2f1295b0fbf2430cc792cc0fadd67e974dcdb6b1
[gcc.git] / gcc / config / pa / pa.h
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
6 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
7 Software Science at the University of Utah.
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 /* For long call handling. */
26 extern unsigned long total_code_bytes;
27
28 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
29
30 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
31
32 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
33 #ifndef TARGET_64BIT
34 #define TARGET_64BIT 0
35 #endif
36
37 /* Generate code for ELF32 ABI. */
38 #ifndef TARGET_ELF32
39 #define TARGET_ELF32 0
40 #endif
41
42 /* Generate code for SOM 32bit ABI. */
43 #ifndef TARGET_SOM
44 #define TARGET_SOM 0
45 #endif
46
47 /* HP-UX UNIX features. */
48 #ifndef TARGET_HPUX
49 #define TARGET_HPUX 0
50 #endif
51
52 /* HP-UX 10.10 UNIX 95 features. */
53 #ifndef TARGET_HPUX_10_10
54 #define TARGET_HPUX_10_10 0
55 #endif
56
57 /* HP-UX 11.* features (11.00, 11.11, 11.23, etc.) */
58 #ifndef TARGET_HPUX_11
59 #define TARGET_HPUX_11 0
60 #endif
61
62 /* HP-UX 11i multibyte and UNIX 98 extensions. */
63 #ifndef TARGET_HPUX_11_11
64 #define TARGET_HPUX_11_11 0
65 #endif
66
67 /* HP-UX 11i multibyte and UNIX 2003 extensions. */
68 #ifndef TARGET_HPUX_11_31
69 #define TARGET_HPUX_11_31 0
70 #endif
71
72 /* HP-UX long double library. */
73 #ifndef HPUX_LONG_DOUBLE_LIBRARY
74 #define HPUX_LONG_DOUBLE_LIBRARY 0
75 #endif
76
77 /* The following three defines are potential target switches. The current
78 defines are optimal given the current capabilities of GAS and GNU ld. */
79
80 /* Define to a C expression evaluating to true to use long absolute calls.
81 Currently, only the HP assembler and SOM linker support long absolute
82 calls. They are used only in non-pic code. */
83 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
84
85 /* Define to a C expression evaluating to true to use long PIC symbol
86 difference calls. Long PIC symbol difference calls are only used with
87 the HP assembler and linker. The HP assembler detects this instruction
88 sequence and treats it as long pc-relative call. Currently, GAS only
89 allows a difference of two symbols in the same subspace, and it doesn't
90 detect the sequence as a pc-relative call. */
91 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS && TARGET_HPUX)
92
93 /* Define to a C expression evaluating to true to use long PIC
94 pc-relative calls. Long PIC pc-relative calls are only used with
95 GAS. Currently, they are usable for calls which bind local to a
96 module but not for external calls. */
97 #define TARGET_LONG_PIC_PCREL_CALL 0
98
99 /* Define to a C expression evaluating to true to use SOM secondary
100 definition symbols for weak support. Linker support for secondary
101 definition symbols is buggy prior to HP-UX 11.X. */
102 #define TARGET_SOM_SDEF 0
103
104 /* Define to a C expression evaluating to true to save the entry value
105 of SP in the current frame marker. This is normally unnecessary.
106 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
107 HP compilers don't use this flag but it is supported by the assembler.
108 We set this flag to indicate that register %r3 has been saved at the
109 start of the frame. Thus, when the HP unwind library is used, we
110 need to generate additional code to save SP into the frame marker. */
111 #define TARGET_HPUX_UNWIND_LIBRARY 0
112
113 #ifndef TARGET_DEFAULT
114 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
115 #endif
116
117 #ifndef TARGET_CPU_DEFAULT
118 #define TARGET_CPU_DEFAULT 0
119 #endif
120
121 #ifndef TARGET_SCHED_DEFAULT
122 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
123 #endif
124
125 /* Support for a compile-time default CPU, et cetera. The rules are:
126 --with-schedule is ignored if -mschedule is specified.
127 --with-arch is ignored if -march is specified. */
128 #define OPTION_DEFAULT_SPECS \
129 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
130 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
131
132 /* Specify the dialect of assembler to use. New mnemonics is dialect one
133 and the old mnemonics are dialect zero. */
134 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
135
136 /* Override some settings from dbxelf.h. */
137
138 /* We do not have to be compatible with dbx, so we enable gdb extensions
139 by default. */
140 #define DEFAULT_GDB_EXTENSIONS 1
141
142 /* This used to be zero (no max length), but big enums and such can
143 cause huge strings which killed gas.
144
145 We also have to avoid lossage in dbxout.c -- it does not compute the
146 string size accurately, so we are real conservative here. */
147 #undef DBX_CONTIN_LENGTH
148 #define DBX_CONTIN_LENGTH 3000
149
150 /* GDB always assumes the current function's frame begins at the value
151 of the stack pointer upon entry to the current function. Accessing
152 local variables and parameters passed on the stack is done using the
153 base of the frame + an offset provided by GCC.
154
155 For functions which have frame pointers this method works fine;
156 the (frame pointer) == (stack pointer at function entry) and GCC provides
157 an offset relative to the frame pointer.
158
159 This loses for functions without a frame pointer; GCC provides an offset
160 which is relative to the stack pointer after adjusting for the function's
161 frame size. GDB would prefer the offset to be relative to the value of
162 the stack pointer at the function's entry. Yuk! */
163 #define DEBUGGER_AUTO_OFFSET(X) \
164 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
165 + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
166
167 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
168 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
169 + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
170
171 #define TARGET_CPU_CPP_BUILTINS() \
172 do { \
173 builtin_assert("cpu=hppa"); \
174 builtin_assert("machine=hppa"); \
175 builtin_define("__hppa"); \
176 builtin_define("__hppa__"); \
177 if (TARGET_PA_20) \
178 builtin_define("_PA_RISC2_0"); \
179 else if (TARGET_PA_11) \
180 builtin_define("_PA_RISC1_1"); \
181 else \
182 builtin_define("_PA_RISC1_0"); \
183 } while (0)
184
185 /* An old set of OS defines for various BSD-like systems. */
186 #define TARGET_OS_CPP_BUILTINS() \
187 do \
188 { \
189 builtin_define_std ("REVARGV"); \
190 builtin_define_std ("hp800"); \
191 builtin_define_std ("hp9000"); \
192 builtin_define_std ("hp9k8"); \
193 if (!c_dialect_cxx () && !flag_iso) \
194 builtin_define ("hppa"); \
195 builtin_define_std ("spectrum"); \
196 builtin_define_std ("unix"); \
197 builtin_assert ("system=bsd"); \
198 builtin_assert ("system=unix"); \
199 } \
200 while (0)
201
202 #define CC1_SPEC "%{pg:} %{p:}"
203
204 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
205
206 /* We don't want -lg. */
207 #ifndef LIB_SPEC
208 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
209 #endif
210
211 /* Make gcc agree with <machine/ansi.h> */
212
213 #define SIZE_TYPE "unsigned int"
214 #define PTRDIFF_TYPE "int"
215 #define WCHAR_TYPE "unsigned int"
216 #define WCHAR_TYPE_SIZE 32
217 \f
218 /* target machine storage layout */
219 typedef struct GTY(()) machine_function
220 {
221 /* Flag indicating that a .NSUBSPA directive has been output for
222 this function. */
223 int in_nsubspa;
224 } machine_function;
225
226 /* Define this macro if it is advisable to hold scalars in registers
227 in a wider mode than that declared by the program. In such cases,
228 the value is constrained to be within the bounds of the declared
229 type, but kept valid in the wider mode. The signedness of the
230 extension may differ from that of the type. */
231
232 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
233 if (GET_MODE_CLASS (MODE) == MODE_INT \
234 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
235 (MODE) = word_mode;
236
237 /* Define this if most significant bit is lowest numbered
238 in instructions that operate on numbered bit-fields. */
239 #define BITS_BIG_ENDIAN 1
240
241 /* Define this if most significant byte of a word is the lowest numbered. */
242 /* That is true on the HP-PA. */
243 #define BYTES_BIG_ENDIAN 1
244
245 /* Define this if most significant word of a multiword number is lowest
246 numbered. */
247 #define WORDS_BIG_ENDIAN 1
248
249 #define MAX_BITS_PER_WORD 64
250
251 /* Width of a word, in units (bytes). */
252 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
253
254 /* Minimum number of units in a word. If this is undefined, the default
255 is UNITS_PER_WORD. Otherwise, it is the constant value that is the
256 smallest value that UNITS_PER_WORD can have at run-time.
257
258 FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
259 building of various TImode routines in libgcc. The HP runtime
260 specification doesn't provide the alignment requirements and calling
261 conventions for TImode variables. */
262 #define MIN_UNITS_PER_WORD 4
263
264 /* The widest floating point format supported by the hardware. Note that
265 setting this influences some Ada floating point type sizes, currently
266 required for GNAT to operate properly. */
267 #define WIDEST_HARDWARE_FP_SIZE 64
268
269 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
270 #define PARM_BOUNDARY BITS_PER_WORD
271
272 /* Largest alignment required for any stack parameter, in bits.
273 Don't define this if it is equal to PARM_BOUNDARY */
274 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
275
276 /* Boundary (in *bits*) on which stack pointer is always aligned;
277 certain optimizations in combine depend on this.
278
279 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
280 the stack on the 32 and 64-bit ports, respectively. However, we
281 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
282 in main. Thus, we treat the former as the preferred alignment. */
283 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
284 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
285
286 /* Allocation boundary (in *bits*) for the code of a function. */
287 #define FUNCTION_BOUNDARY BITS_PER_WORD
288
289 /* Alignment of field after `int : 0' in a structure. */
290 #define EMPTY_FIELD_BOUNDARY 32
291
292 /* Every structure's size must be a multiple of this. */
293 #define STRUCTURE_SIZE_BOUNDARY 8
294
295 /* A bit-field declared as `int' forces `int' alignment for the struct. */
296 #define PCC_BITFIELD_TYPE_MATTERS 1
297
298 /* No data type wants to be aligned rounder than this. */
299 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
300
301 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
302 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
303 (TREE_CODE (EXP) == STRING_CST \
304 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
305
306 /* Make arrays of chars word-aligned for the same reasons. */
307 #define DATA_ALIGNMENT(TYPE, ALIGN) \
308 (TREE_CODE (TYPE) == ARRAY_TYPE \
309 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
310 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
311
312 /* Set this nonzero if move instructions will actually fail to work
313 when given unaligned data. */
314 #define STRICT_ALIGNMENT 1
315
316 /* Value is 1 if it is a good idea to tie two pseudo registers
317 when one has mode MODE1 and one has mode MODE2.
318 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
319 for any hard reg, then this must be 0 for correct output. */
320 #define MODES_TIEABLE_P(MODE1, MODE2) \
321 pa_modes_tieable_p (MODE1, MODE2)
322
323 /* Specify the registers used for certain standard purposes.
324 The values of these macros are register numbers. */
325
326 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
327 /* #define PC_REGNUM */
328
329 /* Register to use for pushing function arguments. */
330 #define STACK_POINTER_REGNUM 30
331
332 /* Fixed register for local variable access. Always eliminated. */
333 #define FRAME_POINTER_REGNUM (TARGET_64BIT ? 61 : 89)
334
335 /* Base register for access to local variables of the function. */
336 #define HARD_FRAME_POINTER_REGNUM 3
337
338 /* Don't allow hard registers to be renamed into r2 unless r2
339 is already live or already being saved (due to eh). */
340
341 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
342 ((NEW_REG) != 2 || df_regs_ever_live_p (2) || crtl->calls_eh_return)
343
344 /* Base register for access to arguments of the function. */
345 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
346
347 /* Register in which static-chain is passed to a function. */
348 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
349
350 /* Register used to address the offset table for position-independent
351 data references. */
352 #define PIC_OFFSET_TABLE_REGNUM \
353 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
354
355 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
356
357 /* Function to return the rtx used to save the pic offset table register
358 across function calls. */
359 extern rtx hppa_pic_save_rtx (void);
360
361 #define DEFAULT_PCC_STRUCT_RETURN 0
362
363 /* Register in which address to store a structure value
364 is passed to a function. */
365 #define PA_STRUCT_VALUE_REGNUM 28
366
367 /* Definitions for register eliminations.
368
369 We have two registers that can be eliminated. First, the frame pointer
370 register can often be eliminated in favor of the stack pointer register.
371 Secondly, the argument pointer register can always be eliminated in the
372 32-bit runtimes. */
373
374 /* This is an array of structures. Each structure initializes one pair
375 of eliminable registers. The "from" register number is given first,
376 followed by "to". Eliminations of the same "from" register are listed
377 in order of preference.
378
379 The argument pointer cannot be eliminated in the 64-bit runtime. It
380 is the same register as the hard frame pointer in the 32-bit runtime.
381 So, it does not need to be listed. */
382 #define ELIMINABLE_REGS \
383 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
384 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
385 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
386
387 /* Define the offset between two registers, one to be eliminated,
388 and the other its replacement, at the start of a routine. */
389 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
390 ((OFFSET) = pa_initial_elimination_offset(FROM, TO))
391
392 /* Describe how we implement __builtin_eh_return. */
393 #define EH_RETURN_DATA_REGNO(N) \
394 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
395 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
396 #define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
397
398 /* Offset from the frame pointer register value to the top of stack. */
399 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
400
401 /* The maximum number of hard registers that can be saved in the call
402 frame. The soft frame pointer is not included. */
403 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
404
405 /* A C expression whose value is RTL representing the location of the
406 incoming return address at the beginning of any function, before the
407 prologue. You only need to define this macro if you want to support
408 call frame debugging information like that provided by DWARF 2. */
409 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
410 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
411
412 /* A C expression whose value is an integer giving a DWARF 2 column
413 number that may be used as an alternate return column. This should
414 be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
415 register, but an alternate column needs to be used for signal frames.
416
417 Column 0 is not used but unfortunately its register size is set to
418 4 bytes (sizeof CCmode) so it can't be used on 64-bit targets. */
419 #define DWARF_ALT_FRAME_RETURN_COLUMN (FIRST_PSEUDO_REGISTER - 1)
420
421 /* This macro chooses the encoding of pointers embedded in the exception
422 handling sections. If at all possible, this should be defined such
423 that the exception handling section will not require dynamic relocations,
424 and so may be read-only.
425
426 Because the HP assembler auto aligns, it is necessary to use
427 DW_EH_PE_aligned. It's not possible to make the data read-only
428 on the HP-UX SOM port since the linker requires fixups for label
429 differences in different sections to be word aligned. However,
430 the SOM linker can do unaligned fixups for absolute pointers.
431 We also need aligned pointers for global and function pointers.
432
433 Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
434 fixups, the runtime doesn't have a consistent relationship between
435 text and data for dynamically loaded objects. Thus, it's not possible
436 to use pc-relative encoding for pointers on this target. It may be
437 possible to use segment relative encodings but GAS doesn't currently
438 have a mechanism to generate these encodings. For other targets, we
439 use pc-relative encoding for pointers. If the pointer might require
440 dynamic relocation, we make it indirect. */
441 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
442 (TARGET_GAS && !TARGET_HPUX \
443 ? (DW_EH_PE_pcrel \
444 | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0) \
445 | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)) \
446 : (!TARGET_GAS || (GLOBAL) || (CODE) == 2 \
447 ? DW_EH_PE_aligned : DW_EH_PE_absptr))
448
449 /* Handle special EH pointer encodings. Absolute, pc-relative, and
450 indirect are handled automatically. We output pc-relative, and
451 indirect pc-relative ourself since we need some special magic to
452 generate pc-relative relocations, and to handle indirect function
453 pointers. */
454 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
455 do { \
456 if (((ENCODING) & 0x70) == DW_EH_PE_pcrel) \
457 { \
458 fputs (integer_asm_op (SIZE, FALSE), FILE); \
459 if ((ENCODING) & DW_EH_PE_indirect) \
460 output_addr_const (FILE, pa_get_deferred_plabel (ADDR)); \
461 else \
462 assemble_name (FILE, XSTR ((ADDR), 0)); \
463 fputs ("+8-$PIC_pcrel$0", FILE); \
464 goto DONE; \
465 } \
466 } while (0)
467 \f
468
469 /* The class value for index registers, and the one for base regs. */
470 #define INDEX_REG_CLASS GENERAL_REGS
471 #define BASE_REG_CLASS GENERAL_REGS
472
473 #define FP_REG_CLASS_P(CLASS) \
474 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
475
476 /* True if register is floating-point. */
477 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
478
479 #define MAYBE_FP_REG_CLASS_P(CLASS) \
480 reg_classes_intersect_p ((CLASS), FP_REGS)
481
482 \f
483 /* Stack layout; function entry, exit and calling. */
484
485 /* Define this if pushing a word on the stack
486 makes the stack pointer a smaller address. */
487 /* #define STACK_GROWS_DOWNWARD */
488
489 /* Believe it or not. */
490 #define ARGS_GROW_DOWNWARD
491
492 /* Define this to nonzero if the nominal address of the stack frame
493 is at the high-address end of the local variables;
494 that is, each additional local variable allocated
495 goes at a more negative offset in the frame. */
496 #define FRAME_GROWS_DOWNWARD 0
497
498 /* Offset within stack frame to start allocating local variables at.
499 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
500 first local allocated. Otherwise, it is the offset to the BEGINNING
501 of the first local allocated.
502
503 On the 32-bit ports, we reserve one slot for the previous frame
504 pointer and one fill slot. The fill slot is for compatibility
505 with HP compiled programs. On the 64-bit ports, we reserve one
506 slot for the previous frame pointer. */
507 #define STARTING_FRAME_OFFSET 8
508
509 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
510 of the stack. The default is to align it to STACK_BOUNDARY. */
511 #define STACK_ALIGNMENT_NEEDED 0
512
513 /* If we generate an insn to push BYTES bytes,
514 this says how many the stack pointer really advances by.
515 On the HP-PA, don't define this because there are no push insns. */
516 /* #define PUSH_ROUNDING(BYTES) */
517
518 /* Offset of first parameter from the argument pointer register value.
519 This value will be negated because the arguments grow down.
520 Also note that on STACK_GROWS_UPWARD machines (such as this one)
521 this is the distance from the frame pointer to the end of the first
522 argument, not it's beginning. To get the real offset of the first
523 argument, the size of the argument must be added. */
524
525 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
526
527 /* When a parameter is passed in a register, stack space is still
528 allocated for it. */
529 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
530
531 /* Define this if the above stack space is to be considered part of the
532 space allocated by the caller. */
533 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
534
535 /* Keep the stack pointer constant throughout the function.
536 This is both an optimization and a necessity: longjmp
537 doesn't behave itself when the stack pointer moves within
538 the function! */
539 #define ACCUMULATE_OUTGOING_ARGS 1
540
541 /* The weird HPPA calling conventions require a minimum of 48 bytes on
542 the stack: 16 bytes for register saves, and 32 bytes for magic.
543 This is the difference between the logical top of stack and the
544 actual sp.
545
546 On the 64-bit port, the HP C compiler allocates a 48-byte frame
547 marker, although the runtime documentation only describes a 16
548 byte marker. For compatibility, we allocate 48 bytes. */
549 #define STACK_POINTER_OFFSET \
550 (TARGET_64BIT ? -(crtl->outgoing_args_size + 48): -32)
551
552 #define STACK_DYNAMIC_OFFSET(FNDECL) \
553 (TARGET_64BIT \
554 ? (STACK_POINTER_OFFSET) \
555 : ((STACK_POINTER_OFFSET) - crtl->outgoing_args_size))
556
557 \f
558 /* Define a data type for recording info about an argument list
559 during the scan of that argument list. This data type should
560 hold all necessary information about the function itself
561 and about the args processed so far, enough to enable macros
562 such as FUNCTION_ARG to determine where the next arg should go.
563
564 On the HP-PA, the WORDS field holds the number of words
565 of arguments scanned so far (including the invisible argument,
566 if any, which holds the structure-value-address). Thus, 4 or
567 more means all following args should go on the stack.
568
569 The INCOMING field tracks whether this is an "incoming" or
570 "outgoing" argument.
571
572 The INDIRECT field indicates whether this is is an indirect
573 call or not.
574
575 The NARGS_PROTOTYPE field indicates that an argument does not
576 have a prototype when it less than or equal to 0. */
577
578 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
579
580 #define CUMULATIVE_ARGS struct hppa_args
581
582 /* Initialize a variable CUM of type CUMULATIVE_ARGS
583 for a call to a function whose data type is FNTYPE.
584 For a library call, FNTYPE is 0. */
585
586 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
587 (CUM).words = 0, \
588 (CUM).incoming = 0, \
589 (CUM).indirect = (FNTYPE) && !(FNDECL), \
590 (CUM).nargs_prototype = (FNTYPE && prototype_p (FNTYPE) \
591 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
592 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
593 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
594 : 0)
595
596
597
598 /* Similar, but when scanning the definition of a procedure. We always
599 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
600
601 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
602 (CUM).words = 0, \
603 (CUM).incoming = 1, \
604 (CUM).indirect = 0, \
605 (CUM).nargs_prototype = 1000
606
607 /* Figure out the size in words of the function argument. The size
608 returned by this macro should always be greater than zero because
609 we pass variable and zero sized objects by reference. */
610
611 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
612 ((((MODE) != BLKmode \
613 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
614 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
615
616 /* Determine where to put an argument to a function.
617 Value is zero to push the argument on the stack,
618 or a hard register in which to store the argument.
619
620 MODE is the argument's machine mode.
621 TYPE is the data type of the argument (as a tree).
622 This is null for libcalls where that information may
623 not be available.
624 CUM is a variable of type CUMULATIVE_ARGS which gives info about
625 the preceding args and about the function being called.
626 NAMED is nonzero if this argument is a named parameter
627 (otherwise it is an extra parameter matching an ellipsis).
628
629 On the HP-PA the first four words of args are normally in registers
630 and the rest are pushed. But any arg that won't entirely fit in regs
631 is pushed.
632
633 Arguments passed in registers are either 1 or 2 words long.
634
635 The caller must make a distinction between calls to explicitly named
636 functions and calls through pointers to functions -- the conventions
637 are different! Calls through pointers to functions only use general
638 registers for the first four argument words.
639
640 Of course all this is different for the portable runtime model
641 HP wants everyone to use for ELF. Ugh. Here's a quick description
642 of how it's supposed to work.
643
644 1) callee side remains unchanged. It expects integer args to be
645 in the integer registers, float args in the float registers and
646 unnamed args in integer registers.
647
648 2) caller side now depends on if the function being called has
649 a prototype in scope (rather than if it's being called indirectly).
650
651 2a) If there is a prototype in scope, then arguments are passed
652 according to their type (ints in integer registers, floats in float
653 registers, unnamed args in integer registers.
654
655 2b) If there is no prototype in scope, then floating point arguments
656 are passed in both integer and float registers. egad.
657
658 FYI: The portable parameter passing conventions are almost exactly like
659 the standard parameter passing conventions on the RS6000. That's why
660 you'll see lots of similar code in rs6000.h. */
661
662 /* If defined, a C expression which determines whether, and in which
663 direction, to pad out an argument with extra space. */
664 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
665 pa_function_arg_padding ((MODE), (TYPE))
666
667 /* Specify padding for the last element of a block move between registers
668 and memory.
669
670 The 64-bit runtime specifies that objects need to be left justified
671 (i.e., the normal justification for a big endian target). The 32-bit
672 runtime specifies right justification for objects smaller than 64 bits.
673 We use a DImode register in the parallel for 5 to 7 byte structures
674 so that there is only one element. This allows the object to be
675 correctly padded. */
676 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
677 pa_function_arg_padding ((MODE), (TYPE))
678
679 \f
680 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
681 as assembly via FUNCTION_PROFILER. Just output a local label.
682 We can't use the function label because the GAS SOM target can't
683 handle the difference of a global symbol and a local symbol. */
684
685 #ifndef FUNC_BEGIN_PROLOG_LABEL
686 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
687 #endif
688
689 #define FUNCTION_PROFILER(FILE, LABEL) \
690 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
691
692 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
693 void hppa_profile_hook (int label_no);
694
695 /* The profile counter if emitted must come before the prologue. */
696 #define PROFILE_BEFORE_PROLOGUE 1
697
698 /* We never want final.c to emit profile counters. When profile
699 counters are required, we have to defer emitting them to the end
700 of the current file. */
701 #define NO_PROFILE_COUNTERS 1
702
703 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
704 the stack pointer does not matter. The value is tested only in
705 functions that have frame pointers.
706 No definition is equivalent to always zero. */
707
708 extern int may_call_alloca;
709
710 #define EXIT_IGNORE_STACK \
711 (get_frame_size () != 0 \
712 || cfun->calls_alloca || crtl->outgoing_args_size)
713
714 /* Length in units of the trampoline for entering a nested function. */
715
716 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
717
718 /* Alignment required by the trampoline. */
719
720 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
721
722 /* Minimum length of a cache line. A length of 16 will work on all
723 PA-RISC processors. All PA 1.1 processors have a cache line of
724 32 bytes. Most but not all PA 2.0 processors have a cache line
725 of 64 bytes. As cache flushes are expensive and we don't support
726 PA 1.0, we use a minimum length of 32. */
727
728 #define MIN_CACHELINE_SIZE 32
729
730 \f
731 /* Addressing modes, and classification of registers for them.
732
733 Using autoincrement addressing modes on PA8000 class machines is
734 not profitable. */
735
736 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
737 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
738
739 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
740 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
741
742 /* Macros to check register numbers against specific register classes. */
743
744 /* The following macros assume that X is a hard or pseudo reg number.
745 They give nonzero only if X is a hard reg of the suitable class
746 or a pseudo reg currently allocated to a suitable hard reg.
747 Since they use reg_renumber, they are safe only once reg_renumber
748 has been allocated, which happens in local-alloc.c. */
749
750 #define REGNO_OK_FOR_INDEX_P(X) \
751 ((X) && ((X) < 32 \
752 || ((X) == FRAME_POINTER_REGNUM) \
753 || ((X) >= FIRST_PSEUDO_REGISTER \
754 && reg_renumber \
755 && (unsigned) reg_renumber[X] < 32)))
756 #define REGNO_OK_FOR_BASE_P(X) \
757 ((X) && ((X) < 32 \
758 || ((X) == FRAME_POINTER_REGNUM) \
759 || ((X) >= FIRST_PSEUDO_REGISTER \
760 && reg_renumber \
761 && (unsigned) reg_renumber[X] < 32)))
762 #define REGNO_OK_FOR_FP_P(X) \
763 (FP_REGNO_P (X) \
764 || (X >= FIRST_PSEUDO_REGISTER \
765 && reg_renumber \
766 && FP_REGNO_P (reg_renumber[X])))
767
768 /* Now macros that check whether X is a register and also,
769 strictly, whether it is in a specified class.
770
771 These macros are specific to the HP-PA, and may be used only
772 in code for printing assembler insns and in conditions for
773 define_optimization. */
774
775 /* 1 if X is an fp register. */
776
777 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
778 \f
779 /* Maximum number of registers that can appear in a valid memory address. */
780
781 #define MAX_REGS_PER_ADDRESS 2
782
783 /* Non-TLS symbolic references. */
784 #define PA_SYMBOL_REF_TLS_P(RTX) \
785 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
786
787 /* Recognize any constant value that is a valid address except
788 for symbolic addresses. We get better CSE by rejecting them
789 here and allowing hppa_legitimize_address to break them up. We
790 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
791
792 #define CONSTANT_ADDRESS_P(X) \
793 ((GET_CODE (X) == LABEL_REF \
794 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X)) \
795 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
796 || GET_CODE (X) == HIGH) \
797 && (reload_in_progress || reload_completed \
798 || ! pa_symbolic_expression_p (X)))
799
800 /* A C expression that is nonzero if we are using the new HP assembler. */
801
802 #ifndef NEW_HP_ASSEMBLER
803 #define NEW_HP_ASSEMBLER 0
804 #endif
805
806 /* The macros below define the immediate range for CONST_INTS on
807 the 64-bit port. Constants in this range can be loaded in three
808 instructions using a ldil/ldo/depdi sequence. Constants outside
809 this range are forced to the constant pool prior to reload. */
810
811 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
812 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
813 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
814 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
815
816 /* Target flags set on a symbol_ref. */
817
818 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output. */
819 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
820 #define SYMBOL_REF_REFERENCED_P(RTX) \
821 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
822
823 /* Defines for constraints.md. */
824
825 /* Return 1 iff OP is a scaled or unscaled index address. */
826 #define IS_INDEX_ADDR_P(OP) \
827 (GET_CODE (OP) == PLUS \
828 && GET_MODE (OP) == Pmode \
829 && (GET_CODE (XEXP (OP, 0)) == MULT \
830 || GET_CODE (XEXP (OP, 1)) == MULT \
831 || (REG_P (XEXP (OP, 0)) \
832 && REG_P (XEXP (OP, 1)))))
833
834 /* Return 1 iff OP is a LO_SUM DLT address. */
835 #define IS_LO_SUM_DLT_ADDR_P(OP) \
836 (GET_CODE (OP) == LO_SUM \
837 && GET_MODE (OP) == Pmode \
838 && REG_P (XEXP (OP, 0)) \
839 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
840 && GET_CODE (XEXP (OP, 1)) == UNSPEC)
841
842 /* Nonzero if 14-bit offsets can be used for all loads and stores.
843 This is not possible when generating PA 1.x code as floating point
844 loads and stores only support 5-bit offsets. Note that we do not
845 forbid the use of 14-bit offsets in GO_IF_LEGITIMATE_ADDRESS.
846 Instead, we use pa_secondary_reload() to reload integer mode
847 REG+D memory addresses used in floating point loads and stores.
848
849 FIXME: the ELF32 linker clobbers the LSB of the FP register number
850 in PA 2.0 floating-point insns with long displacements. This is
851 because R_PARISC_DPREL14WR and other relocations like it are not
852 yet supported by GNU ld. For now, we reject long displacements
853 on this target. */
854
855 #define INT14_OK_STRICT \
856 (TARGET_SOFT_FLOAT \
857 || TARGET_DISABLE_FPREGS \
858 || (TARGET_PA_20 && !TARGET_ELF32))
859
860 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
861 and check its validity for a certain class.
862 We have two alternate definitions for each of them.
863 The usual definition accepts all pseudo regs; the other rejects
864 them unless they have been allocated suitable hard regs.
865 The symbol REG_OK_STRICT causes the latter definition to be used.
866
867 Most source files want to accept pseudo regs in the hope that
868 they will get allocated to the class that the insn wants them to be in.
869 Source files for reload pass need to be strict.
870 After reload, it makes no difference, since pseudo regs have
871 been eliminated by then. */
872
873 #ifndef REG_OK_STRICT
874
875 /* Nonzero if X is a hard reg that can be used as an index
876 or if it is a pseudo reg. */
877 #define REG_OK_FOR_INDEX_P(X) \
878 (REGNO (X) && (REGNO (X) < 32 \
879 || REGNO (X) == FRAME_POINTER_REGNUM \
880 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
881
882 /* Nonzero if X is a hard reg that can be used as a base reg
883 or if it is a pseudo reg. */
884 #define REG_OK_FOR_BASE_P(X) \
885 (REGNO (X) && (REGNO (X) < 32 \
886 || REGNO (X) == FRAME_POINTER_REGNUM \
887 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
888
889 #else
890
891 /* Nonzero if X is a hard reg that can be used as an index. */
892 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
893
894 /* Nonzero if X is a hard reg that can be used as a base reg. */
895 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
896
897 #endif
898 \f
899 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
900 valid memory address for an instruction. The MODE argument is the
901 machine mode for the MEM expression that wants to use this address.
902
903 On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
904 REG+REG, and REG+(REG*SCALE). The indexed address forms are only
905 available with floating point loads and stores, and integer loads.
906 We get better code by allowing indexed addresses in the initial
907 RTL generation.
908
909 The acceptance of indexed addresses as legitimate implies that we
910 must provide patterns for doing indexed integer stores, or the move
911 expanders must force the address of an indexed store to a register.
912 We have adopted the latter approach.
913
914 Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
915 the base register is a valid pointer for indexed instructions.
916 On targets that have non-equivalent space registers, we have to
917 know at the time of assembler output which register in a REG+REG
918 pair is the base register. The REG_POINTER flag is sometimes lost
919 in reload and the following passes, so it can't be relied on during
920 code generation. Thus, we either have to canonicalize the order
921 of the registers in REG+REG indexed addresses, or treat REG+REG
922 addresses separately and provide patterns for both permutations.
923
924 The latter approach requires several hundred additional lines of
925 code in pa.md. The downside to canonicalizing is that a PLUS
926 in the wrong order can't combine to form to make a scaled indexed
927 memory operand. As we won't need to canonicalize the operands if
928 the REG_POINTER lossage can be fixed, it seems better canonicalize.
929
930 We initially break out scaled indexed addresses in canonical order
931 in pa_emit_move_sequence. LEGITIMIZE_ADDRESS also canonicalizes
932 scaled indexed addresses during RTL generation. However, fold_rtx
933 has its own opinion on how the operands of a PLUS should be ordered.
934 If one of the operands is equivalent to a constant, it will make
935 that operand the second operand. As the base register is likely to
936 be equivalent to a SYMBOL_REF, we have made it the second operand.
937
938 GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
939 operands are in the order INDEX+BASE on targets with non-equivalent
940 space registers, and in any order on targets with equivalent space
941 registers. It accepts both MULT+BASE and BASE+MULT for scaled indexing.
942
943 We treat a SYMBOL_REF as legitimate if it is part of the current
944 function's constant-pool, because such addresses can actually be
945 output as REG+SMALLINT. */
946
947 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
948 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
949
950 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
951 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
952
953 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
954 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
955
956 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
957 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
958
959 #if HOST_BITS_PER_WIDE_INT > 32
960 #define VAL_32_BITS_P(X) \
961 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \
962 < (unsigned HOST_WIDE_INT) 2 << 31)
963 #else
964 #define VAL_32_BITS_P(X) 1
965 #endif
966 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
967
968 /* These are the modes that we allow for scaled indexing. */
969 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
970 ((TARGET_64BIT && (MODE) == DImode) \
971 || (MODE) == SImode \
972 || (MODE) == HImode \
973 || (MODE) == SFmode \
974 || (MODE) == DFmode)
975
976 /* These are the modes that we allow for unscaled indexing. */
977 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
978 ((TARGET_64BIT && (MODE) == DImode) \
979 || (MODE) == SImode \
980 || (MODE) == HImode \
981 || (MODE) == QImode \
982 || (MODE) == SFmode \
983 || (MODE) == DFmode)
984
985 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
986 { \
987 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
988 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
989 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
990 && REG_P (XEXP (X, 0)) \
991 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
992 goto ADDR; \
993 else if (GET_CODE (X) == PLUS) \
994 { \
995 rtx base = 0, index = 0; \
996 if (REG_P (XEXP (X, 1)) \
997 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
998 base = XEXP (X, 1), index = XEXP (X, 0); \
999 else if (REG_P (XEXP (X, 0)) \
1000 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1001 base = XEXP (X, 0), index = XEXP (X, 1); \
1002 if (base \
1003 && GET_CODE (index) == CONST_INT \
1004 && ((INT_14_BITS (index) \
1005 && (((MODE) != DImode \
1006 && (MODE) != SFmode \
1007 && (MODE) != DFmode) \
1008 /* The base register for DImode loads and stores \
1009 with long displacements must be aligned because \
1010 the lower three bits in the displacement are \
1011 assumed to be zero. */ \
1012 || ((MODE) == DImode \
1013 && (!TARGET_64BIT \
1014 || (INTVAL (index) % 8) == 0)) \
1015 /* Similarly, the base register for SFmode/DFmode \
1016 loads and stores with long displacements must \
1017 be aligned. */ \
1018 || (((MODE) == SFmode || (MODE) == DFmode) \
1019 && INT14_OK_STRICT \
1020 && (INTVAL (index) % GET_MODE_SIZE (MODE)) == 0))) \
1021 || INT_5_BITS (index))) \
1022 goto ADDR; \
1023 if (!TARGET_DISABLE_INDEXING \
1024 /* Only accept the "canonical" INDEX+BASE operand order \
1025 on targets with non-equivalent space registers. */ \
1026 && (TARGET_NO_SPACE_REGS \
1027 ? (base && REG_P (index)) \
1028 : (base == XEXP (X, 1) && REG_P (index) \
1029 && (reload_completed \
1030 || (reload_in_progress && HARD_REGISTER_P (base)) \
1031 || REG_POINTER (base)) \
1032 && (reload_completed \
1033 || (reload_in_progress && HARD_REGISTER_P (index)) \
1034 || !REG_POINTER (index)))) \
1035 && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE) \
1036 && REG_OK_FOR_INDEX_P (index) \
1037 && borx_reg_operand (base, Pmode) \
1038 && borx_reg_operand (index, Pmode)) \
1039 goto ADDR; \
1040 if (!TARGET_DISABLE_INDEXING \
1041 && base \
1042 && GET_CODE (index) == MULT \
1043 && MODE_OK_FOR_SCALED_INDEXING_P (MODE) \
1044 && REG_P (XEXP (index, 0)) \
1045 && GET_MODE (XEXP (index, 0)) == Pmode \
1046 && REG_OK_FOR_INDEX_P (XEXP (index, 0)) \
1047 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1048 && INTVAL (XEXP (index, 1)) \
1049 == (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
1050 && borx_reg_operand (base, Pmode)) \
1051 goto ADDR; \
1052 } \
1053 else if (GET_CODE (X) == LO_SUM \
1054 && GET_CODE (XEXP (X, 0)) == REG \
1055 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1056 && CONSTANT_P (XEXP (X, 1)) \
1057 && (TARGET_SOFT_FLOAT \
1058 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1059 || (TARGET_PA_20 \
1060 && !TARGET_ELF32 \
1061 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1062 || ((MODE) != SFmode \
1063 && (MODE) != DFmode))) \
1064 goto ADDR; \
1065 else if (GET_CODE (X) == LO_SUM \
1066 && GET_CODE (XEXP (X, 0)) == SUBREG \
1067 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG \
1068 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0))) \
1069 && CONSTANT_P (XEXP (X, 1)) \
1070 && (TARGET_SOFT_FLOAT \
1071 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1072 || (TARGET_PA_20 \
1073 && !TARGET_ELF32 \
1074 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1075 || ((MODE) != SFmode \
1076 && (MODE) != DFmode))) \
1077 goto ADDR; \
1078 else if (GET_CODE (X) == CONST_INT && INT_5_BITS (X)) \
1079 goto ADDR; \
1080 /* Needed for -fPIC */ \
1081 else if (GET_CODE (X) == LO_SUM \
1082 && GET_CODE (XEXP (X, 0)) == REG \
1083 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1084 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1085 && (TARGET_SOFT_FLOAT \
1086 || (TARGET_PA_20 && !TARGET_ELF32) \
1087 || ((MODE) != SFmode \
1088 && (MODE) != DFmode))) \
1089 goto ADDR; \
1090 }
1091
1092 /* Look for machine dependent ways to make the invalid address AD a
1093 valid address.
1094
1095 For the PA, transform:
1096
1097 memory(X + <large int>)
1098
1099 into:
1100
1101 if (<large int> & mask) >= 16
1102 Y = (<large int> & ~mask) + mask + 1 Round up.
1103 else
1104 Y = (<large int> & ~mask) Round down.
1105 Z = X + Y
1106 memory (Z + (<large int> - Y));
1107
1108 This makes reload inheritance and reload_cse work better since Z
1109 can be reused.
1110
1111 There may be more opportunities to improve code with this hook. */
1112 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1113 do { \
1114 long offset, newoffset, mask; \
1115 rtx new_rtx, temp = NULL_RTX; \
1116 \
1117 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1118 ? (INT14_OK_STRICT ? 0x3fff : 0x1f) : 0x3fff); \
1119 \
1120 if (optimize && GET_CODE (AD) == PLUS) \
1121 temp = simplify_binary_operation (PLUS, Pmode, \
1122 XEXP (AD, 0), XEXP (AD, 1)); \
1123 \
1124 new_rtx = temp ? temp : AD; \
1125 \
1126 if (optimize \
1127 && GET_CODE (new_rtx) == PLUS \
1128 && GET_CODE (XEXP (new_rtx, 0)) == REG \
1129 && GET_CODE (XEXP (new_rtx, 1)) == CONST_INT) \
1130 { \
1131 offset = INTVAL (XEXP ((new_rtx), 1)); \
1132 \
1133 /* Choose rounding direction. Round up if we are >= halfway. */ \
1134 if ((offset & mask) >= ((mask + 1) / 2)) \
1135 newoffset = (offset & ~mask) + mask + 1; \
1136 else \
1137 newoffset = offset & ~mask; \
1138 \
1139 /* Ensure that long displacements are aligned. */ \
1140 if (mask == 0x3fff \
1141 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1142 || (TARGET_64BIT && (MODE) == DImode))) \
1143 newoffset &= ~(GET_MODE_SIZE (MODE) - 1); \
1144 \
1145 if (newoffset != 0 && VAL_14_BITS_P (newoffset)) \
1146 { \
1147 temp = gen_rtx_PLUS (Pmode, XEXP (new_rtx, 0), \
1148 GEN_INT (newoffset)); \
1149 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1150 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1151 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1152 (OPNUM), (TYPE)); \
1153 goto WIN; \
1154 } \
1155 } \
1156 } while (0)
1157
1158
1159 \f
1160 #define TARGET_ASM_SELECT_SECTION pa_select_section
1161
1162 /* Return a nonzero value if DECL has a section attribute. */
1163 #define IN_NAMED_SECTION_P(DECL) \
1164 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1165 && DECL_SECTION_NAME (DECL) != NULL_TREE)
1166
1167 /* Define this macro if references to a symbol must be treated
1168 differently depending on something about the variable or
1169 function named by the symbol (such as what section it is in).
1170
1171 The macro definition, if any, is executed immediately after the
1172 rtl for DECL or other node is created.
1173 The value of the rtl will be a `mem' whose address is a
1174 `symbol_ref'.
1175
1176 The usual thing for this macro to do is to a flag in the
1177 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1178 name string in the `symbol_ref' (if one bit is not enough
1179 information).
1180
1181 On the HP-PA we use this to indicate if a symbol is in text or
1182 data space. Also, function labels need special treatment. */
1183
1184 #define TEXT_SPACE_P(DECL)\
1185 (TREE_CODE (DECL) == FUNCTION_DECL \
1186 || (TREE_CODE (DECL) == VAR_DECL \
1187 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1188 && (! DECL_INITIAL (DECL) || ! pa_reloc_needed (DECL_INITIAL (DECL))) \
1189 && !flag_pic) \
1190 || CONSTANT_CLASS_P (DECL))
1191
1192 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1193
1194 /* Specify the machine mode that this machine uses for the index in the
1195 tablejump instruction. For small tables, an element consists of a
1196 ia-relative branch and its delay slot. When -mbig-switch is specified,
1197 we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1198 for both 32 and 64-bit pic code. */
1199 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1200
1201 /* Jump tables must be 32-bit aligned, no matter the size of the element. */
1202 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1203
1204 /* Define this as 1 if `char' should by default be signed; else as 0. */
1205 #define DEFAULT_SIGNED_CHAR 1
1206
1207 /* Max number of bytes we can move from memory to memory
1208 in one reasonably fast instruction. */
1209 #define MOVE_MAX 8
1210
1211 /* Higher than the default as we prefer to use simple move insns
1212 (better scheduling and delay slot filling) and because our
1213 built-in block move is really a 2X unrolled loop.
1214
1215 Believe it or not, this has to be big enough to allow for copying all
1216 arguments passed in registers to avoid infinite recursion during argument
1217 setup for a function call. Why? Consider how we copy the stack slots
1218 reserved for parameters when they may be trashed by a call. */
1219 #define MOVE_RATIO(speed) (TARGET_64BIT ? 8 : 4)
1220
1221 /* Define if operations between registers always perform the operation
1222 on the full register even if a narrower mode is specified. */
1223 #define WORD_REGISTER_OPERATIONS
1224
1225 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1226 will either zero-extend or sign-extend. The value of this macro should
1227 be the code that says which one of the two operations is implicitly
1228 done, UNKNOWN if none. */
1229 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1230
1231 /* Nonzero if access to memory by bytes is slow and undesirable. */
1232 #define SLOW_BYTE_ACCESS 1
1233
1234 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1235 is done just by pretending it is already truncated. */
1236 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1237
1238 /* Specify the machine mode that pointers have.
1239 After generation of rtl, the compiler makes no further distinction
1240 between pointers and any other objects of this machine mode. */
1241 #define Pmode word_mode
1242
1243 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1244 return the mode to be used for the comparison. For floating-point, CCFPmode
1245 should be used. CC_NOOVmode should be used when the first operand is a
1246 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1247 needed. */
1248 #define SELECT_CC_MODE(OP,X,Y) \
1249 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1250
1251 /* A function address in a call instruction
1252 is a byte address (for indexing purposes)
1253 so give the MEM rtx a byte's mode. */
1254 #define FUNCTION_MODE SImode
1255
1256 /* Define this if addresses of constant functions
1257 shouldn't be put through pseudo regs where they can be cse'd.
1258 Desirable on machines where ordinary constants are expensive
1259 but a CALL with constant address is cheap. */
1260 #define NO_FUNCTION_CSE
1261
1262 /* Define this to be nonzero if shift instructions ignore all but the low-order
1263 few bits. */
1264 #define SHIFT_COUNT_TRUNCATED 1
1265
1266 /* Adjust the cost of branches. */
1267 #define BRANCH_COST(speed_p, predictable_p) (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1268
1269 /* Handling the special cases is going to get too complicated for a macro,
1270 just call `pa_adjust_insn_length' to do the real work. */
1271 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1272 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1273
1274 /* Millicode insns are actually function calls with some special
1275 constraints on arguments and register usage.
1276
1277 Millicode calls always expect their arguments in the integer argument
1278 registers, and always return their result in %r29 (ret1). They
1279 are expected to clobber their arguments, %r1, %r29, and the return
1280 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1281
1282 This macro tells reorg that the references to arguments and
1283 millicode calls do not appear to happen until after the millicode call.
1284 This allows reorg to put insns which set the argument registers into the
1285 delay slot of the millicode call -- thus they act more like traditional
1286 CALL_INSNs.
1287
1288 Note we cannot consider side effects of the insn to be delayed because
1289 the branch and link insn will clobber the return pointer. If we happened
1290 to use the return pointer in the delay slot of the call, then we lose.
1291
1292 get_attr_type will try to recognize the given insn, so make sure to
1293 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1294 in particular. */
1295 #define INSN_REFERENCES_ARE_DELAYED(X) (pa_insn_refs_are_delayed (X))
1296
1297 \f
1298 /* Control the assembler format that we output. */
1299
1300 /* A C string constant describing how to begin a comment in the target
1301 assembler language. The compiler assumes that the comment will end at
1302 the end of the line. */
1303
1304 #define ASM_COMMENT_START ";"
1305
1306 /* Output to assembler file text saying following lines
1307 may contain character constants, extra white space, comments, etc. */
1308
1309 #define ASM_APP_ON ""
1310
1311 /* Output to assembler file text saying following lines
1312 no longer contain unusual constructs. */
1313
1314 #define ASM_APP_OFF ""
1315
1316 /* This is how to output the definition of a user-level label named NAME,
1317 such as the label on a static function or variable NAME. */
1318
1319 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1320 do { \
1321 assemble_name ((FILE), (NAME)); \
1322 if (TARGET_GAS) \
1323 fputs (":\n", (FILE)); \
1324 else \
1325 fputc ('\n', (FILE)); \
1326 } while (0)
1327
1328 /* This is how to output a reference to a user-level label named NAME.
1329 `assemble_name' uses this. */
1330
1331 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1332 do { \
1333 const char *xname = (NAME); \
1334 if (FUNCTION_NAME_P (NAME)) \
1335 xname += 1; \
1336 if (xname[0] == '*') \
1337 xname += 1; \
1338 else \
1339 fputs (user_label_prefix, FILE); \
1340 fputs (xname, FILE); \
1341 } while (0)
1342
1343 /* This how we output the symbol_ref X. */
1344
1345 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1346 do { \
1347 SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED; \
1348 assemble_name (FILE, XSTR (X, 0)); \
1349 } while (0)
1350
1351 /* This is how to store into the string LABEL
1352 the symbol_ref name of an internal numbered label where
1353 PREFIX is the class of label and NUM is the number within the class.
1354 This is suitable for output with `assemble_name'. */
1355
1356 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1357 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1358
1359 /* Output the definition of a compiler-generated label named NAME. */
1360
1361 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1362 do { \
1363 assemble_name_raw ((FILE), (NAME)); \
1364 if (TARGET_GAS) \
1365 fputs (":\n", (FILE)); \
1366 else \
1367 fputc ('\n', (FILE)); \
1368 } while (0)
1369
1370 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1371
1372 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1373 pa_output_ascii ((FILE), (P), (SIZE))
1374
1375 /* Jump tables are always placed in the text section. Technically, it
1376 is possible to put them in the readonly data section when -mbig-switch
1377 is specified. This has the benefit of getting the table out of .text
1378 and reducing branch lengths as a result. The downside is that an
1379 additional insn (addil) is needed to access the table when generating
1380 PIC code. The address difference table also has to use 32-bit
1381 pc-relative relocations. Currently, GAS does not support these
1382 relocations, although it is easily modified to do this operation.
1383 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1384 when using ELF GAS. A simple difference can be used when using
1385 SOM GAS or the HP assembler. The final downside is GDB complains
1386 about the nesting of the label for the table when debugging. */
1387
1388 #define JUMP_TABLES_IN_TEXT_SECTION 1
1389
1390 /* This is how to output an element of a case-vector that is absolute. */
1391
1392 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1393 if (TARGET_BIG_SWITCH) \
1394 fprintf (FILE, "\t.word L$%04d\n", VALUE); \
1395 else \
1396 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1397
1398 /* This is how to output an element of a case-vector that is relative.
1399 Since we always place jump tables in the text section, the difference
1400 is absolute and requires no relocation. */
1401
1402 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1403 if (TARGET_BIG_SWITCH) \
1404 fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL); \
1405 else \
1406 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1407
1408 /* This is how to output an assembler line that says to advance the
1409 location counter to a multiple of 2**LOG bytes. */
1410
1411 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1412 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1413
1414 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1415 fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1416 (unsigned HOST_WIDE_INT)(SIZE))
1417
1418 /* This says how to output an assembler line to define an uninitialized
1419 global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1420 This macro exists to properly support languages like C++ which do not
1421 have common data. */
1422
1423 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1424 pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1425
1426 /* This says how to output an assembler line to define a global common symbol
1427 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1428
1429 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1430 pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1431
1432 /* This says how to output an assembler line to define a local common symbol
1433 with size SIZE (in bytes) and alignment ALIGN (in bits). This macro
1434 controls how the assembler definitions of uninitialized static variables
1435 are output. */
1436
1437 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1438 pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1439
1440 /* All HP assemblers use "!" to separate logical lines. */
1441 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
1442
1443 /* Print operand X (an rtx) in assembler syntax to file FILE.
1444 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1445 For `%' followed by punctuation, CODE is the punctuation and X is null.
1446
1447 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1448 and an immediate zero should be represented as `r0'.
1449
1450 Several % codes are defined:
1451 O an operation
1452 C compare conditions
1453 N extract conditions
1454 M modifier to handle preincrement addressing for memory refs.
1455 F modifier to handle preincrement addressing for fp memory refs */
1456
1457 #define PRINT_OPERAND(FILE, X, CODE) pa_print_operand (FILE, X, CODE)
1458
1459 \f
1460 /* Print a memory address as an operand to reference that memory location. */
1461
1462 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1463 { rtx addr = ADDR; \
1464 switch (GET_CODE (addr)) \
1465 { \
1466 case REG: \
1467 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1468 break; \
1469 case PLUS: \
1470 gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT); \
1471 fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)), \
1472 reg_names [REGNO (XEXP (addr, 0))]); \
1473 break; \
1474 case LO_SUM: \
1475 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1476 fputs ("R'", FILE); \
1477 else if (flag_pic == 0) \
1478 fputs ("RR'", FILE); \
1479 else \
1480 fputs ("RT'", FILE); \
1481 pa_output_global_address (FILE, XEXP (addr, 1), 0); \
1482 fputs ("(", FILE); \
1483 output_operand (XEXP (addr, 0), 0); \
1484 fputs (")", FILE); \
1485 break; \
1486 case CONST_INT: \
1487 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
1488 break; \
1489 default: \
1490 output_addr_const (FILE, addr); \
1491 }}
1492
1493 \f
1494 /* Find the return address associated with the frame given by
1495 FRAMEADDR. */
1496 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1497 (pa_return_addr_rtx (COUNT, FRAMEADDR))
1498
1499 /* Used to mask out junk bits from the return address, such as
1500 processor state, interrupt status, condition codes and the like. */
1501 #define MASK_RETURN_ADDR \
1502 /* The privilege level is in the two low order bits, mask em out \
1503 of the return address. */ \
1504 (GEN_INT (-4))
1505
1506 /* The number of Pmode words for the setjmp buffer. */
1507 #define JMP_BUF_SIZE 50
1508
1509 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1510 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1511 "__canonicalize_funcptr_for_compare"
1512
1513 #ifdef HAVE_AS_TLS
1514 #undef TARGET_HAVE_TLS
1515 #define TARGET_HAVE_TLS true
1516 #endif