ce6664164d5fe2bb5160d16726de502f65053ff9
[gcc.git] / gcc / config / romp / romp.h
1 /* Definitions of target machine for GNU compiler, for ROMP chip.
2 Copyright (C) 1989, 1991, 1993, 1995, 1996 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* Names to predefine in the preprocessor for this target machine. */
24
25 #define CPP_PREDEFINES "-Dibm032 -Dunix -Asystem(unix) -Asystem(bsd) -Acpu(ibm032) -Amachine(ibm032)"
26
27 /* Print subsidiary information on the compiler version in use. */
28 #define TARGET_VERSION ;
29
30 /* Add -lfp_p when running with -p or -pg. */
31 #define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
32
33 /* Run-time compilation parameters selecting different hardware subsets. */
34
35 /* Flag to generate all multiplies as an in-line sequence of multiply-step
36 insns instead of calling a library routine. */
37 #define TARGET_IN_LINE_MUL (target_flags & 1)
38
39 /* Flag to generate padded floating-point data blocks. Otherwise, we generate
40 them the minimum size. This trades off execution speed against size. */
41 #define TARGET_FULL_FP_BLOCKS (target_flags & 2)
42
43 /* Flag to pass and return floating point values in floating point registers.
44 Since this violates the linkage convention, we feel free to destroy fr2
45 and fr3 on function calls.
46 fr1-fr3 are used to pass the arguments. */
47 #define TARGET_FP_REGS (target_flags & 4)
48
49 /* Flag to return structures of more than one word in memory. This is for
50 compatibility with the MetaWare HighC (hc) compiler. */
51 #define TARGET_HC_STRUCT_RETURN (target_flags & 010)
52
53 extern int target_flags;
54
55 /* Macro to define tables used to set the flags.
56 This is a list in braces of pairs in braces,
57 each pair being { "NAME", VALUE }
58 where VALUE is the bits to set or minus the bits to clear.
59 An empty string NAME is used to identify the default VALUE. */
60
61 #define TARGET_SWITCHES \
62 { {"in-line-mul", 1}, \
63 {"call-lib-mul", -1}, \
64 {"full-fp-blocks", 2}, \
65 {"minimum-fp-blocks", -2}, \
66 {"fp-arg-in-fpregs", 4}, \
67 {"fp-arg-in-gregs", -4}, \
68 {"hc-struct-return", 010}, \
69 {"nohc-struct-return", - 010}, \
70 { "", TARGET_DEFAULT}}
71
72 #define TARGET_DEFAULT 3
73 \f
74 /* target machine storage layout */
75
76 /* Define this if most significant bit is lowest numbered
77 in instructions that operate on numbered bit-fields. */
78 /* That is true on ROMP. */
79 #define BITS_BIG_ENDIAN 1
80
81 /* Define this if most significant byte of a word is the lowest numbered. */
82 /* That is true on ROMP. */
83 #define BYTES_BIG_ENDIAN 1
84
85 /* Define this if most significant word of a multiword number is lowest
86 numbered.
87
88 For ROMP we can decide arbitrarily since there are no machine instructions
89 for them. Might as well be consistent with bits and bytes. */
90 #define WORDS_BIG_ENDIAN 1
91
92 /* number of bits in an addressable storage unit */
93 #define BITS_PER_UNIT 8
94
95 /* Width in bits of a "word", which is the contents of a machine register.
96 Note that this is not necessarily the width of data type `int';
97 if using 16-bit ints on a 68000, this would still be 32.
98 But on a machine with 16-bit registers, this would be 16. */
99 #define BITS_PER_WORD 32
100
101 /* Width of a word, in units (bytes). */
102 #define UNITS_PER_WORD 4
103
104 /* Width in bits of a pointer.
105 See also the macro `Pmode' defined below. */
106 #define POINTER_SIZE 32
107
108 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
109 #define PARM_BOUNDARY 32
110
111 /* Boundary (in *bits*) on which stack pointer should be aligned. */
112 #define STACK_BOUNDARY 32
113
114 /* Allocation boundary (in *bits*) for the code of a function. */
115 #define FUNCTION_BOUNDARY 16
116
117 /* No data type wants to be aligned rounder than this. */
118 #define BIGGEST_ALIGNMENT 32
119
120 /* Alignment of field after `int : 0' in a structure. */
121 #define EMPTY_FIELD_BOUNDARY 32
122
123 /* Every structure's size must be a multiple of this. */
124 #define STRUCTURE_SIZE_BOUNDARY 8
125
126 /* A bitfield declared as `int' forces `int' alignment for the struct. */
127 #define PCC_BITFIELD_TYPE_MATTERS 1
128
129 /* Make strings word-aligned so strcpy from constants will be faster. */
130 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
131 (TREE_CODE (EXP) == STRING_CST \
132 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
133
134 /* Make arrays of chars word-aligned for the same reasons. */
135 #define DATA_ALIGNMENT(TYPE, ALIGN) \
136 (TREE_CODE (TYPE) == ARRAY_TYPE \
137 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
138 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
139
140 /* Set this nonzero if move instructions will actually fail to work
141 when given unaligned data. */
142 #define STRICT_ALIGNMENT 1
143 \f
144 /* Standard register usage. */
145
146 /* Number of actual hardware registers.
147 The hardware registers are assigned numbers for the compiler
148 from 0 to just below FIRST_PSEUDO_REGISTER.
149 All registers that the compiler knows about must be given numbers,
150 even those that are not normally considered general registers.
151
152 ROMP has 16 fullword registers and 8 floating point registers.
153
154 In addition, the difference between the frame and argument pointers is
155 a function of the number of registers saved, so we need to have a register
156 to use for AP that will later be eliminated in favor of sp or fp. This is
157 a normal register, but it is fixed. */
158
159 #define FIRST_PSEUDO_REGISTER 25
160
161 /* 1 for registers that have pervasive standard uses
162 and are not available for the register allocator.
163
164 On ROMP, r1 is used for the stack and r14 is used for a
165 data area pointer.
166
167 HACK WARNING: On the RT, there is a bug in code generation for
168 the MC68881 when the first and third operands are the same floating-point
169 register. See the definition of the FINAL_PRESCAN_INSN macro for details.
170 Here we need to reserve fr0 for this purpose. */
171 #define FIXED_REGISTERS \
172 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
173 1, \
174 1, 0, 0, 0, 0, 0, 0, 0}
175
176 /* 1 for registers not available across function calls.
177 These must include the FIXED_REGISTERS and also any
178 registers that can be used without being saved.
179 The latter must include the registers where values are returned
180 and the register where structure-value addresses are passed.
181 Aside from that, you can include as many other registers as you like. */
182 #define CALL_USED_REGISTERS \
183 {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
184 1, \
185 1, 1, 0, 0, 0, 0, 0, 0}
186
187 /* List the order in which to allocate registers. Each register must be
188 listed once, even those in FIXED_REGISTERS.
189
190 We allocate in the following order:
191 fr0, fr1 (not saved)
192 fr2 ... fr6
193 fr7 (more expensive for some FPA's)
194 r0 (not saved and won't conflict with parameter register)
195 r4, r3, r2 (not saved, highest used first to make less conflict)
196 r5 (not saved, but forces r6 to be saved if DI/DFmode)
197 r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save)
198 r1, ap */
199
200 #define REG_ALLOC_ORDER \
201 {17, 18, \
202 19, 20, 21, 22, 23, \
203 24, \
204 0, \
205 4, 3, 2, \
206 5, \
207 15, 14, 13, 12, 11, 10, \
208 9, 8, 7, 6, \
209 1, 16}
210
211 /* True if register is floating-point. */
212 #define FP_REGNO_P(N) ((N) >= 17)
213
214 /* Return number of consecutive hard regs needed starting at reg REGNO
215 to hold something of mode MODE.
216 This is ordinarily the length in words of a value of mode MODE
217 but can be less for certain modes in special long registers.
218
219 On ROMP, ordinary registers hold 32 bits worth;
220 a single floating point register is always enough for
221 anything that can be stored in them at all. */
222 #define HARD_REGNO_NREGS(REGNO, MODE) \
223 (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE) \
224 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
225
226 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
227 On ROMP, the cpu registers can hold any mode but the float registers
228 can hold only floating point. */
229 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
230 (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT \
231 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
232
233 /* Value is 1 if it is a good idea to tie two pseudo registers
234 when one has mode MODE1 and one has mode MODE2.
235 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
236 for any hard reg, then this must be 0 for correct output. */
237 #define MODES_TIEABLE_P(MODE1, MODE2) \
238 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
239 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
240 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
241 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
242
243 /* A C expression returning the cost of moving data from a register of class
244 CLASS1 to one of CLASS2.
245
246 On the ROMP, access to floating-point registers is expensive (even between
247 two FP regs.) */
248 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
249 (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS))
250
251 /* Specify the registers used for certain standard purposes.
252 The values of these macros are register numbers. */
253
254 /* ROMP pc isn't overloaded on a register that the compiler knows about. */
255 /* #define PC_REGNUM */
256
257 /* Register to use for pushing function arguments. */
258 #define STACK_POINTER_REGNUM 1
259
260 /* Base register for access to local variables of the function. */
261 #define FRAME_POINTER_REGNUM 13
262
263 /* Value should be nonzero if functions must have frame pointers.
264 Zero means the frame pointer need not be set up (and parms
265 may be accessed via the stack pointer) in functions that seem suitable.
266 This is computed in `reload', in reload1.c. */
267 #define FRAME_POINTER_REQUIRED 0
268
269 /* Base register for access to arguments of the function. */
270 #define ARG_POINTER_REGNUM 16
271
272 /* Place to put static chain when calling a function that requires it. */
273 #define STATIC_CHAIN \
274 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
275 gen_rtx (CONST_INT, VOIDmode, -36)))
276
277 /* Place where static chain is found upon entry to routine. */
278 #define STATIC_CHAIN_INCOMING \
279 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, arg_pointer_rtx, \
280 gen_rtx (CONST_INT, VOIDmode, -20)))
281
282 /* Place that structure value return address is placed.
283
284 On the ROMP, it is passed as an extra parameter. */
285 #define STRUCT_VALUE 0
286 \f
287 /* Define the classes of registers for register constraints in the
288 machine description. Also define ranges of constants.
289
290 One of the classes must always be named ALL_REGS and include all hard regs.
291 If there is more than one class, another class must be named NO_REGS
292 and contain no registers.
293
294 The name GENERAL_REGS must be the name of a class (or an alias for
295 another name such as ALL_REGS). This is the class of registers
296 that is allowed by "g" or "r" in a register constraint.
297 Also, registers outside this class are allocated only when
298 instructions express preferences for them.
299
300 The classes must be numbered in nondecreasing order; that is,
301 a larger-numbered class must never be contained completely
302 in a smaller-numbered class.
303
304 For any two classes, it is very desirable that there be another
305 class that represents their union. */
306
307 /* The ROMP has two types of registers, general and floating-point.
308
309 However, r0 is special in that it cannot be used as a base register.
310 So make a class for registers valid as base registers.
311
312 For floating-point support, add classes that just consist of r0 and
313 r15, respectively. */
314
315 enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS,
316 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
317
318 #define N_REG_CLASSES (int) LIM_REG_CLASSES
319
320 /* Give names of register classes as strings for dump file. */
321
322 #define REG_CLASS_NAMES \
323 {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \
324 "FP_REGS", "ALL_REGS" }
325
326 /* Define which registers fit in which classes.
327 This is an initializer for a vector of HARD_REG_SET
328 of length N_REG_CLASSES. */
329
330 #define REG_CLASS_CONTENTS {0, 0x00001, 0x08000, 0x1fffe, 0x1ffff, \
331 0x1fe0000, 0x1ffffff }
332
333 /* The same information, inverted:
334 Return the class number of the smallest class containing
335 reg number REGNO. This could be a conditional expression
336 or could index an array. */
337
338 #define REGNO_REG_CLASS(REGNO) \
339 ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS)
340
341 /* The class value for index registers, and the one for base regs. */
342 #define INDEX_REG_CLASS BASE_REGS
343 #define BASE_REG_CLASS BASE_REGS
344
345 /* Get reg_class from a letter such as appears in the machine description. */
346
347 #define REG_CLASS_FROM_LETTER(C) \
348 ((C) == 'f' ? FP_REGS \
349 : (C) == 'b' ? BASE_REGS \
350 : (C) == 'z' ? R0_REGS \
351 : (C) == 't' ? R15_REGS \
352 : NO_REGS)
353
354 /* The letters I, J, K, L, M, N, and P in a register constraint string
355 can be used to stand for particular ranges of immediate operands.
356 This macro defines what the ranges are.
357 C is the letter, and VALUE is a constant value.
358 Return 1 if VALUE is in the range specified by C.
359
360 `I' is constants less than 16
361 `J' is negative constants greater than -16
362 `K' is the range for a normal D insn.
363 `L' is a constant with only the low-order 16 bits set
364 `M' is a constant with only the high-order 16 bits set
365 `N' is a single-bit constant
366 `O' is a constant with either the high-order or low-order 16 bits all ones
367 `P' is the complement of a single-bit constant
368 */
369
370 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
371 ( (C) == 'I' ? (unsigned) (VALUE) < 0x10 \
372 : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16 \
373 : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
374 : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0 \
375 : (C) == 'M' ? ((VALUE) & 0xffff) == 0 \
376 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
377 : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff \
378 || ((VALUE) & 0xffff0000) == 0xffff0000 \
379 : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0 \
380 : 0)
381
382 /* Similar, but for floating constants, and defining letters G and H.
383 Here VALUE is the CONST_DOUBLE rtx itself.
384 No floating-point constants on ROMP. */
385
386 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
387
388 /* Optional extra constraints for this machine.
389
390 For the ROMP, `Q' means that this is a memory operand but not a symbolic
391 memory operand. Note that an unassigned pseudo register is such a
392 memory operand. If register allocation has not been done, we reject
393 pseudos, since we assume (hope) that they will get hard registers.
394
395 `R' means that this is a constant pool reference to the current function.
396 This is just r14 and so can be treated as a register. We bother with this
397 just in move insns as that is the only place it is likely to occur.
398
399 `S' means that this is the address of a constant pool location. This is
400 equal to r14 plus a constant. We also only check for this in move insns. */
401
402 #define EXTRA_CONSTRAINT(OP, C) \
403 ((C) == 'Q' ? \
404 ((GET_CODE (OP) == REG \
405 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
406 && reg_renumber != 0 \
407 && reg_renumber[REGNO (OP)] < 0) \
408 || (GET_CODE (OP) == MEM \
409 && ! symbolic_memory_operand (OP, VOIDmode))) \
410 : (C) == 'R' ? current_function_operand (OP, VOIDmode) \
411 : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \
412 : 0)
413
414 /* Given an rtx X being reloaded into a reg required to be
415 in class CLASS, return the class of reg to actually use.
416 In general this is just CLASS; but on some machines
417 in some cases it is preferable to use a more restrictive class.
418
419 For the ROMP, if X is a memory reference that involves a symbol,
420 we must use a BASE_REGS register instead of GENERAL_REGS
421 to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF
422 to be valid, so we assume that this is the case.
423
424 Also, if X is an integer class, ensure that floating-point registers
425 aren't used. */
426
427 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
428 ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
429 ? GENERAL_REGS : \
430 (CLASS) != GENERAL_REGS ? (CLASS) : \
431 GET_CODE (X) != MEM ? GENERAL_REGS : \
432 GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS : \
433 GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS : \
434 GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS : \
435 GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS : \
436 GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS : \
437 GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS : \
438 GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS : \
439 GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS)
440
441 /* Return the register class of a scratch register needed to store into
442 OUT from a register of class CLASS in MODE.
443
444 On the ROMP, we cannot store into a symbolic memory address from an
445 integer register; we need a BASE_REGS register as a scratch to do it. */
446
447 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
448 (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \
449 ? BASE_REGS : NO_REGS)
450
451 /* Return the maximum number of consecutive registers
452 needed to represent mode MODE in a register of class CLASS.
453
454 On ROMP, this is the size of MODE in words,
455 except in the FP regs, where a single reg is always enough. */
456 #define CLASS_MAX_NREGS(CLASS, MODE) \
457 ((CLASS) == FP_REGS ? 1 \
458 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
459 \f
460 /* Stack layout; function entry, exit and calling. */
461
462 /* Define this if pushing a word on the stack
463 makes the stack pointer a smaller address. */
464 #define STACK_GROWS_DOWNWARD
465
466 /* Define this if the nominal address of the stack frame
467 is at the high-address end of the local variables;
468 that is, each additional local variable allocated
469 goes at a more negative offset in the frame. */
470 #define FRAME_GROWS_DOWNWARD
471
472 /* Offset within stack frame to start allocating local variables at.
473 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
474 first local allocated. Otherwise, it is the offset to the BEGINNING
475 of the first local allocated.
476 On the ROMP, if we set the frame pointer to 15 words below the highest
477 address of the highest local variable, the first 16 words will be
478 addressable via D-short insns. */
479 #define STARTING_FRAME_OFFSET 64
480
481 /* If we generate an insn to push BYTES bytes,
482 this says how many the stack pointer really advances by.
483 On ROMP, don't define this because there are no push insns. */
484 /* #define PUSH_ROUNDING(BYTES) */
485
486 /* Offset of first parameter from the argument pointer register value.
487 On the ROMP, we define the argument pointer to the start of the argument
488 area. */
489 #define FIRST_PARM_OFFSET(FNDECL) 0
490
491 /* Define this if stack space is still allocated for a parameter passed
492 in a register. The value is the number of bytes. */
493 #define REG_PARM_STACK_SPACE(FNDECL) 16
494
495 /* This is the difference between the logical top of stack and the actual sp.
496
497 For the ROMP, sp points past the words allocated for the first four outgoing
498 arguments (they are part of the callee's frame). */
499 #define STACK_POINTER_OFFSET -16
500
501 /* Define this if the maximum size of all the outgoing args is to be
502 accumulated and pushed during the prologue. The amount can be
503 found in the variable current_function_outgoing_args_size. */
504 #define ACCUMULATE_OUTGOING_ARGS
505
506 /* Value is the number of bytes of arguments automatically
507 popped when returning from a subroutine call.
508 FUNDECL is the declaration node of the function (as a tree),
509 FUNTYPE is the data type of the function (as a tree),
510 or for a library call it is an identifier node for the subroutine name.
511 SIZE is the number of bytes of arguments passed on the stack. */
512
513 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
514
515 /* Define how to find the value returned by a function.
516 VALTYPE is the data type of the value (as a tree).
517 If the precise function being called is known, FUNC is its FUNCTION_DECL;
518 otherwise, FUNC is 0.
519
520 On ROMP the value is found in r2, unless the machine specific option
521 fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */
522
523 #define FUNCTION_VALUE(VALTYPE, FUNC) \
524 gen_rtx (REG, TYPE_MODE (VALTYPE), \
525 (TARGET_FP_REGS && \
526 GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) ? 18 : 2)
527
528 /* Define how to find the value returned by a library function
529 assuming the value has mode MODE. */
530
531 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 2)
532
533 /* The definition of this macro implies that there are cases where
534 a scalar value cannot be returned in registers.
535
536 For the ROMP, if compatibility with HC is required, anything of
537 type DImode is returned in memory. */
538
539 #define RETURN_IN_MEMORY(type) \
540 (TYPE_MODE (type) == BLKmode \
541 || (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode))
542
543 /* 1 if N is a possible register number for a function value
544 as seen by the caller.
545
546 On ROMP, r2 is the only register thus used unless fp values are to be
547 returned in fp regs, in which case fr1 is also used. */
548
549 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || ((N) == 18 && TARGET_FP_REGS))
550
551 /* 1 if N is a possible register number for function argument passing.
552 On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used). */
553
554 #define FUNCTION_ARG_REGNO_P(N) \
555 (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21))
556 \f
557 /* Define a data type for recording info about an argument list
558 during the scan of that argument list. This data type should
559 hold all necessary information about the function itself
560 and about the args processed so far, enough to enable macros
561 such as FUNCTION_ARG to determine where the next arg should go.
562
563 On the ROMP, this is a structure. The first word is the number of
564 words of (integer only if -mfp-arg-in-fpregs is specified) arguments
565 scanned so far (including the invisible argument, if any, which holds
566 the structure-value-address). The second word hold the corresponding
567 value for floating-point arguments, except that both single and double
568 count as one register. */
569
570 struct rt_cargs {int gregs, fregs; };
571 #define CUMULATIVE_ARGS struct rt_cargs
572
573 #define USE_FP_REG(MODE,CUM) \
574 (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT \
575 && (CUM).fregs < 3)
576
577 /* Define intermediate macro to compute the size (in registers) of an argument
578 for the ROMP. */
579
580 #define ROMP_ARG_SIZE(MODE, TYPE, NAMED) \
581 (! (NAMED) ? 0 \
582 : (MODE) != BLKmode \
583 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
584 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
585
586 /* Initialize a variable CUM of type CUMULATIVE_ARGS
587 for a call to a function whose data type is FNTYPE.
588 For a library call, FNTYPE is 0.
589
590 On ROMP, the offset normally starts at 0, but starts at 4 bytes
591 when the function gets a structure-value-address as an
592 invisible first argument. */
593
594 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
595 (CUM).gregs = 0, \
596 (CUM).fregs = 0
597
598 /* Update the data in CUM to advance over an argument
599 of mode MODE and data type TYPE.
600 (TYPE is null for libcalls where that information may not be available.) */
601
602 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
603 { if (NAMED) \
604 { \
605 if (USE_FP_REG(MODE, CUM)) \
606 (CUM).fregs++; \
607 else \
608 (CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \
609 } \
610 }
611
612 /* Determine where to put an argument to a function.
613 Value is zero to push the argument on the stack,
614 or a hard register in which to store the argument.
615
616 MODE is the argument's machine mode.
617 TYPE is the data type of the argument (as a tree).
618 This is null for libcalls where that information may
619 not be available.
620 CUM is a variable of type CUMULATIVE_ARGS which gives info about
621 the preceding args and about the function being called.
622 NAMED is nonzero if this argument is a named parameter
623 (otherwise it is an extra parameter matching an ellipsis).
624
625 On ROMP the first four words of args are normally in registers
626 and the rest are pushed. */
627
628 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
629 (! (NAMED) ? 0 \
630 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
631 : USE_FP_REG(MODE,CUM) ? gen_rtx(REG, (MODE),(CUM.fregs) + 17) \
632 : (CUM).gregs < 4 ? gen_rtx(REG, (MODE), 2 + (CUM).gregs) : 0)
633
634 /* For an arg passed partly in registers and partly in memory,
635 this is the number of registers used.
636 For args passed entirely in registers or entirely in memory, zero. */
637
638 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
639 (! (NAMED) ? 0 \
640 : USE_FP_REG(MODE,CUM) ? 0 \
641 : (((CUM).gregs < 4 \
642 && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED))) \
643 ? 4 - (CUM).gregs : 0))
644
645 /* Perform any needed actions needed for a function that is receiving a
646 variable number of arguments.
647
648 CUM is as above.
649
650 MODE and TYPE are the mode and type of the current parameter.
651
652 PRETEND_SIZE is a variable that should be set to the amount of stack
653 that must be pushed by the prolog to pretend that our caller pushed
654 it.
655
656 Normally, this macro will push all remaining incoming registers on the
657 stack and set PRETEND_SIZE to the length of the registers pushed. */
658
659 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
660 { if (TARGET_FP_REGS) \
661 error ("can't have varargs with -mfp-arg-in-fp-regs"); \
662 else if ((CUM).gregs < 4) \
663 { \
664 int first_reg_offset = (CUM).gregs; \
665 \
666 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
667 first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
668 \
669 if (first_reg_offset > 4) \
670 first_reg_offset = 4; \
671 \
672 if (! NO_RTL && first_reg_offset != 4) \
673 move_block_from_reg \
674 (2 + first_reg_offset, \
675 gen_rtx (MEM, BLKmode, \
676 plus_constant (virtual_incoming_args_rtx, \
677 first_reg_offset * 4)), \
678 4 - first_reg_offset, (4 - first_reg_offset) * UNITS_PER_WORD); \
679 PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD; \
680 } \
681 }
682
683 /* This macro produces the initial definition of a function name.
684 On the ROMP, we need to place an extra '.' in the function name. */
685
686 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
687 { if (TREE_PUBLIC(DECL)) \
688 fprintf (FILE, "\t.globl _.%s\n", NAME); \
689 fprintf (FILE, "_.%s:\n", NAME); \
690 }
691
692 /* This macro is used to output the start of the data area.
693
694 On the ROMP, the _name is a pointer to the data area. At that
695 location is the address of _.name, which is really the name of
696 the function. We need to set all this up here.
697
698 The global declaration of the data area, if needed, is done in
699 `assemble_function', where it thinks it is globalizing the function
700 itself. */
701
702 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE) \
703 { extern int data_offset; \
704 data_section (); \
705 fprintf (FILE, "\t.align 2\n"); \
706 ASM_OUTPUT_LABEL (FILE, NAME); \
707 fprintf (FILE, "\t.long _.%s, 0, ", NAME); \
708 if (current_function_calls_alloca) \
709 fprintf (FILE, "0x%x\n", \
710 0xf6900000 + current_function_outgoing_args_size); \
711 else \
712 fprintf (FILE, "0\n"); \
713 data_offset = ((SIZE) + 12 + 3) / 4; \
714 }
715
716 /* Select section for constant in constant pool.
717
718 On ROMP, all constants are in the data area. */
719
720 #define SELECT_RTX_SECTION(MODE, X) data_section ()
721
722 /* This macro generates the assembly code for function entry.
723 FILE is a stdio stream to output the code to.
724 SIZE is an int: how many units of temporary storage to allocate.
725 Refer to the array `regs_ever_live' to determine which registers
726 to save; `regs_ever_live[I]' is nonzero if register number I
727 is ever used in the function. This macro is responsible for
728 knowing which registers should not be saved even if used. */
729
730 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
731
732 /* Output assembler code to FILE to increment profiler label # LABELNO
733 for profiling a function entry. */
734
735 #define FUNCTION_PROFILER(FILE, LABELNO) \
736 fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n");
737
738 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
739 the stack pointer does not matter. The value is tested only in
740 functions that have frame pointers.
741 No definition is equivalent to always zero. */
742 /* #define EXIT_IGNORE_STACK 1 */
743
744 /* This macro generates the assembly code for function exit,
745 on machines that need it. If FUNCTION_EPILOGUE is not defined
746 then individual return instructions are generated for each
747 return statement. Args are same as for FUNCTION_PROLOGUE.
748
749 The function epilogue should not depend on the current stack pointer!
750 It should use the frame pointer only. This is mandatory because
751 of alloca; we also take advantage of it to omit stack adjustments
752 before returning. */
753
754 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
755 \f
756 /* Output assembler code for a block containing the constant parts
757 of a trampoline, leaving space for the variable parts.
758
759 The trampoline should set the static chain pointer to value placed
760 into the trampoline and should branch to the specified routine.
761
762 On the ROMP, we have a problem. There are no free registers to use
763 to construct the static chain and function addresses. Hence we use
764 the following kludge: r15 (the return address) is first saved in mq.
765 Then we use r15 to form the function address. We then branch to the
766 function and restore r15 in the delay slot. This makes it appear that
767 the function was called directly from the caller.
768
769 (Note that the function address built is actually that of the data block.
770 This is passed in r0 and the actual routine address is loaded into r15.)
771
772 In addition, note that the address of the "called function", in this case
773 the trampoline, is actually the address of the data area. So we need to
774 make a fake data area that will contain the address of the trampoline.
775 Note that this must be defined as two half-words, since the trampoline
776 template (as opposed to the trampoline on the stack) is only half-word
777 aligned. */
778
779 #define TRAMPOLINE_TEMPLATE(FILE) \
780 { \
781 fprintf (FILE, "\t.short 0,0\n"); \
782 fprintf (FILE, "\tcau r0,0(r0)\n"); \
783 fprintf (FILE, "\toil r0,r0,0\n"); \
784 fprintf (FILE, "\tmts r10,r15\n"); \
785 fprintf (FILE, "\tst r0,-36(r1)\n"); \
786 fprintf (FILE, "\tcau r15,0(r0)\n"); \
787 fprintf (FILE, "\toil r15,r15,0\n"); \
788 fprintf (FILE, "\tcas r0,r15,r0\n"); \
789 fprintf (FILE, "\tls r15,0(r15)\n"); \
790 fprintf (FILE, "\tbrx r15\n"); \
791 fprintf (FILE, "\tmfs r10,r15\n"); \
792 }
793
794 /* Length in units of the trampoline for entering a nested function. */
795
796 #define TRAMPOLINE_SIZE 36
797
798 /* Emit RTL insns to initialize the variable parts of a trampoline.
799 FNADDR is an RTX for the address of the function's pure code.
800 CXT is an RTX for the static chain value for the function.
801
802 On the RT, the static chain and function addresses are written in
803 two 16-bit sections.
804
805 We also need to write the address of the first instruction in
806 the trampoline into the first word of the trampoline to simulate a
807 data area. */
808
809 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
810 { \
811 rtx _addr, _temp; \
812 rtx _val; \
813 \
814 _temp = expand_binop (SImode, add_optab, ADDR, \
815 gen_rtx (CONST_INT, VOIDmode, 4), \
816 0, 1, OPTAB_LIB_WIDEN); \
817 emit_move_insn (gen_rtx (MEM, SImode, \
818 memory_address (SImode, ADDR)), _temp); \
819 \
820 _val = force_reg (SImode, CXT); \
821 _addr = memory_address (HImode, plus_constant (ADDR, 10)); \
822 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
823 gen_lowpart (HImode, _val)); \
824 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
825 build_int_2 (16, 0), 0, 1); \
826 _addr = memory_address (HImode, plus_constant (ADDR, 6)); \
827 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
828 gen_lowpart (HImode, _temp)); \
829 \
830 _val = force_reg (SImode, FNADDR); \
831 _addr = memory_address (HImode, plus_constant (ADDR, 24)); \
832 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
833 gen_lowpart (HImode, _val)); \
834 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
835 build_int_2 (16, 0), 0, 1); \
836 _addr = memory_address (HImode, plus_constant (ADDR, 20)); \
837 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
838 gen_lowpart (HImode, _temp)); \
839 \
840 }
841 \f
842 /* Definitions for register eliminations.
843
844 We have two registers that can be eliminated on the ROMP. First, the
845 frame pointer register can often be eliminated in favor of the stack
846 pointer register. Secondly, the argument pointer register can always be
847 eliminated; it is replaced with either the stack or frame pointer.
848
849 In addition, we use the elimination mechanism to see if r14 is needed.
850 Initially we assume that it isn't. If it is, we spill it. This is done
851 by making it an eliminable register. It doesn't matter what we replace
852 it with, since it will never occur in the rtl at this point. */
853
854 /* This is an array of structures. Each structure initializes one pair
855 of eliminable registers. The "from" register number is given first,
856 followed by "to". Eliminations of the same "from" register are listed
857 in order of preference. */
858 #define ELIMINABLE_REGS \
859 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
860 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
861 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
862 { 14, 0}}
863
864 /* Given FROM and TO register numbers, say whether this elimination is allowed.
865 Frame pointer elimination is automatically handled.
866
867 For the ROMP, if frame pointer elimination is being done, we would like to
868 convert ap into fp, not sp.
869
870 We need r14 if various conditions (tested in romp_using_r14) are true.
871
872 All other eliminations are valid. */
873 #define CAN_ELIMINATE(FROM, TO) \
874 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
875 ? ! frame_pointer_needed \
876 : (FROM) == 14 ? ! romp_using_r14 () \
877 : 1)
878
879 /* Define the offset between two registers, one to be eliminated, and the other
880 its replacement, at the start of a routine. */
881 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
882 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
883 { \
884 if (romp_pushes_stack ()) \
885 (OFFSET) = ((get_frame_size () - 64) \
886 + current_function_outgoing_args_size); \
887 else \
888 (OFFSET) = - (romp_sa_size () + 64); \
889 } \
890 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
891 (OFFSET) = romp_sa_size () - 16 + 64; \
892 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
893 { \
894 if (romp_pushes_stack ()) \
895 (OFFSET) = (get_frame_size () + (romp_sa_size () - 16) \
896 + current_function_outgoing_args_size); \
897 else \
898 (OFFSET) = -16; \
899 } \
900 else if ((FROM) == 14) \
901 (OFFSET) = 0; \
902 else \
903 abort (); \
904 }
905 \f
906 /* Addressing modes, and classification of registers for them. */
907
908 /* #define HAVE_POST_INCREMENT */
909 /* #define HAVE_POST_DECREMENT */
910
911 /* #define HAVE_PRE_DECREMENT */
912 /* #define HAVE_PRE_INCREMENT */
913
914 /* Macros to check register numbers against specific register classes. */
915
916 /* These assume that REGNO is a hard or pseudo reg number.
917 They give nonzero only if REGNO is a hard reg of the suitable class
918 or a pseudo reg currently allocated to a suitable hard reg.
919 Since they use reg_renumber, they are safe only once reg_renumber
920 has been allocated, which happens in local-alloc.c. */
921
922 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
923 #define REGNO_OK_FOR_BASE_P(REGNO) \
924 ((REGNO) < FIRST_PSEUDO_REGISTER \
925 ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16 \
926 : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0 \
927 && reg_renumber[REGNO] != 16))
928 \f
929 /* Maximum number of registers that can appear in a valid memory address. */
930
931 #define MAX_REGS_PER_ADDRESS 1
932
933 /* Recognize any constant value that is a valid address. */
934
935 #define CONSTANT_ADDRESS_P(X) \
936 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
937 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
938 || GET_CODE (X) == HIGH)
939
940 /* Nonzero if the constant value X is a legitimate general operand.
941 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
942
943 On the ROMP, there is a bit of a hack here. Basically, we wish to
944 only issue instructions that are not `as' macros. However, in the
945 case of `get', `load', and `store', if the operand is a relocatable
946 symbol (possibly +/- an integer), there is no way to express the
947 resulting split-relocation except with the macro. Therefore, allow
948 either a constant valid in a normal (sign-extended) D-format insn or
949 a relocatable expression.
950
951 Also, for DFmode and DImode, we must ensure that both words are
952 addressable.
953
954 We define two macros: The first is given an offset (0 or 4) and indicates
955 that the operand is a CONST_INT that is valid for that offset. The second
956 indicates a valid non-CONST_INT constant. */
957
958 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
959 (GET_CODE (X) == CONST_INT \
960 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
961
962 #define LEGITIMATE_ADDRESS_CONSTANT_P(X) \
963 (GET_CODE (X) == SYMBOL_REF \
964 || GET_CODE (X) == LABEL_REF \
965 || (GET_CODE (X) == CONST \
966 && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
967 || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \
968 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))
969
970 /* Include all constant integers and constant double, but exclude
971 SYMBOL_REFs that are to be obtained from the data area (see below). */
972 #define LEGITIMATE_CONSTANT_P(X) \
973 ((LEGITIMATE_ADDRESS_CONSTANT_P (X) \
974 || GET_CODE (X) == CONST_INT \
975 || GET_CODE (X) == CONST_DOUBLE) \
976 && ! (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)))
977
978 /* For no good reason, we do the same as the other RT compilers and load
979 the addresses of data areas for a function from our data area. That means
980 that we need to mark such SYMBOL_REFs. We do so here. */
981 #define ENCODE_SECTION_INFO(DECL) \
982 if (TREE_CODE (TREE_TYPE (DECL)) == FUNCTION_TYPE) \
983 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
984
985 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
986 and check its validity for a certain class.
987 We have two alternate definitions for each of them.
988 The usual definition accepts all pseudo regs; the other rejects
989 them unless they have been allocated suitable hard regs.
990 The symbol REG_OK_STRICT causes the latter definition to be used.
991
992 Most source files want to accept pseudo regs in the hope that
993 they will get allocated to the class that the insn wants them to be in.
994 Source files for reload pass need to be strict.
995 After reload, it makes no difference, since pseudo regs have
996 been eliminated by then. */
997
998 #ifndef REG_OK_STRICT
999
1000 /* Nonzero if X is a hard reg that can be used as an index
1001 or if it is a pseudo reg. */
1002 #define REG_OK_FOR_INDEX_P(X) 0
1003 /* Nonzero if X is a hard reg that can be used as a base reg
1004 or if it is a pseudo reg. */
1005 #define REG_OK_FOR_BASE_P(X) \
1006 (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1007
1008 #else
1009
1010 /* Nonzero if X is a hard reg that can be used as an index. */
1011 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1012 /* Nonzero if X is a hard reg that can be used as a base reg. */
1013 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1014
1015 #endif
1016 \f
1017 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1018 that is a valid memory address for an instruction.
1019 The MODE argument is the machine mode for the MEM expression
1020 that wants to use this address.
1021
1022 On the ROMP, a legitimate address is either a legitimate constant,
1023 a register plus a legitimate constant, or a register. See the
1024 discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro. */
1025 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1026 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1027 goto ADDR; \
1028 if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X)) \
1029 goto ADDR; \
1030 if (GET_CODE (X) == PLUS \
1031 && GET_CODE (XEXP (X, 0)) == REG \
1032 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1033 && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1))) \
1034 goto ADDR; \
1035 if (GET_CODE (X) == PLUS \
1036 && GET_CODE (XEXP (X, 0)) == REG \
1037 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1038 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1039 && (((MODE) != DFmode && (MODE) != DImode) \
1040 || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))) \
1041 goto ADDR; \
1042 }
1043 \f
1044 /* Try machine-dependent ways of modifying an illegitimate address
1045 to be legitimate. If we find one, return the new, valid address.
1046 This macro is used in only one place: `memory_address' in explow.c.
1047
1048 OLDX is the address as it was before break_out_memory_refs was called.
1049 In some cases it is useful to look at this to decide what needs to be done.
1050
1051 MODE and WIN are passed so that this macro can use
1052 GO_IF_LEGITIMATE_ADDRESS.
1053
1054 It is always safe for this macro to do nothing. It exists to recognize
1055 opportunities to optimize the output.
1056
1057 On ROMP, check for the sum of a register with a constant
1058 integer that is out of range. If so, generate code to add the
1059 constant with the low-order 16 bits masked to the register and force
1060 this result into another register (this can be done with `cau').
1061 Then generate an address of REG+(CONST&0xffff), allowing for the
1062 possibility of bit 16 being a one.
1063
1064 If the register is not OK for a base register, abort. */
1065
1066 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1067 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1068 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1069 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1070 { int high_int, low_int; \
1071 if (! REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1072 abort (); \
1073 high_int = INTVAL (XEXP (X, 1)) >> 16; \
1074 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1075 if (low_int & 0x8000) \
1076 high_int += 1, low_int |= 0xffff0000; \
1077 (X) = gen_rtx (PLUS, SImode, \
1078 force_operand \
1079 (gen_rtx (PLUS, SImode, XEXP (X, 0), \
1080 gen_rtx (CONST_INT, VOIDmode, \
1081 high_int << 16)), 0),\
1082 gen_rtx (CONST_INT, VOIDmode, low_int)); \
1083 } \
1084 }
1085
1086 /* Go to LABEL if ADDR (a legitimate address expression)
1087 has an effect that depends on the machine mode it is used for.
1088
1089 On the ROMP this is true only if the address is valid with a zero offset
1090 but not with an offset of four (this means it cannot be used as an
1091 address for DImode or DFmode). Since we know it is valid, we just check
1092 for an address that is not valid with an offset of four. */
1093
1094 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1095 { if (GET_CODE (ADDR) == PLUS \
1096 && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1)) \
1097 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1098 goto LABEL; \
1099 }
1100 \f
1101 /* Define this if some processing needs to be done immediately before
1102 emitting code for an insn.
1103
1104 This is used on the ROMP, to compensate for a bug in the floating-point
1105 code. When a floating-point operation is done with the first and third
1106 operands both the same floating-point register, it will generate bad code
1107 for the MC68881. So we must detect this. If it occurs, we patch the
1108 first operand to be fr0 and insert a move insn to move it to the desired
1109 destination. */
1110 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1111 { rtx op0, op1, op2, operation, tem; \
1112 if (NOPERANDS >= 3 && get_attr_type (INSN) == TYPE_FP) \
1113 { \
1114 op0 = OPERANDS[0]; \
1115 operation = OPERANDS[1]; \
1116 if (float_conversion (operation, VOIDmode)) \
1117 operation = XEXP (operation, 0); \
1118 if (float_binary (operation, VOIDmode)) \
1119 { \
1120 op1 = XEXP (operation, 0), op2 = XEXP (operation, 1); \
1121 if (float_conversion (op1, VOIDmode)) \
1122 op1 = XEXP (op1, 0); \
1123 if (float_conversion (op2, VOIDmode)) \
1124 op2 = XEXP (op2, 0); \
1125 if (rtx_equal_p (op0, op2) \
1126 && (GET_CODE (operation) == PLUS \
1127 || GET_CODE (operation) == MULT)) \
1128 tem = op1, op1 = op2, op2 = tem; \
1129 if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) \
1130 && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)) \
1131 && REGNO (op0) == REGNO (op2)) \
1132 { \
1133 tem = gen_rtx (REG, GET_MODE (op0), 17); \
1134 emit_insn_after (gen_move_insn (op0, tem), INSN); \
1135 SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; \
1136 OPERANDS[0] = tem; \
1137 } \
1138 } \
1139 } \
1140 }
1141 \f
1142 /* Specify the machine mode that this machine uses
1143 for the index in the tablejump instruction. */
1144 #define CASE_VECTOR_MODE SImode
1145
1146 /* Define this if the tablejump instruction expects the table
1147 to contain offsets from the address of the table.
1148 Do not define this if the table should contain absolute addresses. */
1149 /* #define CASE_VECTOR_PC_RELATIVE */
1150
1151 /* Specify the tree operation to be used to convert reals to integers. */
1152 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1153
1154 /* This is the kind of divide that is easiest to do in the general case. */
1155 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1156
1157 /* Define this as 1 if `char' should by default be signed; else as 0. */
1158 #define DEFAULT_SIGNED_CHAR 0
1159
1160 /* This flag, if defined, says the same insns that convert to a signed fixnum
1161 also convert validly to an unsigned one.
1162
1163 We actually lie a bit here as overflow conditions are different. But
1164 they aren't being checked anyway. */
1165
1166 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1167
1168 /* Max number of bytes we can move from memory to memory
1169 in one reasonably fast instruction. */
1170 #define MOVE_MAX 4
1171
1172 /* Nonzero if access to memory by bytes is no faster than for words.
1173 Also non-zero if doing byte operations (specifically shifts) in registers
1174 is undesirable. */
1175 #define SLOW_BYTE_ACCESS 1
1176
1177 /* Define if operations between registers always perform the operation
1178 on the full register even if a narrower mode is specified. */
1179 #define WORD_REGISTER_OPERATIONS
1180
1181 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1182 will either zero-extend or sign-extend. The value of this macro should
1183 be the code that says which one of the two operations is implicitly
1184 done, NIL if none. */
1185 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1186
1187 /* This is BSD, so it wants DBX format. */
1188 #define DBX_DEBUGGING_INFO
1189
1190 /* Define the letter code used in a stabs entry for parameters passed
1191 with the register attribute.
1192
1193 GCC's default value, 'P', is used by dbx to refers to an external
1194 procedure. The section 5 manual page for dbx implies that 'R' would be the
1195 right letter, but dbx 1.5 has a bug in it that precludes its use.
1196 Probably that is why neither hc or pcc use this. pcc puts in two
1197 stabs entries: one for the parameter location and one for the register
1198 location. The letter `r' (register)
1199 would be okay, but it loses parameter attribute of the stabs entry. */
1200 #define DBX_REGPARM_STABS_LETTER 'R'
1201
1202 /* A C expression for the integer offset value of an automatic variable
1203 (N_LSYM) having address X (an RTX). This gets used in .stabs entries
1204 for the local variables. Compare with the default definition. */
1205 extern int romp_debugger_auto_correction();
1206 #define DEBUGGER_AUTO_OFFSET(X) \
1207 (GET_CODE (X) == PLUS \
1208 ? romp_debugger_auto_correction (INTVAL (XEXP (X, 1)) ) \
1209 : 0 )
1210
1211 /* A C expression for the integer offset value of an argument (N_PSYM)
1212 having address X (an RTX). The nominal offset is OFFSET. */
1213 extern int romp_debugger_arg_correction();
1214 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1215 romp_debugger_arg_correction (OFFSET);
1216
1217 /* We don't have GAS for the RT yet, so don't write out special
1218 .stabs in cc1plus. */
1219
1220 #define FASCIST_ASSEMBLER
1221
1222 /* Do not break .stabs pseudos into continuations. */
1223 #define DBX_CONTIN_LENGTH 0
1224
1225 /* Don't try to use the `x' type-cross-reference character in DBX data.
1226 Also has the consequence of putting each struct, union or enum
1227 into a separate .stabs, containing only cross-refs to the others. */
1228 #define DBX_NO_XREFS
1229
1230 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1231 is done just by pretending it is already truncated. */
1232 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1233
1234 /* Specify the machine mode that pointers have.
1235 After generation of rtl, the compiler makes no further distinction
1236 between pointers and any other objects of this machine mode. */
1237 #define Pmode SImode
1238
1239 /* Mode of a function address in a call instruction (for indexing purposes).
1240
1241 Doesn't matter on ROMP. */
1242 #define FUNCTION_MODE SImode
1243
1244 /* Define this if addresses of constant functions
1245 shouldn't be put through pseudo regs where they can be cse'd.
1246 Desirable on machines where ordinary constants are expensive
1247 but a CALL with constant address is cheap. */
1248 #define NO_FUNCTION_CSE
1249
1250 /* Define this if shift instructions ignore all but the low-order
1251 few bits.
1252
1253 This is not true on the RT since it uses the low-order 6, not 5, bits.
1254 At some point, this should be extended to see how to express that. */
1255
1256 /* #define SHIFT_COUNT_TRUNCATED */
1257
1258 /* Compute the cost of computing a constant rtl expression RTX whose
1259 rtx-code is CODE, contained within an expression of code OUTER_CODE.
1260 The body of this macro is a portion of a switch statement. If the
1261 code is computed here, return it with a return statement. Otherwise,
1262 break from the switch. */
1263
1264 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1265 case CONST_INT: \
1266 if ((OUTER_CODE) == IOR && exact_log2 (INTVAL (RTX)) >= 0 \
1267 || (OUTER_CODE) == AND && exact_log2 (~INTVAL (RTX)) >= 0 \
1268 || (((OUTER_CODE) == PLUS || (OUTER_CODE) == MINUS) \
1269 && (unsigned int) (INTVAL (RTX) + 15) < 31) \
1270 || ((OUTER_CODE) == SET && (unsigned int) INTVAL (RTX) < 16))\
1271 return 0; \
1272 return ((unsigned int) (INTVAL(RTX) + 0x8000) < 0x10000 \
1273 || (INTVAL (RTX) & 0xffff0000) == 0) ? 0 : COSTS_N_INSNS (2);\
1274 case CONST: \
1275 case LABEL_REF: \
1276 case SYMBOL_REF: \
1277 if (current_function_operand (RTX, Pmode)) return 0; \
1278 return COSTS_N_INSNS (2); \
1279 case CONST_DOUBLE: \
1280 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) return 2; \
1281 return ((GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
1282 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (4));
1283
1284 /* Provide the costs of a rtl expression. This is in the body of a
1285 switch on CODE.
1286
1287 References to our own data area are really references to r14, so they
1288 are very cheap. Multiples and divides are very expensive. */
1289
1290 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1291 case MEM: \
1292 return current_function_operand (X, Pmode) ? 0 : COSTS_N_INSNS (2); \
1293 case MULT: \
1294 return (TARGET_IN_LINE_MUL && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)\
1295 ? COSTS_N_INSNS (19) : COSTS_N_INSNS (25); \
1296 case DIV: \
1297 case UDIV: \
1298 case MOD: \
1299 case UMOD: \
1300 return COSTS_N_INSNS (45);
1301
1302 /* Compute the cost of an address. This is meant to approximate the size
1303 and/or execution delay of an insn using that address. If the cost is
1304 approximated by the RTL complexity, including CONST_COSTS above, as
1305 is usually the case for CISC machines, this macro should not be defined.
1306 For aggressively RISCy machines, only one insn format is allowed, so
1307 this macro should be a constant. The value of this macro only matters
1308 for valid addresses.
1309
1310 For the ROMP, everything is cost 0 except for addresses involving
1311 symbolic constants, which are cost 1. */
1312
1313 #define ADDRESS_COST(RTX) \
1314 ((GET_CODE (RTX) == SYMBOL_REF \
1315 && ! CONSTANT_POOL_ADDRESS_P (RTX)) \
1316 || GET_CODE (RTX) == LABEL_REF \
1317 || (GET_CODE (RTX) == CONST \
1318 && ! constant_pool_address_operand (RTX, Pmode)) \
1319 || (GET_CODE (RTX) == PLUS \
1320 && ((GET_CODE (XEXP (RTX, 1)) == SYMBOL_REF \
1321 && ! CONSTANT_POOL_ADDRESS_P (XEXP (RTX, 0))) \
1322 || GET_CODE (XEXP (RTX, 1)) == LABEL_REF \
1323 || GET_CODE (XEXP (RTX, 1)) == CONST)))
1324
1325 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1326 should be adjusted to reflect any required changes. This macro is used when
1327 there is some systematic length adjustment required that would be difficult
1328 to express in the length attribute.
1329
1330 On the ROMP, there are two adjustments: First, a 2-byte insn in the delay
1331 slot of a CALL (including floating-point operations) actually takes four
1332 bytes. Second, we have to make the worst-case alignment assumption for
1333 address vectors. */
1334
1335 #define ADJUST_INSN_LENGTH(X,LENGTH) \
1336 if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE \
1337 && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN \
1338 && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2) \
1339 (LENGTH) += 2; \
1340 else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \
1341 (LENGTH) += 2;
1342 \f
1343 /* Tell final.c how to eliminate redundant test instructions. */
1344
1345 /* Here we define machine-dependent flags and fields in cc_status
1346 (see `conditions.h'). */
1347
1348 /* Set if condition code (really not-Z) is stored in `test bit'. */
1349 #define CC_IN_TB 01000
1350
1351 /* Set if condition code is set by an unsigned compare. */
1352 #define CC_UNSIGNED 02000
1353
1354 /* Store in cc_status the expressions
1355 that the condition codes will describe
1356 after execution of an instruction whose pattern is EXP.
1357 Do not alter them if the instruction would not alter the cc's. */
1358
1359 #define NOTICE_UPDATE_CC(BODY,INSN) \
1360 update_cc (BODY, INSN)
1361 \f
1362 /* Control the assembler format that we output. */
1363
1364 /* Output at beginning of assembler file. */
1365
1366 #define ASM_FILE_START(FILE) \
1367 { extern char *version_string; \
1368 char *p; \
1369 \
1370 fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \
1371 fprintf (FILE, "\t.globl .oVgcc"); \
1372 for (p = version_string; *p != ' ' && *p != 0; p++) \
1373 fprintf (FILE, "%c", *p); \
1374 fprintf (FILE, "\n\t.set .oVgcc"); \
1375 for (p = version_string; *p != ' ' && *p != 0; p++) \
1376 fprintf (FILE, "%c", *p); \
1377 fprintf (FILE, ",0\n"); \
1378 }
1379
1380 /* Output to assembler file text saying following lines
1381 may contain character constants, extra white space, comments, etc. */
1382
1383 #define ASM_APP_ON ""
1384
1385 /* Output to assembler file text saying following lines
1386 no longer contain unusual constructs. */
1387
1388 #define ASM_APP_OFF ""
1389
1390 /* Output before instructions and read-only data. */
1391
1392 #define TEXT_SECTION_ASM_OP ".text"
1393
1394 /* Output before writable data. */
1395
1396 #define DATA_SECTION_ASM_OP ".data"
1397
1398 /* How to refer to registers in assembler output.
1399 This sequence is indexed by compiler's hard-register-number (see above). */
1400
1401 #define REGISTER_NAMES \
1402 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1403 "r10", "r11", "r12", "r13", "r14", "r15", "ap", \
1404 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" }
1405
1406 /* How to renumber registers for dbx and gdb. */
1407
1408 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1409
1410 /* This is how to output the definition of a user-level label named NAME,
1411 such as the label on a static function or variable NAME. */
1412
1413 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1414 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1415
1416 /* This is how to output a command to make the user-level label named NAME
1417 defined for reference from other files. */
1418
1419 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1420 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1421
1422 /* This is how to output a reference to a user-level label named NAME.
1423 `assemble_name' uses this. */
1424
1425 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1426 fprintf (FILE, "_%s", NAME)
1427
1428 /* This is how to output an internal numbered label where
1429 PREFIX is the class of label and NUM is the number within the class. */
1430
1431 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1432 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1433
1434 /* This is how to output a label for a jump table. Arguments are the same as
1435 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1436 passed. */
1437
1438 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1439 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1440
1441 /* This is how to store into the string LABEL
1442 the symbol_ref name of an internal numbered label where
1443 PREFIX is the class of label and NUM is the number within the class.
1444 This is suitable for output with `assemble_name'. */
1445
1446 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1447 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1448
1449 /* This is how to output an assembler line defining a `double' constant. */
1450
1451 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1452 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1453
1454 /* This is how to output an assembler line defining a `float' constant.
1455
1456 WARNING: Believe it or not, the ROMP assembler has a bug in its
1457 handling of single-precision floating-point values making it impossible
1458 to output such values in the expected way. Therefore, it must be output
1459 in hex. THIS WILL NOT WORK IF CROSS-COMPILING FROM A MACHINE THAT DOES
1460 NOT USE IEEE-FORMAT FLOATING-POINT, but there is nothing that can be done
1461 about it short of fixing the assembler. */
1462
1463 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1464 do { union { int i; float f; } u_i_f; \
1465 u_i_f.f = (VALUE); \
1466 fprintf (FILE, "\t.long 0x%x\n", u_i_f.i);\
1467 } while (0)
1468
1469 /* This is how to output an assembler line defining an `int' constant. */
1470
1471 #define ASM_OUTPUT_INT(FILE,VALUE) \
1472 ( fprintf (FILE, "\t.long "), \
1473 output_addr_const (FILE, (VALUE)), \
1474 fprintf (FILE, "\n"))
1475
1476 /* Likewise for `char' and `short' constants. */
1477
1478 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1479 ( fprintf (FILE, "\t.short "), \
1480 output_addr_const (FILE, (VALUE)), \
1481 fprintf (FILE, "\n"))
1482
1483 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1484 ( fprintf (FILE, "\t.byte "), \
1485 output_addr_const (FILE, (VALUE)), \
1486 fprintf (FILE, "\n"))
1487
1488 /* This is how to output an assembler line for a numeric constant byte. */
1489
1490 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1491 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1492
1493 /* This is how to output code to push a register on the stack.
1494 It need not be very fast code. */
1495
1496 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1497 fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO])
1498
1499 /* This is how to output an insn to pop a register from the stack.
1500 It need not be very fast code. */
1501
1502 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1503 fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO])
1504
1505 /* This is how to output an element of a case-vector that is absolute. */
1506
1507 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1508 fprintf (FILE, "\t.long L%d\n", VALUE)
1509
1510 /* This is how to output an element of a case-vector that is relative.
1511 Don't define this if it is not supported. */
1512
1513 /* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */
1514
1515 /* This is how to output an assembler line
1516 that says to advance the location counter
1517 to a multiple of 2**LOG bytes. */
1518
1519 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1520 if ((LOG) != 0) \
1521 fprintf (FILE, "\t.align %d\n", (LOG))
1522
1523 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1524 fprintf (FILE, "\t.space %d\n", (SIZE))
1525
1526 /* This says how to output an assembler line
1527 to define a global common symbol. */
1528
1529 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1530 ( fputs (".comm ", (FILE)), \
1531 assemble_name ((FILE), (NAME)), \
1532 fprintf ((FILE), ",%d\n", (SIZE)))
1533
1534 /* This says how to output an assembler line
1535 to define a local common symbol. */
1536
1537 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1538 ( fputs (".lcomm ", (FILE)), \
1539 assemble_name ((FILE), (NAME)), \
1540 fprintf ((FILE), ",%d\n", (SIZE)))
1541
1542 /* Store in OUTPUT a string (made with alloca) containing
1543 an assembler-name for a local static variable named NAME.
1544 LABELNO is an integer which is different for each call. */
1545
1546 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1547 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1548 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1549
1550 /* Define the parentheses used to group arithmetic operations
1551 in assembler code. */
1552
1553 #define ASM_OPEN_PAREN "("
1554 #define ASM_CLOSE_PAREN ")"
1555
1556 /* Define results of standard character escape sequences. */
1557 #define TARGET_BELL 007
1558 #define TARGET_BS 010
1559 #define TARGET_TAB 011
1560 #define TARGET_NEWLINE 012
1561 #define TARGET_VT 013
1562 #define TARGET_FF 014
1563 #define TARGET_CR 015
1564
1565 /* Print operand X (an rtx) in assembler syntax to file FILE.
1566 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1567 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1568
1569 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1570
1571 /* Define which CODE values are valid. */
1572
1573 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1574 ((CODE) == '.' || (CODE) == '#')
1575 \f
1576 /* Print a memory address as an operand to reference that memory location. */
1577
1578 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1579 { register rtx addr = ADDR; \
1580 register rtx base = 0, offset = addr; \
1581 if (GET_CODE (addr) == REG) \
1582 base = addr, offset = const0_rtx; \
1583 else if (GET_CODE (addr) == PLUS \
1584 && GET_CODE (XEXP (addr, 0)) == REG) \
1585 base = XEXP (addr, 0), offset = XEXP (addr, 1); \
1586 else if (GET_CODE (addr) == SYMBOL_REF \
1587 && CONSTANT_POOL_ADDRESS_P (addr)) \
1588 { \
1589 offset = gen_rtx (CONST_INT, VOIDmode, get_pool_offset (addr) + 12); \
1590 base = gen_rtx (REG, SImode, 14); \
1591 } \
1592 else if (GET_CODE (addr) == CONST \
1593 && GET_CODE (XEXP (addr, 0)) == PLUS \
1594 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT \
1595 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF \
1596 && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \
1597 { \
1598 offset = plus_constant (XEXP (XEXP (addr, 0), 1), \
1599 (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \
1600 + 12)); \
1601 base = gen_rtx (REG, SImode, 14); \
1602 } \
1603 output_addr_const (FILE, offset); \
1604 if (base) \
1605 fprintf (FILE, "(%s)", reg_names [REGNO (base)]); \
1606 }
1607
1608 /* Define the codes that are matched by predicates in aux-output.c. */
1609
1610 #define PREDICATE_CODES \
1611 {"zero_memory_operand", {SUBREG, MEM}}, \
1612 {"short_memory_operand", {SUBREG, MEM}}, \
1613 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1614 {"current_function_operand", {MEM}}, \
1615 {"constant_pool_address_operand", {SUBREG, CONST}}, \
1616 {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}}, \
1617 {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \
1618 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1619 {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}}, \
1620 {"short_cint_operand", {CONST_INT}}, \
1621 {"reg_or_D_operand", {SUBREG, REG, CONST_INT}}, \
1622 {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, \
1623 PLUS, CONST, CONST_INT}}, \
1624 {"reg_or_and_operand", {SUBREG, REG, CONST_INT}}, \
1625 {"reg_or_mem_operand", {SUBREG, REG, MEM}}, \
1626 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1627 {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \
1628 SYMBOL_REF, CONST_DOUBLE}}, \
1629 {"reg_0_operand", {REG}}, \
1630 {"reg_15_operand", {REG}}, \
1631 {"float_binary", {PLUS, MINUS, MULT, DIV}}, \
1632 {"float_unary", {NEG, ABS}}, \
1633 {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}},
1634
1635 /* Define functions defined in aux-output.c and used in templates. */
1636
1637 extern char *output_in_line_mul ();
1638 extern char *output_fpop ();