mn10300-protos.h (mn10300_address_cost): Declare.
[gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler. Matsushita MN10300 series
2 Copyright (C) 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
3 Contributed by Jeff Law (law@cygnus.com).
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "svr4.h"
23
24 #undef ASM_SPEC
25 #undef ASM_FINAL_SPEC
26 #undef LIB_SPEC
27 #undef ENDFILE_SPEC
28 #undef LINK_SPEC
29 #undef STARTFILE_SPEC
30
31 /* Names to predefine in the preprocessor for this target machine. */
32
33 #define CPP_PREDEFINES "-D__mn10300__ -D__MN10300__"
34
35 #define CPP_SPEC "%{mam33:-D__AM33__}"
36
37 /* Run-time compilation parameters selecting different hardware subsets. */
38
39 extern int target_flags;
40
41 /* Macros used in the machine description to test the flags. */
42
43 /* Macro to define tables used to set the flags.
44 This is a list in braces of pairs in braces,
45 each pair being { "NAME", VALUE }
46 where VALUE is the bits to set or minus the bits to clear.
47 An empty string NAME is used to identify the default VALUE. */
48
49 /* Generate code to work around mul/mulq bugs on the mn10300. */
50 #define TARGET_MULT_BUG (target_flags & 0x1)
51
52 /* Generate code for the AM33 processor. */
53 #define TARGET_AM33 (target_flags & 0x2)
54
55 #define TARGET_SWITCHES \
56 {{ "mult-bug", 0x1, "Work around hardware multiply bug"}, \
57 { "no-mult-bug", -0x1, "Do not work around hardware multiply bug"},\
58 { "am33", 0x2}, \
59 { "am33", -(0x1)},\
60 { "no-am33", -0x2}, \
61 { "", TARGET_DEFAULT, NULL}}
62
63 #ifndef TARGET_DEFAULT
64 #define TARGET_DEFAULT 0x1
65 #endif
66
67 /* Print subsidiary information on the compiler version in use. */
68
69 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
70
71 \f
72 /* Target machine storage layout */
73
74 /* Define this if most significant bit is lowest numbered
75 in instructions that operate on numbered bit-fields.
76 This is not true on the Matsushita MN1003. */
77 #define BITS_BIG_ENDIAN 0
78
79 /* Define this if most significant byte of a word is the lowest numbered. */
80 /* This is not true on the Matsushita MN10300. */
81 #define BYTES_BIG_ENDIAN 0
82
83 /* Define this if most significant word of a multiword number is lowest
84 numbered.
85 This is not true on the Matsushita MN10300. */
86 #define WORDS_BIG_ENDIAN 0
87
88 /* Number of bits in an addressable storage unit */
89 #define BITS_PER_UNIT 8
90
91 /* Width in bits of a "word", which is the contents of a machine register.
92 Note that this is not necessarily the width of data type `int';
93 if using 16-bit ints on a 68000, this would still be 32.
94 But on a machine with 16-bit registers, this would be 16. */
95 #define BITS_PER_WORD 32
96
97 /* Width of a word, in units (bytes). */
98 #define UNITS_PER_WORD 4
99
100 /* Width in bits of a pointer.
101 See also the macro `Pmode' defined below. */
102 #define POINTER_SIZE 32
103
104 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
105 #define PARM_BOUNDARY 32
106
107 /* The stack goes in 32 bit lumps. */
108 #define STACK_BOUNDARY 32
109
110 /* Allocation boundary (in *bits*) for the code of a function.
111 8 is the minimum boundary; it's unclear if bigger alignments
112 would improve performance. */
113 #define FUNCTION_BOUNDARY 8
114
115 /* No data type wants to be aligned rounder than this. */
116 #define BIGGEST_ALIGNMENT 32
117
118 /* Alignment of field after `int : 0' in a structure. */
119 #define EMPTY_FIELD_BOUNDARY 32
120
121 /* Define this if move instructions will actually fail to work
122 when given unaligned data. */
123 #define STRICT_ALIGNMENT 1
124
125 /* Define this as 1 if `char' should by default be signed; else as 0. */
126 #define DEFAULT_SIGNED_CHAR 0
127
128 /* Define results of standard character escape sequences. */
129 #define TARGET_BELL 007
130 #define TARGET_BS 010
131 #define TARGET_TAB 011
132 #define TARGET_NEWLINE 012
133 #define TARGET_VT 013
134 #define TARGET_FF 014
135 #define TARGET_CR 015
136 \f
137 /* Standard register usage. */
138
139 /* Number of actual hardware registers.
140 The hardware registers are assigned numbers for the compiler
141 from 0 to just below FIRST_PSEUDO_REGISTER.
142
143 All registers that the compiler knows about must be given numbers,
144 even those that are not normally considered general registers. */
145
146 #define FIRST_PSEUDO_REGISTER 18
147
148 /* 1 for registers that have pervasive standard uses
149 and are not available for the register allocator. */
150
151 #define FIXED_REGISTERS \
152 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}
153
154 /* 1 for registers not available across function calls.
155 These must include the FIXED_REGISTERS and also any
156 registers that can be used without being saved.
157 The latter must include the registers where values are returned
158 and the register where structure-value addresses are passed.
159 Aside from that, you can include as many other registers as you
160 like. */
161
162 #define CALL_USED_REGISTERS \
163 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0}
164
165 #define REG_ALLOC_ORDER \
166 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9}
167
168 #define CONDITIONAL_REGISTER_USAGE \
169 { \
170 if (!TARGET_AM33) \
171 { \
172 for (i = 10; i < 18; i++) \
173 fixed_regs[i] = call_used_regs[i] = 1; \
174 } \
175 }
176
177 /* Return number of consecutive hard regs needed starting at reg REGNO
178 to hold something of mode MODE.
179
180 This is ordinarily the length in words of a value of mode MODE
181 but can be less for certain modes in special long registers. */
182
183 #define HARD_REGNO_NREGS(REGNO, MODE) \
184 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
185
186 /* Value is 1 if hard register REGNO can hold a value of machine-mode
187 MODE. */
188
189 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
190 ((REGNO_REG_CLASS (REGNO) == DATA_REGS \
191 || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
192 || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
193 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
194 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
195
196 /* Value is 1 if it is a good idea to tie two pseudo registers
197 when one has mode MODE1 and one has mode MODE2.
198 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
199 for any hard reg, then this must be 0 for correct output. */
200 #define MODES_TIEABLE_P(MODE1, MODE2) \
201 (TARGET_AM33 \
202 || MODE1 == MODE2 \
203 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
204
205 /* 4 data, and effectively 3 address registers is small as far as I'm
206 concerned. */
207 #define SMALL_REGISTER_CLASSES 1
208 \f
209 /* Define the classes of registers for register constraints in the
210 machine description. Also define ranges of constants.
211
212 One of the classes must always be named ALL_REGS and include all hard regs.
213 If there is more than one class, another class must be named NO_REGS
214 and contain no registers.
215
216 The name GENERAL_REGS must be the name of a class (or an alias for
217 another name such as ALL_REGS). This is the class of registers
218 that is allowed by "g" or "r" in a register constraint.
219 Also, registers outside this class are allocated only when
220 instructions express preferences for them.
221
222 The classes must be numbered in nondecreasing order; that is,
223 a larger-numbered class must never be contained completely
224 in a smaller-numbered class.
225
226 For any two classes, it is very desirable that there be another
227 class that represents their union. */
228
229 enum reg_class {
230 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
231 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
232 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
233 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
234 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
235 };
236
237 #define N_REG_CLASSES (int) LIM_REG_CLASSES
238
239 /* Give names of register classes as strings for dump file. */
240
241 #define REG_CLASS_NAMES \
242 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
243 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
244 "EXTENDED_REGS", \
245 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
246 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
247 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
248
249 /* Define which registers fit in which classes.
250 This is an initializer for a vector of HARD_REG_SET
251 of length N_REG_CLASSES. */
252
253 #define REG_CLASS_CONTENTS \
254 { {0}, /* No regs */ \
255 {0x0000f}, /* DATA_REGS */ \
256 {0x001f0}, /* ADDRESS_REGS */ \
257 {0x00200}, /* SP_REGS */ \
258 {0x001ff}, /* DATA_OR_ADDRESS_REGS */\
259 {0x003f0}, /* SP_OR_ADDRESS_REGS */\
260 {0x2fc00}, /* EXTENDED_REGS */ \
261 {0x2fc0f}, /* DATA_OR_EXTENDED_REGS */ \
262 {0x2fdf0}, /* ADDRESS_OR_EXTENDED_REGS */ \
263 {0x2fe00}, /* SP_OR_EXTENDED_REGS */ \
264 {0x2fff0}, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
265 {0x2fdff}, /* GENERAL_REGS */ \
266 {0x2ffff}, /* ALL_REGS */ \
267 }
268
269 /* The same information, inverted:
270 Return the class number of the smallest class containing
271 reg number REGNO. This could be a conditional expression
272 or could index an array. */
273
274 #define REGNO_REG_CLASS(REGNO) \
275 ((REGNO) < 4 ? DATA_REGS : \
276 (REGNO) < 9 ? ADDRESS_REGS : \
277 (REGNO) == 9 ? SP_REGS : \
278 (REGNO) < 18 ? EXTENDED_REGS : 0)
279
280 /* The class value for index registers, and the one for base regs. */
281 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
282 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
283
284 /* Get reg_class from a letter such as appears in the machine description. */
285
286 #define REG_CLASS_FROM_LETTER(C) \
287 ((C) == 'd' ? DATA_REGS : \
288 (C) == 'a' ? ADDRESS_REGS : \
289 (C) == 'x' ? EXTENDED_REGS : \
290 (C) == 'y' ? SP_REGS : NO_REGS)
291
292 /* Macros to check register numbers against specific register classes. */
293
294 /* These assume that REGNO is a hard or pseudo reg number.
295 They give nonzero only if REGNO is a hard reg of the suitable class
296 or a pseudo reg currently allocated to a suitable hard reg.
297 Since they use reg_renumber, they are safe only once reg_renumber
298 has been allocated, which happens in local-alloc.c. */
299
300 #define REGNO_OK_FOR_BASE_P(regno) \
301 (((regno) > 3 && regno < FIRST_PSEUDO_REGISTER) \
302 || (reg_renumber[regno] > 3 && reg_renumber[regno] < FIRST_PSEUDO_REGISTER))
303
304 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
305 (((regno) > 3 && regno < 10) \
306 || (reg_renumber[regno] > 3 && reg_renumber[regno] < 10))
307
308 #define REGNO_OK_FOR_INDEX_P(regno) \
309 (((regno) >= 0 && regno < 4) \
310 || ((regno) >= 10 && regno < 18) \
311 || (reg_renumber[regno] >= 10 && reg_renumber[regno] < 18) \
312 || (reg_renumber[regno] >= 0 && reg_renumber[regno] < 4))
313
314
315 /* Given an rtx X being reloaded into a reg required to be
316 in class CLASS, return the class of reg to actually use.
317 In general this is just CLASS; but on some machines
318 in some cases it is preferable to use a more restrictive class. */
319
320 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
321 (X == stack_pointer_rtx && CLASS != SP_REGS \
322 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
323
324 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
325 (X == stack_pointer_rtx && CLASS != SP_REGS \
326 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
327
328 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
329 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
330
331 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
332 secondary_reload_class(CLASS,MODE,IN)
333
334 /* Return the maximum number of consecutive registers
335 needed to represent mode MODE in a register of class CLASS. */
336
337 #define CLASS_MAX_NREGS(CLASS, MODE) \
338 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
339
340 /* The letters I, J, K, L, M, N, O, P in a register constraint string
341 can be used to stand for particular ranges of immediate operands.
342 This macro defines what the ranges are.
343 C is the letter, and VALUE is a constant value.
344 Return 1 if VALUE is in the range specified by C. */
345
346 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
347 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
348
349 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
350 #define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
351 #define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
352 #define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
353 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 3)
354 #define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535)
355
356 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
357 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
358 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
359 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
360 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
361 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
362 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0)
363
364
365 /* Similar, but for floating constants, and defining letters G and H.
366 Here VALUE is the CONST_DOUBLE rtx itself.
367
368 `G' is a floating-point zero. */
369
370 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
371 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
372 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0)
373
374 \f
375 /* Stack layout; function entry, exit and calling. */
376
377 /* Define this if pushing a word on the stack
378 makes the stack pointer a smaller address. */
379
380 #define STACK_GROWS_DOWNWARD
381
382 /* Define this if the nominal address of the stack frame
383 is at the high-address end of the local variables;
384 that is, each additional local variable allocated
385 goes at a more negative offset in the frame. */
386
387 #define FRAME_GROWS_DOWNWARD
388
389 /* Offset within stack frame to start allocating local variables at.
390 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
391 first local allocated. Otherwise, it is the offset to the BEGINNING
392 of the first local allocated. */
393
394 #define STARTING_FRAME_OFFSET 0
395
396 /* Offset of first parameter from the argument pointer register value. */
397 /* Is equal to the size of the saved fp + pc, even if an fp isn't
398 saved since the value is used before we know. */
399
400 #define FIRST_PARM_OFFSET(FNDECL) 4
401
402 /* Specify the registers used for certain standard purposes.
403 The values of these macros are register numbers. */
404
405 /* Register to use for pushing function arguments. */
406 #define STACK_POINTER_REGNUM 9
407
408 /* Base register for access to local variables of the function. */
409 #define FRAME_POINTER_REGNUM 7
410
411 /* Base register for access to arguments of the function. This
412 is a fake register and will be eliminated into either the frame
413 pointer or stack pointer. */
414 #define ARG_POINTER_REGNUM 8
415
416 /* Register in which static-chain is passed to a function. */
417 #define STATIC_CHAIN_REGNUM 5
418
419 #define ELIMINABLE_REGS \
420 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
421 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
422 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
423
424 #define CAN_ELIMINATE(FROM, TO) 1
425
426 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
427 OFFSET = initial_offset (FROM, TO)
428
429 /* We can debug without frame pointers on the mn10300, so eliminate
430 them whenever possible. */
431 #define FRAME_POINTER_REQUIRED 0
432 #define CAN_DEBUG_WITHOUT_FP
433
434 /* A guess for the MN10300. */
435 #define PROMOTE_PROTOTYPES 1
436
437 /* Value is the number of bytes of arguments automatically
438 popped when returning from a subroutine call.
439 FUNDECL is the declaration node of the function (as a tree),
440 FUNTYPE is the data type of the function (as a tree),
441 or for a library call it is an identifier node for the subroutine name.
442 SIZE is the number of bytes of arguments passed on the stack. */
443
444 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
445
446 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
447 for a register flushback area. */
448 #define REG_PARM_STACK_SPACE(DECL) 8
449 #define OUTGOING_REG_PARM_STACK_SPACE
450 #define ACCUMULATE_OUTGOING_ARGS 1
451
452 /* So we can allocate space for return pointers once for the function
453 instead of around every call. */
454 #define STACK_POINTER_OFFSET 4
455
456 /* 1 if N is a possible register number for function argument passing.
457 On the MN10300, no registers are used in this way. */
458
459 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
460
461 \f
462 /* Define a data type for recording info about an argument list
463 during the scan of that argument list. This data type should
464 hold all necessary information about the function itself
465 and about the args processed so far, enough to enable macros
466 such as FUNCTION_ARG to determine where the next arg should go.
467
468 On the MN10300, this is a single integer, which is a number of bytes
469 of arguments scanned so far. */
470
471 #define CUMULATIVE_ARGS struct cum_arg
472 struct cum_arg {int nbytes; };
473
474 /* Initialize a variable CUM of type CUMULATIVE_ARGS
475 for a call to a function whose data type is FNTYPE.
476 For a library call, FNTYPE is 0.
477
478 On the MN10300, the offset starts at 0. */
479
480 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
481 ((CUM).nbytes = 0)
482
483 /* Update the data in CUM to advance over an argument
484 of mode MODE and data type TYPE.
485 (TYPE is null for libcalls where that information may not be available.) */
486
487 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
488 ((CUM).nbytes += ((MODE) != BLKmode \
489 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
490 : (int_size_in_bytes (TYPE) + 3) & ~3))
491
492 /* Define where to put the arguments to a function.
493 Value is zero to push the argument on the stack,
494 or a hard register in which to store the argument.
495
496 MODE is the argument's machine mode.
497 TYPE is the data type of the argument (as a tree).
498 This is null for libcalls where that information may
499 not be available.
500 CUM is a variable of type CUMULATIVE_ARGS which gives info about
501 the preceding args and about the function being called.
502 NAMED is nonzero if this argument is a named parameter
503 (otherwise it is an extra parameter matching an ellipsis). */
504
505 /* On the MN10300 all args are pushed. */
506
507 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
508 function_arg (&CUM, MODE, TYPE, NAMED)
509
510 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
511 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
512 \f
513 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
514 ((TYPE) && int_size_in_bytes (TYPE) > 8)
515
516 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
517 ((TYPE) && int_size_in_bytes (TYPE) > 8)
518
519 /* Define how to find the value returned by a function.
520 VALTYPE is the data type of the value (as a tree).
521 If the precise function being called is known, FUNC is its FUNCTION_DECL;
522 otherwise, FUNC is 0. */
523
524 #define FUNCTION_VALUE(VALTYPE, FUNC) \
525 gen_rtx_REG (TYPE_MODE (VALTYPE), POINTER_TYPE_P (VALTYPE) ? 4 : 0)
526
527 /* Define how to find the value returned by a library function
528 assuming the value has mode MODE. */
529
530 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
531
532 /* 1 if N is a possible register number for a function value. */
533
534 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 4)
535
536 /* Return values > 8 bytes in length in memory. */
537 #define DEFAULT_PCC_STRUCT_RETURN 0
538 #define RETURN_IN_MEMORY(TYPE) \
539 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
540
541 /* Register in which address to store a structure value
542 is passed to a function. On the MN10300 it's passed as
543 the first parameter. */
544
545 #define STRUCT_VALUE 0
546
547 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
548 the stack pointer does not matter. The value is tested only in
549 functions that have frame pointers.
550 No definition is equivalent to always zero. */
551
552 #define EXIT_IGNORE_STACK 1
553
554 /* Output assembler code to FILE to increment profiler label # LABELNO
555 for profiling a function entry. */
556
557 #define FUNCTION_PROFILER(FILE, LABELNO) ;
558
559 #define TRAMPOLINE_TEMPLATE(FILE) \
560 do { \
561 fprintf (FILE, "\tadd -4,sp\n"); \
562 fprintf (FILE, "\t.long 0x0004fffa\n"); \
563 fprintf (FILE, "\tmov (0,sp),a0\n"); \
564 fprintf (FILE, "\tadd 4,sp\n"); \
565 fprintf (FILE, "\tmov (13,a0),a1\n"); \
566 fprintf (FILE, "\tmov (17,a0),a0\n"); \
567 fprintf (FILE, "\tjmp (a0)\n"); \
568 fprintf (FILE, "\t.long 0\n"); \
569 fprintf (FILE, "\t.long 0\n"); \
570 } while (0)
571
572 /* Length in units of the trampoline for entering a nested function. */
573
574 #define TRAMPOLINE_SIZE 0x1b
575
576 #define TRAMPOLINE_ALIGNMENT 32
577
578 /* Emit RTL insns to initialize the variable parts of a trampoline.
579 FNADDR is an RTX for the address of the function's pure code.
580 CXT is an RTX for the static chain value for the function. */
581
582 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
583 { \
584 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
585 (CXT)); \
586 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
587 (FNADDR)); \
588 }
589 /* A C expression whose value is RTL representing the value of the return
590 address for the frame COUNT steps up from the current frame.
591
592 On the mn10300, the return address is not at a constant location
593 due to the frame layout. Luckily, it is at a constant offset from
594 the argument pointer, so we define RETURN_ADDR_RTX to return a
595 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
596 with a reference to the stack/frame pointer + an appropriate offset. */
597
598 #define RETURN_ADDR_RTX(COUNT, FRAME) \
599 ((COUNT == 0) \
600 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
601 : (rtx) 0)
602
603 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
604 reference the 2 integer arg registers.
605 Ordinarily they are not call used registers, but they are for
606 _builtin_saveregs, so we must make this explicit. */
607
608 #define EXPAND_BUILTIN_SAVEREGS() mn10300_builtin_saveregs ()
609
610 /* Implement `va_start' for varargs and stdarg. */
611 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
612 mn10300_va_start (stdarg, valist, nextarg)
613
614 /* Implement `va_arg'. */
615 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
616 mn10300_va_arg (valist, type)
617
618 /* Addressing modes, and classification of registers for them. */
619
620 \f
621 /* 1 if X is an rtx for a constant that is a valid address. */
622
623 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
624
625 /* Extra constraints. */
626
627 #define OK_FOR_R(OP) \
628 (GET_CODE (OP) == MEM \
629 && GET_MODE (OP) == QImode \
630 && (CONSTANT_ADDRESS_P (XEXP (OP, 0)) \
631 || (GET_CODE (XEXP (OP, 0)) == REG \
632 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
633 && XEXP (OP, 0) != stack_pointer_rtx) \
634 || (GET_CODE (XEXP (OP, 0)) == PLUS \
635 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
636 && REG_OK_FOR_BIT_BASE_P (XEXP (XEXP (OP, 0), 0)) \
637 && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx \
638 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT \
639 && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1))))))
640
641 #define EXTRA_CONSTRAINT(OP, C) \
642 ((C) == 'R' ? OK_FOR_R (OP) : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF : 0)
643
644 /* Maximum number of registers that can appear in a valid memory address. */
645
646 #define MAX_REGS_PER_ADDRESS 2
647
648 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
649 and check its validity for a certain class.
650 We have two alternate definitions for each of them.
651 The usual definition accepts all pseudo regs; the other rejects
652 them unless they have been allocated suitable hard regs.
653 The symbol REG_OK_STRICT causes the latter definition to be used.
654
655 Most source files want to accept pseudo regs in the hope that
656 they will get allocated to the class that the insn wants them to be in.
657 Source files for reload pass need to be strict.
658 After reload, it makes no difference, since pseudo regs have
659 been eliminated by then. */
660
661 #ifndef REG_OK_STRICT
662 /* Nonzero if X is a hard reg that can be used as an index
663 or if it is a pseudo reg. */
664 #define REG_OK_FOR_INDEX_P(X) \
665 ((REGNO (X) >= 0 && REGNO(X) <= 3) || REGNO (X) >= 10)
666 /* Nonzero if X is a hard reg that can be used as a base reg
667 or if it is a pseudo reg. */
668 #define REG_OK_FOR_BASE_P(X) \
669 ((REGNO (X) >= 4 && REGNO(X) <= 9) || REGNO (X) >= 10)
670 #define REG_OK_FOR_BIT_BASE_P(X) \
671 ((REGNO (X) >= 4 && REGNO(X) <= 9))
672 #else
673 /* Nonzero if X is a hard reg that can be used as an index. */
674 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
675 /* Nonzero if X is a hard reg that can be used as a base reg. */
676 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
677 /* Nonzero if X is a hard reg that can be used as a base reg. */
678 #define REG_OK_FOR_BIT_BASE_P(X) REGNO_OK_FOR_BIT_BASE_P (REGNO (X))
679 #endif
680
681 \f
682 #define HAVE_POST_INCREMENT (TARGET_AM33)
683
684 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
685 that is a valid memory address for an instruction.
686 The MODE argument is the machine mode for the MEM expression
687 that wants to use this address.
688
689 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
690 except for CONSTANT_ADDRESS_P which is actually
691 machine-independent.
692
693 On the mn10300, the value in the address register must be
694 in the same memory space/segment as the effective address.
695
696 This is problematical for reload since it does not understand
697 that base+index != index+base in a memory reference.
698
699 Note it is still possible to use reg+reg addressing modes,
700 it's just much more difficult. For a discussion of a possible
701 workaround and solution, see the comments in pa.c before the
702 function record_unscaled_index_insn_codes. */
703
704 /* Accept either REG or SUBREG where a register is valid. */
705
706 #define RTX_OK_FOR_BASE_P(X) \
707 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
708 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
709 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
710
711 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
712 { \
713 if (CONSTANT_ADDRESS_P (X)) \
714 goto ADDR; \
715 if (RTX_OK_FOR_BASE_P (X)) \
716 goto ADDR; \
717 if (TARGET_AM33 \
718 && GET_CODE (X) == POST_INC \
719 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
720 && (MODE == SImode || MODE == SFmode || MODE == HImode))\
721 goto ADDR; \
722 if (GET_CODE (X) == PLUS) \
723 { \
724 rtx base = 0, index = 0; \
725 if (REG_P (XEXP (X, 0)) \
726 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
727 base = XEXP (X, 0), index = XEXP (X, 1); \
728 if (REG_P (XEXP (X, 1)) \
729 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
730 base = XEXP (X, 1), index = XEXP (X, 0); \
731 if (base != 0 && index != 0) \
732 { \
733 if (GET_CODE (index) == CONST_INT) \
734 goto ADDR; \
735 } \
736 } \
737 }
738
739 \f
740 /* Try machine-dependent ways of modifying an illegitimate address
741 to be legitimate. If we find one, return the new, valid address.
742 This macro is used in only one place: `memory_address' in explow.c.
743
744 OLDX is the address as it was before break_out_memory_refs was called.
745 In some cases it is useful to look at this to decide what needs to be done.
746
747 MODE and WIN are passed so that this macro can use
748 GO_IF_LEGITIMATE_ADDRESS.
749
750 It is always safe for this macro to do nothing. It exists to recognize
751 opportunities to optimize the output. */
752
753 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
754 { rtx orig_x = (X); \
755 (X) = legitimize_address (X, OLDX, MODE); \
756 if ((X) != orig_x && memory_address_p (MODE, X)) \
757 goto WIN; }
758
759 /* Go to LABEL if ADDR (a legitimate address expression)
760 has an effect that depends on the machine mode it is used for. */
761
762 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
763 if (GET_CODE (ADDR) == POST_INC) \
764 goto LABEL
765
766 /* Nonzero if the constant value X is a legitimate general operand.
767 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
768
769 #define LEGITIMATE_CONSTANT_P(X) 1
770
771 \f
772 /* Tell final.c how to eliminate redundant test instructions. */
773
774 /* Here we define machine-dependent flags and fields in cc_status
775 (see `conditions.h'). No extra ones are needed for the vax. */
776
777 /* Store in cc_status the expressions
778 that the condition codes will describe
779 after execution of an instruction whose pattern is EXP.
780 Do not alter them if the instruction would not alter the cc's. */
781
782 #define CC_OVERFLOW_UNUSABLE 0x200
783 #define CC_NO_CARRY CC_NO_OVERFLOW
784 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
785
786 /* Compute the cost of computing a constant rtl expression RTX
787 whose rtx-code is CODE. The body of this macro is a portion
788 of a switch statement. If the code is computed here,
789 return it with a return statement. Otherwise, break from the switch. */
790
791 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
792 case CONST_INT: \
793 /* Zeros are extremely cheap. */ \
794 if (INTVAL (RTX) == 0 && OUTER_CODE == SET) \
795 return 0; \
796 /* If it fits in 8 bits, then it's still relatively cheap. */ \
797 if (INT_8_BITS (INTVAL (RTX))) \
798 return 1; \
799 /* This is the "base" cost, includes constants where either the \
800 upper or lower 16bits are all zeros. */ \
801 if (INT_16_BITS (INTVAL (RTX)) \
802 || (INTVAL (RTX) & 0xffff) == 0 \
803 || (INTVAL (RTX) & 0xffff0000) == 0) \
804 return 2; \
805 return 4; \
806 /* These are more costly than a CONST_INT, but we can relax them, \
807 so they're less costly than a CONST_DOUBLE. */ \
808 case CONST: \
809 case LABEL_REF: \
810 case SYMBOL_REF: \
811 return 6; \
812 /* We don't optimize CONST_DOUBLEs well nor do we relax them well, \
813 so their cost is very high. */ \
814 case CONST_DOUBLE: \
815 return 8;
816
817 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
818 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
819 CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS ? 6 : 4)
820
821 #define ADDRESS_COST(X) mn10300_address_cost((X), 0)
822
823 /* A crude cut at RTX_COSTS for the MN10300. */
824
825 /* Provide the costs of a rtl expression. This is in the body of a
826 switch on CODE. */
827 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
828 case UMOD: \
829 case UDIV: \
830 case MOD: \
831 case DIV: \
832 return 8; \
833 case MULT: \
834 return 8;
835
836 /* Nonzero if access to memory by bytes or half words is no faster
837 than accessing full words. */
838 #define SLOW_BYTE_ACCESS 1
839
840 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
841 and readonly data size. So we crank up the case threshold value to
842 encourage a series of if/else comparisons to implement many small switch
843 statements. In theory, this value could be increased much more if we
844 were solely optimizing for space, but we keep it "reasonable" to avoid
845 serious code efficiency lossage. */
846 #define CASE_VALUES_THRESHOLD 6
847
848 #define NO_FUNCTION_CSE
849
850 /* According expr.c, a value of around 6 should minimize code size, and
851 for the MN10300 series, that's our primary concern. */
852 #define MOVE_RATIO 6
853
854 #define TEXT_SECTION_ASM_OP "\t.section .text"
855 #define DATA_SECTION_ASM_OP "\t.section .data"
856 #define BSS_SECTION_ASM_OP "\t.section .bss"
857
858 /* Output at beginning/end of assembler file. */
859 #undef ASM_FILE_START
860 #define ASM_FILE_START(FILE) asm_file_start(FILE)
861
862 #define ASM_COMMENT_START "#"
863
864 /* Output to assembler file text saying following lines
865 may contain character constants, extra white space, comments, etc. */
866
867 #define ASM_APP_ON "#APP\n"
868
869 /* Output to assembler file text saying following lines
870 no longer contain unusual constructs. */
871
872 #define ASM_APP_OFF "#NO_APP\n"
873
874 /* This is how to output an assembler line defining a `double' constant.
875 It is .dfloat or .gfloat, depending. */
876
877 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
878 do { char dstr[30]; \
879 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
880 fprintf (FILE, "\t.double %s\n", dstr); \
881 } while (0)
882
883
884 /* This is how to output an assembler line defining a `float' constant. */
885 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
886 do { char dstr[30]; \
887 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
888 fprintf (FILE, "\t.float %s\n", dstr); \
889 } while (0)
890
891 /* This is how to output an assembler line defining an `int' constant. */
892
893 #define ASM_OUTPUT_INT(FILE, VALUE) \
894 ( fprintf (FILE, "\t.long "), \
895 output_addr_const (FILE, (VALUE)), \
896 fprintf (FILE, "\n"))
897
898 /* Likewise for `char' and `short' constants. */
899
900 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
901 ( fprintf (FILE, "\t.hword "), \
902 output_addr_const (FILE, (VALUE)), \
903 fprintf (FILE, "\n"))
904
905 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
906 ( fprintf (FILE, "\t.byte "), \
907 output_addr_const (FILE, (VALUE)), \
908 fprintf (FILE, "\n"))
909
910 /* This is how to output an assembler line for a numeric constant byte. */
911 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
912 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
913
914 /* Define the parentheses used to group arithmetic operations
915 in assembler code. */
916
917 #define ASM_OPEN_PAREN "("
918 #define ASM_CLOSE_PAREN ")"
919
920 /* This says how to output the assembler to define a global
921 uninitialized but not common symbol.
922 Try to use asm_output_bss to implement this macro. */
923
924 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
925 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
926
927 /* This is how to output the definition of a user-level label named NAME,
928 such as the label on a static function or variable NAME. */
929
930 #define ASM_OUTPUT_LABEL(FILE, NAME) \
931 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
932
933 /* This is how to output a command to make the user-level label named NAME
934 defined for reference from other files. */
935
936 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
937 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
938
939 /* This is how to output a reference to a user-level label named NAME.
940 `assemble_name' uses this. */
941
942 #undef ASM_OUTPUT_LABELREF
943 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
944 do { \
945 const char* real_name; \
946 STRIP_NAME_ENCODING (real_name, (NAME)); \
947 fprintf (FILE, "_%s", real_name); \
948 } while (0)
949
950 /* Store in OUTPUT a string (made with alloca) containing
951 an assembler-name for a local static variable named NAME.
952 LABELNO is an integer which is different for each call. */
953
954 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
955 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
956 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
957
958 /* This is how we tell the assembler that two symbols have the same value. */
959
960 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
961 do { assemble_name(FILE, NAME1); \
962 fputs(" = ", FILE); \
963 assemble_name(FILE, NAME2); \
964 fputc('\n', FILE); } while (0)
965
966
967 /* How to refer to registers in assembler output.
968 This sequence is indexed by compiler's hard-register-number (see above). */
969
970 #define REGISTER_NAMES \
971 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
972 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" }
973
974 /* Print an instruction operand X on file FILE.
975 look in mn10300.c for details */
976
977 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
978
979 /* Print a memory operand whose address is X, on file FILE.
980 This uses a function in output-vax.c. */
981
982 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
983
984 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
985 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
986
987 /* This is how to output an element of a case-vector that is absolute. */
988
989 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
990 asm_fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
991
992 /* This is how to output an element of a case-vector that is relative. */
993
994 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
995 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
996
997 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
998 if ((LOG) != 0) \
999 fprintf (FILE, "\t.align %d\n", (LOG))
1000
1001 /* We don't have to worry about dbx compatibility for the mn10300. */
1002 #define DEFAULT_GDB_EXTENSIONS 1
1003
1004 /* Use stabs debugging info by default. */
1005 #undef PREFERRED_DEBUGGING_TYPE
1006 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1007
1008 #define DBX_REGISTER_NUMBER(REGNO) REGNO
1009
1010 /* GDB always assumes the current function's frame begins at the value
1011 of the stack pointer upon entry to the current function. Accessing
1012 local variables and parameters passed on the stack is done using the
1013 base of the frame + an offset provided by GCC.
1014
1015 For functions which have frame pointers this method works fine;
1016 the (frame pointer) == (stack pointer at function entry) and GCC provides
1017 an offset relative to the frame pointer.
1018
1019 This loses for functions without a frame pointer; GCC provides an offset
1020 which is relative to the stack pointer after adjusting for the function's
1021 frame size. GDB would prefer the offset to be relative to the value of
1022 the stack pointer at the function's entry. Yuk! */
1023 #define DEBUGGER_AUTO_OFFSET(X) \
1024 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
1025 + (frame_pointer_needed \
1026 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1027
1028 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1029 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
1030 + (frame_pointer_needed \
1031 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1032
1033 /* Define to use software floating point emulator for REAL_ARITHMETIC and
1034 decimal <-> binary conversion. */
1035 #define REAL_ARITHMETIC
1036
1037 /* Specify the machine mode that this machine uses
1038 for the index in the tablejump instruction. */
1039 #define CASE_VECTOR_MODE Pmode
1040
1041 /* Define if operations between registers always perform the operation
1042 on the full register even if a narrower mode is specified. */
1043 #define WORD_REGISTER_OPERATIONS
1044
1045 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1046
1047 /* Specify the tree operation to be used to convert reals to integers. */
1048 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1049
1050 /* This flag, if defined, says the same insns that convert to a signed fixnum
1051 also convert validly to an unsigned one. */
1052 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1053
1054 /* This is the kind of divide that is easiest to do in the general case. */
1055 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1056
1057 /* Max number of bytes we can move from memory to memory
1058 in one reasonably fast instruction. */
1059 #define MOVE_MAX 4
1060
1061 /* Define if shifts truncate the shift count
1062 which implies one can omit a sign-extension or zero-extension
1063 of a shift count. */
1064 #define SHIFT_COUNT_TRUNCATED 1
1065
1066 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1067 is done just by pretending it is already truncated. */
1068 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1069
1070 /* Specify the machine mode that pointers have.
1071 After generation of rtl, the compiler makes no further distinction
1072 between pointers and any other objects of this machine mode. */
1073 #define Pmode SImode
1074
1075 /* A function address in a call instruction
1076 is a byte address (for indexing purposes)
1077 so give the MEM rtx a byte's mode. */
1078 #define FUNCTION_MODE QImode
1079
1080 /* The assembler op to get a word. */
1081
1082 #define FILE_ASM_OP "\t.file\n"
1083