbered for o32 and o64 \
1952 abicalls, call-saved for n32 and n64 abicalls, and a program \
1953 invariant otherwise. Putting it between the call-clobbered \
1954 and call-saved registers should cope with all eventualities. */ \
1955 28, \
1956 /* Call-saved GPRs. */ \
1957 16, 17, 18, 19, 20, 21, 22, 23, 30, \
1958 /* GPRs that can never be exposed to the register allocator. */ \
1959 0, 26, 27, 29, \
1960 /* Call-clobbered FPRs. */ \
1961 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1962 48, 49, 50, 51, \
1963 /* FPRs that are usually call-saved. The odd ones are actually \
1964 call-clobbered for n32, but listing them ahead of the even \
1965 registers might encourage the register allocator to fragment \
1966 the available FPR pairs. We need paired FPRs to store long \
1967 doubles, so it isn't clear that using a different order \
1968 for n32 would be a win. */ \
1969 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1970 /* None of the remaining classes have defined call-saved \
1971 registers. */ \
1972 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
1973 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
1974 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
1975 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
1976 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
1977 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
1978 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
1979 182,183,184,185,186,187 \
1980 }
1981
1982 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1983 to be rearranged based on a particular function. On the mips16, we
1984 want to allocate $24 (T_REG) before other registers for
1985 instructions for which it is possible. */
1986
1987 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
1988
1989 /* True if VALUE is an unsigned 6-bit number. */
1990
1991 #define UIMM6_OPERAND(VALUE) \
1992 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1993
1994 /* True if VALUE is a signed 10-bit number. */
1995
1996 #define IMM10_OPERAND(VALUE) \
1997 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
1998
1999 /* True if VALUE is a signed 16-bit number. */
2000
2001 #define SMALL_OPERAND(VALUE) \
2002 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2003
2004 /* True if VALUE is an unsigned 16-bit number. */
2005
2006 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2007 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2008
2009 /* True if VALUE can be loaded into a register using LUI. */
2010
2011 #define LUI_OPERAND(VALUE) \
2012 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2013 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2014
2015 /* Return a value X with the low 16 bits clear, and such that
2016 VALUE - X is a signed 16-bit value. */
2017
2018 #define CONST_HIGH_PART(VALUE) \
2019 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2020
2021 #define CONST_LOW_PART(VALUE) \
2022 ((VALUE) - CONST_HIGH_PART (VALUE))
2023
2024 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2025 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2026 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2027
2028 /* The HI and LO registers can only be reloaded via the general
2029 registers. Condition code registers can only be loaded to the
2030 general registers, and from the floating point registers. */
2031
2032 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2033 mips_secondary_reload_class (CLASS, MODE, X, true)
2034 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2035 mips_secondary_reload_class (CLASS, MODE, X, false)
2036
2037 /* Return the maximum number of consecutive registers
2038 needed to represent mode MODE in a register of class CLASS. */
2039
2040 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2041
2042 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2043 mips_cannot_change_mode_class (FROM, TO, CLASS)
2044 \f
2045 /* Stack layout; function entry, exit and calling. */
2046
2047 #define STACK_GROWS_DOWNWARD
2048
2049 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2050
2051 /* Size of the area allocated in the frame to save the GP. */
2052
2053 #define MIPS_GP_SAVE_AREA_SIZE \
2054 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2055
2056 /* The offset of the first local variable from the frame pointer. See
2057 mips_compute_frame_info for details about the frame layout. */
2058
2059 #define STARTING_FRAME_OFFSET \
2060 (FRAME_GROWS_DOWNWARD \
2061 ? 0 \
2062 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2063
2064 #define RETURN_ADDR_RTX mips_return_addr
2065
2066 /* Mask off the MIPS16 ISA bit in unwind addresses.
2067
2068 The reason for this is a little subtle. When unwinding a call,
2069 we are given the call's return address, which on most targets
2070 is the address of the following instruction. However, what we
2071 actually want to find is the EH region for the call itself.
2072 The target-independent unwind code therefore searches for "RA - 1".
2073
2074 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2075 RA - 1 is therefore the real (even-valued) start of the return
2076 instruction. EH region labels are usually odd-valued MIPS16 symbols
2077 too, so a search for an even address within a MIPS16 region would
2078 usually work.
2079
2080 However, there is an exception. If the end of an EH region is also
2081 the end of a function, the end label is allowed to be even. This is
2082 necessary because a following non-MIPS16 function may also need EH
2083 information for its first instruction.
2084
2085 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2086 non-ISA-encoded address. This probably isn't ideal, but it is
2087 the traditional (legacy) behavior. It is therefore only safe
2088 to search MIPS EH regions for an _odd-valued_ address.
2089
2090 Masking off the ISA bit means that the target-independent code
2091 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2092 #define MASK_RETURN_ADDR GEN_INT (-2)
2093
2094
2095 /* Similarly, don't use the least-significant bit to tell pointers to
2096 code from vtable index. */
2097
2098 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2099
2100 /* The eliminations to $17 are only used for mips16 code. See the
2101 definition of HARD_FRAME_POINTER_REGNUM. */
2102
2103 #define ELIMINABLE_REGS \
2104 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2105 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2106 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2107 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2108 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2109 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2110
2111 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2112 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2113
2114 /* Allocate stack space for arguments at the beginning of each function. */
2115 #define ACCUMULATE_OUTGOING_ARGS 1
2116
2117 /* The argument pointer always points to the first argument. */
2118 #define FIRST_PARM_OFFSET(FNDECL) 0
2119
2120 /* o32 and o64 reserve stack space for all argument registers. */
2121 #define REG_PARM_STACK_SPACE(FNDECL) \
2122 (TARGET_OLDABI \
2123 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2124 : 0)
2125
2126 /* Define this if it is the responsibility of the caller to
2127 allocate the area reserved for arguments passed in registers.
2128 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2129 of this macro is to determine whether the space is included in
2130 `crtl->outgoing_args_size'. */
2131 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2132
2133 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2134 \f
2135 /* Symbolic macros for the registers used to return integer and floating
2136 point values. */
2137
2138 #define GP_RETURN (GP_REG_FIRST + 2)
2139 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2140
2141 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2142
2143 /* Symbolic macros for the first/last argument registers. */
2144
2145 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2146 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2147 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2148 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2149
2150 /* 1 if N is a possible register number for function argument passing.
2151 We have no FP argument registers when soft-float. When FP registers
2152 are 32 bits, we can't directly reference the odd numbered ones. */
2153
2154 #define FUNCTION_ARG_REGNO_P(N) \
2155 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2156 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2157 && !fixed_regs[N])
2158 \f
2159 /* This structure has to cope with two different argument allocation
2160 schemes. Most MIPS ABIs view the arguments as a structure, of which
2161 the first N words go in registers and the rest go on the stack. If I
2162 < N, the Ith word might go in Ith integer argument register or in a
2163 floating-point register. For these ABIs, we only need to remember
2164 the offset of the current argument into the structure.
2165
2166 The EABI instead allocates the integer and floating-point arguments
2167 separately. The first N words of FP arguments go in FP registers,
2168 the rest go on the stack. Likewise, the first N words of the other
2169 arguments go in integer registers, and the rest go on the stack. We
2170 need to maintain three counts: the number of integer registers used,
2171 the number of floating-point registers used, and the number of words
2172 passed on the stack.
2173
2174 We could keep separate information for the two ABIs (a word count for
2175 the standard ABIs, and three separate counts for the EABI). But it
2176 seems simpler to view the standard ABIs as forms of EABI that do not
2177 allocate floating-point registers.
2178
2179 So for the standard ABIs, the first N words are allocated to integer
2180 registers, and mips_function_arg decides on an argument-by-argument
2181 basis whether that argument should really go in an integer register,
2182 or in a floating-point one. */
2183
2184 typedef struct mips_args {
2185 /* Always true for varargs functions. Otherwise true if at least
2186 one argument has been passed in an integer register. */
2187 int gp_reg_found;
2188
2189 /* The number of arguments seen so far. */
2190 unsigned int arg_number;
2191
2192 /* The number of integer registers used so far. For all ABIs except
2193 EABI, this is the number of words that have been added to the
2194 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2195 unsigned int num_gprs;
2196
2197 /* For EABI, the number of floating-point registers used so far. */
2198 unsigned int num_fprs;
2199
2200 /* The number of words passed on the stack. */
2201 unsigned int stack_words;
2202
2203 /* On the mips16, we need to keep track of which floating point
2204 arguments were passed in general registers, but would have been
2205 passed in the FP regs if this were a 32-bit function, so that we
2206 can move them to the FP regs if we wind up calling a 32-bit
2207 function. We record this information in fp_code, encoded in base
2208 four. A zero digit means no floating point argument, a one digit
2209 means an SFmode argument, and a two digit means a DFmode argument,
2210 and a three digit is not used. The low order digit is the first
2211 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2212 an SFmode argument. ??? A more sophisticated approach will be
2213 needed if MIPS_ABI != ABI_32. */
2214 int fp_code;
2215
2216 /* True if the function has a prototype. */
2217 int prototype;
2218 } CUMULATIVE_ARGS;
2219
2220 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2221 for a call to a function whose data type is FNTYPE.
2222 For a library call, FNTYPE is 0. */
2223
2224 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2225 mips_init_cumulative_args (&CUM, FNTYPE)
2226
2227 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2228 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2229
2230 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2231 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2232
2233 /* True if using EABI and varargs can be passed in floating-point
2234 registers. Under these conditions, we need a more complex form
2235 of va_list, which tracks GPR, FPR and stack arguments separately. */
2236 #define EABI_FLOAT_VARARGS_P \
2237 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2238
2239 \f
2240 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2241
2242 /* Treat LOC as a byte offset from the stack pointer and round it up
2243 to the next fully-aligned offset. */
2244 #define MIPS_STACK_ALIGN(LOC) \
2245 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2246
2247 \f
2248 /* Output assembler code to FILE to increment profiler label # LABELNO
2249 for profiling a function entry. */
2250
2251 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2252
2253 /* The profiler preserves all interesting registers, including $31. */
2254 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2255
2256 /* No mips port has ever used the profiler counter word, so don't emit it
2257 or the label for it. */
2258
2259 #define NO_PROFILE_COUNTERS 1
2260
2261 /* Define this macro if the code for function profiling should come
2262 before the function prologue. Normally, the profiling code comes
2263 after. */
2264
2265 /* #define PROFILE_BEFORE_PROLOGUE */
2266
2267 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2268 the stack pointer does not matter. The value is tested only in
2269 functions that have frame pointers.
2270 No definition is equivalent to always zero. */
2271
2272 #define EXIT_IGNORE_STACK 1
2273
2274 \f
2275 /* Trampolines are a block of code followed by two pointers. */
2276
2277 #define TRAMPOLINE_SIZE \
2278 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2279
2280 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2281 pointers from a single LUI base. */
2282
2283 #define TRAMPOLINE_ALIGNMENT 64
2284
2285 /* mips_trampoline_init calls this library function to flush
2286 program and data caches. */
2287
2288 #ifndef CACHE_FLUSH_FUNC
2289 #define CACHE_FLUSH_FUNC "_flush_cache"
2290 #endif
2291
2292 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2293 /* Flush both caches. We need to flush the data cache in case \
2294 the system has a write-back cache. */ \
2295 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2296 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2297 GEN_INT (3), TYPE_MODE (integer_type_node))
2298
2299 \f
2300 /* Addressing modes, and classification of registers for them. */
2301
2302 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2303 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2304 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2305 \f
2306 /* Maximum number of registers that can appear in a valid memory address. */
2307
2308 #define MAX_REGS_PER_ADDRESS 1
2309
2310 /* Check for constness inline but use mips_legitimate_address_p
2311 to check whether a constant really is an address. */
2312
2313 #define CONSTANT_ADDRESS_P(X) \
2314 (CONSTANT_P (X) && memory_address_p (SImode, X))
2315
2316 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2317 'the start of the function that this code is output in'. */
2318
2319 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2320 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2321 asm_fprintf ((FILE), "%U%s", \
2322 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2323 else \
2324 asm_fprintf ((FILE), "%U%s", (NAME))
2325 \f
2326 /* Flag to mark a function decl symbol that requires a long call. */
2327 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2328 #define SYMBOL_REF_LONG_CALL_P(X) \
2329 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2330
2331 /* This flag marks functions that cannot be lazily bound. */
2332 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2333 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2334 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2335
2336 /* True if we're generating a form of MIPS16 code in which jump tables
2337 are stored in the text section and encoded as 16-bit PC-relative
2338 offsets. This is only possible when general text loads are allowed,
2339 since the table access itself will be an "lh" instruction. */
2340 /* ??? 16-bit offsets can overflow in large functions. */
2341 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2342
2343 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2344
2345 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? HImode : ptr_mode)
2346
2347 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2348
2349 /* Define this as 1 if `char' should by default be signed; else as 0. */
2350 #ifndef DEFAULT_SIGNED_CHAR
2351 #define DEFAULT_SIGNED_CHAR 1
2352 #endif
2353
2354 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2355 we generally don't want to use them for copying arbitrary data.
2356 A single N-word move is usually the same cost as N single-word moves. */
2357 #define MOVE_MAX UNITS_PER_WORD
2358 #define MAX_MOVE_MAX 8
2359
2360 /* Define this macro as a C expression which is nonzero if
2361 accessing less than a word of memory (i.e. a `char' or a
2362 `short') is no faster than accessing a word of memory, i.e., if
2363 such access require more than one instruction or if there is no
2364 difference in cost between byte and (aligned) word loads.
2365
2366 On RISC machines, it tends to generate better code to define
2367 this as 1, since it avoids making a QI or HI mode register.
2368
2369 But, generating word accesses for -mips16 is generally bad as shifts
2370 (often extended) would be needed for byte accesses. */
2371 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2372
2373 /* Standard MIPS integer shifts truncate the shift amount to the
2374 width of the shifted operand. However, Loongson vector shifts
2375 do not truncate the shift amount at all. */
2376 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2377
2378 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2379 is done just by pretending it is already truncated. */
2380 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2381 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2382
2383
2384 /* Specify the machine mode that pointers have.
2385 After generation of rtl, the compiler makes no further distinction
2386 between pointers and any other objects of this machine mode. */
2387
2388 #ifndef Pmode
2389 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2390 #endif
2391
2392 /* Give call MEMs SImode since it is the "most permissive" mode
2393 for both 32-bit and 64-bit targets. */
2394
2395 #define FUNCTION_MODE SImode
2396
2397 \f
2398
2399 /* Define if copies to/from condition code registers should be avoided.
2400
2401 This is needed for the MIPS because reload_outcc is not complete;
2402 it needs to handle cases where the source is a general or another
2403 condition code register. */
2404 #define AVOID_CCMODE_COPIES
2405
2406 /* A C expression for the cost of a branch instruction. A value of
2407 1 is the default; other values are interpreted relative to that. */
2408
2409 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2410 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2411
2412 /* If defined, modifies the length assigned to instruction INSN as a
2413 function of the context in which it is used. LENGTH is an lvalue
2414 that contains the initially computed length of the insn and should
2415 be updated with the correct length of the insn. */
2416 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2417 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2418
2419 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2420 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2421 its operands. */
2422 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2423 "%*" OPCODE "%?\t" OPERANDS "%/"
2424
2425 /* Return an asm string that forces INSN to be treated as an absolute
2426 J or JAL instruction instead of an assembler macro. */
2427 #define MIPS_ABSOLUTE_JUMP(INSN) \
2428 (TARGET_ABICALLS_PIC2 \
2429 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2430 : INSN)
2431
2432 /* Return the asm template for a call. INSN is the instruction's mnemonic
2433 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2434 number of the target. SIZE_OPNO is the operand number of the argument size
2435 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2436 -1 and the call is indirect, use the function symbol from the call
2437 attributes to attach a R_MIPS_JALR relocation to the call.
2438
2439 When generating GOT code without explicit relocation operators,
2440 all calls should use assembly macros. Otherwise, all indirect
2441 calls should use "jr" or "jalr"; we will arrange to restore $gp
2442 afterwards if necessary. Finally, we can only generate direct
2443 calls for -mabicalls by temporarily switching to non-PIC mode. */
2444 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2445 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2446 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2447 : (REG_P (OPERANDS[TARGET_OPNO]) \
2448 && mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO)) \
2449 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2450 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2451 : REG_P (OPERANDS[TARGET_OPNO]) \
2452 ? "%*" INSN "r\t%" #TARGET_OPNO "%/" \
2453 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/"))
2454 \f
2455 /* Control the assembler format that we output. */
2456
2457 /* Output to assembler file text saying following lines
2458 may contain character constants, extra white space, comments, etc. */
2459
2460 #ifndef ASM_APP_ON
2461 #define ASM_APP_ON " #APP\n"
2462 #endif
2463
2464 /* Output to assembler file text saying following lines
2465 no longer contain unusual constructs. */
2466
2467 #ifndef ASM_APP_OFF
2468 #define ASM_APP_OFF " #NO_APP\n"
2469 #endif
2470
2471 #define REGISTER_NAMES \
2472 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2473 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2474 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2475 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2476 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2477 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2478 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2479 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2480 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2481 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2482 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2483 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2484 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2485 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2486 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2487 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2488 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2489 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2490 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2491 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2492 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2493 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2494 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2495 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2496
2497 /* List the "software" names for each register. Also list the numerical
2498 names for $fp and $sp. */
2499
2500 #define ADDITIONAL_REGISTER_NAMES \
2501 { \
2502 { "$29", 29 + GP_REG_FIRST }, \
2503 { "$30", 30 + GP_REG_FIRST }, \
2504 { "at", 1 + GP_REG_FIRST }, \
2505 { "v0", 2 + GP_REG_FIRST }, \
2506 { "v1", 3 + GP_REG_FIRST }, \
2507 { "a0", 4 + GP_REG_FIRST }, \
2508 { "a1", 5 + GP_REG_FIRST }, \
2509 { "a2", 6 + GP_REG_FIRST }, \
2510 { "a3", 7 + GP_REG_FIRST }, \
2511 { "t0", 8 + GP_REG_FIRST }, \
2512 { "t1", 9 + GP_REG_FIRST }, \
2513 { "t2", 10 + GP_REG_FIRST }, \
2514 { "t3", 11 + GP_REG_FIRST }, \
2515 { "t4", 12 + GP_REG_FIRST }, \
2516 { "t5", 13 + GP_REG_FIRST }, \
2517 { "t6", 14 + GP_REG_FIRST }, \
2518 { "t7", 15 + GP_REG_FIRST }, \
2519 { "s0", 16 + GP_REG_FIRST }, \
2520 { "s1", 17 + GP_REG_FIRST }, \
2521 { "s2", 18 + GP_REG_FIRST }, \
2522 { "s3", 19 + GP_REG_FIRST }, \
2523 { "s4", 20 + GP_REG_FIRST }, \
2524 { "s5", 21 + GP_REG_FIRST }, \
2525 { "s6", 22 + GP_REG_FIRST }, \
2526 { "s7", 23 + GP_REG_FIRST }, \
2527 { "t8", 24 + GP_REG_FIRST }, \
2528 { "t9", 25 + GP_REG_FIRST }, \
2529 { "k0", 26 + GP_REG_FIRST }, \
2530 { "k1", 27 + GP_REG_FIRST }, \
2531 { "gp", 28 + GP_REG_FIRST }, \
2532 { "sp", 29 + GP_REG_FIRST }, \
2533 { "fp", 30 + GP_REG_FIRST }, \
2534 { "ra", 31 + GP_REG_FIRST }, \
2535 ALL_COP_ADDITIONAL_REGISTER_NAMES \
2536 }
2537
2538 /* This is meant to be redefined in the host dependent files. It is a
2539 set of alternative names and regnums for mips coprocessors. */
2540
2541 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
2542
2543 #define DBR_OUTPUT_SEQEND(STREAM) \
2544 do \
2545 { \
2546 /* Undo the effect of '%*'. */ \
2547 mips_pop_asm_switch (&mips_nomacro); \
2548 mips_pop_asm_switch (&mips_noreorder); \
2549 /* Emit a blank line after the delay slot for emphasis. */ \
2550 fputs ("\n", STREAM); \
2551 } \
2552 while (0)
2553
2554 /* Use .loc directives for SDB line numbers. */
2555 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2556 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2557
2558 /* The MIPS implementation uses some labels for its own purpose. The
2559 following lists what labels are created, and are all formed by the
2560 pattern $L[a-z].*. The machine independent portion of GCC creates
2561 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2562
2563 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2564 $Lb[0-9]+ Begin blocks for MIPS debug support
2565 $Lc[0-9]+ Label for use in s<xx> operation.
2566 $Le[0-9]+ End blocks for MIPS debug support */
2567
2568 #undef ASM_DECLARE_OBJECT_NAME
2569 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2570 mips_declare_object (STREAM, NAME, "", ":\n")
2571
2572 /* Globalizing directive for a label. */
2573 #define GLOBAL_ASM_OP "\t.globl\t"
2574
2575 /* This says how to define a global common symbol. */
2576
2577 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2578
2579 /* This says how to define a local common symbol (i.e., not visible to
2580 linker). */
2581
2582 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2583 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2584 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2585 #endif
2586
2587 /* This says how to output an external. It would be possible not to
2588 output anything and let undefined symbol become external. However
2589 the assembler uses length information on externals to allocate in
2590 data/sdata bss/sbss, thereby saving exec time. */
2591
2592 #undef ASM_OUTPUT_EXTERNAL
2593 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2594 mips_output_external(STREAM,DECL,NAME)
2595
2596 /* This is how to declare a function name. The actual work of
2597 emitting the label is moved to function_prologue, so that we can
2598 get the line number correctly emitted before the .ent directive,
2599 and after any .file directives. Define as empty so that the function
2600 is not declared before the .ent directive elsewhere. */
2601
2602 #undef ASM_DECLARE_FUNCTION_NAME
2603 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2604
2605 /* This is how to store into the string LABEL
2606 the symbol_ref name of an internal numbered label where
2607 PREFIX is the class of label and NUM is the number within the class.
2608 This is suitable for output with `assemble_name'. */
2609
2610 #undef ASM_GENERATE_INTERNAL_LABEL
2611 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2612 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2613
2614 /* Print debug labels as "foo = ." rather than "foo:" because they should
2615 represent a byte pointer rather than an ISA-encoded address. This is
2616 particularly important for code like:
2617
2618 $LFBxxx = .
2619 .cfi_startproc
2620 ...
2621 .section .gcc_except_table,...
2622 ...
2623 .uleb128 foo-$LFBxxx
2624
2625 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2626 likewise a byte pointer rather than an ISA-encoded address.
2627
2628 At the time of writing, this hook is not used for the function end
2629 label:
2630
2631 $LFExxx:
2632 .end foo
2633
2634 But this doesn't matter, because GAS doesn't treat a pre-.end label
2635 as a MIPS16 one anyway. */
2636
2637 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2638 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2639
2640 /* This is how to output an element of a case-vector that is absolute. */
2641
2642 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2643 fprintf (STREAM, "\t%s\t%sL%d\n", \
2644 ptr_mode == DImode ? ".dword" : ".word", \
2645 LOCAL_LABEL_PREFIX, \
2646 VALUE)
2647
2648 /* This is how to output an element of a case-vector. We can make the
2649 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2650 is supported. */
2651
2652 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2653 do { \
2654 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2655 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2656 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2657 else if (TARGET_GPWORD) \
2658 fprintf (STREAM, "\t%s\t%sL%d\n", \
2659 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2660 LOCAL_LABEL_PREFIX, VALUE); \
2661 else if (TARGET_RTP_PIC) \
2662 { \
2663 /* Make the entry relative to the start of the function. */ \
2664 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2665 fprintf (STREAM, "\t%s\t%sL%d-", \
2666 Pmode == DImode ? ".dword" : ".word", \
2667 LOCAL_LABEL_PREFIX, VALUE); \
2668 assemble_name (STREAM, XSTR (fnsym, 0)); \
2669 fprintf (STREAM, "\n"); \
2670 } \
2671 else \
2672 fprintf (STREAM, "\t%s\t%sL%d\n", \
2673 ptr_mode == DImode ? ".dword" : ".word", \
2674 LOCAL_LABEL_PREFIX, VALUE); \
2675 } while (0)
2676
2677 /* This is how to output an assembler line
2678 that says to advance the location counter
2679 to a multiple of 2**LOG bytes. */
2680
2681 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2682 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2683
2684 /* This is how to output an assembler line to advance the location
2685 counter by SIZE bytes. */
2686
2687 #undef ASM_OUTPUT_SKIP
2688 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2689 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2690
2691 /* This is how to output a string. */
2692 #undef ASM_OUTPUT_ASCII
2693 #define ASM_OUTPUT_ASCII mips_output_ascii
2694
2695 /* Output #ident as a in the read-only data section. */
2696 #undef ASM_OUTPUT_IDENT
2697 #define ASM_OUTPUT_IDENT(FILE, STRING) \
2698 { \
2699 const char *p = STRING; \
2700 int size = strlen (p) + 1; \
2701 switch_to_section (readonly_data_section); \
2702 assemble_string (p, size); \
2703 }
2704 \f
2705 /* Default to -G 8 */
2706 #ifndef MIPS_DEFAULT_GVALUE
2707 #define MIPS_DEFAULT_GVALUE 8
2708 #endif
2709
2710 /* Define the strings to put out for each section in the object file. */
2711 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2712 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2713
2714 #undef READONLY_DATA_SECTION_ASM_OP
2715 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2716 \f
2717 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2718 do \
2719 { \
2720 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2721 TARGET_64BIT ? "daddiu" : "addiu", \
2722 reg_names[STACK_POINTER_REGNUM], \
2723 reg_names[STACK_POINTER_REGNUM], \
2724 TARGET_64BIT ? "sd" : "sw", \
2725 reg_names[REGNO], \
2726 reg_names[STACK_POINTER_REGNUM]); \
2727 } \
2728 while (0)
2729
2730 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2731 do \
2732 { \
2733 mips_push_asm_switch (&mips_noreorder); \
2734 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2735 TARGET_64BIT ? "ld" : "lw", \
2736 reg_names[REGNO], \
2737 reg_names[STACK_POINTER_REGNUM], \
2738 TARGET_64BIT ? "daddu" : "addu", \
2739 reg_names[STACK_POINTER_REGNUM], \
2740 reg_names[STACK_POINTER_REGNUM]); \
2741 mips_pop_asm_switch (&mips_noreorder); \
2742 } \
2743 while (0)
2744
2745 /* How to start an assembler comment.
2746 The leading space is important (the mips native assembler requires it). */
2747 #ifndef ASM_COMMENT_START
2748 #define ASM_COMMENT_START " #"
2749 #endif
2750 \f
2751 #undef SIZE_TYPE
2752 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2753
2754 #undef PTRDIFF_TYPE
2755 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2756
2757 /* The maximum number of bytes that can be copied by one iteration of
2758 a movmemsi loop; see mips_block_move_loop. */
2759 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2760 (UNITS_PER_WORD * 4)
2761
2762 /* The maximum number of bytes that can be copied by a straight-line
2763 implementation of movmemsi; see mips_block_move_straight. We want
2764 to make sure that any loop-based implementation will iterate at
2765 least twice. */
2766 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2767 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2768
2769 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2770 values were determined experimentally by benchmarking with CSiBE.
2771 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2772 for o32 where we have to restore $gp afterwards as well as make an
2773 indirect call), but in practice, bumping this up higher for
2774 TARGET_ABICALLS doesn't make much difference to code size. */
2775
2776 #define MIPS_CALL_RATIO 8
2777
2778 /* Any loop-based implementation of movmemsi will have at least
2779 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2780 moves, so allow individual copies of fewer elements.
2781
2782 When movmemsi is not available, use a value approximating
2783 the length of a memcpy call sequence, so that move_by_pieces
2784 will generate inline code if it is shorter than a function call.
2785 Since move_by_pieces_ninsns counts memory-to-memory moves, but
2786 we'll have to generate a load/store pair for each, halve the
2787 value of MIPS_CALL_RATIO to take that into account. */
2788
2789 #define MOVE_RATIO(speed) \
2790 (HAVE_movmemsi \
2791 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
2792 : MIPS_CALL_RATIO / 2)
2793
2794 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2795 mips_move_by_pieces_p (SIZE, ALIGN)
2796
2797 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2798 of the length of a memset call, but use the default otherwise. */
2799
2800 #define CLEAR_RATIO(speed)\
2801 ((speed) ? 15 : MIPS_CALL_RATIO)
2802
2803 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2804 optimizing for size adjust the ratio to account for the overhead of
2805 loading the constant and replicating it across the word. */
2806
2807 #define SET_RATIO(speed) \
2808 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2809
2810 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
2811 mips_store_by_pieces_p (SIZE, ALIGN)
2812 \f
2813 #ifndef __mips16
2814 /* Since the bits of the _init and _fini function is spread across
2815 many object files, each potentially with its own GP, we must assume
2816 we need to load our GP. We don't preserve $gp or $ra, since each
2817 init/fini chunk is supposed to initialize $gp, and crti/crtn
2818 already take care of preserving $ra and, when appropriate, $gp. */
2819 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2820 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2821 asm (SECTION_OP "\n\
2822 .set noreorder\n\
2823 bal 1f\n\
2824 nop\n\
2825 1: .cpload $31\n\
2826 .set reorder\n\
2827 jal " USER_LABEL_PREFIX #FUNC "\n\
2828 " TEXT_SECTION_ASM_OP);
2829 #endif /* Switch to #elif when we're no longer limited by K&R C. */
2830 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2831 || (defined _ABI64 && _MIPS_SIM == _ABI64)
2832 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2833 asm (SECTION_OP "\n\
2834 .set noreorder\n\
2835 bal 1f\n\
2836 nop\n\
2837 1: .set reorder\n\
2838 .cpsetup $31, $2, 1b\n\
2839 jal " USER_LABEL_PREFIX #FUNC "\n\
2840 " TEXT_SECTION_ASM_OP);
2841 #endif
2842 #endif
2843
2844 #ifndef HAVE_AS_TLS
2845 #define HAVE_AS_TLS 0
2846 #endif
2847
2848 #ifndef USED_FOR_TARGET
2849 /* Information about ".set noFOO; ...; .set FOO" blocks. */
2850 struct mips_asm_switch {
2851 /* The FOO in the description above. */
2852 const char *name;
2853
2854 /* The current block nesting level, or 0 if we aren't in a block. */
2855 int nesting_level;
2856 };
2857
2858 extern const enum reg_class mips_regno_to_class[];
2859 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
2860 extern const char *current_function_file; /* filename current function is in */
2861 extern int num_source_filenames; /* current .file # */
2862 extern struct mips_asm_switch mips_noreorder;
2863 extern struct mips_asm_switch mips_nomacro;
2864 extern struct mips_asm_switch mips_noat;
2865 extern int mips_dbx_regno[];
2866 extern int mips_dwarf_regno[];
2867 extern bool mips_split_p[];
2868 extern bool mips_split_hi_p[];
2869 extern bool mips_use_pcrel_pool_p[];
2870 extern const char *mips_lo_relocs[];
2871 extern const char *mips_hi_relocs[];
2872 extern enum processor mips_arch; /* which cpu to codegen for */
2873 extern enum processor mips_tune; /* which cpu to schedule for */
2874 extern int mips_isa; /* architectural level */
2875 extern const struct mips_cpu_info *mips_arch_info;
2876 extern const struct mips_cpu_info *mips_tune_info;
2877 extern bool mips_base_mips16;
2878 extern GTY(()) struct target_globals *mips16_globals;
2879 #endif
2880
2881 /* Enable querying of DFA units. */
2882 #define CPU_UNITS_QUERY 1
2883
2884 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2885 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2886
2887 /* As on most targets, we want the .eh_frame section to be read-only where
2888 possible. And as on most targets, this means two things:
2889
2890 (a) Non-locally-binding pointers must have an indirect encoding,
2891 so that the addresses in the .eh_frame section itself become
2892 locally-binding.
2893
2894 (b) A shared library's .eh_frame section must encode locally-binding
2895 pointers in a relative (relocation-free) form.
2896
2897 However, MIPS has traditionally not allowed directives like:
2898
2899 .long x-.
2900
2901 in cases where "x" is in a different section, or is not defined in the
2902 same assembly file. We are therefore unable to emit the PC-relative
2903 form required by (b) at assembly time.
2904
2905 Fortunately, the linker is able to convert absolute addresses into
2906 PC-relative addresses on our behalf. Unfortunately, only certain
2907 versions of the linker know how to do this for indirect pointers,
2908 and for personality data. We must fall back on using writable
2909 .eh_frame sections for shared libraries if the linker does not
2910 support this feature. */
2911 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2912 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
2913
2914 /* For switching between MIPS16 and non-MIPS16 modes. */
2915 #define SWITCHABLE_TARGET 1
2916
2917 /* Several named MIPS patterns depend on Pmode. These patterns have the
2918 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
2919 Add the appropriate suffix to generator function NAME and invoke it
2920 with arguments ARGS. */
2921 #define PMODE_INSN(NAME, ARGS) \
2922 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)