target.h (asm_out.byte_op, [...]): New fields.
[gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24
25 #undef ASM_SPEC
26 #undef ASM_FINAL_SPEC
27 #undef LIB_SPEC
28 #undef ENDFILE_SPEC
29 #undef LINK_SPEC
30 #define LINK_SPEC "%{mrelax:--relax}"
31 #undef STARTFILE_SPEC
32 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
33
34 /* Names to predefine in the preprocessor for this target machine. */
35
36 #define CPP_PREDEFINES "-D__mn10300__ -D__MN10300__"
37
38 #define CPP_SPEC "%{mam33:-D__AM33__}"
39
40 /* Run-time compilation parameters selecting different hardware subsets. */
41
42 extern int target_flags;
43
44 /* Macros used in the machine description to test the flags. */
45
46 /* Macro to define tables used to set the flags.
47 This is a list in braces of pairs in braces,
48 each pair being { "NAME", VALUE }
49 where VALUE is the bits to set or minus the bits to clear.
50 An empty string NAME is used to identify the default VALUE. */
51
52 /* Generate code to work around mul/mulq bugs on the mn10300. */
53 #define TARGET_MULT_BUG (target_flags & 0x1)
54
55 /* Generate code for the AM33 processor. */
56 #define TARGET_AM33 (target_flags & 0x2)
57
58 #define TARGET_SWITCHES \
59 {{ "mult-bug", 0x1, N_("Work around hardware multiply bug")}, \
60 { "no-mult-bug", -0x1, N_("Do not work around hardware multiply bug")},\
61 { "am33", 0x2, N_("Target the AM33 processor")}, \
62 { "am33", -(0x1), ""},\
63 { "no-am33", -0x2, ""}, \
64 { "no-crt0", 0, N_("No default crt0.o") }, \
65 { "relax", 0, N_("Enable linker relaxations") }, \
66 { "", TARGET_DEFAULT, NULL}}
67
68 #ifndef TARGET_DEFAULT
69 #define TARGET_DEFAULT 0x1
70 #endif
71
72 /* Print subsidiary information on the compiler version in use. */
73
74 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
75
76 \f
77 /* Target machine storage layout */
78
79 /* Define this if most significant bit is lowest numbered
80 in instructions that operate on numbered bit-fields.
81 This is not true on the Matsushita MN1003. */
82 #define BITS_BIG_ENDIAN 0
83
84 /* Define this if most significant byte of a word is the lowest numbered. */
85 /* This is not true on the Matsushita MN10300. */
86 #define BYTES_BIG_ENDIAN 0
87
88 /* Define this if most significant word of a multiword number is lowest
89 numbered.
90 This is not true on the Matsushita MN10300. */
91 #define WORDS_BIG_ENDIAN 0
92
93 /* Number of bits in an addressable storage unit */
94 #define BITS_PER_UNIT 8
95
96 /* Width in bits of a "word", which is the contents of a machine register.
97 Note that this is not necessarily the width of data type `int';
98 if using 16-bit ints on a 68000, this would still be 32.
99 But on a machine with 16-bit registers, this would be 16. */
100 #define BITS_PER_WORD 32
101
102 /* Width of a word, in units (bytes). */
103 #define UNITS_PER_WORD 4
104
105 /* Width in bits of a pointer.
106 See also the macro `Pmode' defined below. */
107 #define POINTER_SIZE 32
108
109 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
110 #define PARM_BOUNDARY 32
111
112 /* The stack goes in 32 bit lumps. */
113 #define STACK_BOUNDARY 32
114
115 /* Allocation boundary (in *bits*) for the code of a function.
116 8 is the minimum boundary; it's unclear if bigger alignments
117 would improve performance. */
118 #define FUNCTION_BOUNDARY 8
119
120 /* No data type wants to be aligned rounder than this. */
121 #define BIGGEST_ALIGNMENT 32
122
123 /* Alignment of field after `int : 0' in a structure. */
124 #define EMPTY_FIELD_BOUNDARY 32
125
126 /* Define this if move instructions will actually fail to work
127 when given unaligned data. */
128 #define STRICT_ALIGNMENT 1
129
130 /* Define this as 1 if `char' should by default be signed; else as 0. */
131 #define DEFAULT_SIGNED_CHAR 0
132 \f
133 /* Standard register usage. */
134
135 /* Number of actual hardware registers.
136 The hardware registers are assigned numbers for the compiler
137 from 0 to just below FIRST_PSEUDO_REGISTER.
138
139 All registers that the compiler knows about must be given numbers,
140 even those that are not normally considered general registers. */
141
142 #define FIRST_PSEUDO_REGISTER 18
143
144 /* Specify machine-specific register numbers. */
145 #define FIRST_DATA_REGNUM 0
146 #define LAST_DATA_REGNUM 3
147 #define FIRST_ADDRESS_REGNUM 4
148 #define LAST_ADDRESS_REGNUM 8
149 #define FIRST_EXTENDED_REGNUM 10
150 #define LAST_EXTENDED_REGNUM 17
151
152 /* Specify the registers used for certain standard purposes.
153 The values of these macros are register numbers. */
154
155 /* Register to use for pushing function arguments. */
156 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM+1)
157
158 /* Base register for access to local variables of the function. */
159 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM-1)
160
161 /* Base register for access to arguments of the function. This
162 is a fake register and will be eliminated into either the frame
163 pointer or stack pointer. */
164 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
165
166 /* Register in which static-chain is passed to a function. */
167 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM+1)
168
169 /* 1 for registers that have pervasive standard uses
170 and are not available for the register allocator. */
171
172 #define FIXED_REGISTERS \
173 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}
174
175 /* 1 for registers not available across function calls.
176 These must include the FIXED_REGISTERS and also any
177 registers that can be used without being saved.
178 The latter must include the registers where values are returned
179 and the register where structure-value addresses are passed.
180 Aside from that, you can include as many other registers as you
181 like. */
182
183 #define CALL_USED_REGISTERS \
184 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0}
185
186 #define REG_ALLOC_ORDER \
187 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9}
188
189 #define CONDITIONAL_REGISTER_USAGE \
190 { \
191 unsigned int i; \
192 \
193 if (!TARGET_AM33) \
194 { \
195 for (i = FIRST_EXTENDED_REGNUM; \
196 i <= LAST_EXTENDED_REGNUM; i++) \
197 fixed_regs[i] = call_used_regs[i] = 1; \
198 } \
199 }
200
201 /* Return number of consecutive hard regs needed starting at reg REGNO
202 to hold something of mode MODE.
203
204 This is ordinarily the length in words of a value of mode MODE
205 but can be less for certain modes in special long registers. */
206
207 #define HARD_REGNO_NREGS(REGNO, MODE) \
208 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
209
210 /* Value is 1 if hard register REGNO can hold a value of machine-mode
211 MODE. */
212
213 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
214 ((REGNO_REG_CLASS (REGNO) == DATA_REGS \
215 || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
216 || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
217 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
218 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
219
220 /* Value is 1 if it is a good idea to tie two pseudo registers
221 when one has mode MODE1 and one has mode MODE2.
222 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
223 for any hard reg, then this must be 0 for correct output. */
224 #define MODES_TIEABLE_P(MODE1, MODE2) \
225 (TARGET_AM33 \
226 || MODE1 == MODE2 \
227 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
228
229 /* 4 data, and effectively 3 address registers is small as far as I'm
230 concerned. */
231 #define SMALL_REGISTER_CLASSES 1
232 \f
233 /* Define the classes of registers for register constraints in the
234 machine description. Also define ranges of constants.
235
236 One of the classes must always be named ALL_REGS and include all hard regs.
237 If there is more than one class, another class must be named NO_REGS
238 and contain no registers.
239
240 The name GENERAL_REGS must be the name of a class (or an alias for
241 another name such as ALL_REGS). This is the class of registers
242 that is allowed by "g" or "r" in a register constraint.
243 Also, registers outside this class are allocated only when
244 instructions express preferences for them.
245
246 The classes must be numbered in nondecreasing order; that is,
247 a larger-numbered class must never be contained completely
248 in a smaller-numbered class.
249
250 For any two classes, it is very desirable that there be another
251 class that represents their union. */
252
253 enum reg_class {
254 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
255 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
256 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
257 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
258 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
259 };
260
261 #define N_REG_CLASSES (int) LIM_REG_CLASSES
262
263 /* Give names of register classes as strings for dump file. */
264
265 #define REG_CLASS_NAMES \
266 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
267 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
268 "EXTENDED_REGS", \
269 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
270 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
271 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
272
273 /* Define which registers fit in which classes.
274 This is an initializer for a vector of HARD_REG_SET
275 of length N_REG_CLASSES. */
276
277 #define REG_CLASS_CONTENTS \
278 { {0}, /* No regs */ \
279 {0x0000f}, /* DATA_REGS */ \
280 {0x001f0}, /* ADDRESS_REGS */ \
281 {0x00200}, /* SP_REGS */ \
282 {0x001ff}, /* DATA_OR_ADDRESS_REGS */\
283 {0x003f0}, /* SP_OR_ADDRESS_REGS */\
284 {0x3fc00}, /* EXTENDED_REGS */ \
285 {0x3fc0f}, /* DATA_OR_EXTENDED_REGS */ \
286 {0x3fdf0}, /* ADDRESS_OR_EXTENDED_REGS */ \
287 {0x3fe00}, /* SP_OR_EXTENDED_REGS */ \
288 {0x3fff0}, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
289 {0x3fdff}, /* GENERAL_REGS */ \
290 {0x3ffff}, /* ALL_REGS */ \
291 }
292
293 /* The same information, inverted:
294 Return the class number of the smallest class containing
295 reg number REGNO. This could be a conditional expression
296 or could index an array. */
297
298 #define REGNO_REG_CLASS(REGNO) \
299 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
300 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
301 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
302 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
303 NO_REGS)
304
305 /* The class value for index registers, and the one for base regs. */
306 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
307 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
308
309 /* Get reg_class from a letter such as appears in the machine description. */
310
311 #define REG_CLASS_FROM_LETTER(C) \
312 ((C) == 'd' ? DATA_REGS : \
313 (C) == 'a' ? ADDRESS_REGS : \
314 (C) == 'y' ? SP_REGS : \
315 ! TARGET_AM33 ? NO_REGS : \
316 (C) == 'x' ? EXTENDED_REGS : \
317 NO_REGS)
318
319 /* Macros to check register numbers against specific register classes. */
320
321 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
322 and check its validity for a certain class.
323 We have two alternate definitions for each of them.
324 The usual definition accepts all pseudo regs; the other rejects
325 them unless they have been allocated suitable hard regs.
326 The symbol REG_OK_STRICT causes the latter definition to be used.
327
328 Most source files want to accept pseudo regs in the hope that
329 they will get allocated to the class that the insn wants them to be in.
330 Source files for reload pass need to be strict.
331 After reload, it makes no difference, since pseudo regs have
332 been eliminated by then. */
333
334 /* These assume that REGNO is a hard or pseudo reg number.
335 They give nonzero only if REGNO is a hard reg of the suitable class
336 or a pseudo reg currently allocated to a suitable hard reg.
337 Since they use reg_renumber, they are safe only once reg_renumber
338 has been allocated, which happens in local-alloc.c. */
339
340 #ifndef REG_OK_STRICT
341 # define REGNO_IN_RANGE_P(regno,min,max) \
342 (IN_RANGE ((regno), (min), (max)) || (regno) >= FIRST_PSEUDO_REGISTER)
343 #else
344 # define REGNO_IN_RANGE_P(regno,min,max) \
345 (IN_RANGE ((regno), (min), (max)) \
346 || (reg_renumber \
347 && reg_renumber[(regno)] >= (min) && reg_renumber[(regno)] <= (max)))
348 #endif
349
350 #define REGNO_DATA_P(regno) \
351 REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM)
352 #define REGNO_ADDRESS_P(regno) \
353 REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM)
354 #define REGNO_SP_P(regno) \
355 REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM)
356 #define REGNO_EXTENDED_P(regno) \
357 REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM)
358 #define REGNO_AM33_P(regno) \
359 (REGNO_DATA_P ((regno)) || REGNO_ADDRESS_P ((regno)) \
360 || REGNO_EXTENDED_P ((regno)))
361
362 #define REGNO_OK_FOR_BASE_P(regno) \
363 (REGNO_SP_P ((regno)) \
364 || REGNO_ADDRESS_P ((regno)) || REGNO_EXTENDED_P ((regno)))
365 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
366
367 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
368 (REGNO_SP_P ((regno)) || REGNO_ADDRESS_P ((regno)))
369 #define REG_OK_FOR_BIT_BASE_P(X) REGNO_OK_FOR_BIT_BASE_P (REGNO (X))
370
371 #define REGNO_OK_FOR_INDEX_P(regno) \
372 (REGNO_DATA_P ((regno)) || REGNO_EXTENDED_P ((regno)))
373 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
374
375 /* Given an rtx X being reloaded into a reg required to be
376 in class CLASS, return the class of reg to actually use.
377 In general this is just CLASS; but on some machines
378 in some cases it is preferable to use a more restrictive class. */
379
380 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
381 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
382 ? ADDRESS_OR_EXTENDED_REGS \
383 : (GET_CODE (X) == MEM \
384 || (GET_CODE (X) == REG \
385 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
386 || (GET_CODE (X) == SUBREG \
387 && GET_CODE (SUBREG_REG (X)) == REG \
388 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
389 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
390 : (CLASS)))
391
392 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
393 (X == stack_pointer_rtx && CLASS != SP_REGS \
394 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
395
396 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
397 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
398
399 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
400 secondary_reload_class(CLASS,MODE,IN)
401
402 /* Return the maximum number of consecutive registers
403 needed to represent mode MODE in a register of class CLASS. */
404
405 #define CLASS_MAX_NREGS(CLASS, MODE) \
406 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
407
408 /* The letters I, J, K, L, M, N, O, P in a register constraint string
409 can be used to stand for particular ranges of immediate operands.
410 This macro defines what the ranges are.
411 C is the letter, and VALUE is a constant value.
412 Return 1 if VALUE is in the range specified by C. */
413
414 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
415 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
416
417 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
418 #define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
419 #define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
420 #define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
421 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 3)
422 #define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535)
423
424 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
425 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
426 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
427 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
428 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
429 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
430 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0)
431
432
433 /* Similar, but for floating constants, and defining letters G and H.
434 Here VALUE is the CONST_DOUBLE rtx itself.
435
436 `G' is a floating-point zero. */
437
438 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
439 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
440 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0)
441
442 \f
443 /* Stack layout; function entry, exit and calling. */
444
445 /* Define this if pushing a word on the stack
446 makes the stack pointer a smaller address. */
447
448 #define STACK_GROWS_DOWNWARD
449
450 /* Define this if the nominal address of the stack frame
451 is at the high-address end of the local variables;
452 that is, each additional local variable allocated
453 goes at a more negative offset in the frame. */
454
455 #define FRAME_GROWS_DOWNWARD
456
457 /* Offset within stack frame to start allocating local variables at.
458 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
459 first local allocated. Otherwise, it is the offset to the BEGINNING
460 of the first local allocated. */
461
462 #define STARTING_FRAME_OFFSET 0
463
464 /* Offset of first parameter from the argument pointer register value. */
465 /* Is equal to the size of the saved fp + pc, even if an fp isn't
466 saved since the value is used before we know. */
467
468 #define FIRST_PARM_OFFSET(FNDECL) 4
469
470 #define ELIMINABLE_REGS \
471 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
472 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
473 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
474
475 #define CAN_ELIMINATE(FROM, TO) 1
476
477 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
478 OFFSET = initial_offset (FROM, TO)
479
480 /* We can debug without frame pointers on the mn10300, so eliminate
481 them whenever possible. */
482 #define FRAME_POINTER_REQUIRED 0
483 #define CAN_DEBUG_WITHOUT_FP
484
485 /* A guess for the MN10300. */
486 #define PROMOTE_PROTOTYPES 1
487
488 /* Value is the number of bytes of arguments automatically
489 popped when returning from a subroutine call.
490 FUNDECL is the declaration node of the function (as a tree),
491 FUNTYPE is the data type of the function (as a tree),
492 or for a library call it is an identifier node for the subroutine name.
493 SIZE is the number of bytes of arguments passed on the stack. */
494
495 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
496
497 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
498 for a register flushback area. */
499 #define REG_PARM_STACK_SPACE(DECL) 8
500 #define OUTGOING_REG_PARM_STACK_SPACE
501 #define ACCUMULATE_OUTGOING_ARGS 1
502
503 /* So we can allocate space for return pointers once for the function
504 instead of around every call. */
505 #define STACK_POINTER_OFFSET 4
506
507 /* 1 if N is a possible register number for function argument passing.
508 On the MN10300, no registers are used in this way. */
509
510 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
511
512 \f
513 /* Define a data type for recording info about an argument list
514 during the scan of that argument list. This data type should
515 hold all necessary information about the function itself
516 and about the args processed so far, enough to enable macros
517 such as FUNCTION_ARG to determine where the next arg should go.
518
519 On the MN10300, this is a single integer, which is a number of bytes
520 of arguments scanned so far. */
521
522 #define CUMULATIVE_ARGS struct cum_arg
523 struct cum_arg {int nbytes; };
524
525 /* Initialize a variable CUM of type CUMULATIVE_ARGS
526 for a call to a function whose data type is FNTYPE.
527 For a library call, FNTYPE is 0.
528
529 On the MN10300, the offset starts at 0. */
530
531 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
532 ((CUM).nbytes = 0)
533
534 /* Update the data in CUM to advance over an argument
535 of mode MODE and data type TYPE.
536 (TYPE is null for libcalls where that information may not be available.) */
537
538 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
539 ((CUM).nbytes += ((MODE) != BLKmode \
540 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
541 : (int_size_in_bytes (TYPE) + 3) & ~3))
542
543 /* Define where to put the arguments to a function.
544 Value is zero to push the argument on the stack,
545 or a hard register in which to store the argument.
546
547 MODE is the argument's machine mode.
548 TYPE is the data type of the argument (as a tree).
549 This is null for libcalls where that information may
550 not be available.
551 CUM is a variable of type CUMULATIVE_ARGS which gives info about
552 the preceding args and about the function being called.
553 NAMED is nonzero if this argument is a named parameter
554 (otherwise it is an extra parameter matching an ellipsis). */
555
556 /* On the MN10300 all args are pushed. */
557
558 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
559 function_arg (&CUM, MODE, TYPE, NAMED)
560
561 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
562 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
563 \f
564 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
565 ((TYPE) && int_size_in_bytes (TYPE) > 8)
566
567 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
568 ((TYPE) && int_size_in_bytes (TYPE) > 8)
569
570 /* Define how to find the value returned by a function.
571 VALTYPE is the data type of the value (as a tree).
572 If the precise function being called is known, FUNC is its FUNCTION_DECL;
573 otherwise, FUNC is 0. */
574
575 #define FUNCTION_VALUE(VALTYPE, FUNC) \
576 gen_rtx_REG (TYPE_MODE (VALTYPE), POINTER_TYPE_P (VALTYPE) \
577 ? FIRST_ADDRESS_REGNUM : FIRST_DATA_REGNUM)
578
579 /* Define how to find the value returned by a library function
580 assuming the value has mode MODE. */
581
582 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
583
584 /* 1 if N is a possible register number for a function value. */
585
586 #define FUNCTION_VALUE_REGNO_P(N) \
587 ((N) == FIRST_DATA_REGNUM || (N) == FIRST_ADDRESS_REGNUM)
588
589 /* Return values > 8 bytes in length in memory. */
590 #define DEFAULT_PCC_STRUCT_RETURN 0
591 #define RETURN_IN_MEMORY(TYPE) \
592 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
593
594 /* Register in which address to store a structure value
595 is passed to a function. On the MN10300 it's passed as
596 the first parameter. */
597
598 #define STRUCT_VALUE FIRST_DATA_REGNUM
599
600 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
601 the stack pointer does not matter. The value is tested only in
602 functions that have frame pointers.
603 No definition is equivalent to always zero. */
604
605 #define EXIT_IGNORE_STACK 1
606
607 /* Output assembler code to FILE to increment profiler label # LABELNO
608 for profiling a function entry. */
609
610 #define FUNCTION_PROFILER(FILE, LABELNO) ;
611
612 #define TRAMPOLINE_TEMPLATE(FILE) \
613 do { \
614 fprintf (FILE, "\tadd -4,sp\n"); \
615 fprintf (FILE, "\t.long 0x0004fffa\n"); \
616 fprintf (FILE, "\tmov (0,sp),a0\n"); \
617 fprintf (FILE, "\tadd 4,sp\n"); \
618 fprintf (FILE, "\tmov (13,a0),a1\n"); \
619 fprintf (FILE, "\tmov (17,a0),a0\n"); \
620 fprintf (FILE, "\tjmp (a0)\n"); \
621 fprintf (FILE, "\t.long 0\n"); \
622 fprintf (FILE, "\t.long 0\n"); \
623 } while (0)
624
625 /* Length in units of the trampoline for entering a nested function. */
626
627 #define TRAMPOLINE_SIZE 0x1b
628
629 #define TRAMPOLINE_ALIGNMENT 32
630
631 /* Emit RTL insns to initialize the variable parts of a trampoline.
632 FNADDR is an RTX for the address of the function's pure code.
633 CXT is an RTX for the static chain value for the function. */
634
635 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
636 { \
637 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
638 (CXT)); \
639 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
640 (FNADDR)); \
641 }
642 /* A C expression whose value is RTL representing the value of the return
643 address for the frame COUNT steps up from the current frame.
644
645 On the mn10300, the return address is not at a constant location
646 due to the frame layout. Luckily, it is at a constant offset from
647 the argument pointer, so we define RETURN_ADDR_RTX to return a
648 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
649 with a reference to the stack/frame pointer + an appropriate offset. */
650
651 #define RETURN_ADDR_RTX(COUNT, FRAME) \
652 ((COUNT == 0) \
653 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
654 : (rtx) 0)
655
656 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
657 reference the 2 integer arg registers.
658 Ordinarily they are not call used registers, but they are for
659 _builtin_saveregs, so we must make this explicit. */
660
661 #define EXPAND_BUILTIN_SAVEREGS() mn10300_builtin_saveregs ()
662
663 /* Implement `va_start' for varargs and stdarg. */
664 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
665 mn10300_va_start (stdarg, valist, nextarg)
666
667 /* Implement `va_arg'. */
668 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
669 mn10300_va_arg (valist, type)
670
671 /* Addressing modes, and classification of registers for them. */
672
673 \f
674 /* 1 if X is an rtx for a constant that is a valid address. */
675
676 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
677
678 /* Extra constraints. */
679
680 #define OK_FOR_R(OP) \
681 (GET_CODE (OP) == MEM \
682 && GET_MODE (OP) == QImode \
683 && (CONSTANT_ADDRESS_P (XEXP (OP, 0)) \
684 || (GET_CODE (XEXP (OP, 0)) == REG \
685 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
686 && XEXP (OP, 0) != stack_pointer_rtx) \
687 || (GET_CODE (XEXP (OP, 0)) == PLUS \
688 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
689 && REG_OK_FOR_BIT_BASE_P (XEXP (XEXP (OP, 0), 0)) \
690 && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx \
691 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT \
692 && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1))))))
693
694 #define EXTRA_CONSTRAINT(OP, C) \
695 ((C) == 'R' ? OK_FOR_R (OP) \
696 : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF \
697 : 0)
698
699 /* Maximum number of registers that can appear in a valid memory address. */
700
701 #define MAX_REGS_PER_ADDRESS 2
702
703 \f
704 #define HAVE_POST_INCREMENT (TARGET_AM33)
705
706 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
707 that is a valid memory address for an instruction.
708 The MODE argument is the machine mode for the MEM expression
709 that wants to use this address.
710
711 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
712 except for CONSTANT_ADDRESS_P which is actually
713 machine-independent.
714
715 On the mn10300, the value in the address register must be
716 in the same memory space/segment as the effective address.
717
718 This is problematical for reload since it does not understand
719 that base+index != index+base in a memory reference.
720
721 Note it is still possible to use reg+reg addressing modes,
722 it's just much more difficult. For a discussion of a possible
723 workaround and solution, see the comments in pa.c before the
724 function record_unscaled_index_insn_codes. */
725
726 /* Accept either REG or SUBREG where a register is valid. */
727
728 #define RTX_OK_FOR_BASE_P(X) \
729 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
730 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
731 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
732
733 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
734 { \
735 if (CONSTANT_ADDRESS_P (X)) \
736 goto ADDR; \
737 if (RTX_OK_FOR_BASE_P (X)) \
738 goto ADDR; \
739 if (TARGET_AM33 \
740 && GET_CODE (X) == POST_INC \
741 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
742 && (MODE == SImode || MODE == SFmode || MODE == HImode))\
743 goto ADDR; \
744 if (GET_CODE (X) == PLUS) \
745 { \
746 rtx base = 0, index = 0; \
747 if (REG_P (XEXP (X, 0)) \
748 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
749 base = XEXP (X, 0), index = XEXP (X, 1); \
750 if (REG_P (XEXP (X, 1)) \
751 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
752 base = XEXP (X, 1), index = XEXP (X, 0); \
753 if (base != 0 && index != 0) \
754 { \
755 if (GET_CODE (index) == CONST_INT) \
756 goto ADDR; \
757 } \
758 } \
759 }
760
761 \f
762 /* Try machine-dependent ways of modifying an illegitimate address
763 to be legitimate. If we find one, return the new, valid address.
764 This macro is used in only one place: `memory_address' in explow.c.
765
766 OLDX is the address as it was before break_out_memory_refs was called.
767 In some cases it is useful to look at this to decide what needs to be done.
768
769 MODE and WIN are passed so that this macro can use
770 GO_IF_LEGITIMATE_ADDRESS.
771
772 It is always safe for this macro to do nothing. It exists to recognize
773 opportunities to optimize the output. */
774
775 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
776 { rtx orig_x = (X); \
777 (X) = legitimize_address (X, OLDX, MODE); \
778 if ((X) != orig_x && memory_address_p (MODE, X)) \
779 goto WIN; }
780
781 /* Go to LABEL if ADDR (a legitimate address expression)
782 has an effect that depends on the machine mode it is used for. */
783
784 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
785 if (GET_CODE (ADDR) == POST_INC) \
786 goto LABEL
787
788 /* Nonzero if the constant value X is a legitimate general operand.
789 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
790
791 #define LEGITIMATE_CONSTANT_P(X) 1
792
793 \f
794 /* Tell final.c how to eliminate redundant test instructions. */
795
796 /* Here we define machine-dependent flags and fields in cc_status
797 (see `conditions.h'). No extra ones are needed for the VAX. */
798
799 /* Store in cc_status the expressions
800 that the condition codes will describe
801 after execution of an instruction whose pattern is EXP.
802 Do not alter them if the instruction would not alter the cc's. */
803
804 #define CC_OVERFLOW_UNUSABLE 0x200
805 #define CC_NO_CARRY CC_NO_OVERFLOW
806 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
807
808 /* Compute the cost of computing a constant rtl expression RTX
809 whose rtx-code is CODE. The body of this macro is a portion
810 of a switch statement. If the code is computed here,
811 return it with a return statement. Otherwise, break from the switch. */
812
813 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
814 case CONST_INT: \
815 /* Zeros are extremely cheap. */ \
816 if (INTVAL (RTX) == 0 && OUTER_CODE == SET) \
817 return 0; \
818 /* If it fits in 8 bits, then it's still relatively cheap. */ \
819 if (INT_8_BITS (INTVAL (RTX))) \
820 return 1; \
821 /* This is the "base" cost, includes constants where either the \
822 upper or lower 16bits are all zeros. */ \
823 if (INT_16_BITS (INTVAL (RTX)) \
824 || (INTVAL (RTX) & 0xffff) == 0 \
825 || (INTVAL (RTX) & 0xffff0000) == 0) \
826 return 2; \
827 return 4; \
828 /* These are more costly than a CONST_INT, but we can relax them, \
829 so they're less costly than a CONST_DOUBLE. */ \
830 case CONST: \
831 case LABEL_REF: \
832 case SYMBOL_REF: \
833 return 6; \
834 /* We don't optimize CONST_DOUBLEs well nor do we relax them well, \
835 so their cost is very high. */ \
836 case CONST_DOUBLE: \
837 return 8;
838
839 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
840 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
841 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
842 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
843 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
844 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
845 ! TARGET_AM33 ? 6 : \
846 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
847 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
848 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
849 4)
850
851 #define ADDRESS_COST(X) mn10300_address_cost((X), 0)
852
853 /* A crude cut at RTX_COSTS for the MN10300. */
854
855 /* Provide the costs of a rtl expression. This is in the body of a
856 switch on CODE. */
857 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
858 case UMOD: \
859 case UDIV: \
860 case MOD: \
861 case DIV: \
862 return 8; \
863 case MULT: \
864 return 8;
865
866 /* Nonzero if access to memory by bytes or half words is no faster
867 than accessing full words. */
868 #define SLOW_BYTE_ACCESS 1
869
870 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
871 and readonly data size. So we crank up the case threshold value to
872 encourage a series of if/else comparisons to implement many small switch
873 statements. In theory, this value could be increased much more if we
874 were solely optimizing for space, but we keep it "reasonable" to avoid
875 serious code efficiency lossage. */
876 #define CASE_VALUES_THRESHOLD 6
877
878 #define NO_FUNCTION_CSE
879
880 /* According expr.c, a value of around 6 should minimize code size, and
881 for the MN10300 series, that's our primary concern. */
882 #define MOVE_RATIO 6
883
884 #define TEXT_SECTION_ASM_OP "\t.section .text"
885 #define DATA_SECTION_ASM_OP "\t.section .data"
886 #define BSS_SECTION_ASM_OP "\t.section .bss"
887
888 /* Output at beginning/end of assembler file. */
889 #undef ASM_FILE_START
890 #define ASM_FILE_START(FILE) asm_file_start(FILE)
891
892 #define ASM_COMMENT_START "#"
893
894 /* Output to assembler file text saying following lines
895 may contain character constants, extra white space, comments, etc. */
896
897 #define ASM_APP_ON "#APP\n"
898
899 /* Output to assembler file text saying following lines
900 no longer contain unusual constructs. */
901
902 #define ASM_APP_OFF "#NO_APP\n"
903
904 /* This is how to output an assembler line defining a `double' constant.
905 It is .dfloat or .gfloat, depending. */
906
907 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
908 do { char dstr[30]; \
909 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
910 fprintf (FILE, "\t.double %s\n", dstr); \
911 } while (0)
912
913
914 /* This is how to output an assembler line defining a `float' constant. */
915 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
916 do { char dstr[30]; \
917 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
918 fprintf (FILE, "\t.float %s\n", dstr); \
919 } while (0)
920
921 /* This says how to output the assembler to define a global
922 uninitialized but not common symbol.
923 Try to use asm_output_bss to implement this macro. */
924
925 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
926 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
927
928 /* This is how to output the definition of a user-level label named NAME,
929 such as the label on a static function or variable NAME. */
930
931 #define ASM_OUTPUT_LABEL(FILE, NAME) \
932 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
933
934 /* This is how to output a command to make the user-level label named NAME
935 defined for reference from other files. */
936
937 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
938 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
939
940 /* This is how to output a reference to a user-level label named NAME.
941 `assemble_name' uses this. */
942
943 #undef ASM_OUTPUT_LABELREF
944 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
945 do { \
946 const char* real_name; \
947 STRIP_NAME_ENCODING (real_name, (NAME)); \
948 fprintf (FILE, "_%s", real_name); \
949 } while (0)
950
951 /* Store in OUTPUT a string (made with alloca) containing
952 an assembler-name for a local static variable named NAME.
953 LABELNO is an integer which is different for each call. */
954
955 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
956 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
957 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
958
959 /* This is how we tell the assembler that two symbols have the same value. */
960
961 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
962 do { assemble_name(FILE, NAME1); \
963 fputs(" = ", FILE); \
964 assemble_name(FILE, NAME2); \
965 fputc('\n', FILE); } while (0)
966
967
968 /* How to refer to registers in assembler output.
969 This sequence is indexed by compiler's hard-register-number (see above). */
970
971 #define REGISTER_NAMES \
972 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
973 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
974 }
975
976 #define ADDITIONAL_REGISTER_NAMES \
977 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
978 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
979 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
980 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
981 }
982
983 /* Print an instruction operand X on file FILE.
984 look in mn10300.c for details */
985
986 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
987
988 /* Print a memory operand whose address is X, on file FILE.
989 This uses a function in output-vax.c. */
990
991 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
992
993 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
994 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
995
996 /* This is how to output an element of a case-vector that is absolute. */
997
998 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
999 asm_fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
1000
1001 /* This is how to output an element of a case-vector that is relative. */
1002
1003 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1004 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
1005
1006 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1007 if ((LOG) != 0) \
1008 fprintf (FILE, "\t.align %d\n", (LOG))
1009
1010 /* We don't have to worry about dbx compatibility for the mn10300. */
1011 #define DEFAULT_GDB_EXTENSIONS 1
1012
1013 /* Use dwarf2 debugging info by default. */
1014 #undef PREFERRED_DEBUGGING_TYPE
1015 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1016
1017 #define DWARF2_ASM_LINE_DEBUG_INFO 1
1018
1019 /* GDB always assumes the current function's frame begins at the value
1020 of the stack pointer upon entry to the current function. Accessing
1021 local variables and parameters passed on the stack is done using the
1022 base of the frame + an offset provided by GCC.
1023
1024 For functions which have frame pointers this method works fine;
1025 the (frame pointer) == (stack pointer at function entry) and GCC provides
1026 an offset relative to the frame pointer.
1027
1028 This loses for functions without a frame pointer; GCC provides an offset
1029 which is relative to the stack pointer after adjusting for the function's
1030 frame size. GDB would prefer the offset to be relative to the value of
1031 the stack pointer at the function's entry. Yuk! */
1032 #define DEBUGGER_AUTO_OFFSET(X) \
1033 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
1034 + (frame_pointer_needed \
1035 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1036
1037 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1038 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
1039 + (frame_pointer_needed \
1040 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1041
1042 /* Define to use software floating point emulator for REAL_ARITHMETIC and
1043 decimal <-> binary conversion. */
1044 #define REAL_ARITHMETIC
1045
1046 /* Specify the machine mode that this machine uses
1047 for the index in the tablejump instruction. */
1048 #define CASE_VECTOR_MODE Pmode
1049
1050 /* Define if operations between registers always perform the operation
1051 on the full register even if a narrower mode is specified. */
1052 #define WORD_REGISTER_OPERATIONS
1053
1054 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1055
1056 /* Specify the tree operation to be used to convert reals to integers. */
1057 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1058
1059 /* This flag, if defined, says the same insns that convert to a signed fixnum
1060 also convert validly to an unsigned one. */
1061 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1062
1063 /* This is the kind of divide that is easiest to do in the general case. */
1064 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1065
1066 /* Max number of bytes we can move from memory to memory
1067 in one reasonably fast instruction. */
1068 #define MOVE_MAX 4
1069
1070 /* Define if shifts truncate the shift count
1071 which implies one can omit a sign-extension or zero-extension
1072 of a shift count. */
1073 #define SHIFT_COUNT_TRUNCATED 1
1074
1075 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1076 is done just by pretending it is already truncated. */
1077 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1078
1079 /* Specify the machine mode that pointers have.
1080 After generation of rtl, the compiler makes no further distinction
1081 between pointers and any other objects of this machine mode. */
1082 #define Pmode SImode
1083
1084 /* A function address in a call instruction
1085 is a byte address (for indexing purposes)
1086 so give the MEM rtx a byte's mode. */
1087 #define FUNCTION_MODE QImode
1088
1089 /* The assembler op to get a word. */
1090
1091 #define FILE_ASM_OP "\t.file\n"
1092