defaults.h (FRAME_GROWS_DOWNWARD): Define to 0 if not defined.
[gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24
25 #undef ASM_SPEC
26 #undef LIB_SPEC
27 #undef ENDFILE_SPEC
28 #undef LINK_SPEC
29 #define LINK_SPEC "%{mrelax:--relax}"
30 #undef STARTFILE_SPEC
31 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
32
33 /* Names to predefine in the preprocessor for this target machine. */
34
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do \
37 { \
38 builtin_define ("__mn10300__"); \
39 builtin_define ("__MN10300__"); \
40 } \
41 while (0)
42
43 #define CPP_SPEC "%{mam33:-D__AM33__} %{mam33-2:-D__AM33__=2 -D__AM33_2__}"
44
45 extern GTY(()) int mn10300_unspec_int_label_counter;
46
47 enum processor_type {
48 PROCESSOR_MN10300,
49 PROCESSOR_AM33,
50 PROCESSOR_AM33_2
51 };
52
53 extern enum processor_type mn10300_processor;
54
55 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
56 #define TARGET_AM33_2 (mn10300_processor == PROCESSOR_AM33_2)
57
58 #ifndef PROCESSOR_DEFAULT
59 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
60 #endif
61
62 #define OVERRIDE_OPTIONS mn10300_override_options ()
63
64 /* Print subsidiary information on the compiler version in use. */
65
66 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
67
68 \f
69 /* Target machine storage layout */
70
71 /* Define this if most significant bit is lowest numbered
72 in instructions that operate on numbered bit-fields.
73 This is not true on the Matsushita MN1003. */
74 #define BITS_BIG_ENDIAN 0
75
76 /* Define this if most significant byte of a word is the lowest numbered. */
77 /* This is not true on the Matsushita MN10300. */
78 #define BYTES_BIG_ENDIAN 0
79
80 /* Define this if most significant word of a multiword number is lowest
81 numbered.
82 This is not true on the Matsushita MN10300. */
83 #define WORDS_BIG_ENDIAN 0
84
85 /* Width of a word, in units (bytes). */
86 #define UNITS_PER_WORD 4
87
88 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
89 #define PARM_BOUNDARY 32
90
91 /* The stack goes in 32 bit lumps. */
92 #define STACK_BOUNDARY 32
93
94 /* Allocation boundary (in *bits*) for the code of a function.
95 8 is the minimum boundary; it's unclear if bigger alignments
96 would improve performance. */
97 #define FUNCTION_BOUNDARY 8
98
99 /* No data type wants to be aligned rounder than this. */
100 #define BIGGEST_ALIGNMENT 32
101
102 /* Alignment of field after `int : 0' in a structure. */
103 #define EMPTY_FIELD_BOUNDARY 32
104
105 /* Define this if move instructions will actually fail to work
106 when given unaligned data. */
107 #define STRICT_ALIGNMENT 1
108
109 /* Define this as 1 if `char' should by default be signed; else as 0. */
110 #define DEFAULT_SIGNED_CHAR 0
111 \f
112 /* Standard register usage. */
113
114 /* Number of actual hardware registers.
115 The hardware registers are assigned numbers for the compiler
116 from 0 to just below FIRST_PSEUDO_REGISTER.
117
118 All registers that the compiler knows about must be given numbers,
119 even those that are not normally considered general registers. */
120
121 #define FIRST_PSEUDO_REGISTER 50
122
123 /* Specify machine-specific register numbers. */
124 #define FIRST_DATA_REGNUM 0
125 #define LAST_DATA_REGNUM 3
126 #define FIRST_ADDRESS_REGNUM 4
127 #define LAST_ADDRESS_REGNUM 8
128 #define FIRST_EXTENDED_REGNUM 10
129 #define LAST_EXTENDED_REGNUM 17
130 #define FIRST_FP_REGNUM 18
131 #define LAST_FP_REGNUM 49
132
133 /* Specify the registers used for certain standard purposes.
134 The values of these macros are register numbers. */
135
136 /* Register to use for pushing function arguments. */
137 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM+1)
138
139 /* Base register for access to local variables of the function. */
140 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM-1)
141
142 /* Base register for access to arguments of the function. This
143 is a fake register and will be eliminated into either the frame
144 pointer or stack pointer. */
145 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
146
147 /* Register in which static-chain is passed to a function. */
148 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM+1)
149
150 /* 1 for registers that have pervasive standard uses
151 and are not available for the register allocator. */
152
153 #define FIXED_REGISTERS \
154 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
155 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
156 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
157 }
158
159 /* 1 for registers not available across function calls.
160 These must include the FIXED_REGISTERS and also any
161 registers that can be used without being saved.
162 The latter must include the registers where values are returned
163 and the register where structure-value addresses are passed.
164 Aside from that, you can include as many other registers as you
165 like. */
166
167 #define CALL_USED_REGISTERS \
168 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
169 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
170 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
171 }
172
173 #define REG_ALLOC_ORDER \
174 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
175 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
176 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 \
177 }
178
179 #define CONDITIONAL_REGISTER_USAGE \
180 { \
181 unsigned int i; \
182 \
183 if (!TARGET_AM33) \
184 { \
185 for (i = FIRST_EXTENDED_REGNUM; \
186 i <= LAST_EXTENDED_REGNUM; i++) \
187 fixed_regs[i] = call_used_regs[i] = 1; \
188 } \
189 if (!TARGET_AM33_2) \
190 { \
191 for (i = FIRST_FP_REGNUM; \
192 i <= LAST_FP_REGNUM; \
193 i++) \
194 fixed_regs[i] = call_used_regs[i] = 1; \
195 } \
196 if (flag_pic) \
197 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = \
198 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;\
199 }
200
201 /* Return number of consecutive hard regs needed starting at reg REGNO
202 to hold something of mode MODE.
203
204 This is ordinarily the length in words of a value of mode MODE
205 but can be less for certain modes in special long registers. */
206
207 #define HARD_REGNO_NREGS(REGNO, MODE) \
208 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
209
210 /* Value is 1 if hard register REGNO can hold a value of machine-mode
211 MODE. */
212
213 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
214 ((REGNO_REG_CLASS (REGNO) == DATA_REGS \
215 || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
216 || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
217 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
218 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
219
220 /* Value is 1 if it is a good idea to tie two pseudo registers
221 when one has mode MODE1 and one has mode MODE2.
222 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
223 for any hard reg, then this must be 0 for correct output. */
224 #define MODES_TIEABLE_P(MODE1, MODE2) \
225 (TARGET_AM33 \
226 || MODE1 == MODE2 \
227 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
228
229 /* 4 data, and effectively 3 address registers is small as far as I'm
230 concerned. */
231 #define SMALL_REGISTER_CLASSES 1
232 \f
233 /* Define the classes of registers for register constraints in the
234 machine description. Also define ranges of constants.
235
236 One of the classes must always be named ALL_REGS and include all hard regs.
237 If there is more than one class, another class must be named NO_REGS
238 and contain no registers.
239
240 The name GENERAL_REGS must be the name of a class (or an alias for
241 another name such as ALL_REGS). This is the class of registers
242 that is allowed by "g" or "r" in a register constraint.
243 Also, registers outside this class are allocated only when
244 instructions express preferences for them.
245
246 The classes must be numbered in nondecreasing order; that is,
247 a larger-numbered class must never be contained completely
248 in a smaller-numbered class.
249
250 For any two classes, it is very desirable that there be another
251 class that represents their union. */
252
253 enum reg_class {
254 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
255 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
256 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
257 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
258 FP_REGS, FP_ACC_REGS,
259 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
260 };
261
262 #define N_REG_CLASSES (int) LIM_REG_CLASSES
263
264 /* Give names of register classes as strings for dump file. */
265
266 #define REG_CLASS_NAMES \
267 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
268 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
269 "EXTENDED_REGS", \
270 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
271 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
272 "FP_REGS", "FP_ACC_REGS", \
273 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
274
275 /* Define which registers fit in which classes.
276 This is an initializer for a vector of HARD_REG_SET
277 of length N_REG_CLASSES. */
278
279 #define REG_CLASS_CONTENTS \
280 { { 0, 0 }, /* No regs */ \
281 { 0x0000f, 0 }, /* DATA_REGS */ \
282 { 0x001f0, 0 }, /* ADDRESS_REGS */ \
283 { 0x00200, 0 }, /* SP_REGS */ \
284 { 0x001ff, 0 }, /* DATA_OR_ADDRESS_REGS */\
285 { 0x003f0, 0 }, /* SP_OR_ADDRESS_REGS */\
286 { 0x3fc00, 0 }, /* EXTENDED_REGS */ \
287 { 0x3fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \
288 { 0x3fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \
289 { 0x3fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \
290 { 0x3fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
291 { 0xfffc0000, 0x3ffff }, /* FP_REGS */ \
292 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
293 { 0x3fdff, 0 }, /* GENERAL_REGS */ \
294 { 0xffffffff, 0x3ffff } /* ALL_REGS */ \
295 }
296
297 /* The same information, inverted:
298 Return the class number of the smallest class containing
299 reg number REGNO. This could be a conditional expression
300 or could index an array. */
301
302 #define REGNO_REG_CLASS(REGNO) \
303 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
304 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
305 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
306 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
307 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
308 NO_REGS)
309
310 /* The class value for index registers, and the one for base regs. */
311 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
312 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
313
314 /* Get reg_class from a letter such as appears in the machine description. */
315
316 #define REG_CLASS_FROM_LETTER(C) \
317 ((C) == 'd' ? DATA_REGS : \
318 (C) == 'a' ? ADDRESS_REGS : \
319 (C) == 'y' ? SP_REGS : \
320 ! TARGET_AM33 ? NO_REGS : \
321 (C) == 'x' ? EXTENDED_REGS : \
322 ! TARGET_AM33_2 ? NO_REGS : \
323 (C) == 'f' ? FP_REGS : \
324 (C) == 'A' ? FP_ACC_REGS : \
325 NO_REGS)
326
327 /* Macros to check register numbers against specific register classes. */
328
329 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
330 and check its validity for a certain class.
331 We have two alternate definitions for each of them.
332 The usual definition accepts all pseudo regs; the other rejects
333 them unless they have been allocated suitable hard regs.
334 The symbol REG_OK_STRICT causes the latter definition to be used.
335
336 Most source files want to accept pseudo regs in the hope that
337 they will get allocated to the class that the insn wants them to be in.
338 Source files for reload pass need to be strict.
339 After reload, it makes no difference, since pseudo regs have
340 been eliminated by then. */
341
342 /* These assume that REGNO is a hard or pseudo reg number.
343 They give nonzero only if REGNO is a hard reg of the suitable class
344 or a pseudo reg currently allocated to a suitable hard reg.
345 Since they use reg_renumber, they are safe only once reg_renumber
346 has been allocated, which happens in local-alloc.c. */
347
348 #ifndef REG_OK_STRICT
349 # define REG_STRICT 0
350 #else
351 # define REG_STRICT 1
352 #endif
353
354 # define REGNO_IN_RANGE_P(regno,min,max,strict) \
355 (IN_RANGE ((regno), (min), (max)) \
356 || ((strict) \
357 ? (reg_renumber \
358 && reg_renumber[(regno)] >= (min) \
359 && reg_renumber[(regno)] <= (max)) \
360 : (regno) >= FIRST_PSEUDO_REGISTER))
361
362 #define REGNO_DATA_P(regno, strict) \
363 (REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM, \
364 (strict)))
365 #define REGNO_ADDRESS_P(regno, strict) \
366 (REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM, \
367 (strict)))
368 #define REGNO_SP_P(regno, strict) \
369 (REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, \
370 (strict)))
371 #define REGNO_EXTENDED_P(regno, strict) \
372 (REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM, \
373 (strict)))
374 #define REGNO_AM33_P(regno, strict) \
375 (REGNO_DATA_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)) \
376 || REGNO_EXTENDED_P ((regno), (strict)))
377 #define REGNO_FP_P(regno, strict) \
378 (REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM, (strict)))
379
380 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
381 (REGNO_SP_P ((regno), (strict)) \
382 || REGNO_ADDRESS_P ((regno), (strict)) \
383 || REGNO_EXTENDED_P ((regno), (strict)))
384 #define REGNO_OK_FOR_BASE_P(regno) \
385 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
386 #define REG_OK_FOR_BASE_P(X) \
387 (REGNO_OK_FOR_BASE_P (REGNO (X)))
388
389 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
390 (REGNO_SP_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)))
391 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
392 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
393 #define REG_OK_FOR_BIT_BASE_P(X) \
394 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
395
396 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
397 (REGNO_DATA_P ((regno), (strict)) || REGNO_EXTENDED_P ((regno), (strict)))
398 #define REGNO_OK_FOR_INDEX_P(regno) \
399 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
400 #define REG_OK_FOR_INDEX_P(X) \
401 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
402
403 /* Given an rtx X being reloaded into a reg required to be
404 in class CLASS, return the class of reg to actually use.
405 In general this is just CLASS; but on some machines
406 in some cases it is preferable to use a more restrictive class. */
407
408 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
409 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
410 ? ADDRESS_OR_EXTENDED_REGS \
411 : (GET_CODE (X) == MEM \
412 || (GET_CODE (X) == REG \
413 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
414 || (GET_CODE (X) == SUBREG \
415 && GET_CODE (SUBREG_REG (X)) == REG \
416 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
417 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
418 : (CLASS)))
419
420 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
421 (X == stack_pointer_rtx && CLASS != SP_REGS \
422 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
423
424 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
425 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
426
427 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
428 secondary_reload_class(CLASS,MODE,IN)
429
430 /* Return the maximum number of consecutive registers
431 needed to represent mode MODE in a register of class CLASS. */
432
433 #define CLASS_MAX_NREGS(CLASS, MODE) \
434 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
435
436 /* A class that contains registers which the compiler must always
437 access in a mode that is the same size as the mode in which it
438 loaded the register. */
439 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
440
441 /* The letters I, J, K, L, M, N, O, P in a register constraint string
442 can be used to stand for particular ranges of immediate operands.
443 This macro defines what the ranges are.
444 C is the letter, and VALUE is a constant value.
445 Return 1 if VALUE is in the range specified by C. */
446
447 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
448 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
449
450 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
451 #define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
452 #define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
453 #define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
454 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 3)
455 #define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535)
456
457 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
458 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
459 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
460 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
461 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
462 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
463 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0)
464
465
466 /* Similar, but for floating constants, and defining letters G and H.
467 Here VALUE is the CONST_DOUBLE rtx itself.
468
469 `G' is a floating-point zero. */
470
471 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
472 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
473 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0)
474
475 \f
476 /* Stack layout; function entry, exit and calling. */
477
478 /* Define this if pushing a word on the stack
479 makes the stack pointer a smaller address. */
480
481 #define STACK_GROWS_DOWNWARD
482
483 /* Define this to non-zero if the nominal address of the stack frame
484 is at the high-address end of the local variables;
485 that is, each additional local variable allocated
486 goes at a more negative offset in the frame. */
487
488 #define FRAME_GROWS_DOWNWARD 1
489
490 /* Offset within stack frame to start allocating local variables at.
491 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
492 first local allocated. Otherwise, it is the offset to the BEGINNING
493 of the first local allocated. */
494
495 #define STARTING_FRAME_OFFSET 0
496
497 /* Offset of first parameter from the argument pointer register value. */
498 /* Is equal to the size of the saved fp + pc, even if an fp isn't
499 saved since the value is used before we know. */
500
501 #define FIRST_PARM_OFFSET(FNDECL) 4
502
503 #define ELIMINABLE_REGS \
504 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
505 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
506 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
507
508 #define CAN_ELIMINATE(FROM, TO) 1
509
510 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
511 OFFSET = initial_offset (FROM, TO)
512
513 /* We can debug without frame pointers on the mn10300, so eliminate
514 them whenever possible. */
515 #define FRAME_POINTER_REQUIRED 0
516 #define CAN_DEBUG_WITHOUT_FP
517
518 /* Value is the number of bytes of arguments automatically
519 popped when returning from a subroutine call.
520 FUNDECL is the declaration node of the function (as a tree),
521 FUNTYPE is the data type of the function (as a tree),
522 or for a library call it is an identifier node for the subroutine name.
523 SIZE is the number of bytes of arguments passed on the stack. */
524
525 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
526
527 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
528 for a register flushback area. */
529 #define REG_PARM_STACK_SPACE(DECL) 8
530 #define OUTGOING_REG_PARM_STACK_SPACE
531 #define ACCUMULATE_OUTGOING_ARGS 1
532
533 /* So we can allocate space for return pointers once for the function
534 instead of around every call. */
535 #define STACK_POINTER_OFFSET 4
536
537 /* 1 if N is a possible register number for function argument passing.
538 On the MN10300, no registers are used in this way. */
539
540 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
541
542 \f
543 /* Define a data type for recording info about an argument list
544 during the scan of that argument list. This data type should
545 hold all necessary information about the function itself
546 and about the args processed so far, enough to enable macros
547 such as FUNCTION_ARG to determine where the next arg should go.
548
549 On the MN10300, this is a single integer, which is a number of bytes
550 of arguments scanned so far. */
551
552 #define CUMULATIVE_ARGS struct cum_arg
553 struct cum_arg {int nbytes; };
554
555 /* Initialize a variable CUM of type CUMULATIVE_ARGS
556 for a call to a function whose data type is FNTYPE.
557 For a library call, FNTYPE is 0.
558
559 On the MN10300, the offset starts at 0. */
560
561 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
562 ((CUM).nbytes = 0)
563
564 /* Update the data in CUM to advance over an argument
565 of mode MODE and data type TYPE.
566 (TYPE is null for libcalls where that information may not be available.) */
567
568 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
569 ((CUM).nbytes += ((MODE) != BLKmode \
570 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
571 : (int_size_in_bytes (TYPE) + 3) & ~3))
572
573 /* Define where to put the arguments to a function.
574 Value is zero to push the argument on the stack,
575 or a hard register in which to store the argument.
576
577 MODE is the argument's machine mode.
578 TYPE is the data type of the argument (as a tree).
579 This is null for libcalls where that information may
580 not be available.
581 CUM is a variable of type CUMULATIVE_ARGS which gives info about
582 the preceding args and about the function being called.
583 NAMED is nonzero if this argument is a named parameter
584 (otherwise it is an extra parameter matching an ellipsis). */
585
586 /* On the MN10300 all args are pushed. */
587
588 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
589 function_arg (&CUM, MODE, TYPE, NAMED)
590
591 /* Define how to find the value returned by a function.
592 VALTYPE is the data type of the value (as a tree).
593 If the precise function being called is known, FUNC is its FUNCTION_DECL;
594 otherwise, FUNC is 0. */
595
596 #define FUNCTION_VALUE(VALTYPE, FUNC) \
597 gen_rtx_REG (TYPE_MODE (VALTYPE), POINTER_TYPE_P (VALTYPE) \
598 ? FIRST_ADDRESS_REGNUM : FIRST_DATA_REGNUM)
599
600 /* Define how to find the value returned by a library function
601 assuming the value has mode MODE. */
602
603 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
604
605 /* 1 if N is a possible register number for a function value. */
606
607 #define FUNCTION_VALUE_REGNO_P(N) \
608 ((N) == FIRST_DATA_REGNUM || (N) == FIRST_ADDRESS_REGNUM)
609
610 #define DEFAULT_PCC_STRUCT_RETURN 0
611
612 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
613 the stack pointer does not matter. The value is tested only in
614 functions that have frame pointers.
615 No definition is equivalent to always zero. */
616
617 #define EXIT_IGNORE_STACK 1
618
619 /* Output assembler code to FILE to increment profiler label # LABELNO
620 for profiling a function entry. */
621
622 #define FUNCTION_PROFILER(FILE, LABELNO) ;
623
624 #define TRAMPOLINE_TEMPLATE(FILE) \
625 do { \
626 fprintf (FILE, "\tadd -4,sp\n"); \
627 fprintf (FILE, "\t.long 0x0004fffa\n"); \
628 fprintf (FILE, "\tmov (0,sp),a0\n"); \
629 fprintf (FILE, "\tadd 4,sp\n"); \
630 fprintf (FILE, "\tmov (13,a0),a1\n"); \
631 fprintf (FILE, "\tmov (17,a0),a0\n"); \
632 fprintf (FILE, "\tjmp (a0)\n"); \
633 fprintf (FILE, "\t.long 0\n"); \
634 fprintf (FILE, "\t.long 0\n"); \
635 } while (0)
636
637 /* Length in units of the trampoline for entering a nested function. */
638
639 #define TRAMPOLINE_SIZE 0x1b
640
641 #define TRAMPOLINE_ALIGNMENT 32
642
643 /* Emit RTL insns to initialize the variable parts of a trampoline.
644 FNADDR is an RTX for the address of the function's pure code.
645 CXT is an RTX for the static chain value for the function. */
646
647 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
648 { \
649 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
650 (CXT)); \
651 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
652 (FNADDR)); \
653 }
654 /* A C expression whose value is RTL representing the value of the return
655 address for the frame COUNT steps up from the current frame.
656
657 On the mn10300, the return address is not at a constant location
658 due to the frame layout. Luckily, it is at a constant offset from
659 the argument pointer, so we define RETURN_ADDR_RTX to return a
660 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
661 with a reference to the stack/frame pointer + an appropriate offset. */
662
663 #define RETURN_ADDR_RTX(COUNT, FRAME) \
664 ((COUNT == 0) \
665 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
666 : (rtx) 0)
667
668 /* Implement `va_start' for varargs and stdarg. */
669 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
670 mn10300_va_start (valist, nextarg)
671 \f
672 /* 1 if X is an rtx for a constant that is a valid address. */
673
674 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
675
676 /* Extra constraints. */
677
678 #define OK_FOR_Q(OP) \
679 (GET_CODE (OP) == MEM && ! CONSTANT_ADDRESS_P (XEXP (OP, 0)))
680
681 #define OK_FOR_R(OP) \
682 (GET_CODE (OP) == MEM \
683 && GET_MODE (OP) == QImode \
684 && (CONSTANT_ADDRESS_P (XEXP (OP, 0)) \
685 || (GET_CODE (XEXP (OP, 0)) == REG \
686 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
687 && XEXP (OP, 0) != stack_pointer_rtx) \
688 || (GET_CODE (XEXP (OP, 0)) == PLUS \
689 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
690 && REG_OK_FOR_BIT_BASE_P (XEXP (XEXP (OP, 0), 0)) \
691 && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx \
692 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT \
693 && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1))))))
694
695 #define OK_FOR_T(OP) \
696 (GET_CODE (OP) == MEM \
697 && GET_MODE (OP) == QImode \
698 && (GET_CODE (XEXP (OP, 0)) == REG \
699 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
700 && XEXP (OP, 0) != stack_pointer_rtx))
701
702 #define EXTRA_CONSTRAINT(OP, C) \
703 ((C) == 'R' ? OK_FOR_R (OP) \
704 : (C) == 'Q' ? OK_FOR_Q (OP) \
705 : (C) == 'S' && flag_pic \
706 ? GET_CODE (OP) == UNSPEC && (XINT (OP, 1) == UNSPEC_PLT \
707 || XINT (OP, 1) == UNSPEC_PIC) \
708 : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF \
709 : (C) == 'T' ? OK_FOR_T (OP) \
710 : 0)
711
712 /* Maximum number of registers that can appear in a valid memory address. */
713
714 #define MAX_REGS_PER_ADDRESS 2
715
716 \f
717 #define HAVE_POST_INCREMENT (TARGET_AM33)
718
719 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
720 that is a valid memory address for an instruction.
721 The MODE argument is the machine mode for the MEM expression
722 that wants to use this address.
723
724 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
725 except for CONSTANT_ADDRESS_P which is actually
726 machine-independent.
727
728 On the mn10300, the value in the address register must be
729 in the same memory space/segment as the effective address.
730
731 This is problematical for reload since it does not understand
732 that base+index != index+base in a memory reference.
733
734 Note it is still possible to use reg+reg addressing modes,
735 it's just much more difficult. For a discussion of a possible
736 workaround and solution, see the comments in pa.c before the
737 function record_unscaled_index_insn_codes. */
738
739 /* Accept either REG or SUBREG where a register is valid. */
740
741 #define RTX_OK_FOR_BASE_P(X, strict) \
742 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
743 (strict))) \
744 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
745 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
746 (strict))))
747
748 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
749 do \
750 { \
751 if (legitimate_address_p ((MODE), (X), REG_STRICT)) \
752 goto ADDR; \
753 } \
754 while (0)
755
756 \f
757 /* Try machine-dependent ways of modifying an illegitimate address
758 to be legitimate. If we find one, return the new, valid address.
759 This macro is used in only one place: `memory_address' in explow.c.
760
761 OLDX is the address as it was before break_out_memory_refs was called.
762 In some cases it is useful to look at this to decide what needs to be done.
763
764 MODE and WIN are passed so that this macro can use
765 GO_IF_LEGITIMATE_ADDRESS.
766
767 It is always safe for this macro to do nothing. It exists to recognize
768 opportunities to optimize the output. */
769
770 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
771 { rtx orig_x = (X); \
772 (X) = legitimize_address (X, OLDX, MODE); \
773 if ((X) != orig_x && memory_address_p (MODE, X)) \
774 goto WIN; }
775
776 /* Go to LABEL if ADDR (a legitimate address expression)
777 has an effect that depends on the machine mode it is used for. */
778
779 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
780 if (GET_CODE (ADDR) == POST_INC) \
781 goto LABEL
782
783 /* Nonzero if the constant value X is a legitimate general operand.
784 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
785
786 #define LEGITIMATE_CONSTANT_P(X) 1
787
788 /* Zero if this needs fixing up to become PIC. */
789
790 #define LEGITIMATE_PIC_OPERAND_P(X) (legitimate_pic_operand_p (X))
791
792 /* Register to hold the addressing base for
793 position independent code access to data items. */
794 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
795
796 /* The name of the pseudo-symbol representing the Global Offset Table. */
797 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
798
799 #define SYMBOLIC_CONST_P(X) \
800 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
801 && ! LEGITIMATE_PIC_OPERAND_P (X))
802
803 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
804 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
805
806 /* Recognize machine-specific patterns that may appear within
807 constants. Used for PIC-specific UNSPECs. */
808 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
809 do \
810 if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
811 { \
812 switch (XINT ((X), 1)) \
813 { \
814 case UNSPEC_INT_LABEL: \
815 asm_fprintf ((STREAM), ".%LLIL%d", \
816 INTVAL (XVECEXP ((X), 0, 0))); \
817 break; \
818 case UNSPEC_PIC: \
819 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
820 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
821 break; \
822 case UNSPEC_GOT: \
823 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
824 fputs ("@GOT", (STREAM)); \
825 break; \
826 case UNSPEC_GOTOFF: \
827 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
828 fputs ("@GOTOFF", (STREAM)); \
829 break; \
830 case UNSPEC_PLT: \
831 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
832 fputs ("@PLT", (STREAM)); \
833 break; \
834 default: \
835 goto FAIL; \
836 } \
837 break; \
838 } \
839 else \
840 goto FAIL; \
841 while (0)
842 \f
843 /* Tell final.c how to eliminate redundant test instructions. */
844
845 /* Here we define machine-dependent flags and fields in cc_status
846 (see `conditions.h'). No extra ones are needed for the VAX. */
847
848 /* Store in cc_status the expressions
849 that the condition codes will describe
850 after execution of an instruction whose pattern is EXP.
851 Do not alter them if the instruction would not alter the cc's. */
852
853 #define CC_OVERFLOW_UNUSABLE 0x200
854 #define CC_NO_CARRY CC_NO_OVERFLOW
855 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
856
857 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
858 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
859 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
860 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
861 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
862 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
863 ! TARGET_AM33 ? 6 : \
864 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
865 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
866 (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
867 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
868 4)
869
870 /* Nonzero if access to memory by bytes or half words is no faster
871 than accessing full words. */
872 #define SLOW_BYTE_ACCESS 1
873
874 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
875 and readonly data size. So we crank up the case threshold value to
876 encourage a series of if/else comparisons to implement many small switch
877 statements. In theory, this value could be increased much more if we
878 were solely optimizing for space, but we keep it "reasonable" to avoid
879 serious code efficiency lossage. */
880 #define CASE_VALUES_THRESHOLD 6
881
882 #define NO_FUNCTION_CSE
883
884 /* According expr.c, a value of around 6 should minimize code size, and
885 for the MN10300 series, that's our primary concern. */
886 #define MOVE_RATIO 6
887
888 #define TEXT_SECTION_ASM_OP "\t.section .text"
889 #define DATA_SECTION_ASM_OP "\t.section .data"
890 #define BSS_SECTION_ASM_OP "\t.section .bss"
891
892 #define ASM_COMMENT_START "#"
893
894 /* Output to assembler file text saying following lines
895 may contain character constants, extra white space, comments, etc. */
896
897 #define ASM_APP_ON "#APP\n"
898
899 /* Output to assembler file text saying following lines
900 no longer contain unusual constructs. */
901
902 #define ASM_APP_OFF "#NO_APP\n"
903
904 /* This says how to output the assembler to define a global
905 uninitialized but not common symbol.
906 Try to use asm_output_bss to implement this macro. */
907
908 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
909 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
910
911 /* Globalizing directive for a label. */
912 #define GLOBAL_ASM_OP "\t.global "
913
914 /* This is how to output a reference to a user-level label named NAME.
915 `assemble_name' uses this. */
916
917 #undef ASM_OUTPUT_LABELREF
918 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
919 fprintf (FILE, "_%s", (*targetm.strip_name_encoding) (NAME))
920
921 #define ASM_PN_FORMAT "%s___%lu"
922
923 /* This is how we tell the assembler that two symbols have the same value. */
924
925 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
926 do { assemble_name(FILE, NAME1); \
927 fputs(" = ", FILE); \
928 assemble_name(FILE, NAME2); \
929 fputc('\n', FILE); } while (0)
930
931
932 /* How to refer to registers in assembler output.
933 This sequence is indexed by compiler's hard-register-number (see above). */
934
935 #define REGISTER_NAMES \
936 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
937 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
938 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
939 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
940 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
941 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
942 }
943
944 #define ADDITIONAL_REGISTER_NAMES \
945 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
946 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
947 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
948 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
949 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
950 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
951 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
952 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
953 }
954
955 /* Print an instruction operand X on file FILE.
956 look in mn10300.c for details */
957
958 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
959
960 /* Print a memory operand whose address is X, on file FILE.
961 This uses a function in output-vax.c. */
962
963 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
964
965 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
966 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
967
968 /* This is how to output an element of a case-vector that is absolute. */
969
970 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
971 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
972
973 /* This is how to output an element of a case-vector that is relative. */
974
975 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
976 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
977
978 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
979 if ((LOG) != 0) \
980 fprintf (FILE, "\t.align %d\n", (LOG))
981
982 /* We don't have to worry about dbx compatibility for the mn10300. */
983 #define DEFAULT_GDB_EXTENSIONS 1
984
985 /* Use dwarf2 debugging info by default. */
986 #undef PREFERRED_DEBUGGING_TYPE
987 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
988
989 #define DWARF2_ASM_LINE_DEBUG_INFO 1
990
991 /* GDB always assumes the current function's frame begins at the value
992 of the stack pointer upon entry to the current function. Accessing
993 local variables and parameters passed on the stack is done using the
994 base of the frame + an offset provided by GCC.
995
996 For functions which have frame pointers this method works fine;
997 the (frame pointer) == (stack pointer at function entry) and GCC provides
998 an offset relative to the frame pointer.
999
1000 This loses for functions without a frame pointer; GCC provides an offset
1001 which is relative to the stack pointer after adjusting for the function's
1002 frame size. GDB would prefer the offset to be relative to the value of
1003 the stack pointer at the function's entry. Yuk! */
1004 #define DEBUGGER_AUTO_OFFSET(X) \
1005 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
1006 + (frame_pointer_needed \
1007 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1008
1009 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1010 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
1011 + (frame_pointer_needed \
1012 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1013
1014 /* Specify the machine mode that this machine uses
1015 for the index in the tablejump instruction. */
1016 #define CASE_VECTOR_MODE Pmode
1017
1018 /* Define if operations between registers always perform the operation
1019 on the full register even if a narrower mode is specified. */
1020 #define WORD_REGISTER_OPERATIONS
1021
1022 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1023
1024 /* This flag, if defined, says the same insns that convert to a signed fixnum
1025 also convert validly to an unsigned one. */
1026 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1027
1028 /* Max number of bytes we can move from memory to memory
1029 in one reasonably fast instruction. */
1030 #define MOVE_MAX 4
1031
1032 /* Define if shifts truncate the shift count
1033 which implies one can omit a sign-extension or zero-extension
1034 of a shift count. */
1035 #define SHIFT_COUNT_TRUNCATED 1
1036
1037 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1038 is done just by pretending it is already truncated. */
1039 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1040
1041 /* Specify the machine mode that pointers have.
1042 After generation of rtl, the compiler makes no further distinction
1043 between pointers and any other objects of this machine mode. */
1044 #define Pmode SImode
1045
1046 /* A function address in a call instruction
1047 is a byte address (for indexing purposes)
1048 so give the MEM rtx a byte's mode. */
1049 #define FUNCTION_MODE QImode
1050
1051 /* The assembler op to get a word. */
1052
1053 #define FILE_ASM_OP "\t.file\n"
1054
1055 typedef struct mn10300_cc_status_mdep
1056 {
1057 int fpCC;
1058 }
1059 cc_status_mdep;
1060
1061 #define CC_STATUS_MDEP cc_status_mdep
1062
1063 #define CC_STATUS_MDEP_INIT (cc_status.mdep.fpCC = 0)