rs6000: Delete HAVE_AS_DCI
[gcc.git] / gcc / config / powerpcspe / powerpcspe.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2018 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
28
29 #ifndef RS6000_OPTS_H
30 #include "config/powerpcspe/powerpcspe-opts.h"
31 #endif
32
33 /* Definitions for the object file format. These are set at
34 compile-time. */
35
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_PEF 3
39 #define OBJECT_MACHO 4
40
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
45
46 #ifndef TARGET_AIX
47 #define TARGET_AIX 0
48 #endif
49
50 #ifndef TARGET_AIX_OS
51 #define TARGET_AIX_OS 0
52 #endif
53
54 /* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56 #define DOT_SYMBOLS 1
57
58 /* Default string to use for cpu if not specified. */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
61 #endif
62
63 /* If configured for PPC405, support PPC405CR Erratum77. */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66 #else
67 #define PPC405_ERRATUM77 0
68 #endif
69
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
72 #endif
73
74 #define ASM_CPU_POWER5_SPEC "-mpower5"
75 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
76 #define ASM_CPU_POWER7_SPEC "-mpower7"
77 #define ASM_CPU_POWER8_SPEC "-mpower8"
78 #define ASM_CPU_POWER9_SPEC "-mpower9"
79
80 #define ASM_CPU_476_SPEC "-m476"
81
82 /* Common ASM definitions used by ASM_SPEC among the various targets for
83 handling -mcpu=xxx switches. There is a parallel list in driver-powerpcspe.c to
84 provide the default assembler options if the user uses -mcpu=native, so if
85 you make changes here, make them also there. */
86 #define ASM_CPU_SPEC \
87 "%{!mcpu*: \
88 %{mpowerpc64*: -mppc64} \
89 %{!mpowerpc64*: %(asm_default)}} \
90 %{mcpu=native: %(asm_cpu_native)} \
91 %{mcpu=cell: -mcell} \
92 %{mcpu=power3: -mppc64} \
93 %{mcpu=power4: -mpower4} \
94 %{mcpu=power5: %(asm_cpu_power5)} \
95 %{mcpu=power5+: %(asm_cpu_power5)} \
96 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
97 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
98 %{mcpu=power7: %(asm_cpu_power7)} \
99 %{mcpu=power8: %(asm_cpu_power8)} \
100 %{mcpu=power9: %(asm_cpu_power9)} \
101 %{mcpu=a2: -ma2} \
102 %{mcpu=powerpc: -mppc} \
103 %{mcpu=powerpc64le: %(asm_cpu_power8)} \
104 %{mcpu=rs64a: -mppc64} \
105 %{mcpu=401: -mppc} \
106 %{mcpu=403: -m403} \
107 %{mcpu=405: -m405} \
108 %{mcpu=405fp: -m405} \
109 %{mcpu=440: -m440} \
110 %{mcpu=440fp: -m440} \
111 %{mcpu=464: -m440} \
112 %{mcpu=464fp: -m440} \
113 %{mcpu=476: %(asm_cpu_476)} \
114 %{mcpu=476fp: %(asm_cpu_476)} \
115 %{mcpu=505: -mppc} \
116 %{mcpu=601: -m601} \
117 %{mcpu=602: -mppc} \
118 %{mcpu=603: -mppc} \
119 %{mcpu=603e: -mppc} \
120 %{mcpu=ec603e: -mppc} \
121 %{mcpu=604: -mppc} \
122 %{mcpu=604e: -mppc} \
123 %{mcpu=620: -mppc64} \
124 %{mcpu=630: -mppc64} \
125 %{mcpu=740: -mppc} \
126 %{mcpu=750: -mppc} \
127 %{mcpu=G3: -mppc} \
128 %{mcpu=7400: -mppc -maltivec} \
129 %{mcpu=7450: -mppc -maltivec} \
130 %{mcpu=G4: -mppc -maltivec} \
131 %{mcpu=801: -mppc} \
132 %{mcpu=821: -mppc} \
133 %{mcpu=823: -mppc} \
134 %{mcpu=860: -mppc} \
135 %{mcpu=970: -mpower4 -maltivec} \
136 %{mcpu=G5: -mpower4 -maltivec} \
137 %{mcpu=8540: -me500} \
138 %{mcpu=8548: -me500} \
139 %{mcpu=e300c2: -me300} \
140 %{mcpu=e300c3: -me300} \
141 %{mcpu=e500mc: -me500mc} \
142 %{mcpu=e500mc64: -me500mc64} \
143 %{mcpu=e5500: -me5500} \
144 %{mcpu=e6500: -me6500} \
145 %{maltivec: -maltivec} \
146 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
147 %{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
148 -many"
149
150 #define CPP_DEFAULT_SPEC ""
151
152 #define ASM_DEFAULT_SPEC ""
153
154 /* This macro defines names of additional specifications to put in the specs
155 that can be used in various specifications like CC1_SPEC. Its definition
156 is an initializer with a subgrouping for each command option.
157
158 Each subgrouping contains a string constant, that defines the
159 specification name, and a string constant that used by the GCC driver
160 program.
161
162 Do not define this macro if it does not need to do anything. */
163
164 #define SUBTARGET_EXTRA_SPECS
165
166 #define EXTRA_SPECS \
167 { "cpp_default", CPP_DEFAULT_SPEC }, \
168 { "asm_cpu", ASM_CPU_SPEC }, \
169 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
170 { "asm_default", ASM_DEFAULT_SPEC }, \
171 { "cc1_cpu", CC1_CPU_SPEC }, \
172 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
173 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
174 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
175 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
176 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
177 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
178 SUBTARGET_EXTRA_SPECS
179
180 /* -mcpu=native handling only makes sense with compiler running on
181 an PowerPC chip. If changing this condition, also change
182 the condition in driver-powerpcspe.c. */
183 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
184 /* In driver-powerpcspe.c. */
185 extern const char *host_detect_local_cpu (int argc, const char **argv);
186 #define EXTRA_SPEC_FUNCTIONS \
187 { "local_cpu_detect", host_detect_local_cpu },
188 #define HAVE_LOCAL_CPU_DETECT
189 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
190
191 #else
192 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
193 #endif
194
195 #ifndef CC1_CPU_SPEC
196 #ifdef HAVE_LOCAL_CPU_DETECT
197 #define CC1_CPU_SPEC \
198 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
199 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
200 #else
201 #define CC1_CPU_SPEC ""
202 #endif
203 #endif
204
205 /* Architecture type. */
206
207 /* Define TARGET_MFCRF if the target assembler does not support the
208 optional field operand for mfcr. */
209
210 #ifndef HAVE_AS_MFCRF
211 #undef TARGET_MFCRF
212 #define TARGET_MFCRF 0
213 #endif
214
215 /* Define TARGET_TLS_MARKERS if the target assembler does not support
216 arg markers for __tls_get_addr calls. */
217 #ifndef HAVE_AS_TLS_MARKERS
218 #undef TARGET_TLS_MARKERS
219 #define TARGET_TLS_MARKERS 0
220 #else
221 #define TARGET_TLS_MARKERS tls_markers
222 #endif
223
224 #ifndef TARGET_SECURE_PLT
225 #define TARGET_SECURE_PLT 0
226 #endif
227
228 #ifndef TARGET_CMODEL
229 #define TARGET_CMODEL CMODEL_SMALL
230 #endif
231
232 #define TARGET_32BIT (! TARGET_64BIT)
233
234 #ifndef HAVE_AS_TLS
235 #define HAVE_AS_TLS 0
236 #endif
237
238 #ifndef TARGET_LINK_STACK
239 #define TARGET_LINK_STACK 0
240 #endif
241
242 #ifndef SET_TARGET_LINK_STACK
243 #define SET_TARGET_LINK_STACK(X) do { } while (0)
244 #endif
245
246 #ifndef TARGET_FLOAT128_ENABLE_TYPE
247 #define TARGET_FLOAT128_ENABLE_TYPE 0
248 #endif
249
250 /* Return 1 for a symbol ref for a thread-local storage symbol. */
251 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
252 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
253
254 #ifdef IN_LIBGCC2
255 /* For libgcc2 we make sure this is a compile time constant */
256 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
257 #undef TARGET_POWERPC64
258 #define TARGET_POWERPC64 1
259 #else
260 #undef TARGET_POWERPC64
261 #define TARGET_POWERPC64 0
262 #endif
263 #else
264 /* The option machinery will define this. */
265 #endif
266
267 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
268
269 /* FPU operations supported.
270 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
271 also test TARGET_HARD_FLOAT. */
272 #define TARGET_SINGLE_FLOAT 1
273 #define TARGET_DOUBLE_FLOAT 1
274 #define TARGET_SINGLE_FPU 0
275 #define TARGET_SIMPLE_FPU 0
276 #define TARGET_XILINX_FPU 0
277
278 /* Recast the processor type to the cpu attribute. */
279 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
280
281 /* Define generic processor types based upon current deployment. */
282 #define PROCESSOR_COMMON PROCESSOR_PPC601
283 #define PROCESSOR_POWERPC PROCESSOR_PPC604
284 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
285
286 /* Define the default processor. This is overridden by other tm.h files. */
287 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
288 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
289
290 /* Specify the dialect of assembler to use. Only new mnemonics are supported
291 starting with GCC 4.8, i.e. just one dialect, but for backwards
292 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
293 defined. */
294 #define ASSEMBLER_DIALECT 1
295
296 /* Debug support */
297 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
298 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
299 #define MASK_DEBUG_REG 0x04 /* debug register handling */
300 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
301 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
302 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
303 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
304 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
305 | MASK_DEBUG_ARG \
306 | MASK_DEBUG_REG \
307 | MASK_DEBUG_ADDR \
308 | MASK_DEBUG_COST \
309 | MASK_DEBUG_TARGET \
310 | MASK_DEBUG_BUILTIN)
311
312 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
313 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
314 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
315 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
316 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
317 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
318 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
319
320 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
321 long double format that uses a pair of doubles, or IEEE 128-bit floating
322 point. KFmode was added as a way to represent IEEE 128-bit floating point,
323 even if the default for long double is the IBM long double format.
324 Similarly IFmode is the IBM long double format even if the default is IEEE
325 128-bit. Don't allow IFmode if -msoft-float. */
326 #define FLOAT128_IEEE_P(MODE) \
327 ((TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
328 || ((MODE) == KFmode) || ((MODE) == KCmode))
329
330 #define FLOAT128_IBM_P(MODE) \
331 ((!TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
332 || (TARGET_HARD_FLOAT && TARGET_FPRS \
333 && ((MODE) == IFmode || (MODE) == ICmode)))
334
335 /* Helper macros to say whether a 128-bit floating point type can go in a
336 single vector register, or whether it needs paired scalar values. */
337 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
338
339 #define FLOAT128_2REG_P(MODE) \
340 (FLOAT128_IBM_P (MODE) \
341 || ((MODE) == TDmode) \
342 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
343
344 /* Return true for floating point that does not use a vector register. */
345 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
346 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
347
348 /* Describe the vector unit used for arithmetic operations. */
349 extern enum rs6000_vector rs6000_vector_unit[];
350
351 #define VECTOR_UNIT_NONE_P(MODE) \
352 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
353
354 #define VECTOR_UNIT_VSX_P(MODE) \
355 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
356
357 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
358 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
359
360 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
361 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
362
363 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
364 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
365 (int)VECTOR_VSX, \
366 (int)VECTOR_P8_VECTOR))
367
368 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
369 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
370 compatible, so allow it as well, rather than changing all of the uses of the
371 macro. */
372 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
373 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
374 (int)VECTOR_ALTIVEC, \
375 (int)VECTOR_P8_VECTOR))
376
377 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
378 same unit as the vector unit we are using, but we may want to migrate to
379 using VSX style loads even for types handled by altivec. */
380 extern enum rs6000_vector rs6000_vector_mem[];
381
382 #define VECTOR_MEM_NONE_P(MODE) \
383 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
384
385 #define VECTOR_MEM_VSX_P(MODE) \
386 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
387
388 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
389 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
390
391 #define VECTOR_MEM_ALTIVEC_P(MODE) \
392 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
393
394 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
395 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
396 (int)VECTOR_VSX, \
397 (int)VECTOR_P8_VECTOR))
398
399 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
400 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
401 (int)VECTOR_ALTIVEC, \
402 (int)VECTOR_P8_VECTOR))
403
404 /* Return the alignment of a given vector type, which is set based on the
405 vector unit use. VSX for instance can load 32 or 64 bit aligned words
406 without problems, while Altivec requires 128-bit aligned vectors. */
407 extern int rs6000_vector_align[];
408
409 #define VECTOR_ALIGN(MODE) \
410 ((rs6000_vector_align[(MODE)] != 0) \
411 ? rs6000_vector_align[(MODE)] \
412 : (int)GET_MODE_BITSIZE ((MODE)))
413
414 /* Determine the element order to use for vector instructions. By
415 default we use big-endian element order when targeting big-endian,
416 and little-endian element order when targeting little-endian. For
417 programs being ported from BE Power to LE Power, it can sometimes
418 be useful to use big-endian element order when targeting little-endian.
419 This is set via -maltivec=be, for example. */
420 #define VECTOR_ELT_ORDER_BIG \
421 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
422
423 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
424 with scalar instructions. */
425 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
426
427 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
428 with the ISA 3.0 MFVSRLD instructions. */
429 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
430
431 /* Alignment options for fields in structures for sub-targets following
432 AIX-like ABI.
433 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
434 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
435
436 Override the macro definitions when compiling libobjc to avoid undefined
437 reference to rs6000_alignment_flags due to library's use of GCC alignment
438 macros which use the macros below. */
439
440 #ifndef IN_TARGET_LIBS
441 #define MASK_ALIGN_POWER 0x00000000
442 #define MASK_ALIGN_NATURAL 0x00000001
443 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
444 #else
445 #define TARGET_ALIGN_NATURAL 0
446 #endif
447
448 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
449 #define TARGET_IEEEQUAD rs6000_ieeequad
450 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
451 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
452
453 #define TARGET_SPE_ABI 0
454 #define TARGET_SPE 0
455 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
456 #define TARGET_FPRS 1
457 #define TARGET_E500_SINGLE 0
458 #define TARGET_E500_DOUBLE 0
459 #define CHECK_E500_OPTIONS do { } while (0)
460
461 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
462 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
463 XILINX. */
464 #define TARGET_FCFID (TARGET_POWERPC64 \
465 || TARGET_PPC_GPOPT /* 970/power4 */ \
466 || TARGET_POPCNTB /* ISA 2.02 */ \
467 || TARGET_CMPB /* ISA 2.05 */ \
468 || TARGET_POPCNTD /* ISA 2.06 */ \
469 || TARGET_XILINX_FPU)
470
471 #define TARGET_FCTIDZ TARGET_FCFID
472 #define TARGET_STFIWX TARGET_PPC_GFXOPT
473 #define TARGET_LFIWAX TARGET_CMPB
474 #define TARGET_LFIWZX TARGET_POPCNTD
475 #define TARGET_FCFIDS TARGET_POPCNTD
476 #define TARGET_FCFIDU TARGET_POPCNTD
477 #define TARGET_FCFIDUS TARGET_POPCNTD
478 #define TARGET_FCTIDUZ TARGET_POPCNTD
479 #define TARGET_FCTIWUZ TARGET_POPCNTD
480 #define TARGET_CTZ TARGET_MODULO
481 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
482 #define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
483
484 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
485 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
486 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
487 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
488 && TARGET_POWERPC64)
489 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
490 && TARGET_UPPER_REGS_DI && TARGET_POWERPC64)
491
492
493 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
494 #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
495 #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
496
497 /* This wants to be set for p8 and newer. On p7, overlapping unaligned
498 loads are slow. */
499 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
500
501 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
502 in power7, so conditionalize them on p8 features. TImode syncs need quad
503 memory support. */
504 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
505 || TARGET_QUAD_MEMORY_ATOMIC \
506 || TARGET_DIRECT_MOVE)
507
508 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
509
510 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
511 to allocate the SDmode stack slot to get the value into the proper location
512 in the register. */
513 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
514
515 /* ISA 3.0 has new min/max functions that don't need fast math that are being
516 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
517 answers if the arguments are not in the normal range. */
518 #define TARGET_MINMAX_SF (TARGET_SF_FPR && TARGET_PPC_GFXOPT \
519 && (TARGET_P9_MINMAX || !flag_trapping_math))
520
521 #define TARGET_MINMAX_DF (TARGET_DF_FPR && TARGET_PPC_GFXOPT \
522 && (TARGET_P9_MINMAX || !flag_trapping_math))
523
524 /* In switching from using target_flags to using rs6000_isa_flags, the options
525 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
526 OPTION_MASK_<xxx> back into MASK_<xxx>. */
527 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
528 #define MASK_CMPB OPTION_MASK_CMPB
529 #define MASK_CRYPTO OPTION_MASK_CRYPTO
530 #define MASK_DFP OPTION_MASK_DFP
531 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
532 #define MASK_DLMZB OPTION_MASK_DLMZB
533 #define MASK_EABI OPTION_MASK_EABI
534 #define MASK_FLOAT128_TYPE OPTION_MASK_FLOAT128_TYPE
535 #define MASK_FPRND OPTION_MASK_FPRND
536 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
537 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
538 #define MASK_HTM OPTION_MASK_HTM
539 #define MASK_ISEL OPTION_MASK_ISEL
540 #define MASK_MFCRF OPTION_MASK_MFCRF
541 #define MASK_MFPGPR OPTION_MASK_MFPGPR
542 #define MASK_MULHW OPTION_MASK_MULHW
543 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
544 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
545 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
546 #define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
547 #define MASK_P9_MISC OPTION_MASK_P9_MISC
548 #define MASK_POPCNTB OPTION_MASK_POPCNTB
549 #define MASK_POPCNTD OPTION_MASK_POPCNTD
550 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
551 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
552 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
553 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
554 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
555 #define MASK_STRING OPTION_MASK_STRING
556 #define MASK_UPDATE OPTION_MASK_UPDATE
557 #define MASK_VSX OPTION_MASK_VSX
558 #define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
559
560 #ifndef IN_LIBGCC2
561 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
562 #endif
563
564 #ifdef TARGET_64BIT
565 #define MASK_64BIT OPTION_MASK_64BIT
566 #endif
567
568 #ifdef TARGET_LITTLE_ENDIAN
569 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
570 #endif
571
572 #ifdef TARGET_REGNAMES
573 #define MASK_REGNAMES OPTION_MASK_REGNAMES
574 #endif
575
576 #ifdef TARGET_PROTOTYPE
577 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
578 #endif
579
580 #ifdef TARGET_MODULO
581 #define RS6000_BTM_MODULO OPTION_MASK_MODULO
582 #endif
583
584
585 /* For power systems, we want to enable Altivec and VSX builtins even if the
586 user did not use -maltivec or -mvsx to allow the builtins to be used inside
587 of #pragma GCC target or the target attribute to change the code level for a
588 given system. The SPE and Paired builtins are only enabled if you configure
589 the compiler for those builtins, and those machines don't support altivec or
590 VSX. */
591
592 #define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
593 && ((TARGET_POWERPC64 \
594 || TARGET_PPC_GPOPT /* 970/power4 */ \
595 || TARGET_POPCNTB /* ISA 2.02 */ \
596 || TARGET_CMPB /* ISA 2.05 */ \
597 || TARGET_POPCNTD /* ISA 2.06 */ \
598 || TARGET_ALTIVEC \
599 || TARGET_VSX \
600 || TARGET_HARD_FLOAT)))
601
602 /* E500 cores only support plain "sync", not lwsync. */
603 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
604 || rs6000_cpu == PROCESSOR_PPC8548)
605
606
607 /* Whether SF/DF operations are supported on the E500. */
608 #define TARGET_SF_SPE (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT \
609 && !TARGET_FPRS)
610
611 #define TARGET_DF_SPE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
612 && !TARGET_FPRS && TARGET_E500_DOUBLE)
613
614 /* Whether SF/DF operations are supported by the normal floating point unit
615 (or the vector/scalar unit). */
616 #define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
617 && TARGET_SINGLE_FLOAT)
618
619 #define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
620 && TARGET_DOUBLE_FLOAT)
621
622 /* Whether SF/DF operations are supported by any hardware. */
623 #define TARGET_SF_INSN (TARGET_SF_FPR || TARGET_SF_SPE)
624 #define TARGET_DF_INSN (TARGET_DF_FPR || TARGET_DF_SPE)
625
626 /* Which machine supports the various reciprocal estimate instructions. */
627 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
628 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
629
630 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
631 && TARGET_DOUBLE_FLOAT \
632 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
633
634 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
635 && TARGET_PPC_GFXOPT && TARGET_FPRS \
636 && TARGET_SINGLE_FLOAT)
637
638 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
639 && TARGET_DOUBLE_FLOAT \
640 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
641
642 /* Conditions to allow TOC fusion for loading/storing integers. */
643 #define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
644 && TARGET_TOC_FUSION \
645 && (TARGET_CMODEL != CMODEL_SMALL) \
646 && TARGET_POWERPC64)
647
648 /* Conditions to allow TOC fusion for loading/storing floating point. */
649 #define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
650 && TARGET_TOC_FUSION \
651 && (TARGET_CMODEL != CMODEL_SMALL) \
652 && TARGET_POWERPC64 \
653 && TARGET_HARD_FLOAT \
654 && TARGET_FPRS \
655 && TARGET_SINGLE_FLOAT \
656 && TARGET_DOUBLE_FLOAT)
657
658 /* Macro to say whether we can do optimizations where we need to do parts of
659 the calculation in 64-bit GPRs and then is transfered to the vector
660 registers. Do not allow -maltivec=be for these optimizations, because it
661 adds to the complexity of the code. */
662 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
663 && TARGET_P8_VECTOR \
664 && TARGET_POWERPC64 \
665 && TARGET_UPPER_REGS_DI \
666 && (rs6000_altivec_element_order != 2))
667
668 /* Whether the various reciprocal divide/square root estimate instructions
669 exist, and whether we should automatically generate code for the instruction
670 by default. */
671 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
672 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
673 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
674 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
675
676 extern unsigned char rs6000_recip_bits[];
677
678 #define RS6000_RECIP_HAVE_RE_P(MODE) \
679 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
680
681 #define RS6000_RECIP_AUTO_RE_P(MODE) \
682 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
683
684 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
685 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
686
687 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
688 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
689
690 /* The default CPU for TARGET_OPTION_OVERRIDE. */
691 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
692
693 /* Target pragma. */
694 #define REGISTER_TARGET_PRAGMAS() do { \
695 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
696 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
697 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
698 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
699 } while (0)
700
701 /* Target #defines. */
702 #define TARGET_CPU_CPP_BUILTINS() \
703 rs6000_cpu_cpp_builtins (pfile)
704
705 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
706 we're compiling for. Some configurations may need to override it. */
707 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
708 do \
709 { \
710 if (BYTES_BIG_ENDIAN) \
711 { \
712 builtin_define ("__BIG_ENDIAN__"); \
713 builtin_define ("_BIG_ENDIAN"); \
714 builtin_assert ("machine=bigendian"); \
715 } \
716 else \
717 { \
718 builtin_define ("__LITTLE_ENDIAN__"); \
719 builtin_define ("_LITTLE_ENDIAN"); \
720 builtin_assert ("machine=littleendian"); \
721 } \
722 } \
723 while (0)
724 \f
725 /* Target machine storage layout. */
726
727 /* Define this macro if it is advisable to hold scalars in registers
728 in a wider mode than that declared by the program. In such cases,
729 the value is constrained to be within the bounds of the declared
730 type, but kept valid in the wider mode. The signedness of the
731 extension may differ from that of the type. */
732
733 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
734 if (GET_MODE_CLASS (MODE) == MODE_INT \
735 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
736 (MODE) = TARGET_32BIT ? SImode : DImode;
737
738 /* Define this if most significant bit is lowest numbered
739 in instructions that operate on numbered bit-fields. */
740 /* That is true on RS/6000. */
741 #define BITS_BIG_ENDIAN 1
742
743 /* Define this if most significant byte of a word is the lowest numbered. */
744 /* That is true on RS/6000. */
745 #define BYTES_BIG_ENDIAN 1
746
747 /* Define this if most significant word of a multiword number is lowest
748 numbered.
749
750 For RS/6000 we can decide arbitrarily since there are no machine
751 instructions for them. Might as well be consistent with bits and bytes. */
752 #define WORDS_BIG_ENDIAN 1
753
754 /* This says that for the IBM long double the larger magnitude double
755 comes first. It's really a two element double array, and arrays
756 don't index differently between little- and big-endian. */
757 #define LONG_DOUBLE_LARGE_FIRST 1
758
759 #define MAX_BITS_PER_WORD 64
760
761 /* Width of a word, in units (bytes). */
762 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
763 #ifdef IN_LIBGCC2
764 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
765 #else
766 #define MIN_UNITS_PER_WORD 4
767 #endif
768 #define UNITS_PER_FP_WORD 8
769 #define UNITS_PER_ALTIVEC_WORD 16
770 #define UNITS_PER_VSX_WORD 16
771 #define UNITS_PER_SPE_WORD 8
772 #define UNITS_PER_PAIRED_WORD 8
773
774 /* Type used for ptrdiff_t, as a string used in a declaration. */
775 #define PTRDIFF_TYPE "int"
776
777 /* Type used for size_t, as a string used in a declaration. */
778 #define SIZE_TYPE "long unsigned int"
779
780 /* Type used for wchar_t, as a string used in a declaration. */
781 #define WCHAR_TYPE "short unsigned int"
782
783 /* Width of wchar_t in bits. */
784 #define WCHAR_TYPE_SIZE 16
785
786 /* A C expression for the size in bits of the type `short' on the
787 target machine. If you don't define this, the default is half a
788 word. (If this would be less than one storage unit, it is
789 rounded up to one unit.) */
790 #define SHORT_TYPE_SIZE 16
791
792 /* A C expression for the size in bits of the type `int' on the
793 target machine. If you don't define this, the default is one
794 word. */
795 #define INT_TYPE_SIZE 32
796
797 /* A C expression for the size in bits of the type `long' on the
798 target machine. If you don't define this, the default is one
799 word. */
800 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
801
802 /* A C expression for the size in bits of the type `long long' on the
803 target machine. If you don't define this, the default is two
804 words. */
805 #define LONG_LONG_TYPE_SIZE 64
806
807 /* A C expression for the size in bits of the type `float' on the
808 target machine. If you don't define this, the default is one
809 word. */
810 #define FLOAT_TYPE_SIZE 32
811
812 /* A C expression for the size in bits of the type `double' on the
813 target machine. If you don't define this, the default is two
814 words. */
815 #define DOUBLE_TYPE_SIZE 64
816
817 /* A C expression for the size in bits of the type `long double' on
818 the target machine. If you don't define this, the default is two
819 words. */
820 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
821
822 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
823 #define WIDEST_HARDWARE_FP_SIZE 64
824
825 /* Width in bits of a pointer.
826 See also the macro `Pmode' defined below. */
827 extern unsigned rs6000_pointer_size;
828 #define POINTER_SIZE rs6000_pointer_size
829
830 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
831 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
832
833 /* Boundary (in *bits*) on which stack pointer should be aligned. */
834 #define STACK_BOUNDARY \
835 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
836 ? 64 : 128)
837
838 /* Allocation boundary (in *bits*) for the code of a function. */
839 #define FUNCTION_BOUNDARY 32
840
841 /* No data type wants to be aligned rounder than this. */
842 #define BIGGEST_ALIGNMENT 128
843
844 /* Alignment of field after `int : 0' in a structure. */
845 #define EMPTY_FIELD_BOUNDARY 32
846
847 /* Every structure's size must be a multiple of this. */
848 #define STRUCTURE_SIZE_BOUNDARY 8
849
850 /* A bit-field declared as `int' forces `int' alignment for the struct. */
851 #define PCC_BITFIELD_TYPE_MATTERS 1
852
853 enum data_align { align_abi, align_opt, align_both };
854
855 /* A C expression to compute the alignment for a variables in the
856 local store. TYPE is the data type, and ALIGN is the alignment
857 that the object would ordinarily have. */
858 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
859 rs6000_data_alignment (TYPE, ALIGN, align_both)
860
861 /* Make arrays of chars word-aligned for the same reasons. */
862 #define DATA_ALIGNMENT(TYPE, ALIGN) \
863 rs6000_data_alignment (TYPE, ALIGN, align_opt)
864
865 /* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
866 64 bits. */
867 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
868 rs6000_data_alignment (TYPE, ALIGN, align_abi)
869
870 /* Nonzero if move instructions will actually fail to work
871 when given unaligned data. */
872 #define STRICT_ALIGNMENT 0
873 \f
874 /* Standard register usage. */
875
876 /* Number of actual hardware registers.
877 The hardware registers are assigned numbers for the compiler
878 from 0 to just below FIRST_PSEUDO_REGISTER.
879 All registers that the compiler knows about must be given numbers,
880 even those that are not normally considered general registers.
881
882 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
883 a count register, a link register, and 8 condition register fields,
884 which we view here as separate registers. AltiVec adds 32 vector
885 registers and a VRsave register.
886
887 In addition, the difference between the frame and argument pointers is
888 a function of the number of registers saved, so we need to have a
889 register for AP that will later be eliminated in favor of SP or FP.
890 This is a normal register, but it is fixed.
891
892 We also create a pseudo register for float/int conversions, that will
893 really represent the memory location used. It is represented here as
894 a register, in order to work around problems in allocating stack storage
895 in inline functions.
896
897 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
898 pointer, which is eventually eliminated in favor of SP or FP.
899
900 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
901
902 #define FIRST_PSEUDO_REGISTER 149
903
904 /* This must be included for pre gcc 3.0 glibc compatibility. */
905 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
906
907 /* True if register is an SPE High register. */
908 #define SPE_HIGH_REGNO_P(N) \
909 ((N) >= FIRST_SPE_HIGH_REGNO && (N) <= LAST_SPE_HIGH_REGNO)
910
911 /* SPE high registers added as hard regs.
912 The sfp register and 3 HTM registers
913 aren't included in DWARF_FRAME_REGISTERS. */
914 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
915
916 /* The SPE has an additional 32 synthetic registers, with DWARF debug
917 info numbering for these registers starting at 1200. While eh_frame
918 register numbering need not be the same as the debug info numbering,
919 we choose to number these regs for eh_frame at 1200 too.
920
921 We must map them here to avoid huge unwinder tables mostly consisting
922 of unused space. */
923 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
924 ((r) >= 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
925
926 /* Use standard DWARF numbering for DWARF debugging information. */
927 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
928
929 /* Use gcc hard register numbering for eh_frame. */
930 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
931
932 /* Map register numbers held in the call frame info that gcc has
933 collected using DWARF_FRAME_REGNUM to those that should be output in
934 .debug_frame and .eh_frame. */
935 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
936 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
937
938 /* 1 for registers that have pervasive standard uses
939 and are not available for the register allocator.
940
941 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
942 as a local register; for all other OS's r2 is the TOC pointer.
943
944 On System V implementations, r13 is fixed and not available for use. */
945
946 #define FIXED_REGISTERS \
947 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
948 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
949 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
950 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
951 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
952 /* AltiVec registers. */ \
953 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
954 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
955 1, 1 \
956 , 1, 1, 1, 1, 1, 1, \
957 /* SPE High registers. */ \
958 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
959 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
960 }
961
962 /* 1 for registers not available across function calls.
963 These must include the FIXED_REGISTERS and also any
964 registers that can be used without being saved.
965 The latter must include the registers where values are returned
966 and the register where structure-value addresses are passed.
967 Aside from that, you can include as many other registers as you like. */
968
969 #define CALL_USED_REGISTERS \
970 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
971 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
972 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
973 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
974 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
975 /* AltiVec registers. */ \
976 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
977 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
978 1, 1 \
979 , 1, 1, 1, 1, 1, 1, \
980 /* SPE High registers. */ \
981 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
982 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
983 }
984
985 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
986 the entire set of `FIXED_REGISTERS' be included.
987 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
988 This macro is optional. If not specified, it defaults to the value
989 of `CALL_USED_REGISTERS'. */
990
991 #define CALL_REALLY_USED_REGISTERS \
992 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
993 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
994 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
995 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
996 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
997 /* AltiVec registers. */ \
998 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
999 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1000 0, 0 \
1001 , 0, 0, 0, 0, 0, 0, \
1002 /* SPE High registers. */ \
1003 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1004 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
1005 }
1006
1007 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
1008
1009 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
1010 #define FIRST_SAVED_FP_REGNO (14+32)
1011 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
1012
1013 /* List the order in which to allocate registers. Each register must be
1014 listed once, even those in FIXED_REGISTERS.
1015
1016 We allocate in the following order:
1017 fp0 (not saved or used for anything)
1018 fp13 - fp2 (not saved; incoming fp arg registers)
1019 fp1 (not saved; return value)
1020 fp31 - fp14 (saved; order given to save least number)
1021 cr7, cr5 (not saved or special)
1022 cr6 (not saved, but used for vector operations)
1023 cr1 (not saved, but used for FP operations)
1024 cr0 (not saved, but used for arithmetic operations)
1025 cr4, cr3, cr2 (saved)
1026 r9 (not saved; best for TImode)
1027 r10, r8-r4 (not saved; highest first for less conflict with params)
1028 r3 (not saved; return value register)
1029 r11 (not saved; later alloc to help shrink-wrap)
1030 r0 (not saved; cannot be base reg)
1031 r31 - r13 (saved; order given to save least number)
1032 r12 (not saved; if used for DImode or DFmode would use r13)
1033 ctr (not saved; when we have the choice ctr is better)
1034 lr (saved)
1035 r1, r2, ap, ca (fixed)
1036 v0 - v1 (not saved or used for anything)
1037 v13 - v3 (not saved; incoming vector arg registers)
1038 v2 (not saved; incoming vector arg reg; return value)
1039 v19 - v14 (not saved or used for anything)
1040 v31 - v20 (saved; order given to save least number)
1041 vrsave, vscr (fixed)
1042 spe_acc, spefscr (fixed)
1043 sfp (fixed)
1044 tfhar (fixed)
1045 tfiar (fixed)
1046 texasr (fixed)
1047 */
1048
1049 #if FIXED_R2 == 1
1050 #define MAYBE_R2_AVAILABLE
1051 #define MAYBE_R2_FIXED 2,
1052 #else
1053 #define MAYBE_R2_AVAILABLE 2,
1054 #define MAYBE_R2_FIXED
1055 #endif
1056
1057 #if FIXED_R13 == 1
1058 #define EARLY_R12 12,
1059 #define LATE_R12
1060 #else
1061 #define EARLY_R12
1062 #define LATE_R12 12,
1063 #endif
1064
1065 #define REG_ALLOC_ORDER \
1066 {32, \
1067 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1068 /* not use fr14 which is a saved register. */ \
1069 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
1070 33, \
1071 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1072 50, 49, 48, 47, 46, \
1073 75, 73, 74, 69, 68, 72, 71, 70, \
1074 MAYBE_R2_AVAILABLE \
1075 9, 10, 8, 7, 6, 5, 4, \
1076 3, EARLY_R12 11, 0, \
1077 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
1078 18, 17, 16, 15, 14, 13, LATE_R12 \
1079 66, 65, \
1080 1, MAYBE_R2_FIXED 67, 76, \
1081 /* AltiVec registers. */ \
1082 77, 78, \
1083 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1084 79, \
1085 96, 95, 94, 93, 92, 91, \
1086 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1087 109, 110, \
1088 111, 112, 113, 114, 115, 116, \
1089 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, \
1090 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, \
1091 141, 142, 143, 144, 145, 146, 147, 148 \
1092 }
1093
1094 /* True if register is floating-point. */
1095 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1096
1097 /* True if register is a condition register. */
1098 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1099
1100 /* True if register is a condition register, but not cr0. */
1101 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1102
1103 /* True if register is an integer register. */
1104 #define INT_REGNO_P(N) \
1105 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1106
1107 /* SPE SIMD registers are just the GPRs. */
1108 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1109
1110 /* PAIRED SIMD registers are just the FPRs. */
1111 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1112
1113 /* True if register is the CA register. */
1114 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1115
1116 /* True if register is an AltiVec register. */
1117 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1118
1119 /* True if register is a VSX register. */
1120 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1121
1122 /* Alternate name for any vector register supporting floating point, no matter
1123 which instruction set(s) are available. */
1124 #define VFLOAT_REGNO_P(N) \
1125 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1126
1127 /* Alternate name for any vector register supporting integer, no matter which
1128 instruction set(s) are available. */
1129 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1130
1131 /* Alternate name for any vector register supporting logical operations, no
1132 matter which instruction set(s) are available. Allow GPRs as well as the
1133 vector registers. */
1134 #define VLOGICAL_REGNO_P(N) \
1135 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1136 || (TARGET_VSX && FP_REGNO_P (N))) \
1137
1138 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1139 enough space to account for vectors in FP regs. However, TFmode/TDmode
1140 should not use VSX instructions to do a caller save. */
1141 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1142 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
1143 ? (MODE) \
1144 : TARGET_VSX \
1145 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1146 && FP_REGNO_P (REGNO) \
1147 ? V2DFmode \
1148 : TARGET_E500_DOUBLE && (MODE) == SImode \
1149 ? SImode \
1150 : TARGET_E500_DOUBLE && ((MODE) == VOIDmode || (MODE) == DFmode) \
1151 ? DFmode \
1152 : !TARGET_E500_DOUBLE && FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
1153 ? DFmode \
1154 : !TARGET_E500_DOUBLE && (MODE) == TDmode && FP_REGNO_P (REGNO) \
1155 ? DImode \
1156 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1157
1158 #define VSX_VECTOR_MODE(MODE) \
1159 ((MODE) == V4SFmode \
1160 || (MODE) == V2DFmode) \
1161
1162 /* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1163 really a vector, but we want to treat it as a vector for moves, and
1164 such. */
1165
1166 #define ALTIVEC_VECTOR_MODE(MODE) \
1167 ((MODE) == V16QImode \
1168 || (MODE) == V8HImode \
1169 || (MODE) == V4SFmode \
1170 || (MODE) == V4SImode \
1171 || FLOAT128_VECTOR_P (MODE))
1172
1173 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1174 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1175 || (MODE) == V2DImode || (MODE) == V1TImode)
1176
1177 #define SPE_VECTOR_MODE(MODE) \
1178 ((MODE) == V4HImode \
1179 || (MODE) == V2SFmode \
1180 || (MODE) == V1DImode \
1181 || (MODE) == V2SImode)
1182
1183 #define PAIRED_VECTOR_MODE(MODE) \
1184 ((MODE) == V2SFmode)
1185
1186 /* Post-reload, we can't use any new AltiVec registers, as we already
1187 emitted the vrsave mask. */
1188
1189 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1190 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1191
1192 /* Specify the cost of a branch insn; roughly the number of extra insns that
1193 should be added to avoid a branch.
1194
1195 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1196 unscheduled conditional branch. */
1197
1198 #define BRANCH_COST(speed_p, predictable_p) 3
1199
1200 /* Override BRANCH_COST heuristic which empirically produces worse
1201 performance for removing short circuiting from the logical ops. */
1202
1203 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1204
1205 /* A fixed register used at epilogue generation to address SPE registers
1206 with negative offsets. The 64-bit load/store instructions on the SPE
1207 only take positive offsets (and small ones at that), so we need to
1208 reserve a register for consing up negative offsets. */
1209
1210 #define FIXED_SCRATCH 0
1211
1212 /* Specify the registers used for certain standard purposes.
1213 The values of these macros are register numbers. */
1214
1215 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1216 /* #define PC_REGNUM */
1217
1218 /* Register to use for pushing function arguments. */
1219 #define STACK_POINTER_REGNUM 1
1220
1221 /* Base register for access to local variables of the function. */
1222 #define HARD_FRAME_POINTER_REGNUM 31
1223
1224 /* Base register for access to local variables of the function. */
1225 #define FRAME_POINTER_REGNUM 113
1226
1227 /* Base register for access to arguments of the function. */
1228 #define ARG_POINTER_REGNUM 67
1229
1230 /* Place to put static chain when calling a function that requires it. */
1231 #define STATIC_CHAIN_REGNUM 11
1232
1233 /* Base register for access to thread local storage variables. */
1234 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1235
1236 \f
1237 /* Define the classes of registers for register constraints in the
1238 machine description. Also define ranges of constants.
1239
1240 One of the classes must always be named ALL_REGS and include all hard regs.
1241 If there is more than one class, another class must be named NO_REGS
1242 and contain no registers.
1243
1244 The name GENERAL_REGS must be the name of a class (or an alias for
1245 another name such as ALL_REGS). This is the class of registers
1246 that is allowed by "g" or "r" in a register constraint.
1247 Also, registers outside this class are allocated only when
1248 instructions express preferences for them.
1249
1250 The classes must be numbered in nondecreasing order; that is,
1251 a larger-numbered class must never be contained completely
1252 in a smaller-numbered class.
1253
1254 For any two classes, it is very desirable that there be another
1255 class that represents their union. */
1256
1257 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1258 condition registers, plus three special registers, CTR, and the link
1259 register. AltiVec adds a vector register class. VSX registers overlap the
1260 FPR registers and the Altivec registers.
1261
1262 However, r0 is special in that it cannot be used as a base register.
1263 So make a class for registers valid as base registers.
1264
1265 Also, cr0 is the only condition code register that can be used in
1266 arithmetic insns, so make a separate class for it. */
1267
1268 enum reg_class
1269 {
1270 NO_REGS,
1271 BASE_REGS,
1272 GENERAL_REGS,
1273 FLOAT_REGS,
1274 ALTIVEC_REGS,
1275 VSX_REGS,
1276 VRSAVE_REGS,
1277 VSCR_REGS,
1278 SPE_ACC_REGS,
1279 SPEFSCR_REGS,
1280 SPR_REGS,
1281 NON_SPECIAL_REGS,
1282 LINK_REGS,
1283 CTR_REGS,
1284 LINK_OR_CTR_REGS,
1285 SPECIAL_REGS,
1286 SPEC_OR_GEN_REGS,
1287 CR0_REGS,
1288 CR_REGS,
1289 NON_FLOAT_REGS,
1290 CA_REGS,
1291 SPE_HIGH_REGS,
1292 ALL_REGS,
1293 LIM_REG_CLASSES
1294 };
1295
1296 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1297
1298 /* Give names of register classes as strings for dump file. */
1299
1300 #define REG_CLASS_NAMES \
1301 { \
1302 "NO_REGS", \
1303 "BASE_REGS", \
1304 "GENERAL_REGS", \
1305 "FLOAT_REGS", \
1306 "ALTIVEC_REGS", \
1307 "VSX_REGS", \
1308 "VRSAVE_REGS", \
1309 "VSCR_REGS", \
1310 "SPE_ACC_REGS", \
1311 "SPEFSCR_REGS", \
1312 "SPR_REGS", \
1313 "NON_SPECIAL_REGS", \
1314 "LINK_REGS", \
1315 "CTR_REGS", \
1316 "LINK_OR_CTR_REGS", \
1317 "SPECIAL_REGS", \
1318 "SPEC_OR_GEN_REGS", \
1319 "CR0_REGS", \
1320 "CR_REGS", \
1321 "NON_FLOAT_REGS", \
1322 "CA_REGS", \
1323 "SPE_HIGH_REGS", \
1324 "ALL_REGS" \
1325 }
1326
1327 /* Define which registers fit in which classes.
1328 This is an initializer for a vector of HARD_REG_SET
1329 of length N_REG_CLASSES. */
1330
1331 #define REG_CLASS_CONTENTS \
1332 { \
1333 /* NO_REGS. */ \
1334 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1335 /* BASE_REGS. */ \
1336 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1337 /* GENERAL_REGS. */ \
1338 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1339 /* FLOAT_REGS. */ \
1340 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, \
1341 /* ALTIVEC_REGS. */ \
1342 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff, 0x00000000 }, \
1343 /* VSX_REGS. */ \
1344 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff, 0x00000000 }, \
1345 /* VRSAVE_REGS. */ \
1346 { 0x00000000, 0x00000000, 0x00000000, 0x00002000, 0x00000000 }, \
1347 /* VSCR_REGS. */ \
1348 { 0x00000000, 0x00000000, 0x00000000, 0x00004000, 0x00000000 }, \
1349 /* SPE_ACC_REGS. */ \
1350 { 0x00000000, 0x00000000, 0x00000000, 0x00008000, 0x00000000 }, \
1351 /* SPEFSCR_REGS. */ \
1352 { 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00000000 }, \
1353 /* SPR_REGS. */ \
1354 { 0x00000000, 0x00000000, 0x00000000, 0x00040000, 0x00000000 }, \
1355 /* NON_SPECIAL_REGS. */ \
1356 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000, 0x00000000 }, \
1357 /* LINK_REGS. */ \
1358 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000 }, \
1359 /* CTR_REGS. */ \
1360 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000 }, \
1361 /* LINK_OR_CTR_REGS. */ \
1362 { 0x00000000, 0x00000000, 0x00000006, 0x00000000, 0x00000000 }, \
1363 /* SPECIAL_REGS. */ \
1364 { 0x00000000, 0x00000000, 0x00000006, 0x00002000, 0x00000000 }, \
1365 /* SPEC_OR_GEN_REGS. */ \
1366 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000, 0x00000000 }, \
1367 /* CR0_REGS. */ \
1368 { 0x00000000, 0x00000000, 0x00000010, 0x00000000, 0x00000000 }, \
1369 /* CR_REGS. */ \
1370 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000, 0x00000000 }, \
1371 /* NON_FLOAT_REGS. */ \
1372 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000, 0x00000000 }, \
1373 /* CA_REGS. */ \
1374 { 0x00000000, 0x00000000, 0x00001000, 0x00000000, 0x00000000 }, \
1375 /* SPE_HIGH_REGS. */ \
1376 { 0x00000000, 0x00000000, 0x00000000, 0xffe00000, 0x001fffff }, \
1377 /* ALL_REGS. */ \
1378 { 0xffffffff, 0xffffffff, 0xfffffffe, 0xffe7ffff, 0x001fffff } \
1379 }
1380
1381 /* The same information, inverted:
1382 Return the class number of the smallest class containing
1383 reg number REGNO. This could be a conditional expression
1384 or could index an array. */
1385
1386 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1387
1388 #define REGNO_REG_CLASS(REGNO) \
1389 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1390 rs6000_regno_regclass[(REGNO)])
1391
1392 /* Register classes for various constraints that are based on the target
1393 switches. */
1394 enum r6000_reg_class_enum {
1395 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1396 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1397 RS6000_CONSTRAINT_v, /* Altivec registers */
1398 RS6000_CONSTRAINT_wa, /* Any VSX register */
1399 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
1400 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1401 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
1402 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1403 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
1404 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1405 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1406 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1407 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
1408 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
1409 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
1410 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
1411 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1412 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
1413 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1414 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1415 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
1416 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1417 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1418 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
1419 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1420 RS6000_CONSTRAINT_wy, /* VSX register for SF */
1421 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
1422 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
1423 RS6000_CONSTRAINT_wH, /* Altivec register for 32-bit integers. */
1424 RS6000_CONSTRAINT_wI, /* VSX register for 32-bit integers. */
1425 RS6000_CONSTRAINT_wJ, /* VSX register for 8/16-bit integers. */
1426 RS6000_CONSTRAINT_wK, /* Altivec register for 16/32-bit integers. */
1427 RS6000_CONSTRAINT_MAX
1428 };
1429
1430 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1431
1432 /* The class value for index registers, and the one for base regs. */
1433 #define INDEX_REG_CLASS GENERAL_REGS
1434 #define BASE_REG_CLASS BASE_REGS
1435
1436 /* Return whether a given register class can hold VSX objects. */
1437 #define VSX_REG_CLASS_P(CLASS) \
1438 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1439
1440 /* Return whether a given register class targets general purpose registers. */
1441 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1442
1443 /* Given an rtx X being reloaded into a reg required to be
1444 in class CLASS, return the class of reg to actually use.
1445 In general this is just CLASS; but on some machines
1446 in some cases it is preferable to use a more restrictive class.
1447
1448 On the RS/6000, we have to return NO_REGS when we want to reload a
1449 floating-point CONST_DOUBLE to force it to be copied to memory.
1450
1451 We also don't want to reload integer values into floating-point
1452 registers if we can at all help it. In fact, this can
1453 cause reload to die, if it tries to generate a reload of CTR
1454 into a FP register and discovers it doesn't have the memory location
1455 required.
1456
1457 ??? Would it be a good idea to have reload do the converse, that is
1458 try to reload floating modes into FP registers if possible?
1459 */
1460
1461 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1462 rs6000_preferred_reload_class_ptr (X, CLASS)
1463
1464 /* Return the register class of a scratch register needed to copy IN into
1465 or out of a register in CLASS in MODE. If it can be done directly,
1466 NO_REGS is returned. */
1467
1468 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1469 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1470
1471 /* For cpus that cannot load/store SDmode values from the 64-bit
1472 FP registers without using a full 64-bit load/store, we need
1473 to allocate a full 64-bit stack slot for them. */
1474
1475 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1476 rs6000_secondary_memory_needed_rtx (MODE)
1477
1478 /* Return the maximum number of consecutive registers
1479 needed to represent mode MODE in a register of class CLASS.
1480
1481 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1482 a single reg is enough for two words, unless we have VSX, where the FP
1483 registers can hold 128 bits. */
1484 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1485
1486 /* Stack layout; function entry, exit and calling. */
1487
1488 /* Define this if pushing a word on the stack
1489 makes the stack pointer a smaller address. */
1490 #define STACK_GROWS_DOWNWARD 1
1491
1492 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1493 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1494
1495 /* Define this to nonzero if the nominal address of the stack frame
1496 is at the high-address end of the local variables;
1497 that is, each additional local variable allocated
1498 goes at a more negative offset in the frame.
1499
1500 On the RS/6000, we grow upwards, from the area after the outgoing
1501 arguments. */
1502 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1503 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1504
1505 /* Size of the fixed area on the stack */
1506 #define RS6000_SAVE_AREA \
1507 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1508 << (TARGET_64BIT ? 1 : 0))
1509
1510 /* Stack offset for toc save slot. */
1511 #define RS6000_TOC_SAVE_SLOT \
1512 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1513
1514 /* Align an address */
1515 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1516
1517 /* Offset within stack frame to start allocating local variables at.
1518 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1519 first local allocated. Otherwise, it is the offset to the BEGINNING
1520 of the first local allocated.
1521
1522 On the RS/6000, the frame pointer is the same as the stack pointer,
1523 except for dynamic allocations. So we start after the fixed area and
1524 outgoing parameter area.
1525
1526 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1527 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1528 sizes of the fixed area and the parameter area must be a multiple of
1529 STACK_BOUNDARY. */
1530
1531 #define RS6000_STARTING_FRAME_OFFSET \
1532 (cfun->calls_alloca \
1533 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1534 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1535 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1536 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1537 + RS6000_SAVE_AREA))
1538
1539 /* Offset from the stack pointer register to an item dynamically
1540 allocated on the stack, e.g., by `alloca'.
1541
1542 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1543 length of the outgoing arguments. The default is correct for most
1544 machines. See `function.c' for details.
1545
1546 This value must be a multiple of STACK_BOUNDARY (hard coded in
1547 `emit-rtl.c'). */
1548 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1549 RS6000_ALIGN (crtl->outgoing_args_size.to_constant () \
1550 + STACK_POINTER_OFFSET, \
1551 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1552
1553 /* If we generate an insn to push BYTES bytes,
1554 this says how many the stack pointer really advances by.
1555 On RS/6000, don't define this because there are no push insns. */
1556 /* #define PUSH_ROUNDING(BYTES) */
1557
1558 /* Offset of first parameter from the argument pointer register value.
1559 On the RS/6000, we define the argument pointer to the start of the fixed
1560 area. */
1561 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1562
1563 /* Offset from the argument pointer register value to the top of
1564 stack. This is different from FIRST_PARM_OFFSET because of the
1565 register save area. */
1566 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1567
1568 /* Define this if stack space is still allocated for a parameter passed
1569 in a register. The value is the number of bytes allocated to this
1570 area. */
1571 #define REG_PARM_STACK_SPACE(FNDECL) \
1572 rs6000_reg_parm_stack_space ((FNDECL), false)
1573
1574 /* Define this macro if space guaranteed when compiling a function body
1575 is different to space required when making a call, a situation that
1576 can arise with K&R style function definitions. */
1577 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1578 rs6000_reg_parm_stack_space ((FNDECL), true)
1579
1580 /* Define this if the above stack space is to be considered part of the
1581 space allocated by the caller. */
1582 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1583
1584 /* This is the difference between the logical top of stack and the actual sp.
1585
1586 For the RS/6000, sp points past the fixed area. */
1587 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1588
1589 /* Define this if the maximum size of all the outgoing args is to be
1590 accumulated and pushed during the prologue. The amount can be
1591 found in the variable crtl->outgoing_args_size. */
1592 #define ACCUMULATE_OUTGOING_ARGS 1
1593
1594 /* Define how to find the value returned by a library function
1595 assuming the value has mode MODE. */
1596
1597 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1598
1599 /* DRAFT_V4_STRUCT_RET defaults off. */
1600 #define DRAFT_V4_STRUCT_RET 0
1601
1602 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1603 #define DEFAULT_PCC_STRUCT_RETURN 0
1604
1605 /* Mode of stack savearea.
1606 FUNCTION is VOIDmode because calling convention maintains SP.
1607 BLOCK needs Pmode for SP.
1608 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1609 #define STACK_SAVEAREA_MODE(LEVEL) \
1610 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1611 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1612
1613 /* Minimum and maximum general purpose registers used to hold arguments. */
1614 #define GP_ARG_MIN_REG 3
1615 #define GP_ARG_MAX_REG 10
1616 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1617
1618 /* Minimum and maximum floating point registers used to hold arguments. */
1619 #define FP_ARG_MIN_REG 33
1620 #define FP_ARG_AIX_MAX_REG 45
1621 #define FP_ARG_V4_MAX_REG 40
1622 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1623 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1624 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1625
1626 /* Minimum and maximum AltiVec registers used to hold arguments. */
1627 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1628 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1629 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1630
1631 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1632 #define AGGR_ARG_NUM_REG 8
1633
1634 /* Return registers */
1635 #define GP_ARG_RETURN GP_ARG_MIN_REG
1636 #define FP_ARG_RETURN FP_ARG_MIN_REG
1637 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1638 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1639 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1640 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1641 ? (ALTIVEC_ARG_RETURN \
1642 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1643 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1644
1645 /* Flags for the call/call_value rtl operations set up by function_arg */
1646 #define CALL_NORMAL 0x00000000 /* no special processing */
1647 /* Bits in 0x00000001 are unused. */
1648 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1649 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1650 #define CALL_LONG 0x00000008 /* always call indirect */
1651 #define CALL_LIBCALL 0x00000010 /* libcall */
1652
1653 /* We don't have prologue and epilogue functions to save/restore
1654 everything for most ABIs. */
1655 #define WORLD_SAVE_P(INFO) 0
1656
1657 /* 1 if N is a possible register number for a function value
1658 as seen by the caller.
1659
1660 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1661 #define FUNCTION_VALUE_REGNO_P(N) \
1662 ((N) == GP_ARG_RETURN \
1663 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
1664 && TARGET_HARD_FLOAT && TARGET_FPRS) \
1665 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
1666 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1667
1668 /* 1 if N is a possible register number for function argument passing.
1669 On RS/6000, these are r3-r10 and fp1-fp13.
1670 On AltiVec, v2 - v13 are used for passing vectors. */
1671 #define FUNCTION_ARG_REGNO_P(N) \
1672 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1673 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
1674 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1675 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
1676 && TARGET_HARD_FLOAT && TARGET_FPRS))
1677 \f
1678 /* Define a data type for recording info about an argument list
1679 during the scan of that argument list. This data type should
1680 hold all necessary information about the function itself
1681 and about the args processed so far, enough to enable macros
1682 such as FUNCTION_ARG to determine where the next arg should go.
1683
1684 On the RS/6000, this is a structure. The first element is the number of
1685 total argument words, the second is used to store the next
1686 floating-point register number, and the third says how many more args we
1687 have prototype types for.
1688
1689 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1690 the next available GP register, `fregno' is the next available FP
1691 register, and `words' is the number of words used on the stack.
1692
1693 The varargs/stdarg support requires that this structure's size
1694 be a multiple of sizeof(int). */
1695
1696 typedef struct rs6000_args
1697 {
1698 int words; /* # words used for passing GP registers */
1699 int fregno; /* next available FP register */
1700 int vregno; /* next available AltiVec register */
1701 int nargs_prototype; /* # args left in the current prototype */
1702 int prototype; /* Whether a prototype was defined */
1703 int stdarg; /* Whether function is a stdarg function. */
1704 int call_cookie; /* Do special things for this call */
1705 int sysv_gregno; /* next available GP register */
1706 int intoffset; /* running offset in struct (darwin64) */
1707 int use_stack; /* any part of struct on stack (darwin64) */
1708 int floats_in_gpr; /* count of SFmode floats taking up
1709 GPR space (darwin64) */
1710 int named; /* false for varargs params */
1711 int escapes; /* if function visible outside tu */
1712 int libcall; /* If this is a compiler generated call. */
1713 } CUMULATIVE_ARGS;
1714
1715 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1716 for a call to a function whose data type is FNTYPE.
1717 For a library call, FNTYPE is 0. */
1718
1719 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1720 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1721 N_NAMED_ARGS, FNDECL, VOIDmode)
1722
1723 /* Similar, but when scanning the definition of a procedure. We always
1724 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1725
1726 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1727 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1728 1000, current_function_decl, VOIDmode)
1729
1730 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1731
1732 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1733 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1734 0, NULL_TREE, MODE)
1735
1736 #define PAD_VARARGS_DOWN \
1737 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1738
1739 /* Output assembler code to FILE to increment profiler label # LABELNO
1740 for profiling a function entry. */
1741
1742 #define FUNCTION_PROFILER(FILE, LABELNO) \
1743 output_function_profiler ((FILE), (LABELNO));
1744
1745 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1746 the stack pointer does not matter. No definition is equivalent to
1747 always zero.
1748
1749 On the RS/6000, this is nonzero because we can restore the stack from
1750 its backpointer, which we maintain. */
1751 #define EXIT_IGNORE_STACK 1
1752
1753 /* Define this macro as a C expression that is nonzero for registers
1754 that are used by the epilogue or the return' pattern. The stack
1755 and frame pointer registers are already be assumed to be used as
1756 needed. */
1757
1758 #define EPILOGUE_USES(REGNO) \
1759 ((reload_completed && (REGNO) == LR_REGNO) \
1760 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1761 || (crtl->calls_eh_return \
1762 && TARGET_AIX \
1763 && (REGNO) == 2))
1764
1765 \f
1766 /* Length in units of the trampoline for entering a nested function. */
1767
1768 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1769 \f
1770 /* Definitions for __builtin_return_address and __builtin_frame_address.
1771 __builtin_return_address (0) should give link register (LR_REGNO), enable
1772 this. */
1773 /* This should be uncommented, so that the link register is used, but
1774 currently this would result in unmatched insns and spilling fixed
1775 registers so we'll leave it for another day. When these problems are
1776 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1777 (mrs) */
1778 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1779
1780 /* Number of bytes into the frame return addresses can be found. See
1781 rs6000_stack_info in powerpcspe.c for more information on how the different
1782 abi's store the return address. */
1783 #define RETURN_ADDRESS_OFFSET \
1784 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1785
1786 /* The current return address is in link register (65). The return address
1787 of anything farther back is accessed normally at an offset of 8 from the
1788 frame pointer. */
1789 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1790 (rs6000_return_addr (COUNT, FRAME))
1791
1792 \f
1793 /* Definitions for register eliminations.
1794
1795 We have two registers that can be eliminated on the RS/6000. First, the
1796 frame pointer register can often be eliminated in favor of the stack
1797 pointer register. Secondly, the argument pointer register can always be
1798 eliminated; it is replaced with either the stack or frame pointer.
1799
1800 In addition, we use the elimination mechanism to see if r30 is needed
1801 Initially we assume that it isn't. If it is, we spill it. This is done
1802 by making it an eliminable register. We replace it with itself so that
1803 if it isn't needed, then existing uses won't be modified. */
1804
1805 /* This is an array of structures. Each structure initializes one pair
1806 of eliminable registers. The "from" register number is given first,
1807 followed by "to". Eliminations of the same "from" register are listed
1808 in order of preference. */
1809 #define ELIMINABLE_REGS \
1810 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1811 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1812 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1813 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1814 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1815 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1816
1817 /* Define the offset between two registers, one to be eliminated, and the other
1818 its replacement, at the start of a routine. */
1819 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1820 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1821 \f
1822 /* Addressing modes, and classification of registers for them. */
1823
1824 #define HAVE_PRE_DECREMENT 1
1825 #define HAVE_PRE_INCREMENT 1
1826 #define HAVE_PRE_MODIFY_DISP 1
1827 #define HAVE_PRE_MODIFY_REG 1
1828
1829 /* Macros to check register numbers against specific register classes. */
1830
1831 /* These assume that REGNO is a hard or pseudo reg number.
1832 They give nonzero only if REGNO is a hard reg of the suitable class
1833 or a pseudo reg currently allocated to a suitable hard reg.
1834 Since they use reg_renumber, they are safe only once reg_renumber
1835 has been allocated, which happens in reginfo.c during register
1836 allocation. */
1837
1838 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1839 ((REGNO) < FIRST_PSEUDO_REGISTER \
1840 ? (REGNO) <= 31 || (REGNO) == 67 \
1841 || (REGNO) == FRAME_POINTER_REGNUM \
1842 : (reg_renumber[REGNO] >= 0 \
1843 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1844 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1845
1846 #define REGNO_OK_FOR_BASE_P(REGNO) \
1847 ((REGNO) < FIRST_PSEUDO_REGISTER \
1848 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1849 || (REGNO) == FRAME_POINTER_REGNUM \
1850 : (reg_renumber[REGNO] > 0 \
1851 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1852 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1853
1854 /* Nonzero if X is a hard reg that can be used as an index
1855 or if it is a pseudo reg in the non-strict case. */
1856 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1857 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1858 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1859
1860 /* Nonzero if X is a hard reg that can be used as a base reg
1861 or if it is a pseudo reg in the non-strict case. */
1862 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1863 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1864 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1865
1866 \f
1867 /* Maximum number of registers that can appear in a valid memory address. */
1868
1869 #define MAX_REGS_PER_ADDRESS 2
1870
1871 /* Recognize any constant value that is a valid address. */
1872
1873 #define CONSTANT_ADDRESS_P(X) \
1874 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1875 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1876 || GET_CODE (X) == HIGH)
1877
1878 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1879 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1880 && EASY_VECTOR_15((n) >> 1) \
1881 && ((n) & 1) == 0)
1882
1883 #define EASY_VECTOR_MSB(n,mode) \
1884 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
1885 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1886
1887 \f
1888 /* Try a machine-dependent way of reloading an illegitimate address
1889 operand. If we find one, push the reload and jump to WIN. This
1890 macro is used in only one place: `find_reloads_address' in reload.c.
1891
1892 Implemented on rs6000 by rs6000_legitimize_reload_address.
1893 Note that (X) is evaluated twice; this is safe in current usage. */
1894
1895 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1896 do { \
1897 int win; \
1898 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
1899 (int)(TYPE), (IND_LEVELS), &win); \
1900 if ( win ) \
1901 goto WIN; \
1902 } while (0)
1903
1904 #define FIND_BASE_TERM rs6000_find_base_term
1905 \f
1906 /* The register number of the register used to address a table of
1907 static data addresses in memory. In some cases this register is
1908 defined by a processor's "application binary interface" (ABI).
1909 When this macro is defined, RTL is generated for this register
1910 once, as with the stack pointer and frame pointer registers. If
1911 this macro is not defined, it is up to the machine-dependent files
1912 to allocate such a register (if necessary). */
1913
1914 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1915 #define PIC_OFFSET_TABLE_REGNUM \
1916 (TARGET_TOC ? TOC_REGISTER \
1917 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
1918 : INVALID_REGNUM)
1919
1920 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1921
1922 /* Define this macro if the register defined by
1923 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1924 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1925
1926 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1927
1928 /* A C expression that is nonzero if X is a legitimate immediate
1929 operand on the target machine when generating position independent
1930 code. You can assume that X satisfies `CONSTANT_P', so you need
1931 not check this. You can also assume FLAG_PIC is true, so you need
1932 not check it either. You need not define this macro if all
1933 constants (including `SYMBOL_REF') can be immediate operands when
1934 generating position independent code. */
1935
1936 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1937 \f
1938 /* Define this if some processing needs to be done immediately before
1939 emitting code for an insn. */
1940
1941 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1942 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1943
1944 /* Specify the machine mode that this machine uses
1945 for the index in the tablejump instruction. */
1946 #define CASE_VECTOR_MODE SImode
1947
1948 /* Define as C expression which evaluates to nonzero if the tablejump
1949 instruction expects the table to contain offsets from the address of the
1950 table.
1951 Do not define this if the table should contain absolute addresses. */
1952 #define CASE_VECTOR_PC_RELATIVE 1
1953
1954 /* Define this as 1 if `char' should by default be signed; else as 0. */
1955 #define DEFAULT_SIGNED_CHAR 0
1956
1957 /* An integer expression for the size in bits of the largest integer machine
1958 mode that should actually be used. */
1959
1960 /* Allow pairs of registers to be used, which is the intent of the default. */
1961 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1962
1963 /* Max number of bytes we can move from memory to memory
1964 in one reasonably fast instruction. */
1965 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1966 #define MAX_MOVE_MAX 8
1967
1968 /* Nonzero if access to memory by bytes is no faster than for words.
1969 Also nonzero if doing byte operations (specifically shifts) in registers
1970 is undesirable. */
1971 #define SLOW_BYTE_ACCESS 1
1972
1973 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1974 will either zero-extend or sign-extend. The value of this macro should
1975 be the code that says which one of the two operations is implicitly
1976 done, UNKNOWN if none. */
1977 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1978
1979 /* Define if loading short immediate values into registers sign extends. */
1980 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1981 \f
1982 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1983 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1984 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1985
1986 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1987 zero. The hardware instructions added in Power9 and the sequences using
1988 popcount return 32 or 64. */
1989 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1990 (TARGET_CTZ || TARGET_POPCNTD \
1991 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
1992 : ((VALUE) = -1, 2))
1993
1994 /* Specify the machine mode that pointers have.
1995 After generation of rtl, the compiler makes no further distinction
1996 between pointers and any other objects of this machine mode. */
1997 extern scalar_int_mode rs6000_pmode;
1998 #define Pmode rs6000_pmode
1999
2000 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
2001 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2002
2003 /* Mode of a function address in a call instruction (for indexing purposes).
2004 Doesn't matter on RS/6000. */
2005 #define FUNCTION_MODE SImode
2006
2007 /* Define this if addresses of constant functions
2008 shouldn't be put through pseudo regs where they can be cse'd.
2009 Desirable on machines where ordinary constants are expensive
2010 but a CALL with constant address is cheap. */
2011 #define NO_FUNCTION_CSE 1
2012
2013 /* Define this to be nonzero if shift instructions ignore all but the low-order
2014 few bits.
2015
2016 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2017 have been dropped from the PowerPC architecture. */
2018 #define SHIFT_COUNT_TRUNCATED 0
2019
2020 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2021 should be adjusted to reflect any required changes. This macro is used when
2022 there is some systematic length adjustment required that would be difficult
2023 to express in the length attribute. */
2024
2025 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2026
2027 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2028 COMPARE, return the mode to be used for the comparison. For
2029 floating-point, CCFPmode should be used. CCUNSmode should be used
2030 for unsigned comparisons. CCEQmode should be used when we are
2031 doing an inequality comparison on the result of a
2032 comparison. CCmode should be used in all other cases. */
2033
2034 #define SELECT_CC_MODE(OP,X,Y) \
2035 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2036 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2037 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2038 ? CCEQmode : CCmode))
2039
2040 /* Can the condition code MODE be safely reversed? This is safe in
2041 all cases on this port, because at present it doesn't use the
2042 trapping FP comparisons (fcmpo). */
2043 #define REVERSIBLE_CC_MODE(MODE) 1
2044
2045 /* Given a condition code and a mode, return the inverse condition. */
2046 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2047
2048 \f
2049 /* Control the assembler format that we output. */
2050
2051 /* A C string constant describing how to begin a comment in the target
2052 assembler language. The compiler assumes that the comment will end at
2053 the end of the line. */
2054 #define ASM_COMMENT_START " #"
2055
2056 /* Flag to say the TOC is initialized */
2057 extern int toc_initialized;
2058
2059 /* Macro to output a special constant pool entry. Go to WIN if we output
2060 it. Otherwise, it is written the usual way.
2061
2062 On the RS/6000, toc entries are handled this way. */
2063
2064 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2065 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2066 { \
2067 output_toc (FILE, X, LABELNO, MODE); \
2068 goto WIN; \
2069 } \
2070 }
2071
2072 #ifdef HAVE_GAS_WEAK
2073 #define RS6000_WEAK 1
2074 #else
2075 #define RS6000_WEAK 0
2076 #endif
2077
2078 #if RS6000_WEAK
2079 /* Used in lieu of ASM_WEAKEN_LABEL. */
2080 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2081 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
2082 #endif
2083
2084 #if HAVE_GAS_WEAKREF
2085 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2086 do \
2087 { \
2088 fputs ("\t.weakref\t", (FILE)); \
2089 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2090 fputs (", ", (FILE)); \
2091 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2092 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2093 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2094 { \
2095 fputs ("\n\t.weakref\t.", (FILE)); \
2096 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2097 fputs (", .", (FILE)); \
2098 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2099 } \
2100 fputc ('\n', (FILE)); \
2101 } while (0)
2102 #endif
2103
2104 /* This implements the `alias' attribute. */
2105 #undef ASM_OUTPUT_DEF_FROM_DECLS
2106 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2107 do \
2108 { \
2109 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2110 const char *name = IDENTIFIER_POINTER (TARGET); \
2111 if (TREE_CODE (DECL) == FUNCTION_DECL \
2112 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2113 { \
2114 if (TREE_PUBLIC (DECL)) \
2115 { \
2116 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2117 { \
2118 fputs ("\t.globl\t.", FILE); \
2119 RS6000_OUTPUT_BASENAME (FILE, alias); \
2120 putc ('\n', FILE); \
2121 } \
2122 } \
2123 else if (TARGET_XCOFF) \
2124 { \
2125 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2126 { \
2127 fputs ("\t.lglobl\t.", FILE); \
2128 RS6000_OUTPUT_BASENAME (FILE, alias); \
2129 putc ('\n', FILE); \
2130 fputs ("\t.lglobl\t", FILE); \
2131 RS6000_OUTPUT_BASENAME (FILE, alias); \
2132 putc ('\n', FILE); \
2133 } \
2134 } \
2135 fputs ("\t.set\t.", FILE); \
2136 RS6000_OUTPUT_BASENAME (FILE, alias); \
2137 fputs (",.", FILE); \
2138 RS6000_OUTPUT_BASENAME (FILE, name); \
2139 fputc ('\n', FILE); \
2140 } \
2141 ASM_OUTPUT_DEF (FILE, alias, name); \
2142 } \
2143 while (0)
2144
2145 #define TARGET_ASM_FILE_START rs6000_file_start
2146
2147 /* Output to assembler file text saying following lines
2148 may contain character constants, extra white space, comments, etc. */
2149
2150 #define ASM_APP_ON ""
2151
2152 /* Output to assembler file text saying following lines
2153 no longer contain unusual constructs. */
2154
2155 #define ASM_APP_OFF ""
2156
2157 /* How to refer to registers in assembler output.
2158 This sequence is indexed by compiler's hard-register-number (see above). */
2159
2160 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2161
2162 #define REGISTER_NAMES \
2163 { \
2164 &rs6000_reg_names[ 0][0], /* r0 */ \
2165 &rs6000_reg_names[ 1][0], /* r1 */ \
2166 &rs6000_reg_names[ 2][0], /* r2 */ \
2167 &rs6000_reg_names[ 3][0], /* r3 */ \
2168 &rs6000_reg_names[ 4][0], /* r4 */ \
2169 &rs6000_reg_names[ 5][0], /* r5 */ \
2170 &rs6000_reg_names[ 6][0], /* r6 */ \
2171 &rs6000_reg_names[ 7][0], /* r7 */ \
2172 &rs6000_reg_names[ 8][0], /* r8 */ \
2173 &rs6000_reg_names[ 9][0], /* r9 */ \
2174 &rs6000_reg_names[10][0], /* r10 */ \
2175 &rs6000_reg_names[11][0], /* r11 */ \
2176 &rs6000_reg_names[12][0], /* r12 */ \
2177 &rs6000_reg_names[13][0], /* r13 */ \
2178 &rs6000_reg_names[14][0], /* r14 */ \
2179 &rs6000_reg_names[15][0], /* r15 */ \
2180 &rs6000_reg_names[16][0], /* r16 */ \
2181 &rs6000_reg_names[17][0], /* r17 */ \
2182 &rs6000_reg_names[18][0], /* r18 */ \
2183 &rs6000_reg_names[19][0], /* r19 */ \
2184 &rs6000_reg_names[20][0], /* r20 */ \
2185 &rs6000_reg_names[21][0], /* r21 */ \
2186 &rs6000_reg_names[22][0], /* r22 */ \
2187 &rs6000_reg_names[23][0], /* r23 */ \
2188 &rs6000_reg_names[24][0], /* r24 */ \
2189 &rs6000_reg_names[25][0], /* r25 */ \
2190 &rs6000_reg_names[26][0], /* r26 */ \
2191 &rs6000_reg_names[27][0], /* r27 */ \
2192 &rs6000_reg_names[28][0], /* r28 */ \
2193 &rs6000_reg_names[29][0], /* r29 */ \
2194 &rs6000_reg_names[30][0], /* r30 */ \
2195 &rs6000_reg_names[31][0], /* r31 */ \
2196 \
2197 &rs6000_reg_names[32][0], /* fr0 */ \
2198 &rs6000_reg_names[33][0], /* fr1 */ \
2199 &rs6000_reg_names[34][0], /* fr2 */ \
2200 &rs6000_reg_names[35][0], /* fr3 */ \
2201 &rs6000_reg_names[36][0], /* fr4 */ \
2202 &rs6000_reg_names[37][0], /* fr5 */ \
2203 &rs6000_reg_names[38][0], /* fr6 */ \
2204 &rs6000_reg_names[39][0], /* fr7 */ \
2205 &rs6000_reg_names[40][0], /* fr8 */ \
2206 &rs6000_reg_names[41][0], /* fr9 */ \
2207 &rs6000_reg_names[42][0], /* fr10 */ \
2208 &rs6000_reg_names[43][0], /* fr11 */ \
2209 &rs6000_reg_names[44][0], /* fr12 */ \
2210 &rs6000_reg_names[45][0], /* fr13 */ \
2211 &rs6000_reg_names[46][0], /* fr14 */ \
2212 &rs6000_reg_names[47][0], /* fr15 */ \
2213 &rs6000_reg_names[48][0], /* fr16 */ \
2214 &rs6000_reg_names[49][0], /* fr17 */ \
2215 &rs6000_reg_names[50][0], /* fr18 */ \
2216 &rs6000_reg_names[51][0], /* fr19 */ \
2217 &rs6000_reg_names[52][0], /* fr20 */ \
2218 &rs6000_reg_names[53][0], /* fr21 */ \
2219 &rs6000_reg_names[54][0], /* fr22 */ \
2220 &rs6000_reg_names[55][0], /* fr23 */ \
2221 &rs6000_reg_names[56][0], /* fr24 */ \
2222 &rs6000_reg_names[57][0], /* fr25 */ \
2223 &rs6000_reg_names[58][0], /* fr26 */ \
2224 &rs6000_reg_names[59][0], /* fr27 */ \
2225 &rs6000_reg_names[60][0], /* fr28 */ \
2226 &rs6000_reg_names[61][0], /* fr29 */ \
2227 &rs6000_reg_names[62][0], /* fr30 */ \
2228 &rs6000_reg_names[63][0], /* fr31 */ \
2229 \
2230 &rs6000_reg_names[64][0], /* was mq */ \
2231 &rs6000_reg_names[65][0], /* lr */ \
2232 &rs6000_reg_names[66][0], /* ctr */ \
2233 &rs6000_reg_names[67][0], /* ap */ \
2234 \
2235 &rs6000_reg_names[68][0], /* cr0 */ \
2236 &rs6000_reg_names[69][0], /* cr1 */ \
2237 &rs6000_reg_names[70][0], /* cr2 */ \
2238 &rs6000_reg_names[71][0], /* cr3 */ \
2239 &rs6000_reg_names[72][0], /* cr4 */ \
2240 &rs6000_reg_names[73][0], /* cr5 */ \
2241 &rs6000_reg_names[74][0], /* cr6 */ \
2242 &rs6000_reg_names[75][0], /* cr7 */ \
2243 \
2244 &rs6000_reg_names[76][0], /* ca */ \
2245 \
2246 &rs6000_reg_names[77][0], /* v0 */ \
2247 &rs6000_reg_names[78][0], /* v1 */ \
2248 &rs6000_reg_names[79][0], /* v2 */ \
2249 &rs6000_reg_names[80][0], /* v3 */ \
2250 &rs6000_reg_names[81][0], /* v4 */ \
2251 &rs6000_reg_names[82][0], /* v5 */ \
2252 &rs6000_reg_names[83][0], /* v6 */ \
2253 &rs6000_reg_names[84][0], /* v7 */ \
2254 &rs6000_reg_names[85][0], /* v8 */ \
2255 &rs6000_reg_names[86][0], /* v9 */ \
2256 &rs6000_reg_names[87][0], /* v10 */ \
2257 &rs6000_reg_names[88][0], /* v11 */ \
2258 &rs6000_reg_names[89][0], /* v12 */ \
2259 &rs6000_reg_names[90][0], /* v13 */ \
2260 &rs6000_reg_names[91][0], /* v14 */ \
2261 &rs6000_reg_names[92][0], /* v15 */ \
2262 &rs6000_reg_names[93][0], /* v16 */ \
2263 &rs6000_reg_names[94][0], /* v17 */ \
2264 &rs6000_reg_names[95][0], /* v18 */ \
2265 &rs6000_reg_names[96][0], /* v19 */ \
2266 &rs6000_reg_names[97][0], /* v20 */ \
2267 &rs6000_reg_names[98][0], /* v21 */ \
2268 &rs6000_reg_names[99][0], /* v22 */ \
2269 &rs6000_reg_names[100][0], /* v23 */ \
2270 &rs6000_reg_names[101][0], /* v24 */ \
2271 &rs6000_reg_names[102][0], /* v25 */ \
2272 &rs6000_reg_names[103][0], /* v26 */ \
2273 &rs6000_reg_names[104][0], /* v27 */ \
2274 &rs6000_reg_names[105][0], /* v28 */ \
2275 &rs6000_reg_names[106][0], /* v29 */ \
2276 &rs6000_reg_names[107][0], /* v30 */ \
2277 &rs6000_reg_names[108][0], /* v31 */ \
2278 &rs6000_reg_names[109][0], /* vrsave */ \
2279 &rs6000_reg_names[110][0], /* vscr */ \
2280 &rs6000_reg_names[111][0], /* spe_acc */ \
2281 &rs6000_reg_names[112][0], /* spefscr */ \
2282 &rs6000_reg_names[113][0], /* sfp */ \
2283 &rs6000_reg_names[114][0], /* tfhar */ \
2284 &rs6000_reg_names[115][0], /* tfiar */ \
2285 &rs6000_reg_names[116][0], /* texasr */ \
2286 \
2287 &rs6000_reg_names[117][0], /* SPE rh0. */ \
2288 &rs6000_reg_names[118][0], /* SPE rh1. */ \
2289 &rs6000_reg_names[119][0], /* SPE rh2. */ \
2290 &rs6000_reg_names[120][0], /* SPE rh3. */ \
2291 &rs6000_reg_names[121][0], /* SPE rh4. */ \
2292 &rs6000_reg_names[122][0], /* SPE rh5. */ \
2293 &rs6000_reg_names[123][0], /* SPE rh6. */ \
2294 &rs6000_reg_names[124][0], /* SPE rh7. */ \
2295 &rs6000_reg_names[125][0], /* SPE rh8. */ \
2296 &rs6000_reg_names[126][0], /* SPE rh9. */ \
2297 &rs6000_reg_names[127][0], /* SPE rh10. */ \
2298 &rs6000_reg_names[128][0], /* SPE rh11. */ \
2299 &rs6000_reg_names[129][0], /* SPE rh12. */ \
2300 &rs6000_reg_names[130][0], /* SPE rh13. */ \
2301 &rs6000_reg_names[131][0], /* SPE rh14. */ \
2302 &rs6000_reg_names[132][0], /* SPE rh15. */ \
2303 &rs6000_reg_names[133][0], /* SPE rh16. */ \
2304 &rs6000_reg_names[134][0], /* SPE rh17. */ \
2305 &rs6000_reg_names[135][0], /* SPE rh18. */ \
2306 &rs6000_reg_names[136][0], /* SPE rh19. */ \
2307 &rs6000_reg_names[137][0], /* SPE rh20. */ \
2308 &rs6000_reg_names[138][0], /* SPE rh21. */ \
2309 &rs6000_reg_names[139][0], /* SPE rh22. */ \
2310 &rs6000_reg_names[140][0], /* SPE rh22. */ \
2311 &rs6000_reg_names[141][0], /* SPE rh24. */ \
2312 &rs6000_reg_names[142][0], /* SPE rh25. */ \
2313 &rs6000_reg_names[143][0], /* SPE rh26. */ \
2314 &rs6000_reg_names[144][0], /* SPE rh27. */ \
2315 &rs6000_reg_names[145][0], /* SPE rh28. */ \
2316 &rs6000_reg_names[146][0], /* SPE rh29. */ \
2317 &rs6000_reg_names[147][0], /* SPE rh30. */ \
2318 &rs6000_reg_names[148][0], /* SPE rh31. */ \
2319 }
2320
2321 /* Table of additional register names to use in user input. */
2322
2323 #define ADDITIONAL_REGISTER_NAMES \
2324 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2325 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2326 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2327 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2328 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2329 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2330 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2331 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2332 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2333 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2334 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2335 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2336 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2337 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2338 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2339 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2340 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2341 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2342 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2343 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2344 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2345 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2346 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2347 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2348 {"vrsave", 109}, {"vscr", 110}, \
2349 {"spe_acc", 111}, {"spefscr", 112}, \
2350 /* no additional names for: lr, ctr, ap */ \
2351 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2352 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2353 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2354 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2355 {"xer", 76}, \
2356 /* VSX registers overlaid on top of FR, Altivec registers */ \
2357 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2358 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2359 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2360 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2361 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2362 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2363 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2364 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2365 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2366 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2367 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2368 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2369 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2370 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2371 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2372 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2373 /* Transactional Memory Facility (HTM) Registers. */ \
2374 {"tfhar", 114}, {"tfiar", 115}, {"texasr", 116}, \
2375 /* SPE high registers. */ \
2376 {"rh0", 117}, {"rh1", 118}, {"rh2", 119}, {"rh3", 120}, \
2377 {"rh4", 121}, {"rh5", 122}, {"rh6", 123}, {"rh7", 124}, \
2378 {"rh8", 125}, {"rh9", 126}, {"rh10", 127}, {"rh11", 128}, \
2379 {"rh12", 129}, {"rh13", 130}, {"rh14", 131}, {"rh15", 132}, \
2380 {"rh16", 133}, {"rh17", 134}, {"rh18", 135}, {"rh19", 136}, \
2381 {"rh20", 137}, {"rh21", 138}, {"rh22", 139}, {"rh23", 140}, \
2382 {"rh24", 141}, {"rh25", 142}, {"rh26", 143}, {"rh27", 144}, \
2383 {"rh28", 145}, {"rh29", 146}, {"rh30", 147}, {"rh31", 148}, \
2384 }
2385
2386 /* This is how to output an element of a case-vector that is relative. */
2387
2388 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2389 do { char buf[100]; \
2390 fputs ("\t.long ", FILE); \
2391 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2392 assemble_name (FILE, buf); \
2393 putc ('-', FILE); \
2394 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2395 assemble_name (FILE, buf); \
2396 putc ('\n', FILE); \
2397 } while (0)
2398
2399 /* This is how to output an assembler line
2400 that says to advance the location counter
2401 to a multiple of 2**LOG bytes. */
2402
2403 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2404 if ((LOG) != 0) \
2405 fprintf (FILE, "\t.align %d\n", (LOG))
2406
2407 /* How to align the given loop. */
2408 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2409
2410 /* Alignment guaranteed by __builtin_malloc. */
2411 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2412 However, specifying the stronger guarantee currently leads to
2413 a regression in SPEC CPU2006 437.leslie3d. The stronger
2414 guarantee should be implemented here once that's fixed. */
2415 #define MALLOC_ABI_ALIGNMENT (64)
2416
2417 /* Pick up the return address upon entry to a procedure. Used for
2418 dwarf2 unwind information. This also enables the table driven
2419 mechanism. */
2420
2421 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2422 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2423
2424 /* Describe how we implement __builtin_eh_return. */
2425 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2426 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2427
2428 /* Print operand X (an rtx) in assembler syntax to file FILE.
2429 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2430 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2431
2432 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2433
2434 /* Define which CODE values are valid. */
2435
2436 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2437
2438 /* Print a memory address as an operand to reference that memory location. */
2439
2440 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2441
2442 /* For switching between functions with different target attributes. */
2443 #define SWITCHABLE_TARGET 1
2444
2445 /* uncomment for disabling the corresponding default options */
2446 /* #define MACHINE_no_sched_interblock */
2447 /* #define MACHINE_no_sched_speculative */
2448 /* #define MACHINE_no_sched_speculative_load */
2449
2450 /* General flags. */
2451 extern int frame_pointer_needed;
2452
2453 /* Classification of the builtin functions as to which switches enable the
2454 builtin, and what attributes it should have. We used to use the target
2455 flags macros, but we've run out of bits, so we now map the options into new
2456 settings used here. */
2457
2458 /* Builtin attributes. */
2459 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2460 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2461 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2462 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2463 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2464 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2465 #define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2466 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2467 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2468
2469 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2470 #define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2471 modifies global state. */
2472 #define RS6000_BTC_PURE 0x00000200 /* reads global
2473 state/mem and does
2474 not modify global state. */
2475 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2476 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2477
2478 /* Miscellaneous information. */
2479 #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2480 #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
2481 #define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2482 #define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
2483 #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
2484
2485 /* Convenience macros to document the instruction type. */
2486 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2487 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2488
2489 /* Builtin targets. For now, we reuse the masks for those options that are in
2490 target flags, and pick three random bits for SPE, paired and ldbl128 which
2491 aren't in target_flags. */
2492 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2493 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2494 #define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */
2495 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2496 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2497 #define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
2498 #define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
2499 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2500 #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
2501 #define RS6000_BTM_SPE MASK_STRING /* E500 */
2502 #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2503 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2504 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2505 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2506 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2507 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2508 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2509 #define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
2510 #define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
2511 #define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
2512 #define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
2513 #define RS6000_BTM_FLOAT128 MASK_FLOAT128_TYPE /* IEEE 128-bit float. */
2514
2515 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2516 | RS6000_BTM_VSX \
2517 | RS6000_BTM_P8_VECTOR \
2518 | RS6000_BTM_P9_VECTOR \
2519 | RS6000_BTM_P9_MISC \
2520 | RS6000_BTM_MODULO \
2521 | RS6000_BTM_CRYPTO \
2522 | RS6000_BTM_FRE \
2523 | RS6000_BTM_FRES \
2524 | RS6000_BTM_FRSQRTE \
2525 | RS6000_BTM_FRSQRTES \
2526 | RS6000_BTM_HTM \
2527 | RS6000_BTM_POPCNTD \
2528 | RS6000_BTM_CELL \
2529 | RS6000_BTM_DFP \
2530 | RS6000_BTM_HARD_FLOAT \
2531 | RS6000_BTM_LDBL128 \
2532 | RS6000_BTM_FLOAT128)
2533
2534 /* Define builtin enum index. */
2535
2536 #undef RS6000_BUILTIN_0
2537 #undef RS6000_BUILTIN_1
2538 #undef RS6000_BUILTIN_2
2539 #undef RS6000_BUILTIN_3
2540 #undef RS6000_BUILTIN_A
2541 #undef RS6000_BUILTIN_D
2542 #undef RS6000_BUILTIN_E
2543 #undef RS6000_BUILTIN_H
2544 #undef RS6000_BUILTIN_P
2545 #undef RS6000_BUILTIN_Q
2546 #undef RS6000_BUILTIN_S
2547 #undef RS6000_BUILTIN_X
2548
2549 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2550 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2551 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2552 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2553 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2554 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2555 #define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2556 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2557 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2558 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2559 #define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2560 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2561
2562 enum rs6000_builtins
2563 {
2564 #include "powerpcspe-builtin.def"
2565
2566 RS6000_BUILTIN_COUNT
2567 };
2568
2569 #undef RS6000_BUILTIN_0
2570 #undef RS6000_BUILTIN_1
2571 #undef RS6000_BUILTIN_2
2572 #undef RS6000_BUILTIN_3
2573 #undef RS6000_BUILTIN_A
2574 #undef RS6000_BUILTIN_D
2575 #undef RS6000_BUILTIN_E
2576 #undef RS6000_BUILTIN_H
2577 #undef RS6000_BUILTIN_P
2578 #undef RS6000_BUILTIN_Q
2579 #undef RS6000_BUILTIN_S
2580 #undef RS6000_BUILTIN_X
2581
2582 enum rs6000_builtin_type_index
2583 {
2584 RS6000_BTI_NOT_OPAQUE,
2585 RS6000_BTI_opaque_V2SI,
2586 RS6000_BTI_opaque_V2SF,
2587 RS6000_BTI_opaque_p_V2SI,
2588 RS6000_BTI_opaque_V4SI,
2589 RS6000_BTI_V16QI,
2590 RS6000_BTI_V1TI,
2591 RS6000_BTI_V2SI,
2592 RS6000_BTI_V2SF,
2593 RS6000_BTI_V2DI,
2594 RS6000_BTI_V2DF,
2595 RS6000_BTI_V4HI,
2596 RS6000_BTI_V4SI,
2597 RS6000_BTI_V4SF,
2598 RS6000_BTI_V8HI,
2599 RS6000_BTI_unsigned_V16QI,
2600 RS6000_BTI_unsigned_V1TI,
2601 RS6000_BTI_unsigned_V8HI,
2602 RS6000_BTI_unsigned_V4SI,
2603 RS6000_BTI_unsigned_V2DI,
2604 RS6000_BTI_bool_char, /* __bool char */
2605 RS6000_BTI_bool_short, /* __bool short */
2606 RS6000_BTI_bool_int, /* __bool int */
2607 RS6000_BTI_bool_long, /* __bool long */
2608 RS6000_BTI_pixel, /* __pixel */
2609 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2610 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2611 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2612 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2613 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2614 RS6000_BTI_long, /* long_integer_type_node */
2615 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2616 RS6000_BTI_long_long, /* long_long_integer_type_node */
2617 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2618 RS6000_BTI_INTQI, /* intQI_type_node */
2619 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2620 RS6000_BTI_INTHI, /* intHI_type_node */
2621 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2622 RS6000_BTI_INTSI, /* intSI_type_node */
2623 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2624 RS6000_BTI_INTDI, /* intDI_type_node */
2625 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2626 RS6000_BTI_INTTI, /* intTI_type_node */
2627 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2628 RS6000_BTI_float, /* float_type_node */
2629 RS6000_BTI_double, /* double_type_node */
2630 RS6000_BTI_long_double, /* long_double_type_node */
2631 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2632 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2633 RS6000_BTI_void, /* void_type_node */
2634 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2635 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
2636 RS6000_BTI_const_str, /* pointer to const char * */
2637 RS6000_BTI_MAX
2638 };
2639
2640
2641 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2642 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2643 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2644 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2645 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2646 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2647 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2648 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2649 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2650 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2651 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2652 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2653 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2654 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2655 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2656 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2657 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2658 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2659 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2660 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2661 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2662 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2663 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2664 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2665 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2666 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2667 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2668 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2669 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2670
2671 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2672 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2673 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2674 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2675 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2676 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2677 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2678 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2679 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2680 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2681 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2682 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2683 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2684 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2685 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2686 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2687 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2688 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2689 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2690 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2691 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2692 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2693 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2694
2695 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2696 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2697
2698 #define TARGET_SUPPORTS_WIDE_INT 1
2699
2700 #if (GCC_VERSION >= 3000)
2701 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2702 #endif