pa-protos.h (function_arg): Delete.
[gcc.git] / gcc / config / pa / pa.h
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
6 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
7 Software Science at the University of Utah.
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 /* For long call handling. */
26 extern unsigned long total_code_bytes;
27
28 /* Which processor to schedule for. */
29
30 enum processor_type
31 {
32 PROCESSOR_700,
33 PROCESSOR_7100,
34 PROCESSOR_7100LC,
35 PROCESSOR_7200,
36 PROCESSOR_7300,
37 PROCESSOR_8000
38 };
39
40 /* For -mschedule= option. */
41 extern enum processor_type pa_cpu;
42
43 /* For -munix= option. */
44 extern int flag_pa_unix;
45
46 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
47
48 /* Print subsidiary information on the compiler version in use. */
49
50 #define TARGET_VERSION fputs (" (hppa)", stderr);
51
52 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
53
54 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
55 #ifndef TARGET_64BIT
56 #define TARGET_64BIT 0
57 #endif
58
59 /* Generate code for ELF32 ABI. */
60 #ifndef TARGET_ELF32
61 #define TARGET_ELF32 0
62 #endif
63
64 /* Generate code for SOM 32bit ABI. */
65 #ifndef TARGET_SOM
66 #define TARGET_SOM 0
67 #endif
68
69 /* HP-UX UNIX features. */
70 #ifndef TARGET_HPUX
71 #define TARGET_HPUX 0
72 #endif
73
74 /* HP-UX 10.10 UNIX 95 features. */
75 #ifndef TARGET_HPUX_10_10
76 #define TARGET_HPUX_10_10 0
77 #endif
78
79 /* HP-UX 11.* features (11.00, 11.11, 11.23, etc.) */
80 #ifndef TARGET_HPUX_11
81 #define TARGET_HPUX_11 0
82 #endif
83
84 /* HP-UX 11i multibyte and UNIX 98 extensions. */
85 #ifndef TARGET_HPUX_11_11
86 #define TARGET_HPUX_11_11 0
87 #endif
88
89 /* The following three defines are potential target switches. The current
90 defines are optimal given the current capabilities of GAS and GNU ld. */
91
92 /* Define to a C expression evaluating to true to use long absolute calls.
93 Currently, only the HP assembler and SOM linker support long absolute
94 calls. They are used only in non-pic code. */
95 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
96
97 /* Define to a C expression evaluating to true to use long PIC symbol
98 difference calls. Long PIC symbol difference calls are only used with
99 the HP assembler and linker. The HP assembler detects this instruction
100 sequence and treats it as long pc-relative call. Currently, GAS only
101 allows a difference of two symbols in the same subspace, and it doesn't
102 detect the sequence as a pc-relative call. */
103 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS && TARGET_HPUX)
104
105 /* Define to a C expression evaluating to true to use long PIC
106 pc-relative calls. Long PIC pc-relative calls are only used with
107 GAS. Currently, they are usable for calls which bind local to a
108 module but not for external calls. */
109 #define TARGET_LONG_PIC_PCREL_CALL 0
110
111 /* Define to a C expression evaluating to true to use SOM secondary
112 definition symbols for weak support. Linker support for secondary
113 definition symbols is buggy prior to HP-UX 11.X. */
114 #define TARGET_SOM_SDEF 0
115
116 /* Define to a C expression evaluating to true to save the entry value
117 of SP in the current frame marker. This is normally unnecessary.
118 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
119 HP compilers don't use this flag but it is supported by the assembler.
120 We set this flag to indicate that register %r3 has been saved at the
121 start of the frame. Thus, when the HP unwind library is used, we
122 need to generate additional code to save SP into the frame marker. */
123 #define TARGET_HPUX_UNWIND_LIBRARY 0
124
125 #ifndef TARGET_DEFAULT
126 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
127 #endif
128
129 #ifndef TARGET_CPU_DEFAULT
130 #define TARGET_CPU_DEFAULT 0
131 #endif
132
133 #ifndef TARGET_SCHED_DEFAULT
134 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
135 #endif
136
137 /* Support for a compile-time default CPU, et cetera. The rules are:
138 --with-schedule is ignored if -mschedule is specified.
139 --with-arch is ignored if -march is specified. */
140 #define OPTION_DEFAULT_SPECS \
141 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
142 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
143
144 /* Specify the dialect of assembler to use. New mnemonics is dialect one
145 and the old mnemonics are dialect zero. */
146 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
147
148 /* Override some settings from dbxelf.h. */
149
150 /* We do not have to be compatible with dbx, so we enable gdb extensions
151 by default. */
152 #define DEFAULT_GDB_EXTENSIONS 1
153
154 /* This used to be zero (no max length), but big enums and such can
155 cause huge strings which killed gas.
156
157 We also have to avoid lossage in dbxout.c -- it does not compute the
158 string size accurately, so we are real conservative here. */
159 #undef DBX_CONTIN_LENGTH
160 #define DBX_CONTIN_LENGTH 3000
161
162 /* GDB always assumes the current function's frame begins at the value
163 of the stack pointer upon entry to the current function. Accessing
164 local variables and parameters passed on the stack is done using the
165 base of the frame + an offset provided by GCC.
166
167 For functions which have frame pointers this method works fine;
168 the (frame pointer) == (stack pointer at function entry) and GCC provides
169 an offset relative to the frame pointer.
170
171 This loses for functions without a frame pointer; GCC provides an offset
172 which is relative to the stack pointer after adjusting for the function's
173 frame size. GDB would prefer the offset to be relative to the value of
174 the stack pointer at the function's entry. Yuk! */
175 #define DEBUGGER_AUTO_OFFSET(X) \
176 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
177 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
178
179 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
180 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
181 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
182
183 #define TARGET_CPU_CPP_BUILTINS() \
184 do { \
185 builtin_assert("cpu=hppa"); \
186 builtin_assert("machine=hppa"); \
187 builtin_define("__hppa"); \
188 builtin_define("__hppa__"); \
189 if (TARGET_PA_20) \
190 builtin_define("_PA_RISC2_0"); \
191 else if (TARGET_PA_11) \
192 builtin_define("_PA_RISC1_1"); \
193 else \
194 builtin_define("_PA_RISC1_0"); \
195 } while (0)
196
197 /* An old set of OS defines for various BSD-like systems. */
198 #define TARGET_OS_CPP_BUILTINS() \
199 do \
200 { \
201 builtin_define_std ("REVARGV"); \
202 builtin_define_std ("hp800"); \
203 builtin_define_std ("hp9000"); \
204 builtin_define_std ("hp9k8"); \
205 if (!c_dialect_cxx () && !flag_iso) \
206 builtin_define ("hppa"); \
207 builtin_define_std ("spectrum"); \
208 builtin_define_std ("unix"); \
209 builtin_assert ("system=bsd"); \
210 builtin_assert ("system=unix"); \
211 } \
212 while (0)
213
214 #define CC1_SPEC "%{pg:} %{p:}"
215
216 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
217
218 /* We don't want -lg. */
219 #ifndef LIB_SPEC
220 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
221 #endif
222
223 /* Make gcc agree with <machine/ansi.h> */
224
225 #define SIZE_TYPE "unsigned int"
226 #define PTRDIFF_TYPE "int"
227 #define WCHAR_TYPE "unsigned int"
228 #define WCHAR_TYPE_SIZE 32
229
230 /* Show we can debug even without a frame pointer. */
231 #define CAN_DEBUG_WITHOUT_FP
232 \f
233 /* target machine storage layout */
234 typedef struct GTY(()) machine_function
235 {
236 /* Flag indicating that a .NSUBSPA directive has been output for
237 this function. */
238 int in_nsubspa;
239 } machine_function;
240
241 /* Define this macro if it is advisable to hold scalars in registers
242 in a wider mode than that declared by the program. In such cases,
243 the value is constrained to be within the bounds of the declared
244 type, but kept valid in the wider mode. The signedness of the
245 extension may differ from that of the type. */
246
247 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
248 if (GET_MODE_CLASS (MODE) == MODE_INT \
249 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
250 (MODE) = word_mode;
251
252 /* Define this if most significant bit is lowest numbered
253 in instructions that operate on numbered bit-fields. */
254 #define BITS_BIG_ENDIAN 1
255
256 /* Define this if most significant byte of a word is the lowest numbered. */
257 /* That is true on the HP-PA. */
258 #define BYTES_BIG_ENDIAN 1
259
260 /* Define this if most significant word of a multiword number is lowest
261 numbered. */
262 #define WORDS_BIG_ENDIAN 1
263
264 #define MAX_BITS_PER_WORD 64
265
266 /* Width of a word, in units (bytes). */
267 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
268
269 /* Minimum number of units in a word. If this is undefined, the default
270 is UNITS_PER_WORD. Otherwise, it is the constant value that is the
271 smallest value that UNITS_PER_WORD can have at run-time.
272
273 FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
274 building of various TImode routines in libgcc. The HP runtime
275 specification doesn't provide the alignment requirements and calling
276 conventions for TImode variables. */
277 #define MIN_UNITS_PER_WORD 4
278
279 /* The widest floating point format supported by the hardware. Note that
280 setting this influences some Ada floating point type sizes, currently
281 required for GNAT to operate properly. */
282 #define WIDEST_HARDWARE_FP_SIZE 64
283
284 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
285 #define PARM_BOUNDARY BITS_PER_WORD
286
287 /* Largest alignment required for any stack parameter, in bits.
288 Don't define this if it is equal to PARM_BOUNDARY */
289 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
290
291 /* Boundary (in *bits*) on which stack pointer is always aligned;
292 certain optimizations in combine depend on this.
293
294 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
295 the stack on the 32 and 64-bit ports, respectively. However, we
296 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
297 in main. Thus, we treat the former as the preferred alignment. */
298 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
299 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
300
301 /* Allocation boundary (in *bits*) for the code of a function. */
302 #define FUNCTION_BOUNDARY BITS_PER_WORD
303
304 /* Alignment of field after `int : 0' in a structure. */
305 #define EMPTY_FIELD_BOUNDARY 32
306
307 /* Every structure's size must be a multiple of this. */
308 #define STRUCTURE_SIZE_BOUNDARY 8
309
310 /* A bit-field declared as `int' forces `int' alignment for the struct. */
311 #define PCC_BITFIELD_TYPE_MATTERS 1
312
313 /* No data type wants to be aligned rounder than this. */
314 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
315
316 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
317 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
318 (TREE_CODE (EXP) == STRING_CST \
319 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
320
321 /* Make arrays of chars word-aligned for the same reasons. */
322 #define DATA_ALIGNMENT(TYPE, ALIGN) \
323 (TREE_CODE (TYPE) == ARRAY_TYPE \
324 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
325 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
326
327 /* Set this nonzero if move instructions will actually fail to work
328 when given unaligned data. */
329 #define STRICT_ALIGNMENT 1
330
331 /* Value is 1 if it is a good idea to tie two pseudo registers
332 when one has mode MODE1 and one has mode MODE2.
333 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
334 for any hard reg, then this must be 0 for correct output. */
335 #define MODES_TIEABLE_P(MODE1, MODE2) \
336 pa_modes_tieable_p (MODE1, MODE2)
337
338 /* Specify the registers used for certain standard purposes.
339 The values of these macros are register numbers. */
340
341 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
342 /* #define PC_REGNUM */
343
344 /* Register to use for pushing function arguments. */
345 #define STACK_POINTER_REGNUM 30
346
347 /* Fixed register for local variable access. Always eliminated. */
348 #define FRAME_POINTER_REGNUM (TARGET_64BIT ? 61 : 89)
349
350 /* Base register for access to local variables of the function. */
351 #define HARD_FRAME_POINTER_REGNUM 3
352
353 /* Don't allow hard registers to be renamed into r2 unless r2
354 is already live or already being saved (due to eh). */
355
356 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
357 ((NEW_REG) != 2 || df_regs_ever_live_p (2) || crtl->calls_eh_return)
358
359 /* Base register for access to arguments of the function. */
360 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
361
362 /* Register in which static-chain is passed to a function. */
363 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
364
365 /* Register used to address the offset table for position-independent
366 data references. */
367 #define PIC_OFFSET_TABLE_REGNUM \
368 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
369
370 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
371
372 /* Function to return the rtx used to save the pic offset table register
373 across function calls. */
374 extern struct rtx_def *hppa_pic_save_rtx (void);
375
376 #define DEFAULT_PCC_STRUCT_RETURN 0
377
378 /* Register in which address to store a structure value
379 is passed to a function. */
380 #define PA_STRUCT_VALUE_REGNUM 28
381
382 /* Definitions for register eliminations.
383
384 We have two registers that can be eliminated. First, the frame pointer
385 register can often be eliminated in favor of the stack pointer register.
386 Secondly, the argument pointer register can always be eliminated in the
387 32-bit runtimes. */
388
389 /* This is an array of structures. Each structure initializes one pair
390 of eliminable registers. The "from" register number is given first,
391 followed by "to". Eliminations of the same "from" register are listed
392 in order of preference.
393
394 The argument pointer cannot be eliminated in the 64-bit runtime. It
395 is the same register as the hard frame pointer in the 32-bit runtime.
396 So, it does not need to be listed. */
397 #define ELIMINABLE_REGS \
398 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
399 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
400 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
401
402 /* Define the offset between two registers, one to be eliminated,
403 and the other its replacement, at the start of a routine. */
404 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
405 ((OFFSET) = pa_initial_elimination_offset(FROM, TO))
406
407 /* Describe how we implement __builtin_eh_return. */
408 #define EH_RETURN_DATA_REGNO(N) \
409 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
410 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
411 #define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
412
413 /* Offset from the frame pointer register value to the top of stack. */
414 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
415
416 /* The maximum number of hard registers that can be saved in the call
417 frame. The soft frame pointer is not included. */
418 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
419
420 /* A C expression whose value is RTL representing the location of the
421 incoming return address at the beginning of any function, before the
422 prologue. You only need to define this macro if you want to support
423 call frame debugging information like that provided by DWARF 2. */
424 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
425 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
426
427 /* A C expression whose value is an integer giving a DWARF 2 column
428 number that may be used as an alternate return column. This should
429 be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
430 register, but an alternate column needs to be used for signal frames.
431
432 Column 0 is not used but unfortunately its register size is set to
433 4 bytes (sizeof CCmode) so it can't be used on 64-bit targets. */
434 #define DWARF_ALT_FRAME_RETURN_COLUMN (FIRST_PSEUDO_REGISTER - 1)
435
436 /* This macro chooses the encoding of pointers embedded in the exception
437 handling sections. If at all possible, this should be defined such
438 that the exception handling section will not require dynamic relocations,
439 and so may be read-only.
440
441 Because the HP assembler auto aligns, it is necessary to use
442 DW_EH_PE_aligned. It's not possible to make the data read-only
443 on the HP-UX SOM port since the linker requires fixups for label
444 differences in different sections to be word aligned. However,
445 the SOM linker can do unaligned fixups for absolute pointers.
446 We also need aligned pointers for global and function pointers.
447
448 Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
449 fixups, the runtime doesn't have a consistent relationship between
450 text and data for dynamically loaded objects. Thus, it's not possible
451 to use pc-relative encoding for pointers on this target. It may be
452 possible to use segment relative encodings but GAS doesn't currently
453 have a mechanism to generate these encodings. For other targets, we
454 use pc-relative encoding for pointers. If the pointer might require
455 dynamic relocation, we make it indirect. */
456 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
457 (TARGET_GAS && !TARGET_HPUX \
458 ? (DW_EH_PE_pcrel \
459 | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0) \
460 | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)) \
461 : (!TARGET_GAS || (GLOBAL) || (CODE) == 2 \
462 ? DW_EH_PE_aligned : DW_EH_PE_absptr))
463
464 /* Handle special EH pointer encodings. Absolute, pc-relative, and
465 indirect are handled automatically. We output pc-relative, and
466 indirect pc-relative ourself since we need some special magic to
467 generate pc-relative relocations, and to handle indirect function
468 pointers. */
469 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
470 do { \
471 if (((ENCODING) & 0x70) == DW_EH_PE_pcrel) \
472 { \
473 fputs (integer_asm_op (SIZE, FALSE), FILE); \
474 if ((ENCODING) & DW_EH_PE_indirect) \
475 output_addr_const (FILE, get_deferred_plabel (ADDR)); \
476 else \
477 assemble_name (FILE, XSTR ((ADDR), 0)); \
478 fputs ("+8-$PIC_pcrel$0", FILE); \
479 goto DONE; \
480 } \
481 } while (0)
482 \f
483
484 /* The class value for index registers, and the one for base regs. */
485 #define INDEX_REG_CLASS GENERAL_REGS
486 #define BASE_REG_CLASS GENERAL_REGS
487
488 #define FP_REG_CLASS_P(CLASS) \
489 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
490
491 /* True if register is floating-point. */
492 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
493
494 /* Given an rtx X being reloaded into a reg required to be
495 in class CLASS, return the class of reg to actually use.
496 In general this is just CLASS; but on some machines
497 in some cases it is preferable to use a more restrictive class. */
498 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
499
500 #define MAYBE_FP_REG_CLASS_P(CLASS) \
501 reg_classes_intersect_p ((CLASS), FP_REGS)
502
503 \f
504 /* Stack layout; function entry, exit and calling. */
505
506 /* Define this if pushing a word on the stack
507 makes the stack pointer a smaller address. */
508 /* #define STACK_GROWS_DOWNWARD */
509
510 /* Believe it or not. */
511 #define ARGS_GROW_DOWNWARD
512
513 /* Define this to nonzero if the nominal address of the stack frame
514 is at the high-address end of the local variables;
515 that is, each additional local variable allocated
516 goes at a more negative offset in the frame. */
517 #define FRAME_GROWS_DOWNWARD 0
518
519 /* Offset within stack frame to start allocating local variables at.
520 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
521 first local allocated. Otherwise, it is the offset to the BEGINNING
522 of the first local allocated.
523
524 On the 32-bit ports, we reserve one slot for the previous frame
525 pointer and one fill slot. The fill slot is for compatibility
526 with HP compiled programs. On the 64-bit ports, we reserve one
527 slot for the previous frame pointer. */
528 #define STARTING_FRAME_OFFSET 8
529
530 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
531 of the stack. The default is to align it to STACK_BOUNDARY. */
532 #define STACK_ALIGNMENT_NEEDED 0
533
534 /* If we generate an insn to push BYTES bytes,
535 this says how many the stack pointer really advances by.
536 On the HP-PA, don't define this because there are no push insns. */
537 /* #define PUSH_ROUNDING(BYTES) */
538
539 /* Offset of first parameter from the argument pointer register value.
540 This value will be negated because the arguments grow down.
541 Also note that on STACK_GROWS_UPWARD machines (such as this one)
542 this is the distance from the frame pointer to the end of the first
543 argument, not it's beginning. To get the real offset of the first
544 argument, the size of the argument must be added. */
545
546 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
547
548 /* When a parameter is passed in a register, stack space is still
549 allocated for it. */
550 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
551
552 /* Define this if the above stack space is to be considered part of the
553 space allocated by the caller. */
554 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
555
556 /* Keep the stack pointer constant throughout the function.
557 This is both an optimization and a necessity: longjmp
558 doesn't behave itself when the stack pointer moves within
559 the function! */
560 #define ACCUMULATE_OUTGOING_ARGS 1
561
562 /* The weird HPPA calling conventions require a minimum of 48 bytes on
563 the stack: 16 bytes for register saves, and 32 bytes for magic.
564 This is the difference between the logical top of stack and the
565 actual sp.
566
567 On the 64-bit port, the HP C compiler allocates a 48-byte frame
568 marker, although the runtime documentation only describes a 16
569 byte marker. For compatibility, we allocate 48 bytes. */
570 #define STACK_POINTER_OFFSET \
571 (TARGET_64BIT ? -(crtl->outgoing_args_size + 48): -32)
572
573 #define STACK_DYNAMIC_OFFSET(FNDECL) \
574 (TARGET_64BIT \
575 ? (STACK_POINTER_OFFSET) \
576 : ((STACK_POINTER_OFFSET) - crtl->outgoing_args_size))
577
578 \f
579 /* Define a data type for recording info about an argument list
580 during the scan of that argument list. This data type should
581 hold all necessary information about the function itself
582 and about the args processed so far, enough to enable macros
583 such as FUNCTION_ARG to determine where the next arg should go.
584
585 On the HP-PA, the WORDS field holds the number of words
586 of arguments scanned so far (including the invisible argument,
587 if any, which holds the structure-value-address). Thus, 4 or
588 more means all following args should go on the stack.
589
590 The INCOMING field tracks whether this is an "incoming" or
591 "outgoing" argument.
592
593 The INDIRECT field indicates whether this is is an indirect
594 call or not.
595
596 The NARGS_PROTOTYPE field indicates that an argument does not
597 have a prototype when it less than or equal to 0. */
598
599 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
600
601 #define CUMULATIVE_ARGS struct hppa_args
602
603 /* Initialize a variable CUM of type CUMULATIVE_ARGS
604 for a call to a function whose data type is FNTYPE.
605 For a library call, FNTYPE is 0. */
606
607 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
608 (CUM).words = 0, \
609 (CUM).incoming = 0, \
610 (CUM).indirect = (FNTYPE) && !(FNDECL), \
611 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
612 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
613 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
614 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
615 : 0)
616
617
618
619 /* Similar, but when scanning the definition of a procedure. We always
620 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
621
622 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
623 (CUM).words = 0, \
624 (CUM).incoming = 1, \
625 (CUM).indirect = 0, \
626 (CUM).nargs_prototype = 1000
627
628 /* Figure out the size in words of the function argument. The size
629 returned by this macro should always be greater than zero because
630 we pass variable and zero sized objects by reference. */
631
632 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
633 ((((MODE) != BLKmode \
634 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
635 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
636
637 /* Determine where to put an argument to a function.
638 Value is zero to push the argument on the stack,
639 or a hard register in which to store the argument.
640
641 MODE is the argument's machine mode.
642 TYPE is the data type of the argument (as a tree).
643 This is null for libcalls where that information may
644 not be available.
645 CUM is a variable of type CUMULATIVE_ARGS which gives info about
646 the preceding args and about the function being called.
647 NAMED is nonzero if this argument is a named parameter
648 (otherwise it is an extra parameter matching an ellipsis).
649
650 On the HP-PA the first four words of args are normally in registers
651 and the rest are pushed. But any arg that won't entirely fit in regs
652 is pushed.
653
654 Arguments passed in registers are either 1 or 2 words long.
655
656 The caller must make a distinction between calls to explicitly named
657 functions and calls through pointers to functions -- the conventions
658 are different! Calls through pointers to functions only use general
659 registers for the first four argument words.
660
661 Of course all this is different for the portable runtime model
662 HP wants everyone to use for ELF. Ugh. Here's a quick description
663 of how it's supposed to work.
664
665 1) callee side remains unchanged. It expects integer args to be
666 in the integer registers, float args in the float registers and
667 unnamed args in integer registers.
668
669 2) caller side now depends on if the function being called has
670 a prototype in scope (rather than if it's being called indirectly).
671
672 2a) If there is a prototype in scope, then arguments are passed
673 according to their type (ints in integer registers, floats in float
674 registers, unnamed args in integer registers.
675
676 2b) If there is no prototype in scope, then floating point arguments
677 are passed in both integer and float registers. egad.
678
679 FYI: The portable parameter passing conventions are almost exactly like
680 the standard parameter passing conventions on the RS6000. That's why
681 you'll see lots of similar code in rs6000.h. */
682
683 /* If defined, a C expression which determines whether, and in which
684 direction, to pad out an argument with extra space. */
685 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
686
687 /* Specify padding for the last element of a block move between registers
688 and memory.
689
690 The 64-bit runtime specifies that objects need to be left justified
691 (i.e., the normal justification for a big endian target). The 32-bit
692 runtime specifies right justification for objects smaller than 64 bits.
693 We use a DImode register in the parallel for 5 to 7 byte structures
694 so that there is only one element. This allows the object to be
695 correctly padded. */
696 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
697 function_arg_padding ((MODE), (TYPE))
698
699 /* If defined, a C expression that gives the alignment boundary, in
700 bits, of an argument with the specified mode and type. If it is
701 not defined, `PARM_BOUNDARY' is used for all arguments. */
702
703 /* Arguments larger than one word are double word aligned. */
704
705 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
706 (((TYPE) \
707 ? (integer_zerop (TYPE_SIZE (TYPE)) \
708 || !TREE_CONSTANT (TYPE_SIZE (TYPE)) \
709 || int_size_in_bytes (TYPE) <= UNITS_PER_WORD) \
710 : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD) \
711 ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
712
713 \f
714 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
715 as assembly via FUNCTION_PROFILER. Just output a local label.
716 We can't use the function label because the GAS SOM target can't
717 handle the difference of a global symbol and a local symbol. */
718
719 #ifndef FUNC_BEGIN_PROLOG_LABEL
720 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
721 #endif
722
723 #define FUNCTION_PROFILER(FILE, LABEL) \
724 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
725
726 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
727 void hppa_profile_hook (int label_no);
728
729 /* The profile counter if emitted must come before the prologue. */
730 #define PROFILE_BEFORE_PROLOGUE 1
731
732 /* We never want final.c to emit profile counters. When profile
733 counters are required, we have to defer emitting them to the end
734 of the current file. */
735 #define NO_PROFILE_COUNTERS 1
736
737 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
738 the stack pointer does not matter. The value is tested only in
739 functions that have frame pointers.
740 No definition is equivalent to always zero. */
741
742 extern int may_call_alloca;
743
744 #define EXIT_IGNORE_STACK \
745 (get_frame_size () != 0 \
746 || cfun->calls_alloca || crtl->outgoing_args_size)
747
748 /* Length in units of the trampoline for entering a nested function. */
749
750 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
751
752 /* Alignment required by the trampoline. */
753
754 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
755
756 /* Minimum length of a cache line. A length of 16 will work on all
757 PA-RISC processors. All PA 1.1 processors have a cache line of
758 32 bytes. Most but not all PA 2.0 processors have a cache line
759 of 64 bytes. As cache flushes are expensive and we don't support
760 PA 1.0, we use a minimum length of 32. */
761
762 #define MIN_CACHELINE_SIZE 32
763
764 \f
765 /* Addressing modes, and classification of registers for them.
766
767 Using autoincrement addressing modes on PA8000 class machines is
768 not profitable. */
769
770 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
771 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
772
773 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
774 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
775
776 /* Macros to check register numbers against specific register classes. */
777
778 /* The following macros assume that X is a hard or pseudo reg number.
779 They give nonzero only if X is a hard reg of the suitable class
780 or a pseudo reg currently allocated to a suitable hard reg.
781 Since they use reg_renumber, they are safe only once reg_renumber
782 has been allocated, which happens in local-alloc.c. */
783
784 #define REGNO_OK_FOR_INDEX_P(X) \
785 ((X) && ((X) < 32 \
786 || ((X) == FRAME_POINTER_REGNUM) \
787 || ((X) >= FIRST_PSEUDO_REGISTER \
788 && reg_renumber \
789 && (unsigned) reg_renumber[X] < 32)))
790 #define REGNO_OK_FOR_BASE_P(X) \
791 ((X) && ((X) < 32 \
792 || ((X) == FRAME_POINTER_REGNUM) \
793 || ((X) >= FIRST_PSEUDO_REGISTER \
794 && reg_renumber \
795 && (unsigned) reg_renumber[X] < 32)))
796 #define REGNO_OK_FOR_FP_P(X) \
797 (FP_REGNO_P (X) \
798 || (X >= FIRST_PSEUDO_REGISTER \
799 && reg_renumber \
800 && FP_REGNO_P (reg_renumber[X])))
801
802 /* Now macros that check whether X is a register and also,
803 strictly, whether it is in a specified class.
804
805 These macros are specific to the HP-PA, and may be used only
806 in code for printing assembler insns and in conditions for
807 define_optimization. */
808
809 /* 1 if X is an fp register. */
810
811 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
812 \f
813 /* Maximum number of registers that can appear in a valid memory address. */
814
815 #define MAX_REGS_PER_ADDRESS 2
816
817 /* Non-TLS symbolic references. */
818 #define PA_SYMBOL_REF_TLS_P(RTX) \
819 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
820
821 /* Recognize any constant value that is a valid address except
822 for symbolic addresses. We get better CSE by rejecting them
823 here and allowing hppa_legitimize_address to break them up. We
824 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
825
826 #define CONSTANT_ADDRESS_P(X) \
827 ((GET_CODE (X) == LABEL_REF \
828 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X)) \
829 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
830 || GET_CODE (X) == HIGH) \
831 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
832
833 /* A C expression that is nonzero if we are using the new HP assembler. */
834
835 #ifndef NEW_HP_ASSEMBLER
836 #define NEW_HP_ASSEMBLER 0
837 #endif
838
839 /* The macros below define the immediate range for CONST_INTS on
840 the 64-bit port. Constants in this range can be loaded in three
841 instructions using a ldil/ldo/depdi sequence. Constants outside
842 this range are forced to the constant pool prior to reload. */
843
844 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
845 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
846 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
847 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
848
849 /* A C expression that is nonzero if X is a legitimate constant for an
850 immediate operand.
851
852 We include all constant integers and constant doubles, but not
853 floating-point, except for floating-point zero. We reject LABEL_REFs
854 if we're not using gas or the new HP assembler.
855
856 In 64-bit mode, we reject CONST_DOUBLES. We also reject CONST_INTS
857 that need more than three instructions to load prior to reload. This
858 limit is somewhat arbitrary. It takes three instructions to load a
859 CONST_INT from memory but two are memory accesses. It may be better
860 to increase the allowed range for CONST_INTS. We may also be able
861 to handle CONST_DOUBLES. */
862
863 #define LEGITIMATE_CONSTANT_P(X) \
864 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
865 || (X) == CONST0_RTX (GET_MODE (X))) \
866 && (NEW_HP_ASSEMBLER \
867 || TARGET_GAS \
868 || GET_CODE (X) != LABEL_REF) \
869 && (!TARGET_64BIT \
870 || GET_CODE (X) != CONST_DOUBLE) \
871 && (!TARGET_64BIT \
872 || HOST_BITS_PER_WIDE_INT <= 32 \
873 || GET_CODE (X) != CONST_INT \
874 || reload_in_progress \
875 || reload_completed \
876 || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X)) \
877 || cint_ok_for_move (INTVAL (X))) \
878 && !function_label_operand (X, VOIDmode))
879
880 /* Target flags set on a symbol_ref. */
881
882 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output. */
883 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
884 #define SYMBOL_REF_REFERENCED_P(RTX) \
885 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
886
887 /* Defines for constraints.md. */
888
889 /* Return 1 iff OP is a scaled or unscaled index address. */
890 #define IS_INDEX_ADDR_P(OP) \
891 (GET_CODE (OP) == PLUS \
892 && GET_MODE (OP) == Pmode \
893 && (GET_CODE (XEXP (OP, 0)) == MULT \
894 || GET_CODE (XEXP (OP, 1)) == MULT \
895 || (REG_P (XEXP (OP, 0)) \
896 && REG_P (XEXP (OP, 1)))))
897
898 /* Return 1 iff OP is a LO_SUM DLT address. */
899 #define IS_LO_SUM_DLT_ADDR_P(OP) \
900 (GET_CODE (OP) == LO_SUM \
901 && GET_MODE (OP) == Pmode \
902 && REG_P (XEXP (OP, 0)) \
903 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
904 && GET_CODE (XEXP (OP, 1)) == UNSPEC)
905
906 /* Nonzero if 14-bit offsets can be used for all loads and stores.
907 This is not possible when generating PA 1.x code as floating point
908 loads and stores only support 5-bit offsets. Note that we do not
909 forbid the use of 14-bit offsets in GO_IF_LEGITIMATE_ADDRESS.
910 Instead, we use pa_secondary_reload() to reload integer mode
911 REG+D memory addresses used in floating point loads and stores.
912
913 FIXME: the ELF32 linker clobbers the LSB of the FP register number
914 in PA 2.0 floating-point insns with long displacements. This is
915 because R_PARISC_DPREL14WR and other relocations like it are not
916 yet supported by GNU ld. For now, we reject long displacements
917 on this target. */
918
919 #define INT14_OK_STRICT \
920 (TARGET_SOFT_FLOAT \
921 || TARGET_DISABLE_FPREGS \
922 || (TARGET_PA_20 && !TARGET_ELF32))
923
924 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
925 and check its validity for a certain class.
926 We have two alternate definitions for each of them.
927 The usual definition accepts all pseudo regs; the other rejects
928 them unless they have been allocated suitable hard regs.
929 The symbol REG_OK_STRICT causes the latter definition to be used.
930
931 Most source files want to accept pseudo regs in the hope that
932 they will get allocated to the class that the insn wants them to be in.
933 Source files for reload pass need to be strict.
934 After reload, it makes no difference, since pseudo regs have
935 been eliminated by then. */
936
937 #ifndef REG_OK_STRICT
938
939 /* Nonzero if X is a hard reg that can be used as an index
940 or if it is a pseudo reg. */
941 #define REG_OK_FOR_INDEX_P(X) \
942 (REGNO (X) && (REGNO (X) < 32 \
943 || REGNO (X) == FRAME_POINTER_REGNUM \
944 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
945
946 /* Nonzero if X is a hard reg that can be used as a base reg
947 or if it is a pseudo reg. */
948 #define REG_OK_FOR_BASE_P(X) \
949 (REGNO (X) && (REGNO (X) < 32 \
950 || REGNO (X) == FRAME_POINTER_REGNUM \
951 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
952
953 #else
954
955 /* Nonzero if X is a hard reg that can be used as an index. */
956 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
957
958 /* Nonzero if X is a hard reg that can be used as a base reg. */
959 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
960
961 #endif
962 \f
963 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
964 valid memory address for an instruction. The MODE argument is the
965 machine mode for the MEM expression that wants to use this address.
966
967 On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
968 REG+REG, and REG+(REG*SCALE). The indexed address forms are only
969 available with floating point loads and stores, and integer loads.
970 We get better code by allowing indexed addresses in the initial
971 RTL generation.
972
973 The acceptance of indexed addresses as legitimate implies that we
974 must provide patterns for doing indexed integer stores, or the move
975 expanders must force the address of an indexed store to a register.
976 We have adopted the latter approach.
977
978 Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
979 the base register is a valid pointer for indexed instructions.
980 On targets that have non-equivalent space registers, we have to
981 know at the time of assembler output which register in a REG+REG
982 pair is the base register. The REG_POINTER flag is sometimes lost
983 in reload and the following passes, so it can't be relied on during
984 code generation. Thus, we either have to canonicalize the order
985 of the registers in REG+REG indexed addresses, or treat REG+REG
986 addresses separately and provide patterns for both permutations.
987
988 The latter approach requires several hundred additional lines of
989 code in pa.md. The downside to canonicalizing is that a PLUS
990 in the wrong order can't combine to form to make a scaled indexed
991 memory operand. As we won't need to canonicalize the operands if
992 the REG_POINTER lossage can be fixed, it seems better canonicalize.
993
994 We initially break out scaled indexed addresses in canonical order
995 in emit_move_sequence. LEGITIMIZE_ADDRESS also canonicalizes
996 scaled indexed addresses during RTL generation. However, fold_rtx
997 has its own opinion on how the operands of a PLUS should be ordered.
998 If one of the operands is equivalent to a constant, it will make
999 that operand the second operand. As the base register is likely to
1000 be equivalent to a SYMBOL_REF, we have made it the second operand.
1001
1002 GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1003 operands are in the order INDEX+BASE on targets with non-equivalent
1004 space registers, and in any order on targets with equivalent space
1005 registers. It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1006
1007 We treat a SYMBOL_REF as legitimate if it is part of the current
1008 function's constant-pool, because such addresses can actually be
1009 output as REG+SMALLINT. */
1010
1011 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1012 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1013
1014 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1015 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1016
1017 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1018 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1019
1020 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1021 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1022
1023 #if HOST_BITS_PER_WIDE_INT > 32
1024 #define VAL_32_BITS_P(X) \
1025 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \
1026 < (unsigned HOST_WIDE_INT) 2 << 31)
1027 #else
1028 #define VAL_32_BITS_P(X) 1
1029 #endif
1030 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1031
1032 /* These are the modes that we allow for scaled indexing. */
1033 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1034 ((TARGET_64BIT && (MODE) == DImode) \
1035 || (MODE) == SImode \
1036 || (MODE) == HImode \
1037 || (MODE) == SFmode \
1038 || (MODE) == DFmode)
1039
1040 /* These are the modes that we allow for unscaled indexing. */
1041 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1042 ((TARGET_64BIT && (MODE) == DImode) \
1043 || (MODE) == SImode \
1044 || (MODE) == HImode \
1045 || (MODE) == QImode \
1046 || (MODE) == SFmode \
1047 || (MODE) == DFmode)
1048
1049 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1050 { \
1051 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1052 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1053 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1054 && REG_P (XEXP (X, 0)) \
1055 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1056 goto ADDR; \
1057 else if (GET_CODE (X) == PLUS) \
1058 { \
1059 rtx base = 0, index = 0; \
1060 if (REG_P (XEXP (X, 1)) \
1061 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1062 base = XEXP (X, 1), index = XEXP (X, 0); \
1063 else if (REG_P (XEXP (X, 0)) \
1064 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1065 base = XEXP (X, 0), index = XEXP (X, 1); \
1066 if (base \
1067 && GET_CODE (index) == CONST_INT \
1068 && ((INT_14_BITS (index) \
1069 && (((MODE) != DImode \
1070 && (MODE) != SFmode \
1071 && (MODE) != DFmode) \
1072 /* The base register for DImode loads and stores \
1073 with long displacements must be aligned because \
1074 the lower three bits in the displacement are \
1075 assumed to be zero. */ \
1076 || ((MODE) == DImode \
1077 && (!TARGET_64BIT \
1078 || (INTVAL (index) % 8) == 0)) \
1079 /* Similarly, the base register for SFmode/DFmode \
1080 loads and stores with long displacements must \
1081 be aligned. */ \
1082 || (((MODE) == SFmode || (MODE) == DFmode) \
1083 && INT14_OK_STRICT \
1084 && (INTVAL (index) % GET_MODE_SIZE (MODE)) == 0))) \
1085 || INT_5_BITS (index))) \
1086 goto ADDR; \
1087 if (!TARGET_DISABLE_INDEXING \
1088 /* Only accept the "canonical" INDEX+BASE operand order \
1089 on targets with non-equivalent space registers. */ \
1090 && (TARGET_NO_SPACE_REGS \
1091 ? (base && REG_P (index)) \
1092 : (base == XEXP (X, 1) && REG_P (index) \
1093 && (reload_completed \
1094 || (reload_in_progress && HARD_REGISTER_P (base)) \
1095 || REG_POINTER (base)) \
1096 && (reload_completed \
1097 || (reload_in_progress && HARD_REGISTER_P (index)) \
1098 || !REG_POINTER (index)))) \
1099 && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE) \
1100 && REG_OK_FOR_INDEX_P (index) \
1101 && borx_reg_operand (base, Pmode) \
1102 && borx_reg_operand (index, Pmode)) \
1103 goto ADDR; \
1104 if (!TARGET_DISABLE_INDEXING \
1105 && base \
1106 && GET_CODE (index) == MULT \
1107 && MODE_OK_FOR_SCALED_INDEXING_P (MODE) \
1108 && REG_P (XEXP (index, 0)) \
1109 && GET_MODE (XEXP (index, 0)) == Pmode \
1110 && REG_OK_FOR_INDEX_P (XEXP (index, 0)) \
1111 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1112 && INTVAL (XEXP (index, 1)) \
1113 == (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
1114 && borx_reg_operand (base, Pmode)) \
1115 goto ADDR; \
1116 } \
1117 else if (GET_CODE (X) == LO_SUM \
1118 && GET_CODE (XEXP (X, 0)) == REG \
1119 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1120 && CONSTANT_P (XEXP (X, 1)) \
1121 && (TARGET_SOFT_FLOAT \
1122 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1123 || (TARGET_PA_20 \
1124 && !TARGET_ELF32 \
1125 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1126 || ((MODE) != SFmode \
1127 && (MODE) != DFmode))) \
1128 goto ADDR; \
1129 else if (GET_CODE (X) == LO_SUM \
1130 && GET_CODE (XEXP (X, 0)) == SUBREG \
1131 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG \
1132 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0))) \
1133 && CONSTANT_P (XEXP (X, 1)) \
1134 && (TARGET_SOFT_FLOAT \
1135 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1136 || (TARGET_PA_20 \
1137 && !TARGET_ELF32 \
1138 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1139 || ((MODE) != SFmode \
1140 && (MODE) != DFmode))) \
1141 goto ADDR; \
1142 else if (GET_CODE (X) == CONST_INT && INT_5_BITS (X)) \
1143 goto ADDR; \
1144 /* Needed for -fPIC */ \
1145 else if (GET_CODE (X) == LO_SUM \
1146 && GET_CODE (XEXP (X, 0)) == REG \
1147 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1148 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1149 && (TARGET_SOFT_FLOAT \
1150 || (TARGET_PA_20 && !TARGET_ELF32) \
1151 || ((MODE) != SFmode \
1152 && (MODE) != DFmode))) \
1153 goto ADDR; \
1154 }
1155
1156 /* Look for machine dependent ways to make the invalid address AD a
1157 valid address.
1158
1159 For the PA, transform:
1160
1161 memory(X + <large int>)
1162
1163 into:
1164
1165 if (<large int> & mask) >= 16
1166 Y = (<large int> & ~mask) + mask + 1 Round up.
1167 else
1168 Y = (<large int> & ~mask) Round down.
1169 Z = X + Y
1170 memory (Z + (<large int> - Y));
1171
1172 This makes reload inheritance and reload_cse work better since Z
1173 can be reused.
1174
1175 There may be more opportunities to improve code with this hook. */
1176 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1177 do { \
1178 long offset, newoffset, mask; \
1179 rtx new_rtx, temp = NULL_RTX; \
1180 \
1181 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1182 ? (INT14_OK_STRICT ? 0x3fff : 0x1f) : 0x3fff); \
1183 \
1184 if (optimize && GET_CODE (AD) == PLUS) \
1185 temp = simplify_binary_operation (PLUS, Pmode, \
1186 XEXP (AD, 0), XEXP (AD, 1)); \
1187 \
1188 new_rtx = temp ? temp : AD; \
1189 \
1190 if (optimize \
1191 && GET_CODE (new_rtx) == PLUS \
1192 && GET_CODE (XEXP (new_rtx, 0)) == REG \
1193 && GET_CODE (XEXP (new_rtx, 1)) == CONST_INT) \
1194 { \
1195 offset = INTVAL (XEXP ((new_rtx), 1)); \
1196 \
1197 /* Choose rounding direction. Round up if we are >= halfway. */ \
1198 if ((offset & mask) >= ((mask + 1) / 2)) \
1199 newoffset = (offset & ~mask) + mask + 1; \
1200 else \
1201 newoffset = offset & ~mask; \
1202 \
1203 /* Ensure that long displacements are aligned. */ \
1204 if (mask == 0x3fff \
1205 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1206 || (TARGET_64BIT && (MODE) == DImode))) \
1207 newoffset &= ~(GET_MODE_SIZE (MODE) - 1); \
1208 \
1209 if (newoffset != 0 && VAL_14_BITS_P (newoffset)) \
1210 { \
1211 temp = gen_rtx_PLUS (Pmode, XEXP (new_rtx, 0), \
1212 GEN_INT (newoffset)); \
1213 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1214 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1215 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1216 (OPNUM), (TYPE)); \
1217 goto WIN; \
1218 } \
1219 } \
1220 } while (0)
1221
1222
1223 \f
1224 #define TARGET_ASM_SELECT_SECTION pa_select_section
1225
1226 /* Return a nonzero value if DECL has a section attribute. */
1227 #define IN_NAMED_SECTION_P(DECL) \
1228 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1229 && DECL_SECTION_NAME (DECL) != NULL_TREE)
1230
1231 /* Define this macro if references to a symbol must be treated
1232 differently depending on something about the variable or
1233 function named by the symbol (such as what section it is in).
1234
1235 The macro definition, if any, is executed immediately after the
1236 rtl for DECL or other node is created.
1237 The value of the rtl will be a `mem' whose address is a
1238 `symbol_ref'.
1239
1240 The usual thing for this macro to do is to a flag in the
1241 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1242 name string in the `symbol_ref' (if one bit is not enough
1243 information).
1244
1245 On the HP-PA we use this to indicate if a symbol is in text or
1246 data space. Also, function labels need special treatment. */
1247
1248 #define TEXT_SPACE_P(DECL)\
1249 (TREE_CODE (DECL) == FUNCTION_DECL \
1250 || (TREE_CODE (DECL) == VAR_DECL \
1251 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1252 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1253 && !flag_pic) \
1254 || CONSTANT_CLASS_P (DECL))
1255
1256 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1257
1258 /* Specify the machine mode that this machine uses for the index in the
1259 tablejump instruction. For small tables, an element consists of a
1260 ia-relative branch and its delay slot. When -mbig-switch is specified,
1261 we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1262 for both 32 and 64-bit pic code. */
1263 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1264
1265 /* Jump tables must be 32-bit aligned, no matter the size of the element. */
1266 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1267
1268 /* Define this as 1 if `char' should by default be signed; else as 0. */
1269 #define DEFAULT_SIGNED_CHAR 1
1270
1271 /* Max number of bytes we can move from memory to memory
1272 in one reasonably fast instruction. */
1273 #define MOVE_MAX 8
1274
1275 /* Higher than the default as we prefer to use simple move insns
1276 (better scheduling and delay slot filling) and because our
1277 built-in block move is really a 2X unrolled loop.
1278
1279 Believe it or not, this has to be big enough to allow for copying all
1280 arguments passed in registers to avoid infinite recursion during argument
1281 setup for a function call. Why? Consider how we copy the stack slots
1282 reserved for parameters when they may be trashed by a call. */
1283 #define MOVE_RATIO(speed) (TARGET_64BIT ? 8 : 4)
1284
1285 /* Define if operations between registers always perform the operation
1286 on the full register even if a narrower mode is specified. */
1287 #define WORD_REGISTER_OPERATIONS
1288
1289 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1290 will either zero-extend or sign-extend. The value of this macro should
1291 be the code that says which one of the two operations is implicitly
1292 done, UNKNOWN if none. */
1293 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1294
1295 /* Nonzero if access to memory by bytes is slow and undesirable. */
1296 #define SLOW_BYTE_ACCESS 1
1297
1298 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1299 is done just by pretending it is already truncated. */
1300 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1301
1302 /* Specify the machine mode that pointers have.
1303 After generation of rtl, the compiler makes no further distinction
1304 between pointers and any other objects of this machine mode. */
1305 #define Pmode word_mode
1306
1307 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1308 return the mode to be used for the comparison. For floating-point, CCFPmode
1309 should be used. CC_NOOVmode should be used when the first operand is a
1310 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1311 needed. */
1312 #define SELECT_CC_MODE(OP,X,Y) \
1313 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1314
1315 /* A function address in a call instruction
1316 is a byte address (for indexing purposes)
1317 so give the MEM rtx a byte's mode. */
1318 #define FUNCTION_MODE SImode
1319
1320 /* Define this if addresses of constant functions
1321 shouldn't be put through pseudo regs where they can be cse'd.
1322 Desirable on machines where ordinary constants are expensive
1323 but a CALL with constant address is cheap. */
1324 #define NO_FUNCTION_CSE
1325
1326 /* Define this to be nonzero if shift instructions ignore all but the low-order
1327 few bits. */
1328 #define SHIFT_COUNT_TRUNCATED 1
1329
1330 /* Adjust the cost of branches. */
1331 #define BRANCH_COST(speed_p, predictable_p) (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1332
1333 /* Handling the special cases is going to get too complicated for a macro,
1334 just call `pa_adjust_insn_length' to do the real work. */
1335 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1336 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1337
1338 /* Millicode insns are actually function calls with some special
1339 constraints on arguments and register usage.
1340
1341 Millicode calls always expect their arguments in the integer argument
1342 registers, and always return their result in %r29 (ret1). They
1343 are expected to clobber their arguments, %r1, %r29, and the return
1344 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1345
1346 This macro tells reorg that the references to arguments and
1347 millicode calls do not appear to happen until after the millicode call.
1348 This allows reorg to put insns which set the argument registers into the
1349 delay slot of the millicode call -- thus they act more like traditional
1350 CALL_INSNs.
1351
1352 Note we cannot consider side effects of the insn to be delayed because
1353 the branch and link insn will clobber the return pointer. If we happened
1354 to use the return pointer in the delay slot of the call, then we lose.
1355
1356 get_attr_type will try to recognize the given insn, so make sure to
1357 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1358 in particular. */
1359 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1360
1361 \f
1362 /* Control the assembler format that we output. */
1363
1364 /* A C string constant describing how to begin a comment in the target
1365 assembler language. The compiler assumes that the comment will end at
1366 the end of the line. */
1367
1368 #define ASM_COMMENT_START ";"
1369
1370 /* Output to assembler file text saying following lines
1371 may contain character constants, extra white space, comments, etc. */
1372
1373 #define ASM_APP_ON ""
1374
1375 /* Output to assembler file text saying following lines
1376 no longer contain unusual constructs. */
1377
1378 #define ASM_APP_OFF ""
1379
1380 /* This is how to output the definition of a user-level label named NAME,
1381 such as the label on a static function or variable NAME. */
1382
1383 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1384 do { \
1385 assemble_name ((FILE), (NAME)); \
1386 if (TARGET_GAS) \
1387 fputs (":\n", (FILE)); \
1388 else \
1389 fputc ('\n', (FILE)); \
1390 } while (0)
1391
1392 /* This is how to output a reference to a user-level label named NAME.
1393 `assemble_name' uses this. */
1394
1395 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1396 do { \
1397 const char *xname = (NAME); \
1398 if (FUNCTION_NAME_P (NAME)) \
1399 xname += 1; \
1400 if (xname[0] == '*') \
1401 xname += 1; \
1402 else \
1403 fputs (user_label_prefix, FILE); \
1404 fputs (xname, FILE); \
1405 } while (0)
1406
1407 /* This how we output the symbol_ref X. */
1408
1409 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1410 do { \
1411 SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED; \
1412 assemble_name (FILE, XSTR (X, 0)); \
1413 } while (0)
1414
1415 /* This is how to store into the string LABEL
1416 the symbol_ref name of an internal numbered label where
1417 PREFIX is the class of label and NUM is the number within the class.
1418 This is suitable for output with `assemble_name'. */
1419
1420 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1421 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1422
1423 /* Output the definition of a compiler-generated label named NAME. */
1424
1425 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1426 do { \
1427 assemble_name_raw ((FILE), (NAME)); \
1428 if (TARGET_GAS) \
1429 fputs (":\n", (FILE)); \
1430 else \
1431 fputc ('\n', (FILE)); \
1432 } while (0)
1433
1434 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1435
1436 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1437 output_ascii ((FILE), (P), (SIZE))
1438
1439 /* Jump tables are always placed in the text section. Technically, it
1440 is possible to put them in the readonly data section when -mbig-switch
1441 is specified. This has the benefit of getting the table out of .text
1442 and reducing branch lengths as a result. The downside is that an
1443 additional insn (addil) is needed to access the table when generating
1444 PIC code. The address difference table also has to use 32-bit
1445 pc-relative relocations. Currently, GAS does not support these
1446 relocations, although it is easily modified to do this operation.
1447 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1448 when using ELF GAS. A simple difference can be used when using
1449 SOM GAS or the HP assembler. The final downside is GDB complains
1450 about the nesting of the label for the table when debugging. */
1451
1452 #define JUMP_TABLES_IN_TEXT_SECTION 1
1453
1454 /* This is how to output an element of a case-vector that is absolute. */
1455
1456 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1457 if (TARGET_BIG_SWITCH) \
1458 fprintf (FILE, "\t.word L$%04d\n", VALUE); \
1459 else \
1460 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1461
1462 /* This is how to output an element of a case-vector that is relative.
1463 Since we always place jump tables in the text section, the difference
1464 is absolute and requires no relocation. */
1465
1466 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1467 if (TARGET_BIG_SWITCH) \
1468 fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL); \
1469 else \
1470 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1471
1472 /* This is how to output an assembler line that says to advance the
1473 location counter to a multiple of 2**LOG bytes. */
1474
1475 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1476 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1477
1478 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1479 fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1480 (unsigned HOST_WIDE_INT)(SIZE))
1481
1482 /* This says how to output an assembler line to define an uninitialized
1483 global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1484 This macro exists to properly support languages like C++ which do not
1485 have common data. */
1486
1487 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1488 pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1489
1490 /* This says how to output an assembler line to define a global common symbol
1491 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1492
1493 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1494 pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1495
1496 /* This says how to output an assembler line to define a local common symbol
1497 with size SIZE (in bytes) and alignment ALIGN (in bits). This macro
1498 controls how the assembler definitions of uninitialized static variables
1499 are output. */
1500
1501 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1502 pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1503
1504 /* All HP assemblers use "!" to separate logical lines. */
1505 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
1506
1507 /* Print operand X (an rtx) in assembler syntax to file FILE.
1508 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1509 For `%' followed by punctuation, CODE is the punctuation and X is null.
1510
1511 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1512 and an immediate zero should be represented as `r0'.
1513
1514 Several % codes are defined:
1515 O an operation
1516 C compare conditions
1517 N extract conditions
1518 M modifier to handle preincrement addressing for memory refs.
1519 F modifier to handle preincrement addressing for fp memory refs */
1520
1521 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1522
1523 \f
1524 /* Print a memory address as an operand to reference that memory location. */
1525
1526 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1527 { rtx addr = ADDR; \
1528 switch (GET_CODE (addr)) \
1529 { \
1530 case REG: \
1531 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1532 break; \
1533 case PLUS: \
1534 gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT); \
1535 fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)), \
1536 reg_names [REGNO (XEXP (addr, 0))]); \
1537 break; \
1538 case LO_SUM: \
1539 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1540 fputs ("R'", FILE); \
1541 else if (flag_pic == 0) \
1542 fputs ("RR'", FILE); \
1543 else \
1544 fputs ("RT'", FILE); \
1545 output_global_address (FILE, XEXP (addr, 1), 0); \
1546 fputs ("(", FILE); \
1547 output_operand (XEXP (addr, 0), 0); \
1548 fputs (")", FILE); \
1549 break; \
1550 case CONST_INT: \
1551 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
1552 break; \
1553 default: \
1554 output_addr_const (FILE, addr); \
1555 }}
1556
1557 \f
1558 /* Find the return address associated with the frame given by
1559 FRAMEADDR. */
1560 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1561 (return_addr_rtx (COUNT, FRAMEADDR))
1562
1563 /* Used to mask out junk bits from the return address, such as
1564 processor state, interrupt status, condition codes and the like. */
1565 #define MASK_RETURN_ADDR \
1566 /* The privilege level is in the two low order bits, mask em out \
1567 of the return address. */ \
1568 (GEN_INT (-4))
1569
1570 /* The number of Pmode words for the setjmp buffer. */
1571 #define JMP_BUF_SIZE 50
1572
1573 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1574 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1575 "__canonicalize_funcptr_for_compare"
1576
1577 #ifdef HAVE_AS_TLS
1578 #undef TARGET_HAVE_TLS
1579 #define TARGET_HAVE_TLS true
1580 #endif