a9c23ac0d1ef4c072a0ba363d1b1456446b56973
[gcc.git] / gcc / config / pa / pa.h
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6 Software Science at the University of Utah.
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 enum cmp_type /* comparison type */
26 {
27 CMP_SI, /* compare integers */
28 CMP_SF, /* compare single precision floats */
29 CMP_DF, /* compare double precision floats */
30 CMP_MAX /* max comparison type */
31 };
32
33 /* For long call handling. */
34 extern unsigned int total_code_bytes;
35
36 /* Which processor to schedule for. */
37
38 enum processor_type
39 {
40 PROCESSOR_700,
41 PROCESSOR_7100,
42 PROCESSOR_7100LC,
43 PROCESSOR_7200,
44 PROCESSOR_7300,
45 PROCESSOR_8000
46 };
47
48 /* For -mschedule= option. */
49 extern const char *pa_cpu_string;
50 extern enum processor_type pa_cpu;
51
52 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
53
54 /* Which architecture to generate code for. */
55
56 enum architecture_type
57 {
58 ARCHITECTURE_10,
59 ARCHITECTURE_11,
60 ARCHITECTURE_20
61 };
62
63 struct rtx_def;
64
65 /* For -march= option. */
66 extern const char *pa_arch_string;
67 extern enum architecture_type pa_arch;
68
69 /* Print subsidiary information on the compiler version in use. */
70
71 #define TARGET_VERSION fputs (" (hppa)", stderr);
72
73 /* Run-time compilation parameters selecting different hardware subsets. */
74
75 extern int target_flags;
76
77 /* compile code for HP-PA 1.1 ("Snake") */
78
79 #define MASK_PA_11 1
80
81 #ifndef TARGET_PA_11
82 #define TARGET_PA_11 (target_flags & MASK_PA_11)
83 #endif
84
85 /* Disable all FP registers (they all become fixed). This may be necessary
86 for compiling kernels which perform lazy context switching of FP regs.
87 Note if you use this option and try to perform floating point operations
88 the compiler will abort! */
89
90 #define MASK_DISABLE_FPREGS 2
91 #define TARGET_DISABLE_FPREGS (target_flags & MASK_DISABLE_FPREGS)
92
93 /* Generate code which assumes that all space register are equivalent.
94 Triggers aggressive unscaled index addressing and faster
95 builtin_return_address. */
96 #define MASK_NO_SPACE_REGS 4
97 #define TARGET_NO_SPACE_REGS (target_flags & MASK_NO_SPACE_REGS)
98
99 /* Allow unconditional jumps in the delay slots of call instructions. */
100 #define MASK_JUMP_IN_DELAY 8
101 #define TARGET_JUMP_IN_DELAY (target_flags & MASK_JUMP_IN_DELAY)
102
103 /* Disable indexed addressing modes. */
104 #define MASK_DISABLE_INDEXING 32
105 #define TARGET_DISABLE_INDEXING (target_flags & MASK_DISABLE_INDEXING)
106
107 /* Emit code which follows the new portable runtime calling conventions
108 HP wants everyone to use for ELF objects. If at all possible you want
109 to avoid this since it's a performance loss for non-prototyped code.
110
111 Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
112 long-call stubs which is quite expensive. */
113 #define MASK_PORTABLE_RUNTIME 64
114 #define TARGET_PORTABLE_RUNTIME (target_flags & MASK_PORTABLE_RUNTIME)
115
116 /* Emit directives only understood by GAS. This allows parameter
117 relocations to work for static functions. There is no way
118 to make them work the HP assembler at this time. */
119 #define MASK_GAS 128
120 #define TARGET_GAS (target_flags & MASK_GAS)
121
122 /* Emit code for processors which do not have an FPU. */
123 #define MASK_SOFT_FLOAT 256
124 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
125
126 /* Use 3-insn load/store sequences for access to large data segments
127 in shared libraries on hpux10. */
128 #define MASK_LONG_LOAD_STORE 512
129 #define TARGET_LONG_LOAD_STORE (target_flags & MASK_LONG_LOAD_STORE)
130
131 /* Use a faster sequence for indirect calls. This assumes that calls
132 through function pointers will never cross a space boundary, and
133 that the executable is not dynamically linked. Such assumptions
134 are generally safe for building kernels and statically linked
135 executables. Code compiled with this option will fail miserably if
136 the executable is dynamically linked or uses nested functions! */
137 #define MASK_FAST_INDIRECT_CALLS 1024
138 #define TARGET_FAST_INDIRECT_CALLS (target_flags & MASK_FAST_INDIRECT_CALLS)
139
140 /* Generate code with big switch statements to avoid out of range branches
141 occurring within the switch table. */
142 #define MASK_BIG_SWITCH 2048
143 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
144
145
146 /* Generate code for the HPPA 2.0 architecture. TARGET_PA_11 should also be
147 true when this is true. */
148 #define MASK_PA_20 4096
149 #ifndef TARGET_PA_20
150 #define TARGET_PA_20 (target_flags & MASK_PA_20)
151 #endif
152
153 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
154 #ifndef TARGET_64BIT
155 #define TARGET_64BIT 0
156 #endif
157
158 /* Generate code for ELF32 ABI. */
159 #ifndef TARGET_ELF32
160 #define TARGET_ELF32 0
161 #endif
162
163 /* Generate code for SOM 32bit ABI. */
164 #ifndef TARGET_SOM
165 #define TARGET_SOM 0
166 #endif
167
168 /* Macro to define tables used to set the flags.
169 This is a list in braces of pairs in braces,
170 each pair being { "NAME", VALUE }
171 where VALUE is the bits to set or minus the bits to clear.
172 An empty string NAME is used to identify the default VALUE. */
173
174 #define TARGET_SWITCHES \
175 {{"snake", MASK_PA_11, "Generate PA1.1 code"}, \
176 {"nosnake", -(MASK_PA_11 | MASK_PA_20), "Generate PA1.0 code"}, \
177 {"pa-risc-1-0", -(MASK_PA_11 | MASK_PA_20), "Generate PA1.0 code"}, \
178 {"pa-risc-1-1", MASK_PA_11, "Generate PA1.1 code"}, \
179 {"pa-risc-2-0", MASK_PA_20, "Generate PA2.0 code. This option requires binutils 2.10 or later"}, \
180 {"disable-fpregs", MASK_DISABLE_FPREGS, "Disable FP regs"}, \
181 {"no-disable-fpregs", -MASK_DISABLE_FPREGS, "Do not disable FP regs"},\
182 {"no-space-regs", MASK_NO_SPACE_REGS, "Disable space regs"}, \
183 {"space-regs", -MASK_NO_SPACE_REGS, "Do not disable space regs"}, \
184 {"jump-in-delay", MASK_JUMP_IN_DELAY, "Put jumps in call delay slots"},\
185 {"no-jump-in-delay", -MASK_JUMP_IN_DELAY, "Do not put jumps in call delay slots"}, \
186 {"disable-indexing", MASK_DISABLE_INDEXING, "Disable indexed addressing"},\
187 {"no-disable-indexing", -MASK_DISABLE_INDEXING, "Do not disable indexed addressing"},\
188 {"portable-runtime", MASK_PORTABLE_RUNTIME, "Use portable calling conventions"}, \
189 {"no-portable-runtime", -MASK_PORTABLE_RUNTIME, "Do not use portable calling conventions"},\
190 {"gas", MASK_GAS, "Assume code will be assembled by GAS"}, \
191 {"no-gas", -MASK_GAS, "Do not assume code will be assembled by GAS"}, \
192 {"soft-float", MASK_SOFT_FLOAT, "Use software floating point"}, \
193 {"no-soft-float", -MASK_SOFT_FLOAT, "Do not use software floating point"}, \
194 {"long-load-store", MASK_LONG_LOAD_STORE, "Emit long load/store sequences"}, \
195 {"no-long-load-store", -MASK_LONG_LOAD_STORE, "Do not emit long load/store sequences"},\
196 {"fast-indirect-calls", MASK_FAST_INDIRECT_CALLS, "Generate fast indirect calls"},\
197 {"no-fast-indirect-calls", -MASK_FAST_INDIRECT_CALLS, "Do not generate fast indirect calls"},\
198 {"big-switch", MASK_BIG_SWITCH, "Generate code for huge switch statements"}, \
199 {"no-big-switch", -MASK_BIG_SWITCH, "Do not generate code for huge switch statements"}, \
200 {"linker-opt", 0, "Enable linker optimizations"}, \
201 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, NULL}}
202
203 #ifndef TARGET_DEFAULT
204 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY)
205 #endif
206
207 #ifndef TARGET_CPU_DEFAULT
208 #define TARGET_CPU_DEFAULT 0
209 #endif
210
211 #ifndef TARGET_SCHED_DEFAULT
212 #define TARGET_SCHED_DEFAULT "8000"
213 #endif
214
215 #define TARGET_OPTIONS \
216 { \
217 { "schedule=", &pa_cpu_string, "Specify CPU for scheduling purposes" },\
218 { "arch=", &pa_arch_string, "Specify architecture for code generation. Values are 1.0, 1.1, and 2.0. 2.0 requires gas snapshot 19990413 or later." }\
219 }
220
221 /* Specify the dialect of assembler to use. New mnemonics is dialect one
222 and the old mnemonics are dialect zero. */
223 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
224
225 #define OVERRIDE_OPTIONS override_options ()
226
227 /* stabs-in-som is nearly identical to stabs-in-elf. To avoid useless
228 code duplication we simply include this file and override as needed. */
229 #include "dbxelf.h"
230
231 /* We do not have to be compatible with dbx, so we enable gdb extensions
232 by default. */
233 #define DEFAULT_GDB_EXTENSIONS 1
234
235 /* This used to be zero (no max length), but big enums and such can
236 cause huge strings which killed gas.
237
238 We also have to avoid lossage in dbxout.c -- it does not compute the
239 string size accurately, so we are real conservative here. */
240 #undef DBX_CONTIN_LENGTH
241 #define DBX_CONTIN_LENGTH 3000
242
243 /* Only labels should ever begin in column zero. */
244 #define ASM_STABS_OP "\t.stabs\t"
245 #define ASM_STABN_OP "\t.stabn\t"
246
247 /* GDB always assumes the current function's frame begins at the value
248 of the stack pointer upon entry to the current function. Accessing
249 local variables and parameters passed on the stack is done using the
250 base of the frame + an offset provided by GCC.
251
252 For functions which have frame pointers this method works fine;
253 the (frame pointer) == (stack pointer at function entry) and GCC provides
254 an offset relative to the frame pointer.
255
256 This loses for functions without a frame pointer; GCC provides an offset
257 which is relative to the stack pointer after adjusting for the function's
258 frame size. GDB would prefer the offset to be relative to the value of
259 the stack pointer at the function's entry. Yuk! */
260 #define DEBUGGER_AUTO_OFFSET(X) \
261 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
262 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
263
264 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
265 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
266 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
267
268 #define CPP_PA10_SPEC ""
269 #define CPP_PA11_SPEC "-D_PA_RISC1_1 -D__hp9000s700"
270 #define CPP_PA20_SPEC "-D_PA_RISC2_0 -D__hp9000s800"
271 #define CPP_64BIT_SPEC "-D__LP64__"
272
273 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_PA_11) == 0
274 #define CPP_CPU_DEFAULT_SPEC "%(cpp_pa10)"
275 #endif
276
277 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_PA_11) != 0
278 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_PA_20) != 0
279 #define CPP_CPU_DEFAULT_SPEC "%(cpp_pa11) %(cpp_pa20)"
280 #else
281 #define CPP_CPU_DEFAULT_SPEC "%(cpp_pa11)"
282 #endif
283 #endif
284
285 #if TARGET_64BIT
286 #define CPP_64BIT_DEFAULT_SPEC "%(cpp_64bit)"
287 #else
288 #define CPP_64BIT_DEFAULT_SPEC ""
289 #endif
290
291 /* This macro defines names of additional specifications to put in the
292 specs that can be used in various specifications like CC1_SPEC. Its
293 definition is an initializer with a subgrouping for each command option.
294
295 Each subgrouping contains a string constant, that defines the
296 specification name, and a string constant that used by the GNU CC driver
297 program.
298
299 Do not define this macro if it does not need to do anything. */
300
301 #ifndef SUBTARGET_EXTRA_SPECS
302 #define SUBTARGET_EXTRA_SPECS
303 #endif
304
305 #define EXTRA_SPECS \
306 { "cpp_pa10", CPP_PA10_SPEC}, \
307 { "cpp_pa11", CPP_PA11_SPEC}, \
308 { "cpp_pa20", CPP_PA20_SPEC}, \
309 { "cpp_64bit", CPP_64BIT_SPEC}, \
310 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
311 { "cpp_64bit_default", CPP_64BIT_DEFAULT_SPEC }, \
312 SUBTARGET_EXTRA_SPECS
313
314 #define CPP_SPEC "\
315 %{mpa-risc-1-0:%(cpp_pa10)} \
316 %{mpa-risc-1-1:%(cpp_pa11)} \
317 %{msnake:%(cpp_pa11)} \
318 %{mpa-risc-2-0:%(cpp_pa20)} \
319 %{!mpa-risc-1-0:%{!mpa-risc-1-1:%{!mpa-risc-2-0:%{!msnake:%(cpp_cpu_default)}}}} \
320 %{m64bit:%(cpp_64bit)} \
321 %{!m64bit:%(cpp_64bit_default)} \
322 %{!ansi: -D_HPUX_SOURCE -D_HIUX_SOURCE -D__STDC_EXT__ -D_INCLUDE_LONGLONG} \
323 %{threads: -D_REENTRANT -D_DCE_THREADS}"
324
325 #define CPLUSPLUS_CPP_SPEC "\
326 -D_HPUX_SOURCE -D_HIUX_SOURCE -D__STDC_EXT__ -D_INCLUDE_LONGLONG \
327 %{mpa-risc-1-0:%(cpp_pa10)} \
328 %{mpa-risc-1-1:%(cpp_pa11)} \
329 %{msnake:%(cpp_pa11)} \
330 %{mpa-risc-2-0:%(cpp_pa20)} \
331 %{!mpa-risc-1-0:%{!mpa-risc-1-1:%{!mpa-risc-2-0:%{!msnake:%(cpp_cpu_default)}}}} \
332 %{m64bit:%(cpp_64bit)} \
333 %{!m64bit:%(cpp_64bit_default)} \
334 %{threads: -D_REENTRANT -D_DCE_THREADS}"
335
336 /* Defines for a K&R CC */
337
338 #define CC1_SPEC "%{pg:} %{p:}"
339
340 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
341
342 /* We don't want -lg. */
343 #ifndef LIB_SPEC
344 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
345 #endif
346
347 /* This macro defines command-line switches that modify the default
348 target name.
349
350 The definition is be an initializer for an array of structures. Each
351 array element has have three elements: the switch name, one of the
352 enumeration codes ADD or DELETE to indicate whether the string should be
353 inserted or deleted, and the string to be inserted or deleted. */
354 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
355
356 /* Make gcc agree with <machine/ansi.h> */
357
358 #define SIZE_TYPE "unsigned int"
359 #define PTRDIFF_TYPE "int"
360 #define WCHAR_TYPE "unsigned int"
361 #define WCHAR_TYPE_SIZE 32
362
363 /* Show we can debug even without a frame pointer. */
364 #define CAN_DEBUG_WITHOUT_FP
365
366 /* Machine dependent reorg pass. */
367 #define MACHINE_DEPENDENT_REORG(X) pa_reorg(X)
368
369 /* Names to predefine in the preprocessor for this target machine. */
370
371 #define CPP_PREDEFINES "-Dhppa -Dhp9000s800 -D__hp9000s800 -Dhp9k8 -Dunix -Dhp9000 -Dhp800 -Dspectrum -DREVARGV -Asystem=unix -Asystem=bsd -Acpu=hppa -Amachine=hppa"
372 \f
373 /* target machine storage layout */
374
375 /* Define this macro if it is advisable to hold scalars in registers
376 in a wider mode than that declared by the program. In such cases,
377 the value is constrained to be within the bounds of the declared
378 type, but kept valid in the wider mode. The signedness of the
379 extension may differ from that of the type. */
380
381 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
382 if (GET_MODE_CLASS (MODE) == MODE_INT \
383 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
384 (MODE) = word_mode;
385
386 /* Define this if most significant bit is lowest numbered
387 in instructions that operate on numbered bit-fields. */
388 #define BITS_BIG_ENDIAN 1
389
390 /* Define this if most significant byte of a word is the lowest numbered. */
391 /* That is true on the HP-PA. */
392 #define BYTES_BIG_ENDIAN 1
393
394 /* Define this if most significant word of a multiword number is lowest
395 numbered. */
396 #define WORDS_BIG_ENDIAN 1
397
398 #define MAX_BITS_PER_WORD 64
399 #define MAX_LONG_TYPE_SIZE 32
400
401 /* Width of a word, in units (bytes). */
402 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
403 #define MIN_UNITS_PER_WORD 4
404
405 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
406 #define PARM_BOUNDARY BITS_PER_WORD
407
408 /* Largest alignment required for any stack parameter, in bits.
409 Don't define this if it is equal to PARM_BOUNDARY */
410 #define MAX_PARM_BOUNDARY 64
411
412 /* Boundary (in *bits*) on which stack pointer is always aligned;
413 certain optimizations in combine depend on this.
414
415 GCC for the PA always rounds its stacks to a 512bit boundary,
416 but that happens late in the compilation process. */
417 #define STACK_BOUNDARY (TARGET_64BIT ? 128 : 64)
418
419 #define PREFERRED_STACK_BOUNDARY 512
420
421 /* Allocation boundary (in *bits*) for the code of a function. */
422 #define FUNCTION_BOUNDARY (TARGET_64BIT ? 64 : 32)
423
424 /* Alignment of field after `int : 0' in a structure. */
425 #define EMPTY_FIELD_BOUNDARY 32
426
427 /* Every structure's size must be a multiple of this. */
428 #define STRUCTURE_SIZE_BOUNDARY 8
429
430 /* A bitfield declared as `int' forces `int' alignment for the struct. */
431 #define PCC_BITFIELD_TYPE_MATTERS 1
432
433 /* No data type wants to be aligned rounder than this. This is set
434 to 128 bits to allow for lock semaphores in the stack frame.*/
435 #define BIGGEST_ALIGNMENT 128
436
437 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
438 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
439 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
440
441 /* Make arrays of chars word-aligned for the same reasons. */
442 #define DATA_ALIGNMENT(TYPE, ALIGN) \
443 (TREE_CODE (TYPE) == ARRAY_TYPE \
444 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
445 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
446
447
448 /* Set this nonzero if move instructions will actually fail to work
449 when given unaligned data. */
450 #define STRICT_ALIGNMENT 1
451
452 /* Generate calls to memcpy, memcmp and memset. */
453 #define TARGET_MEM_FUNCTIONS
454
455 /* Value is 1 if it is a good idea to tie two pseudo registers
456 when one has mode MODE1 and one has mode MODE2.
457 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
458 for any hard reg, then this must be 0 for correct output. */
459 #define MODES_TIEABLE_P(MODE1, MODE2) \
460 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
461
462 /* Specify the registers used for certain standard purposes.
463 The values of these macros are register numbers. */
464
465 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
466 /* #define PC_REGNUM */
467
468 /* Register to use for pushing function arguments. */
469 #define STACK_POINTER_REGNUM 30
470
471 /* Base register for access to local variables of the function. */
472 #define FRAME_POINTER_REGNUM 3
473
474 /* Value should be nonzero if functions must have frame pointers. */
475 #define FRAME_POINTER_REQUIRED \
476 (current_function_calls_alloca)
477
478 /* C statement to store the difference between the frame pointer
479 and the stack pointer values immediately after the function prologue.
480
481 Note, we always pretend that this is a leaf function because if
482 it's not, there's no point in trying to eliminate the
483 frame pointer. If it is a leaf function, we guessed right! */
484 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
485 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
486
487 /* Base register for access to arguments of the function. */
488 #define ARG_POINTER_REGNUM 3
489
490 /* Register in which static-chain is passed to a function. */
491 #define STATIC_CHAIN_REGNUM 29
492
493 /* Register which holds offset table for position-independent
494 data references. */
495
496 #define PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? 27 : 19)
497 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
498
499 /* Function to return the rtx used to save the pic offset table register
500 across function calls. */
501 extern struct rtx_def *hppa_pic_save_rtx PARAMS ((void));
502
503 #define DEFAULT_PCC_STRUCT_RETURN 0
504
505 /* SOM ABI says that objects larger than 64 bits are returned in memory.
506 PA64 ABI says that objects larger than 128 bits are returned in memory.
507 Note, int_size_in_bytes can return -1 if the size of the object is
508 variable or larger than the maximum value that can be expressed as
509 a HOST_WIDE_INT. */
510 #define RETURN_IN_MEMORY(TYPE) \
511 ((unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > (TARGET_64BIT ? 16 : 8))
512
513 /* Register in which address to store a structure value
514 is passed to a function. */
515 #define STRUCT_VALUE_REGNUM 28
516
517 /* Describe how we implement __builtin_eh_return. */
518 /* FIXME: What's a good choice for the EH data registers on TARGET_64BIT? */
519 #define EH_RETURN_DATA_REGNO(N) \
520 (TARGET_64BIT \
521 ? ((N) < 4 ? (N) + 4 : INVALID_REGNUM) \
522 : ((N) < 3 ? (N) + 20 : (N) == 4 ? 31 : INVALID_REGNUM))
523 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
524 #define EH_RETURN_HANDLER_RTX \
525 gen_rtx_MEM (word_mode, \
526 gen_rtx_PLUS (word_mode, frame_pointer_rtx, \
527 TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
528
529
530 /* Offset from the argument pointer register value to the top of
531 stack. This is different from FIRST_PARM_OFFSET because of the
532 frame marker. */
533 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
534 \f
535 /* The letters I, J, K, L and M in a register constraint string
536 can be used to stand for particular ranges of immediate operands.
537 This macro defines what the ranges are.
538 C is the letter, and VALUE is a constant value.
539 Return 1 if VALUE is in the range specified by C.
540
541 `I' is used for the 11 bit constants.
542 `J' is used for the 14 bit constants.
543 `K' is used for values that can be moved with a zdepi insn.
544 `L' is used for the 5 bit constants.
545 `M' is used for 0.
546 `N' is used for values with the least significant 11 bits equal to zero
547 and when sign extended from 32 to 64 bits the
548 value does not change.
549 `O' is used for numbers n such that n+1 is a power of 2.
550 */
551
552 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
553 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
554 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
555 : (C) == 'K' ? zdepi_cint_p (VALUE) \
556 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
557 : (C) == 'M' ? (VALUE) == 0 \
558 : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
559 || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) \
560 == (HOST_WIDE_INT) -1 << 31)) \
561 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
562 : (C) == 'P' ? and_mask_p (VALUE) \
563 : 0)
564
565 /* Similar, but for floating or large integer constants, and defining letters
566 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
567
568 For PA, `G' is the floating-point constant zero. `H' is undefined. */
569
570 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
571 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
572 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
573 : 0)
574
575 /* The class value for index registers, and the one for base regs. */
576 #define INDEX_REG_CLASS GENERAL_REGS
577 #define BASE_REG_CLASS GENERAL_REGS
578
579 #define FP_REG_CLASS_P(CLASS) \
580 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
581
582 /* True if register is floating-point. */
583 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
584
585 /* Given an rtx X being reloaded into a reg required to be
586 in class CLASS, return the class of reg to actually use.
587 In general this is just CLASS; but on some machines
588 in some cases it is preferable to use a more restrictive class. */
589 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
590
591 /* Return the register class of a scratch register needed to copy IN into
592 or out of a register in CLASS in MODE. If it can be done directly
593 NO_REGS is returned.
594
595 Avoid doing any work for the common case calls. */
596
597 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
598 ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG \
599 && REGNO (IN) < FIRST_PSEUDO_REGISTER) \
600 ? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
601
602 /* On the PA it is not possible to directly move data between
603 GENERAL_REGS and FP_REGS. */
604 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
605 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
606
607 /* Return the stack location to use for secondary memory needed reloads. */
608 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
609 gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
610
611 \f
612 /* Stack layout; function entry, exit and calling. */
613
614 /* Define this if pushing a word on the stack
615 makes the stack pointer a smaller address. */
616 /* #define STACK_GROWS_DOWNWARD */
617
618 /* Believe it or not. */
619 #define ARGS_GROW_DOWNWARD
620
621 /* Define this if the nominal address of the stack frame
622 is at the high-address end of the local variables;
623 that is, each additional local variable allocated
624 goes at a more negative offset in the frame. */
625 /* #define FRAME_GROWS_DOWNWARD */
626
627 /* Offset within stack frame to start allocating local variables at.
628 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
629 first local allocated. Otherwise, it is the offset to the BEGINNING
630 of the first local allocated. */
631 #define STARTING_FRAME_OFFSET 8
632
633 /* If we generate an insn to push BYTES bytes,
634 this says how many the stack pointer really advances by.
635 On the HP-PA, don't define this because there are no push insns. */
636 /* #define PUSH_ROUNDING(BYTES) */
637
638 /* Offset of first parameter from the argument pointer register value.
639 This value will be negated because the arguments grow down.
640 Also note that on STACK_GROWS_UPWARD machines (such as this one)
641 this is the distance from the frame pointer to the end of the first
642 argument, not it's beginning. To get the real offset of the first
643 argument, the size of the argument must be added. */
644
645 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
646
647 /* When a parameter is passed in a register, stack space is still
648 allocated for it. */
649 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
650
651 /* Define this if the above stack space is to be considered part of the
652 space allocated by the caller. */
653 #define OUTGOING_REG_PARM_STACK_SPACE
654
655 /* Keep the stack pointer constant throughout the function.
656 This is both an optimization and a necessity: longjmp
657 doesn't behave itself when the stack pointer moves within
658 the function! */
659 #define ACCUMULATE_OUTGOING_ARGS 1
660
661 /* The weird HPPA calling conventions require a minimum of 48 bytes on
662 the stack: 16 bytes for register saves, and 32 bytes for magic.
663 This is the difference between the logical top of stack and the
664 actual sp. */
665 #define STACK_POINTER_OFFSET \
666 (TARGET_64BIT ? -(current_function_outgoing_args_size + 16): -32)
667
668 #define STACK_DYNAMIC_OFFSET(FNDECL) \
669 (TARGET_64BIT \
670 ? (STACK_POINTER_OFFSET) \
671 : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
672
673 /* Value is 1 if returning from a function call automatically
674 pops the arguments described by the number-of-args field in the call.
675 FUNDECL is the declaration node of the function (as a tree),
676 FUNTYPE is the data type of the function (as a tree),
677 or for a library call it is an identifier node for the subroutine name. */
678
679 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
680
681 /* Define how to find the value returned by a function.
682 VALTYPE is the data type of the value (as a tree).
683 If the precise function being called is known, FUNC is its FUNCTION_DECL;
684 otherwise, FUNC is 0. */
685
686 /* On the HP-PA the value is found in register(s) 28(-29), unless
687 the mode is SF or DF. Then the value is returned in fr4 (32, ) */
688
689 /* This must perform the same promotions as PROMOTE_MODE, else
690 PROMOTE_FUNCTION_RETURN will not work correctly. */
691 #define FUNCTION_VALUE(VALTYPE, FUNC) \
692 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
693 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
694 || POINTER_TYPE_P (VALTYPE)) \
695 ? word_mode : TYPE_MODE (VALTYPE), \
696 TREE_CODE (VALTYPE) == REAL_TYPE && !TARGET_SOFT_FLOAT ? 32 : 28)
697
698 /* Define how to find the value returned by a library function
699 assuming the value has mode MODE. */
700
701 #define LIBCALL_VALUE(MODE) \
702 gen_rtx_REG (MODE, \
703 (! TARGET_SOFT_FLOAT \
704 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
705
706 /* 1 if N is a possible register number for a function value
707 as seen by the caller. */
708
709 #define FUNCTION_VALUE_REGNO_P(N) \
710 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
711
712 \f
713 /* Define a data type for recording info about an argument list
714 during the scan of that argument list. This data type should
715 hold all necessary information about the function itself
716 and about the args processed so far, enough to enable macros
717 such as FUNCTION_ARG to determine where the next arg should go.
718
719 On the HP-PA, this is a single integer, which is a number of words
720 of arguments scanned so far (including the invisible argument,
721 if any, which holds the structure-value-address).
722 Thus 4 or more means all following args should go on the stack. */
723
724 struct hppa_args {int words, nargs_prototype, indirect; };
725
726 #define CUMULATIVE_ARGS struct hppa_args
727
728 /* Initialize a variable CUM of type CUMULATIVE_ARGS
729 for a call to a function whose data type is FNTYPE.
730 For a library call, FNTYPE is 0. */
731
732 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
733 (CUM).words = 0, \
734 (CUM).indirect = INDIRECT, \
735 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
736 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
737 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
738 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
739 : 0)
740
741
742
743 /* Similar, but when scanning the definition of a procedure. We always
744 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
745
746 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
747 (CUM).words = 0, \
748 (CUM).indirect = 0, \
749 (CUM).nargs_prototype = 1000
750
751 /* Figure out the size in words of the function argument. */
752
753 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
754 ((((MODE) != BLKmode \
755 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
756 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
757
758 /* Update the data in CUM to advance over an argument
759 of mode MODE and data type TYPE.
760 (TYPE is null for libcalls where that information may not be available.) */
761
762 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
763 { (CUM).nargs_prototype--; \
764 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
765 + (((CUM).words & 01) && (TYPE) != 0 \
766 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
767 }
768
769 /* Determine where to put an argument to a function.
770 Value is zero to push the argument on the stack,
771 or a hard register in which to store the argument.
772
773 MODE is the argument's machine mode.
774 TYPE is the data type of the argument (as a tree).
775 This is null for libcalls where that information may
776 not be available.
777 CUM is a variable of type CUMULATIVE_ARGS which gives info about
778 the preceding args and about the function being called.
779 NAMED is nonzero if this argument is a named parameter
780 (otherwise it is an extra parameter matching an ellipsis).
781
782 On the HP-PA the first four words of args are normally in registers
783 and the rest are pushed. But any arg that won't entirely fit in regs
784 is pushed.
785
786 Arguments passed in registers are either 1 or 2 words long.
787
788 The caller must make a distinction between calls to explicitly named
789 functions and calls through pointers to functions -- the conventions
790 are different! Calls through pointers to functions only use general
791 registers for the first four argument words.
792
793 Of course all this is different for the portable runtime model
794 HP wants everyone to use for ELF. Ugh. Here's a quick description
795 of how it's supposed to work.
796
797 1) callee side remains unchanged. It expects integer args to be
798 in the integer registers, float args in the float registers and
799 unnamed args in integer registers.
800
801 2) caller side now depends on if the function being called has
802 a prototype in scope (rather than if it's being called indirectly).
803
804 2a) If there is a prototype in scope, then arguments are passed
805 according to their type (ints in integer registers, floats in float
806 registers, unnamed args in integer registers.
807
808 2b) If there is no prototype in scope, then floating point arguments
809 are passed in both integer and float registers. egad.
810
811 FYI: The portable parameter passing conventions are almost exactly like
812 the standard parameter passing conventions on the RS6000. That's why
813 you'll see lots of similar code in rs6000.h. */
814
815 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
816
817 /* Do not expect to understand this without reading it several times. I'm
818 tempted to try and simply it, but I worry about breaking something. */
819
820 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
821 function_arg (&CUM, MODE, TYPE, NAMED, 0)
822
823 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
824 function_arg (&CUM, MODE, TYPE, NAMED, 1)
825
826 /* For an arg passed partly in registers and partly in memory,
827 this is the number of registers used.
828 For args passed entirely in registers or entirely in memory, zero. */
829
830 /* For PA32 there are never split arguments. PA64, on the other hand, can
831 pass arguments partially in registers and partially in memory. */
832 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
833 (TARGET_64BIT ? function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED) : 0)
834
835 /* If defined, a C expression that gives the alignment boundary, in
836 bits, of an argument with the specified mode and type. If it is
837 not defined, `PARM_BOUNDARY' is used for all arguments. */
838
839 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
840 (((TYPE) != 0) \
841 ? ((integer_zerop (TYPE_SIZE (TYPE)) \
842 || ! TREE_CONSTANT (TYPE_SIZE (TYPE))) \
843 ? BITS_PER_UNIT \
844 : (((int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) \
845 / UNITS_PER_WORD) * BITS_PER_WORD) \
846 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
847 ? PARM_BOUNDARY : GET_MODE_ALIGNMENT(MODE)))
848
849 /* Arguments larger than eight bytes are passed by invisible reference */
850
851 /* PA64 does not pass anything by invisible reference. */
852 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
853 (TARGET_64BIT \
854 ? 0 \
855 : (((TYPE) && int_size_in_bytes (TYPE) > 8) \
856 || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
857
858 /* PA64 does not pass anything by invisible reference.
859 This should be undef'ed for 64bit, but we'll see if this works. The
860 problem is that we can't test TARGET_64BIT from the preprocessor. */
861 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
862 (TARGET_64BIT \
863 ? 0 \
864 : (((TYPE) && int_size_in_bytes (TYPE) > 8) \
865 || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
866
867 \f
868 extern GTY(()) rtx hppa_compare_op0;
869 extern GTY(()) rtx hppa_compare_op1;
870 extern enum cmp_type hppa_branch_type;
871
872 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
873 pa_asm_output_mi_thunk (FILE, THUNK_FNDECL, DELTA, FUNCTION)
874
875 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
876 as assembly via FUNCTION_PROFILER. Just output a local label.
877 We can't use the function label because the GAS SOM target can't
878 handle the difference of a global symbol and a local symbol. */
879
880 #ifndef FUNC_BEGIN_PROLOG_LABEL
881 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
882 #endif
883
884 #define FUNCTION_PROFILER(FILE, LABEL) \
885 ASM_OUTPUT_INTERNAL_LABEL (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
886
887 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
888 void hppa_profile_hook PARAMS ((int label_no));
889
890 /* The profile counter if emitted must come before the prologue. */
891 #define PROFILE_BEFORE_PROLOGUE 1
892
893 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
894 the stack pointer does not matter. The value is tested only in
895 functions that have frame pointers.
896 No definition is equivalent to always zero. */
897
898 extern int may_call_alloca;
899
900 #define EXIT_IGNORE_STACK \
901 (get_frame_size () != 0 \
902 || current_function_calls_alloca || current_function_outgoing_args_size)
903
904 /* Output assembler code for a block containing the constant parts
905 of a trampoline, leaving space for the variable parts.\
906
907 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
908 and then branches to the specified routine.
909
910 This code template is copied from text segment to stack location
911 and then patched with INITIALIZE_TRAMPOLINE to contain
912 valid values, and then entered as a subroutine.
913
914 It is best to keep this as small as possible to avoid having to
915 flush multiple lines in the cache. */
916
917 #define TRAMPOLINE_TEMPLATE(FILE) \
918 { \
919 if (! TARGET_64BIT) \
920 { \
921 fputs ("\tldw 36(%r22),%r21\n", FILE); \
922 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
923 if (ASSEMBLER_DIALECT == 0) \
924 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
925 else \
926 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
927 fputs ("\tldw 4(%r21),%r19\n", FILE); \
928 fputs ("\tldw 0(%r21),%r21\n", FILE); \
929 fputs ("\tldsid (%r21),%r1\n", FILE); \
930 fputs ("\tmtsp %r1,%sr0\n", FILE); \
931 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
932 fputs ("\tldw 40(%r22),%r29\n", FILE); \
933 fputs ("\t.word 0\n", FILE); \
934 fputs ("\t.word 0\n", FILE); \
935 fputs ("\t.word 0\n", FILE); \
936 fputs ("\t.word 0\n", FILE); \
937 } \
938 else \
939 { \
940 fputs ("\t.dword 0\n", FILE); \
941 fputs ("\t.dword 0\n", FILE); \
942 fputs ("\t.dword 0\n", FILE); \
943 fputs ("\t.dword 0\n", FILE); \
944 fputs ("\tmfia %r31\n", FILE); \
945 fputs ("\tldd 24(%r31),%r1\n", FILE); \
946 fputs ("\tldd 24(%r1),%r27\n", FILE); \
947 fputs ("\tldd 16(%r1),%r1\n", FILE); \
948 fputs ("\tbve (%r1)\n", FILE); \
949 fputs ("\tldd 32(%r31),%r31\n", FILE); \
950 fputs ("\t.dword 0 ; fptr\n", FILE); \
951 fputs ("\t.dword 0 ; static link\n", FILE); \
952 } \
953 }
954
955 /* Length in units of the trampoline for entering a nested function.
956
957 Flush the cache entries corresponding to the first and last addresses
958 of the trampoline. This is necessary as the trampoline may cross two
959 cache lines.
960
961 If the code part of the trampoline ever grows to > 32 bytes, then it
962 will become necessary to hack on the cacheflush pattern in pa.md. */
963
964 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
965
966 /* Emit RTL insns to initialize the variable parts of a trampoline.
967 FNADDR is an RTX for the address of the function's pure code.
968 CXT is an RTX for the static chain value for the function.
969
970 Move the function address to the trampoline template at offset 36.
971 Move the static chain value to trampoline template at offset 40.
972 Move the trampoline address to trampoline template at offset 44.
973 Move r19 to trampoline template at offset 48. The latter two
974 words create a plabel for the indirect call to the trampoline. */
975
976 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
977 { \
978 if (! TARGET_64BIT) \
979 { \
980 rtx start_addr, end_addr; \
981 \
982 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
983 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
984 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
985 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
986 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
987 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (TRAMP)); \
988 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
989 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), \
990 gen_rtx_REG (Pmode, 19)); \
991 /* fdc and fic only use registers for the address to flush, \
992 they do not accept integer displacements. */ \
993 start_addr = force_reg (Pmode, (TRAMP)); \
994 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
995 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
996 end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
997 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
998 gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
999 } \
1000 else \
1001 { \
1002 rtx start_addr, end_addr; \
1003 \
1004 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
1005 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
1006 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
1007 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
1008 /* Create a fat pointer for the trampoline. */ \
1009 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1010 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1011 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), end_addr); \
1012 end_addr = gen_rtx_REG (Pmode, 27); \
1013 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1014 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), end_addr); \
1015 /* fdc and fic only use registers for the address to flush, \
1016 they do not accept integer displacements. */ \
1017 start_addr = force_reg (Pmode, (TRAMP)); \
1018 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1019 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
1020 end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
1021 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
1022 gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
1023 } \
1024 }
1025
1026 /* Perform any machine-specific adjustment in the address of the trampoline.
1027 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1028 Adjust the trampoline address to point to the plabel at offset 44. */
1029
1030 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1031 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1032
1033 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
1034 reference the 4 integer arg registers and 4 fp arg registers.
1035 Ordinarily they are not call used registers, but they are for
1036 _builtin_saveregs, so we must make this explicit. */
1037
1038 #define EXPAND_BUILTIN_SAVEREGS() hppa_builtin_saveregs ()
1039
1040 /* Implement `va_start' for varargs and stdarg. */
1041
1042 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1043 hppa_va_start (stdarg, valist, nextarg)
1044
1045 /* Implement `va_arg'. */
1046
1047 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1048 hppa_va_arg (valist, type)
1049 \f
1050 /* Addressing modes, and classification of registers for them.
1051
1052 Using autoincrement addressing modes on PA8000 class machines is
1053 not profitable. */
1054
1055 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1056 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1057
1058 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1059 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1060
1061 /* Macros to check register numbers against specific register classes. */
1062
1063 /* These assume that REGNO is a hard or pseudo reg number.
1064 They give nonzero only if REGNO is a hard reg of the suitable class
1065 or a pseudo reg currently allocated to a suitable hard reg.
1066 Since they use reg_renumber, they are safe only once reg_renumber
1067 has been allocated, which happens in local-alloc.c. */
1068
1069 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1070 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1071 #define REGNO_OK_FOR_BASE_P(REGNO) \
1072 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1073 #define REGNO_OK_FOR_FP_P(REGNO) \
1074 (FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO]))
1075
1076 /* Now macros that check whether X is a register and also,
1077 strictly, whether it is in a specified class.
1078
1079 These macros are specific to the HP-PA, and may be used only
1080 in code for printing assembler insns and in conditions for
1081 define_optimization. */
1082
1083 /* 1 if X is an fp register. */
1084
1085 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1086 \f
1087 /* Maximum number of registers that can appear in a valid memory address. */
1088
1089 #define MAX_REGS_PER_ADDRESS 2
1090
1091 /* Recognize any constant value that is a valid address except
1092 for symbolic addresses. We get better CSE by rejecting them
1093 here and allowing hppa_legitimize_address to break them up. We
1094 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1095
1096 #define CONSTANT_ADDRESS_P(X) \
1097 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1098 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1099 || GET_CODE (X) == HIGH) \
1100 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1101
1102 /* Include all constant integers and constant doubles, but not
1103 floating-point, except for floating-point zero.
1104
1105 Reject LABEL_REFs if we're not using gas or the new HP assembler.
1106
1107 ?!? For now also reject CONST_DOUBLES in 64bit mode. This will need
1108 further work. */
1109 #ifndef NEW_HP_ASSEMBLER
1110 #define NEW_HP_ASSEMBLER 0
1111 #endif
1112 #define LEGITIMATE_CONSTANT_P(X) \
1113 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1114 || (X) == CONST0_RTX (GET_MODE (X))) \
1115 && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF) \
1116 && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE) \
1117 && !(TARGET_64BIT && GET_CODE (X) == CONST_INT \
1118 && !(HOST_BITS_PER_WIDE_INT <= 32 \
1119 || (INTVAL (X) >= (HOST_WIDE_INT) -32 << 31 \
1120 && INTVAL (X) < (HOST_WIDE_INT) 32 << 31) \
1121 || cint_ok_for_move (INTVAL (X)))) \
1122 && !function_label_operand (X, VOIDmode))
1123
1124 /* Subroutine for EXTRA_CONSTRAINT.
1125
1126 Return 1 iff OP is a pseudo which did not get a hard register and
1127 we are running the reload pass. */
1128
1129 #define IS_RELOADING_PSEUDO_P(OP) \
1130 ((reload_in_progress \
1131 && GET_CODE (OP) == REG \
1132 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1133 && reg_renumber [REGNO (OP)] < 0))
1134
1135 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1136
1137 For the HPPA, `Q' means that this is a memory operand but not a
1138 symbolic memory operand. Note that an unassigned pseudo register
1139 is such a memory operand. Needed because reload will generate
1140 these things in insns and then not re-recognize the insns, causing
1141 constrain_operands to fail.
1142
1143 `R' is used for scaled indexed addresses.
1144
1145 `S' is the constant 31.
1146
1147 `T' is for fp loads and stores. */
1148 #define EXTRA_CONSTRAINT(OP, C) \
1149 ((C) == 'Q' ? \
1150 (IS_RELOADING_PSEUDO_P (OP) \
1151 || (GET_CODE (OP) == MEM \
1152 && (memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1153 || reload_in_progress) \
1154 && ! symbolic_memory_operand (OP, VOIDmode) \
1155 && !(GET_CODE (XEXP (OP, 0)) == PLUS \
1156 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1157 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT))))\
1158 : ((C) == 'R' ? \
1159 (GET_CODE (OP) == MEM \
1160 && GET_CODE (XEXP (OP, 0)) == PLUS \
1161 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT \
1162 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT) \
1163 && (move_operand (OP, GET_MODE (OP)) \
1164 || memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1165 || reload_in_progress)) \
1166 : ((C) == 'T' ? \
1167 (GET_CODE (OP) == MEM \
1168 /* Using DFmode forces only short displacements \
1169 to be recognized as valid in reg+d addresses. \
1170 However, this is not necessary for PA2.0 since\
1171 it has long FP loads/stores. */ \
1172 && memory_address_p ((TARGET_PA_20 \
1173 ? GET_MODE (OP) \
1174 : DFmode), \
1175 XEXP (OP, 0)) \
1176 && !(GET_CODE (XEXP (OP, 0)) == LO_SUM \
1177 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1178 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0))\
1179 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC\
1180 && GET_MODE (XEXP (OP, 0)) == Pmode) \
1181 && !(GET_CODE (XEXP (OP, 0)) == PLUS \
1182 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1183 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT)))\
1184 : ((C) == 'U' ? \
1185 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) \
1186 : ((C) == 'A' ? \
1187 (GET_CODE (OP) == MEM \
1188 && GET_CODE (XEXP (OP, 0)) == LO_SUM \
1189 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1190 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0)) \
1191 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC \
1192 && GET_MODE (XEXP (OP, 0)) == Pmode) \
1193 : ((C) == 'S' ? \
1194 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) : 0))))))
1195
1196
1197 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1198 and check its validity for a certain class.
1199 We have two alternate definitions for each of them.
1200 The usual definition accepts all pseudo regs; the other rejects
1201 them unless they have been allocated suitable hard regs.
1202 The symbol REG_OK_STRICT causes the latter definition to be used.
1203
1204 Most source files want to accept pseudo regs in the hope that
1205 they will get allocated to the class that the insn wants them to be in.
1206 Source files for reload pass need to be strict.
1207 After reload, it makes no difference, since pseudo regs have
1208 been eliminated by then. */
1209
1210 #ifndef REG_OK_STRICT
1211
1212 /* Nonzero if X is a hard reg that can be used as an index
1213 or if it is a pseudo reg. */
1214 #define REG_OK_FOR_INDEX_P(X) \
1215 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1216 /* Nonzero if X is a hard reg that can be used as a base reg
1217 or if it is a pseudo reg. */
1218 #define REG_OK_FOR_BASE_P(X) \
1219 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1220
1221 #else
1222
1223 /* Nonzero if X is a hard reg that can be used as an index. */
1224 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1225 /* Nonzero if X is a hard reg that can be used as a base reg. */
1226 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1227
1228 #endif
1229 \f
1230 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1231 that is a valid memory address for an instruction.
1232 The MODE argument is the machine mode for the MEM expression
1233 that wants to use this address.
1234
1235 On the HP-PA, the actual legitimate addresses must be
1236 REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
1237 But we can treat a SYMBOL_REF as legitimate if it is part of this
1238 function's constant-pool, because such addresses can actually
1239 be output as REG+SMALLINT.
1240
1241 Note we only allow 5 bit immediates for access to a constant address;
1242 doing so avoids losing for loading/storing a FP register at an address
1243 which will not fit in 5 bits. */
1244
1245 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1246 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1247
1248 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1249 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1250
1251 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1252 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1253
1254 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1255 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1256
1257 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1258 { \
1259 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1260 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1261 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1262 && REG_P (XEXP (X, 0)) \
1263 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1264 goto ADDR; \
1265 else if (GET_CODE (X) == PLUS) \
1266 { \
1267 rtx base = 0, index = 0; \
1268 if (REG_P (XEXP (X, 0)) \
1269 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1270 base = XEXP (X, 0), index = XEXP (X, 1); \
1271 else if (REG_P (XEXP (X, 1)) \
1272 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1273 base = XEXP (X, 1), index = XEXP (X, 0); \
1274 if (base != 0) \
1275 if (GET_CODE (index) == CONST_INT \
1276 && ((INT_14_BITS (index) \
1277 && (TARGET_SOFT_FLOAT \
1278 || (TARGET_PA_20 \
1279 && ((MODE == SFmode \
1280 && (INTVAL (index) % 4) == 0)\
1281 || (MODE == DFmode \
1282 && (INTVAL (index) % 8) == 0)))\
1283 || ((MODE) != SFmode && (MODE) != DFmode))) \
1284 || INT_5_BITS (index))) \
1285 goto ADDR; \
1286 if (! TARGET_SOFT_FLOAT \
1287 && ! TARGET_DISABLE_INDEXING \
1288 && base \
1289 && ((MODE) == SFmode || (MODE) == DFmode) \
1290 && GET_CODE (index) == MULT \
1291 && GET_CODE (XEXP (index, 0)) == REG \
1292 && REG_OK_FOR_BASE_P (XEXP (index, 0)) \
1293 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1294 && INTVAL (XEXP (index, 1)) == ((MODE) == SFmode ? 4 : 8))\
1295 goto ADDR; \
1296 } \
1297 else if (GET_CODE (X) == LO_SUM \
1298 && GET_CODE (XEXP (X, 0)) == REG \
1299 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1300 && CONSTANT_P (XEXP (X, 1)) \
1301 && (TARGET_SOFT_FLOAT \
1302 /* We can allow symbolic LO_SUM addresses\
1303 for PA2.0. */ \
1304 || (TARGET_PA_20 \
1305 && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1306 || ((MODE) != SFmode \
1307 && (MODE) != DFmode))) \
1308 goto ADDR; \
1309 else if (GET_CODE (X) == LO_SUM \
1310 && GET_CODE (XEXP (X, 0)) == SUBREG \
1311 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1312 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1313 && CONSTANT_P (XEXP (X, 1)) \
1314 && (TARGET_SOFT_FLOAT \
1315 /* We can allow symbolic LO_SUM addresses\
1316 for PA2.0. */ \
1317 || (TARGET_PA_20 \
1318 && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1319 || ((MODE) != SFmode \
1320 && (MODE) != DFmode))) \
1321 goto ADDR; \
1322 else if (GET_CODE (X) == LABEL_REF \
1323 || (GET_CODE (X) == CONST_INT \
1324 && INT_5_BITS (X))) \
1325 goto ADDR; \
1326 /* Needed for -fPIC */ \
1327 else if (GET_CODE (X) == LO_SUM \
1328 && GET_CODE (XEXP (X, 0)) == REG \
1329 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1330 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1331 && (TARGET_SOFT_FLOAT \
1332 || TARGET_PA_20 \
1333 || ((MODE) != SFmode \
1334 && (MODE) != DFmode))) \
1335 goto ADDR; \
1336 }
1337
1338 /* Look for machine dependent ways to make the invalid address AD a
1339 valid address.
1340
1341 For the PA, transform:
1342
1343 memory(X + <large int>)
1344
1345 into:
1346
1347 if (<large int> & mask) >= 16
1348 Y = (<large int> & ~mask) + mask + 1 Round up.
1349 else
1350 Y = (<large int> & ~mask) Round down.
1351 Z = X + Y
1352 memory (Z + (<large int> - Y));
1353
1354 This makes reload inheritance and reload_cse work better since Z
1355 can be reused.
1356
1357 There may be more opportunities to improve code with this hook. */
1358 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1359 do { \
1360 int offset, newoffset, mask; \
1361 rtx new, temp = NULL_RTX; \
1362 \
1363 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1364 ? (TARGET_PA_20 ? 0x3fff : 0x1f) : 0x3fff); \
1365 \
1366 if (optimize \
1367 && GET_CODE (AD) == PLUS) \
1368 temp = simplify_binary_operation (PLUS, Pmode, \
1369 XEXP (AD, 0), XEXP (AD, 1)); \
1370 \
1371 new = temp ? temp : AD; \
1372 \
1373 if (optimize \
1374 && GET_CODE (new) == PLUS \
1375 && GET_CODE (XEXP (new, 0)) == REG \
1376 && GET_CODE (XEXP (new, 1)) == CONST_INT) \
1377 { \
1378 offset = INTVAL (XEXP ((new), 1)); \
1379 \
1380 /* Choose rounding direction. Round up if we are >= halfway. */ \
1381 if ((offset & mask) >= ((mask + 1) / 2)) \
1382 newoffset = (offset & ~mask) + mask + 1; \
1383 else \
1384 newoffset = offset & ~mask; \
1385 \
1386 if (newoffset != 0 \
1387 && VAL_14_BITS_P (newoffset)) \
1388 { \
1389 \
1390 temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \
1391 GEN_INT (newoffset)); \
1392 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1393 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1394 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1395 (OPNUM), (TYPE)); \
1396 goto WIN; \
1397 } \
1398 } \
1399 } while (0)
1400
1401
1402
1403 \f
1404 /* Try machine-dependent ways of modifying an illegitimate address
1405 to be legitimate. If we find one, return the new, valid address.
1406 This macro is used in only one place: `memory_address' in explow.c.
1407
1408 OLDX is the address as it was before break_out_memory_refs was called.
1409 In some cases it is useful to look at this to decide what needs to be done.
1410
1411 MODE and WIN are passed so that this macro can use
1412 GO_IF_LEGITIMATE_ADDRESS.
1413
1414 It is always safe for this macro to do nothing. It exists to recognize
1415 opportunities to optimize the output. */
1416
1417 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1418 { rtx orig_x = (X); \
1419 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1420 if ((X) != orig_x && memory_address_p (MODE, X)) \
1421 goto WIN; }
1422
1423 /* Go to LABEL if ADDR (a legitimate address expression)
1424 has an effect that depends on the machine mode it is used for. */
1425
1426 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1427 if (GET_CODE (ADDR) == PRE_DEC \
1428 || GET_CODE (ADDR) == POST_DEC \
1429 || GET_CODE (ADDR) == PRE_INC \
1430 || GET_CODE (ADDR) == POST_INC) \
1431 goto LABEL
1432 \f
1433 #define TARGET_ASM_SELECT_SECTION pa_select_section
1434
1435 /* Define this macro if references to a symbol must be treated
1436 differently depending on something about the variable or
1437 function named by the symbol (such as what section it is in).
1438
1439 The macro definition, if any, is executed immediately after the
1440 rtl for DECL or other node is created.
1441 The value of the rtl will be a `mem' whose address is a
1442 `symbol_ref'.
1443
1444 The usual thing for this macro to do is to a flag in the
1445 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1446 name string in the `symbol_ref' (if one bit is not enough
1447 information).
1448
1449 On the HP-PA we use this to indicate if a symbol is in text or
1450 data space. Also, function labels need special treatment. */
1451
1452 #define TEXT_SPACE_P(DECL)\
1453 (TREE_CODE (DECL) == FUNCTION_DECL \
1454 || (TREE_CODE (DECL) == VAR_DECL \
1455 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1456 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1457 && !flag_pic) \
1458 || (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'c' \
1459 && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
1460
1461 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1462
1463 /* Specify the machine mode that this machine uses
1464 for the index in the tablejump instruction. */
1465 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? TImode : DImode)
1466
1467 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
1468 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1469
1470 /* Define this as 1 if `char' should by default be signed; else as 0. */
1471 #define DEFAULT_SIGNED_CHAR 1
1472
1473 /* Max number of bytes we can move from memory to memory
1474 in one reasonably fast instruction. */
1475 #define MOVE_MAX 8
1476
1477 /* Higher than the default as we prefer to use simple move insns
1478 (better scheduling and delay slot filling) and because our
1479 built-in block move is really a 2X unrolled loop.
1480
1481 Believe it or not, this has to be big enough to allow for copying all
1482 arguments passed in registers to avoid infinite recursion during argument
1483 setup for a function call. Why? Consider how we copy the stack slots
1484 reserved for parameters when they may be trashed by a call. */
1485 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1486
1487 /* Define if operations between registers always perform the operation
1488 on the full register even if a narrower mode is specified. */
1489 #define WORD_REGISTER_OPERATIONS
1490
1491 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1492 will either zero-extend or sign-extend. The value of this macro should
1493 be the code that says which one of the two operations is implicitly
1494 done, NIL if none. */
1495 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1496
1497 /* Nonzero if access to memory by bytes is slow and undesirable. */
1498 #define SLOW_BYTE_ACCESS 1
1499
1500 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1501 is done just by pretending it is already truncated. */
1502 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1503
1504 /* We assume that the store-condition-codes instructions store 0 for false
1505 and some other value for true. This is the value stored for true. */
1506
1507 #define STORE_FLAG_VALUE 1
1508
1509 /* When a prototype says `char' or `short', really pass an `int'. */
1510 #define PROMOTE_PROTOTYPES 1
1511 #define PROMOTE_FUNCTION_RETURN 1
1512
1513 /* Specify the machine mode that pointers have.
1514 After generation of rtl, the compiler makes no further distinction
1515 between pointers and any other objects of this machine mode. */
1516 #define Pmode word_mode
1517
1518 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1519 return the mode to be used for the comparison. For floating-point, CCFPmode
1520 should be used. CC_NOOVmode should be used when the first operand is a
1521 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1522 needed. */
1523 #define SELECT_CC_MODE(OP,X,Y) \
1524 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1525
1526 /* A function address in a call instruction
1527 is a byte address (for indexing purposes)
1528 so give the MEM rtx a byte's mode. */
1529 #define FUNCTION_MODE SImode
1530
1531 /* Define this if addresses of constant functions
1532 shouldn't be put through pseudo regs where they can be cse'd.
1533 Desirable on machines where ordinary constants are expensive
1534 but a CALL with constant address is cheap. */
1535 #define NO_FUNCTION_CSE
1536
1537 /* Define this to be nonzero if shift instructions ignore all but the low-order
1538 few bits. */
1539 #define SHIFT_COUNT_TRUNCATED 1
1540
1541 /* Compute the cost of computing a constant rtl expression RTX
1542 whose rtx-code is CODE. The body of this macro is a portion
1543 of a switch statement. If the code is computed here,
1544 return it with a return statement. Otherwise, break from the switch. */
1545
1546 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1547 case CONST_INT: \
1548 if (INTVAL (RTX) == 0) return 0; \
1549 if (INT_14_BITS (RTX)) return 1; \
1550 case HIGH: \
1551 return 2; \
1552 case CONST: \
1553 case LABEL_REF: \
1554 case SYMBOL_REF: \
1555 return 4; \
1556 case CONST_DOUBLE: \
1557 if ((RTX == CONST0_RTX (DFmode) || RTX == CONST0_RTX (SFmode)) \
1558 && OUTER_CODE != SET) \
1559 return 0; \
1560 else \
1561 return 8;
1562
1563 #define ADDRESS_COST(RTX) \
1564 (GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
1565
1566 /* Compute extra cost of moving data between one register class
1567 and another.
1568
1569 Make moves from SAR so expensive they should never happen. We used to
1570 have 0xffff here, but that generates overflow in rare cases.
1571
1572 Copies involving a FP register and a non-FP register are relatively
1573 expensive because they must go through memory.
1574
1575 Other copies are reasonably cheap. */
1576 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1577 (CLASS1 == SHIFT_REGS ? 0x100 \
1578 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1579 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1580 : 2)
1581
1582
1583 /* Provide the costs of a rtl expression. This is in the body of a
1584 switch on CODE. The purpose for the cost of MULT is to encourage
1585 `synth_mult' to find a synthetic multiply when reasonable. */
1586
1587 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1588 case MULT: \
1589 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1590 return COSTS_N_INSNS (3); \
1591 return (TARGET_PA_11 && ! TARGET_DISABLE_FPREGS && ! TARGET_SOFT_FLOAT) \
1592 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (20); \
1593 case DIV: \
1594 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1595 return COSTS_N_INSNS (14); \
1596 case UDIV: \
1597 case MOD: \
1598 case UMOD: \
1599 return COSTS_N_INSNS (60); \
1600 case PLUS: /* this includes shNadd insns */ \
1601 case MINUS: \
1602 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1603 return COSTS_N_INSNS (3); \
1604 return COSTS_N_INSNS (1); \
1605 case ASHIFT: \
1606 case ASHIFTRT: \
1607 case LSHIFTRT: \
1608 return COSTS_N_INSNS (1);
1609
1610 /* Adjust the cost of branches. */
1611 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1612
1613 /* Handling the special cases is going to get too complicated for a macro,
1614 just call `pa_adjust_insn_length' to do the real work. */
1615 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1616 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1617
1618 /* Millicode insns are actually function calls with some special
1619 constraints on arguments and register usage.
1620
1621 Millicode calls always expect their arguments in the integer argument
1622 registers, and always return their result in %r29 (ret1). They
1623 are expected to clobber their arguments, %r1, %r29, and the return
1624 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1625
1626 This macro tells reorg that the references to arguments and
1627 millicode calls do not appear to happen until after the millicode call.
1628 This allows reorg to put insns which set the argument registers into the
1629 delay slot of the millicode call -- thus they act more like traditional
1630 CALL_INSNs.
1631
1632 Note we can not consider side effects of the insn to be delayed because
1633 the branch and link insn will clobber the return pointer. If we happened
1634 to use the return pointer in the delay slot of the call, then we lose.
1635
1636 get_attr_type will try to recognize the given insn, so make sure to
1637 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1638 in particular. */
1639 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1640
1641 \f
1642 /* Control the assembler format that we output. */
1643
1644 /* Output to assembler file text saying following lines
1645 may contain character constants, extra white space, comments, etc. */
1646
1647 #define ASM_APP_ON ""
1648
1649 /* Output to assembler file text saying following lines
1650 no longer contain unusual constructs. */
1651
1652 #define ASM_APP_OFF ""
1653
1654 /* Output deferred plabels at the end of the file. */
1655
1656 #define ASM_FILE_END(FILE) output_deferred_plabels (FILE)
1657
1658 /* This is how to output the definition of a user-level label named NAME,
1659 such as the label on a static function or variable NAME. */
1660
1661 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1662 do { assemble_name (FILE, NAME); \
1663 fputc ('\n', FILE); } while (0)
1664
1665 /* This is how to output a reference to a user-level label named NAME.
1666 `assemble_name' uses this. */
1667
1668 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1669 fprintf ((FILE), "%s", (NAME) + (FUNCTION_NAME_P (NAME) ? 1 : 0))
1670
1671 /* This is how to output an internal numbered label where
1672 PREFIX is the class of label and NUM is the number within the class. */
1673
1674 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1675 {fprintf (FILE, "%c$%s%04d\n", (PREFIX)[0], (PREFIX) + 1, NUM);}
1676
1677 /* This is how to store into the string LABEL
1678 the symbol_ref name of an internal numbered label where
1679 PREFIX is the class of label and NUM is the number within the class.
1680 This is suitable for output with `assemble_name'. */
1681
1682 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1683 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1684
1685 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1686 do { \
1687 /* We only handle DATA objects here, functions are globalized in \
1688 ASM_DECLARE_FUNCTION_NAME. */ \
1689 if (! FUNCTION_NAME_P (NAME)) \
1690 { \
1691 fputs ("\t.EXPORT ", FILE); \
1692 assemble_name (FILE, NAME); \
1693 fputs (",DATA\n", FILE); \
1694 } \
1695 } while (0)
1696
1697 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1698 output_ascii ((FILE), (P), (SIZE))
1699
1700 /* This is how to output an element of a case-vector that is absolute.
1701 Note that this method makes filling these branch delay slots
1702 impossible. */
1703
1704 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1705 if (TARGET_BIG_SWITCH) \
1706 fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldil LR'L$%04d,%%r1\n\tbe RR'L$%04d(%%sr4,%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE, VALUE); \
1707 else \
1708 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1709
1710 /* Jump tables are executable code and live in the TEXT section on the PA. */
1711 #define JUMP_TABLES_IN_TEXT_SECTION 1
1712
1713 /* This is how to output an element of a case-vector that is relative.
1714 This must be defined correctly as it is used when generating PIC code.
1715
1716 I believe it safe to use the same definition as ASM_OUTPUT_ADDR_VEC_ELT
1717 on the PA since ASM_OUTPUT_ADDR_VEC_ELT uses pc-relative jump instructions
1718 rather than a table of absolute addresses. */
1719
1720 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1721 if (TARGET_BIG_SWITCH) \
1722 fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldw T'L$%04d(%%r19),%%r1\n\tbv %%r0(%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE); \
1723 else \
1724 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1725
1726 /* This is how to output an assembler line
1727 that says to advance the location counter
1728 to a multiple of 2**LOG bytes. */
1729
1730 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1731 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1732
1733 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1734 fprintf (FILE, "\t.blockz %d\n", (SIZE))
1735
1736 /* This says how to output an assembler line to define a global common symbol
1737 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1738
1739 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED) \
1740 { bss_section (); \
1741 assemble_name ((FILE), (NAME)); \
1742 fputs ("\t.comm ", (FILE)); \
1743 fprintf ((FILE), "%d\n", MAX ((SIZE), ((ALIGNED) / BITS_PER_UNIT)));}
1744
1745 /* This says how to output an assembler line to define a local common symbol
1746 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1747
1748 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1749 { bss_section (); \
1750 fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT)); \
1751 assemble_name ((FILE), (NAME)); \
1752 fprintf ((FILE), "\n\t.block %d\n", (SIZE));}
1753
1754 /* Store in OUTPUT a string (made with alloca) containing
1755 an assembler-name for a local static variable named NAME.
1756 LABELNO is an integer which is different for each call. */
1757
1758 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1759 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
1760 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1761
1762 /* All HP assemblers use "!" to separate logical lines. */
1763 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1764
1765 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1766 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1767
1768 /* Print operand X (an rtx) in assembler syntax to file FILE.
1769 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1770 For `%' followed by punctuation, CODE is the punctuation and X is null.
1771
1772 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1773 and an immediate zero should be represented as `r0'.
1774
1775 Several % codes are defined:
1776 O an operation
1777 C compare conditions
1778 N extract conditions
1779 M modifier to handle preincrement addressing for memory refs.
1780 F modifier to handle preincrement addressing for fp memory refs */
1781
1782 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1783
1784 \f
1785 /* Print a memory address as an operand to reference that memory location. */
1786
1787 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1788 { register rtx addr = ADDR; \
1789 register rtx base; \
1790 int offset; \
1791 switch (GET_CODE (addr)) \
1792 { \
1793 case REG: \
1794 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1795 break; \
1796 case PLUS: \
1797 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1798 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
1799 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1800 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
1801 else \
1802 abort (); \
1803 fprintf (FILE, "%d(%s)", offset, reg_names [REGNO (base)]); \
1804 break; \
1805 case LO_SUM: \
1806 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1807 fputs ("R'", FILE); \
1808 else if (flag_pic == 0) \
1809 fputs ("RR'", FILE); \
1810 else \
1811 fputs ("RT'", FILE); \
1812 output_global_address (FILE, XEXP (addr, 1), 0); \
1813 fputs ("(", FILE); \
1814 output_operand (XEXP (addr, 0), 0); \
1815 fputs (")", FILE); \
1816 break; \
1817 case CONST_INT: \
1818 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr)); \
1819 fprintf (FILE, "(%%r0)"); \
1820 break; \
1821 default: \
1822 output_addr_const (FILE, addr); \
1823 }}
1824
1825 \f
1826 /* Find the return address associated with the frame given by
1827 FRAMEADDR. */
1828 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1829 (return_addr_rtx (COUNT, FRAMEADDR))
1830
1831 /* Used to mask out junk bits from the return address, such as
1832 processor state, interrupt status, condition codes and the like. */
1833 #define MASK_RETURN_ADDR \
1834 /* The privilege level is in the two low order bits, mask em out \
1835 of the return address. */ \
1836 (GEN_INT (-4))
1837
1838 /* The number of Pmode words for the setjmp buffer. */
1839 #define JMP_BUF_SIZE 50
1840
1841 /* Only direct calls to static functions are allowed to be sibling (tail)
1842 call optimized.
1843
1844 This restriction is necessary because some linker generated stubs will
1845 store return pointers into rp' in some cases which might clobber a
1846 live value already in rp'.
1847
1848 In a sibcall the current function and the target function share stack
1849 space. Thus if the path to the current function and the path to the
1850 target function save a value in rp', they save the value into the
1851 same stack slot, which has undesirable consequences.
1852
1853 Because of the deferred binding nature of shared libraries any function
1854 with external scope could be in a different load module and thus require
1855 rp' to be saved when calling that function. So sibcall optimizations
1856 can only be safe for static function.
1857
1858 Note that GCC never needs return value relocations, so we don't have to
1859 worry about static calls with return value relocations (which require
1860 saving rp').
1861
1862 It is safe to perform a sibcall optimization when the target function
1863 will never return. */
1864 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1865 (DECL \
1866 && ! TARGET_PORTABLE_RUNTIME \
1867 && ! TARGET_64BIT \
1868 && ! TREE_PUBLIC (DECL))
1869
1870 #define PREDICATE_CODES \
1871 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
1872 {"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT, \
1873 CONST_DOUBLE, CONST, HIGH, CONSTANT_P_RTX}}, \
1874 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
1875 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1876 {"reg_before_reload_operand", {REG, MEM}}, \
1877 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1878 {"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, MEM, CONST_INT, \
1879 CONST_DOUBLE}}, \
1880 {"move_operand", {SUBREG, REG, CONSTANT_P_RTX, CONST_INT, MEM}}, \
1881 {"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}}, \
1882 {"pic_label_operand", {LABEL_REF, CONST}}, \
1883 {"fp_reg_operand", {REG}}, \
1884 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1885 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
1886 {"pre_cint_operand", {CONST_INT}}, \
1887 {"post_cint_operand", {CONST_INT}}, \
1888 {"arith_double_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1889 {"ireg_or_int5_operand", {CONST_INT, REG}}, \
1890 {"int5_operand", {CONST_INT}}, \
1891 {"uint5_operand", {CONST_INT}}, \
1892 {"int11_operand", {CONST_INT}}, \
1893 {"uint32_operand", {CONST_INT, \
1894 HOST_BITS_PER_WIDE_INT > 32 ? 0 : CONST_DOUBLE}}, \
1895 {"arith5_operand", {SUBREG, REG, CONST_INT}}, \
1896 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1897 {"ior_operand", {CONST_INT}}, \
1898 {"lhs_lshift_cint_operand", {CONST_INT}}, \
1899 {"lhs_lshift_operand", {SUBREG, REG, CONST_INT}}, \
1900 {"arith32_operand", {SUBREG, REG, CONST_INT}}, \
1901 {"pc_or_label_operand", {PC, LABEL_REF}}, \
1902 {"plus_xor_ior_operator", {PLUS, XOR, IOR}}, \
1903 {"shadd_operand", {CONST_INT}}, \
1904 {"basereg_operand", {REG}}, \
1905 {"div_operand", {REG, CONST_INT}}, \
1906 {"ireg_operand", {REG}}, \
1907 {"cmpib_comparison_operator", {EQ, NE, LT, LE, LEU, \
1908 GT, GTU, GE}}, \
1909 {"movb_comparison_operator", {EQ, NE, LT, GE}},