[RS6000] secondary_reload and find_replacement
[gcc.git] / gcc / config / rs6000 / rs6000.c
1 /* Subroutines used for code generation on IBM RS/6000.
2 Copyright (C) 1991-2018 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #define IN_TARGET_CODE 1
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "memmodel.h"
30 #include "gimple.h"
31 #include "cfghooks.h"
32 #include "cfgloop.h"
33 #include "df.h"
34 #include "tm_p.h"
35 #include "stringpool.h"
36 #include "expmed.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "ira.h"
40 #include "recog.h"
41 #include "cgraph.h"
42 #include "diagnostic-core.h"
43 #include "insn-attr.h"
44 #include "flags.h"
45 #include "alias.h"
46 #include "fold-const.h"
47 #include "attribs.h"
48 #include "stor-layout.h"
49 #include "calls.h"
50 #include "print-tree.h"
51 #include "varasm.h"
52 #include "explow.h"
53 #include "expr.h"
54 #include "output.h"
55 #include "dbxout.h"
56 #include "common/common-target.h"
57 #include "langhooks.h"
58 #include "reload.h"
59 #include "sched-int.h"
60 #include "gimplify.h"
61 #include "gimple-fold.h"
62 #include "gimple-iterator.h"
63 #include "gimple-ssa.h"
64 #include "gimple-walk.h"
65 #include "intl.h"
66 #include "params.h"
67 #include "tm-constrs.h"
68 #include "tree-vectorizer.h"
69 #include "target-globals.h"
70 #include "builtins.h"
71 #include "tree-vector-builder.h"
72 #include "context.h"
73 #include "tree-pass.h"
74 #include "except.h"
75 #if TARGET_XCOFF
76 #include "xcoffout.h" /* get declarations of xcoff_*_section_name */
77 #endif
78 #if TARGET_MACHO
79 #include "gstab.h" /* for N_SLINE */
80 #endif
81 #include "case-cfn-macros.h"
82 #include "ppc-auxv.h"
83 #include "tree-ssa-propagate.h"
84
85 /* This file should be included last. */
86 #include "target-def.h"
87
88 #ifndef TARGET_NO_PROTOTYPE
89 #define TARGET_NO_PROTOTYPE 0
90 #endif
91
92 /* Set -mabi=ieeelongdouble on some old targets. In the future, power server
93 systems will also set long double to be IEEE 128-bit. AIX and Darwin
94 explicitly redefine TARGET_IEEEQUAD and TARGET_IEEEQUAD_DEFAULT to 0, so
95 those systems will not pick up this default. This needs to be after all
96 of the include files, so that POWERPC_LINUX and POWERPC_FREEBSD are
97 properly defined. */
98 #ifndef TARGET_IEEEQUAD_DEFAULT
99 #if !defined (POWERPC_LINUX) && !defined (POWERPC_FREEBSD)
100 #define TARGET_IEEEQUAD_DEFAULT 1
101 #else
102 #define TARGET_IEEEQUAD_DEFAULT 0
103 #endif
104 #endif
105
106 static pad_direction rs6000_function_arg_padding (machine_mode, const_tree);
107
108 /* Structure used to define the rs6000 stack */
109 typedef struct rs6000_stack {
110 int reload_completed; /* stack info won't change from here on */
111 int first_gp_reg_save; /* first callee saved GP register used */
112 int first_fp_reg_save; /* first callee saved FP register used */
113 int first_altivec_reg_save; /* first callee saved AltiVec register used */
114 int lr_save_p; /* true if the link reg needs to be saved */
115 int cr_save_p; /* true if the CR reg needs to be saved */
116 unsigned int vrsave_mask; /* mask of vec registers to save */
117 int push_p; /* true if we need to allocate stack space */
118 int calls_p; /* true if the function makes any calls */
119 int world_save_p; /* true if we're saving *everything*:
120 r13-r31, cr, f14-f31, vrsave, v20-v31 */
121 enum rs6000_abi abi; /* which ABI to use */
122 int gp_save_offset; /* offset to save GP regs from initial SP */
123 int fp_save_offset; /* offset to save FP regs from initial SP */
124 int altivec_save_offset; /* offset to save AltiVec regs from initial SP */
125 int lr_save_offset; /* offset to save LR from initial SP */
126 int cr_save_offset; /* offset to save CR from initial SP */
127 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
128 int varargs_save_offset; /* offset to save the varargs registers */
129 int ehrd_offset; /* offset to EH return data */
130 int ehcr_offset; /* offset to EH CR field data */
131 int reg_size; /* register size (4 or 8) */
132 HOST_WIDE_INT vars_size; /* variable save area size */
133 int parm_size; /* outgoing parameter size */
134 int save_size; /* save area size */
135 int fixed_size; /* fixed size of stack frame */
136 int gp_size; /* size of saved GP registers */
137 int fp_size; /* size of saved FP registers */
138 int altivec_size; /* size of saved AltiVec registers */
139 int cr_size; /* size to hold CR if not in fixed area */
140 int vrsave_size; /* size to hold VRSAVE */
141 int altivec_padding_size; /* size of altivec alignment padding */
142 HOST_WIDE_INT total_size; /* total bytes allocated for stack */
143 int savres_strategy;
144 } rs6000_stack_t;
145
146 /* A C structure for machine-specific, per-function data.
147 This is added to the cfun structure. */
148 typedef struct GTY(()) machine_function
149 {
150 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
151 int ra_needs_full_frame;
152 /* Flags if __builtin_return_address (0) was used. */
153 int ra_need_lr;
154 /* Cache lr_save_p after expansion of builtin_eh_return. */
155 int lr_save_state;
156 /* Whether we need to save the TOC to the reserved stack location in the
157 function prologue. */
158 bool save_toc_in_prologue;
159 /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
160 varargs save area. */
161 HOST_WIDE_INT varargs_save_offset;
162 /* Alternative internal arg pointer for -fsplit-stack. */
163 rtx split_stack_arg_pointer;
164 bool split_stack_argp_used;
165 /* Flag if r2 setup is needed with ELFv2 ABI. */
166 bool r2_setup_needed;
167 /* The number of components we use for separate shrink-wrapping. */
168 int n_components;
169 /* The components already handled by separate shrink-wrapping, which should
170 not be considered by the prologue and epilogue. */
171 bool gpr_is_wrapped_separately[32];
172 bool fpr_is_wrapped_separately[32];
173 bool lr_is_wrapped_separately;
174 bool toc_is_wrapped_separately;
175 } machine_function;
176
177 /* Support targetm.vectorize.builtin_mask_for_load. */
178 static GTY(()) tree altivec_builtin_mask_for_load;
179
180 /* Set to nonzero once AIX common-mode calls have been defined. */
181 static GTY(()) int common_mode_defined;
182
183 /* Label number of label created for -mrelocatable, to call to so we can
184 get the address of the GOT section */
185 static int rs6000_pic_labelno;
186
187 #ifdef USING_ELFOS_H
188 /* Counter for labels which are to be placed in .fixup. */
189 int fixuplabelno = 0;
190 #endif
191
192 /* Whether to use variant of AIX ABI for PowerPC64 Linux. */
193 int dot_symbols;
194
195 /* Specify the machine mode that pointers have. After generation of rtl, the
196 compiler makes no further distinction between pointers and any other objects
197 of this machine mode. */
198 scalar_int_mode rs6000_pmode;
199
200 #if TARGET_ELF
201 /* Note whether IEEE 128-bit floating point was passed or returned, either as
202 the __float128/_Float128 explicit type, or when long double is IEEE 128-bit
203 floating point. We changed the default C++ mangling for these types and we
204 may want to generate a weak alias of the old mangling (U10__float128) to the
205 new mangling (u9__ieee128). */
206 static bool rs6000_passes_ieee128;
207 #endif
208
209 /* Generate the manged name (i.e. U10__float128) used in GCC 8.1, and not the
210 name used in current releases (i.e. u9__ieee128). */
211 static bool ieee128_mangling_gcc_8_1;
212
213 /* Width in bits of a pointer. */
214 unsigned rs6000_pointer_size;
215
216 #ifdef HAVE_AS_GNU_ATTRIBUTE
217 # ifndef HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE
218 # define HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE 0
219 # endif
220 /* Flag whether floating point values have been passed/returned.
221 Note that this doesn't say whether fprs are used, since the
222 Tag_GNU_Power_ABI_FP .gnu.attributes value this flag controls
223 should be set for soft-float values passed in gprs and ieee128
224 values passed in vsx registers. */
225 static bool rs6000_passes_float;
226 static bool rs6000_passes_long_double;
227 /* Flag whether vector values have been passed/returned. */
228 static bool rs6000_passes_vector;
229 /* Flag whether small (<= 8 byte) structures have been returned. */
230 static bool rs6000_returns_struct;
231 #endif
232
233 /* Value is TRUE if register/mode pair is acceptable. */
234 static bool rs6000_hard_regno_mode_ok_p
235 [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
236
237 /* Maximum number of registers needed for a given register class and mode. */
238 unsigned char rs6000_class_max_nregs[NUM_MACHINE_MODES][LIM_REG_CLASSES];
239
240 /* How many registers are needed for a given register and mode. */
241 unsigned char rs6000_hard_regno_nregs[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
242
243 /* Map register number to register class. */
244 enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
245
246 static int dbg_cost_ctrl;
247
248 /* Built in types. */
249 tree rs6000_builtin_types[RS6000_BTI_MAX];
250 tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
251
252 /* Flag to say the TOC is initialized */
253 int toc_initialized, need_toc_init;
254 char toc_label_name[10];
255
256 /* Cached value of rs6000_variable_issue. This is cached in
257 rs6000_variable_issue hook and returned from rs6000_sched_reorder2. */
258 static short cached_can_issue_more;
259
260 static GTY(()) section *read_only_data_section;
261 static GTY(()) section *private_data_section;
262 static GTY(()) section *tls_data_section;
263 static GTY(()) section *tls_private_data_section;
264 static GTY(()) section *read_only_private_data_section;
265 static GTY(()) section *sdata2_section;
266 static GTY(()) section *toc_section;
267
268 struct builtin_description
269 {
270 const HOST_WIDE_INT mask;
271 const enum insn_code icode;
272 const char *const name;
273 const enum rs6000_builtins code;
274 };
275
276 /* Describe the vector unit used for modes. */
277 enum rs6000_vector rs6000_vector_unit[NUM_MACHINE_MODES];
278 enum rs6000_vector rs6000_vector_mem[NUM_MACHINE_MODES];
279
280 /* Register classes for various constraints that are based on the target
281 switches. */
282 enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
283
284 /* Describe the alignment of a vector. */
285 int rs6000_vector_align[NUM_MACHINE_MODES];
286
287 /* Map selected modes to types for builtins. */
288 static GTY(()) tree builtin_mode_to_type[MAX_MACHINE_MODE][2];
289
290 /* What modes to automatically generate reciprocal divide estimate (fre) and
291 reciprocal sqrt (frsqrte) for. */
292 unsigned char rs6000_recip_bits[MAX_MACHINE_MODE];
293
294 /* Masks to determine which reciprocal esitmate instructions to generate
295 automatically. */
296 enum rs6000_recip_mask {
297 RECIP_SF_DIV = 0x001, /* Use divide estimate */
298 RECIP_DF_DIV = 0x002,
299 RECIP_V4SF_DIV = 0x004,
300 RECIP_V2DF_DIV = 0x008,
301
302 RECIP_SF_RSQRT = 0x010, /* Use reciprocal sqrt estimate. */
303 RECIP_DF_RSQRT = 0x020,
304 RECIP_V4SF_RSQRT = 0x040,
305 RECIP_V2DF_RSQRT = 0x080,
306
307 /* Various combination of flags for -mrecip=xxx. */
308 RECIP_NONE = 0,
309 RECIP_ALL = (RECIP_SF_DIV | RECIP_DF_DIV | RECIP_V4SF_DIV
310 | RECIP_V2DF_DIV | RECIP_SF_RSQRT | RECIP_DF_RSQRT
311 | RECIP_V4SF_RSQRT | RECIP_V2DF_RSQRT),
312
313 RECIP_HIGH_PRECISION = RECIP_ALL,
314
315 /* On low precision machines like the power5, don't enable double precision
316 reciprocal square root estimate, since it isn't accurate enough. */
317 RECIP_LOW_PRECISION = (RECIP_ALL & ~(RECIP_DF_RSQRT | RECIP_V2DF_RSQRT))
318 };
319
320 /* -mrecip options. */
321 static struct
322 {
323 const char *string; /* option name */
324 unsigned int mask; /* mask bits to set */
325 } recip_options[] = {
326 { "all", RECIP_ALL },
327 { "none", RECIP_NONE },
328 { "div", (RECIP_SF_DIV | RECIP_DF_DIV | RECIP_V4SF_DIV
329 | RECIP_V2DF_DIV) },
330 { "divf", (RECIP_SF_DIV | RECIP_V4SF_DIV) },
331 { "divd", (RECIP_DF_DIV | RECIP_V2DF_DIV) },
332 { "rsqrt", (RECIP_SF_RSQRT | RECIP_DF_RSQRT | RECIP_V4SF_RSQRT
333 | RECIP_V2DF_RSQRT) },
334 { "rsqrtf", (RECIP_SF_RSQRT | RECIP_V4SF_RSQRT) },
335 { "rsqrtd", (RECIP_DF_RSQRT | RECIP_V2DF_RSQRT) },
336 };
337
338 /* Used by __builtin_cpu_is(), mapping from PLATFORM names to values. */
339 static const struct
340 {
341 const char *cpu;
342 unsigned int cpuid;
343 } cpu_is_info[] = {
344 { "power9", PPC_PLATFORM_POWER9 },
345 { "power8", PPC_PLATFORM_POWER8 },
346 { "power7", PPC_PLATFORM_POWER7 },
347 { "power6x", PPC_PLATFORM_POWER6X },
348 { "power6", PPC_PLATFORM_POWER6 },
349 { "power5+", PPC_PLATFORM_POWER5_PLUS },
350 { "power5", PPC_PLATFORM_POWER5 },
351 { "ppc970", PPC_PLATFORM_PPC970 },
352 { "power4", PPC_PLATFORM_POWER4 },
353 { "ppca2", PPC_PLATFORM_PPCA2 },
354 { "ppc476", PPC_PLATFORM_PPC476 },
355 { "ppc464", PPC_PLATFORM_PPC464 },
356 { "ppc440", PPC_PLATFORM_PPC440 },
357 { "ppc405", PPC_PLATFORM_PPC405 },
358 { "ppc-cell-be", PPC_PLATFORM_CELL_BE }
359 };
360
361 /* Used by __builtin_cpu_supports(), mapping from HWCAP names to masks. */
362 static const struct
363 {
364 const char *hwcap;
365 int mask;
366 unsigned int id;
367 } cpu_supports_info[] = {
368 /* AT_HWCAP masks. */
369 { "4xxmac", PPC_FEATURE_HAS_4xxMAC, 0 },
370 { "altivec", PPC_FEATURE_HAS_ALTIVEC, 0 },
371 { "arch_2_05", PPC_FEATURE_ARCH_2_05, 0 },
372 { "arch_2_06", PPC_FEATURE_ARCH_2_06, 0 },
373 { "archpmu", PPC_FEATURE_PERFMON_COMPAT, 0 },
374 { "booke", PPC_FEATURE_BOOKE, 0 },
375 { "cellbe", PPC_FEATURE_CELL_BE, 0 },
376 { "dfp", PPC_FEATURE_HAS_DFP, 0 },
377 { "efpdouble", PPC_FEATURE_HAS_EFP_DOUBLE, 0 },
378 { "efpsingle", PPC_FEATURE_HAS_EFP_SINGLE, 0 },
379 { "fpu", PPC_FEATURE_HAS_FPU, 0 },
380 { "ic_snoop", PPC_FEATURE_ICACHE_SNOOP, 0 },
381 { "mmu", PPC_FEATURE_HAS_MMU, 0 },
382 { "notb", PPC_FEATURE_NO_TB, 0 },
383 { "pa6t", PPC_FEATURE_PA6T, 0 },
384 { "power4", PPC_FEATURE_POWER4, 0 },
385 { "power5", PPC_FEATURE_POWER5, 0 },
386 { "power5+", PPC_FEATURE_POWER5_PLUS, 0 },
387 { "power6x", PPC_FEATURE_POWER6_EXT, 0 },
388 { "ppc32", PPC_FEATURE_32, 0 },
389 { "ppc601", PPC_FEATURE_601_INSTR, 0 },
390 { "ppc64", PPC_FEATURE_64, 0 },
391 { "ppcle", PPC_FEATURE_PPC_LE, 0 },
392 { "smt", PPC_FEATURE_SMT, 0 },
393 { "spe", PPC_FEATURE_HAS_SPE, 0 },
394 { "true_le", PPC_FEATURE_TRUE_LE, 0 },
395 { "ucache", PPC_FEATURE_UNIFIED_CACHE, 0 },
396 { "vsx", PPC_FEATURE_HAS_VSX, 0 },
397
398 /* AT_HWCAP2 masks. */
399 { "arch_2_07", PPC_FEATURE2_ARCH_2_07, 1 },
400 { "dscr", PPC_FEATURE2_HAS_DSCR, 1 },
401 { "ebb", PPC_FEATURE2_HAS_EBB, 1 },
402 { "htm", PPC_FEATURE2_HAS_HTM, 1 },
403 { "htm-nosc", PPC_FEATURE2_HTM_NOSC, 1 },
404 { "htm-no-suspend", PPC_FEATURE2_HTM_NO_SUSPEND, 1 },
405 { "isel", PPC_FEATURE2_HAS_ISEL, 1 },
406 { "tar", PPC_FEATURE2_HAS_TAR, 1 },
407 { "vcrypto", PPC_FEATURE2_HAS_VEC_CRYPTO, 1 },
408 { "arch_3_00", PPC_FEATURE2_ARCH_3_00, 1 },
409 { "ieee128", PPC_FEATURE2_HAS_IEEE128, 1 },
410 { "darn", PPC_FEATURE2_DARN, 1 },
411 { "scv", PPC_FEATURE2_SCV, 1 }
412 };
413
414 /* On PowerPC, we have a limited number of target clones that we care about
415 which means we can use an array to hold the options, rather than having more
416 elaborate data structures to identify each possible variation. Order the
417 clones from the default to the highest ISA. */
418 enum {
419 CLONE_DEFAULT = 0, /* default clone. */
420 CLONE_ISA_2_05, /* ISA 2.05 (power6). */
421 CLONE_ISA_2_06, /* ISA 2.06 (power7). */
422 CLONE_ISA_2_07, /* ISA 2.07 (power8). */
423 CLONE_ISA_3_00, /* ISA 3.00 (power9). */
424 CLONE_MAX
425 };
426
427 /* Map compiler ISA bits into HWCAP names. */
428 struct clone_map {
429 HOST_WIDE_INT isa_mask; /* rs6000_isa mask */
430 const char *name; /* name to use in __builtin_cpu_supports. */
431 };
432
433 static const struct clone_map rs6000_clone_map[CLONE_MAX] = {
434 { 0, "" }, /* Default options. */
435 { OPTION_MASK_CMPB, "arch_2_05" }, /* ISA 2.05 (power6). */
436 { OPTION_MASK_POPCNTD, "arch_2_06" }, /* ISA 2.06 (power7). */
437 { OPTION_MASK_P8_VECTOR, "arch_2_07" }, /* ISA 2.07 (power8). */
438 { OPTION_MASK_P9_VECTOR, "arch_3_00" }, /* ISA 3.00 (power9). */
439 };
440
441
442 /* Newer LIBCs explicitly export this symbol to declare that they provide
443 the AT_PLATFORM and AT_HWCAP/AT_HWCAP2 values in the TCB. We emit a
444 reference to this symbol whenever we expand a CPU builtin, so that
445 we never link against an old LIBC. */
446 const char *tcb_verification_symbol = "__parse_hwcap_and_convert_at_platform";
447
448 /* True if we have expanded a CPU builtin. */
449 bool cpu_builtin_p;
450
451 /* Pointer to function (in rs6000-c.c) that can define or undefine target
452 macros that have changed. Languages that don't support the preprocessor
453 don't link in rs6000-c.c, so we can't call it directly. */
454 void (*rs6000_target_modify_macros_ptr) (bool, HOST_WIDE_INT, HOST_WIDE_INT);
455
456 /* Simplfy register classes into simpler classifications. We assume
457 GPR_REG_TYPE - FPR_REG_TYPE are ordered so that we can use a simple range
458 check for standard register classes (gpr/floating/altivec/vsx) and
459 floating/vector classes (float/altivec/vsx). */
460
461 enum rs6000_reg_type {
462 NO_REG_TYPE,
463 PSEUDO_REG_TYPE,
464 GPR_REG_TYPE,
465 VSX_REG_TYPE,
466 ALTIVEC_REG_TYPE,
467 FPR_REG_TYPE,
468 SPR_REG_TYPE,
469 CR_REG_TYPE
470 };
471
472 /* Map register class to register type. */
473 static enum rs6000_reg_type reg_class_to_reg_type[N_REG_CLASSES];
474
475 /* First/last register type for the 'normal' register types (i.e. general
476 purpose, floating point, altivec, and VSX registers). */
477 #define IS_STD_REG_TYPE(RTYPE) IN_RANGE(RTYPE, GPR_REG_TYPE, FPR_REG_TYPE)
478
479 #define IS_FP_VECT_REG_TYPE(RTYPE) IN_RANGE(RTYPE, VSX_REG_TYPE, FPR_REG_TYPE)
480
481
482 /* Register classes we care about in secondary reload or go if legitimate
483 address. We only need to worry about GPR, FPR, and Altivec registers here,
484 along an ANY field that is the OR of the 3 register classes. */
485
486 enum rs6000_reload_reg_type {
487 RELOAD_REG_GPR, /* General purpose registers. */
488 RELOAD_REG_FPR, /* Traditional floating point regs. */
489 RELOAD_REG_VMX, /* Altivec (VMX) registers. */
490 RELOAD_REG_ANY, /* OR of GPR, FPR, Altivec masks. */
491 N_RELOAD_REG
492 };
493
494 /* For setting up register classes, loop through the 3 register classes mapping
495 into real registers, and skip the ANY class, which is just an OR of the
496 bits. */
497 #define FIRST_RELOAD_REG_CLASS RELOAD_REG_GPR
498 #define LAST_RELOAD_REG_CLASS RELOAD_REG_VMX
499
500 /* Map reload register type to a register in the register class. */
501 struct reload_reg_map_type {
502 const char *name; /* Register class name. */
503 int reg; /* Register in the register class. */
504 };
505
506 static const struct reload_reg_map_type reload_reg_map[N_RELOAD_REG] = {
507 { "Gpr", FIRST_GPR_REGNO }, /* RELOAD_REG_GPR. */
508 { "Fpr", FIRST_FPR_REGNO }, /* RELOAD_REG_FPR. */
509 { "VMX", FIRST_ALTIVEC_REGNO }, /* RELOAD_REG_VMX. */
510 { "Any", -1 }, /* RELOAD_REG_ANY. */
511 };
512
513 /* Mask bits for each register class, indexed per mode. Historically the
514 compiler has been more restrictive which types can do PRE_MODIFY instead of
515 PRE_INC and PRE_DEC, so keep track of sepaate bits for these two. */
516 typedef unsigned char addr_mask_type;
517
518 #define RELOAD_REG_VALID 0x01 /* Mode valid in register.. */
519 #define RELOAD_REG_MULTIPLE 0x02 /* Mode takes multiple registers. */
520 #define RELOAD_REG_INDEXED 0x04 /* Reg+reg addressing. */
521 #define RELOAD_REG_OFFSET 0x08 /* Reg+offset addressing. */
522 #define RELOAD_REG_PRE_INCDEC 0x10 /* PRE_INC/PRE_DEC valid. */
523 #define RELOAD_REG_PRE_MODIFY 0x20 /* PRE_MODIFY valid. */
524 #define RELOAD_REG_AND_M16 0x40 /* AND -16 addressing. */
525 #define RELOAD_REG_QUAD_OFFSET 0x80 /* quad offset is limited. */
526
527 /* Register type masks based on the type, of valid addressing modes. */
528 struct rs6000_reg_addr {
529 enum insn_code reload_load; /* INSN to reload for loading. */
530 enum insn_code reload_store; /* INSN to reload for storing. */
531 enum insn_code reload_fpr_gpr; /* INSN to move from FPR to GPR. */
532 enum insn_code reload_gpr_vsx; /* INSN to move from GPR to VSX. */
533 enum insn_code reload_vsx_gpr; /* INSN to move from VSX to GPR. */
534 addr_mask_type addr_mask[(int)N_RELOAD_REG]; /* Valid address masks. */
535 bool scalar_in_vmx_p; /* Scalar value can go in VMX. */
536 };
537
538 static struct rs6000_reg_addr reg_addr[NUM_MACHINE_MODES];
539
540 /* Helper function to say whether a mode supports PRE_INC or PRE_DEC. */
541 static inline bool
542 mode_supports_pre_incdec_p (machine_mode mode)
543 {
544 return ((reg_addr[mode].addr_mask[RELOAD_REG_ANY] & RELOAD_REG_PRE_INCDEC)
545 != 0);
546 }
547
548 /* Helper function to say whether a mode supports PRE_MODIFY. */
549 static inline bool
550 mode_supports_pre_modify_p (machine_mode mode)
551 {
552 return ((reg_addr[mode].addr_mask[RELOAD_REG_ANY] & RELOAD_REG_PRE_MODIFY)
553 != 0);
554 }
555
556 /* Return true if we have D-form addressing in altivec registers. */
557 static inline bool
558 mode_supports_vmx_dform (machine_mode mode)
559 {
560 return ((reg_addr[mode].addr_mask[RELOAD_REG_VMX] & RELOAD_REG_OFFSET) != 0);
561 }
562
563 /* Return true if we have D-form addressing in VSX registers. This addressing
564 is more limited than normal d-form addressing in that the offset must be
565 aligned on a 16-byte boundary. */
566 static inline bool
567 mode_supports_dq_form (machine_mode mode)
568 {
569 return ((reg_addr[mode].addr_mask[RELOAD_REG_ANY] & RELOAD_REG_QUAD_OFFSET)
570 != 0);
571 }
572
573 /* Given that there exists at least one variable that is set (produced)
574 by OUT_INSN and read (consumed) by IN_INSN, return true iff
575 IN_INSN represents one or more memory store operations and none of
576 the variables set by OUT_INSN is used by IN_INSN as the address of a
577 store operation. If either IN_INSN or OUT_INSN does not represent
578 a "single" RTL SET expression (as loosely defined by the
579 implementation of the single_set function) or a PARALLEL with only
580 SETs, CLOBBERs, and USEs inside, this function returns false.
581
582 This rs6000-specific version of store_data_bypass_p checks for
583 certain conditions that result in assertion failures (and internal
584 compiler errors) in the generic store_data_bypass_p function and
585 returns false rather than calling store_data_bypass_p if one of the
586 problematic conditions is detected. */
587
588 int
589 rs6000_store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
590 {
591 rtx out_set, in_set;
592 rtx out_pat, in_pat;
593 rtx out_exp, in_exp;
594 int i, j;
595
596 in_set = single_set (in_insn);
597 if (in_set)
598 {
599 if (MEM_P (SET_DEST (in_set)))
600 {
601 out_set = single_set (out_insn);
602 if (!out_set)
603 {
604 out_pat = PATTERN (out_insn);
605 if (GET_CODE (out_pat) == PARALLEL)
606 {
607 for (i = 0; i < XVECLEN (out_pat, 0); i++)
608 {
609 out_exp = XVECEXP (out_pat, 0, i);
610 if ((GET_CODE (out_exp) == CLOBBER)
611 || (GET_CODE (out_exp) == USE))
612 continue;
613 else if (GET_CODE (out_exp) != SET)
614 return false;
615 }
616 }
617 }
618 }
619 }
620 else
621 {
622 in_pat = PATTERN (in_insn);
623 if (GET_CODE (in_pat) != PARALLEL)
624 return false;
625
626 for (i = 0; i < XVECLEN (in_pat, 0); i++)
627 {
628 in_exp = XVECEXP (in_pat, 0, i);
629 if ((GET_CODE (in_exp) == CLOBBER) || (GET_CODE (in_exp) == USE))
630 continue;
631 else if (GET_CODE (in_exp) != SET)
632 return false;
633
634 if (MEM_P (SET_DEST (in_exp)))
635 {
636 out_set = single_set (out_insn);
637 if (!out_set)
638 {
639 out_pat = PATTERN (out_insn);
640 if (GET_CODE (out_pat) != PARALLEL)
641 return false;
642 for (j = 0; j < XVECLEN (out_pat, 0); j++)
643 {
644 out_exp = XVECEXP (out_pat, 0, j);
645 if ((GET_CODE (out_exp) == CLOBBER)
646 || (GET_CODE (out_exp) == USE))
647 continue;
648 else if (GET_CODE (out_exp) != SET)
649 return false;
650 }
651 }
652 }
653 }
654 }
655 return store_data_bypass_p (out_insn, in_insn);
656 }
657
658 \f
659 /* Processor costs (relative to an add) */
660
661 const struct processor_costs *rs6000_cost;
662
663 /* Instruction size costs on 32bit processors. */
664 static const
665 struct processor_costs size32_cost = {
666 COSTS_N_INSNS (1), /* mulsi */
667 COSTS_N_INSNS (1), /* mulsi_const */
668 COSTS_N_INSNS (1), /* mulsi_const9 */
669 COSTS_N_INSNS (1), /* muldi */
670 COSTS_N_INSNS (1), /* divsi */
671 COSTS_N_INSNS (1), /* divdi */
672 COSTS_N_INSNS (1), /* fp */
673 COSTS_N_INSNS (1), /* dmul */
674 COSTS_N_INSNS (1), /* sdiv */
675 COSTS_N_INSNS (1), /* ddiv */
676 32, /* cache line size */
677 0, /* l1 cache */
678 0, /* l2 cache */
679 0, /* streams */
680 0, /* SF->DF convert */
681 };
682
683 /* Instruction size costs on 64bit processors. */
684 static const
685 struct processor_costs size64_cost = {
686 COSTS_N_INSNS (1), /* mulsi */
687 COSTS_N_INSNS (1), /* mulsi_const */
688 COSTS_N_INSNS (1), /* mulsi_const9 */
689 COSTS_N_INSNS (1), /* muldi */
690 COSTS_N_INSNS (1), /* divsi */
691 COSTS_N_INSNS (1), /* divdi */
692 COSTS_N_INSNS (1), /* fp */
693 COSTS_N_INSNS (1), /* dmul */
694 COSTS_N_INSNS (1), /* sdiv */
695 COSTS_N_INSNS (1), /* ddiv */
696 128, /* cache line size */
697 0, /* l1 cache */
698 0, /* l2 cache */
699 0, /* streams */
700 0, /* SF->DF convert */
701 };
702
703 /* Instruction costs on RS64A processors. */
704 static const
705 struct processor_costs rs64a_cost = {
706 COSTS_N_INSNS (20), /* mulsi */
707 COSTS_N_INSNS (12), /* mulsi_const */
708 COSTS_N_INSNS (8), /* mulsi_const9 */
709 COSTS_N_INSNS (34), /* muldi */
710 COSTS_N_INSNS (65), /* divsi */
711 COSTS_N_INSNS (67), /* divdi */
712 COSTS_N_INSNS (4), /* fp */
713 COSTS_N_INSNS (4), /* dmul */
714 COSTS_N_INSNS (31), /* sdiv */
715 COSTS_N_INSNS (31), /* ddiv */
716 128, /* cache line size */
717 128, /* l1 cache */
718 2048, /* l2 cache */
719 1, /* streams */
720 0, /* SF->DF convert */
721 };
722
723 /* Instruction costs on MPCCORE processors. */
724 static const
725 struct processor_costs mpccore_cost = {
726 COSTS_N_INSNS (2), /* mulsi */
727 COSTS_N_INSNS (2), /* mulsi_const */
728 COSTS_N_INSNS (2), /* mulsi_const9 */
729 COSTS_N_INSNS (2), /* muldi */
730 COSTS_N_INSNS (6), /* divsi */
731 COSTS_N_INSNS (6), /* divdi */
732 COSTS_N_INSNS (4), /* fp */
733 COSTS_N_INSNS (5), /* dmul */
734 COSTS_N_INSNS (10), /* sdiv */
735 COSTS_N_INSNS (17), /* ddiv */
736 32, /* cache line size */
737 4, /* l1 cache */
738 16, /* l2 cache */
739 1, /* streams */
740 0, /* SF->DF convert */
741 };
742
743 /* Instruction costs on PPC403 processors. */
744 static const
745 struct processor_costs ppc403_cost = {
746 COSTS_N_INSNS (4), /* mulsi */
747 COSTS_N_INSNS (4), /* mulsi_const */
748 COSTS_N_INSNS (4), /* mulsi_const9 */
749 COSTS_N_INSNS (4), /* muldi */
750 COSTS_N_INSNS (33), /* divsi */
751 COSTS_N_INSNS (33), /* divdi */
752 COSTS_N_INSNS (11), /* fp */
753 COSTS_N_INSNS (11), /* dmul */
754 COSTS_N_INSNS (11), /* sdiv */
755 COSTS_N_INSNS (11), /* ddiv */
756 32, /* cache line size */
757 4, /* l1 cache */
758 16, /* l2 cache */
759 1, /* streams */
760 0, /* SF->DF convert */
761 };
762
763 /* Instruction costs on PPC405 processors. */
764 static const
765 struct processor_costs ppc405_cost = {
766 COSTS_N_INSNS (5), /* mulsi */
767 COSTS_N_INSNS (4), /* mulsi_const */
768 COSTS_N_INSNS (3), /* mulsi_const9 */
769 COSTS_N_INSNS (5), /* muldi */
770 COSTS_N_INSNS (35), /* divsi */
771 COSTS_N_INSNS (35), /* divdi */
772 COSTS_N_INSNS (11), /* fp */
773 COSTS_N_INSNS (11), /* dmul */
774 COSTS_N_INSNS (11), /* sdiv */
775 COSTS_N_INSNS (11), /* ddiv */
776 32, /* cache line size */
777 16, /* l1 cache */
778 128, /* l2 cache */
779 1, /* streams */
780 0, /* SF->DF convert */
781 };
782
783 /* Instruction costs on PPC440 processors. */
784 static const
785 struct processor_costs ppc440_cost = {
786 COSTS_N_INSNS (3), /* mulsi */
787 COSTS_N_INSNS (2), /* mulsi_const */
788 COSTS_N_INSNS (2), /* mulsi_const9 */
789 COSTS_N_INSNS (3), /* muldi */
790 COSTS_N_INSNS (34), /* divsi */
791 COSTS_N_INSNS (34), /* divdi */
792 COSTS_N_INSNS (5), /* fp */
793 COSTS_N_INSNS (5), /* dmul */
794 COSTS_N_INSNS (19), /* sdiv */
795 COSTS_N_INSNS (33), /* ddiv */
796 32, /* cache line size */
797 32, /* l1 cache */
798 256, /* l2 cache */
799 1, /* streams */
800 0, /* SF->DF convert */
801 };
802
803 /* Instruction costs on PPC476 processors. */
804 static const
805 struct processor_costs ppc476_cost = {
806 COSTS_N_INSNS (4), /* mulsi */
807 COSTS_N_INSNS (4), /* mulsi_const */
808 COSTS_N_INSNS (4), /* mulsi_const9 */
809 COSTS_N_INSNS (4), /* muldi */
810 COSTS_N_INSNS (11), /* divsi */
811 COSTS_N_INSNS (11), /* divdi */
812 COSTS_N_INSNS (6), /* fp */
813 COSTS_N_INSNS (6), /* dmul */
814 COSTS_N_INSNS (19), /* sdiv */
815 COSTS_N_INSNS (33), /* ddiv */
816 32, /* l1 cache line size */
817 32, /* l1 cache */
818 512, /* l2 cache */
819 1, /* streams */
820 0, /* SF->DF convert */
821 };
822
823 /* Instruction costs on PPC601 processors. */
824 static const
825 struct processor_costs ppc601_cost = {
826 COSTS_N_INSNS (5), /* mulsi */
827 COSTS_N_INSNS (5), /* mulsi_const */
828 COSTS_N_INSNS (5), /* mulsi_const9 */
829 COSTS_N_INSNS (5), /* muldi */
830 COSTS_N_INSNS (36), /* divsi */
831 COSTS_N_INSNS (36), /* divdi */
832 COSTS_N_INSNS (4), /* fp */
833 COSTS_N_INSNS (5), /* dmul */
834 COSTS_N_INSNS (17), /* sdiv */
835 COSTS_N_INSNS (31), /* ddiv */
836 32, /* cache line size */
837 32, /* l1 cache */
838 256, /* l2 cache */
839 1, /* streams */
840 0, /* SF->DF convert */
841 };
842
843 /* Instruction costs on PPC603 processors. */
844 static const
845 struct processor_costs ppc603_cost = {
846 COSTS_N_INSNS (5), /* mulsi */
847 COSTS_N_INSNS (3), /* mulsi_const */
848 COSTS_N_INSNS (2), /* mulsi_const9 */
849 COSTS_N_INSNS (5), /* muldi */
850 COSTS_N_INSNS (37), /* divsi */
851 COSTS_N_INSNS (37), /* divdi */
852 COSTS_N_INSNS (3), /* fp */
853 COSTS_N_INSNS (4), /* dmul */
854 COSTS_N_INSNS (18), /* sdiv */
855 COSTS_N_INSNS (33), /* ddiv */
856 32, /* cache line size */
857 8, /* l1 cache */
858 64, /* l2 cache */
859 1, /* streams */
860 0, /* SF->DF convert */
861 };
862
863 /* Instruction costs on PPC604 processors. */
864 static const
865 struct processor_costs ppc604_cost = {
866 COSTS_N_INSNS (4), /* mulsi */
867 COSTS_N_INSNS (4), /* mulsi_const */
868 COSTS_N_INSNS (4), /* mulsi_const9 */
869 COSTS_N_INSNS (4), /* muldi */
870 COSTS_N_INSNS (20), /* divsi */
871 COSTS_N_INSNS (20), /* divdi */
872 COSTS_N_INSNS (3), /* fp */
873 COSTS_N_INSNS (3), /* dmul */
874 COSTS_N_INSNS (18), /* sdiv */
875 COSTS_N_INSNS (32), /* ddiv */
876 32, /* cache line size */
877 16, /* l1 cache */
878 512, /* l2 cache */
879 1, /* streams */
880 0, /* SF->DF convert */
881 };
882
883 /* Instruction costs on PPC604e processors. */
884 static const
885 struct processor_costs ppc604e_cost = {
886 COSTS_N_INSNS (2), /* mulsi */
887 COSTS_N_INSNS (2), /* mulsi_const */
888 COSTS_N_INSNS (2), /* mulsi_const9 */
889 COSTS_N_INSNS (2), /* muldi */
890 COSTS_N_INSNS (20), /* divsi */
891 COSTS_N_INSNS (20), /* divdi */
892 COSTS_N_INSNS (3), /* fp */
893 COSTS_N_INSNS (3), /* dmul */
894 COSTS_N_INSNS (18), /* sdiv */
895 COSTS_N_INSNS (32), /* ddiv */
896 32, /* cache line size */
897 32, /* l1 cache */
898 1024, /* l2 cache */
899 1, /* streams */
900 0, /* SF->DF convert */
901 };
902
903 /* Instruction costs on PPC620 processors. */
904 static const
905 struct processor_costs ppc620_cost = {
906 COSTS_N_INSNS (5), /* mulsi */
907 COSTS_N_INSNS (4), /* mulsi_const */
908 COSTS_N_INSNS (3), /* mulsi_const9 */
909 COSTS_N_INSNS (7), /* muldi */
910 COSTS_N_INSNS (21), /* divsi */
911 COSTS_N_INSNS (37), /* divdi */
912 COSTS_N_INSNS (3), /* fp */
913 COSTS_N_INSNS (3), /* dmul */
914 COSTS_N_INSNS (18), /* sdiv */
915 COSTS_N_INSNS (32), /* ddiv */
916 128, /* cache line size */
917 32, /* l1 cache */
918 1024, /* l2 cache */
919 1, /* streams */
920 0, /* SF->DF convert */
921 };
922
923 /* Instruction costs on PPC630 processors. */
924 static const
925 struct processor_costs ppc630_cost = {
926 COSTS_N_INSNS (5), /* mulsi */
927 COSTS_N_INSNS (4), /* mulsi_const */
928 COSTS_N_INSNS (3), /* mulsi_const9 */
929 COSTS_N_INSNS (7), /* muldi */
930 COSTS_N_INSNS (21), /* divsi */
931 COSTS_N_INSNS (37), /* divdi */
932 COSTS_N_INSNS (3), /* fp */
933 COSTS_N_INSNS (3), /* dmul */
934 COSTS_N_INSNS (17), /* sdiv */
935 COSTS_N_INSNS (21), /* ddiv */
936 128, /* cache line size */
937 64, /* l1 cache */
938 1024, /* l2 cache */
939 1, /* streams */
940 0, /* SF->DF convert */
941 };
942
943 /* Instruction costs on Cell processor. */
944 /* COSTS_N_INSNS (1) ~ one add. */
945 static const
946 struct processor_costs ppccell_cost = {
947 COSTS_N_INSNS (9/2)+2, /* mulsi */
948 COSTS_N_INSNS (6/2), /* mulsi_const */
949 COSTS_N_INSNS (6/2), /* mulsi_const9 */
950 COSTS_N_INSNS (15/2)+2, /* muldi */
951 COSTS_N_INSNS (38/2), /* divsi */
952 COSTS_N_INSNS (70/2), /* divdi */
953 COSTS_N_INSNS (10/2), /* fp */
954 COSTS_N_INSNS (10/2), /* dmul */
955 COSTS_N_INSNS (74/2), /* sdiv */
956 COSTS_N_INSNS (74/2), /* ddiv */
957 128, /* cache line size */
958 32, /* l1 cache */
959 512, /* l2 cache */
960 6, /* streams */
961 0, /* SF->DF convert */
962 };
963
964 /* Instruction costs on PPC750 and PPC7400 processors. */
965 static const
966 struct processor_costs ppc750_cost = {
967 COSTS_N_INSNS (5), /* mulsi */
968 COSTS_N_INSNS (3), /* mulsi_const */
969 COSTS_N_INSNS (2), /* mulsi_const9 */
970 COSTS_N_INSNS (5), /* muldi */
971 COSTS_N_INSNS (17), /* divsi */
972 COSTS_N_INSNS (17), /* divdi */
973 COSTS_N_INSNS (3), /* fp */
974 COSTS_N_INSNS (3), /* dmul */
975 COSTS_N_INSNS (17), /* sdiv */
976 COSTS_N_INSNS (31), /* ddiv */
977 32, /* cache line size */
978 32, /* l1 cache */
979 512, /* l2 cache */
980 1, /* streams */
981 0, /* SF->DF convert */
982 };
983
984 /* Instruction costs on PPC7450 processors. */
985 static const
986 struct processor_costs ppc7450_cost = {
987 COSTS_N_INSNS (4), /* mulsi */
988 COSTS_N_INSNS (3), /* mulsi_const */
989 COSTS_N_INSNS (3), /* mulsi_const9 */
990 COSTS_N_INSNS (4), /* muldi */
991 COSTS_N_INSNS (23), /* divsi */
992 COSTS_N_INSNS (23), /* divdi */
993 COSTS_N_INSNS (5), /* fp */
994 COSTS_N_INSNS (5), /* dmul */
995 COSTS_N_INSNS (21), /* sdiv */
996 COSTS_N_INSNS (35), /* ddiv */
997 32, /* cache line size */
998 32, /* l1 cache */
999 1024, /* l2 cache */
1000 1, /* streams */
1001 0, /* SF->DF convert */
1002 };
1003
1004 /* Instruction costs on PPC8540 processors. */
1005 static const
1006 struct processor_costs ppc8540_cost = {
1007 COSTS_N_INSNS (4), /* mulsi */
1008 COSTS_N_INSNS (4), /* mulsi_const */
1009 COSTS_N_INSNS (4), /* mulsi_const9 */
1010 COSTS_N_INSNS (4), /* muldi */
1011 COSTS_N_INSNS (19), /* divsi */
1012 COSTS_N_INSNS (19), /* divdi */
1013 COSTS_N_INSNS (4), /* fp */
1014 COSTS_N_INSNS (4), /* dmul */
1015 COSTS_N_INSNS (29), /* sdiv */
1016 COSTS_N_INSNS (29), /* ddiv */
1017 32, /* cache line size */
1018 32, /* l1 cache */
1019 256, /* l2 cache */
1020 1, /* prefetch streams /*/
1021 0, /* SF->DF convert */
1022 };
1023
1024 /* Instruction costs on E300C2 and E300C3 cores. */
1025 static const
1026 struct processor_costs ppce300c2c3_cost = {
1027 COSTS_N_INSNS (4), /* mulsi */
1028 COSTS_N_INSNS (4), /* mulsi_const */
1029 COSTS_N_INSNS (4), /* mulsi_const9 */
1030 COSTS_N_INSNS (4), /* muldi */
1031 COSTS_N_INSNS (19), /* divsi */
1032 COSTS_N_INSNS (19), /* divdi */
1033 COSTS_N_INSNS (3), /* fp */
1034 COSTS_N_INSNS (4), /* dmul */
1035 COSTS_N_INSNS (18), /* sdiv */
1036 COSTS_N_INSNS (33), /* ddiv */
1037 32,
1038 16, /* l1 cache */
1039 16, /* l2 cache */
1040 1, /* prefetch streams /*/
1041 0, /* SF->DF convert */
1042 };
1043
1044 /* Instruction costs on PPCE500MC processors. */
1045 static const
1046 struct processor_costs ppce500mc_cost = {
1047 COSTS_N_INSNS (4), /* mulsi */
1048 COSTS_N_INSNS (4), /* mulsi_const */
1049 COSTS_N_INSNS (4), /* mulsi_const9 */
1050 COSTS_N_INSNS (4), /* muldi */
1051 COSTS_N_INSNS (14), /* divsi */
1052 COSTS_N_INSNS (14), /* divdi */
1053 COSTS_N_INSNS (8), /* fp */
1054 COSTS_N_INSNS (10), /* dmul */
1055 COSTS_N_INSNS (36), /* sdiv */
1056 COSTS_N_INSNS (66), /* ddiv */
1057 64, /* cache line size */
1058 32, /* l1 cache */
1059 128, /* l2 cache */
1060 1, /* prefetch streams /*/
1061 0, /* SF->DF convert */
1062 };
1063
1064 /* Instruction costs on PPCE500MC64 processors. */
1065 static const
1066 struct processor_costs ppce500mc64_cost = {
1067 COSTS_N_INSNS (4), /* mulsi */
1068 COSTS_N_INSNS (4), /* mulsi_const */
1069 COSTS_N_INSNS (4), /* mulsi_const9 */
1070 COSTS_N_INSNS (4), /* muldi */
1071 COSTS_N_INSNS (14), /* divsi */
1072 COSTS_N_INSNS (14), /* divdi */
1073 COSTS_N_INSNS (4), /* fp */
1074 COSTS_N_INSNS (10), /* dmul */
1075 COSTS_N_INSNS (36), /* sdiv */
1076 COSTS_N_INSNS (66), /* ddiv */
1077 64, /* cache line size */
1078 32, /* l1 cache */
1079 128, /* l2 cache */
1080 1, /* prefetch streams /*/
1081 0, /* SF->DF convert */
1082 };
1083
1084 /* Instruction costs on PPCE5500 processors. */
1085 static const
1086 struct processor_costs ppce5500_cost = {
1087 COSTS_N_INSNS (5), /* mulsi */
1088 COSTS_N_INSNS (5), /* mulsi_const */
1089 COSTS_N_INSNS (4), /* mulsi_const9 */
1090 COSTS_N_INSNS (5), /* muldi */
1091 COSTS_N_INSNS (14), /* divsi */
1092 COSTS_N_INSNS (14), /* divdi */
1093 COSTS_N_INSNS (7), /* fp */
1094 COSTS_N_INSNS (10), /* dmul */
1095 COSTS_N_INSNS (36), /* sdiv */
1096 COSTS_N_INSNS (66), /* ddiv */
1097 64, /* cache line size */
1098 32, /* l1 cache */
1099 128, /* l2 cache */
1100 1, /* prefetch streams /*/
1101 0, /* SF->DF convert */
1102 };
1103
1104 /* Instruction costs on PPCE6500 processors. */
1105 static const
1106 struct processor_costs ppce6500_cost = {
1107 COSTS_N_INSNS (5), /* mulsi */
1108 COSTS_N_INSNS (5), /* mulsi_const */
1109 COSTS_N_INSNS (4), /* mulsi_const9 */
1110 COSTS_N_INSNS (5), /* muldi */
1111 COSTS_N_INSNS (14), /* divsi */
1112 COSTS_N_INSNS (14), /* divdi */
1113 COSTS_N_INSNS (7), /* fp */
1114 COSTS_N_INSNS (10), /* dmul */
1115 COSTS_N_INSNS (36), /* sdiv */
1116 COSTS_N_INSNS (66), /* ddiv */
1117 64, /* cache line size */
1118 32, /* l1 cache */
1119 128, /* l2 cache */
1120 1, /* prefetch streams /*/
1121 0, /* SF->DF convert */
1122 };
1123
1124 /* Instruction costs on AppliedMicro Titan processors. */
1125 static const
1126 struct processor_costs titan_cost = {
1127 COSTS_N_INSNS (5), /* mulsi */
1128 COSTS_N_INSNS (5), /* mulsi_const */
1129 COSTS_N_INSNS (5), /* mulsi_const9 */
1130 COSTS_N_INSNS (5), /* muldi */
1131 COSTS_N_INSNS (18), /* divsi */
1132 COSTS_N_INSNS (18), /* divdi */
1133 COSTS_N_INSNS (10), /* fp */
1134 COSTS_N_INSNS (10), /* dmul */
1135 COSTS_N_INSNS (46), /* sdiv */
1136 COSTS_N_INSNS (72), /* ddiv */
1137 32, /* cache line size */
1138 32, /* l1 cache */
1139 512, /* l2 cache */
1140 1, /* prefetch streams /*/
1141 0, /* SF->DF convert */
1142 };
1143
1144 /* Instruction costs on POWER4 and POWER5 processors. */
1145 static const
1146 struct processor_costs power4_cost = {
1147 COSTS_N_INSNS (3), /* mulsi */
1148 COSTS_N_INSNS (2), /* mulsi_const */
1149 COSTS_N_INSNS (2), /* mulsi_const9 */
1150 COSTS_N_INSNS (4), /* muldi */
1151 COSTS_N_INSNS (18), /* divsi */
1152 COSTS_N_INSNS (34), /* divdi */
1153 COSTS_N_INSNS (3), /* fp */
1154 COSTS_N_INSNS (3), /* dmul */
1155 COSTS_N_INSNS (17), /* sdiv */
1156 COSTS_N_INSNS (17), /* ddiv */
1157 128, /* cache line size */
1158 32, /* l1 cache */
1159 1024, /* l2 cache */
1160 8, /* prefetch streams /*/
1161 0, /* SF->DF convert */
1162 };
1163
1164 /* Instruction costs on POWER6 processors. */
1165 static const
1166 struct processor_costs power6_cost = {
1167 COSTS_N_INSNS (8), /* mulsi */
1168 COSTS_N_INSNS (8), /* mulsi_const */
1169 COSTS_N_INSNS (8), /* mulsi_const9 */
1170 COSTS_N_INSNS (8), /* muldi */
1171 COSTS_N_INSNS (22), /* divsi */
1172 COSTS_N_INSNS (28), /* divdi */
1173 COSTS_N_INSNS (3), /* fp */
1174 COSTS_N_INSNS (3), /* dmul */
1175 COSTS_N_INSNS (13), /* sdiv */
1176 COSTS_N_INSNS (16), /* ddiv */
1177 128, /* cache line size */
1178 64, /* l1 cache */
1179 2048, /* l2 cache */
1180 16, /* prefetch streams */
1181 0, /* SF->DF convert */
1182 };
1183
1184 /* Instruction costs on POWER7 processors. */
1185 static const
1186 struct processor_costs power7_cost = {
1187 COSTS_N_INSNS (2), /* mulsi */
1188 COSTS_N_INSNS (2), /* mulsi_const */
1189 COSTS_N_INSNS (2), /* mulsi_const9 */
1190 COSTS_N_INSNS (2), /* muldi */
1191 COSTS_N_INSNS (18), /* divsi */
1192 COSTS_N_INSNS (34), /* divdi */
1193 COSTS_N_INSNS (3), /* fp */
1194 COSTS_N_INSNS (3), /* dmul */
1195 COSTS_N_INSNS (13), /* sdiv */
1196 COSTS_N_INSNS (16), /* ddiv */
1197 128, /* cache line size */
1198 32, /* l1 cache */
1199 256, /* l2 cache */
1200 12, /* prefetch streams */
1201 COSTS_N_INSNS (3), /* SF->DF convert */
1202 };
1203
1204 /* Instruction costs on POWER8 processors. */
1205 static const
1206 struct processor_costs power8_cost = {
1207 COSTS_N_INSNS (3), /* mulsi */
1208 COSTS_N_INSNS (3), /* mulsi_const */
1209 COSTS_N_INSNS (3), /* mulsi_const9 */
1210 COSTS_N_INSNS (3), /* muldi */
1211 COSTS_N_INSNS (19), /* divsi */
1212 COSTS_N_INSNS (35), /* divdi */
1213 COSTS_N_INSNS (3), /* fp */
1214 COSTS_N_INSNS (3), /* dmul */
1215 COSTS_N_INSNS (14), /* sdiv */
1216 COSTS_N_INSNS (17), /* ddiv */
1217 128, /* cache line size */
1218 32, /* l1 cache */
1219 256, /* l2 cache */
1220 12, /* prefetch streams */
1221 COSTS_N_INSNS (3), /* SF->DF convert */
1222 };
1223
1224 /* Instruction costs on POWER9 processors. */
1225 static const
1226 struct processor_costs power9_cost = {
1227 COSTS_N_INSNS (3), /* mulsi */
1228 COSTS_N_INSNS (3), /* mulsi_const */
1229 COSTS_N_INSNS (3), /* mulsi_const9 */
1230 COSTS_N_INSNS (3), /* muldi */
1231 COSTS_N_INSNS (8), /* divsi */
1232 COSTS_N_INSNS (12), /* divdi */
1233 COSTS_N_INSNS (3), /* fp */
1234 COSTS_N_INSNS (3), /* dmul */
1235 COSTS_N_INSNS (13), /* sdiv */
1236 COSTS_N_INSNS (18), /* ddiv */
1237 128, /* cache line size */
1238 32, /* l1 cache */
1239 512, /* l2 cache */
1240 8, /* prefetch streams */
1241 COSTS_N_INSNS (3), /* SF->DF convert */
1242 };
1243
1244 /* Instruction costs on POWER A2 processors. */
1245 static const
1246 struct processor_costs ppca2_cost = {
1247 COSTS_N_INSNS (16), /* mulsi */
1248 COSTS_N_INSNS (16), /* mulsi_const */
1249 COSTS_N_INSNS (16), /* mulsi_const9 */
1250 COSTS_N_INSNS (16), /* muldi */
1251 COSTS_N_INSNS (22), /* divsi */
1252 COSTS_N_INSNS (28), /* divdi */
1253 COSTS_N_INSNS (3), /* fp */
1254 COSTS_N_INSNS (3), /* dmul */
1255 COSTS_N_INSNS (59), /* sdiv */
1256 COSTS_N_INSNS (72), /* ddiv */
1257 64,
1258 16, /* l1 cache */
1259 2048, /* l2 cache */
1260 16, /* prefetch streams */
1261 0, /* SF->DF convert */
1262 };
1263
1264 \f
1265 /* Table that classifies rs6000 builtin functions (pure, const, etc.). */
1266 #undef RS6000_BUILTIN_0
1267 #undef RS6000_BUILTIN_1
1268 #undef RS6000_BUILTIN_2
1269 #undef RS6000_BUILTIN_3
1270 #undef RS6000_BUILTIN_A
1271 #undef RS6000_BUILTIN_D
1272 #undef RS6000_BUILTIN_H
1273 #undef RS6000_BUILTIN_P
1274 #undef RS6000_BUILTIN_X
1275
1276 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) \
1277 { NAME, ICODE, MASK, ATTR },
1278
1279 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) \
1280 { NAME, ICODE, MASK, ATTR },
1281
1282 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) \
1283 { NAME, ICODE, MASK, ATTR },
1284
1285 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) \
1286 { NAME, ICODE, MASK, ATTR },
1287
1288 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) \
1289 { NAME, ICODE, MASK, ATTR },
1290
1291 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) \
1292 { NAME, ICODE, MASK, ATTR },
1293
1294 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) \
1295 { NAME, ICODE, MASK, ATTR },
1296
1297 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) \
1298 { NAME, ICODE, MASK, ATTR },
1299
1300 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) \
1301 { NAME, ICODE, MASK, ATTR },
1302
1303 struct rs6000_builtin_info_type {
1304 const char *name;
1305 const enum insn_code icode;
1306 const HOST_WIDE_INT mask;
1307 const unsigned attr;
1308 };
1309
1310 static const struct rs6000_builtin_info_type rs6000_builtin_info[] =
1311 {
1312 #include "rs6000-builtin.def"
1313 };
1314
1315 #undef RS6000_BUILTIN_0
1316 #undef RS6000_BUILTIN_1
1317 #undef RS6000_BUILTIN_2
1318 #undef RS6000_BUILTIN_3
1319 #undef RS6000_BUILTIN_A
1320 #undef RS6000_BUILTIN_D
1321 #undef RS6000_BUILTIN_H
1322 #undef RS6000_BUILTIN_P
1323 #undef RS6000_BUILTIN_X
1324
1325 /* Support for -mveclibabi=<xxx> to control which vector library to use. */
1326 static tree (*rs6000_veclib_handler) (combined_fn, tree, tree);
1327
1328 \f
1329 static bool rs6000_debug_legitimate_address_p (machine_mode, rtx, bool);
1330 static struct machine_function * rs6000_init_machine_status (void);
1331 static int rs6000_ra_ever_killed (void);
1332 static tree rs6000_handle_longcall_attribute (tree *, tree, tree, int, bool *);
1333 static tree rs6000_handle_altivec_attribute (tree *, tree, tree, int, bool *);
1334 static tree rs6000_handle_struct_attribute (tree *, tree, tree, int, bool *);
1335 static tree rs6000_builtin_vectorized_libmass (combined_fn, tree, tree);
1336 static void rs6000_emit_set_long_const (rtx, HOST_WIDE_INT);
1337 static int rs6000_memory_move_cost (machine_mode, reg_class_t, bool);
1338 static bool rs6000_debug_rtx_costs (rtx, machine_mode, int, int, int *, bool);
1339 static int rs6000_debug_address_cost (rtx, machine_mode, addr_space_t,
1340 bool);
1341 static int rs6000_debug_adjust_cost (rtx_insn *, int, rtx_insn *, int,
1342 unsigned int);
1343 static bool is_microcoded_insn (rtx_insn *);
1344 static bool is_nonpipeline_insn (rtx_insn *);
1345 static bool is_cracked_insn (rtx_insn *);
1346 static bool is_load_insn (rtx, rtx *);
1347 static bool is_store_insn (rtx, rtx *);
1348 static bool set_to_load_agen (rtx_insn *,rtx_insn *);
1349 static bool insn_terminates_group_p (rtx_insn *, enum group_termination);
1350 static bool insn_must_be_first_in_group (rtx_insn *);
1351 static bool insn_must_be_last_in_group (rtx_insn *);
1352 static void altivec_init_builtins (void);
1353 static tree builtin_function_type (machine_mode, machine_mode,
1354 machine_mode, machine_mode,
1355 enum rs6000_builtins, const char *name);
1356 static void rs6000_common_init_builtins (void);
1357 static void htm_init_builtins (void);
1358 static rs6000_stack_t *rs6000_stack_info (void);
1359 static void is_altivec_return_reg (rtx, void *);
1360 int easy_vector_constant (rtx, machine_mode);
1361 static rtx rs6000_debug_legitimize_address (rtx, rtx, machine_mode);
1362 static rtx rs6000_legitimize_tls_address (rtx, enum tls_model);
1363 static rtx rs6000_darwin64_record_arg (CUMULATIVE_ARGS *, const_tree,
1364 bool, bool);
1365 #if TARGET_MACHO
1366 static void macho_branch_islands (void);
1367 #endif
1368 static rtx rs6000_legitimize_reload_address (rtx, machine_mode, int, int,
1369 int, int *);
1370 static rtx rs6000_debug_legitimize_reload_address (rtx, machine_mode, int,
1371 int, int, int *);
1372 static bool rs6000_mode_dependent_address (const_rtx);
1373 static bool rs6000_debug_mode_dependent_address (const_rtx);
1374 static bool rs6000_offsettable_memref_p (rtx, machine_mode, bool);
1375 static enum reg_class rs6000_secondary_reload_class (enum reg_class,
1376 machine_mode, rtx);
1377 static enum reg_class rs6000_debug_secondary_reload_class (enum reg_class,
1378 machine_mode,
1379 rtx);
1380 static enum reg_class rs6000_preferred_reload_class (rtx, enum reg_class);
1381 static enum reg_class rs6000_debug_preferred_reload_class (rtx,
1382 enum reg_class);
1383 static bool rs6000_debug_secondary_memory_needed (machine_mode,
1384 reg_class_t,
1385 reg_class_t);
1386 static bool rs6000_debug_can_change_mode_class (machine_mode,
1387 machine_mode,
1388 reg_class_t);
1389 static bool rs6000_save_toc_in_prologue_p (void);
1390 static rtx rs6000_internal_arg_pointer (void);
1391
1392 rtx (*rs6000_legitimize_reload_address_ptr) (rtx, machine_mode, int, int,
1393 int, int *)
1394 = rs6000_legitimize_reload_address;
1395
1396 static bool (*rs6000_mode_dependent_address_ptr) (const_rtx)
1397 = rs6000_mode_dependent_address;
1398
1399 enum reg_class (*rs6000_secondary_reload_class_ptr) (enum reg_class,
1400 machine_mode, rtx)
1401 = rs6000_secondary_reload_class;
1402
1403 enum reg_class (*rs6000_preferred_reload_class_ptr) (rtx, enum reg_class)
1404 = rs6000_preferred_reload_class;
1405
1406 const int INSN_NOT_AVAILABLE = -1;
1407
1408 static void rs6000_print_isa_options (FILE *, int, const char *,
1409 HOST_WIDE_INT);
1410 static void rs6000_print_builtin_options (FILE *, int, const char *,
1411 HOST_WIDE_INT);
1412 static HOST_WIDE_INT rs6000_disable_incompatible_switches (void);
1413
1414 static enum rs6000_reg_type register_to_reg_type (rtx, bool *);
1415 static bool rs6000_secondary_reload_move (enum rs6000_reg_type,
1416 enum rs6000_reg_type,
1417 machine_mode,
1418 secondary_reload_info *,
1419 bool);
1420 rtl_opt_pass *make_pass_analyze_swaps (gcc::context*);
1421 static bool rs6000_keep_leaf_when_profiled () __attribute__ ((unused));
1422 static tree rs6000_fold_builtin (tree, int, tree *, bool);
1423
1424 /* Hash table stuff for keeping track of TOC entries. */
1425
1426 struct GTY((for_user)) toc_hash_struct
1427 {
1428 /* `key' will satisfy CONSTANT_P; in fact, it will satisfy
1429 ASM_OUTPUT_SPECIAL_POOL_ENTRY_P. */
1430 rtx key;
1431 machine_mode key_mode;
1432 int labelno;
1433 };
1434
1435 struct toc_hasher : ggc_ptr_hash<toc_hash_struct>
1436 {
1437 static hashval_t hash (toc_hash_struct *);
1438 static bool equal (toc_hash_struct *, toc_hash_struct *);
1439 };
1440
1441 static GTY (()) hash_table<toc_hasher> *toc_hash_table;
1442
1443 /* Hash table to keep track of the argument types for builtin functions. */
1444
1445 struct GTY((for_user)) builtin_hash_struct
1446 {
1447 tree type;
1448 machine_mode mode[4]; /* return value + 3 arguments. */
1449 unsigned char uns_p[4]; /* and whether the types are unsigned. */
1450 };
1451
1452 struct builtin_hasher : ggc_ptr_hash<builtin_hash_struct>
1453 {
1454 static hashval_t hash (builtin_hash_struct *);
1455 static bool equal (builtin_hash_struct *, builtin_hash_struct *);
1456 };
1457
1458 static GTY (()) hash_table<builtin_hasher> *builtin_hash_table;
1459
1460 \f
1461 /* Default register names. */
1462 char rs6000_reg_names[][8] =
1463 {
1464 "0", "1", "2", "3", "4", "5", "6", "7",
1465 "8", "9", "10", "11", "12", "13", "14", "15",
1466 "16", "17", "18", "19", "20", "21", "22", "23",
1467 "24", "25", "26", "27", "28", "29", "30", "31",
1468 "0", "1", "2", "3", "4", "5", "6", "7",
1469 "8", "9", "10", "11", "12", "13", "14", "15",
1470 "16", "17", "18", "19", "20", "21", "22", "23",
1471 "24", "25", "26", "27", "28", "29", "30", "31",
1472 "mq", "lr", "ctr","ap",
1473 "0", "1", "2", "3", "4", "5", "6", "7",
1474 "ca",
1475 /* AltiVec registers. */
1476 "0", "1", "2", "3", "4", "5", "6", "7",
1477 "8", "9", "10", "11", "12", "13", "14", "15",
1478 "16", "17", "18", "19", "20", "21", "22", "23",
1479 "24", "25", "26", "27", "28", "29", "30", "31",
1480 "vrsave", "vscr",
1481 /* Soft frame pointer. */
1482 "sfp",
1483 /* HTM SPR registers. */
1484 "tfhar", "tfiar", "texasr"
1485 };
1486
1487 #ifdef TARGET_REGNAMES
1488 static const char alt_reg_names[][8] =
1489 {
1490 "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7",
1491 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
1492 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23",
1493 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31",
1494 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
1495 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",
1496 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",
1497 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",
1498 "mq", "lr", "ctr", "ap",
1499 "%cr0", "%cr1", "%cr2", "%cr3", "%cr4", "%cr5", "%cr6", "%cr7",
1500 "ca",
1501 /* AltiVec registers. */
1502 "%v0", "%v1", "%v2", "%v3", "%v4", "%v5", "%v6", "%v7",
1503 "%v8", "%v9", "%v10", "%v11", "%v12", "%v13", "%v14", "%v15",
1504 "%v16", "%v17", "%v18", "%v19", "%v20", "%v21", "%v22", "%v23",
1505 "%v24", "%v25", "%v26", "%v27", "%v28", "%v29", "%v30", "%v31",
1506 "vrsave", "vscr",
1507 /* Soft frame pointer. */
1508 "sfp",
1509 /* HTM SPR registers. */
1510 "tfhar", "tfiar", "texasr"
1511 };
1512 #endif
1513
1514 /* Table of valid machine attributes. */
1515
1516 static const struct attribute_spec rs6000_attribute_table[] =
1517 {
1518 /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
1519 affects_type_identity, handler, exclude } */
1520 { "altivec", 1, 1, false, true, false, false,
1521 rs6000_handle_altivec_attribute, NULL },
1522 { "longcall", 0, 0, false, true, true, false,
1523 rs6000_handle_longcall_attribute, NULL },
1524 { "shortcall", 0, 0, false, true, true, false,
1525 rs6000_handle_longcall_attribute, NULL },
1526 { "ms_struct", 0, 0, false, false, false, false,
1527 rs6000_handle_struct_attribute, NULL },
1528 { "gcc_struct", 0, 0, false, false, false, false,
1529 rs6000_handle_struct_attribute, NULL },
1530 #ifdef SUBTARGET_ATTRIBUTE_TABLE
1531 SUBTARGET_ATTRIBUTE_TABLE,
1532 #endif
1533 { NULL, 0, 0, false, false, false, false, NULL, NULL }
1534 };
1535 \f
1536 #ifndef TARGET_PROFILE_KERNEL
1537 #define TARGET_PROFILE_KERNEL 0
1538 #endif
1539
1540 /* The VRSAVE bitmask puts bit %v0 as the most significant bit. */
1541 #define ALTIVEC_REG_BIT(REGNO) (0x80000000 >> ((REGNO) - FIRST_ALTIVEC_REGNO))
1542 \f
1543 /* Initialize the GCC target structure. */
1544 #undef TARGET_ATTRIBUTE_TABLE
1545 #define TARGET_ATTRIBUTE_TABLE rs6000_attribute_table
1546 #undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
1547 #define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES rs6000_set_default_type_attributes
1548 #undef TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P
1549 #define TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P rs6000_attribute_takes_identifier_p
1550
1551 #undef TARGET_ASM_ALIGNED_DI_OP
1552 #define TARGET_ASM_ALIGNED_DI_OP DOUBLE_INT_ASM_OP
1553
1554 /* Default unaligned ops are only provided for ELF. Find the ops needed
1555 for non-ELF systems. */
1556 #ifndef OBJECT_FORMAT_ELF
1557 #if TARGET_XCOFF
1558 /* For XCOFF. rs6000_assemble_integer will handle unaligned DIs on
1559 64-bit targets. */
1560 #undef TARGET_ASM_UNALIGNED_HI_OP
1561 #define TARGET_ASM_UNALIGNED_HI_OP "\t.vbyte\t2,"
1562 #undef TARGET_ASM_UNALIGNED_SI_OP
1563 #define TARGET_ASM_UNALIGNED_SI_OP "\t.vbyte\t4,"
1564 #undef TARGET_ASM_UNALIGNED_DI_OP
1565 #define TARGET_ASM_UNALIGNED_DI_OP "\t.vbyte\t8,"
1566 #else
1567 /* For Darwin. */
1568 #undef TARGET_ASM_UNALIGNED_HI_OP
1569 #define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
1570 #undef TARGET_ASM_UNALIGNED_SI_OP
1571 #define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
1572 #undef TARGET_ASM_UNALIGNED_DI_OP
1573 #define TARGET_ASM_UNALIGNED_DI_OP "\t.quad\t"
1574 #undef TARGET_ASM_ALIGNED_DI_OP
1575 #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
1576 #endif
1577 #endif
1578
1579 /* This hook deals with fixups for relocatable code and DI-mode objects
1580 in 64-bit code. */
1581 #undef TARGET_ASM_INTEGER
1582 #define TARGET_ASM_INTEGER rs6000_assemble_integer
1583
1584 #if defined (HAVE_GAS_HIDDEN) && !TARGET_MACHO
1585 #undef TARGET_ASM_ASSEMBLE_VISIBILITY
1586 #define TARGET_ASM_ASSEMBLE_VISIBILITY rs6000_assemble_visibility
1587 #endif
1588
1589 #undef TARGET_SET_UP_BY_PROLOGUE
1590 #define TARGET_SET_UP_BY_PROLOGUE rs6000_set_up_by_prologue
1591
1592 #undef TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS
1593 #define TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS rs6000_get_separate_components
1594 #undef TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB
1595 #define TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB rs6000_components_for_bb
1596 #undef TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS
1597 #define TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS rs6000_disqualify_components
1598 #undef TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS
1599 #define TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS rs6000_emit_prologue_components
1600 #undef TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS
1601 #define TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS rs6000_emit_epilogue_components
1602 #undef TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS
1603 #define TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS rs6000_set_handled_components
1604
1605 #undef TARGET_EXTRA_LIVE_ON_ENTRY
1606 #define TARGET_EXTRA_LIVE_ON_ENTRY rs6000_live_on_entry
1607
1608 #undef TARGET_INTERNAL_ARG_POINTER
1609 #define TARGET_INTERNAL_ARG_POINTER rs6000_internal_arg_pointer
1610
1611 #undef TARGET_HAVE_TLS
1612 #define TARGET_HAVE_TLS HAVE_AS_TLS
1613
1614 #undef TARGET_CANNOT_FORCE_CONST_MEM
1615 #define TARGET_CANNOT_FORCE_CONST_MEM rs6000_cannot_force_const_mem
1616
1617 #undef TARGET_DELEGITIMIZE_ADDRESS
1618 #define TARGET_DELEGITIMIZE_ADDRESS rs6000_delegitimize_address
1619
1620 #undef TARGET_CONST_NOT_OK_FOR_DEBUG_P
1621 #define TARGET_CONST_NOT_OK_FOR_DEBUG_P rs6000_const_not_ok_for_debug_p
1622
1623 #undef TARGET_LEGITIMATE_COMBINED_INSN
1624 #define TARGET_LEGITIMATE_COMBINED_INSN rs6000_legitimate_combined_insn
1625
1626 #undef TARGET_ASM_FUNCTION_PROLOGUE
1627 #define TARGET_ASM_FUNCTION_PROLOGUE rs6000_output_function_prologue
1628 #undef TARGET_ASM_FUNCTION_EPILOGUE
1629 #define TARGET_ASM_FUNCTION_EPILOGUE rs6000_output_function_epilogue
1630
1631 #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
1632 #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA rs6000_output_addr_const_extra
1633
1634 #undef TARGET_LEGITIMIZE_ADDRESS
1635 #define TARGET_LEGITIMIZE_ADDRESS rs6000_legitimize_address
1636
1637 #undef TARGET_SCHED_VARIABLE_ISSUE
1638 #define TARGET_SCHED_VARIABLE_ISSUE rs6000_variable_issue
1639
1640 #undef TARGET_SCHED_ISSUE_RATE
1641 #define TARGET_SCHED_ISSUE_RATE rs6000_issue_rate
1642 #undef TARGET_SCHED_ADJUST_COST
1643 #define TARGET_SCHED_ADJUST_COST rs6000_adjust_cost
1644 #undef TARGET_SCHED_ADJUST_PRIORITY
1645 #define TARGET_SCHED_ADJUST_PRIORITY rs6000_adjust_priority
1646 #undef TARGET_SCHED_IS_COSTLY_DEPENDENCE
1647 #define TARGET_SCHED_IS_COSTLY_DEPENDENCE rs6000_is_costly_dependence
1648 #undef TARGET_SCHED_INIT
1649 #define TARGET_SCHED_INIT rs6000_sched_init
1650 #undef TARGET_SCHED_FINISH
1651 #define TARGET_SCHED_FINISH rs6000_sched_finish
1652 #undef TARGET_SCHED_REORDER
1653 #define TARGET_SCHED_REORDER rs6000_sched_reorder
1654 #undef TARGET_SCHED_REORDER2
1655 #define TARGET_SCHED_REORDER2 rs6000_sched_reorder2
1656
1657 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
1658 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD rs6000_use_sched_lookahead
1659
1660 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
1661 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD rs6000_use_sched_lookahead_guard
1662
1663 #undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
1664 #define TARGET_SCHED_ALLOC_SCHED_CONTEXT rs6000_alloc_sched_context
1665 #undef TARGET_SCHED_INIT_SCHED_CONTEXT
1666 #define TARGET_SCHED_INIT_SCHED_CONTEXT rs6000_init_sched_context
1667 #undef TARGET_SCHED_SET_SCHED_CONTEXT
1668 #define TARGET_SCHED_SET_SCHED_CONTEXT rs6000_set_sched_context
1669 #undef TARGET_SCHED_FREE_SCHED_CONTEXT
1670 #define TARGET_SCHED_FREE_SCHED_CONTEXT rs6000_free_sched_context
1671
1672 #undef TARGET_SCHED_CAN_SPECULATE_INSN
1673 #define TARGET_SCHED_CAN_SPECULATE_INSN rs6000_sched_can_speculate_insn
1674
1675 #undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
1676 #define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD rs6000_builtin_mask_for_load
1677 #undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
1678 #define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT \
1679 rs6000_builtin_support_vector_misalignment
1680 #undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
1681 #define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE rs6000_vector_alignment_reachable
1682 #undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
1683 #define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \
1684 rs6000_builtin_vectorization_cost
1685 #undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
1686 #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE \
1687 rs6000_preferred_simd_mode
1688 #undef TARGET_VECTORIZE_INIT_COST
1689 #define TARGET_VECTORIZE_INIT_COST rs6000_init_cost
1690 #undef TARGET_VECTORIZE_ADD_STMT_COST
1691 #define TARGET_VECTORIZE_ADD_STMT_COST rs6000_add_stmt_cost
1692 #undef TARGET_VECTORIZE_FINISH_COST
1693 #define TARGET_VECTORIZE_FINISH_COST rs6000_finish_cost
1694 #undef TARGET_VECTORIZE_DESTROY_COST_DATA
1695 #define TARGET_VECTORIZE_DESTROY_COST_DATA rs6000_destroy_cost_data
1696
1697 #undef TARGET_INIT_BUILTINS
1698 #define TARGET_INIT_BUILTINS rs6000_init_builtins
1699 #undef TARGET_BUILTIN_DECL
1700 #define TARGET_BUILTIN_DECL rs6000_builtin_decl
1701
1702 #undef TARGET_FOLD_BUILTIN
1703 #define TARGET_FOLD_BUILTIN rs6000_fold_builtin
1704 #undef TARGET_GIMPLE_FOLD_BUILTIN
1705 #define TARGET_GIMPLE_FOLD_BUILTIN rs6000_gimple_fold_builtin
1706
1707 #undef TARGET_EXPAND_BUILTIN
1708 #define TARGET_EXPAND_BUILTIN rs6000_expand_builtin
1709
1710 #undef TARGET_MANGLE_TYPE
1711 #define TARGET_MANGLE_TYPE rs6000_mangle_type
1712
1713 #undef TARGET_INIT_LIBFUNCS
1714 #define TARGET_INIT_LIBFUNCS rs6000_init_libfuncs
1715
1716 #if TARGET_MACHO
1717 #undef TARGET_BINDS_LOCAL_P
1718 #define TARGET_BINDS_LOCAL_P darwin_binds_local_p
1719 #endif
1720
1721 #undef TARGET_MS_BITFIELD_LAYOUT_P
1722 #define TARGET_MS_BITFIELD_LAYOUT_P rs6000_ms_bitfield_layout_p
1723
1724 #undef TARGET_ASM_OUTPUT_MI_THUNK
1725 #define TARGET_ASM_OUTPUT_MI_THUNK rs6000_output_mi_thunk
1726
1727 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
1728 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
1729
1730 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
1731 #define TARGET_FUNCTION_OK_FOR_SIBCALL rs6000_function_ok_for_sibcall
1732
1733 #undef TARGET_REGISTER_MOVE_COST
1734 #define TARGET_REGISTER_MOVE_COST rs6000_register_move_cost
1735 #undef TARGET_MEMORY_MOVE_COST
1736 #define TARGET_MEMORY_MOVE_COST rs6000_memory_move_cost
1737 #undef TARGET_CANNOT_COPY_INSN_P
1738 #define TARGET_CANNOT_COPY_INSN_P rs6000_cannot_copy_insn_p
1739 #undef TARGET_RTX_COSTS
1740 #define TARGET_RTX_COSTS rs6000_rtx_costs
1741 #undef TARGET_ADDRESS_COST
1742 #define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
1743 #undef TARGET_INSN_COST
1744 #define TARGET_INSN_COST rs6000_insn_cost
1745
1746 #undef TARGET_INIT_DWARF_REG_SIZES_EXTRA
1747 #define TARGET_INIT_DWARF_REG_SIZES_EXTRA rs6000_init_dwarf_reg_sizes_extra
1748
1749 #undef TARGET_PROMOTE_FUNCTION_MODE
1750 #define TARGET_PROMOTE_FUNCTION_MODE rs6000_promote_function_mode
1751
1752 #undef TARGET_RETURN_IN_MEMORY
1753 #define TARGET_RETURN_IN_MEMORY rs6000_return_in_memory
1754
1755 #undef TARGET_RETURN_IN_MSB
1756 #define TARGET_RETURN_IN_MSB rs6000_return_in_msb
1757
1758 #undef TARGET_SETUP_INCOMING_VARARGS
1759 #define TARGET_SETUP_INCOMING_VARARGS setup_incoming_varargs
1760
1761 /* Always strict argument naming on rs6000. */
1762 #undef TARGET_STRICT_ARGUMENT_NAMING
1763 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
1764 #undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
1765 #define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
1766 #undef TARGET_SPLIT_COMPLEX_ARG
1767 #define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
1768 #undef TARGET_MUST_PASS_IN_STACK
1769 #define TARGET_MUST_PASS_IN_STACK rs6000_must_pass_in_stack
1770 #undef TARGET_PASS_BY_REFERENCE
1771 #define TARGET_PASS_BY_REFERENCE rs6000_pass_by_reference
1772 #undef TARGET_ARG_PARTIAL_BYTES
1773 #define TARGET_ARG_PARTIAL_BYTES rs6000_arg_partial_bytes
1774 #undef TARGET_FUNCTION_ARG_ADVANCE
1775 #define TARGET_FUNCTION_ARG_ADVANCE rs6000_function_arg_advance
1776 #undef TARGET_FUNCTION_ARG
1777 #define TARGET_FUNCTION_ARG rs6000_function_arg
1778 #undef TARGET_FUNCTION_ARG_PADDING
1779 #define TARGET_FUNCTION_ARG_PADDING rs6000_function_arg_padding
1780 #undef TARGET_FUNCTION_ARG_BOUNDARY
1781 #define TARGET_FUNCTION_ARG_BOUNDARY rs6000_function_arg_boundary
1782
1783 #undef TARGET_BUILD_BUILTIN_VA_LIST
1784 #define TARGET_BUILD_BUILTIN_VA_LIST rs6000_build_builtin_va_list
1785
1786 #undef TARGET_EXPAND_BUILTIN_VA_START
1787 #define TARGET_EXPAND_BUILTIN_VA_START rs6000_va_start
1788
1789 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
1790 #define TARGET_GIMPLIFY_VA_ARG_EXPR rs6000_gimplify_va_arg
1791
1792 #undef TARGET_EH_RETURN_FILTER_MODE
1793 #define TARGET_EH_RETURN_FILTER_MODE rs6000_eh_return_filter_mode
1794
1795 #undef TARGET_TRANSLATE_MODE_ATTRIBUTE
1796 #define TARGET_TRANSLATE_MODE_ATTRIBUTE rs6000_translate_mode_attribute
1797
1798 #undef TARGET_SCALAR_MODE_SUPPORTED_P
1799 #define TARGET_SCALAR_MODE_SUPPORTED_P rs6000_scalar_mode_supported_p
1800
1801 #undef TARGET_VECTOR_MODE_SUPPORTED_P
1802 #define TARGET_VECTOR_MODE_SUPPORTED_P rs6000_vector_mode_supported_p
1803
1804 #undef TARGET_FLOATN_MODE
1805 #define TARGET_FLOATN_MODE rs6000_floatn_mode
1806
1807 #undef TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
1808 #define TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN invalid_arg_for_unprototyped_fn
1809
1810 #undef TARGET_MD_ASM_ADJUST
1811 #define TARGET_MD_ASM_ADJUST rs6000_md_asm_adjust
1812
1813 #undef TARGET_OPTION_OVERRIDE
1814 #define TARGET_OPTION_OVERRIDE rs6000_option_override
1815
1816 #undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
1817 #define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \
1818 rs6000_builtin_vectorized_function
1819
1820 #undef TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION
1821 #define TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION \
1822 rs6000_builtin_md_vectorized_function
1823
1824 #undef TARGET_STACK_PROTECT_GUARD
1825 #define TARGET_STACK_PROTECT_GUARD rs6000_init_stack_protect_guard
1826
1827 #if !TARGET_MACHO
1828 #undef TARGET_STACK_PROTECT_FAIL
1829 #define TARGET_STACK_PROTECT_FAIL rs6000_stack_protect_fail
1830 #endif
1831
1832 #ifdef HAVE_AS_TLS
1833 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
1834 #define TARGET_ASM_OUTPUT_DWARF_DTPREL rs6000_output_dwarf_dtprel
1835 #endif
1836
1837 /* Use a 32-bit anchor range. This leads to sequences like:
1838
1839 addis tmp,anchor,high
1840 add dest,tmp,low
1841
1842 where tmp itself acts as an anchor, and can be shared between
1843 accesses to the same 64k page. */
1844 #undef TARGET_MIN_ANCHOR_OFFSET
1845 #define TARGET_MIN_ANCHOR_OFFSET -0x7fffffff - 1
1846 #undef TARGET_MAX_ANCHOR_OFFSET
1847 #define TARGET_MAX_ANCHOR_OFFSET 0x7fffffff
1848 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
1849 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P rs6000_use_blocks_for_constant_p
1850 #undef TARGET_USE_BLOCKS_FOR_DECL_P
1851 #define TARGET_USE_BLOCKS_FOR_DECL_P rs6000_use_blocks_for_decl_p
1852
1853 #undef TARGET_BUILTIN_RECIPROCAL
1854 #define TARGET_BUILTIN_RECIPROCAL rs6000_builtin_reciprocal
1855
1856 #undef TARGET_SECONDARY_RELOAD
1857 #define TARGET_SECONDARY_RELOAD rs6000_secondary_reload
1858 #undef TARGET_SECONDARY_MEMORY_NEEDED
1859 #define TARGET_SECONDARY_MEMORY_NEEDED rs6000_secondary_memory_needed
1860 #undef TARGET_SECONDARY_MEMORY_NEEDED_MODE
1861 #define TARGET_SECONDARY_MEMORY_NEEDED_MODE rs6000_secondary_memory_needed_mode
1862
1863 #undef TARGET_LEGITIMATE_ADDRESS_P
1864 #define TARGET_LEGITIMATE_ADDRESS_P rs6000_legitimate_address_p
1865
1866 #undef TARGET_MODE_DEPENDENT_ADDRESS_P
1867 #define TARGET_MODE_DEPENDENT_ADDRESS_P rs6000_mode_dependent_address_p
1868
1869 #undef TARGET_COMPUTE_PRESSURE_CLASSES
1870 #define TARGET_COMPUTE_PRESSURE_CLASSES rs6000_compute_pressure_classes
1871
1872 #undef TARGET_CAN_ELIMINATE
1873 #define TARGET_CAN_ELIMINATE rs6000_can_eliminate
1874
1875 #undef TARGET_CONDITIONAL_REGISTER_USAGE
1876 #define TARGET_CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage
1877
1878 #undef TARGET_SCHED_REASSOCIATION_WIDTH
1879 #define TARGET_SCHED_REASSOCIATION_WIDTH rs6000_reassociation_width
1880
1881 #undef TARGET_TRAMPOLINE_INIT
1882 #define TARGET_TRAMPOLINE_INIT rs6000_trampoline_init
1883
1884 #undef TARGET_FUNCTION_VALUE
1885 #define TARGET_FUNCTION_VALUE rs6000_function_value
1886
1887 #undef TARGET_OPTION_VALID_ATTRIBUTE_P
1888 #define TARGET_OPTION_VALID_ATTRIBUTE_P rs6000_valid_attribute_p
1889
1890 #undef TARGET_OPTION_SAVE
1891 #define TARGET_OPTION_SAVE rs6000_function_specific_save
1892
1893 #undef TARGET_OPTION_RESTORE
1894 #define TARGET_OPTION_RESTORE rs6000_function_specific_restore
1895
1896 #undef TARGET_OPTION_PRINT
1897 #define TARGET_OPTION_PRINT rs6000_function_specific_print
1898
1899 #undef TARGET_CAN_INLINE_P
1900 #define TARGET_CAN_INLINE_P rs6000_can_inline_p
1901
1902 #undef TARGET_SET_CURRENT_FUNCTION
1903 #define TARGET_SET_CURRENT_FUNCTION rs6000_set_current_function
1904
1905 #undef TARGET_LEGITIMATE_CONSTANT_P
1906 #define TARGET_LEGITIMATE_CONSTANT_P rs6000_legitimate_constant_p
1907
1908 #undef TARGET_VECTORIZE_VEC_PERM_CONST
1909 #define TARGET_VECTORIZE_VEC_PERM_CONST rs6000_vectorize_vec_perm_const
1910
1911 #undef TARGET_CAN_USE_DOLOOP_P
1912 #define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost
1913
1914 #undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
1915 #define TARGET_ATOMIC_ASSIGN_EXPAND_FENV rs6000_atomic_assign_expand_fenv
1916
1917 #undef TARGET_LIBGCC_CMP_RETURN_MODE
1918 #define TARGET_LIBGCC_CMP_RETURN_MODE rs6000_abi_word_mode
1919 #undef TARGET_LIBGCC_SHIFT_COUNT_MODE
1920 #define TARGET_LIBGCC_SHIFT_COUNT_MODE rs6000_abi_word_mode
1921 #undef TARGET_UNWIND_WORD_MODE
1922 #define TARGET_UNWIND_WORD_MODE rs6000_abi_word_mode
1923
1924 #undef TARGET_OFFLOAD_OPTIONS
1925 #define TARGET_OFFLOAD_OPTIONS rs6000_offload_options
1926
1927 #undef TARGET_C_MODE_FOR_SUFFIX
1928 #define TARGET_C_MODE_FOR_SUFFIX rs6000_c_mode_for_suffix
1929
1930 #undef TARGET_INVALID_BINARY_OP
1931 #define TARGET_INVALID_BINARY_OP rs6000_invalid_binary_op
1932
1933 #undef TARGET_OPTAB_SUPPORTED_P
1934 #define TARGET_OPTAB_SUPPORTED_P rs6000_optab_supported_p
1935
1936 #undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
1937 #define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1
1938
1939 #undef TARGET_COMPARE_VERSION_PRIORITY
1940 #define TARGET_COMPARE_VERSION_PRIORITY rs6000_compare_version_priority
1941
1942 #undef TARGET_GENERATE_VERSION_DISPATCHER_BODY
1943 #define TARGET_GENERATE_VERSION_DISPATCHER_BODY \
1944 rs6000_generate_version_dispatcher_body
1945
1946 #undef TARGET_GET_FUNCTION_VERSIONS_DISPATCHER
1947 #define TARGET_GET_FUNCTION_VERSIONS_DISPATCHER \
1948 rs6000_get_function_versions_dispatcher
1949
1950 #undef TARGET_OPTION_FUNCTION_VERSIONS
1951 #define TARGET_OPTION_FUNCTION_VERSIONS common_function_versions
1952
1953 #undef TARGET_HARD_REGNO_NREGS
1954 #define TARGET_HARD_REGNO_NREGS rs6000_hard_regno_nregs_hook
1955 #undef TARGET_HARD_REGNO_MODE_OK
1956 #define TARGET_HARD_REGNO_MODE_OK rs6000_hard_regno_mode_ok
1957
1958 #undef TARGET_MODES_TIEABLE_P
1959 #define TARGET_MODES_TIEABLE_P rs6000_modes_tieable_p
1960
1961 #undef TARGET_HARD_REGNO_CALL_PART_CLOBBERED
1962 #define TARGET_HARD_REGNO_CALL_PART_CLOBBERED \
1963 rs6000_hard_regno_call_part_clobbered
1964
1965 #undef TARGET_SLOW_UNALIGNED_ACCESS
1966 #define TARGET_SLOW_UNALIGNED_ACCESS rs6000_slow_unaligned_access
1967
1968 #undef TARGET_CAN_CHANGE_MODE_CLASS
1969 #define TARGET_CAN_CHANGE_MODE_CLASS rs6000_can_change_mode_class
1970
1971 #undef TARGET_CONSTANT_ALIGNMENT
1972 #define TARGET_CONSTANT_ALIGNMENT rs6000_constant_alignment
1973
1974 #undef TARGET_STARTING_FRAME_OFFSET
1975 #define TARGET_STARTING_FRAME_OFFSET rs6000_starting_frame_offset
1976
1977 #if TARGET_ELF && RS6000_WEAK
1978 #undef TARGET_ASM_GLOBALIZE_DECL_NAME
1979 #define TARGET_ASM_GLOBALIZE_DECL_NAME rs6000_globalize_decl_name
1980 #endif
1981
1982 #undef TARGET_SETJMP_PRESERVES_NONVOLATILE_REGS_P
1983 #define TARGET_SETJMP_PRESERVES_NONVOLATILE_REGS_P hook_bool_void_true
1984
1985 #undef TARGET_MANGLE_DECL_ASSEMBLER_NAME
1986 #define TARGET_MANGLE_DECL_ASSEMBLER_NAME rs6000_mangle_decl_assembler_name
1987 \f
1988
1989 /* Processor table. */
1990 struct rs6000_ptt
1991 {
1992 const char *const name; /* Canonical processor name. */
1993 const enum processor_type processor; /* Processor type enum value. */
1994 const HOST_WIDE_INT target_enable; /* Target flags to enable. */
1995 };
1996
1997 static struct rs6000_ptt const processor_target_table[] =
1998 {
1999 #define RS6000_CPU(NAME, CPU, FLAGS) { NAME, CPU, FLAGS },
2000 #include "rs6000-cpus.def"
2001 #undef RS6000_CPU
2002 };
2003
2004 /* Look up a processor name for -mcpu=xxx and -mtune=xxx. Return -1 if the
2005 name is invalid. */
2006
2007 static int
2008 rs6000_cpu_name_lookup (const char *name)
2009 {
2010 size_t i;
2011
2012 if (name != NULL)
2013 {
2014 for (i = 0; i < ARRAY_SIZE (processor_target_table); i++)
2015 if (! strcmp (name, processor_target_table[i].name))
2016 return (int)i;
2017 }
2018
2019 return -1;
2020 }
2021
2022 \f
2023 /* Return number of consecutive hard regs needed starting at reg REGNO
2024 to hold something of mode MODE.
2025 This is ordinarily the length in words of a value of mode MODE
2026 but can be less for certain modes in special long registers.
2027
2028 POWER and PowerPC GPRs hold 32 bits worth;
2029 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
2030
2031 static int
2032 rs6000_hard_regno_nregs_internal (int regno, machine_mode mode)
2033 {
2034 unsigned HOST_WIDE_INT reg_size;
2035
2036 /* 128-bit floating point usually takes 2 registers, unless it is IEEE
2037 128-bit floating point that can go in vector registers, which has VSX
2038 memory addressing. */
2039 if (FP_REGNO_P (regno))
2040 reg_size = (VECTOR_MEM_VSX_P (mode) || FLOAT128_VECTOR_P (mode)
2041 ? UNITS_PER_VSX_WORD
2042 : UNITS_PER_FP_WORD);
2043
2044 else if (ALTIVEC_REGNO_P (regno))
2045 reg_size = UNITS_PER_ALTIVEC_WORD;
2046
2047 else
2048 reg_size = UNITS_PER_WORD;
2049
2050 return (GET_MODE_SIZE (mode) + reg_size - 1) / reg_size;
2051 }
2052
2053 /* Value is 1 if hard register REGNO can hold a value of machine-mode
2054 MODE. */
2055 static int
2056 rs6000_hard_regno_mode_ok_uncached (int regno, machine_mode mode)
2057 {
2058 int last_regno = regno + rs6000_hard_regno_nregs[mode][regno] - 1;
2059
2060 if (COMPLEX_MODE_P (mode))
2061 mode = GET_MODE_INNER (mode);
2062
2063 /* PTImode can only go in GPRs. Quad word memory operations require even/odd
2064 register combinations, and use PTImode where we need to deal with quad
2065 word memory operations. Don't allow quad words in the argument or frame
2066 pointer registers, just registers 0..31. */
2067 if (mode == PTImode)
2068 return (IN_RANGE (regno, FIRST_GPR_REGNO, LAST_GPR_REGNO)
2069 && IN_RANGE (last_regno, FIRST_GPR_REGNO, LAST_GPR_REGNO)
2070 && ((regno & 1) == 0));
2071
2072 /* VSX registers that overlap the FPR registers are larger than for non-VSX
2073 implementations. Don't allow an item to be split between a FP register
2074 and an Altivec register. Allow TImode in all VSX registers if the user
2075 asked for it. */
2076 if (TARGET_VSX && VSX_REGNO_P (regno)
2077 && (VECTOR_MEM_VSX_P (mode)
2078 || FLOAT128_VECTOR_P (mode)
2079 || reg_addr[mode].scalar_in_vmx_p
2080 || mode == TImode
2081 || (TARGET_VADDUQM && mode == V1TImode)))
2082 {
2083 if (FP_REGNO_P (regno))
2084 return FP_REGNO_P (last_regno);
2085
2086 if (ALTIVEC_REGNO_P (regno))
2087 {
2088 if (GET_MODE_SIZE (mode) != 16 && !reg_addr[mode].scalar_in_vmx_p)
2089 return 0;
2090
2091 return ALTIVEC_REGNO_P (last_regno);
2092 }
2093 }
2094
2095 /* The GPRs can hold any mode, but values bigger than one register
2096 cannot go past R31. */
2097 if (INT_REGNO_P (regno))
2098 return INT_REGNO_P (last_regno);
2099
2100 /* The float registers (except for VSX vector modes) can only hold floating
2101 modes and DImode. */
2102 if (FP_REGNO_P (regno))
2103 {
2104 if (FLOAT128_VECTOR_P (mode))
2105 return false;
2106
2107 if (SCALAR_FLOAT_MODE_P (mode)
2108 && (mode != TDmode || (regno % 2) == 0)
2109 && FP_REGNO_P (last_regno))
2110 return 1;
2111
2112 if (GET_MODE_CLASS (mode) == MODE_INT)
2113 {
2114 if(GET_MODE_SIZE (mode) == UNITS_PER_FP_WORD)
2115 return 1;
2116
2117 if (TARGET_P8_VECTOR && (mode == SImode))
2118 return 1;
2119
2120 if (TARGET_P9_VECTOR && (mode == QImode || mode == HImode))
2121 return 1;
2122 }
2123
2124 return 0;
2125 }
2126
2127 /* The CR register can only hold CC modes. */
2128 if (CR_REGNO_P (regno))
2129 return GET_MODE_CLASS (mode) == MODE_CC;
2130
2131 if (CA_REGNO_P (regno))
2132 return mode == Pmode || mode == SImode;
2133
2134 /* AltiVec only in AldyVec registers. */
2135 if (ALTIVEC_REGNO_P (regno))
2136 return (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
2137 || mode == V1TImode);
2138
2139 /* We cannot put non-VSX TImode or PTImode anywhere except general register
2140 and it must be able to fit within the register set. */
2141
2142 return GET_MODE_SIZE (mode) <= UNITS_PER_WORD;
2143 }
2144
2145 /* Implement TARGET_HARD_REGNO_NREGS. */
2146
2147 static unsigned int
2148 rs6000_hard_regno_nregs_hook (unsigned int regno, machine_mode mode)
2149 {
2150 return rs6000_hard_regno_nregs[mode][regno];
2151 }
2152
2153 /* Implement TARGET_HARD_REGNO_MODE_OK. */
2154
2155 static bool
2156 rs6000_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
2157 {
2158 return rs6000_hard_regno_mode_ok_p[mode][regno];
2159 }
2160
2161 /* Implement TARGET_MODES_TIEABLE_P.
2162
2163 PTImode cannot tie with other modes because PTImode is restricted to even
2164 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
2165 57744).
2166
2167 Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
2168 128-bit floating point on VSX systems ties with other vectors. */
2169
2170 static bool
2171 rs6000_modes_tieable_p (machine_mode mode1, machine_mode mode2)
2172 {
2173 if (mode1 == PTImode)
2174 return mode2 == PTImode;
2175 if (mode2 == PTImode)
2176 return false;
2177
2178 if (ALTIVEC_OR_VSX_VECTOR_MODE (mode1))
2179 return ALTIVEC_OR_VSX_VECTOR_MODE (mode2);
2180 if (ALTIVEC_OR_VSX_VECTOR_MODE (mode2))
2181 return false;
2182
2183 if (SCALAR_FLOAT_MODE_P (mode1))
2184 return SCALAR_FLOAT_MODE_P (mode2);
2185 if (SCALAR_FLOAT_MODE_P (mode2))
2186 return false;
2187
2188 if (GET_MODE_CLASS (mode1) == MODE_CC)
2189 return GET_MODE_CLASS (mode2) == MODE_CC;
2190 if (GET_MODE_CLASS (mode2) == MODE_CC)
2191 return false;
2192
2193 return true;
2194 }
2195
2196 /* Implement TARGET_HARD_REGNO_CALL_PART_CLOBBERED. */
2197
2198 static bool
2199 rs6000_hard_regno_call_part_clobbered (unsigned int regno, machine_mode mode)
2200 {
2201 if (TARGET_32BIT
2202 && TARGET_POWERPC64
2203 && GET_MODE_SIZE (mode) > 4
2204 && INT_REGNO_P (regno))
2205 return true;
2206
2207 if (TARGET_VSX
2208 && FP_REGNO_P (regno)
2209 && GET_MODE_SIZE (mode) > 8
2210 && !FLOAT128_2REG_P (mode))
2211 return true;
2212
2213 return false;
2214 }
2215
2216 /* Print interesting facts about registers. */
2217 static void
2218 rs6000_debug_reg_print (int first_regno, int last_regno, const char *reg_name)
2219 {
2220 int r, m;
2221
2222 for (r = first_regno; r <= last_regno; ++r)
2223 {
2224 const char *comma = "";
2225 int len;
2226
2227 if (first_regno == last_regno)
2228 fprintf (stderr, "%s:\t", reg_name);
2229 else
2230 fprintf (stderr, "%s%d:\t", reg_name, r - first_regno);
2231
2232 len = 8;
2233 for (m = 0; m < NUM_MACHINE_MODES; ++m)
2234 if (rs6000_hard_regno_mode_ok_p[m][r] && rs6000_hard_regno_nregs[m][r])
2235 {
2236 if (len > 70)
2237 {
2238 fprintf (stderr, ",\n\t");
2239 len = 8;
2240 comma = "";
2241 }
2242
2243 if (rs6000_hard_regno_nregs[m][r] > 1)
2244 len += fprintf (stderr, "%s%s/%d", comma, GET_MODE_NAME (m),
2245 rs6000_hard_regno_nregs[m][r]);
2246 else
2247 len += fprintf (stderr, "%s%s", comma, GET_MODE_NAME (m));
2248
2249 comma = ", ";
2250 }
2251
2252 if (call_used_regs[r])
2253 {
2254 if (len > 70)
2255 {
2256 fprintf (stderr, ",\n\t");
2257 len = 8;
2258 comma = "";
2259 }
2260
2261 len += fprintf (stderr, "%s%s", comma, "call-used");
2262 comma = ", ";
2263 }
2264
2265 if (fixed_regs[r])
2266 {
2267 if (len > 70)
2268 {
2269 fprintf (stderr, ",\n\t");
2270 len = 8;
2271 comma = "";
2272 }
2273
2274 len += fprintf (stderr, "%s%s", comma, "fixed");
2275 comma = ", ";
2276 }
2277
2278 if (len > 70)
2279 {
2280 fprintf (stderr, ",\n\t");
2281 comma = "";
2282 }
2283
2284 len += fprintf (stderr, "%sreg-class = %s", comma,
2285 reg_class_names[(int)rs6000_regno_regclass[r]]);
2286 comma = ", ";
2287
2288 if (len > 70)
2289 {
2290 fprintf (stderr, ",\n\t");
2291 comma = "";
2292 }
2293
2294 fprintf (stderr, "%sregno = %d\n", comma, r);
2295 }
2296 }
2297
2298 static const char *
2299 rs6000_debug_vector_unit (enum rs6000_vector v)
2300 {
2301 const char *ret;
2302
2303 switch (v)
2304 {
2305 case VECTOR_NONE: ret = "none"; break;
2306 case VECTOR_ALTIVEC: ret = "altivec"; break;
2307 case VECTOR_VSX: ret = "vsx"; break;
2308 case VECTOR_P8_VECTOR: ret = "p8_vector"; break;
2309 default: ret = "unknown"; break;
2310 }
2311
2312 return ret;
2313 }
2314
2315 /* Inner function printing just the address mask for a particular reload
2316 register class. */
2317 DEBUG_FUNCTION char *
2318 rs6000_debug_addr_mask (addr_mask_type mask, bool keep_spaces)
2319 {
2320 static char ret[8];
2321 char *p = ret;
2322
2323 if ((mask & RELOAD_REG_VALID) != 0)
2324 *p++ = 'v';
2325 else if (keep_spaces)
2326 *p++ = ' ';
2327
2328 if ((mask & RELOAD_REG_MULTIPLE) != 0)
2329 *p++ = 'm';
2330 else if (keep_spaces)
2331 *p++ = ' ';
2332
2333 if ((mask & RELOAD_REG_INDEXED) != 0)
2334 *p++ = 'i';
2335 else if (keep_spaces)
2336 *p++ = ' ';
2337
2338 if ((mask & RELOAD_REG_QUAD_OFFSET) != 0)
2339 *p++ = 'O';
2340 else if ((mask & RELOAD_REG_OFFSET) != 0)
2341 *p++ = 'o';
2342 else if (keep_spaces)
2343 *p++ = ' ';
2344
2345 if ((mask & RELOAD_REG_PRE_INCDEC) != 0)
2346 *p++ = '+';
2347 else if (keep_spaces)
2348 *p++ = ' ';
2349
2350 if ((mask & RELOAD_REG_PRE_MODIFY) != 0)
2351 *p++ = '+';
2352 else if (keep_spaces)
2353 *p++ = ' ';
2354
2355 if ((mask & RELOAD_REG_AND_M16) != 0)
2356 *p++ = '&';
2357 else if (keep_spaces)
2358 *p++ = ' ';
2359
2360 *p = '\0';
2361
2362 return ret;
2363 }
2364
2365 /* Print the address masks in a human readble fashion. */
2366 DEBUG_FUNCTION void
2367 rs6000_debug_print_mode (ssize_t m)
2368 {
2369 ssize_t rc;
2370 int spaces = 0;
2371
2372 fprintf (stderr, "Mode: %-5s", GET_MODE_NAME (m));
2373 for (rc = 0; rc < N_RELOAD_REG; rc++)
2374 fprintf (stderr, " %s: %s", reload_reg_map[rc].name,
2375 rs6000_debug_addr_mask (reg_addr[m].addr_mask[rc], true));
2376
2377 if ((reg_addr[m].reload_store != CODE_FOR_nothing)
2378 || (reg_addr[m].reload_load != CODE_FOR_nothing))
2379 {
2380 fprintf (stderr, "%*s Reload=%c%c", spaces, "",
2381 (reg_addr[m].reload_store != CODE_FOR_nothing) ? 's' : '*',
2382 (reg_addr[m].reload_load != CODE_FOR_nothing) ? 'l' : '*');
2383 spaces = 0;
2384 }
2385 else
2386 spaces += sizeof (" Reload=sl") - 1;
2387
2388 if (reg_addr[m].scalar_in_vmx_p)
2389 {
2390 fprintf (stderr, "%*s Upper=y", spaces, "");
2391 spaces = 0;
2392 }
2393 else
2394 spaces += sizeof (" Upper=y") - 1;
2395
2396 if (rs6000_vector_unit[m] != VECTOR_NONE
2397 || rs6000_vector_mem[m] != VECTOR_NONE)
2398 {
2399 fprintf (stderr, "%*s vector: arith=%-10s mem=%s",
2400 spaces, "",
2401 rs6000_debug_vector_unit (rs6000_vector_unit[m]),
2402 rs6000_debug_vector_unit (rs6000_vector_mem[m]));
2403 }
2404
2405 fputs ("\n", stderr);
2406 }
2407
2408 #define DEBUG_FMT_ID "%-32s= "
2409 #define DEBUG_FMT_D DEBUG_FMT_ID "%d\n"
2410 #define DEBUG_FMT_WX DEBUG_FMT_ID "%#.12" HOST_WIDE_INT_PRINT "x: "
2411 #define DEBUG_FMT_S DEBUG_FMT_ID "%s\n"
2412
2413 /* Print various interesting information with -mdebug=reg. */
2414 static void
2415 rs6000_debug_reg_global (void)
2416 {
2417 static const char *const tf[2] = { "false", "true" };
2418 const char *nl = (const char *)0;
2419 int m;
2420 size_t m1, m2, v;
2421 char costly_num[20];
2422 char nop_num[20];
2423 char flags_buffer[40];
2424 const char *costly_str;
2425 const char *nop_str;
2426 const char *trace_str;
2427 const char *abi_str;
2428 const char *cmodel_str;
2429 struct cl_target_option cl_opts;
2430
2431 /* Modes we want tieable information on. */
2432 static const machine_mode print_tieable_modes[] = {
2433 QImode,
2434 HImode,
2435 SImode,
2436 DImode,
2437 TImode,
2438 PTImode,
2439 SFmode,
2440 DFmode,
2441 TFmode,
2442 IFmode,
2443 KFmode,
2444 SDmode,
2445 DDmode,
2446 TDmode,
2447 V16QImode,
2448 V8HImode,
2449 V4SImode,
2450 V2DImode,
2451 V1TImode,
2452 V32QImode,
2453 V16HImode,
2454 V8SImode,
2455 V4DImode,
2456 V2TImode,
2457 V4SFmode,
2458 V2DFmode,
2459 V8SFmode,
2460 V4DFmode,
2461 CCmode,
2462 CCUNSmode,
2463 CCEQmode,
2464 };
2465
2466 /* Virtual regs we are interested in. */
2467 const static struct {
2468 int regno; /* register number. */
2469 const char *name; /* register name. */
2470 } virtual_regs[] = {
2471 { STACK_POINTER_REGNUM, "stack pointer:" },
2472 { TOC_REGNUM, "toc: " },
2473 { STATIC_CHAIN_REGNUM, "static chain: " },
2474 { RS6000_PIC_OFFSET_TABLE_REGNUM, "pic offset: " },
2475 { HARD_FRAME_POINTER_REGNUM, "hard frame: " },
2476 { ARG_POINTER_REGNUM, "arg pointer: " },
2477 { FRAME_POINTER_REGNUM, "frame pointer:" },
2478 { FIRST_PSEUDO_REGISTER, "first pseudo: " },
2479 { FIRST_VIRTUAL_REGISTER, "first virtual:" },
2480 { VIRTUAL_INCOMING_ARGS_REGNUM, "incoming_args:" },
2481 { VIRTUAL_STACK_VARS_REGNUM, "stack_vars: " },
2482 { VIRTUAL_STACK_DYNAMIC_REGNUM, "stack_dynamic:" },
2483 { VIRTUAL_OUTGOING_ARGS_REGNUM, "outgoing_args:" },
2484 { VIRTUAL_CFA_REGNUM, "cfa (frame): " },
2485 { VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM, "stack boundry:" },
2486 { LAST_VIRTUAL_REGISTER, "last virtual: " },
2487 };
2488
2489 fputs ("\nHard register information:\n", stderr);
2490 rs6000_debug_reg_print (FIRST_GPR_REGNO, LAST_GPR_REGNO, "gr");
2491 rs6000_debug_reg_print (FIRST_FPR_REGNO, LAST_FPR_REGNO, "fp");
2492 rs6000_debug_reg_print (FIRST_ALTIVEC_REGNO,
2493 LAST_ALTIVEC_REGNO,
2494 "vs");
2495 rs6000_debug_reg_print (LR_REGNO, LR_REGNO, "lr");
2496 rs6000_debug_reg_print (CTR_REGNO, CTR_REGNO, "ctr");
2497 rs6000_debug_reg_print (CR0_REGNO, CR7_REGNO, "cr");
2498 rs6000_debug_reg_print (CA_REGNO, CA_REGNO, "ca");
2499 rs6000_debug_reg_print (VRSAVE_REGNO, VRSAVE_REGNO, "vrsave");
2500 rs6000_debug_reg_print (VSCR_REGNO, VSCR_REGNO, "vscr");
2501
2502 fputs ("\nVirtual/stack/frame registers:\n", stderr);
2503 for (v = 0; v < ARRAY_SIZE (virtual_regs); v++)
2504 fprintf (stderr, "%s regno = %3d\n", virtual_regs[v].name, virtual_regs[v].regno);
2505
2506 fprintf (stderr,
2507 "\n"
2508 "d reg_class = %s\n"
2509 "f reg_class = %s\n"
2510 "v reg_class = %s\n"
2511 "wa reg_class = %s\n"
2512 "wb reg_class = %s\n"
2513 "wd reg_class = %s\n"
2514 "we reg_class = %s\n"
2515 "wf reg_class = %s\n"
2516 "wg reg_class = %s\n"
2517 "wh reg_class = %s\n"
2518 "wi reg_class = %s\n"
2519 "wj reg_class = %s\n"
2520 "wk reg_class = %s\n"
2521 "wl reg_class = %s\n"
2522 "wm reg_class = %s\n"
2523 "wo reg_class = %s\n"
2524 "wp reg_class = %s\n"
2525 "wq reg_class = %s\n"
2526 "wr reg_class = %s\n"
2527 "ws reg_class = %s\n"
2528 "wt reg_class = %s\n"
2529 "wu reg_class = %s\n"
2530 "wv reg_class = %s\n"
2531 "ww reg_class = %s\n"
2532 "wx reg_class = %s\n"
2533 "wy reg_class = %s\n"
2534 "wz reg_class = %s\n"
2535 "wA reg_class = %s\n"
2536 "wH reg_class = %s\n"
2537 "wI reg_class = %s\n"
2538 "wJ reg_class = %s\n"
2539 "wK reg_class = %s\n"
2540 "\n",
2541 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_d]],
2542 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_f]],
2543 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_v]],
2544 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wa]],
2545 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wb]],
2546 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wd]],
2547 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_we]],
2548 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wf]],
2549 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wg]],
2550 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wh]],
2551 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wi]],
2552 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wj]],
2553 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wk]],
2554 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wl]],
2555 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wm]],
2556 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wo]],
2557 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wp]],
2558 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wq]],
2559 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wr]],
2560 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_ws]],
2561 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wt]],
2562 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wu]],
2563 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wv]],
2564 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_ww]],
2565 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wx]],
2566 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wy]],
2567 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wz]],
2568 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wA]],
2569 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wH]],
2570 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wI]],
2571 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wJ]],
2572 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wK]]);
2573
2574 nl = "\n";
2575 for (m = 0; m < NUM_MACHINE_MODES; ++m)
2576 rs6000_debug_print_mode (m);
2577
2578 fputs ("\n", stderr);
2579
2580 for (m1 = 0; m1 < ARRAY_SIZE (print_tieable_modes); m1++)
2581 {
2582 machine_mode mode1 = print_tieable_modes[m1];
2583 bool first_time = true;
2584
2585 nl = (const char *)0;
2586 for (m2 = 0; m2 < ARRAY_SIZE (print_tieable_modes); m2++)
2587 {
2588 machine_mode mode2 = print_tieable_modes[m2];
2589 if (mode1 != mode2 && rs6000_modes_tieable_p (mode1, mode2))
2590 {
2591 if (first_time)
2592 {
2593 fprintf (stderr, "Tieable modes %s:", GET_MODE_NAME (mode1));
2594 nl = "\n";
2595 first_time = false;
2596 }
2597
2598 fprintf (stderr, " %s", GET_MODE_NAME (mode2));
2599 }
2600 }
2601
2602 if (!first_time)
2603 fputs ("\n", stderr);
2604 }
2605
2606 if (nl)
2607 fputs (nl, stderr);
2608
2609 if (rs6000_recip_control)
2610 {
2611 fprintf (stderr, "\nReciprocal mask = 0x%x\n", rs6000_recip_control);
2612
2613 for (m = 0; m < NUM_MACHINE_MODES; ++m)
2614 if (rs6000_recip_bits[m])
2615 {
2616 fprintf (stderr,
2617 "Reciprocal estimate mode: %-5s divide: %s rsqrt: %s\n",
2618 GET_MODE_NAME (m),
2619 (RS6000_RECIP_AUTO_RE_P (m)
2620 ? "auto"
2621 : (RS6000_RECIP_HAVE_RE_P (m) ? "have" : "none")),
2622 (RS6000_RECIP_AUTO_RSQRTE_P (m)
2623 ? "auto"
2624 : (RS6000_RECIP_HAVE_RSQRTE_P (m) ? "have" : "none")));
2625 }
2626
2627 fputs ("\n", stderr);
2628 }
2629
2630 if (rs6000_cpu_index >= 0)
2631 {
2632 const char *name = processor_target_table[rs6000_cpu_index].name;
2633 HOST_WIDE_INT flags
2634 = processor_target_table[rs6000_cpu_index].target_enable;
2635
2636 sprintf (flags_buffer, "-mcpu=%s flags", name);
2637 rs6000_print_isa_options (stderr, 0, flags_buffer, flags);
2638 }
2639 else
2640 fprintf (stderr, DEBUG_FMT_S, "cpu", "<none>");
2641
2642 if (rs6000_tune_index >= 0)
2643 {
2644 const char *name = processor_target_table[rs6000_tune_index].name;
2645 HOST_WIDE_INT flags
2646 = processor_target_table[rs6000_tune_index].target_enable;
2647
2648 sprintf (flags_buffer, "-mtune=%s flags", name);
2649 rs6000_print_isa_options (stderr, 0, flags_buffer, flags);
2650 }
2651 else
2652 fprintf (stderr, DEBUG_FMT_S, "tune", "<none>");
2653
2654 cl_target_option_save (&cl_opts, &global_options);
2655 rs6000_print_isa_options (stderr, 0, "rs6000_isa_flags",
2656 rs6000_isa_flags);
2657
2658 rs6000_print_isa_options (stderr, 0, "rs6000_isa_flags_explicit",
2659 rs6000_isa_flags_explicit);
2660
2661 rs6000_print_builtin_options (stderr, 0, "rs6000_builtin_mask",
2662 rs6000_builtin_mask);
2663
2664 rs6000_print_isa_options (stderr, 0, "TARGET_DEFAULT", TARGET_DEFAULT);
2665
2666 fprintf (stderr, DEBUG_FMT_S, "--with-cpu default",
2667 OPTION_TARGET_CPU_DEFAULT ? OPTION_TARGET_CPU_DEFAULT : "<none>");
2668
2669 switch (rs6000_sched_costly_dep)
2670 {
2671 case max_dep_latency:
2672 costly_str = "max_dep_latency";
2673 break;
2674
2675 case no_dep_costly:
2676 costly_str = "no_dep_costly";
2677 break;
2678
2679 case all_deps_costly:
2680 costly_str = "all_deps_costly";
2681 break;
2682
2683 case true_store_to_load_dep_costly:
2684 costly_str = "true_store_to_load_dep_costly";
2685 break;
2686
2687 case store_to_load_dep_costly:
2688 costly_str = "store_to_load_dep_costly";
2689 break;
2690
2691 default:
2692 costly_str = costly_num;
2693 sprintf (costly_num, "%d", (int)rs6000_sched_costly_dep);
2694 break;
2695 }
2696
2697 fprintf (stderr, DEBUG_FMT_S, "sched_costly_dep", costly_str);
2698
2699 switch (rs6000_sched_insert_nops)
2700 {
2701 case sched_finish_regroup_exact:
2702 nop_str = "sched_finish_regroup_exact";
2703 break;
2704
2705 case sched_finish_pad_groups:
2706 nop_str = "sched_finish_pad_groups";
2707 break;
2708
2709 case sched_finish_none:
2710 nop_str = "sched_finish_none";
2711 break;
2712
2713 default:
2714 nop_str = nop_num;
2715 sprintf (nop_num, "%d", (int)rs6000_sched_insert_nops);
2716 break;
2717 }
2718
2719 fprintf (stderr, DEBUG_FMT_S, "sched_insert_nops", nop_str);
2720
2721 switch (rs6000_sdata)
2722 {
2723 default:
2724 case SDATA_NONE:
2725 break;
2726
2727 case SDATA_DATA:
2728 fprintf (stderr, DEBUG_FMT_S, "sdata", "data");
2729 break;
2730
2731 case SDATA_SYSV:
2732 fprintf (stderr, DEBUG_FMT_S, "sdata", "sysv");
2733 break;
2734
2735 case SDATA_EABI:
2736 fprintf (stderr, DEBUG_FMT_S, "sdata", "eabi");
2737 break;
2738
2739 }
2740
2741 switch (rs6000_traceback)
2742 {
2743 case traceback_default: trace_str = "default"; break;
2744 case traceback_none: trace_str = "none"; break;
2745 case traceback_part: trace_str = "part"; break;
2746 case traceback_full: trace_str = "full"; break;
2747 default: trace_str = "unknown"; break;
2748 }
2749
2750 fprintf (stderr, DEBUG_FMT_S, "traceback", trace_str);
2751
2752 switch (rs6000_current_cmodel)
2753 {
2754 case CMODEL_SMALL: cmodel_str = "small"; break;
2755 case CMODEL_MEDIUM: cmodel_str = "medium"; break;
2756 case CMODEL_LARGE: cmodel_str = "large"; break;
2757 default: cmodel_str = "unknown"; break;
2758 }
2759
2760 fprintf (stderr, DEBUG_FMT_S, "cmodel", cmodel_str);
2761
2762 switch (rs6000_current_abi)
2763 {
2764 case ABI_NONE: abi_str = "none"; break;
2765 case ABI_AIX: abi_str = "aix"; break;
2766 case ABI_ELFv2: abi_str = "ELFv2"; break;
2767 case ABI_V4: abi_str = "V4"; break;
2768 case ABI_DARWIN: abi_str = "darwin"; break;
2769 default: abi_str = "unknown"; break;
2770 }
2771
2772 fprintf (stderr, DEBUG_FMT_S, "abi", abi_str);
2773
2774 if (rs6000_altivec_abi)
2775 fprintf (stderr, DEBUG_FMT_S, "altivec_abi", "true");
2776
2777 if (rs6000_darwin64_abi)
2778 fprintf (stderr, DEBUG_FMT_S, "darwin64_abi", "true");
2779
2780 fprintf (stderr, DEBUG_FMT_S, "soft_float",
2781 (TARGET_SOFT_FLOAT ? "true" : "false"));
2782
2783 if (TARGET_LINK_STACK)
2784 fprintf (stderr, DEBUG_FMT_S, "link_stack", "true");
2785
2786 if (TARGET_P8_FUSION)
2787 {
2788 char options[80];
2789
2790 strcpy (options, (TARGET_P9_FUSION) ? "power9" : "power8");
2791 if (TARGET_P8_FUSION_SIGN)
2792 strcat (options, ", sign");
2793
2794 fprintf (stderr, DEBUG_FMT_S, "fusion", options);
2795 }
2796
2797 fprintf (stderr, DEBUG_FMT_S, "plt-format",
2798 TARGET_SECURE_PLT ? "secure" : "bss");
2799 fprintf (stderr, DEBUG_FMT_S, "struct-return",
2800 aix_struct_return ? "aix" : "sysv");
2801 fprintf (stderr, DEBUG_FMT_S, "always_hint", tf[!!rs6000_always_hint]);
2802 fprintf (stderr, DEBUG_FMT_S, "sched_groups", tf[!!rs6000_sched_groups]);
2803 fprintf (stderr, DEBUG_FMT_S, "align_branch",
2804 tf[!!rs6000_align_branch_targets]);
2805 fprintf (stderr, DEBUG_FMT_D, "tls_size", rs6000_tls_size);
2806 fprintf (stderr, DEBUG_FMT_D, "long_double_size",
2807 rs6000_long_double_type_size);
2808 if (rs6000_long_double_type_size > 64)
2809 {
2810 fprintf (stderr, DEBUG_FMT_S, "long double type",
2811 TARGET_IEEEQUAD ? "IEEE" : "IBM");
2812 fprintf (stderr, DEBUG_FMT_S, "default long double type",
2813 TARGET_IEEEQUAD_DEFAULT ? "IEEE" : "IBM");
2814 }
2815 fprintf (stderr, DEBUG_FMT_D, "sched_restricted_insns_priority",
2816 (int)rs6000_sched_restricted_insns_priority);
2817 fprintf (stderr, DEBUG_FMT_D, "Number of standard builtins",
2818 (int)END_BUILTINS);
2819 fprintf (stderr, DEBUG_FMT_D, "Number of rs6000 builtins",
2820 (int)RS6000_BUILTIN_COUNT);
2821
2822 fprintf (stderr, DEBUG_FMT_D, "Enable float128 on VSX",
2823 (int)TARGET_FLOAT128_ENABLE_TYPE);
2824
2825 if (TARGET_VSX)
2826 fprintf (stderr, DEBUG_FMT_D, "VSX easy 64-bit scalar element",
2827 (int)VECTOR_ELEMENT_SCALAR_64BIT);
2828
2829 if (TARGET_DIRECT_MOVE_128)
2830 fprintf (stderr, DEBUG_FMT_D, "VSX easy 64-bit mfvsrld element",
2831 (int)VECTOR_ELEMENT_MFVSRLD_64BIT);
2832 }
2833
2834 \f
2835 /* Update the addr mask bits in reg_addr to help secondary reload and go if
2836 legitimate address support to figure out the appropriate addressing to
2837 use. */
2838
2839 static void
2840 rs6000_setup_reg_addr_masks (void)
2841 {
2842 ssize_t rc, reg, m, nregs;
2843 addr_mask_type any_addr_mask, addr_mask;
2844
2845 for (m = 0; m < NUM_MACHINE_MODES; ++m)
2846 {
2847 machine_mode m2 = (machine_mode) m;
2848 bool complex_p = false;
2849 bool small_int_p = (m2 == QImode || m2 == HImode || m2 == SImode);
2850 size_t msize;
2851
2852 if (COMPLEX_MODE_P (m2))
2853 {
2854 complex_p = true;
2855 m2 = GET_MODE_INNER (m2);
2856 }
2857
2858 msize = GET_MODE_SIZE (m2);
2859
2860 /* SDmode is special in that we want to access it only via REG+REG
2861 addressing on power7 and above, since we want to use the LFIWZX and
2862 STFIWZX instructions to load it. */
2863 bool indexed_only_p = (m == SDmode && TARGET_NO_SDMODE_STACK);
2864
2865 any_addr_mask = 0;
2866 for (rc = FIRST_RELOAD_REG_CLASS; rc <= LAST_RELOAD_REG_CLASS; rc++)
2867 {
2868 addr_mask = 0;
2869 reg = reload_reg_map[rc].reg;
2870
2871 /* Can mode values go in the GPR/FPR/Altivec registers? */
2872 if (reg >= 0 && rs6000_hard_regno_mode_ok_p[m][reg])
2873 {
2874 bool small_int_vsx_p = (small_int_p
2875 && (rc == RELOAD_REG_FPR
2876 || rc == RELOAD_REG_VMX));
2877
2878 nregs = rs6000_hard_regno_nregs[m][reg];
2879 addr_mask |= RELOAD_REG_VALID;
2880
2881 /* Indicate if the mode takes more than 1 physical register. If
2882 it takes a single register, indicate it can do REG+REG
2883 addressing. Small integers in VSX registers can only do
2884 REG+REG addressing. */
2885 if (small_int_vsx_p)
2886 addr_mask |= RELOAD_REG_INDEXED;
2887 else if (nregs > 1 || m == BLKmode || complex_p)
2888 addr_mask |= RELOAD_REG_MULTIPLE;
2889 else
2890 addr_mask |= RELOAD_REG_INDEXED;
2891
2892 /* Figure out if we can do PRE_INC, PRE_DEC, or PRE_MODIFY
2893 addressing. If we allow scalars into Altivec registers,
2894 don't allow PRE_INC, PRE_DEC, or PRE_MODIFY.
2895
2896 For VSX systems, we don't allow update addressing for
2897 DFmode/SFmode if those registers can go in both the
2898 traditional floating point registers and Altivec registers.
2899 The load/store instructions for the Altivec registers do not
2900 have update forms. If we allowed update addressing, it seems
2901 to break IV-OPT code using floating point if the index type is
2902 int instead of long (PR target/81550 and target/84042). */
2903
2904 if (TARGET_UPDATE
2905 && (rc == RELOAD_REG_GPR || rc == RELOAD_REG_FPR)
2906 && msize <= 8
2907 && !VECTOR_MODE_P (m2)
2908 && !FLOAT128_VECTOR_P (m2)
2909 && !complex_p
2910 && (m != E_DFmode || !TARGET_VSX)
2911 && (m != E_SFmode || !TARGET_P8_VECTOR)
2912 && !small_int_vsx_p)
2913 {
2914 addr_mask |= RELOAD_REG_PRE_INCDEC;
2915
2916 /* PRE_MODIFY is more restricted than PRE_INC/PRE_DEC in that
2917 we don't allow PRE_MODIFY for some multi-register
2918 operations. */
2919 switch (m)
2920 {
2921 default:
2922 addr_mask |= RELOAD_REG_PRE_MODIFY;
2923 break;
2924
2925 case E_DImode:
2926 if (TARGET_POWERPC64)
2927 addr_mask |= RELOAD_REG_PRE_MODIFY;
2928 break;
2929
2930 case E_DFmode:
2931 case E_DDmode:
2932 if (TARGET_HARD_FLOAT)
2933 addr_mask |= RELOAD_REG_PRE_MODIFY;
2934 break;
2935 }
2936 }
2937 }
2938
2939 /* GPR and FPR registers can do REG+OFFSET addressing, except
2940 possibly for SDmode. ISA 3.0 (i.e. power9) adds D-form addressing
2941 for 64-bit scalars and 32-bit SFmode to altivec registers. */
2942 if ((addr_mask != 0) && !indexed_only_p
2943 && msize <= 8
2944 && (rc == RELOAD_REG_GPR
2945 || ((msize == 8 || m2 == SFmode)
2946 && (rc == RELOAD_REG_FPR
2947 || (rc == RELOAD_REG_VMX && TARGET_P9_VECTOR)))))
2948 addr_mask |= RELOAD_REG_OFFSET;
2949
2950 /* VSX registers can do REG+OFFSET addresssing if ISA 3.0
2951 instructions are enabled. The offset for 128-bit VSX registers is
2952 only 12-bits. While GPRs can handle the full offset range, VSX
2953 registers can only handle the restricted range. */
2954 else if ((addr_mask != 0) && !indexed_only_p
2955 && msize == 16 && TARGET_P9_VECTOR
2956 && (ALTIVEC_OR_VSX_VECTOR_MODE (m2)
2957 || (m2 == TImode && TARGET_VSX)))
2958 {
2959 addr_mask |= RELOAD_REG_OFFSET;
2960 if (rc == RELOAD_REG_FPR || rc == RELOAD_REG_VMX)
2961 addr_mask |= RELOAD_REG_QUAD_OFFSET;
2962 }
2963
2964 /* VMX registers can do (REG & -16) and ((REG+REG) & -16)
2965 addressing on 128-bit types. */
2966 if (rc == RELOAD_REG_VMX && msize == 16
2967 && (addr_mask & RELOAD_REG_VALID) != 0)
2968 addr_mask |= RELOAD_REG_AND_M16;
2969
2970 reg_addr[m].addr_mask[rc] = addr_mask;
2971 any_addr_mask |= addr_mask;
2972 }
2973
2974 reg_addr[m].addr_mask[RELOAD_REG_ANY] = any_addr_mask;
2975 }
2976 }
2977
2978 \f
2979 /* Initialize the various global tables that are based on register size. */
2980 static void
2981 rs6000_init_hard_regno_mode_ok (bool global_init_p)
2982 {
2983 ssize_t r, m, c;
2984 int align64;
2985 int align32;
2986
2987 /* Precalculate REGNO_REG_CLASS. */
2988 rs6000_regno_regclass[0] = GENERAL_REGS;
2989 for (r = 1; r < 32; ++r)
2990 rs6000_regno_regclass[r] = BASE_REGS;
2991
2992 for (r = 32; r < 64; ++r)
2993 rs6000_regno_regclass[r] = FLOAT_REGS;
2994
2995 for (r = 64; r < FIRST_PSEUDO_REGISTER; ++r)
2996 rs6000_regno_regclass[r] = NO_REGS;
2997
2998 for (r = FIRST_ALTIVEC_REGNO; r <= LAST_ALTIVEC_REGNO; ++r)
2999 rs6000_regno_regclass[r] = ALTIVEC_REGS;
3000
3001 rs6000_regno_regclass[CR0_REGNO] = CR0_REGS;
3002 for (r = CR1_REGNO; r <= CR7_REGNO; ++r)
3003 rs6000_regno_regclass[r] = CR_REGS;
3004
3005 rs6000_regno_regclass[LR_REGNO] = LINK_REGS;
3006 rs6000_regno_regclass[CTR_REGNO] = CTR_REGS;
3007 rs6000_regno_regclass[CA_REGNO] = NO_REGS;
3008 rs6000_regno_regclass[VRSAVE_REGNO] = VRSAVE_REGS;
3009 rs6000_regno_regclass[VSCR_REGNO] = VRSAVE_REGS;
3010 rs6000_regno_regclass[TFHAR_REGNO] = SPR_REGS;
3011 rs6000_regno_regclass[TFIAR_REGNO] = SPR_REGS;
3012 rs6000_regno_regclass[TEXASR_REGNO] = SPR_REGS;
3013 rs6000_regno_regclass[ARG_POINTER_REGNUM] = BASE_REGS;
3014 rs6000_regno_regclass[FRAME_POINTER_REGNUM] = BASE_REGS;
3015
3016 /* Precalculate register class to simpler reload register class. We don't
3017 need all of the register classes that are combinations of different
3018 classes, just the simple ones that have constraint letters. */
3019 for (c = 0; c < N_REG_CLASSES; c++)
3020 reg_class_to_reg_type[c] = NO_REG_TYPE;
3021
3022 reg_class_to_reg_type[(int)GENERAL_REGS] = GPR_REG_TYPE;
3023 reg_class_to_reg_type[(int)BASE_REGS] = GPR_REG_TYPE;
3024 reg_class_to_reg_type[(int)VSX_REGS] = VSX_REG_TYPE;
3025 reg_class_to_reg_type[(int)VRSAVE_REGS] = SPR_REG_TYPE;
3026 reg_class_to_reg_type[(int)VSCR_REGS] = SPR_REG_TYPE;
3027 reg_class_to_reg_type[(int)LINK_REGS] = SPR_REG_TYPE;
3028 reg_class_to_reg_type[(int)CTR_REGS] = SPR_REG_TYPE;
3029 reg_class_to_reg_type[(int)LINK_OR_CTR_REGS] = SPR_REG_TYPE;
3030 reg_class_to_reg_type[(int)CR_REGS] = CR_REG_TYPE;
3031 reg_class_to_reg_type[(int)CR0_REGS] = CR_REG_TYPE;
3032
3033 if (TARGET_VSX)
3034 {
3035 reg_class_to_reg_type[(int)FLOAT_REGS] = VSX_REG_TYPE;
3036 reg_class_to_reg_type[(int)ALTIVEC_REGS] = VSX_REG_TYPE;
3037 }
3038 else
3039 {
3040 reg_class_to_reg_type[(int)FLOAT_REGS] = FPR_REG_TYPE;
3041 reg_class_to_reg_type[(int)ALTIVEC_REGS] = ALTIVEC_REG_TYPE;
3042 }
3043
3044 /* Precalculate the valid memory formats as well as the vector information,
3045 this must be set up before the rs6000_hard_regno_nregs_internal calls
3046 below. */
3047 gcc_assert ((int)VECTOR_NONE == 0);
3048 memset ((void *) &rs6000_vector_unit[0], '\0', sizeof (rs6000_vector_unit));
3049 memset ((void *) &rs6000_vector_mem[0], '\0', sizeof (rs6000_vector_unit));
3050
3051 gcc_assert ((int)CODE_FOR_nothing == 0);
3052 memset ((void *) &reg_addr[0], '\0', sizeof (reg_addr));
3053
3054 gcc_assert ((int)NO_REGS == 0);
3055 memset ((void *) &rs6000_constraints[0], '\0', sizeof (rs6000_constraints));
3056
3057 /* The VSX hardware allows native alignment for vectors, but control whether the compiler
3058 believes it can use native alignment or still uses 128-bit alignment. */
3059 if (TARGET_VSX && !TARGET_VSX_ALIGN_128)
3060 {
3061 align64 = 64;
3062 align32 = 32;
3063 }
3064 else
3065 {
3066 align64 = 128;
3067 align32 = 128;
3068 }
3069
3070 /* KF mode (IEEE 128-bit in VSX registers). We do not have arithmetic, so
3071 only set the memory modes. Include TFmode if -mabi=ieeelongdouble. */
3072 if (TARGET_FLOAT128_TYPE)
3073 {
3074 rs6000_vector_mem[KFmode] = VECTOR_VSX;
3075 rs6000_vector_align[KFmode] = 128;
3076
3077 if (FLOAT128_IEEE_P (TFmode))
3078 {
3079 rs6000_vector_mem[TFmode] = VECTOR_VSX;
3080 rs6000_vector_align[TFmode] = 128;
3081 }
3082 }
3083
3084 /* V2DF mode, VSX only. */
3085 if (TARGET_VSX)
3086 {
3087 rs6000_vector_unit[V2DFmode] = VECTOR_VSX;
3088 rs6000_vector_mem[V2DFmode] = VECTOR_VSX;
3089 rs6000_vector_align[V2DFmode] = align64;
3090 }
3091
3092 /* V4SF mode, either VSX or Altivec. */
3093 if (TARGET_VSX)
3094 {
3095 rs6000_vector_unit[V4SFmode] = VECTOR_VSX;
3096 rs6000_vector_mem[V4SFmode] = VECTOR_VSX;
3097 rs6000_vector_align[V4SFmode] = align32;
3098 }
3099 else if (TARGET_ALTIVEC)
3100 {
3101 rs6000_vector_unit[V4SFmode] = VECTOR_ALTIVEC;
3102 rs6000_vector_mem[V4SFmode] = VECTOR_ALTIVEC;
3103 rs6000_vector_align[V4SFmode] = align32;
3104 }
3105
3106 /* V16QImode, V8HImode, V4SImode are Altivec only, but possibly do VSX loads
3107 and stores. */
3108 if (TARGET_ALTIVEC)
3109 {
3110 rs6000_vector_unit[V4SImode] = VECTOR_ALTIVEC;
3111 rs6000_vector_unit[V8HImode] = VECTOR_ALTIVEC;
3112 rs6000_vector_unit[V16QImode] = VECTOR_ALTIVEC;
3113 rs6000_vector_align[V4SImode] = align32;
3114 rs6000_vector_align[V8HImode] = align32;
3115 rs6000_vector_align[V16QImode] = align32;
3116
3117 if (TARGET_VSX)
3118 {
3119 rs6000_vector_mem[V4SImode] = VECTOR_VSX;
3120 rs6000_vector_mem[V8HImode] = VECTOR_VSX;
3121 rs6000_vector_mem[V16QImode] = VECTOR_VSX;
3122 }
3123 else
3124 {
3125 rs6000_vector_mem[V4SImode] = VECTOR_ALTIVEC;
3126 rs6000_vector_mem[V8HImode] = VECTOR_ALTIVEC;
3127 rs6000_vector_mem[V16QImode] = VECTOR_ALTIVEC;
3128 }
3129 }
3130
3131 /* V2DImode, full mode depends on ISA 2.07 vector mode. Allow under VSX to
3132 do insert/splat/extract. Altivec doesn't have 64-bit integer support. */
3133 if (TARGET_VSX)
3134 {
3135 rs6000_vector_mem[V2DImode] = VECTOR_VSX;
3136 rs6000_vector_unit[V2DImode]
3137 = (TARGET_P8_VECTOR) ? VECTOR_P8_VECTOR : VECTOR_NONE;
3138 rs6000_vector_align[V2DImode] = align64;
3139
3140 rs6000_vector_mem[V1TImode] = VECTOR_VSX;
3141 rs6000_vector_unit[V1TImode]
3142 = (TARGET_P8_VECTOR) ? VECTOR_P8_VECTOR : VECTOR_NONE;
3143 rs6000_vector_align[V1TImode] = 128;
3144 }
3145
3146 /* DFmode, see if we want to use the VSX unit. Memory is handled
3147 differently, so don't set rs6000_vector_mem. */
3148 if (TARGET_VSX)
3149 {
3150 rs6000_vector_unit[DFmode] = VECTOR_VSX;
3151 rs6000_vector_align[DFmode] = 64;
3152 }
3153
3154 /* SFmode, see if we want to use the VSX unit. */
3155 if (TARGET_P8_VECTOR)
3156 {
3157 rs6000_vector_unit[SFmode] = VECTOR_VSX;
3158 rs6000_vector_align[SFmode] = 32;
3159 }
3160
3161 /* Allow TImode in VSX register and set the VSX memory macros. */
3162 if (TARGET_VSX)
3163 {
3164 rs6000_vector_mem[TImode] = VECTOR_VSX;
3165 rs6000_vector_align[TImode] = align64;
3166 }
3167
3168 /* Register class constraints for the constraints that depend on compile
3169 switches. When the VSX code was added, different constraints were added
3170 based on the type (DFmode, V2DFmode, V4SFmode). For the vector types, all
3171 of the VSX registers are used. The register classes for scalar floating
3172 point types is set, based on whether we allow that type into the upper
3173 (Altivec) registers. GCC has register classes to target the Altivec
3174 registers for load/store operations, to select using a VSX memory
3175 operation instead of the traditional floating point operation. The
3176 constraints are:
3177
3178 d - Register class to use with traditional DFmode instructions.
3179 f - Register class to use with traditional SFmode instructions.
3180 v - Altivec register.
3181 wa - Any VSX register.
3182 wc - Reserved to represent individual CR bits (used in LLVM).
3183 wd - Preferred register class for V2DFmode.
3184 wf - Preferred register class for V4SFmode.
3185 wg - Float register for power6x move insns.
3186 wh - FP register for direct move instructions.
3187 wi - FP or VSX register to hold 64-bit integers for VSX insns.
3188 wj - FP or VSX register to hold 64-bit integers for direct moves.
3189 wk - FP or VSX register to hold 64-bit doubles for direct moves.
3190 wl - Float register if we can do 32-bit signed int loads.
3191 wm - VSX register for ISA 2.07 direct move operations.
3192 wn - always NO_REGS.
3193 wr - GPR if 64-bit mode is permitted.
3194 ws - Register class to do ISA 2.06 DF operations.
3195 wt - VSX register for TImode in VSX registers.
3196 wu - Altivec register for ISA 2.07 VSX SF/SI load/stores.
3197 wv - Altivec register for ISA 2.06 VSX DF/DI load/stores.
3198 ww - Register class to do SF conversions in with VSX operations.
3199 wx - Float register if we can do 32-bit int stores.
3200 wy - Register class to do ISA 2.07 SF operations.
3201 wz - Float register if we can do 32-bit unsigned int loads.
3202 wH - Altivec register if SImode is allowed in VSX registers.
3203 wI - VSX register if SImode is allowed in VSX registers.
3204 wJ - VSX register if QImode/HImode are allowed in VSX registers.
3205 wK - Altivec register if QImode/HImode are allowed in VSX registers. */
3206
3207 if (TARGET_HARD_FLOAT)
3208 {
3209 rs6000_constraints[RS6000_CONSTRAINT_f] = FLOAT_REGS; /* SFmode */
3210 rs6000_constraints[RS6000_CONSTRAINT_d] = FLOAT_REGS; /* DFmode */
3211 }
3212
3213 if (TARGET_VSX)
3214 {
3215 rs6000_constraints[RS6000_CONSTRAINT_wa] = VSX_REGS;
3216 rs6000_constraints[RS6000_CONSTRAINT_wd] = VSX_REGS; /* V2DFmode */
3217 rs6000_constraints[RS6000_CONSTRAINT_wf] = VSX_REGS; /* V4SFmode */
3218 rs6000_constraints[RS6000_CONSTRAINT_ws] = VSX_REGS; /* DFmode */
3219 rs6000_constraints[RS6000_CONSTRAINT_wv] = ALTIVEC_REGS; /* DFmode */
3220 rs6000_constraints[RS6000_CONSTRAINT_wi] = VSX_REGS; /* DImode */
3221 rs6000_constraints[RS6000_CONSTRAINT_wt] = VSX_REGS; /* TImode */
3222 }
3223
3224 /* Add conditional constraints based on various options, to allow us to
3225 collapse multiple insn patterns. */
3226 if (TARGET_ALTIVEC)
3227 rs6000_constraints[RS6000_CONSTRAINT_v] = ALTIVEC_REGS;
3228
3229 if (TARGET_MFPGPR) /* DFmode */
3230 rs6000_constraints[RS6000_CONSTRAINT_wg] = FLOAT_REGS;
3231
3232 if (TARGET_LFIWAX)
3233 rs6000_constraints[RS6000_CONSTRAINT_wl] = FLOAT_REGS; /* DImode */
3234
3235 if (TARGET_DIRECT_MOVE)
3236 {
3237 rs6000_constraints[RS6000_CONSTRAINT_wh] = FLOAT_REGS;
3238 rs6000_constraints[RS6000_CONSTRAINT_wj] /* DImode */
3239 = rs6000_constraints[RS6000_CONSTRAINT_wi];
3240 rs6000_constraints[RS6000_CONSTRAINT_wk] /* DFmode */
3241 = rs6000_constraints[RS6000_CONSTRAINT_ws];
3242 rs6000_constraints[RS6000_CONSTRAINT_wm] = VSX_REGS;
3243 }
3244
3245 if (TARGET_POWERPC64)
3246 {
3247 rs6000_constraints[RS6000_CONSTRAINT_wr] = GENERAL_REGS;
3248 rs6000_constraints[RS6000_CONSTRAINT_wA] = BASE_REGS;
3249 }
3250
3251 if (TARGET_P8_VECTOR) /* SFmode */
3252 {
3253 rs6000_constraints[RS6000_CONSTRAINT_wu] = ALTIVEC_REGS;
3254 rs6000_constraints[RS6000_CONSTRAINT_wy] = VSX_REGS;
3255 rs6000_constraints[RS6000_CONSTRAINT_ww] = VSX_REGS;
3256 }
3257 else if (TARGET_VSX)
3258 rs6000_constraints[RS6000_CONSTRAINT_ww] = FLOAT_REGS;
3259
3260 if (TARGET_STFIWX)
3261 rs6000_constraints[RS6000_CONSTRAINT_wx] = FLOAT_REGS; /* DImode */
3262
3263 if (TARGET_LFIWZX)
3264 rs6000_constraints[RS6000_CONSTRAINT_wz] = FLOAT_REGS; /* DImode */
3265
3266 if (TARGET_FLOAT128_TYPE)
3267 {
3268 rs6000_constraints[RS6000_CONSTRAINT_wq] = VSX_REGS; /* KFmode */
3269 if (FLOAT128_IEEE_P (TFmode))
3270 rs6000_constraints[RS6000_CONSTRAINT_wp] = VSX_REGS; /* TFmode */
3271 }
3272
3273 if (TARGET_P9_VECTOR)
3274 {
3275 /* Support for new D-form instructions. */
3276 rs6000_constraints[RS6000_CONSTRAINT_wb] = ALTIVEC_REGS;
3277
3278 /* Support for ISA 3.0 (power9) vectors. */
3279 rs6000_constraints[RS6000_CONSTRAINT_wo] = VSX_REGS;
3280 }
3281
3282 /* Support for new direct moves (ISA 3.0 + 64bit). */
3283 if (TARGET_DIRECT_MOVE_128)
3284 rs6000_constraints[RS6000_CONSTRAINT_we] = VSX_REGS;
3285
3286 /* Support small integers in VSX registers. */
3287 if (TARGET_P8_VECTOR)
3288 {
3289 rs6000_constraints[RS6000_CONSTRAINT_wH] = ALTIVEC_REGS;
3290 rs6000_constraints[RS6000_CONSTRAINT_wI] = FLOAT_REGS;
3291 if (TARGET_P9_VECTOR)
3292 {
3293 rs6000_constraints[RS6000_CONSTRAINT_wJ] = FLOAT_REGS;
3294 rs6000_constraints[RS6000_CONSTRAINT_wK] = ALTIVEC_REGS;
3295 }
3296 }
3297
3298 /* Set up the reload helper and direct move functions. */
3299 if (TARGET_VSX || TARGET_ALTIVEC)
3300 {
3301 if (TARGET_64BIT)
3302 {
3303 reg_addr[V16QImode].reload_store = CODE_FOR_reload_v16qi_di_store;
3304 reg_addr[V16QImode].reload_load = CODE_FOR_reload_v16qi_di_load;
3305 reg_addr[V8HImode].reload_store = CODE_FOR_reload_v8hi_di_store;
3306 reg_addr[V8HImode].reload_load = CODE_FOR_reload_v8hi_di_load;
3307 reg_addr[V4SImode].reload_store = CODE_FOR_reload_v4si_di_store;
3308 reg_addr[V4SImode].reload_load = CODE_FOR_reload_v4si_di_load;
3309 reg_addr[V2DImode].reload_store = CODE_FOR_reload_v2di_di_store;
3310 reg_addr[V2DImode].reload_load = CODE_FOR_reload_v2di_di_load;
3311 reg_addr[V1TImode].reload_store = CODE_FOR_reload_v1ti_di_store;
3312 reg_addr[V1TImode].reload_load = CODE_FOR_reload_v1ti_di_load;
3313 reg_addr[V4SFmode].reload_store = CODE_FOR_reload_v4sf_di_store;
3314 reg_addr[V4SFmode].reload_load = CODE_FOR_reload_v4sf_di_load;
3315 reg_addr[V2DFmode].reload_store = CODE_FOR_reload_v2df_di_store;
3316 reg_addr[V2DFmode].reload_load = CODE_FOR_reload_v2df_di_load;
3317 reg_addr[DFmode].reload_store = CODE_FOR_reload_df_di_store;
3318 reg_addr[DFmode].reload_load = CODE_FOR_reload_df_di_load;
3319 reg_addr[DDmode].reload_store = CODE_FOR_reload_dd_di_store;
3320 reg_addr[DDmode].reload_load = CODE_FOR_reload_dd_di_load;
3321 reg_addr[SFmode].reload_store = CODE_FOR_reload_sf_di_store;
3322 reg_addr[SFmode].reload_load = CODE_FOR_reload_sf_di_load;
3323
3324 if (FLOAT128_VECTOR_P (KFmode))
3325 {
3326 reg_addr[KFmode].reload_store = CODE_FOR_reload_kf_di_store;
3327 reg_addr[KFmode].reload_load = CODE_FOR_reload_kf_di_load;
3328 }
3329
3330 if (FLOAT128_VECTOR_P (TFmode))
3331 {
3332 reg_addr[TFmode].reload_store = CODE_FOR_reload_tf_di_store;
3333 reg_addr[TFmode].reload_load = CODE_FOR_reload_tf_di_load;
3334 }
3335
3336 /* Only provide a reload handler for SDmode if lfiwzx/stfiwx are
3337 available. */
3338 if (TARGET_NO_SDMODE_STACK)
3339 {
3340 reg_addr[SDmode].reload_store = CODE_FOR_reload_sd_di_store;
3341 reg_addr[SDmode].reload_load = CODE_FOR_reload_sd_di_load;
3342 }
3343
3344 if (TARGET_VSX)
3345 {
3346 reg_addr[TImode].reload_store = CODE_FOR_reload_ti_di_store;
3347 reg_addr[TImode].reload_load = CODE_FOR_reload_ti_di_load;
3348 }
3349
3350 if (TARGET_DIRECT_MOVE && !TARGET_DIRECT_MOVE_128)
3351 {
3352 reg_addr[TImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxti;
3353 reg_addr[V1TImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv1ti;
3354 reg_addr[V2DFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv2df;
3355 reg_addr[V2DImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv2di;
3356 reg_addr[V4SFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv4sf;
3357 reg_addr[V4SImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv4si;
3358 reg_addr[V8HImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv8hi;
3359 reg_addr[V16QImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv16qi;
3360 reg_addr[SFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxsf;
3361
3362 reg_addr[TImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprti;
3363 reg_addr[V1TImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv1ti;
3364 reg_addr[V2DFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv2df;
3365 reg_addr[V2DImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv2di;
3366 reg_addr[V4SFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv4sf;
3367 reg_addr[V4SImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv4si;
3368 reg_addr[V8HImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv8hi;
3369 reg_addr[V16QImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv16qi;
3370 reg_addr[SFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprsf;
3371
3372 if (FLOAT128_VECTOR_P (KFmode))
3373 {
3374 reg_addr[KFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxkf;
3375 reg_addr[KFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprkf;
3376 }
3377
3378 if (FLOAT128_VECTOR_P (TFmode))
3379 {
3380 reg_addr[TFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxtf;
3381 reg_addr[TFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprtf;
3382 }
3383 }
3384 }
3385 else
3386 {
3387 reg_addr[V16QImode].reload_store = CODE_FOR_reload_v16qi_si_store;
3388 reg_addr[V16QImode].reload_load = CODE_FOR_reload_v16qi_si_load;
3389 reg_addr[V8HImode].reload_store = CODE_FOR_reload_v8hi_si_store;
3390 reg_addr[V8HImode].reload_load = CODE_FOR_reload_v8hi_si_load;
3391 reg_addr[V4SImode].reload_store = CODE_FOR_reload_v4si_si_store;
3392 reg_addr[V4SImode].reload_load = CODE_FOR_reload_v4si_si_load;
3393 reg_addr[V2DImode].reload_store = CODE_FOR_reload_v2di_si_store;
3394 reg_addr[V2DImode].reload_load = CODE_FOR_reload_v2di_si_load;
3395 reg_addr[V1TImode].reload_store = CODE_FOR_reload_v1ti_si_store;
3396 reg_addr[V1TImode].reload_load = CODE_FOR_reload_v1ti_si_load;
3397 reg_addr[V4SFmode].reload_store = CODE_FOR_reload_v4sf_si_store;
3398 reg_addr[V4SFmode].reload_load = CODE_FOR_reload_v4sf_si_load;
3399 reg_addr[V2DFmode].reload_store = CODE_FOR_reload_v2df_si_store;
3400 reg_addr[V2DFmode].reload_load = CODE_FOR_reload_v2df_si_load;
3401 reg_addr[DFmode].reload_store = CODE_FOR_reload_df_si_store;
3402 reg_addr[DFmode].reload_load = CODE_FOR_reload_df_si_load;
3403 reg_addr[DDmode].reload_store = CODE_FOR_reload_dd_si_store;
3404 reg_addr[DDmode].reload_load = CODE_FOR_reload_dd_si_load;
3405 reg_addr[SFmode].reload_store = CODE_FOR_reload_sf_si_store;
3406 reg_addr[SFmode].reload_load = CODE_FOR_reload_sf_si_load;
3407
3408 if (FLOAT128_VECTOR_P (KFmode))
3409 {
3410 reg_addr[KFmode].reload_store = CODE_FOR_reload_kf_si_store;
3411 reg_addr[KFmode].reload_load = CODE_FOR_reload_kf_si_load;
3412 }
3413
3414 if (FLOAT128_IEEE_P (TFmode))
3415 {
3416 reg_addr[TFmode].reload_store = CODE_FOR_reload_tf_si_store;
3417 reg_addr[TFmode].reload_load = CODE_FOR_reload_tf_si_load;
3418 }
3419
3420 /* Only provide a reload handler for SDmode if lfiwzx/stfiwx are
3421 available. */
3422 if (TARGET_NO_SDMODE_STACK)
3423 {
3424 reg_addr[SDmode].reload_store = CODE_FOR_reload_sd_si_store;
3425 reg_addr[SDmode].reload_load = CODE_FOR_reload_sd_si_load;
3426 }
3427
3428 if (TARGET_VSX)
3429 {
3430 reg_addr[TImode].reload_store = CODE_FOR_reload_ti_si_store;
3431 reg_addr[TImode].reload_load = CODE_FOR_reload_ti_si_load;
3432 }
3433
3434 if (TARGET_DIRECT_MOVE)
3435 {
3436 reg_addr[DImode].reload_fpr_gpr = CODE_FOR_reload_fpr_from_gprdi;
3437 reg_addr[DDmode].reload_fpr_gpr = CODE_FOR_reload_fpr_from_gprdd;
3438 reg_addr[DFmode].reload_fpr_gpr = CODE_FOR_reload_fpr_from_gprdf;
3439 }
3440 }
3441
3442 reg_addr[DFmode].scalar_in_vmx_p = true;
3443 reg_addr[DImode].scalar_in_vmx_p = true;
3444
3445 if (TARGET_P8_VECTOR)
3446 {
3447 reg_addr[SFmode].scalar_in_vmx_p = true;
3448 reg_addr[SImode].scalar_in_vmx_p = true;
3449
3450 if (TARGET_P9_VECTOR)
3451 {
3452 reg_addr[HImode].scalar_in_vmx_p = true;
3453 reg_addr[QImode].scalar_in_vmx_p = true;
3454 }
3455 }
3456 }
3457
3458 /* Precalculate HARD_REGNO_NREGS. */
3459 for (r = 0; r < FIRST_PSEUDO_REGISTER; ++r)
3460 for (m = 0; m < NUM_MACHINE_MODES; ++m)
3461 rs6000_hard_regno_nregs[m][r]
3462 = rs6000_hard_regno_nregs_internal (r, (machine_mode)m);
3463
3464 /* Precalculate TARGET_HARD_REGNO_MODE_OK. */
3465 for (r = 0; r < FIRST_PSEUDO_REGISTER; ++r)
3466 for (m = 0; m < NUM_MACHINE_MODES; ++m)
3467 if (rs6000_hard_regno_mode_ok_uncached (r, (machine_mode)m))
3468 rs6000_hard_regno_mode_ok_p[m][r] = true;
3469
3470 /* Precalculate CLASS_MAX_NREGS sizes. */
3471 for (c = 0; c < LIM_REG_CLASSES; ++c)
3472 {
3473 int reg_size;
3474
3475 if (TARGET_VSX && VSX_REG_CLASS_P (c))
3476 reg_size = UNITS_PER_VSX_WORD;
3477
3478 else if (c == ALTIVEC_REGS)
3479 reg_size = UNITS_PER_ALTIVEC_WORD;
3480
3481 else if (c == FLOAT_REGS)
3482 reg_size = UNITS_PER_FP_WORD;
3483
3484 else
3485 reg_size = UNITS_PER_WORD;
3486
3487 for (m = 0; m < NUM_MACHINE_MODES; ++m)
3488 {
3489 machine_mode m2 = (machine_mode)m;
3490 int reg_size2 = reg_size;
3491
3492 /* TDmode & IBM 128-bit floating point always takes 2 registers, even
3493 in VSX. */
3494 if (TARGET_VSX && VSX_REG_CLASS_P (c) && FLOAT128_2REG_P (m))
3495 reg_size2 = UNITS_PER_FP_WORD;
3496
3497 rs6000_class_max_nregs[m][c]
3498 = (GET_MODE_SIZE (m2) + reg_size2 - 1) / reg_size2;
3499 }
3500 }
3501
3502 /* Calculate which modes to automatically generate code to use a the
3503 reciprocal divide and square root instructions. In the future, possibly
3504 automatically generate the instructions even if the user did not specify
3505 -mrecip. The older machines double precision reciprocal sqrt estimate is
3506 not accurate enough. */
3507 memset (rs6000_recip_bits, 0, sizeof (rs6000_recip_bits));
3508 if (TARGET_FRES)
3509 rs6000_recip_bits[SFmode] = RS6000_RECIP_MASK_HAVE_RE;
3510 if (TARGET_FRE)
3511 rs6000_recip_bits[DFmode] = RS6000_RECIP_MASK_HAVE_RE;
3512 if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode))
3513 rs6000_recip_bits[V4SFmode] = RS6000_RECIP_MASK_HAVE_RE;
3514 if (VECTOR_UNIT_VSX_P (V2DFmode))
3515 rs6000_recip_bits[V2DFmode] = RS6000_RECIP_MASK_HAVE_RE;
3516
3517 if (TARGET_FRSQRTES)
3518 rs6000_recip_bits[SFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
3519 if (TARGET_FRSQRTE)
3520 rs6000_recip_bits[DFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
3521 if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode))
3522 rs6000_recip_bits[V4SFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
3523 if (VECTOR_UNIT_VSX_P (V2DFmode))
3524 rs6000_recip_bits[V2DFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
3525
3526 if (rs6000_recip_control)
3527 {
3528 if (!flag_finite_math_only)
3529 warning (0, "%qs requires %qs or %qs", "-mrecip", "-ffinite-math",
3530 "-ffast-math");
3531 if (flag_trapping_math)
3532 warning (0, "%qs requires %qs or %qs", "-mrecip",
3533 "-fno-trapping-math", "-ffast-math");
3534 if (!flag_reciprocal_math)
3535 warning (0, "%qs requires %qs or %qs", "-mrecip", "-freciprocal-math",
3536 "-ffast-math");
3537 if (flag_finite_math_only && !flag_trapping_math && flag_reciprocal_math)
3538 {
3539 if (RS6000_RECIP_HAVE_RE_P (SFmode)
3540 && (rs6000_recip_control & RECIP_SF_DIV) != 0)
3541 rs6000_recip_bits[SFmode] |= RS6000_RECIP_MASK_AUTO_RE;
3542
3543 if (RS6000_RECIP_HAVE_RE_P (DFmode)
3544 && (rs6000_recip_control & RECIP_DF_DIV) != 0)
3545 rs6000_recip_bits[DFmode] |= RS6000_RECIP_MASK_AUTO_RE;
3546
3547 if (RS6000_RECIP_HAVE_RE_P (V4SFmode)
3548 && (rs6000_recip_control & RECIP_V4SF_DIV) != 0)
3549 rs6000_recip_bits[V4SFmode] |= RS6000_RECIP_MASK_AUTO_RE;
3550
3551 if (RS6000_RECIP_HAVE_RE_P (V2DFmode)
3552 && (rs6000_recip_control & RECIP_V2DF_DIV) != 0)
3553 rs6000_recip_bits[V2DFmode] |= RS6000_RECIP_MASK_AUTO_RE;
3554
3555 if (RS6000_RECIP_HAVE_RSQRTE_P (SFmode)
3556 && (rs6000_recip_control & RECIP_SF_RSQRT) != 0)
3557 rs6000_recip_bits[SFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
3558
3559 if (RS6000_RECIP_HAVE_RSQRTE_P (DFmode)
3560 && (rs6000_recip_control & RECIP_DF_RSQRT) != 0)
3561 rs6000_recip_bits[DFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
3562
3563 if (RS6000_RECIP_HAVE_RSQRTE_P (V4SFmode)
3564 && (rs6000_recip_control & RECIP_V4SF_RSQRT) != 0)
3565 rs6000_recip_bits[V4SFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
3566
3567 if (RS6000_RECIP_HAVE_RSQRTE_P (V2DFmode)
3568 && (rs6000_recip_control & RECIP_V2DF_RSQRT) != 0)
3569 rs6000_recip_bits[V2DFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
3570 }
3571 }
3572
3573 /* Update the addr mask bits in reg_addr to help secondary reload and go if
3574 legitimate address support to figure out the appropriate addressing to
3575 use. */
3576 rs6000_setup_reg_addr_masks ();
3577
3578 if (global_init_p || TARGET_DEBUG_TARGET)
3579 {
3580 if (TARGET_DEBUG_REG)
3581 rs6000_debug_reg_global ();
3582
3583 if (TARGET_DEBUG_COST || TARGET_DEBUG_REG)
3584 fprintf (stderr,
3585 "SImode variable mult cost = %d\n"
3586 "SImode constant mult cost = %d\n"
3587 "SImode short constant mult cost = %d\n"
3588 "DImode multipliciation cost = %d\n"
3589 "SImode division cost = %d\n"
3590 "DImode division cost = %d\n"
3591 "Simple fp operation cost = %d\n"
3592 "DFmode multiplication cost = %d\n"
3593 "SFmode division cost = %d\n"
3594 "DFmode division cost = %d\n"
3595 "cache line size = %d\n"
3596 "l1 cache size = %d\n"
3597 "l2 cache size = %d\n"
3598 "simultaneous prefetches = %d\n"
3599 "\n",
3600 rs6000_cost->mulsi,
3601 rs6000_cost->mulsi_const,
3602 rs6000_cost->mulsi_const9,
3603 rs6000_cost->muldi,
3604 rs6000_cost->divsi,
3605 rs6000_cost->divdi,
3606 rs6000_cost->fp,
3607 rs6000_cost->dmul,
3608 rs6000_cost->sdiv,
3609 rs6000_cost->ddiv,
3610 rs6000_cost->cache_line_size,
3611 rs6000_cost->l1_cache_size,
3612 rs6000_cost->l2_cache_size,
3613 rs6000_cost->simultaneous_prefetches);
3614 }
3615 }
3616
3617 #if TARGET_MACHO
3618 /* The Darwin version of SUBTARGET_OVERRIDE_OPTIONS. */
3619
3620 static void
3621 darwin_rs6000_override_options (void)
3622 {
3623 /* The Darwin ABI always includes AltiVec, can't be (validly) turned
3624 off. */
3625 rs6000_altivec_abi = 1;
3626 TARGET_ALTIVEC_VRSAVE = 1;
3627 rs6000_current_abi = ABI_DARWIN;
3628
3629 if (DEFAULT_ABI == ABI_DARWIN
3630 && TARGET_64BIT)
3631 darwin_one_byte_bool = 1;
3632
3633 if (TARGET_64BIT && ! TARGET_POWERPC64)
3634 {
3635 rs6000_isa_flags |= OPTION_MASK_POWERPC64;
3636 warning (0, "%qs requires PowerPC64 architecture, enabling", "-m64");
3637 }
3638 if (flag_mkernel)
3639 {
3640 rs6000_default_long_calls = 1;
3641 rs6000_isa_flags |= OPTION_MASK_SOFT_FLOAT;
3642 }
3643
3644 /* Make -m64 imply -maltivec. Darwin's 64-bit ABI includes
3645 Altivec. */
3646 if (!flag_mkernel && !flag_apple_kext
3647 && TARGET_64BIT
3648 && ! (rs6000_isa_flags_explicit & OPTION_MASK_ALTIVEC))
3649 rs6000_isa_flags |= OPTION_MASK_ALTIVEC;
3650
3651 /* Unless the user (not the configurer) has explicitly overridden
3652 it with -mcpu=G3 or -mno-altivec, then 10.5+ targets default to
3653 G4 unless targeting the kernel. */
3654 if (!flag_mkernel
3655 && !flag_apple_kext
3656 && strverscmp (darwin_macosx_version_min, "10.5") >= 0
3657 && ! (rs6000_isa_flags_explicit & OPTION_MASK_ALTIVEC)
3658 && ! global_options_set.x_rs6000_cpu_index)
3659 {
3660 rs6000_isa_flags |= OPTION_MASK_ALTIVEC;
3661 }
3662 }
3663 #endif
3664
3665 /* If not otherwise specified by a target, make 'long double' equivalent to
3666 'double'. */
3667
3668 #ifndef RS6000_DEFAULT_LONG_DOUBLE_SIZE
3669 #define RS6000_DEFAULT_LONG_DOUBLE_SIZE 64
3670 #endif
3671
3672 /* Return the builtin mask of the various options used that could affect which
3673 builtins were used. In the past we used target_flags, but we've run out of
3674 bits, and some options are no longer in target_flags. */
3675
3676 HOST_WIDE_INT
3677 rs6000_builtin_mask_calculate (void)
3678 {
3679 return (((TARGET_ALTIVEC) ? RS6000_BTM_ALTIVEC : 0)
3680 | ((TARGET_CMPB) ? RS6000_BTM_CMPB : 0)
3681 | ((TARGET_VSX) ? RS6000_BTM_VSX : 0)
3682 | ((TARGET_FRE) ? RS6000_BTM_FRE : 0)
3683 | ((TARGET_FRES) ? RS6000_BTM_FRES : 0)
3684 | ((TARGET_FRSQRTE) ? RS6000_BTM_FRSQRTE : 0)
3685 | ((TARGET_FRSQRTES) ? RS6000_BTM_FRSQRTES : 0)
3686 | ((TARGET_POPCNTD) ? RS6000_BTM_POPCNTD : 0)
3687 | ((rs6000_cpu == PROCESSOR_CELL) ? RS6000_BTM_CELL : 0)
3688 | ((TARGET_P8_VECTOR) ? RS6000_BTM_P8_VECTOR : 0)
3689 | ((TARGET_P9_VECTOR) ? RS6000_BTM_P9_VECTOR : 0)
3690 | ((TARGET_P9_MISC) ? RS6000_BTM_P9_MISC : 0)
3691 | ((TARGET_MODULO) ? RS6000_BTM_MODULO : 0)
3692 | ((TARGET_64BIT) ? RS6000_BTM_64BIT : 0)
3693 | ((TARGET_POWERPC64) ? RS6000_BTM_POWERPC64 : 0)
3694 | ((TARGET_CRYPTO) ? RS6000_BTM_CRYPTO : 0)
3695 | ((TARGET_HTM) ? RS6000_BTM_HTM : 0)
3696 | ((TARGET_DFP) ? RS6000_BTM_DFP : 0)
3697 | ((TARGET_HARD_FLOAT) ? RS6000_BTM_HARD_FLOAT : 0)
3698 | ((TARGET_LONG_DOUBLE_128
3699 && TARGET_HARD_FLOAT
3700 && !TARGET_IEEEQUAD) ? RS6000_BTM_LDBL128 : 0)
3701 | ((TARGET_FLOAT128_TYPE) ? RS6000_BTM_FLOAT128 : 0)
3702 | ((TARGET_FLOAT128_HW) ? RS6000_BTM_FLOAT128_HW : 0));
3703 }
3704
3705 /* Implement TARGET_MD_ASM_ADJUST. All asm statements are considered
3706 to clobber the XER[CA] bit because clobbering that bit without telling
3707 the compiler worked just fine with versions of GCC before GCC 5, and
3708 breaking a lot of older code in ways that are hard to track down is
3709 not such a great idea. */
3710
3711 static rtx_insn *
3712 rs6000_md_asm_adjust (vec<rtx> &/*outputs*/, vec<rtx> &/*inputs*/,
3713 vec<const char *> &/*constraints*/,
3714 vec<rtx> &clobbers, HARD_REG_SET &clobbered_regs)
3715 {
3716 clobbers.safe_push (gen_rtx_REG (SImode, CA_REGNO));
3717 SET_HARD_REG_BIT (clobbered_regs, CA_REGNO);
3718 return NULL;
3719 }
3720
3721 /* Override command line options.
3722
3723 Combine build-specific configuration information with options
3724 specified on the command line to set various state variables which
3725 influence code generation, optimization, and expansion of built-in
3726 functions. Assure that command-line configuration preferences are
3727 compatible with each other and with the build configuration; issue
3728 warnings while adjusting configuration or error messages while
3729 rejecting configuration.
3730
3731 Upon entry to this function:
3732
3733 This function is called once at the beginning of
3734 compilation, and then again at the start and end of compiling
3735 each section of code that has a different configuration, as
3736 indicated, for example, by adding the
3737
3738 __attribute__((__target__("cpu=power9")))
3739
3740 qualifier to a function definition or, for example, by bracketing
3741 code between
3742
3743 #pragma GCC target("altivec")
3744
3745 and
3746
3747 #pragma GCC reset_options
3748
3749 directives. Parameter global_init_p is true for the initial
3750 invocation, which initializes global variables, and false for all
3751 subsequent invocations.
3752
3753
3754 Various global state information is assumed to be valid. This
3755 includes OPTION_TARGET_CPU_DEFAULT, representing the name of the
3756 default CPU specified at build configure time, TARGET_DEFAULT,
3757 representing the default set of option flags for the default
3758 target, and global_options_set.x_rs6000_isa_flags, representing
3759 which options were requested on the command line.
3760
3761 Upon return from this function:
3762
3763 rs6000_isa_flags_explicit has a non-zero bit for each flag that
3764 was set by name on the command line. Additionally, if certain
3765 attributes are automatically enabled or disabled by this function
3766 in order to assure compatibility between options and
3767 configuration, the flags associated with those attributes are
3768 also set. By setting these "explicit bits", we avoid the risk
3769 that other code might accidentally overwrite these particular
3770 attributes with "default values".
3771
3772 The various bits of rs6000_isa_flags are set to indicate the
3773 target options that have been selected for the most current
3774 compilation efforts. This has the effect of also turning on the
3775 associated TARGET_XXX values since these are macros which are
3776 generally defined to test the corresponding bit of the
3777 rs6000_isa_flags variable.
3778
3779 The variable rs6000_builtin_mask is set to represent the target
3780 options for the most current compilation efforts, consistent with
3781 the current contents of rs6000_isa_flags. This variable controls
3782 expansion of built-in functions.
3783
3784 Various other global variables and fields of global structures
3785 (over 50 in all) are initialized to reflect the desired options
3786 for the most current compilation efforts. */
3787
3788 static bool
3789 rs6000_option_override_internal (bool global_init_p)
3790 {
3791 bool ret = true;
3792
3793 HOST_WIDE_INT set_masks;
3794 HOST_WIDE_INT ignore_masks;
3795 int cpu_index = -1;
3796 int tune_index;
3797 struct cl_target_option *main_target_opt
3798 = ((global_init_p || target_option_default_node == NULL)
3799 ? NULL : TREE_TARGET_OPTION (target_option_default_node));
3800
3801 /* Print defaults. */
3802 if ((TARGET_DEBUG_REG || TARGET_DEBUG_TARGET) && global_init_p)
3803 rs6000_print_isa_options (stderr, 0, "TARGET_DEFAULT", TARGET_DEFAULT);
3804
3805 /* Remember the explicit arguments. */
3806 if (global_init_p)
3807 rs6000_isa_flags_explicit = global_options_set.x_rs6000_isa_flags;
3808
3809 /* On 64-bit Darwin, power alignment is ABI-incompatible with some C
3810 library functions, so warn about it. The flag may be useful for
3811 performance studies from time to time though, so don't disable it
3812 entirely. */
3813 if (global_options_set.x_rs6000_alignment_flags
3814 && rs6000_alignment_flags == MASK_ALIGN_POWER
3815 && DEFAULT_ABI == ABI_DARWIN
3816 && TARGET_64BIT)
3817 warning (0, "%qs is not supported for 64-bit Darwin;"
3818 " it is incompatible with the installed C and C++ libraries",
3819 "-malign-power");
3820
3821 /* Numerous experiment shows that IRA based loop pressure
3822 calculation works better for RTL loop invariant motion on targets
3823 with enough (>= 32) registers. It is an expensive optimization.
3824 So it is on only for peak performance. */
3825 if (optimize >= 3 && global_init_p
3826 && !global_options_set.x_flag_ira_loop_pressure)
3827 flag_ira_loop_pressure = 1;
3828
3829 /* -fsanitize=address needs to turn on -fasynchronous-unwind-tables in order
3830 for tracebacks to be complete but not if any -fasynchronous-unwind-tables
3831 options were already specified. */
3832 if (flag_sanitize & SANITIZE_USER_ADDRESS
3833 && !global_options_set.x_flag_asynchronous_unwind_tables)
3834 flag_asynchronous_unwind_tables = 1;
3835
3836 /* Set the pointer size. */
3837 if (TARGET_64BIT)
3838 {
3839 rs6000_pmode = DImode;
3840 rs6000_pointer_size = 64;
3841 }
3842 else
3843 {
3844 rs6000_pmode = SImode;
3845 rs6000_pointer_size = 32;
3846 }
3847
3848 /* Some OSs don't support saving the high part of 64-bit registers on context
3849 switch. Other OSs don't support saving Altivec registers. On those OSs,
3850 we don't touch the OPTION_MASK_POWERPC64 or OPTION_MASK_ALTIVEC settings;
3851 if the user wants either, the user must explicitly specify them and we
3852 won't interfere with the user's specification. */
3853
3854 set_masks = POWERPC_MASKS;
3855 #ifdef OS_MISSING_POWERPC64
3856 if (OS_MISSING_POWERPC64)
3857 set_masks &= ~OPTION_MASK_POWERPC64;
3858 #endif
3859 #ifdef OS_MISSING_ALTIVEC
3860 if (OS_MISSING_ALTIVEC)
3861 set_masks &= ~(OPTION_MASK_ALTIVEC | OPTION_MASK_VSX
3862 | OTHER_VSX_VECTOR_MASKS);
3863 #endif
3864
3865 /* Don't override by the processor default if given explicitly. */
3866 set_masks &= ~rs6000_isa_flags_explicit;
3867
3868 /* Process the -mcpu=<xxx> and -mtune=<xxx> argument. If the user changed
3869 the cpu in a target attribute or pragma, but did not specify a tuning
3870 option, use the cpu for the tuning option rather than the option specified
3871 with -mtune on the command line. Process a '--with-cpu' configuration
3872 request as an implicit --cpu. */
3873 if (rs6000_cpu_index >= 0)
3874 cpu_index = rs6000_cpu_index;
3875 else if (main_target_opt != NULL && main_target_opt->x_rs6000_cpu_index >= 0)
3876 cpu_index = main_target_opt->x_rs6000_cpu_index;
3877 else if (OPTION_TARGET_CPU_DEFAULT)
3878 cpu_index = rs6000_cpu_name_lookup (OPTION_TARGET_CPU_DEFAULT);
3879
3880 /* If we have a cpu, either through an explicit -mcpu=<xxx> or if the
3881 compiler was configured with --with-cpu=<xxx>, replace all of the ISA bits
3882 with those from the cpu, except for options that were explicitly set. If
3883 we don't have a cpu, do not override the target bits set in
3884 TARGET_DEFAULT. */
3885 if (cpu_index >= 0)
3886 {
3887 rs6000_cpu_index = cpu_index;
3888 rs6000_isa_flags &= ~set_masks;
3889 rs6000_isa_flags |= (processor_target_table[cpu_index].target_enable
3890 & set_masks);
3891 }
3892 else
3893 {
3894 /* If no -mcpu=<xxx>, inherit any default options that were cleared via
3895 POWERPC_MASKS. Originally, TARGET_DEFAULT was used to initialize
3896 target_flags via the TARGET_DEFAULT_TARGET_FLAGS hook. When we switched
3897 to using rs6000_isa_flags, we need to do the initialization here.
3898
3899 If there is a TARGET_DEFAULT, use that. Otherwise fall back to using
3900 -mcpu=powerpc, -mcpu=powerpc64, or -mcpu=powerpc64le defaults. */
3901 HOST_WIDE_INT flags;
3902 if (TARGET_DEFAULT)
3903 flags = TARGET_DEFAULT;
3904 else
3905 {
3906 /* PowerPC 64-bit LE requires at least ISA 2.07. */
3907 const char *default_cpu = (!TARGET_POWERPC64
3908 ? "powerpc"
3909 : (BYTES_BIG_ENDIAN
3910 ? "powerpc64"
3911 : "powerpc64le"));
3912 int default_cpu_index = rs6000_cpu_name_lookup (default_cpu);
3913 flags = processor_target_table[default_cpu_index].target_enable;
3914 }
3915 rs6000_isa_flags |= (flags & ~rs6000_isa_flags_explicit);
3916 }
3917
3918 if (rs6000_tune_index >= 0)
3919 tune_index = rs6000_tune_index;
3920 else if (cpu_index >= 0)
3921 rs6000_tune_index = tune_index = cpu_index;
3922 else
3923 {
3924 size_t i;
3925 enum processor_type tune_proc
3926 = (TARGET_POWERPC64 ? PROCESSOR_DEFAULT64 : PROCESSOR_DEFAULT);
3927
3928 tune_index = -1;
3929 for (i = 0; i < ARRAY_SIZE (processor_target_table); i++)
3930 if (processor_target_table[i].processor == tune_proc)
3931 {
3932 tune_index = i;
3933 break;
3934 }
3935 }
3936
3937 if (cpu_index >= 0)
3938 rs6000_cpu = processor_target_table[cpu_index].processor;
3939 else
3940 rs6000_cpu = TARGET_POWERPC64 ? PROCESSOR_DEFAULT64 : PROCESSOR_DEFAULT;
3941
3942 gcc_assert (tune_index >= 0);
3943 rs6000_tune = processor_target_table[tune_index].processor;
3944
3945 if (rs6000_cpu == PROCESSOR_PPCE300C2 || rs6000_cpu == PROCESSOR_PPCE300C3
3946 || rs6000_cpu == PROCESSOR_PPCE500MC || rs6000_cpu == PROCESSOR_PPCE500MC64
3947 || rs6000_cpu == PROCESSOR_PPCE5500)
3948 {
3949 if (TARGET_ALTIVEC)
3950 error ("AltiVec not supported in this target");
3951 }
3952
3953 /* If we are optimizing big endian systems for space, use the load/store
3954 multiple instructions. */
3955 if (BYTES_BIG_ENDIAN && optimize_size)
3956 rs6000_isa_flags |= ~rs6000_isa_flags_explicit & OPTION_MASK_MULTIPLE;
3957
3958 /* Don't allow -mmultiple on little endian systems unless the cpu is a 750,
3959 because the hardware doesn't support the instructions used in little
3960 endian mode, and causes an alignment trap. The 750 does not cause an
3961 alignment trap (except when the target is unaligned). */
3962
3963 if (!BYTES_BIG_ENDIAN && rs6000_cpu != PROCESSOR_PPC750 && TARGET_MULTIPLE)
3964 {
3965 rs6000_isa_flags &= ~OPTION_MASK_MULTIPLE;
3966 if ((rs6000_isa_flags_explicit & OPTION_MASK_MULTIPLE) != 0)
3967 warning (0, "%qs is not supported on little endian systems",
3968 "-mmultiple");
3969 }
3970
3971 /* If little-endian, default to -mstrict-align on older processors.
3972 Testing for htm matches power8 and later. */
3973 if (!BYTES_BIG_ENDIAN
3974 && !(processor_target_table[tune_index].target_enable & OPTION_MASK_HTM))
3975 rs6000_isa_flags |= ~rs6000_isa_flags_explicit & OPTION_MASK_STRICT_ALIGN;
3976
3977 if (!rs6000_fold_gimple)
3978 fprintf (stderr,
3979 "gimple folding of rs6000 builtins has been disabled.\n");
3980
3981 /* Add some warnings for VSX. */
3982 if (TARGET_VSX)
3983 {
3984 const char *msg = NULL;
3985 if (!TARGET_HARD_FLOAT)
3986 {
3987 if (rs6000_isa_flags_explicit & OPTION_MASK_VSX)
3988 msg = N_("-mvsx requires hardware floating point");
3989 else
3990 {
3991 rs6000_isa_flags &= ~ OPTION_MASK_VSX;
3992 rs6000_isa_flags_explicit |= OPTION_MASK_VSX;
3993 }
3994 }
3995 else if (TARGET_AVOID_XFORM > 0)
3996 msg = N_("-mvsx needs indexed addressing");
3997 else if (!TARGET_ALTIVEC && (rs6000_isa_flags_explicit
3998 & OPTION_MASK_ALTIVEC))
3999 {
4000 if (rs6000_isa_flags_explicit & OPTION_MASK_VSX)
4001 msg = N_("-mvsx and -mno-altivec are incompatible");
4002 else
4003 msg = N_("-mno-altivec disables vsx");
4004 }
4005
4006 if (msg)
4007 {
4008 warning (0, msg);
4009 rs6000_isa_flags &= ~ OPTION_MASK_VSX;
4010 rs6000_isa_flags_explicit |= OPTION_MASK_VSX;
4011 }
4012 }
4013
4014 /* If hard-float/altivec/vsx were explicitly turned off then don't allow
4015 the -mcpu setting to enable options that conflict. */
4016 if ((!TARGET_HARD_FLOAT || !TARGET_ALTIVEC || !TARGET_VSX)
4017 && (rs6000_isa_flags_explicit & (OPTION_MASK_SOFT_FLOAT
4018 | OPTION_MASK_ALTIVEC
4019 | OPTION_MASK_VSX)) != 0)
4020 rs6000_isa_flags &= ~((OPTION_MASK_P8_VECTOR | OPTION_MASK_CRYPTO
4021 | OPTION_MASK_DIRECT_MOVE)
4022 & ~rs6000_isa_flags_explicit);
4023
4024 if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
4025 rs6000_print_isa_options (stderr, 0, "before defaults", rs6000_isa_flags);
4026
4027 /* Handle explicit -mno-{altivec,vsx,power8-vector,power9-vector} and turn
4028 off all of the options that depend on those flags. */
4029 ignore_masks = rs6000_disable_incompatible_switches ();
4030
4031 /* For the newer switches (vsx, dfp, etc.) set some of the older options,
4032 unless the user explicitly used the -mno-<option> to disable the code. */
4033 if (TARGET_P9_VECTOR || TARGET_MODULO || TARGET_P9_MISC)
4034 rs6000_isa_flags |= (ISA_3_0_MASKS_SERVER & ~ignore_masks);
4035 else if (TARGET_P9_MINMAX)
4036 {
4037 if (cpu_index >= 0)
4038 {
4039 if (cpu_index == PROCESSOR_POWER9)
4040 {
4041 /* legacy behavior: allow -mcpu=power9 with certain
4042 capabilities explicitly disabled. */
4043 rs6000_isa_flags |= (ISA_3_0_MASKS_SERVER & ~ignore_masks);
4044 }
4045 else
4046 error ("power9 target option is incompatible with %<%s=<xxx>%> "
4047 "for <xxx> less than power9", "-mcpu");
4048 }
4049 else if ((ISA_3_0_MASKS_SERVER & rs6000_isa_flags_explicit)
4050 != (ISA_3_0_MASKS_SERVER & rs6000_isa_flags
4051 & rs6000_isa_flags_explicit))
4052 /* Enforce that none of the ISA_3_0_MASKS_SERVER flags
4053 were explicitly cleared. */
4054 error ("%qs incompatible with explicitly disabled options",
4055 "-mpower9-minmax");
4056 else
4057 rs6000_isa_flags |= ISA_3_0_MASKS_SERVER;
4058 }
4059 else if (TARGET_P8_VECTOR || TARGET_DIRECT_MOVE || TARGET_CRYPTO)
4060 rs6000_isa_flags |= (ISA_2_7_MASKS_SERVER & ~ignore_masks);
4061 else if (TARGET_VSX)
4062 rs6000_isa_flags |= (ISA_2_6_MASKS_SERVER & ~ignore_masks);
4063 else if (TARGET_POPCNTD)
4064 rs6000_isa_flags |= (ISA_2_6_MASKS_EMBEDDED & ~ignore_masks);
4065 else if (TARGET_DFP)
4066 rs6000_isa_flags |= (ISA_2_5_MASKS_SERVER & ~ignore_masks);
4067 else if (TARGET_CMPB)
4068 rs6000_isa_flags |= (ISA_2_5_MASKS_EMBEDDED & ~ignore_masks);
4069 else if (TARGET_FPRND)
4070 rs6000_isa_flags |= (ISA_2_4_MASKS & ~ignore_masks);
4071 else if (TARGET_POPCNTB)
4072 rs6000_isa_flags |= (ISA_2_2_MASKS & ~ignore_masks);
4073 else if (TARGET_ALTIVEC)
4074 rs6000_isa_flags |= (OPTION_MASK_PPC_GFXOPT & ~ignore_masks);
4075
4076 if (TARGET_CRYPTO && !TARGET_ALTIVEC)
4077 {
4078 if (rs6000_isa_flags_explicit & OPTION_MASK_CRYPTO)
4079 error ("%qs requires %qs", "-mcrypto", "-maltivec");
4080 rs6000_isa_flags &= ~OPTION_MASK_CRYPTO;
4081 }
4082
4083 if (TARGET_DIRECT_MOVE && !TARGET_VSX)
4084 {
4085 if (rs6000_isa_flags_explicit & OPTION_MASK_DIRECT_MOVE)
4086 error ("%qs requires %qs", "-mdirect-move", "-mvsx");
4087 rs6000_isa_flags &= ~OPTION_MASK_DIRECT_MOVE;
4088 }
4089
4090 if (TARGET_P8_VECTOR && !TARGET_ALTIVEC)
4091 {
4092 if (rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR)
4093 error ("%qs requires %qs", "-mpower8-vector", "-maltivec");
4094 rs6000_isa_flags &= ~OPTION_MASK_P8_VECTOR;
4095 }
4096
4097 if (TARGET_P8_VECTOR && !TARGET_VSX)
4098 {
4099 if ((rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR)
4100 && (rs6000_isa_flags_explicit & OPTION_MASK_VSX))
4101 error ("%qs requires %qs", "-mpower8-vector", "-mvsx");
4102 else if ((rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR) == 0)
4103 {
4104 rs6000_isa_flags &= ~OPTION_MASK_P8_VECTOR;
4105 if (rs6000_isa_flags_explicit & OPTION_MASK_VSX)
4106 rs6000_isa_flags_explicit |= OPTION_MASK_P8_VECTOR;
4107 }
4108 else
4109 {
4110 /* OPTION_MASK_P8_VECTOR is explicit, and OPTION_MASK_VSX is
4111 not explicit. */
4112 rs6000_isa_flags |= OPTION_MASK_VSX;
4113 rs6000_isa_flags_explicit |= OPTION_MASK_VSX;
4114 }
4115 }
4116
4117 if (TARGET_DFP && !TARGET_HARD_FLOAT)
4118 {
4119 if (rs6000_isa_flags_explicit & OPTION_MASK_DFP)
4120 error ("%qs requires %qs", "-mhard-dfp", "-mhard-float");
4121 rs6000_isa_flags &= ~OPTION_MASK_DFP;
4122 }
4123
4124 /* The quad memory instructions only works in 64-bit mode. In 32-bit mode,
4125 silently turn off quad memory mode. */
4126 if ((TARGET_QUAD_MEMORY || TARGET_QUAD_MEMORY_ATOMIC) && !TARGET_POWERPC64)
4127 {
4128 if ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY) != 0)
4129 warning (0, N_("-mquad-memory requires 64-bit mode"));
4130
4131 if ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY_ATOMIC) != 0)
4132 warning (0, N_("-mquad-memory-atomic requires 64-bit mode"));
4133
4134 rs6000_isa_flags &= ~(OPTION_MASK_QUAD_MEMORY
4135 | OPTION_MASK_QUAD_MEMORY_ATOMIC);
4136 }
4137
4138 /* Non-atomic quad memory load/store are disabled for little endian, since
4139 the words are reversed, but atomic operations can still be done by
4140 swapping the words. */
4141 if (TARGET_QUAD_MEMORY && !WORDS_BIG_ENDIAN)
4142 {
4143 if ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY) != 0)
4144 warning (0, N_("-mquad-memory is not available in little endian "
4145 "mode"));
4146
4147 rs6000_isa_flags &= ~OPTION_MASK_QUAD_MEMORY;
4148 }
4149
4150 /* Assume if the user asked for normal quad memory instructions, they want
4151 the atomic versions as well, unless they explicity told us not to use quad
4152 word atomic instructions. */
4153 if (TARGET_QUAD_MEMORY
4154 && !TARGET_QUAD_MEMORY_ATOMIC
4155 && ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY_ATOMIC) == 0))
4156 rs6000_isa_flags |= OPTION_MASK_QUAD_MEMORY_ATOMIC;
4157
4158 /* If we can shrink-wrap the TOC register save separately, then use
4159 -msave-toc-indirect unless explicitly disabled. */
4160 if ((rs6000_isa_flags_explicit & OPTION_MASK_SAVE_TOC_INDIRECT) == 0
4161 && flag_shrink_wrap_separate
4162 && optimize_function_for_speed_p (cfun))
4163 rs6000_isa_flags |= OPTION_MASK_SAVE_TOC_INDIRECT;
4164
4165 /* Enable power8 fusion if we are tuning for power8, even if we aren't
4166 generating power8 instructions. */
4167 if (!(rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION))
4168 rs6000_isa_flags |= (processor_target_table[tune_index].target_enable
4169 & OPTION_MASK_P8_FUSION);
4170
4171 /* Setting additional fusion flags turns on base fusion. */
4172 if (!TARGET_P8_FUSION && TARGET_P8_FUSION_SIGN)
4173 {
4174 if (rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION)
4175 {
4176 if (TARGET_P8_FUSION_SIGN)
4177 error ("%qs requires %qs", "-mpower8-fusion-sign",
4178 "-mpower8-fusion");
4179
4180 rs6000_isa_flags &= ~OPTION_MASK_P8_FUSION;
4181 }
4182 else
4183 rs6000_isa_flags |= OPTION_MASK_P8_FUSION;
4184 }
4185
4186 /* Power9 fusion is a superset over power8 fusion. */
4187 if (TARGET_P9_FUSION && !TARGET_P8_FUSION)
4188 {
4189 if (rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION)
4190 {
4191 /* We prefer to not mention undocumented options in
4192 error messages. However, if users have managed to select
4193 power9-fusion without selecting power8-fusion, they
4194 already know about undocumented flags. */
4195 error ("%qs requires %qs", "-mpower9-fusion", "-mpower8-fusion");
4196 rs6000_isa_flags &= ~OPTION_MASK_P9_FUSION;
4197 }
4198 else
4199 rs6000_isa_flags |= OPTION_MASK_P8_FUSION;
4200 }
4201
4202 /* Enable power9 fusion if we are tuning for power9, even if we aren't
4203 generating power9 instructions. */
4204 if (!(rs6000_isa_flags_explicit & OPTION_MASK_P9_FUSION))
4205 rs6000_isa_flags |= (processor_target_table[tune_index].target_enable
4206 & OPTION_MASK_P9_FUSION);
4207
4208 /* Power8 does not fuse sign extended loads with the addis. If we are
4209 optimizing at high levels for speed, convert a sign extended load into a
4210 zero extending load, and an explicit sign extension. */
4211 if (TARGET_P8_FUSION
4212 && !(rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION_SIGN)
4213 && optimize_function_for_speed_p (cfun)
4214 && optimize >= 3)
4215 rs6000_isa_flags |= OPTION_MASK_P8_FUSION_SIGN;
4216
4217 /* ISA 3.0 vector instructions include ISA 2.07. */
4218 if (TARGET_P9_VECTOR && !TARGET_P8_VECTOR)
4219 {
4220 /* We prefer to not mention undocumented options in
4221 error messages. However, if users have managed to select
4222 power9-vector without selecting power8-vector, they
4223 already know about undocumented flags. */
4224 if ((rs6000_isa_flags_explicit & OPTION_MASK_P9_VECTOR) &&
4225 (rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR))
4226 error ("%qs requires %qs", "-mpower9-vector", "-mpower8-vector");
4227 else if ((rs6000_isa_flags_explicit & OPTION_MASK_P9_VECTOR) == 0)
4228 {
4229 rs6000_isa_flags &= ~OPTION_MASK_P9_VECTOR;
4230 if (rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR)
4231 rs6000_isa_flags_explicit |= OPTION_MASK_P9_VECTOR;
4232 }
4233 else
4234 {
4235 /* OPTION_MASK_P9_VECTOR is explicit and
4236 OPTION_MASK_P8_VECTOR is not explicit. */
4237 rs6000_isa_flags |= OPTION_MASK_P8_VECTOR;
4238 rs6000_isa_flags_explicit |= OPTION_MASK_P8_VECTOR;
4239 }
4240 }
4241
4242 /* Set -mallow-movmisalign to explicitly on if we have full ISA 2.07
4243 support. If we only have ISA 2.06 support, and the user did not specify
4244 the switch, leave it set to -1 so the movmisalign patterns are enabled,
4245 but we don't enable the full vectorization support */
4246 if (TARGET_ALLOW_MOVMISALIGN == -1 && TARGET_P8_VECTOR && TARGET_DIRECT_MOVE)
4247 TARGET_ALLOW_MOVMISALIGN = 1;
4248
4249 else if (TARGET_ALLOW_MOVMISALIGN && !TARGET_VSX)
4250 {
4251 if (TARGET_ALLOW_MOVMISALIGN > 0
4252 && global_options_set.x_TARGET_ALLOW_MOVMISALIGN)
4253 error ("%qs requires %qs", "-mallow-movmisalign", "-mvsx");
4254
4255 TARGET_ALLOW_MOVMISALIGN = 0;
4256 }
4257
4258 /* Determine when unaligned vector accesses are permitted, and when
4259 they are preferred over masked Altivec loads. Note that if
4260 TARGET_ALLOW_MOVMISALIGN has been disabled by the user, then
4261 TARGET_EFFICIENT_UNALIGNED_VSX must be as well. The converse is
4262 not true. */
4263 if (TARGET_EFFICIENT_UNALIGNED_VSX)
4264 {
4265 if (!TARGET_VSX)
4266 {
4267 if (rs6000_isa_flags_explicit & OPTION_MASK_EFFICIENT_UNALIGNED_VSX)
4268 error ("%qs requires %qs", "-mefficient-unaligned-vsx", "-mvsx");
4269
4270 rs6000_isa_flags &= ~OPTION_MASK_EFFICIENT_UNALIGNED_VSX;
4271 }
4272
4273 else if (!TARGET_ALLOW_MOVMISALIGN)
4274 {
4275 if (rs6000_isa_flags_explicit & OPTION_MASK_EFFICIENT_UNALIGNED_VSX)
4276 error ("%qs requires %qs", "-munefficient-unaligned-vsx",
4277 "-mallow-movmisalign");
4278
4279 rs6000_isa_flags &= ~OPTION_MASK_EFFICIENT_UNALIGNED_VSX;
4280 }
4281 }
4282
4283 /* Use long double size to select the appropriate long double. We use
4284 TYPE_PRECISION to differentiate the 3 different long double types. We map
4285 128 into the precision used for TFmode. */
4286 int default_long_double_size = (RS6000_DEFAULT_LONG_DOUBLE_SIZE == 64
4287 ? 64
4288 : FLOAT_PRECISION_TFmode);
4289
4290 /* Set long double size before the IEEE 128-bit tests. */
4291 if (!global_options_set.x_rs6000_long_double_type_size)
4292 {
4293 if (main_target_opt != NULL
4294 && (main_target_opt->x_rs6000_long_double_type_size
4295 != default_long_double_size))
4296 error ("target attribute or pragma changes long double size");
4297 else
4298 rs6000_long_double_type_size = default_long_double_size;
4299 }
4300 else if (rs6000_long_double_type_size == 128)
4301 rs6000_long_double_type_size = FLOAT_PRECISION_TFmode;
4302
4303 /* Set -mabi=ieeelongdouble on some old targets. In the future, power server
4304 systems will also set long double to be IEEE 128-bit. AIX and Darwin
4305 explicitly redefine TARGET_IEEEQUAD and TARGET_IEEEQUAD_DEFAULT to 0, so
4306 those systems will not pick up this default. Warn if the user changes the
4307 default unless -Wno-psabi. */
4308 if (!global_options_set.x_rs6000_ieeequad)
4309 rs6000_ieeequad = TARGET_IEEEQUAD_DEFAULT;
4310
4311 else if (rs6000_ieeequad != TARGET_IEEEQUAD_DEFAULT && TARGET_LONG_DOUBLE_128)
4312 {
4313 static bool warned_change_long_double;
4314 if (!warned_change_long_double)
4315 {
4316 warned_change_long_double = true;
4317 if (TARGET_IEEEQUAD)
4318 warning (OPT_Wpsabi, "Using IEEE extended precision long double");
4319 else
4320 warning (OPT_Wpsabi, "Using IBM extended precision long double");
4321 }
4322 }
4323
4324 /* Enable the default support for IEEE 128-bit floating point on Linux VSX
4325 sytems. In GCC 7, we would enable the the IEEE 128-bit floating point
4326 infrastructure (-mfloat128-type) but not enable the actual __float128 type
4327 unless the user used the explicit -mfloat128. In GCC 8, we enable both
4328 the keyword as well as the type. */
4329 TARGET_FLOAT128_TYPE = TARGET_FLOAT128_ENABLE_TYPE && TARGET_VSX;
4330
4331 /* IEEE 128-bit floating point requires VSX support. */
4332 if (TARGET_FLOAT128_KEYWORD)
4333 {
4334 if (!TARGET_VSX)
4335 {
4336 if ((rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_KEYWORD) != 0)
4337 error ("%qs requires VSX support", "-mfloat128");
4338
4339 TARGET_FLOAT128_TYPE = 0;
4340 rs6000_isa_flags &= ~(OPTION_MASK_FLOAT128_KEYWORD
4341 | OPTION_MASK_FLOAT128_HW);
4342 }
4343 else if (!TARGET_FLOAT128_TYPE)
4344 {
4345 TARGET_FLOAT128_TYPE = 1;
4346 warning (0, "The -mfloat128 option may not be fully supported");
4347 }
4348 }
4349
4350 /* Enable the __float128 keyword under Linux by default. */
4351 if (TARGET_FLOAT128_TYPE && !TARGET_FLOAT128_KEYWORD
4352 && (rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_KEYWORD) == 0)
4353 rs6000_isa_flags |= OPTION_MASK_FLOAT128_KEYWORD;
4354
4355 /* If we have are supporting the float128 type and full ISA 3.0 support,
4356 enable -mfloat128-hardware by default. However, don't enable the
4357 __float128 keyword if it was explicitly turned off. 64-bit mode is needed
4358 because sometimes the compiler wants to put things in an integer
4359 container, and if we don't have __int128 support, it is impossible. */
4360 if (TARGET_FLOAT128_TYPE && !TARGET_FLOAT128_HW && TARGET_64BIT
4361 && (rs6000_isa_flags & ISA_3_0_MASKS_IEEE) == ISA_3_0_MASKS_IEEE
4362 && !(rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_HW))
4363 rs6000_isa_flags |= OPTION_MASK_FLOAT128_HW;
4364
4365 if (TARGET_FLOAT128_HW
4366 && (rs6000_isa_flags & ISA_3_0_MASKS_IEEE) != ISA_3_0_MASKS_IEEE)
4367 {
4368 if ((rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_HW) != 0)
4369 error ("%qs requires full ISA 3.0 support", "-mfloat128-hardware");
4370
4371 rs6000_isa_flags &= ~OPTION_MASK_FLOAT128_HW;
4372 }
4373
4374 if (TARGET_FLOAT128_HW && !TARGET_64BIT)
4375 {
4376 if ((rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_HW) != 0)
4377 error ("%qs requires %qs", "-mfloat128-hardware", "-m64");
4378
4379 rs6000_isa_flags &= ~OPTION_MASK_FLOAT128_HW;
4380 }
4381
4382 /* Print the options after updating the defaults. */
4383 if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
4384 rs6000_print_isa_options (stderr, 0, "after defaults", rs6000_isa_flags);
4385
4386 /* E500mc does "better" if we inline more aggressively. Respect the
4387 user's opinion, though. */
4388 if (rs6000_block_move_inline_limit == 0
4389 && (rs6000_tune == PROCESSOR_PPCE500MC
4390 || rs6000_tune == PROCESSOR_PPCE500MC64
4391 || rs6000_tune == PROCESSOR_PPCE5500
4392 || rs6000_tune == PROCESSOR_PPCE6500))
4393 rs6000_block_move_inline_limit = 128;
4394
4395 /* store_one_arg depends on expand_block_move to handle at least the
4396 size of reg_parm_stack_space. */
4397 if (rs6000_block_move_inline_limit < (TARGET_POWERPC64 ? 64 : 32))
4398 rs6000_block_move_inline_limit = (TARGET_POWERPC64 ? 64 : 32);
4399
4400 if (global_init_p)
4401 {
4402 /* If the appropriate debug option is enabled, replace the target hooks
4403 with debug versions that call the real version and then prints
4404 debugging information. */
4405 if (TARGET_DEBUG_COST)
4406 {
4407 targetm.rtx_costs = rs6000_debug_rtx_costs;
4408 targetm.address_cost = rs6000_debug_address_cost;
4409 targetm.sched.adjust_cost = rs6000_debug_adjust_cost;
4410 }
4411
4412 if (TARGET_DEBUG_ADDR)
4413 {
4414 targetm.legitimate_address_p = rs6000_debug_legitimate_address_p;
4415 targetm.legitimize_address = rs6000_debug_legitimize_address;
4416 rs6000_secondary_reload_class_ptr
4417 = rs6000_debug_secondary_reload_class;
4418 targetm.secondary_memory_needed
4419 = rs6000_debug_secondary_memory_needed;
4420 targetm.can_change_mode_class
4421 = rs6000_debug_can_change_mode_class;
4422 rs6000_preferred_reload_class_ptr
4423 = rs6000_debug_preferred_reload_class;
4424 rs6000_legitimize_reload_address_ptr
4425 = rs6000_debug_legitimize_reload_address;
4426 rs6000_mode_dependent_address_ptr
4427 = rs6000_debug_mode_dependent_address;
4428 }
4429
4430 if (rs6000_veclibabi_name)
4431 {
4432 if (strcmp (rs6000_veclibabi_name, "mass") == 0)
4433 rs6000_veclib_handler = rs6000_builtin_vectorized_libmass;
4434 else
4435 {
4436 error ("unknown vectorization library ABI type (%qs) for "
4437 "%qs switch", rs6000_veclibabi_name, "-mveclibabi=");
4438 ret = false;
4439 }
4440 }
4441 }
4442
4443 /* Disable VSX and Altivec silently if the user switched cpus to power7 in a
4444 target attribute or pragma which automatically enables both options,
4445 unless the altivec ABI was set. This is set by default for 64-bit, but
4446 not for 32-bit. */
4447 if (main_target_opt != NULL && !main_target_opt->x_rs6000_altivec_abi)
4448 {
4449 TARGET_FLOAT128_TYPE = 0;
4450 rs6000_isa_flags &= ~((OPTION_MASK_VSX | OPTION_MASK_ALTIVEC
4451 | OPTION_MASK_FLOAT128_KEYWORD)
4452 & ~rs6000_isa_flags_explicit);
4453 }
4454
4455 /* Enable Altivec ABI for AIX -maltivec. */
4456 if (TARGET_XCOFF && (TARGET_ALTIVEC || TARGET_VSX))
4457 {
4458 if (main_target_opt != NULL && !main_target_opt->x_rs6000_altivec_abi)
4459 error ("target attribute or pragma changes AltiVec ABI");
4460 else
4461 rs6000_altivec_abi = 1;
4462 }
4463
4464 /* The AltiVec ABI is the default for PowerPC-64 GNU/Linux. For
4465 PowerPC-32 GNU/Linux, -maltivec implies the AltiVec ABI. It can
4466 be explicitly overridden in either case. */
4467 if (TARGET_ELF)
4468 {
4469 if (!global_options_set.x_rs6000_altivec_abi
4470 && (TARGET_64BIT || TARGET_ALTIVEC || TARGET_VSX))
4471 {
4472 if (main_target_opt != NULL &&
4473 !main_target_opt->x_rs6000_altivec_abi)
4474 error ("target attribute or pragma changes AltiVec ABI");
4475 else
4476 rs6000_altivec_abi = 1;
4477 }
4478 }
4479
4480 /* Set the Darwin64 ABI as default for 64-bit Darwin.
4481 So far, the only darwin64 targets are also MACH-O. */
4482 if (TARGET_MACHO
4483 && DEFAULT_ABI == ABI_DARWIN
4484 && TARGET_64BIT)
4485 {
4486 if (main_target_opt != NULL && !main_target_opt->x_rs6000_darwin64_abi)
4487 error ("target attribute or pragma changes darwin64 ABI");
4488 else
4489 {
4490 rs6000_darwin64_abi = 1;
4491 /* Default to natural alignment, for better performance. */
4492 rs6000_alignment_flags = MASK_ALIGN_NATURAL;
4493 }
4494 }
4495
4496 /* Place FP constants in the constant pool instead of TOC
4497 if section anchors enabled. */
4498 if (flag_section_anchors
4499 && !global_options_set.x_TARGET_NO_FP_IN_TOC)
4500 TARGET_NO_FP_IN_TOC = 1;
4501
4502 if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
4503 rs6000_print_isa_options (stderr, 0, "before subtarget", rs6000_isa_flags);
4504
4505 #ifdef SUBTARGET_OVERRIDE_OPTIONS
4506 SUBTARGET_OVERRIDE_OPTIONS;
4507 #endif
4508 #ifdef SUBSUBTARGET_OVERRIDE_OPTIONS
4509 SUBSUBTARGET_OVERRIDE_OPTIONS;
4510 #endif
4511 #ifdef SUB3TARGET_OVERRIDE_OPTIONS
4512 SUB3TARGET_OVERRIDE_OPTIONS;
4513 #endif
4514
4515 if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
4516 rs6000_print_isa_options (stderr, 0, "after subtarget", rs6000_isa_flags);
4517
4518 rs6000_always_hint = (rs6000_tune != PROCESSOR_POWER4
4519 && rs6000_tune != PROCESSOR_POWER5
4520 && rs6000_tune != PROCESSOR_POWER6
4521 && rs6000_tune != PROCESSOR_POWER7
4522 && rs6000_tune != PROCESSOR_POWER8
4523 && rs6000_tune != PROCESSOR_POWER9
4524 && rs6000_tune != PROCESSOR_PPCA2
4525 && rs6000_tune != PROCESSOR_CELL
4526 && rs6000_tune != PROCESSOR_PPC476);
4527 rs6000_sched_groups = (rs6000_tune == PROCESSOR_POWER4
4528 || rs6000_tune == PROCESSOR_POWER5
4529 || rs6000_tune == PROCESSOR_POWER7
4530 || rs6000_tune == PROCESSOR_POWER8);
4531 rs6000_align_branch_targets = (rs6000_tune == PROCESSOR_POWER4
4532 || rs6000_tune == PROCESSOR_POWER5
4533 || rs6000_tune == PROCESSOR_POWER6
4534 || rs6000_tune == PROCESSOR_POWER7
4535 || rs6000_tune == PROCESSOR_POWER8
4536 || rs6000_tune == PROCESSOR_POWER9
4537 || rs6000_tune == PROCESSOR_PPCE500MC
4538 || rs6000_tune == PROCESSOR_PPCE500MC64
4539 || rs6000_tune == PROCESSOR_PPCE5500
4540 || rs6000_tune == PROCESSOR_PPCE6500);
4541
4542 /* Allow debug switches to override the above settings. These are set to -1
4543 in rs6000.opt to indicate the user hasn't directly set the switch. */
4544 if (TARGET_ALWAYS_HINT >= 0)
4545 rs6000_always_hint = TARGET_ALWAYS_HINT;
4546
4547 if (TARGET_SCHED_GROUPS >= 0)
4548 rs6000_sched_groups = TARGET_SCHED_GROUPS;
4549
4550 if (TARGET_ALIGN_BRANCH_TARGETS >= 0)
4551 rs6000_align_branch_targets = TARGET_ALIGN_BRANCH_TARGETS;
4552
4553 rs6000_sched_restricted_insns_priority
4554 = (rs6000_sched_groups ? 1 : 0);
4555
4556 /* Handle -msched-costly-dep option. */
4557 rs6000_sched_costly_dep
4558 = (rs6000_sched_groups ? true_store_to_load_dep_costly : no_dep_costly);
4559
4560 if (rs6000_sched_costly_dep_str)
4561 {
4562 if (! strcmp (rs6000_sched_costly_dep_str, "no"))
4563 rs6000_sched_costly_dep = no_dep_costly;
4564 else if (! strcmp (rs6000_sched_costly_dep_str, "all"))
4565 rs6000_sched_costly_dep = all_deps_costly;
4566 else if (! strcmp (rs6000_sched_costly_dep_str, "true_store_to_load"))
4567 rs6000_sched_costly_dep = true_store_to_load_dep_costly;
4568 else if (! strcmp (rs6000_sched_costly_dep_str, "store_to_load"))
4569 rs6000_sched_costly_dep = store_to_load_dep_costly;
4570 else
4571 rs6000_sched_costly_dep = ((enum rs6000_dependence_cost)
4572 atoi (rs6000_sched_costly_dep_str));
4573 }
4574
4575 /* Handle -minsert-sched-nops option. */
4576 rs6000_sched_insert_nops
4577 = (rs6000_sched_groups ? sched_finish_regroup_exact : sched_finish_none);
4578
4579 if (rs6000_sched_insert_nops_str)
4580 {
4581 if (! strcmp (rs6000_sched_insert_nops_str, "no"))
4582 rs6000_sched_insert_nops = sched_finish_none;
4583 else if (! strcmp (rs6000_sched_insert_nops_str, "pad"))
4584 rs6000_sched_insert_nops = sched_finish_pad_groups;
4585 else if (! strcmp (rs6000_sched_insert_nops_str, "regroup_exact"))
4586 rs6000_sched_insert_nops = sched_finish_regroup_exact;
4587 else
4588 rs6000_sched_insert_nops = ((enum rs6000_nop_insertion)
4589 atoi (rs6000_sched_insert_nops_str));
4590 }
4591
4592 /* Handle stack protector */
4593 if (!global_options_set.x_rs6000_stack_protector_guard)
4594 #ifdef TARGET_THREAD_SSP_OFFSET
4595 rs6000_stack_protector_guard = SSP_TLS;
4596 #else
4597 rs6000_stack_protector_guard = SSP_GLOBAL;
4598 #endif
4599
4600 #ifdef TARGET_THREAD_SSP_OFFSET
4601 rs6000_stack_protector_guard_offset = TARGET_THREAD_SSP_OFFSET;
4602 rs6000_stack_protector_guard_reg = TARGET_64BIT ? 13 : 2;
4603 #endif
4604
4605 if (global_options_set.x_rs6000_stack_protector_guard_offset_str)
4606 {
4607 char *endp;
4608 const char *str = rs6000_stack_protector_guard_offset_str;
4609
4610 errno = 0;
4611 long offset = strtol (str, &endp, 0);
4612 if (!*str || *endp || errno)
4613 error ("%qs is not a valid number in %qs", str,
4614 "-mstack-protector-guard-offset=");
4615
4616 if (!IN_RANGE (offset, -0x8000, 0x7fff)
4617 || (TARGET_64BIT && (offset & 3)))
4618 error ("%qs is not a valid offset in %qs", str,
4619 "-mstack-protector-guard-offset=");
4620
4621 rs6000_stack_protector_guard_offset = offset;
4622 }
4623
4624 if (global_options_set.x_rs6000_stack_protector_guard_reg_str)
4625 {
4626 const char *str = rs6000_stack_protector_guard_reg_str;
4627 int reg = decode_reg_name (str);
4628
4629 if (!IN_RANGE (reg, 1, 31))
4630 error ("%qs is not a valid base register in %qs", str,
4631 "-mstack-protector-guard-reg=");
4632
4633 rs6000_stack_protector_guard_reg = reg;
4634 }
4635
4636 if (rs6000_stack_protector_guard == SSP_TLS
4637 && !IN_RANGE (rs6000_stack_protector_guard_reg, 1, 31))
4638 error ("%qs needs a valid base register", "-mstack-protector-guard=tls");
4639
4640 if (global_init_p)
4641 {
4642 #ifdef TARGET_REGNAMES
4643 /* If the user desires alternate register names, copy in the
4644 alternate names now. */
4645 if (TARGET_REGNAMES)
4646 memcpy (rs6000_reg_names, alt_reg_names, sizeof (rs6000_reg_names));
4647 #endif
4648
4649 /* Set aix_struct_return last, after the ABI is determined.
4650 If -maix-struct-return or -msvr4-struct-return was explicitly
4651 used, don't override with the ABI default. */
4652 if (!global_options_set.x_aix_struct_return)
4653 aix_struct_return = (DEFAULT_ABI != ABI_V4 || DRAFT_V4_STRUCT_RET);
4654
4655 #if 0
4656 /* IBM XL compiler defaults to unsigned bitfields. */
4657 if (TARGET_XL_COMPAT)
4658 flag_signed_bitfields = 0;
4659 #endif
4660
4661 if (TARGET_LONG_DOUBLE_128 && !TARGET_IEEEQUAD)
4662 REAL_MODE_FORMAT (TFmode) = &ibm_extended_format;
4663
4664 ASM_GENERATE_INTERNAL_LABEL (toc_label_name, "LCTOC", 1);
4665
4666 /* We can only guarantee the availability of DI pseudo-ops when
4667 assembling for 64-bit targets. */
4668 if (!TARGET_64BIT)
4669 {
4670 targetm.asm_out.aligned_op.di = NULL;
4671 targetm.asm_out.unaligned_op.di = NULL;
4672 }
4673
4674
4675 /* Set branch target alignment, if not optimizing for size. */
4676 if (!optimize_size)
4677 {
4678 /* Cell wants to be aligned 8byte for dual issue. Titan wants to be
4679 aligned 8byte to avoid misprediction by the branch predictor. */
4680 if (rs6000_tune == PROCESSOR_TITAN
4681 || rs6000_tune == PROCESSOR_CELL)
4682 {
4683 if (flag_align_functions && !str_align_functions)
4684 str_align_functions = "8";
4685 if (flag_align_jumps && !str_align_jumps)
4686 str_align_jumps = "8";
4687 if (flag_align_loops && !str_align_loops)
4688 str_align_loops = "8";
4689 }
4690 if (rs6000_align_branch_targets)
4691 {
4692 if (flag_align_functions && !str_align_functions)
4693 str_align_functions = "16";
4694 if (flag_align_jumps && !str_align_jumps)
4695 str_align_jumps = "16";
4696 if (flag_align_loops && !str_align_loops)
4697 {
4698 can_override_loop_align = 1;
4699 str_align_loops = "16";
4700 }
4701 }
4702
4703 if (flag_align_jumps && !str_align_jumps)
4704 str_align_jumps = "16";
4705 if (flag_align_loops && !str_align_loops)
4706 str_align_loops = "16";
4707 }
4708
4709 /* Arrange to save and restore machine status around nested functions. */
4710 init_machine_status = rs6000_init_machine_status;
4711
4712 /* We should always be splitting complex arguments, but we can't break
4713 Linux and Darwin ABIs at the moment. For now, only AIX is fixed. */
4714 if (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN)
4715 targetm.calls.split_complex_arg = NULL;
4716
4717 /* The AIX and ELFv1 ABIs define standard function descriptors. */
4718 if (DEFAULT_ABI == ABI_AIX)
4719 targetm.calls.custom_function_descriptors = 0;
4720 }
4721
4722 /* Initialize rs6000_cost with the appropriate target costs. */
4723 if (optimize_size)
4724 rs6000_cost = TARGET_POWERPC64 ? &size64_cost : &size32_cost;
4725 else
4726 switch (rs6000_tune)
4727 {
4728 case PROCESSOR_RS64A:
4729 rs6000_cost = &rs64a_cost;
4730 break;
4731
4732 case PROCESSOR_MPCCORE:
4733 rs6000_cost = &mpccore_cost;
4734 break;
4735
4736 case PROCESSOR_PPC403:
4737 rs6000_cost = &ppc403_cost;
4738 break;
4739
4740 case PROCESSOR_PPC405:
4741 rs6000_cost = &ppc405_cost;
4742 break;
4743
4744 case PROCESSOR_PPC440:
4745 rs6000_cost = &ppc440_cost;
4746 break;
4747
4748 case PROCESSOR_PPC476:
4749 rs6000_cost = &ppc476_cost;
4750 break;
4751
4752 case PROCESSOR_PPC601:
4753 rs6000_cost = &ppc601_cost;
4754 break;
4755
4756 case PROCESSOR_PPC603:
4757 rs6000_cost = &ppc603_cost;
4758 break;
4759
4760 case PROCESSOR_PPC604:
4761 rs6000_cost = &ppc604_cost;
4762 break;
4763
4764 case PROCESSOR_PPC604e:
4765 rs6000_cost = &ppc604e_cost;
4766 break;
4767
4768 case PROCESSOR_PPC620:
4769 rs6000_cost = &ppc620_cost;
4770 break;
4771
4772 case PROCESSOR_PPC630:
4773 rs6000_cost = &ppc630_cost;
4774 break;
4775
4776 case PROCESSOR_CELL:
4777 rs6000_cost = &ppccell_cost;
4778 break;
4779
4780 case PROCESSOR_PPC750:
4781 case PROCESSOR_PPC7400:
4782 rs6000_cost = &ppc750_cost;
4783 break;
4784
4785 case PROCESSOR_PPC7450:
4786 rs6000_cost = &ppc7450_cost;
4787 break;
4788
4789 case PROCESSOR_PPC8540:
4790 case PROCESSOR_PPC8548:
4791 rs6000_cost = &ppc8540_cost;
4792 break;
4793
4794 case PROCESSOR_PPCE300C2:
4795 case PROCESSOR_PPCE300C3:
4796 rs6000_cost = &ppce300c2c3_cost;
4797 break;
4798
4799 case PROCESSOR_PPCE500MC:
4800 rs6000_cost = &ppce500mc_cost;
4801 break;
4802
4803 case PROCESSOR_PPCE500MC64:
4804 rs6000_cost = &ppce500mc64_cost;
4805 break;
4806
4807 case PROCESSOR_PPCE5500:
4808 rs6000_cost = &ppce5500_cost;
4809 break;
4810
4811 case PROCESSOR_PPCE6500:
4812 rs6000_cost = &ppce6500_cost;
4813 break;
4814
4815 case PROCESSOR_TITAN:
4816 rs6000_cost = &titan_cost;
4817 break;
4818
4819 case PROCESSOR_POWER4:
4820 case PROCESSOR_POWER5:
4821 rs6000_cost = &power4_cost;
4822 break;
4823
4824 case PROCESSOR_POWER6:
4825 rs6000_cost = &power6_cost;
4826 break;
4827
4828 case PROCESSOR_POWER7:
4829 rs6000_cost = &power7_cost;
4830 break;
4831
4832 case PROCESSOR_POWER8:
4833 rs6000_cost = &power8_cost;
4834 break;
4835
4836 case PROCESSOR_POWER9:
4837 rs6000_cost = &power9_cost;
4838 break;
4839
4840 case PROCESSOR_PPCA2:
4841 rs6000_cost = &ppca2_cost;
4842 break;
4843
4844 default:
4845 gcc_unreachable ();
4846 }
4847
4848 if (global_init_p)
4849 {
4850 maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES,
4851 rs6000_cost->simultaneous_prefetches,
4852 global_options.x_param_values,
4853 global_options_set.x_param_values);
4854 maybe_set_param_value (PARAM_L1_CACHE_SIZE, rs6000_cost->l1_cache_size,
4855 global_options.x_param_values,
4856 global_options_set.x_param_values);
4857 maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE,
4858 rs6000_cost->cache_line_size,
4859 global_options.x_param_values,
4860 global_options_set.x_param_values);
4861 maybe_set_param_value (PARAM_L2_CACHE_SIZE, rs6000_cost->l2_cache_size,
4862 global_options.x_param_values,
4863 global_options_set.x_param_values);
4864
4865 /* Increase loop peeling limits based on performance analysis. */
4866 maybe_set_param_value (PARAM_MAX_PEELED_INSNS, 400,
4867 global_options.x_param_values,
4868 global_options_set.x_param_values);
4869 maybe_set_param_value (PARAM_MAX_COMPLETELY_PEELED_INSNS, 400,
4870 global_options.x_param_values,
4871 global_options_set.x_param_values);
4872
4873 /* Use the 'model' -fsched-pressure algorithm by default. */
4874 maybe_set_param_value (PARAM_SCHED_PRESSURE_ALGORITHM,
4875 SCHED_PRESSURE_MODEL,
4876 global_options.x_param_values,
4877 global_options_set.x_param_values);
4878
4879 /* If using typedef char *va_list, signal that
4880 __builtin_va_start (&ap, 0) can be optimized to
4881 ap = __builtin_next_arg (0). */
4882 if (DEFAULT_ABI != ABI_V4)
4883 targetm.expand_builtin_va_start = NULL;
4884 }
4885
4886 /* If not explicitly specified via option, decide whether to generate indexed
4887 load/store instructions. A value of -1 indicates that the
4888 initial value of this variable has not been overwritten. During
4889 compilation, TARGET_AVOID_XFORM is either 0 or 1. */
4890 if (TARGET_AVOID_XFORM == -1)
4891 /* Avoid indexed addressing when targeting Power6 in order to avoid the
4892 DERAT mispredict penalty. However the LVE and STVE altivec instructions
4893 need indexed accesses and the type used is the scalar type of the element
4894 being loaded or stored. */
4895 TARGET_AVOID_XFORM = (rs6000_tune == PROCESSOR_POWER6 && TARGET_CMPB
4896 && !TARGET_ALTIVEC);
4897
4898 /* Set the -mrecip options. */
4899 if (rs6000_recip_name)
4900 {
4901 char *p = ASTRDUP (rs6000_recip_name);
4902 char *q;
4903 unsigned int mask, i;
4904 bool invert;
4905
4906 while ((q = strtok (p, ",")) != NULL)
4907 {
4908 p = NULL;
4909 if (*q == '!')
4910 {
4911 invert = true;
4912 q++;
4913 }
4914 else
4915 invert = false;
4916
4917 if (!strcmp (q, "default"))
4918 mask = ((TARGET_RECIP_PRECISION)
4919 ? RECIP_HIGH_PRECISION : RECIP_LOW_PRECISION);
4920 else
4921 {
4922 for (i = 0; i < ARRAY_SIZE (recip_options); i++)
4923 if (!strcmp (q, recip_options[i].string))
4924 {
4925 mask = recip_options[i].mask;
4926 break;
4927 }
4928
4929 if (i == ARRAY_SIZE (recip_options))
4930 {
4931 error ("unknown option for %<%s=%s%>", "-mrecip", q);
4932 invert = false;
4933 mask = 0;
4934 ret = false;
4935 }
4936 }
4937
4938 if (invert)
4939 rs6000_recip_control &= ~mask;
4940 else
4941 rs6000_recip_control |= mask;
4942 }
4943 }
4944
4945 /* Set the builtin mask of the various options used that could affect which
4946 builtins were used. In the past we used target_flags, but we've run out
4947 of bits, and some options are no longer in target_flags. */
4948 rs6000_builtin_mask = rs6000_builtin_mask_calculate ();
4949 if (TARGET_DEBUG_BUILTIN || TARGET_DEBUG_TARGET)
4950 rs6000_print_builtin_options (stderr, 0, "builtin mask",
4951 rs6000_builtin_mask);
4952
4953 /* Initialize all of the registers. */
4954 rs6000_init_hard_regno_mode_ok (global_init_p);
4955
4956 /* Save the initial options in case the user does function specific options */
4957 if (global_init_p)
4958 target_option_default_node = target_option_current_node
4959 = build_target_option_node (&global_options);
4960
4961 /* If not explicitly specified via option, decide whether to generate the
4962 extra blr's required to preserve the link stack on some cpus (eg, 476). */
4963 if (TARGET_LINK_STACK == -1)
4964 SET_TARGET_LINK_STACK (rs6000_tune == PROCESSOR_PPC476 && flag_pic);
4965
4966 /* Deprecate use of -mno-speculate-indirect-jumps. */
4967 if (!rs6000_speculate_indirect_jumps)
4968 warning (0, "%qs is deprecated and not recommended in any circumstances",
4969 "-mno-speculate-indirect-jumps");
4970
4971 return ret;
4972 }
4973
4974 /* Implement TARGET_OPTION_OVERRIDE. On the RS/6000 this is used to
4975 define the target cpu type. */
4976
4977 static void
4978 rs6000_option_override (void)
4979 {
4980 (void) rs6000_option_override_internal (true);
4981 }
4982
4983 \f
4984 /* Implement targetm.vectorize.builtin_mask_for_load. */
4985 static tree
4986 rs6000_builtin_mask_for_load (void)
4987 {
4988 /* Don't use lvsl/vperm for P8 and similarly efficient machines. */
4989 if ((TARGET_ALTIVEC && !TARGET_VSX)
4990 || (TARGET_VSX && !TARGET_EFFICIENT_UNALIGNED_VSX))
4991 return altivec_builtin_mask_for_load;
4992 else
4993 return 0;
4994 }
4995
4996 /* Implement LOOP_ALIGN. */
4997 align_flags
4998 rs6000_loop_align (rtx label)
4999 {
5000 basic_block bb;
5001 int ninsns;
5002
5003 /* Don't override loop alignment if -falign-loops was specified. */
5004 if (!can_override_loop_align)
5005 return align_loops;
5006
5007 bb = BLOCK_FOR_INSN (label);
5008 ninsns = num_loop_insns(bb->loop_father);
5009
5010 /* Align small loops to 32 bytes to fit in an icache sector, otherwise return default. */
5011 if (ninsns > 4 && ninsns <= 8
5012 && (rs6000_tune == PROCESSOR_POWER4
5013 || rs6000_tune == PROCESSOR_POWER5
5014 || rs6000_tune == PROCESSOR_POWER6
5015 || rs6000_tune == PROCESSOR_POWER7
5016 || rs6000_tune == PROCESSOR_POWER8))
5017 return align_flags (5);
5018 else
5019 return align_loops;
5020 }
5021
5022 /* Return true iff, data reference of TYPE can reach vector alignment (16)
5023 after applying N number of iterations. This routine does not determine
5024 how may iterations are required to reach desired alignment. */
5025
5026 static bool
5027 rs6000_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED, bool is_packed)
5028 {
5029 if (is_packed)
5030 return false;
5031
5032 if (TARGET_32BIT)
5033 {
5034 if (rs6000_alignment_flags == MASK_ALIGN_NATURAL)
5035 return true;
5036
5037 if (rs6000_alignment_flags == MASK_ALIGN_POWER)
5038 return true;
5039
5040 return false;
5041 }
5042 else
5043 {
5044 if (TARGET_MACHO)
5045 return false;
5046
5047 /* Assuming that all other types are naturally aligned. CHECKME! */
5048 return true;
5049 }
5050 }
5051
5052 /* Return true if the vector misalignment factor is supported by the
5053 target. */
5054 static bool
5055 rs6000_builtin_support_vector_misalignment (machine_mode mode,
5056 const_tree type,
5057 int misalignment,
5058 bool is_packed)
5059 {
5060 if (TARGET_VSX)
5061 {
5062 if (TARGET_EFFICIENT_UNALIGNED_VSX)
5063 return true;
5064
5065 /* Return if movmisalign pattern is not supported for this mode. */
5066 if (optab_handler (movmisalign_optab, mode) == CODE_FOR_nothing)
5067 return false;
5068
5069 if (misalignment == -1)
5070 {
5071 /* Misalignment factor is unknown at compile time but we know
5072 it's word aligned. */
5073 if (rs6000_vector_alignment_reachable (type, is_packed))
5074 {
5075 int element_size = TREE_INT_CST_LOW (TYPE_SIZE (type));
5076
5077 if (element_size == 64 || element_size == 32)
5078 return true;
5079 }
5080
5081 return false;
5082 }
5083
5084 /* VSX supports word-aligned vector. */
5085 if (misalignment % 4 == 0)
5086 return true;
5087 }
5088 return false;
5089 }
5090
5091 /* Implement targetm.vectorize.builtin_vectorization_cost. */
5092 static int
5093 rs6000_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
5094 tree vectype, int misalign)
5095 {
5096 unsigned elements;
5097 tree elem_type;
5098
5099 switch (type_of_cost)
5100 {
5101 case scalar_stmt:
5102 case scalar_load:
5103 case scalar_store:
5104 case vector_stmt:
5105 case vector_load:
5106 case vector_store:
5107 case vec_to_scalar:
5108 case scalar_to_vec:
5109 case cond_branch_not_taken:
5110 return 1;
5111
5112 case vec_perm:
5113 if (TARGET_VSX)
5114 return 3;
5115 else
5116 return 1;
5117
5118 case vec_promote_demote:
5119 if (TARGET_VSX)
5120 return 4;
5121 else
5122 return 1;
5123
5124 case cond_branch_taken:
5125 return 3;
5126
5127 case unaligned_load:
5128 case vector_gather_load:
5129 if (TARGET_EFFICIENT_UNALIGNED_VSX)
5130 return 1;
5131
5132 if (TARGET_VSX && TARGET_ALLOW_MOVMISALIGN)
5133 {
5134 elements = TYPE_VECTOR_SUBPARTS (vectype);
5135 if (elements == 2)
5136 /* Double word aligned. */
5137 return 2;
5138
5139 if (elements == 4)
5140 {
5141 switch (misalign)
5142 {
5143 case 8:
5144 /* Double word aligned. */
5145 return 2;
5146
5147 case -1:
5148 /* Unknown misalignment. */
5149 case 4:
5150 case 12:
5151 /* Word aligned. */
5152 return 22;
5153
5154 default:
5155 gcc_unreachable ();
5156 }
5157 }
5158 }
5159
5160 if (TARGET_ALTIVEC)
5161 /* Misaligned loads are not supported. */
5162 gcc_unreachable ();
5163
5164 return 2;
5165
5166 case unaligned_store:
5167 case vector_scatter_store:
5168 if (TARGET_EFFICIENT_UNALIGNED_VSX)
5169 return 1;
5170
5171 if (TARGET_VSX && TARGET_ALLOW_MOVMISALIGN)
5172 {
5173 elements = TYPE_VECTOR_SUBPARTS (vectype);
5174 if (elements == 2)
5175 /* Double word aligned. */
5176 return 2;
5177
5178 if (elements == 4)
5179 {
5180 switch (misalign)
5181 {
5182 case 8:
5183 /* Double word aligned. */
5184 return 2;
5185
5186 case -1:
5187 /* Unknown misalignment. */
5188 case 4:
5189 case 12:
5190 /* Word aligned. */
5191 return 23;
5192
5193 default:
5194 gcc_unreachable ();
5195 }
5196 }
5197 }
5198
5199 if (TARGET_ALTIVEC)
5200 /* Misaligned stores are not supported. */
5201 gcc_unreachable ();
5202
5203 return 2;
5204
5205 case vec_construct:
5206 /* This is a rough approximation assuming non-constant elements
5207 constructed into a vector via element insertion. FIXME:
5208 vec_construct is not granular enough for uniformly good
5209 decisions. If the initialization is a splat, this is
5210 cheaper than we estimate. Improve this someday. */
5211 elem_type = TREE_TYPE (vectype);
5212 /* 32-bit vectors loaded into registers are stored as double
5213 precision, so we need 2 permutes, 2 converts, and 1 merge
5214 to construct a vector of short floats from them. */
5215 if (SCALAR_FLOAT_TYPE_P (elem_type)
5216 && TYPE_PRECISION (elem_type) == 32)
5217 return 5;
5218 /* On POWER9, integer vector types are built up in GPRs and then
5219 use a direct move (2 cycles). For POWER8 this is even worse,
5220 as we need two direct moves and a merge, and the direct moves
5221 are five cycles. */
5222 else if (INTEGRAL_TYPE_P (elem_type))
5223 {
5224 if (TARGET_P9_VECTOR)
5225 return TYPE_VECTOR_SUBPARTS (vectype) - 1 + 2;
5226 else
5227 return TYPE_VECTOR_SUBPARTS (vectype) - 1 + 5;
5228 }
5229 else
5230 /* V2DFmode doesn't need a direct move. */
5231 return 2;
5232
5233 default:
5234 gcc_unreachable ();
5235 }
5236 }
5237
5238 /* Implement targetm.vectorize.preferred_simd_mode. */
5239
5240 static machine_mode
5241 rs6000_preferred_simd_mode (scalar_mode mode)
5242 {
5243 if (TARGET_VSX)
5244 switch (mode)
5245 {
5246 case E_DFmode:
5247 return V2DFmode;
5248 default:;
5249 }
5250 if (TARGET_ALTIVEC || TARGET_VSX)
5251 switch (mode)
5252 {
5253 case E_SFmode:
5254 return V4SFmode;
5255 case E_TImode:
5256 return V1TImode;
5257 case E_DImode:
5258 return V2DImode;
5259 case E_SImode:
5260 return V4SImode;
5261 case E_HImode:
5262 return V8HImode;
5263 case E_QImode:
5264 return V16QImode;
5265 default:;
5266 }
5267 return word_mode;
5268 }
5269
5270 typedef struct _rs6000_cost_data
5271 {
5272 struct loop *loop_info;
5273 unsigned cost[3];
5274 } rs6000_cost_data;
5275
5276 /* Test for likely overcommitment of vector hardware resources. If a
5277 loop iteration is relatively large, and too large a percentage of
5278 instructions in the loop are vectorized, the cost model may not
5279 adequately reflect delays from unavailable vector resources.
5280 Penalize the loop body cost for this case. */
5281
5282 static void
5283 rs6000_density_test (rs6000_cost_data *data)
5284 {
5285 const int DENSITY_PCT_THRESHOLD = 85;
5286 const int DENSITY_SIZE_THRESHOLD = 70;
5287 const int DENSITY_PENALTY = 10;
5288 struct loop *loop = data->loop_info;
5289 basic_block *bbs = get_loop_body (loop);
5290 int nbbs = loop->num_nodes;
5291 loop_vec_info loop_vinfo = loop_vec_info_for_loop (data->loop_info);
5292 int vec_cost = data->cost[vect_body], not_vec_cost = 0;
5293 int i, density_pct;
5294
5295 for (i = 0; i < nbbs; i++)
5296 {
5297 basic_block bb = bbs[i];
5298 gimple_stmt_iterator gsi;
5299
5300 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5301 {
5302 gimple *stmt = gsi_stmt (gsi);
5303 stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (stmt);
5304
5305 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5306 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
5307 not_vec_cost++;
5308 }
5309 }
5310
5311 free (bbs);
5312 density_pct = (vec_cost * 100) / (vec_cost + not_vec_cost);
5313
5314 if (density_pct > DENSITY_PCT_THRESHOLD
5315 && vec_cost + not_vec_cost > DENSITY_SIZE_THRESHOLD)
5316 {
5317 data->cost[vect_body] = vec_cost * (100 + DENSITY_PENALTY) / 100;
5318 if (dump_enabled_p ())
5319 dump_printf_loc (MSG_NOTE, vect_location,
5320 "density %d%%, cost %d exceeds threshold, penalizing "
5321 "loop body cost by %d%%", density_pct,
5322 vec_cost + not_vec_cost, DENSITY_PENALTY);
5323 }
5324 }
5325
5326 /* Implement targetm.vectorize.init_cost. */
5327
5328 /* For each vectorized loop, this var holds TRUE iff a non-memory vector
5329 instruction is needed by the vectorization. */
5330 static bool rs6000_vect_nonmem;
5331
5332 static void *
5333 rs6000_init_cost (struct loop *loop_info)
5334 {
5335 rs6000_cost_data *data = XNEW (struct _rs6000_cost_data);
5336 data->loop_info = loop_info;
5337 data->cost[vect_prologue] = 0;
5338 data->cost[vect_body] = 0;
5339 data->cost[vect_epilogue] = 0;
5340 rs6000_vect_nonmem = false;
5341 return data;
5342 }
5343
5344 /* Implement targetm.vectorize.add_stmt_cost. */
5345
5346 static unsigned
5347 rs6000_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
5348 struct _stmt_vec_info *stmt_info, int misalign,
5349 enum vect_cost_model_location where)
5350 {
5351 rs6000_cost_data *cost_data = (rs6000_cost_data*) data;
5352 unsigned retval = 0;
5353
5354 if (flag_vect_cost_model)
5355 {
5356 tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
5357 int stmt_cost = rs6000_builtin_vectorization_cost (kind, vectype,
5358 misalign);
5359 /* Statements in an inner loop relative to the loop being
5360 vectorized are weighted more heavily. The value here is
5361 arbitrary and could potentially be improved with analysis. */
5362 if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info))
5363 count *= 50; /* FIXME. */
5364
5365 retval = (unsigned) (count * stmt_cost);
5366 cost_data->cost[where] += retval;
5367
5368 /* Check whether we're doing something other than just a copy loop.
5369 Not all such loops may be profitably vectorized; see
5370 rs6000_finish_cost. */
5371 if ((kind == vec_to_scalar || kind == vec_perm
5372 || kind == vec_promote_demote || kind == vec_construct
5373 || kind == scalar_to_vec)
5374 || (where == vect_body && kind == vector_stmt))
5375 rs6000_vect_nonmem = true;
5376 }
5377
5378 return retval;
5379 }
5380
5381 /* Implement targetm.vectorize.finish_cost. */
5382
5383 static void
5384 rs6000_finish_cost (void *data, unsigned *prologue_cost,
5385 unsigned *body_cost, unsigned *epilogue_cost)
5386 {
5387 rs6000_cost_data *cost_data = (rs6000_cost_data*) data;
5388
5389 if (cost_data->loop_info)
5390 rs6000_density_test (cost_data);
5391
5392 /* Don't vectorize minimum-vectorization-factor, simple copy loops
5393 that require versioning for any reason. The vectorization is at
5394 best a wash inside the loop, and the versioning checks make
5395 profitability highly unlikely and potentially quite harmful. */
5396 if (cost_data->loop_info)
5397 {
5398 loop_vec_info vec_info = loop_vec_info_for_loop (cost_data->loop_info);
5399 if (!rs6000_vect_nonmem
5400 && LOOP_VINFO_VECT_FACTOR (vec_info) == 2
5401 && LOOP_REQUIRES_VERSIONING (vec_info))
5402 cost_data->cost[vect_body] += 10000;
5403 }
5404
5405 *prologue_cost = cost_data->cost[vect_prologue];
5406 *body_cost = cost_data->cost[vect_body];
5407 *epilogue_cost = cost_data->cost[vect_epilogue];
5408 }
5409
5410 /* Implement targetm.vectorize.destroy_cost_data. */
5411
5412 static void
5413 rs6000_destroy_cost_data (void *data)
5414 {
5415 free (data);
5416 }
5417
5418 /* Handler for the Mathematical Acceleration Subsystem (mass) interface to a
5419 library with vectorized intrinsics. */
5420
5421 static tree
5422 rs6000_builtin_vectorized_libmass (combined_fn fn, tree type_out,
5423 tree type_in)
5424 {
5425 char name[32];
5426 const char *suffix = NULL;
5427 tree fntype, new_fndecl, bdecl = NULL_TREE;
5428 int n_args = 1;
5429 const char *bname;
5430 machine_mode el_mode, in_mode;
5431 int n, in_n;
5432
5433 /* Libmass is suitable for unsafe math only as it does not correctly support
5434 parts of IEEE with the required precision such as denormals. Only support
5435 it if we have VSX to use the simd d2 or f4 functions.
5436 XXX: Add variable length support. */
5437 if (!flag_unsafe_math_optimizations || !TARGET_VSX)
5438 return NULL_TREE;
5439
5440 el_mode = TYPE_MODE (TREE_TYPE (type_out));
5441 n = TYPE_VECTOR_SUBPARTS (type_out);
5442 in_mode = TYPE_MODE (TREE_TYPE (type_in));
5443 in_n = TYPE_VECTOR_SUBPARTS (type_in);
5444 if (el_mode != in_mode
5445 || n != in_n)
5446 return NULL_TREE;
5447
5448 switch (fn)
5449 {
5450 CASE_CFN_ATAN2:
5451 CASE_CFN_HYPOT:
5452 CASE_CFN_POW:
5453 n_args = 2;
5454 gcc_fallthrough ();
5455
5456 CASE_CFN_ACOS:
5457 CASE_CFN_ACOSH:
5458 CASE_CFN_ASIN:
5459 CASE_CFN_ASINH:
5460 CASE_CFN_ATAN:
5461 CASE_CFN_ATANH:
5462 CASE_CFN_CBRT:
5463 CASE_CFN_COS:
5464 CASE_CFN_COSH:
5465 CASE_CFN_ERF:
5466 CASE_CFN_ERFC:
5467 CASE_CFN_EXP2:
5468 CASE_CFN_EXP:
5469 CASE_CFN_EXPM1:
5470 CASE_CFN_LGAMMA:
5471 CASE_CFN_LOG10:
5472 CASE_CFN_LOG1P:
5473 CASE_CFN_LOG2:
5474 CASE_CFN_LOG:
5475 CASE_CFN_SIN:
5476 CASE_CFN_SINH:
5477 CASE_CFN_SQRT:
5478 CASE_CFN_TAN:
5479 CASE_CFN_TANH:
5480 if (el_mode == DFmode && n == 2)
5481 {
5482 bdecl = mathfn_built_in (double_type_node, fn);
5483 suffix = "d2"; /* pow -> powd2 */
5484 }
5485 else if (el_mode == SFmode && n == 4)
5486 {
5487 bdecl = mathfn_built_in (float_type_node, fn);
5488 suffix = "4"; /* powf -> powf4 */
5489 }
5490 else
5491 return NULL_TREE;
5492 if (!bdecl)
5493 return NULL_TREE;
5494 break;
5495
5496 default:
5497 return NULL_TREE;
5498 }
5499
5500 gcc_assert (suffix != NULL);
5501 bname = IDENTIFIER_POINTER (DECL_NAME (bdecl));
5502 if (!bname)
5503 return NULL_TREE;
5504
5505 strcpy (name, bname + sizeof ("__builtin_") - 1);
5506 strcat (name, suffix);
5507
5508 if (n_args == 1)
5509 fntype = build_function_type_list (type_out, type_in, NULL);
5510 else if (n_args == 2)
5511 fntype = build_function_type_list (type_out, type_in, type_in, NULL);
5512 else
5513 gcc_unreachable ();
5514
5515 /* Build a function declaration for the vectorized function. */
5516 new_fndecl = build_decl (BUILTINS_LOCATION,
5517 FUNCTION_DECL, get_identifier (name), fntype);
5518 TREE_PUBLIC (new_fndecl) = 1;
5519 DECL_EXTERNAL (new_fndecl) = 1;
5520 DECL_IS_NOVOPS (new_fndecl) = 1;
5521 TREE_READONLY (new_fndecl) = 1;
5522
5523 return new_fndecl;
5524 }
5525
5526 /* Returns a function decl for a vectorized version of the builtin function
5527 with builtin function code FN and the result vector type TYPE, or NULL_TREE
5528 if it is not available. */
5529
5530 static tree
5531 rs6000_builtin_vectorized_function (unsigned int fn, tree type_out,
5532 tree type_in)
5533 {
5534 machine_mode in_mode, out_mode;
5535 int in_n, out_n;
5536
5537 if (TARGET_DEBUG_BUILTIN)
5538 fprintf (stderr, "rs6000_builtin_vectorized_function (%s, %s, %s)\n",
5539 combined_fn_name (combined_fn (fn)),
5540 GET_MODE_NAME (TYPE_MODE (type_out)),
5541 GET_MODE_NAME (TYPE_MODE (type_in)));
5542
5543 if (TREE_CODE (type_out) != VECTOR_TYPE
5544 || TREE_CODE (type_in) != VECTOR_TYPE)
5545 return NULL_TREE;
5546
5547 out_mode = TYPE_MODE (TREE_TYPE (type_out));
5548 out_n = TYPE_VECTOR_SUBPARTS (type_out);
5549 in_mode = TYPE_MODE (TREE_TYPE (type_in));
5550 in_n = TYPE_VECTOR_SUBPARTS (type_in);
5551
5552 switch (fn)
5553 {
5554 CASE_CFN_COPYSIGN:
5555 if (VECTOR_UNIT_VSX_P (V2DFmode)
5556 && out_mode == DFmode && out_n == 2
5557 && in_mode == DFmode && in_n == 2)
5558 return rs6000_builtin_decls[VSX_BUILTIN_CPSGNDP];
5559 if (VECTOR_UNIT_VSX_P (V4SFmode)
5560 && out_mode == SFmode && out_n == 4
5561 && in_mode == SFmode && in_n == 4)
5562 return rs6000_builtin_decls[VSX_BUILTIN_CPSGNSP];
5563 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5564 && out_mode == SFmode && out_n == 4
5565 && in_mode == SFmode && in_n == 4)
5566 return rs6000_builtin_decls[ALTIVEC_BUILTIN_COPYSIGN_V4SF];
5567 break;
5568 CASE_CFN_CEIL:
5569 if (VECTOR_UNIT_VSX_P (V2DFmode)
5570 && out_mode == DFmode && out_n == 2
5571 && in_mode == DFmode && in_n == 2)
5572 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIP];
5573 if (VECTOR_UNIT_VSX_P (V4SFmode)
5574 && out_mode == SFmode && out_n == 4
5575 && in_mode == SFmode && in_n == 4)
5576 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIP];
5577 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5578 && out_mode == SFmode && out_n == 4
5579 && in_mode == SFmode && in_n == 4)
5580 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRFIP];
5581 break;
5582 CASE_CFN_FLOOR:
5583 if (VECTOR_UNIT_VSX_P (V2DFmode)
5584 && out_mode == DFmode && out_n == 2
5585 && in_mode == DFmode && in_n == 2)
5586 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIM];
5587 if (VECTOR_UNIT_VSX_P (V4SFmode)
5588 && out_mode == SFmode && out_n == 4
5589 && in_mode == SFmode && in_n == 4)
5590 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIM];
5591 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5592 && out_mode == SFmode && out_n == 4
5593 && in_mode == SFmode && in_n == 4)
5594 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRFIM];
5595 break;
5596 CASE_CFN_FMA:
5597 if (VECTOR_UNIT_VSX_P (V2DFmode)
5598 && out_mode == DFmode && out_n == 2
5599 && in_mode == DFmode && in_n == 2)
5600 return rs6000_builtin_decls[VSX_BUILTIN_XVMADDDP];
5601 if (VECTOR_UNIT_VSX_P (V4SFmode)
5602 && out_mode == SFmode && out_n == 4
5603 && in_mode == SFmode && in_n == 4)
5604 return rs6000_builtin_decls[VSX_BUILTIN_XVMADDSP];
5605 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5606 && out_mode == SFmode && out_n == 4
5607 && in_mode == SFmode && in_n == 4)
5608 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VMADDFP];
5609 break;
5610 CASE_CFN_TRUNC:
5611 if (VECTOR_UNIT_VSX_P (V2DFmode)
5612 && out_mode == DFmode && out_n == 2
5613 && in_mode == DFmode && in_n == 2)
5614 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIZ];
5615 if (VECTOR_UNIT_VSX_P (V4SFmode)
5616 && out_mode == SFmode && out_n == 4
5617 && in_mode == SFmode && in_n == 4)
5618 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIZ];
5619 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5620 && out_mode == SFmode && out_n == 4
5621 && in_mode == SFmode && in_n == 4)
5622 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRFIZ];
5623 break;
5624 CASE_CFN_NEARBYINT:
5625 if (VECTOR_UNIT_VSX_P (V2DFmode)
5626 && flag_unsafe_math_optimizations
5627 && out_mode == DFmode && out_n == 2
5628 && in_mode == DFmode && in_n == 2)
5629 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPI];
5630 if (VECTOR_UNIT_VSX_P (V4SFmode)
5631 && flag_unsafe_math_optimizations
5632 && out_mode == SFmode && out_n == 4
5633 && in_mode == SFmode && in_n == 4)
5634 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPI];
5635 break;
5636 CASE_CFN_RINT:
5637 if (VECTOR_UNIT_VSX_P (V2DFmode)
5638 && !flag_trapping_math
5639 && out_mode == DFmode && out_n == 2
5640 && in_mode == DFmode && in_n == 2)
5641 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIC];
5642 if (VECTOR_UNIT_VSX_P (V4SFmode)
5643 && !flag_trapping_math
5644 && out_mode == SFmode && out_n == 4
5645 && in_mode == SFmode && in_n == 4)
5646 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIC];
5647 break;
5648 default:
5649 break;
5650 }
5651
5652 /* Generate calls to libmass if appropriate. */
5653 if (rs6000_veclib_handler)
5654 return rs6000_veclib_handler (combined_fn (fn), type_out, type_in);
5655
5656 return NULL_TREE;
5657 }
5658
5659 /* Implement TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION. */
5660
5661 static tree
5662 rs6000_builtin_md_vectorized_function (tree fndecl, tree type_out,
5663 tree type_in)
5664 {
5665 machine_mode in_mode, out_mode;
5666 int in_n, out_n;
5667
5668 if (TARGET_DEBUG_BUILTIN)
5669 fprintf (stderr, "rs6000_builtin_md_vectorized_function (%s, %s, %s)\n",
5670 IDENTIFIER_POINTER (DECL_NAME (fndecl)),
5671 GET_MODE_NAME (TYPE_MODE (type_out)),
5672 GET_MODE_NAME (TYPE_MODE (type_in)));
5673
5674 if (TREE_CODE (type_out) != VECTOR_TYPE
5675 || TREE_CODE (type_in) != VECTOR_TYPE)
5676 return NULL_TREE;
5677
5678 out_mode = TYPE_MODE (TREE_TYPE (type_out));
5679 out_n = TYPE_VECTOR_SUBPARTS (type_out);
5680 in_mode = TYPE_MODE (TREE_TYPE (type_in));
5681 in_n = TYPE_VECTOR_SUBPARTS (type_in);
5682
5683 enum rs6000_builtins fn
5684 = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
5685 switch (fn)
5686 {
5687 case RS6000_BUILTIN_RSQRTF:
5688 if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode)
5689 && out_mode == SFmode && out_n == 4
5690 && in_mode == SFmode && in_n == 4)
5691 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRSQRTFP];
5692 break;
5693 case RS6000_BUILTIN_RSQRT:
5694 if (VECTOR_UNIT_VSX_P (V2DFmode)
5695 && out_mode == DFmode && out_n == 2
5696 && in_mode == DFmode && in_n == 2)
5697 return rs6000_builtin_decls[VSX_BUILTIN_RSQRT_2DF];
5698 break;
5699 case RS6000_BUILTIN_RECIPF:
5700 if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode)
5701 && out_mode == SFmode && out_n == 4
5702 && in_mode == SFmode && in_n == 4)
5703 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRECIPFP];
5704 break;
5705 case RS6000_BUILTIN_RECIP:
5706 if (VECTOR_UNIT_VSX_P (V2DFmode)
5707 && out_mode == DFmode && out_n == 2
5708 && in_mode == DFmode && in_n == 2)
5709 return rs6000_builtin_decls[VSX_BUILTIN_RECIP_V2DF];
5710 break;
5711 default:
5712 break;
5713 }
5714 return NULL_TREE;
5715 }
5716 \f
5717 /* Default CPU string for rs6000*_file_start functions. */
5718 static const char *rs6000_default_cpu;
5719
5720 /* Do anything needed at the start of the asm file. */
5721
5722 static void
5723 rs6000_file_start (void)
5724 {
5725 char buffer[80];
5726 const char *start = buffer;
5727 FILE *file = asm_out_file;
5728
5729 rs6000_default_cpu = TARGET_CPU_DEFAULT;
5730
5731 default_file_start ();
5732
5733 if (flag_verbose_asm)
5734 {
5735 sprintf (buffer, "\n%s rs6000/powerpc options:", ASM_COMMENT_START);
5736
5737 if (rs6000_default_cpu != 0 && rs6000_default_cpu[0] != '\0')
5738 {
5739 fprintf (file, "%s --with-cpu=%s", start, rs6000_default_cpu);
5740 start = "";
5741 }
5742
5743 if (global_options_set.x_rs6000_cpu_index)
5744 {
5745 fprintf (file, "%s -mcpu=%s", start,
5746 processor_target_table[rs6000_cpu_index].name);
5747 start = "";
5748 }
5749
5750 if (global_options_set.x_rs6000_tune_index)
5751 {
5752 fprintf (file, "%s -mtune=%s", start,
5753 processor_target_table[rs6000_tune_index].name);
5754 start = "";
5755 }
5756
5757 if (PPC405_ERRATUM77)
5758 {
5759 fprintf (file, "%s PPC405CR_ERRATUM77", start);
5760 start = "";
5761 }
5762
5763 #ifdef USING_ELFOS_H
5764 switch (rs6000_sdata)
5765 {
5766 case SDATA_NONE: fprintf (file, "%s -msdata=none", start); start = ""; break;
5767 case SDATA_DATA: fprintf (file, "%s -msdata=data", start); start = ""; break;
5768 case SDATA_SYSV: fprintf (file, "%s -msdata=sysv", start); start = ""; break;
5769 case SDATA_EABI: fprintf (file, "%s -msdata=eabi", start); start = ""; break;
5770 }
5771
5772 if (rs6000_sdata && g_switch_value)
5773 {
5774 fprintf (file, "%s -G %d", start,
5775 g_switch_value);
5776 start = "";
5777 }
5778 #endif
5779
5780 if (*start == '\0')
5781 putc ('\n', file);
5782 }
5783
5784 #ifdef USING_ELFOS_H
5785 if (!(rs6000_default_cpu && rs6000_default_cpu[0])
5786 && !global_options_set.x_rs6000_cpu_index)
5787 {
5788 fputs ("\t.machine ", asm_out_file);
5789 if ((rs6000_isa_flags & OPTION_MASK_MODULO) != 0)
5790 fputs ("power9\n", asm_out_file);
5791 else if ((rs6000_isa_flags & OPTION_MASK_DIRECT_MOVE) != 0)
5792 fputs ("power8\n", asm_out_file);
5793 else if ((rs6000_isa_flags & OPTION_MASK_POPCNTD) != 0)
5794 fputs ("power7\n", asm_out_file);
5795 else if ((rs6000_isa_flags & OPTION_MASK_CMPB) != 0)
5796 fputs ("power6\n", asm_out_file);
5797 else if ((rs6000_isa_flags & OPTION_MASK_POPCNTB) != 0)
5798 fputs ("power5\n", asm_out_file);
5799 else if ((rs6000_isa_flags & OPTION_MASK_MFCRF) != 0)
5800 fputs ("power4\n", asm_out_file);
5801 else if ((rs6000_isa_flags & OPTION_MASK_POWERPC64) != 0)
5802 fputs ("ppc64\n", asm_out_file);
5803 else
5804 fputs ("ppc\n", asm_out_file);
5805 }
5806 #endif
5807
5808 if (DEFAULT_ABI == ABI_ELFv2)
5809 fprintf (file, "\t.abiversion 2\n");
5810 }
5811
5812 \f
5813 /* Return nonzero if this function is known to have a null epilogue. */
5814
5815 int
5816 direct_return (void)
5817 {
5818 if (reload_completed)
5819 {
5820 rs6000_stack_t *info = rs6000_stack_info ();
5821
5822 if (info->first_gp_reg_save == 32
5823 && info->first_fp_reg_save == 64
5824 && info->first_altivec_reg_save == LAST_ALTIVEC_REGNO + 1
5825 && ! info->lr_save_p
5826 && ! info->cr_save_p
5827 && info->vrsave_size == 0
5828 && ! info->push_p)
5829 return 1;
5830 }
5831
5832 return 0;
5833 }
5834
5835 /* Return the number of instructions it takes to form a constant in an
5836 integer register. */
5837
5838 int
5839 num_insns_constant_wide (HOST_WIDE_INT value)
5840 {
5841 /* signed constant loadable with addi */
5842 if (((unsigned HOST_WIDE_INT) value + 0x8000) < 0x10000)
5843 return 1;
5844
5845 /* constant loadable with addis */
5846 else if ((value & 0xffff) == 0
5847 && (value >> 31 == -1 || value >> 31 == 0))
5848 return 1;
5849
5850 else if (TARGET_POWERPC64)
5851 {
5852 HOST_WIDE_INT low = ((value & 0xffffffff) ^ 0x80000000) - 0x80000000;
5853 HOST_WIDE_INT high = value >> 31;
5854
5855 if (high == 0 || high == -1)
5856 return 2;
5857
5858 high >>= 1;
5859
5860 if (low == 0)
5861 return num_insns_constant_wide (high) + 1;
5862 else if (high == 0)
5863 return num_insns_constant_wide (low) + 1;
5864 else
5865 return (num_insns_constant_wide (high)
5866 + num_insns_constant_wide (low) + 1);
5867 }
5868
5869 else
5870 return 2;
5871 }
5872
5873 int
5874 num_insns_constant (rtx op, machine_mode mode)
5875 {
5876 HOST_WIDE_INT low, high;
5877
5878 switch (GET_CODE (op))
5879 {
5880 case CONST_INT:
5881 if ((INTVAL (op) >> 31) != 0 && (INTVAL (op) >> 31) != -1
5882 && rs6000_is_valid_and_mask (op, mode))
5883 return 2;
5884 else
5885 return num_insns_constant_wide (INTVAL (op));
5886
5887 case CONST_WIDE_INT:
5888 {
5889 int i;
5890 int ins = CONST_WIDE_INT_NUNITS (op) - 1;
5891 for (i = 0; i < CONST_WIDE_INT_NUNITS (op); i++)
5892 ins += num_insns_constant_wide (CONST_WIDE_INT_ELT (op, i));
5893 return ins;
5894 }
5895
5896 case CONST_DOUBLE:
5897 if (mode == SFmode || mode == SDmode)
5898 {
5899 long l;
5900
5901 if (DECIMAL_FLOAT_MODE_P (mode))
5902 REAL_VALUE_TO_TARGET_DECIMAL32
5903 (*CONST_DOUBLE_REAL_VALUE (op), l);
5904 else
5905 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), l);
5906 return num_insns_constant_wide ((HOST_WIDE_INT) l);
5907 }
5908
5909 long l[2];
5910 if (DECIMAL_FLOAT_MODE_P (mode))
5911 REAL_VALUE_TO_TARGET_DECIMAL64 (*CONST_DOUBLE_REAL_VALUE (op), l);
5912 else
5913 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
5914 high = l[WORDS_BIG_ENDIAN == 0];
5915 low = l[WORDS_BIG_ENDIAN != 0];
5916
5917 if (TARGET_32BIT)
5918 return (num_insns_constant_wide (low)
5919 + num_insns_constant_wide (high));
5920 else
5921 {
5922 if ((high == 0 && low >= 0)
5923 || (high == -1 && low < 0))
5924 return num_insns_constant_wide (low);
5925
5926 else if (rs6000_is_valid_and_mask (op, mode))
5927 return 2;
5928
5929 else if (low == 0)
5930 return num_insns_constant_wide (high) + 1;
5931
5932 else
5933 return (num_insns_constant_wide (high)
5934 + num_insns_constant_wide (low) + 1);
5935 }
5936
5937 default:
5938 gcc_unreachable ();
5939 }
5940 }
5941
5942 /* Interpret element ELT of the CONST_VECTOR OP as an integer value.
5943 If the mode of OP is MODE_VECTOR_INT, this simply returns the
5944 corresponding element of the vector, but for V4SFmode, the
5945 corresponding "float" is interpreted as an SImode integer. */
5946
5947 HOST_WIDE_INT
5948 const_vector_elt_as_int (rtx op, unsigned int elt)
5949 {
5950 rtx tmp;
5951
5952 /* We can't handle V2DImode and V2DFmode vector constants here yet. */
5953 gcc_assert (GET_MODE (op) != V2DImode
5954 && GET_MODE (op) != V2DFmode);
5955
5956 tmp = CONST_VECTOR_ELT (op, elt);
5957 if (GET_MODE (op) == V4SFmode)
5958 tmp = gen_lowpart (SImode, tmp);
5959 return INTVAL (tmp);
5960 }
5961
5962 /* Return true if OP can be synthesized with a particular vspltisb, vspltish
5963 or vspltisw instruction. OP is a CONST_VECTOR. Which instruction is used
5964 depends on STEP and COPIES, one of which will be 1. If COPIES > 1,
5965 all items are set to the same value and contain COPIES replicas of the
5966 vsplt's operand; if STEP > 1, one in STEP elements is set to the vsplt's
5967 operand and the others are set to the value of the operand's msb. */
5968
5969 static bool
5970 vspltis_constant (rtx op, unsigned step, unsigned copies)
5971 {
5972 machine_mode mode = GET_MODE (op);
5973 machine_mode inner = GET_MODE_INNER (mode);
5974
5975 unsigned i;
5976 unsigned nunits;
5977 unsigned bitsize;
5978 unsigned mask;
5979
5980 HOST_WIDE_INT val;
5981 HOST_WIDE_INT splat_val;
5982 HOST_WIDE_INT msb_val;
5983
5984 if (mode == V2DImode || mode == V2DFmode || mode == V1TImode)
5985 return false;
5986
5987 nunits = GET_MODE_NUNITS (mode);
5988 bitsize = GET_MODE_BITSIZE (inner);
5989 mask = GET_MODE_MASK (inner);
5990
5991 val = const_vector_elt_as_int (op, BYTES_BIG_ENDIAN ? nunits - 1 : 0);
5992 splat_val = val;
5993 msb_val = val >= 0 ? 0 : -1;
5994
5995 /* Construct the value to be splatted, if possible. If not, return 0. */
5996 for (i = 2; i <= copies; i *= 2)
5997 {
5998 HOST_WIDE_INT small_val;
5999 bitsize /= 2;
6000 small_val = splat_val >> bitsize;
6001 mask >>= bitsize;
6002 if (splat_val != ((HOST_WIDE_INT)
6003 ((unsigned HOST_WIDE_INT) small_val << bitsize)
6004 | (small_val & mask)))
6005 return false;
6006 splat_val = small_val;
6007 }
6008
6009 /* Check if SPLAT_VAL can really be the operand of a vspltis[bhw]. */
6010 if (EASY_VECTOR_15 (splat_val))
6011 ;
6012
6013 /* Also check if we can splat, and then add the result to itself. Do so if
6014 the value is positive, of if the splat instruction is using OP's mode;
6015 for splat_val < 0, the splat and the add should use the same mode. */
6016 else if (EASY_VECTOR_15_ADD_SELF (splat_val)
6017 && (splat_val >= 0 || (step == 1 && copies == 1)))
6018 ;
6019
6020 /* Also check if are loading up the most significant bit which can be done by
6021 loading up -1 and shifting the value left by -1. */
6022 else if (EASY_VECTOR_MSB (splat_val, inner))
6023 ;
6024
6025 else
6026 return false;
6027
6028 /* Check if VAL is present in every STEP-th element, and the
6029 other elements are filled with its most significant bit. */
6030 for (i = 1; i < nunits; ++i)
6031 {
6032 HOST_WIDE_INT desired_val;
6033 unsigned elt = BYTES_BIG_ENDIAN ? nunits - 1 - i : i;
6034 if ((i & (step - 1)) == 0)
6035 desired_val = val;
6036 else
6037 desired_val = msb_val;
6038
6039 if (desired_val != const_vector_elt_as_int (op, elt))
6040 return false;
6041 }
6042
6043 return true;
6044 }
6045
6046 /* Like vsplitis_constant, but allow the value to be shifted left with a VSLDOI
6047 instruction, filling in the bottom elements with 0 or -1.
6048
6049 Return 0 if the constant cannot be generated with VSLDOI. Return positive
6050 for the number of zeroes to shift in, or negative for the number of 0xff
6051 bytes to shift in.
6052
6053 OP is a CONST_VECTOR. */
6054
6055 int
6056 vspltis_shifted (rtx op)
6057 {
6058 machine_mode mode = GET_MODE (op);
6059 machine_mode inner = GET_MODE_INNER (mode);
6060
6061 unsigned i, j;
6062 unsigned nunits;
6063 unsigned mask;
6064
6065 HOST_WIDE_INT val;
6066
6067 if (mode != V16QImode && mode != V8HImode && mode != V4SImode)
6068 return false;
6069
6070 /* We need to create pseudo registers to do the shift, so don't recognize
6071 shift vector constants after reload. */
6072 if (!can_create_pseudo_p ())
6073 return false;
6074
6075 nunits = GET_MODE_NUNITS (mode);
6076 mask = GET_MODE_MASK (inner);
6077
6078 val = const_vector_elt_as_int (op, BYTES_BIG_ENDIAN ? 0 : nunits - 1);
6079
6080 /* Check if the value can really be the operand of a vspltis[bhw]. */
6081 if (EASY_VECTOR_15 (val))
6082 ;
6083
6084 /* Also check if we are loading up the most significant bit which can be done
6085 by loading up -1 and shifting the value left by -1. */
6086 else if (EASY_VECTOR_MSB (val, inner))
6087 ;
6088
6089 else
6090 return 0;
6091
6092 /* Check if VAL is present in every STEP-th element until we find elements
6093 that are 0 or all 1 bits. */
6094 for (i = 1; i < nunits; ++i)
6095 {
6096 unsigned elt = BYTES_BIG_ENDIAN ? i : nunits - 1 - i;
6097 HOST_WIDE_INT elt_val = const_vector_elt_as_int (op, elt);
6098
6099 /* If the value isn't the splat value, check for the remaining elements
6100 being 0/-1. */
6101 if (val != elt_val)
6102 {
6103 if (elt_val == 0)
6104 {
6105 for (j = i+1; j < nunits; ++j)
6106 {
6107 unsigned elt2 = BYTES_BIG_ENDIAN ? j : nunits - 1 - j;
6108 if (const_vector_elt_as_int (op, elt2) != 0)
6109 return 0;
6110 }
6111
6112 return (nunits - i) * GET_MODE_SIZE (inner);
6113 }
6114
6115 else if ((elt_val & mask) == mask)
6116 {
6117 for (j = i+1; j < nunits; ++j)
6118 {
6119 unsigned elt2 = BYTES_BIG_ENDIAN ? j : nunits - 1 - j;
6120 if ((const_vector_elt_as_int (op, elt2) & mask) != mask)
6121 return 0;
6122 }
6123
6124 return -((nunits - i) * GET_MODE_SIZE (inner));
6125 }
6126
6127 else
6128 return 0;
6129 }
6130 }
6131
6132 /* If all elements are equal, we don't need to do VLSDOI. */
6133 return 0;
6134 }
6135
6136
6137 /* Return true if OP is of the given MODE and can be synthesized
6138 with a vspltisb, vspltish or vspltisw. */
6139
6140 bool
6141 easy_altivec_constant (rtx op, machine_mode mode)
6142 {
6143 unsigned step, copies;
6144
6145 if (mode == VOIDmode)
6146 mode = GET_MODE (op);
6147 else if (mode != GET_MODE (op))
6148 return false;
6149
6150 /* V2DI/V2DF was added with VSX. Only allow 0 and all 1's as easy
6151 constants. */
6152 if (mode == V2DFmode)
6153 return zero_constant (op, mode);
6154
6155 else if (mode == V2DImode)
6156 {
6157 if (GET_CODE (CONST_VECTOR_ELT (op, 0)) != CONST_INT
6158 || GET_CODE (CONST_VECTOR_ELT (op, 1)) != CONST_INT)
6159 return false;
6160
6161 if (zero_constant (op, mode))
6162 return true;
6163
6164 if (INTVAL (CONST_VECTOR_ELT (op, 0)) == -1
6165 && INTVAL (CONST_VECTOR_ELT (op, 1)) == -1)
6166 return true;
6167
6168 return false;
6169 }
6170
6171 /* V1TImode is a special container for TImode. Ignore for now. */
6172 else if (mode == V1TImode)
6173 return false;
6174
6175 /* Start with a vspltisw. */
6176 step = GET_MODE_NUNITS (mode) / 4;
6177 copies = 1;
6178
6179 if (vspltis_constant (op, step, copies))
6180 return true;
6181
6182 /* Then try with a vspltish. */
6183 if (step == 1)
6184 copies <<= 1;
6185 else
6186 step >>= 1;
6187
6188 if (vspltis_constant (op, step, copies))
6189 return true;
6190
6191 /* And finally a vspltisb. */
6192 if (step == 1)
6193 copies <<= 1;
6194 else
6195 step >>= 1;
6196
6197 if (vspltis_constant (op, step, copies))
6198 return true;
6199
6200 if (vspltis_shifted (op) != 0)
6201 return true;
6202
6203 return false;
6204 }
6205
6206 /* Generate a VEC_DUPLICATE representing a vspltis[bhw] instruction whose
6207 result is OP. Abort if it is not possible. */
6208
6209 rtx
6210 gen_easy_altivec_constant (rtx op)
6211 {
6212 machine_mode mode = GET_MODE (op);
6213 int nunits = GET_MODE_NUNITS (mode);
6214 rtx val = CONST_VECTOR_ELT (op, BYTES_BIG_ENDIAN ? nunits - 1 : 0);
6215 unsigned step = nunits / 4;
6216 unsigned copies = 1;
6217
6218 /* Start with a vspltisw. */
6219 if (vspltis_constant (op, step, copies))
6220 return gen_rtx_VEC_DUPLICATE (V4SImode, gen_lowpart (SImode, val));
6221
6222 /* Then try with a vspltish. */
6223 if (step == 1)
6224 copies <<= 1;
6225 else
6226 step >>= 1;
6227
6228 if (vspltis_constant (op, step, copies))
6229 return gen_rtx_VEC_DUPLICATE (V8HImode, gen_lowpart (HImode, val));
6230
6231 /* And finally a vspltisb. */
6232 if (step == 1)
6233 copies <<= 1;
6234 else
6235 step >>= 1;
6236
6237 if (vspltis_constant (op, step, copies))
6238 return gen_rtx_VEC_DUPLICATE (V16QImode, gen_lowpart (QImode, val));
6239
6240 gcc_unreachable ();
6241 }
6242
6243 /* Return true if OP is of the given MODE and can be synthesized with ISA 3.0
6244 instructions (xxspltib, vupkhsb/vextsb2w/vextb2d).
6245
6246 Return the number of instructions needed (1 or 2) into the address pointed
6247 via NUM_INSNS_PTR.
6248
6249 Return the constant that is being split via CONSTANT_PTR. */
6250
6251 bool
6252 xxspltib_constant_p (rtx op,
6253 machine_mode mode,
6254 int *num_insns_ptr,
6255 int *constant_ptr)
6256 {
6257 size_t nunits = GET_MODE_NUNITS (mode);
6258 size_t i;
6259 HOST_WIDE_INT value;
6260 rtx element;
6261
6262 /* Set the returned values to out of bound values. */
6263 *num_insns_ptr = -1;
6264 *constant_ptr = 256;
6265
6266 if (!TARGET_P9_VECTOR)
6267 return false;
6268
6269 if (mode == VOIDmode)
6270 mode = GET_MODE (op);
6271
6272 else if (mode != GET_MODE (op) && GET_MODE (op) != VOIDmode)
6273 return false;
6274
6275 /* Handle (vec_duplicate <constant>). */
6276 if (GET_CODE (op) == VEC_DUPLICATE)
6277 {
6278 if (mode != V16QImode && mode != V8HImode && mode != V4SImode
6279 && mode != V2DImode)
6280 return false;
6281
6282 element = XEXP (op, 0);
6283 if (!CONST_INT_P (element))
6284 return false;
6285
6286 value = INTVAL (element);
6287 if (!IN_RANGE (value, -128, 127))
6288 return false;
6289 }
6290
6291 /* Handle (const_vector [...]). */
6292 else if (GET_CODE (op) == CONST_VECTOR)
6293 {
6294 if (mode != V16QImode && mode != V8HImode && mode != V4SImode
6295 && mode != V2DImode)
6296 return false;
6297
6298 element = CONST_VECTOR_ELT (op, 0);
6299 if (!CONST_INT_P (element))
6300 return false;
6301
6302 value = INTVAL (element);
6303 if (!IN_RANGE (value, -128, 127))
6304 return false;
6305
6306 for (i = 1; i < nunits; i++)
6307 {
6308 element = CONST_VECTOR_ELT (op, i);
6309 if (!CONST_INT_P (element))
6310 return false;
6311
6312 if (value != INTVAL (element))
6313 return false;
6314 }
6315 }
6316
6317 /* Handle integer constants being loaded into the upper part of the VSX
6318 register as a scalar. If the value isn't 0/-1, only allow it if the mode
6319 can go in Altivec registers. Prefer VSPLTISW/VUPKHSW over XXSPLITIB. */
6320 else if (CONST_INT_P (op))
6321 {
6322 if (!SCALAR_INT_MODE_P (mode))
6323 return false;
6324
6325 value = INTVAL (op);
6326 if (!IN_RANGE (value, -128, 127))
6327 return false;
6328
6329 if (!IN_RANGE (value, -1, 0))
6330 {
6331 if (!(reg_addr[mode].addr_mask[RELOAD_REG_VMX] & RELOAD_REG_VALID))
6332 return false;
6333
6334 if (EASY_VECTOR_15 (value))
6335 return false;
6336 }
6337 }
6338
6339 else
6340 return false;
6341
6342 /* See if we could generate vspltisw/vspltish directly instead of xxspltib +
6343 sign extend. Special case 0/-1 to allow getting any VSX register instead
6344 of an Altivec register. */
6345 if ((mode == V4SImode || mode == V8HImode) && !IN_RANGE (value, -1, 0)
6346 && EASY_VECTOR_15 (value))
6347 return false;
6348
6349 /* Return # of instructions and the constant byte for XXSPLTIB. */
6350 if (mode == V16QImode)
6351 *num_insns_ptr = 1;
6352
6353 else if (IN_RANGE (value, -1, 0))
6354 *num_insns_ptr = 1;
6355
6356 else
6357 *num_insns_ptr = 2;
6358
6359 *constant_ptr = (int) value;
6360 return true;
6361 }
6362
6363 const char *
6364 output_vec_const_move (rtx *operands)
6365 {
6366 int shift;
6367 machine_mode mode;
6368 rtx dest, vec;
6369
6370 dest = operands[0];
6371 vec = operands[1];
6372 mode = GET_MODE (dest);
6373
6374 if (TARGET_VSX)
6375 {
6376 bool dest_vmx_p = ALTIVEC_REGNO_P (REGNO (dest));
6377 int xxspltib_value = 256;
6378 int num_insns = -1;
6379
6380 if (zero_constant (vec, mode))
6381 {
6382 if (TARGET_P9_VECTOR)
6383 return "xxspltib %x0,0";
6384
6385 else if (dest_vmx_p)
6386 return "vspltisw %0,0";
6387
6388 else
6389 return "xxlxor %x0,%x0,%x0";
6390 }
6391
6392 if (all_ones_constant (vec, mode))
6393 {
6394 if (TARGET_P9_VECTOR)
6395 return "xxspltib %x0,255";
6396
6397 else if (dest_vmx_p)
6398 return "vspltisw %0,-1";
6399
6400 else if (TARGET_P8_VECTOR)
6401 return "xxlorc %x0,%x0,%x0";
6402
6403 else
6404 gcc_unreachable ();
6405 }
6406
6407 if (TARGET_P9_VECTOR
6408 && xxspltib_constant_p (vec, mode, &num_insns, &xxspltib_value))
6409 {
6410 if (num_insns == 1)
6411 {
6412 operands[2] = GEN_INT (xxspltib_value & 0xff);
6413 return "xxspltib %x0,%2";
6414 }
6415
6416 return "#";
6417 }
6418 }
6419
6420 if (TARGET_ALTIVEC)
6421 {
6422 rtx splat_vec;
6423
6424 gcc_assert (ALTIVEC_REGNO_P (REGNO (dest)));
6425 if (zero_constant (vec, mode))
6426 return "vspltisw %0,0";
6427
6428 if (all_ones_constant (vec, mode))
6429 return "vspltisw %0,-1";
6430
6431 /* Do we need to construct a value using VSLDOI? */
6432 shift = vspltis_shifted (vec);
6433 if (shift != 0)
6434 return "#";
6435
6436 splat_vec = gen_easy_altivec_constant (vec);
6437 gcc_assert (GET_CODE (splat_vec) == VEC_DUPLICATE);
6438 operands[1] = XEXP (splat_vec, 0);
6439 if (!EASY_VECTOR_15 (INTVAL (operands[1])))
6440 return "#";
6441
6442 switch (GET_MODE (splat_vec))
6443 {
6444 case E_V4SImode:
6445 return "vspltisw %0,%1";
6446
6447 case E_V8HImode:
6448 return "vspltish %0,%1";
6449
6450 case E_V16QImode:
6451 return "vspltisb %0,%1";
6452
6453 default:
6454 gcc_unreachable ();
6455 }
6456 }
6457
6458 gcc_unreachable ();
6459 }
6460
6461 /* Initialize vector TARGET to VALS. */
6462
6463 void
6464 rs6000_expand_vector_init (rtx target, rtx vals)
6465 {
6466 machine_mode mode = GET_MODE (target);
6467 machine_mode inner_mode = GET_MODE_INNER (mode);
6468 int n_elts = GET_MODE_NUNITS (mode);
6469 int n_var = 0, one_var = -1;
6470 bool all_same = true, all_const_zero = true;
6471 rtx x, mem;
6472 int i;
6473
6474 for (i = 0; i < n_elts; ++i)
6475 {
6476 x = XVECEXP (vals, 0, i);
6477 if (!(CONST_SCALAR_INT_P (x) || CONST_DOUBLE_P (x) || CONST_FIXED_P (x)))
6478 ++n_var, one_var = i;
6479 else if (x != CONST0_RTX (inner_mode))
6480 all_const_zero = false;
6481
6482 if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
6483 all_same = false;
6484 }
6485
6486 if (n_var == 0)
6487 {
6488 rtx const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
6489 bool int_vector_p = (GET_MODE_CLASS (mode) == MODE_VECTOR_INT);
6490 if ((int_vector_p || TARGET_VSX) && all_const_zero)
6491 {
6492 /* Zero register. */
6493 emit_move_insn (target, CONST0_RTX (mode));
6494 return;
6495 }
6496 else if (int_vector_p && easy_vector_constant (const_vec, mode))
6497 {
6498 /* Splat immediate. */
6499 emit_insn (gen_rtx_SET (target, const_vec));
6500 return;
6501 }
6502 else
6503 {
6504 /* Load from constant pool. */
6505 emit_move_insn (target, const_vec);
6506 return;
6507 }
6508 }
6509
6510 /* Double word values on VSX can use xxpermdi or lxvdsx. */
6511 if (VECTOR_MEM_VSX_P (mode) && (mode == V2DFmode || mode == V2DImode))
6512 {
6513 rtx op[2];
6514 size_t i;
6515 size_t num_elements = all_same ? 1 : 2;
6516 for (i = 0; i < num_elements; i++)
6517 {
6518 op[i] = XVECEXP (vals, 0, i);
6519 /* Just in case there is a SUBREG with a smaller mode, do a
6520 conversion. */
6521 if (GET_MODE (op[i]) != inner_mode)
6522 {
6523 rtx tmp = gen_reg_rtx (inner_mode);
6524 convert_move (tmp, op[i], 0);
6525 op[i] = tmp;
6526 }
6527 /* Allow load with splat double word. */
6528 else if (MEM_P (op[i]))
6529 {
6530 if (!all_same)
6531 op[i] = force_reg (inner_mode, op[i]);
6532 }
6533 else if (!REG_P (op[i]))
6534 op[i] = force_reg (inner_mode, op[i]);
6535 }
6536
6537 if (all_same)
6538 {
6539 if (mode == V2DFmode)
6540 emit_insn (gen_vsx_splat_v2df (target, op[0]));
6541 else
6542 emit_insn (gen_vsx_splat_v2di (target, op[0]));
6543 }
6544 else
6545 {
6546 if (mode == V2DFmode)
6547 emit_insn (gen_vsx_concat_v2df (target, op[0], op[1]));
6548 else
6549 emit_insn (gen_vsx_concat_v2di (target, op[0], op[1]));
6550 }
6551 return;
6552 }
6553
6554 /* Special case initializing vector int if we are on 64-bit systems with
6555 direct move or we have the ISA 3.0 instructions. */
6556 if (mode == V4SImode && VECTOR_MEM_VSX_P (V4SImode)
6557 && TARGET_DIRECT_MOVE_64BIT)
6558 {
6559 if (all_same)
6560 {
6561 rtx element0 = XVECEXP (vals, 0, 0);
6562 if (MEM_P (element0))
6563 element0 = rs6000_force_indexed_or_indirect_mem (element0);
6564 else
6565 element0 = force_reg (SImode, element0);
6566
6567 if (TARGET_P9_VECTOR)
6568 emit_insn (gen_vsx_splat_v4si (target, element0));
6569 else
6570 {
6571 rtx tmp = gen_reg_rtx (DImode);
6572 emit_insn (gen_zero_extendsidi2 (tmp, element0));
6573 emit_insn (gen_vsx_splat_v4si_di (target, tmp));
6574 }
6575 return;
6576 }
6577 else
6578 {
6579 rtx elements[4];
6580 size_t i;
6581
6582 for (i = 0; i < 4; i++)
6583 elements[i] = force_reg (SImode, XVECEXP (vals, 0, i));
6584
6585 emit_insn (gen_vsx_init_v4si (target, elements[0], elements[1],
6586 elements[2], elements[3]));
6587 return;
6588 }
6589 }
6590
6591 /* With single precision floating point on VSX, know that internally single
6592 precision is actually represented as a double, and either make 2 V2DF
6593 vectors, and convert these vectors to single precision, or do one
6594 conversion, and splat the result to the other elements. */
6595 if (mode == V4SFmode && VECTOR_MEM_VSX_P (V4SFmode))
6596 {
6597 if (all_same)
6598 {
6599 rtx element0 = XVECEXP (vals, 0, 0);
6600
6601 if (TARGET_P9_VECTOR)
6602 {
6603 if (MEM_P (element0))
6604 element0 = rs6000_force_indexed_or_indirect_mem (element0);
6605
6606 emit_insn (gen_vsx_splat_v4sf (target, element0));
6607 }
6608
6609 else
6610 {
6611 rtx freg = gen_reg_rtx (V4SFmode);
6612 rtx sreg = force_reg (SFmode, element0);
6613 rtx cvt = (TARGET_XSCVDPSPN
6614 ? gen_vsx_xscvdpspn_scalar (freg, sreg)
6615 : gen_vsx_xscvdpsp_scalar (freg, sreg));
6616
6617 emit_insn (cvt);
6618 emit_insn (gen_vsx_xxspltw_v4sf_direct (target, freg,
6619 const0_rtx));
6620 }
6621 }
6622 else
6623 {
6624 rtx dbl_even = gen_reg_rtx (V2DFmode);
6625 rtx dbl_odd = gen_reg_rtx (V2DFmode);
6626 rtx flt_even = gen_reg_rtx (V4SFmode);
6627 rtx flt_odd = gen_reg_rtx (V4SFmode);
6628 rtx op0 = force_reg (SFmode, XVECEXP (vals, 0, 0));
6629 rtx op1 = force_reg (SFmode, XVECEXP (vals, 0, 1));
6630 rtx op2 = force_reg (SFmode, XVECEXP (vals, 0, 2));
6631 rtx op3 = force_reg (SFmode, XVECEXP (vals, 0, 3));
6632
6633 /* Use VMRGEW if we can instead of doing a permute. */
6634 if (TARGET_P8_VECTOR)
6635 {
6636 emit_insn (gen_vsx_concat_v2sf (dbl_even, op0, op2));
6637 emit_insn (gen_vsx_concat_v2sf (dbl_odd, op1, op3));
6638 emit_insn (gen_vsx_xvcvdpsp (flt_even, dbl_even));
6639 emit_insn (gen_vsx_xvcvdpsp (flt_odd, dbl_odd));
6640 if (BYTES_BIG_ENDIAN)
6641 emit_insn (gen_p8_vmrgew_v4sf_direct (target, flt_even, flt_odd));
6642 else
6643 emit_insn (gen_p8_vmrgew_v4sf_direct (target, flt_odd, flt_even));
6644 }
6645 else
6646 {
6647 emit_insn (gen_vsx_concat_v2sf (dbl_even, op0, op1));
6648 emit_insn (gen_vsx_concat_v2sf (dbl_odd, op2, op3));
6649 emit_insn (gen_vsx_xvcvdpsp (flt_even, dbl_even));
6650 emit_insn (gen_vsx_xvcvdpsp (flt_odd, dbl_odd));
6651 rs6000_expand_extract_even (target, flt_even, flt_odd);
6652 }
6653 }
6654 return;
6655 }
6656
6657 /* Special case initializing vector short/char that are splats if we are on
6658 64-bit systems with direct move. */
6659 if (all_same && TARGET_DIRECT_MOVE_64BIT
6660 && (mode == V16QImode || mode == V8HImode))
6661 {
6662 rtx op0 = XVECEXP (vals, 0, 0);
6663 rtx di_tmp = gen_reg_rtx (DImode);
6664
6665 if (!REG_P (op0))
6666 op0 = force_reg (GET_MODE_INNER (mode), op0);
6667
6668 if (mode == V16QImode)
6669 {
6670 emit_insn (gen_zero_extendqidi2 (di_tmp, op0));
6671 emit_insn (gen_vsx_vspltb_di (target, di_tmp));
6672 return;
6673 }
6674
6675 if (mode == V8HImode)
6676 {
6677 emit_insn (gen_zero_extendhidi2 (di_tmp, op0));
6678 emit_insn (gen_vsx_vsplth_di (target, di_tmp));
6679 return;
6680 }
6681 }
6682
6683 /* Store value to stack temp. Load vector element. Splat. However, splat
6684 of 64-bit items is not supported on Altivec. */
6685 if (all_same && GET_MODE_SIZE (inner_mode) <= 4)
6686 {
6687 mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode));
6688 emit_move_insn (adjust_address_nv (mem, inner_mode, 0),
6689 XVECEXP (vals, 0, 0));
6690 x = gen_rtx_UNSPEC (VOIDmode,
6691 gen_rtvec (1, const0_rtx), UNSPEC_LVE);
6692 emit_insn (gen_rtx_PARALLEL (VOIDmode,
6693 gen_rtvec (2,
6694 gen_rtx_SET (target, mem),
6695 x)));
6696 x = gen_rtx_VEC_SELECT (inner_mode, target,
6697 gen_rtx_PARALLEL (VOIDmode,
6698 gen_rtvec (1, const0_rtx)));
6699 emit_insn (gen_rtx_SET (target, gen_rtx_VEC_DUPLICATE (mode, x)));
6700 return;
6701 }
6702
6703 /* One field is non-constant. Load constant then overwrite
6704 varying field. */
6705 if (n_var == 1)
6706 {
6707 rtx copy = copy_rtx (vals);
6708
6709 /* Load constant part of vector, substitute neighboring value for
6710 varying element. */
6711 XVECEXP (copy, 0, one_var) = XVECEXP (vals, 0, (one_var + 1) % n_elts);
6712 rs6000_expand_vector_init (target, copy);
6713
6714 /* Insert variable. */
6715 rs6000_expand_vector_set (target, XVECEXP (vals, 0, one_var), one_var);
6716 return;
6717 }
6718
6719 /* Construct the vector in memory one field at a time
6720 and load the whole vector. */
6721 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));
6722 for (i = 0; i < n_elts; i++)
6723 emit_move_insn (adjust_address_nv (mem, inner_mode,
6724 i * GET_MODE_SIZE (inner_mode)),
6725 XVECEXP (vals, 0, i));
6726 emit_move_insn (target, mem);
6727 }
6728
6729 /* Set field ELT of TARGET to VAL. */
6730
6731 void
6732 rs6000_expand_vector_set (rtx target, rtx val, int elt)
6733 {
6734 machine_mode mode = GET_MODE (target);
6735 machine_mode inner_mode = GET_MODE_INNER (mode);
6736 rtx reg = gen_reg_rtx (mode);
6737 rtx mask, mem, x;
6738 int width = GET_MODE_SIZE (inner_mode);
6739 int i;
6740
6741 val = force_reg (GET_MODE (val), val);
6742
6743 if (VECTOR_MEM_VSX_P (mode))
6744 {
6745 rtx insn = NULL_RTX;
6746 rtx elt_rtx = GEN_INT (elt);
6747
6748 if (mode == V2DFmode)
6749 insn = gen_vsx_set_v2df (target, target, val, elt_rtx);
6750
6751 else if (mode == V2DImode)
6752 insn = gen_vsx_set_v2di (target, target, val, elt_rtx);
6753
6754 else if (TARGET_P9_VECTOR && TARGET_POWERPC64)
6755 {
6756 if (mode == V4SImode)
6757 insn = gen_vsx_set_v4si_p9 (target, target, val, elt_rtx);
6758 else if (mode == V8HImode)
6759 insn = gen_vsx_set_v8hi_p9 (target, target, val, elt_rtx);
6760 else if (mode == V16QImode)
6761 insn = gen_vsx_set_v16qi_p9 (target, target, val, elt_rtx);
6762 else if (mode == V4SFmode)
6763 insn = gen_vsx_set_v4sf_p9 (target, target, val, elt_rtx);
6764 }
6765
6766 if (insn)
6767 {
6768 emit_insn (insn);
6769 return;
6770 }
6771 }
6772
6773 /* Simplify setting single element vectors like V1TImode. */
6774 if (GET_MODE_SIZE (mode) == GET_MODE_SIZE (inner_mode) && elt == 0)
6775 {
6776 emit_move_insn (target, gen_lowpart (mode, val));
6777 return;
6778 }
6779
6780 /* Load single variable value. */
6781 mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode));
6782 emit_move_insn (adjust_address_nv (mem, inner_mode, 0), val);
6783 x = gen_rtx_UNSPEC (VOIDmode,
6784 gen_rtvec (1, const0_rtx), UNSPEC_LVE);
6785 emit_insn (gen_rtx_PARALLEL (VOIDmode,
6786 gen_rtvec (2,
6787 gen_rtx_SET (reg, mem),
6788 x)));
6789
6790 /* Linear sequence. */
6791 mask = gen_rtx_PARALLEL (V16QImode, rtvec_alloc (16));
6792 for (i = 0; i < 16; ++i)
6793 XVECEXP (mask, 0, i) = GEN_INT (i);
6794
6795 /* Set permute mask to insert element into target. */
6796 for (i = 0; i < width; ++i)
6797 XVECEXP (mask, 0, elt*width + i)
6798 = GEN_INT (i + 0x10);
6799 x = gen_rtx_CONST_VECTOR (V16QImode, XVEC (mask, 0));
6800
6801 if (BYTES_BIG_ENDIAN)
6802 x = gen_rtx_UNSPEC (mode,
6803 gen_rtvec (3, target, reg,
6804 force_reg (V16QImode, x)),
6805 UNSPEC_VPERM);
6806 else
6807 {
6808 if (TARGET_P9_VECTOR)
6809 x = gen_rtx_UNSPEC (mode,
6810 gen_rtvec (3, reg, target,
6811 force_reg (V16QImode, x)),
6812 UNSPEC_VPERMR);
6813 else
6814 {
6815 /* Invert selector. We prefer to generate VNAND on P8 so
6816 that future fusion opportunities can kick in, but must
6817 generate VNOR elsewhere. */
6818 rtx notx = gen_rtx_NOT (V16QImode, force_reg (V16QImode, x));
6819 rtx iorx = (TARGET_P8_VECTOR
6820 ? gen_rtx_IOR (V16QImode, notx, notx)
6821 : gen_rtx_AND (V16QImode, notx, notx));
6822 rtx tmp = gen_reg_rtx (V16QImode);
6823 emit_insn (gen_rtx_SET (tmp, iorx));
6824
6825 /* Permute with operands reversed and adjusted selector. */
6826 x = gen_rtx_UNSPEC (mode, gen_rtvec (3, reg, target, tmp),
6827 UNSPEC_VPERM);
6828 }
6829 }
6830
6831 emit_insn (gen_rtx_SET (target, x));
6832 }
6833
6834 /* Extract field ELT from VEC into TARGET. */
6835
6836 void
6837 rs6000_expand_vector_extract (rtx target, rtx vec, rtx elt)
6838 {
6839 machine_mode mode = GET_MODE (vec);
6840 machine_mode inner_mode = GET_MODE_INNER (mode);
6841 rtx mem;
6842
6843 if (VECTOR_MEM_VSX_P (mode) && CONST_INT_P (elt))
6844 {
6845 switch (mode)
6846 {
6847 default:
6848 break;
6849 case E_V1TImode:
6850 gcc_assert (INTVAL (elt) == 0 && inner_mode == TImode);
6851 emit_move_insn (target, gen_lowpart (TImode, vec));
6852 break;
6853 case E_V2DFmode:
6854 emit_insn (gen_vsx_extract_v2df (target, vec, elt));
6855 return;
6856 case E_V2DImode:
6857 emit_insn (gen_vsx_extract_v2di (target, vec, elt));
6858 return;
6859 case E_V4SFmode:
6860 emit_insn (gen_vsx_extract_v4sf (target, vec, elt));
6861 return;
6862 case E_V16QImode:
6863 if (TARGET_DIRECT_MOVE_64BIT)
6864 {
6865 emit_insn (gen_vsx_extract_v16qi (target, vec, elt));
6866 return;
6867 }
6868 else
6869 break;
6870 case E_V8HImode:
6871 if (TARGET_DIRECT_MOVE_64BIT)
6872 {
6873 emit_insn (gen_vsx_extract_v8hi (target, vec, elt));
6874 return;
6875 }
6876 else
6877 break;
6878 case E_V4SImode:
6879 if (TARGET_DIRECT_MOVE_64BIT)
6880 {
6881 emit_insn (gen_vsx_extract_v4si (target, vec, elt));
6882 return;
6883 }
6884 break;
6885 }
6886 }
6887 else if (VECTOR_MEM_VSX_P (mode) && !CONST_INT_P (elt)
6888 && TARGET_DIRECT_MOVE_64BIT)
6889 {
6890 if (GET_MODE (elt) != DImode)
6891 {
6892 rtx tmp = gen_reg_rtx (DImode);
6893 convert_move (tmp, elt, 0);
6894 elt = tmp;
6895 }
6896 else if (!REG_P (elt))
6897 elt = force_reg (DImode, elt);
6898
6899 switch (mode)
6900 {
6901 case E_V2DFmode:
6902 emit_insn (gen_vsx_extract_v2df_var (target, vec, elt));
6903 return;
6904
6905 case E_V2DImode:
6906 emit_insn (gen_vsx_extract_v2di_var (target, vec, elt));
6907 return;
6908
6909 case E_V4SFmode:
6910 emit_insn (gen_vsx_extract_v4sf_var (target, vec, elt));
6911 return;
6912
6913 case E_V4SImode:
6914 emit_insn (gen_vsx_extract_v4si_var (target, vec, elt));
6915 return;
6916
6917 case E_V8HImode:
6918 emit_insn (gen_vsx_extract_v8hi_var (target, vec, elt));
6919 return;
6920
6921 case E_V16QImode:
6922 emit_insn (gen_vsx_extract_v16qi_var (target, vec, elt));
6923 return;
6924
6925 default:
6926 gcc_unreachable ();
6927 }
6928 }
6929
6930 gcc_assert (CONST_INT_P (elt));
6931
6932 /* Allocate mode-sized buffer. */
6933 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));
6934
6935 emit_move_insn (mem, vec);
6936
6937 /* Add offset to field within buffer matching vector element. */
6938 mem = adjust_address_nv (mem, inner_mode,
6939 INTVAL (elt) * GET_MODE_SIZE (inner_mode));
6940
6941 emit_move_insn (target, adjust_address_nv (mem, inner_mode, 0));
6942 }
6943
6944 /* Helper function to return the register number of a RTX. */
6945 static inline int
6946 regno_or_subregno (rtx op)
6947 {
6948 if (REG_P (op))
6949 return REGNO (op);
6950 else if (SUBREG_P (op))
6951 return subreg_regno (op);
6952 else
6953 gcc_unreachable ();
6954 }
6955
6956 /* Adjust a memory address (MEM) of a vector type to point to a scalar field
6957 within the vector (ELEMENT) with a mode (SCALAR_MODE). Use a base register
6958 temporary (BASE_TMP) to fixup the address. Return the new memory address
6959 that is valid for reads or writes to a given register (SCALAR_REG). */
6960
6961 rtx
6962 rs6000_adjust_vec_address (rtx scalar_reg,
6963 rtx mem,
6964 rtx element,
6965 rtx base_tmp,
6966 machine_mode scalar_mode)
6967 {
6968 unsigned scalar_size = GET_MODE_SIZE (scalar_mode);
6969 rtx addr = XEXP (mem, 0);
6970 rtx element_offset;
6971 rtx new_addr;
6972 bool valid_addr_p;
6973
6974 /* Vector addresses should not have PRE_INC, PRE_DEC, or PRE_MODIFY. */
6975 gcc_assert (GET_RTX_CLASS (GET_CODE (addr)) != RTX_AUTOINC);
6976
6977 /* Calculate what we need to add to the address to get the element
6978 address. */
6979 if (CONST_INT_P (element))
6980 element_offset = GEN_INT (INTVAL (element) * scalar_size);
6981 else
6982 {
6983 int byte_shift = exact_log2 (scalar_size);
6984 gcc_assert (byte_shift >= 0);
6985
6986 if (byte_shift == 0)
6987 element_offset = element;
6988
6989 else
6990 {
6991 if (TARGET_POWERPC64)
6992 emit_insn (gen_ashldi3 (base_tmp, element, GEN_INT (byte_shift)));
6993 else
6994 emit_insn (gen_ashlsi3 (base_tmp, element, GEN_INT (byte_shift)));
6995
6996 element_offset = base_tmp;
6997 }
6998 }
6999
7000 /* Create the new address pointing to the element within the vector. If we
7001 are adding 0, we don't have to change the address. */
7002 if (element_offset == const0_rtx)
7003 new_addr = addr;
7004
7005 /* A simple indirect address can be converted into a reg + offset
7006 address. */
7007 else if (REG_P (addr) || SUBREG_P (addr))
7008 new_addr = gen_rtx_PLUS (Pmode, addr, element_offset);
7009
7010 /* Optimize D-FORM addresses with constant offset with a constant element, to
7011 include the element offset in the address directly. */
7012 else if (GET_CODE (addr) == PLUS)
7013 {
7014 rtx op0 = XEXP (addr, 0);
7015 rtx op1 = XEXP (addr, 1);
7016 rtx insn;
7017
7018 gcc_assert (REG_P (op0) || SUBREG_P (op0));
7019 if (CONST_INT_P (op1) && CONST_INT_P (element_offset))
7020 {
7021 HOST_WIDE_INT offset = INTVAL (op1) + INTVAL (element_offset);
7022 rtx offset_rtx = GEN_INT (offset);
7023
7024 if (IN_RANGE (offset, -32768, 32767)
7025 && (scalar_size < 8 || (offset & 0x3) == 0))
7026 new_addr = gen_rtx_PLUS (Pmode, op0, offset_rtx);
7027 else
7028 {
7029 emit_move_insn (base_tmp, offset_rtx);
7030 new_addr = gen_rtx_PLUS (Pmode, op0, base_tmp);
7031 }
7032 }
7033 else
7034 {
7035 bool op1_reg_p = (REG_P (op1) || SUBREG_P (op1));
7036 bool ele_reg_p = (REG_P (element_offset) || SUBREG_P (element_offset));
7037
7038 /* Note, ADDI requires the register being added to be a base
7039 register. If the register was R0, load it up into the temporary
7040 and do the add. */
7041 if (op1_reg_p
7042 && (ele_reg_p || reg_or_subregno (op1) != FIRST_GPR_REGNO))
7043 {
7044 insn = gen_add3_insn (base_tmp, op1, element_offset);
7045 gcc_assert (insn != NULL_RTX);
7046 emit_insn (insn);
7047 }
7048
7049 else if (ele_reg_p
7050 && reg_or_subregno (element_offset) != FIRST_GPR_REGNO)
7051 {
7052 insn = gen_add3_insn (base_tmp, element_offset, op1);
7053 gcc_assert (insn != NULL_RTX);
7054 emit_insn (insn);
7055 }
7056
7057 else
7058 {
7059 emit_move_insn (base_tmp, op1);
7060 emit_insn (gen_add2_insn (base_tmp, element_offset));
7061 }
7062
7063 new_addr = gen_rtx_PLUS (Pmode, op0, base_tmp);
7064 }
7065 }
7066
7067 else
7068 {
7069 emit_move_insn (base_tmp, addr);
7070 new_addr = gen_rtx_PLUS (Pmode, base_tmp, element_offset);
7071 }
7072
7073 /* If we have a PLUS, we need to see whether the particular register class
7074 allows for D-FORM or X-FORM addressing. */
7075 if (GET_CODE (new_addr) == PLUS)
7076 {
7077 rtx op1 = XEXP (new_addr, 1);
7078 addr_mask_type addr_mask;
7079 int scalar_regno = regno_or_subregno (scalar_reg);
7080
7081 gcc_assert (scalar_regno < FIRST_PSEUDO_REGISTER);
7082 if (INT_REGNO_P (scalar_regno))
7083 addr_mask = reg_addr[scalar_mode].addr_mask[RELOAD_REG_GPR];
7084
7085 else if (FP_REGNO_P (scalar_regno))
7086 addr_mask = reg_addr[scalar_mode].addr_mask[RELOAD_REG_FPR];
7087
7088 else if (ALTIVEC_REGNO_P (scalar_regno))
7089 addr_mask = reg_addr[scalar_mode].addr_mask[RELOAD_REG_VMX];
7090
7091 else
7092 gcc_unreachable ();
7093
7094 if (REG_P (op1) || SUBREG_P (op1))
7095 valid_addr_p = (addr_mask & RELOAD_REG_INDEXED) != 0;
7096 else
7097 valid_addr_p = (addr_mask & RELOAD_REG_OFFSET) != 0;
7098 }
7099
7100 else if (REG_P (new_addr) || SUBREG_P (new_addr))
7101 valid_addr_p = true;
7102
7103 else
7104 valid_addr_p = false;
7105
7106 if (!valid_addr_p)
7107 {
7108 emit_move_insn (base_tmp, new_addr);
7109 new_addr = base_tmp;
7110 }
7111
7112 return change_address (mem, scalar_mode, new_addr);
7113 }
7114
7115 /* Split a variable vec_extract operation into the component instructions. */
7116
7117 void
7118 rs6000_split_vec_extract_var (rtx dest, rtx src, rtx element, rtx tmp_gpr,
7119 rtx tmp_altivec)
7120 {
7121 machine_mode mode = GET_MODE (src);
7122 machine_mode scalar_mode = GET_MODE (dest);
7123 unsigned scalar_size = GET_MODE_SIZE (scalar_mode);
7124 int byte_shift = exact_log2 (scalar_size);
7125
7126 gcc_assert (byte_shift >= 0);
7127
7128 /* If we are given a memory address, optimize to load just the element. We
7129 don't have to adjust the vector element number on little endian
7130 systems. */
7131 if (MEM_P (src))
7132 {
7133 gcc_assert (REG_P (tmp_gpr));
7134 emit_move_insn (dest, rs6000_adjust_vec_address (dest, src, element,
7135 tmp_gpr, scalar_mode));
7136 return;
7137 }
7138
7139 else if (REG_P (src) || SUBREG_P (src))
7140 {
7141 int bit_shift = byte_shift + 3;
7142 rtx element2;
7143 int dest_regno = regno_or_subregno (dest);
7144 int src_regno = regno_or_subregno (src);
7145 int element_regno = regno_or_subregno (element);
7146
7147 gcc_assert (REG_P (tmp_gpr));
7148
7149 /* See if we want to generate VEXTU{B,H,W}{L,R}X if the destination is in
7150 a general purpose register. */
7151 if (TARGET_P9_VECTOR
7152 && (mode == V16QImode || mode == V8HImode || mode == V4SImode)
7153 && INT_REGNO_P (dest_regno)
7154 && ALTIVEC_REGNO_P (src_regno)
7155 && INT_REGNO_P (element_regno))
7156 {
7157 rtx dest_si = gen_rtx_REG (SImode, dest_regno);
7158 rtx element_si = gen_rtx_REG (SImode, element_regno);
7159
7160 if (mode == V16QImode)
7161 emit_insn (BYTES_BIG_ENDIAN
7162 ? gen_vextublx (dest_si, element_si, src)
7163 : gen_vextubrx (dest_si, element_si, src));
7164
7165 else if (mode == V8HImode)
7166 {
7167 rtx tmp_gpr_si = gen_rtx_REG (SImode, REGNO (tmp_gpr));
7168 emit_insn (gen_ashlsi3 (tmp_gpr_si, element_si, const1_rtx));
7169 emit_insn (BYTES_BIG_ENDIAN
7170 ? gen_vextuhlx (dest_si, tmp_gpr_si, src)
7171 : gen_vextuhrx (dest_si, tmp_gpr_si, src));
7172 }
7173
7174
7175 else
7176 {
7177 rtx tmp_gpr_si = gen_rtx_REG (SImode, REGNO (tmp_gpr));
7178 emit_insn (gen_ashlsi3 (tmp_gpr_si, element_si, const2_rtx));
7179 emit_insn (BYTES_BIG_ENDIAN
7180 ? gen_vextuwlx (dest_si, tmp_gpr_si, src)
7181 : gen_vextuwrx (dest_si, tmp_gpr_si, src));
7182 }
7183
7184 return;
7185 }
7186
7187
7188 gcc_assert (REG_P (tmp_altivec));
7189
7190 /* For little endian, adjust element ordering. For V2DI/V2DF, we can use
7191 an XOR, otherwise we need to subtract. The shift amount is so VSLO
7192 will shift the element into the upper position (adding 3 to convert a
7193 byte shift into a bit shift). */
7194 if (scalar_size == 8)
7195 {
7196 if (!BYTES_BIG_ENDIAN)
7197 {
7198 emit_insn (gen_xordi3 (tmp_gpr, element, const1_rtx));
7199 element2 = tmp_gpr;
7200 }
7201 else
7202 element2 = element;
7203
7204 /* Generate RLDIC directly to shift left 6 bits and retrieve 1
7205 bit. */
7206 emit_insn (gen_rtx_SET (tmp_gpr,
7207 gen_rtx_AND (DImode,
7208 gen_rtx_ASHIFT (DImode,
7209 element2,
7210 GEN_INT (6)),
7211 GEN_INT (64))));
7212 }
7213 else
7214 {
7215 if (!BYTES_BIG_ENDIAN)
7216 {
7217 rtx num_ele_m1 = GEN_INT (GET_MODE_NUNITS (mode) - 1);
7218
7219 emit_insn (gen_anddi3 (tmp_gpr, element, num_ele_m1));
7220 emit_insn (gen_subdi3 (tmp_gpr, num_ele_m1, tmp_gpr));
7221 element2 = tmp_gpr;
7222 }
7223 else
7224 element2 = element;
7225
7226 emit_insn (gen_ashldi3 (tmp_gpr, element2, GEN_INT (bit_shift)));
7227 }
7228
7229 /* Get the value into the lower byte of the Altivec register where VSLO
7230 expects it. */
7231 if (TARGET_P9_VECTOR)
7232 emit_insn (gen_vsx_splat_v2di (tmp_altivec, tmp_gpr));
7233 else if (can_create_pseudo_p ())
7234 emit_insn (gen_vsx_concat_v2di (tmp_altivec, tmp_gpr, tmp_gpr));
7235 else
7236 {
7237 rtx tmp_di = gen_rtx_REG (DImode, REGNO (tmp_altivec));
7238 emit_move_insn (tmp_di, tmp_gpr);
7239 emit_insn (gen_vsx_concat_v2di (tmp_altivec, tmp_di, tmp_di));
7240 }
7241
7242 /* Do the VSLO to get the value into the final location. */
7243 switch (mode)
7244 {
7245 case E_V2DFmode:
7246 emit_insn (gen_vsx_vslo_v2df (dest, src, tmp_altivec));
7247 return;
7248
7249 case E_V2DImode:
7250 emit_insn (gen_vsx_vslo_v2di (dest, src, tmp_altivec));
7251 return;
7252
7253 case E_V4SFmode:
7254 {
7255 rtx tmp_altivec_di = gen_rtx_REG (DImode, REGNO (tmp_altivec));
7256 rtx tmp_altivec_v4sf = gen_rtx_REG (V4SFmode, REGNO (tmp_altivec));
7257 rtx src_v2di = gen_rtx_REG (V2DImode, REGNO (src));
7258 emit_insn (gen_vsx_vslo_v2di (tmp_altivec_di, src_v2di,
7259 tmp_altivec));
7260
7261 emit_insn (gen_vsx_xscvspdp_scalar2 (dest, tmp_altivec_v4sf));
7262 return;
7263 }
7264
7265 case E_V4SImode:
7266 case E_V8HImode:
7267 case E_V16QImode:
7268 {
7269 rtx tmp_altivec_di = gen_rtx_REG (DImode, REGNO (tmp_altivec));
7270 rtx src_v2di = gen_rtx_REG (V2DImode, REGNO (src));
7271 rtx tmp_gpr_di = gen_rtx_REG (DImode, REGNO (dest));
7272 emit_insn (gen_vsx_vslo_v2di (tmp_altivec_di, src_v2di,
7273 tmp_altivec));
7274 emit_move_insn (tmp_gpr_di, tmp_altivec_di);
7275 emit_insn (gen_ashrdi3 (tmp_gpr_di, tmp_gpr_di,
7276 GEN_INT (64 - (8 * scalar_size))));
7277 return;
7278 }
7279
7280 default:
7281 gcc_unreachable ();
7282 }
7283
7284 return;
7285 }
7286 else
7287 gcc_unreachable ();
7288 }
7289
7290 /* Return alignment of TYPE. Existing alignment is ALIGN. HOW
7291 selects whether the alignment is abi mandated, optional, or
7292 both abi and optional alignment. */
7293
7294 unsigned int
7295 rs6000_data_alignment (tree type, unsigned int align, enum data_align how)
7296 {
7297 if (how != align_opt)
7298 {
7299 if (TREE_CODE (type) == VECTOR_TYPE && align < 128)
7300 align = 128;
7301 }
7302
7303 if (how != align_abi)
7304 {
7305 if (TREE_CODE (type) == ARRAY_TYPE
7306 && TYPE_MODE (TREE_TYPE (type)) == QImode)
7307 {
7308 if (align < BITS_PER_WORD)
7309 align = BITS_PER_WORD;
7310 }
7311 }
7312
7313 return align;
7314 }
7315
7316 /* Implement TARGET_SLOW_UNALIGNED_ACCESS. Altivec vector memory
7317 instructions simply ignore the low bits; VSX memory instructions
7318 are aligned to 4 or 8 bytes. */
7319
7320 static bool
7321 rs6000_slow_unaligned_access (machine_mode mode, unsigned int align)
7322 {
7323 return (STRICT_ALIGNMENT
7324 || (!TARGET_EFFICIENT_UNALIGNED_VSX
7325 && ((SCALAR_FLOAT_MODE_NOT_VECTOR_P (mode) && align < 32)
7326 || ((VECTOR_MODE_P (mode) || FLOAT128_VECTOR_P (mode))
7327 && (int) align < VECTOR_ALIGN (mode)))));
7328 }
7329
7330 /* Previous GCC releases forced all vector types to have 16-byte alignment. */
7331
7332 bool
7333 rs6000_special_adjust_field_align_p (tree type, unsigned int computed)
7334 {
7335 if (TARGET_ALTIVEC && TREE_CODE (type) == VECTOR_TYPE)
7336 {
7337 if (computed != 128)
7338 {
7339 static bool warned;
7340 if (!warned && warn_psabi)
7341 {
7342 warned = true;
7343 inform (input_location,
7344 "the layout of aggregates containing vectors with"
7345 " %d-byte alignment has changed in GCC 5",
7346 computed / BITS_PER_UNIT);
7347 }
7348 }
7349 /* In current GCC there is no special case. */
7350 return false;
7351 }
7352
7353 return false;
7354 }
7355
7356 /* AIX increases natural record alignment to doubleword if the first
7357 field is an FP double while the FP fields remain word aligned. */
7358
7359 unsigned int
7360 rs6000_special_round_type_align (tree type, unsigned int computed,
7361 unsigned int specified)
7362 {
7363 unsigned int align = MAX (computed, specified);
7364 tree field = TYPE_FIELDS (type);
7365
7366 /* Skip all non field decls */
7367 while (field != NULL && TREE_CODE (field) != FIELD_DECL)
7368 field = DECL_CHAIN (field);
7369
7370 if (field != NULL && field != type)
7371 {
7372 type = TREE_TYPE (field);
7373 while (TREE_CODE (type) == ARRAY_TYPE)
7374 type = TREE_TYPE (type);
7375
7376 if (type != error_mark_node && TYPE_MODE (type) == DFmode)
7377 align = MAX (align, 64);
7378 }
7379
7380 return align;
7381 }
7382
7383 /* Darwin increases record alignment to the natural alignment of
7384 the first field. */
7385
7386 unsigned int
7387 darwin_rs6000_special_round_type_align (tree type, unsigned int computed,
7388 unsigned int specified)
7389 {
7390 unsigned int align = MAX (computed, specified);
7391
7392 if (TYPE_PACKED (type))
7393 return align;
7394
7395 /* Find the first field, looking down into aggregates. */
7396 do {
7397 tree field = TYPE_FIELDS (type);
7398 /* Skip all non field decls */
7399 while (field != NULL && TREE_CODE (field) != FIELD_DECL)
7400 field = DECL_CHAIN (field);
7401 if (! field)
7402 break;
7403 /* A packed field does not contribute any extra alignment. */
7404 if (DECL_PACKED (field))
7405 return align;
7406 type = TREE_TYPE (field);
7407 while (TREE_CODE (type) == ARRAY_TYPE)
7408 type = TREE_TYPE (type);
7409 } while (AGGREGATE_TYPE_P (type));
7410
7411 if (! AGGREGATE_TYPE_P (type) && type != error_mark_node)
7412 align = MAX (align, TYPE_ALIGN (type));
7413
7414 return align;
7415 }
7416
7417 /* Return 1 for an operand in small memory on V.4/eabi. */
7418
7419 int
7420 small_data_operand (rtx op ATTRIBUTE_UNUSED,
7421 machine_mode mode ATTRIBUTE_UNUSED)
7422 {
7423 #if TARGET_ELF
7424 rtx sym_ref;
7425
7426 if (rs6000_sdata == SDATA_NONE || rs6000_sdata == SDATA_DATA)
7427 return 0;
7428
7429 if (DEFAULT_ABI != ABI_V4)
7430 return 0;
7431
7432 if (GET_CODE (op) == SYMBOL_REF)
7433 sym_ref = op;
7434
7435 else if (GET_CODE (op) != CONST
7436 || GET_CODE (XEXP (op, 0)) != PLUS
7437 || GET_CODE (XEXP (XEXP (op, 0), 0)) != SYMBOL_REF
7438 || GET_CODE (XEXP (XEXP (op, 0), 1)) != CONST_INT)
7439 return 0;
7440
7441 else
7442 {
7443 rtx sum = XEXP (op, 0);
7444 HOST_WIDE_INT summand;
7445
7446 /* We have to be careful here, because it is the referenced address
7447 that must be 32k from _SDA_BASE_, not just the symbol. */
7448 summand = INTVAL (XEXP (sum, 1));
7449 if (summand < 0 || summand > g_switch_value)
7450 return 0;
7451
7452 sym_ref = XEXP (sum, 0);
7453 }
7454
7455 return SYMBOL_REF_SMALL_P (sym_ref);
7456 #else
7457 return 0;
7458 #endif
7459 }
7460
7461 /* Return true if either operand is a general purpose register. */
7462
7463 bool
7464 gpr_or_gpr_p (rtx op0, rtx op1)
7465 {
7466 return ((REG_P (op0) && INT_REGNO_P (REGNO (op0)))
7467 || (REG_P (op1) && INT_REGNO_P (REGNO (op1))));
7468 }
7469
7470 /* Return true if this is a move direct operation between GPR registers and
7471 floating point/VSX registers. */
7472
7473 bool
7474 direct_move_p (rtx op0, rtx op1)
7475 {
7476 int regno0, regno1;
7477
7478 if (!REG_P (op0) || !REG_P (op1))
7479 return false;
7480
7481 if (!TARGET_DIRECT_MOVE && !TARGET_MFPGPR)
7482 return false;
7483
7484 regno0 = REGNO (op0);
7485 regno1 = REGNO (op1);
7486 if (regno0 >= FIRST_PSEUDO_REGISTER || regno1 >= FIRST_PSEUDO_REGISTER)
7487 return false;
7488
7489 if (INT_REGNO_P (regno0))
7490 return (TARGET_DIRECT_MOVE) ? VSX_REGNO_P (regno1) : FP_REGNO_P (regno1);
7491
7492 else if (INT_REGNO_P (regno1))
7493 {
7494 if (TARGET_MFPGPR && FP_REGNO_P (regno0))
7495 return true;
7496
7497 else if (TARGET_DIRECT_MOVE && VSX_REGNO_P (regno0))
7498 return true;
7499 }
7500
7501 return false;
7502 }
7503
7504 /* Return true if the OFFSET is valid for the quad address instructions that
7505 use d-form (register + offset) addressing. */
7506
7507 static inline bool
7508 quad_address_offset_p (HOST_WIDE_INT offset)
7509 {
7510 return (IN_RANGE (offset, -32768, 32767) && ((offset) & 0xf) == 0);
7511 }
7512
7513 /* Return true if the ADDR is an acceptable address for a quad memory
7514 operation of mode MODE (either LQ/STQ for general purpose registers, or
7515 LXV/STXV for vector registers under ISA 3.0. GPR_P is true if this address
7516 is intended for LQ/STQ. If it is false, the address is intended for the ISA
7517 3.0 LXV/STXV instruction. */
7518
7519 bool
7520 quad_address_p (rtx addr, machine_mode mode, bool strict)
7521 {
7522 rtx op0, op1;
7523
7524 if (GET_MODE_SIZE (mode) != 16)
7525 return false;
7526
7527 if (legitimate_indirect_address_p (addr, strict))
7528 return true;
7529
7530 if (VECTOR_MODE_P (mode) && !mode_supports_dq_form (mode))
7531 return false;
7532
7533 if (GET_CODE (addr) != PLUS)
7534 return false;
7535
7536 op0 = XEXP (addr, 0);
7537 if (!REG_P (op0) || !INT_REG_OK_FOR_BASE_P (op0, strict))
7538 return false;
7539
7540 op1 = XEXP (addr, 1);
7541 if (!CONST_INT_P (op1))
7542 return false;
7543
7544 return quad_address_offset_p (INTVAL (op1));
7545 }
7546
7547 /* Return true if this is a load or store quad operation. This function does
7548 not handle the atomic quad memory instructions. */
7549
7550 bool
7551 quad_load_store_p (rtx op0, rtx op1)
7552 {
7553 bool ret;
7554
7555 if (!TARGET_QUAD_MEMORY)
7556 ret = false;
7557
7558 else if (REG_P (op0) && MEM_P (op1))
7559 ret = (quad_int_reg_operand (op0, GET_MODE (op0))
7560 && quad_memory_operand (op1, GET_MODE (op1))
7561 && !reg_overlap_mentioned_p (op0, op1));
7562
7563 else if (MEM_P (op0) && REG_P (op1))
7564 ret = (quad_memory_operand (op0, GET_MODE (op0))
7565 && quad_int_reg_operand (op1, GET_MODE (op1)));
7566
7567 else
7568 ret = false;
7569
7570 if (TARGET_DEBUG_ADDR)
7571 {
7572 fprintf (stderr, "\n========== quad_load_store, return %s\n",
7573 ret ? "true" : "false");
7574 debug_rtx (gen_rtx_SET (op0, op1));
7575 }
7576
7577 return ret;
7578 }
7579
7580 /* Given an address, return a constant offset term if one exists. */
7581
7582 static rtx
7583 address_offset (rtx op)
7584 {
7585 if (GET_CODE (op) == PRE_INC
7586 || GET_CODE (op) == PRE_DEC)
7587 op = XEXP (op, 0);
7588 else if (GET_CODE (op) == PRE_MODIFY
7589 || GET_CODE (op) == LO_SUM)
7590 op = XEXP (op, 1);
7591
7592 if (GET_CODE (op) == CONST)
7593 op = XEXP (op, 0);
7594
7595 if (GET_CODE (op) == PLUS)
7596 op = XEXP (op, 1);
7597
7598 if (CONST_INT_P (op))
7599 return op;
7600
7601 return NULL_RTX;
7602 }
7603
7604 /* Return true if the MEM operand is a memory operand suitable for use
7605 with a (full width, possibly multiple) gpr load/store. On
7606 powerpc64 this means the offset must be divisible by 4.
7607 Implements 'Y' constraint.
7608
7609 Accept direct, indexed, offset, lo_sum and tocref. Since this is
7610 a constraint function we know the operand has satisfied a suitable
7611 memory predicate. Also accept some odd rtl generated by reload
7612 (see rs6000_legitimize_reload_address for various forms). It is
7613 important that reload rtl be accepted by appropriate constraints
7614 but not by the operand predicate.
7615
7616 Offsetting a lo_sum should not be allowed, except where we know by
7617 alignment that a 32k boundary is not crossed, but see the ???
7618 comment in rs6000_legitimize_reload_address. Note that by
7619 "offsetting" here we mean a further offset to access parts of the
7620 MEM. It's fine to have a lo_sum where the inner address is offset
7621 from a sym, since the same sym+offset will appear in the high part
7622 of the address calculation. */
7623
7624 bool
7625 mem_operand_gpr (rtx op, machine_mode mode)
7626 {
7627 unsigned HOST_WIDE_INT offset;
7628 int extra;
7629 rtx addr = XEXP (op, 0);
7630
7631 /* PR85755: Allow PRE_INC and PRE_DEC addresses. */
7632 if (TARGET_UPDATE
7633 && (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
7634 && mode_supports_pre_incdec_p (mode)
7635 && legitimate_indirect_address_p (XEXP (addr, 0), false))
7636 return true;
7637
7638 /* Don't allow non-offsettable addresses. See PRs 83969 and 84279. */
7639 if (!rs6000_offsettable_memref_p (op, mode, false))
7640 return false;
7641
7642 op = address_offset (addr);
7643 if (op == NULL_RTX)
7644 return true;
7645
7646 offset = INTVAL (op);
7647 if (TARGET_POWERPC64 && (offset & 3) != 0)
7648 return false;
7649
7650 extra = GET_MODE_SIZE (mode) - UNITS_PER_WORD;
7651 if (extra < 0)
7652 extra = 0;
7653
7654 if (GET_CODE (addr) == LO_SUM)
7655 /* For lo_sum addresses, we must allow any offset except one that
7656 causes a wrap, so test only the low 16 bits. */
7657 offset = ((offset & 0xffff) ^ 0x8000) - 0x8000;
7658
7659 return offset + 0x8000 < 0x10000u - extra;
7660 }
7661
7662 /* As above, but for DS-FORM VSX insns. Unlike mem_operand_gpr,
7663 enforce an offset divisible by 4 even for 32-bit. */
7664
7665 bool
7666 mem_operand_ds_form (rtx op, machine_mode mode)
7667 {
7668 unsigned HOST_WIDE_INT offset;
7669 int extra;
7670 rtx addr = XEXP (op, 0);
7671
7672 if (!offsettable_address_p (false, mode, addr))
7673 return false;
7674
7675 op = address_offset (addr);
7676 if (op == NULL_RTX)
7677 return true;
7678
7679 offset = INTVAL (op);
7680 if ((offset & 3) != 0)
7681 return false;
7682
7683 extra = GET_MODE_SIZE (mode) - UNITS_PER_WORD;
7684 if (extra < 0)
7685 extra = 0;
7686
7687 if (GET_CODE (addr) == LO_SUM)
7688 /* For lo_sum addresses, we must allow any offset except one that
7689 causes a wrap, so test only the low 16 bits. */
7690 offset = ((offset & 0xffff) ^ 0x8000) - 0x8000;
7691
7692 return offset + 0x8000 < 0x10000u - extra;
7693 }
7694 \f
7695 /* Subroutines of rs6000_legitimize_address and rs6000_legitimate_address_p. */
7696
7697 static bool
7698 reg_offset_addressing_ok_p (machine_mode mode)
7699 {
7700 switch (mode)
7701 {
7702 case E_V16QImode:
7703 case E_V8HImode:
7704 case E_V4SFmode:
7705 case E_V4SImode:
7706 case E_V2DFmode:
7707 case E_V2DImode:
7708 case E_V1TImode:
7709 case E_TImode:
7710 case E_TFmode:
7711 case E_KFmode:
7712 /* AltiVec/VSX vector modes. Only reg+reg addressing was valid until the
7713 ISA 3.0 vector d-form addressing mode was added. While TImode is not
7714 a vector mode, if we want to use the VSX registers to move it around,
7715 we need to restrict ourselves to reg+reg addressing. Similarly for
7716 IEEE 128-bit floating point that is passed in a single vector
7717 register. */
7718 if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode))
7719 return mode_supports_dq_form (mode);
7720 break;
7721
7722 case E_SDmode:
7723 /* If we can do direct load/stores of SDmode, restrict it to reg+reg
7724 addressing for the LFIWZX and STFIWX instructions. */
7725 if (TARGET_NO_SDMODE_STACK)
7726 return false;
7727 break;
7728
7729 default:
7730 break;
7731 }
7732
7733 return true;
7734 }
7735
7736 static bool
7737 virtual_stack_registers_memory_p (rtx op)
7738 {
7739 int regnum;
7740
7741 if (GET_CODE (op) == REG)
7742 regnum = REGNO (op);
7743
7744 else if (GET_CODE (op) == PLUS
7745 && GET_CODE (XEXP (op, 0)) == REG
7746 && GET_CODE (XEXP (op, 1)) == CONST_INT)
7747 regnum = REGNO (XEXP (op, 0));
7748
7749 else
7750 return false;
7751
7752 return (regnum >= FIRST_VIRTUAL_REGISTER
7753 && regnum <= LAST_VIRTUAL_POINTER_REGISTER);
7754 }
7755
7756 /* Return true if a MODE sized memory accesses to OP plus OFFSET
7757 is known to not straddle a 32k boundary. This function is used
7758 to determine whether -mcmodel=medium code can use TOC pointer
7759 relative addressing for OP. This means the alignment of the TOC
7760 pointer must also be taken into account, and unfortunately that is
7761 only 8 bytes. */
7762
7763 #ifndef POWERPC64_TOC_POINTER_ALIGNMENT
7764 #define POWERPC64_TOC_POINTER_ALIGNMENT 8
7765 #endif
7766
7767 static bool
7768 offsettable_ok_by_alignment (rtx op, HOST_WIDE_INT offset,
7769 machine_mode mode)
7770 {
7771 tree decl;
7772 unsigned HOST_WIDE_INT dsize, dalign, lsb, mask;
7773
7774 if (GET_CODE (op) != SYMBOL_REF)
7775 return false;
7776
7777 /* ISA 3.0 vector d-form addressing is restricted, don't allow
7778 SYMBOL_REF. */
7779 if (mode_supports_dq_form (mode))
7780 return false;
7781
7782 dsize = GET_MODE_SIZE (mode);
7783 decl = SYMBOL_REF_DECL (op);
7784 if (!decl)
7785 {
7786 if (dsize == 0)
7787 return false;
7788
7789 /* -fsection-anchors loses the original SYMBOL_REF_DECL when
7790 replacing memory addresses with an anchor plus offset. We
7791 could find the decl by rummaging around in the block->objects
7792 VEC for the given offset but that seems like too much work. */
7793 dalign = BITS_PER_UNIT;
7794 if (SYMBOL_REF_HAS_BLOCK_INFO_P (op)
7795 && SYMBOL_REF_ANCHOR_P (op)
7796 && SYMBOL_REF_BLOCK (op) != NULL)
7797 {
7798 struct object_block *block = SYMBOL_REF_BLOCK (op);
7799
7800 dalign = block->alignment;
7801 offset += SYMBOL_REF_BLOCK_OFFSET (op);
7802 }
7803 else if (CONSTANT_POOL_ADDRESS_P (op))
7804 {
7805 /* It would be nice to have get_pool_align().. */
7806 machine_mode cmode = get_pool_mode (op);
7807
7808 dalign = GET_MODE_ALIGNMENT (cmode);
7809 }
7810 }
7811 else if (DECL_P (decl))
7812 {
7813 dalign = DECL_ALIGN (decl);
7814
7815 if (dsize == 0)
7816 {
7817 /* Allow BLKmode when the entire object is known to not
7818 cross a 32k boundary. */
7819 if (!DECL_SIZE_UNIT (decl))
7820 return false;
7821
7822 if (!tree_fits_uhwi_p (DECL_SIZE_UNIT (decl)))
7823 return false;
7824
7825 dsize = tree_to_uhwi (DECL_SIZE_UNIT (decl));
7826 if (dsize > 32768)
7827 return false;
7828
7829 dalign /= BITS_PER_UNIT;
7830 if (dalign > POWERPC64_TOC_POINTER_ALIGNMENT)
7831 dalign = POWERPC64_TOC_POINTER_ALIGNMENT;
7832 return dalign >= dsize;
7833 }
7834 }
7835 else
7836 gcc_unreachable ();
7837
7838 /* Find how many bits of the alignment we know for this access. */
7839 dalign /= BITS_PER_UNIT;
7840 if (dalign > POWERPC64_TOC_POINTER_ALIGNMENT)
7841 dalign = POWERPC64_TOC_POINTER_ALIGNMENT;
7842 mask = dalign - 1;
7843 lsb = offset & -offset;
7844 mask &= lsb - 1;
7845 dalign = mask + 1;
7846
7847 return dalign >= dsize;
7848 }
7849
7850 static bool
7851 constant_pool_expr_p (rtx op)
7852 {
7853 rtx base, offset;
7854
7855 split_const (op, &base, &offset);
7856 return (GET_CODE (base) == SYMBOL_REF
7857 && CONSTANT_POOL_ADDRESS_P (base)
7858 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (base), Pmode));
7859 }
7860
7861 /* These are only used to pass through from print_operand/print_operand_address
7862 to rs6000_output_addr_const_extra over the intervening function
7863 output_addr_const which is not target code. */
7864 static const_rtx tocrel_base_oac, tocrel_offset_oac;
7865
7866 /* Return true if OP is a toc pointer relative address (the output
7867 of create_TOC_reference). If STRICT, do not match non-split
7868 -mcmodel=large/medium toc pointer relative addresses. If the pointers
7869 are non-NULL, place base and offset pieces in TOCREL_BASE_RET and
7870 TOCREL_OFFSET_RET respectively. */
7871
7872 bool
7873 toc_relative_expr_p (const_rtx op, bool strict, const_rtx *tocrel_base_ret,
7874 const_rtx *tocrel_offset_ret)
7875 {
7876 if (!TARGET_TOC)
7877 return false;
7878
7879 if (TARGET_CMODEL != CMODEL_SMALL)
7880 {
7881 /* When strict ensure we have everything tidy. */
7882 if (strict
7883 && !(GET_CODE (op) == LO_SUM
7884 && REG_P (XEXP (op, 0))
7885 && INT_REG_OK_FOR_BASE_P (XEXP (op, 0), strict)))
7886 return false;
7887
7888 /* When not strict, allow non-split TOC addresses and also allow
7889 (lo_sum (high ..)) TOC addresses created during reload. */
7890 if (GET_CODE (op) == LO_SUM)
7891 op = XEXP (op, 1);
7892 }
7893
7894 const_rtx tocrel_base = op;
7895 const_rtx tocrel_offset = const0_rtx;
7896
7897 if (GET_CODE (op) == PLUS && add_cint_operand (XEXP (op, 1), GET_MODE (op)))
7898 {
7899 tocrel_base = XEXP (op, 0);
7900 tocrel_offset = XEXP (op, 1);
7901 }
7902
7903 if (tocrel_base_ret)
7904 *tocrel_base_ret = tocrel_base;
7905 if (tocrel_offset_ret)
7906 *tocrel_offset_ret = tocrel_offset;
7907
7908 return (GET_CODE (tocrel_base) == UNSPEC
7909 && XINT (tocrel_base, 1) == UNSPEC_TOCREL
7910 && REG_P (XVECEXP (tocrel_base, 0, 1))
7911 && REGNO (XVECEXP (tocrel_base, 0, 1)) == TOC_REGISTER);
7912 }
7913
7914 /* Return true if X is a constant pool address, and also for cmodel=medium
7915 if X is a toc-relative address known to be offsettable within MODE. */
7916
7917 bool
7918 legitimate_constant_pool_address_p (const_rtx x, machine_mode mode,
7919 bool strict)
7920 {
7921 const_rtx tocrel_base, tocrel_offset;
7922 return (toc_relative_expr_p (x, strict, &tocrel_base, &tocrel_offset)
7923 && (TARGET_CMODEL != CMODEL_MEDIUM
7924 || constant_pool_expr_p (XVECEXP (tocrel_base, 0, 0))
7925 || mode == QImode
7926 || offsettable_ok_by_alignment (XVECEXP (tocrel_base, 0, 0),
7927 INTVAL (tocrel_offset), mode)));
7928 }
7929
7930 static bool
7931 legitimate_small_data_p (machine_mode mode, rtx x)
7932 {
7933 return (DEFAULT_ABI == ABI_V4
7934 && !flag_pic && !TARGET_TOC
7935 && (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST)
7936 && small_data_operand (x, mode));
7937 }
7938
7939 bool
7940 rs6000_legitimate_offset_address_p (machine_mode mode, rtx x,
7941 bool strict, bool worst_case)
7942 {
7943 unsigned HOST_WIDE_INT offset;
7944 unsigned int extra;
7945
7946 if (GET_CODE (x) != PLUS)
7947 return false;
7948 if (!REG_P (XEXP (x, 0)))
7949 return false;
7950 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
7951 return false;
7952 if (mode_supports_dq_form (mode))
7953 return quad_address_p (x, mode, strict);
7954 if (!reg_offset_addressing_ok_p (mode))
7955 return virtual_stack_registers_memory_p (x);
7956 if (legitimate_constant_pool_address_p (x, mode, strict || lra_in_progress))
7957 return true;
7958 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
7959 return false;
7960
7961 offset = INTVAL (XEXP (x, 1));
7962 extra = 0;
7963 switch (mode)
7964 {
7965 case E_DFmode:
7966 case E_DDmode:
7967 case E_DImode:
7968 /* If we are using VSX scalar loads, restrict ourselves to reg+reg
7969 addressing. */
7970 if (VECTOR_MEM_VSX_P (mode))
7971 return false;
7972
7973 if (!worst_case)
7974 break;
7975 if (!TARGET_POWERPC64)
7976 extra = 4;
7977 else if (offset & 3)
7978 return false;
7979 break;
7980
7981 case E_TFmode:
7982 case E_IFmode:
7983 case E_KFmode:
7984 case E_TDmode:
7985 case E_TImode:
7986 case E_PTImode:
7987 extra = 8;
7988 if (!worst_case)
7989 break;
7990 if (!TARGET_POWERPC64)
7991 extra = 12;
7992 else if (offset & 3)
7993 return false;
7994 break;
7995
7996 default:
7997 break;
7998 }
7999
8000 offset += 0x8000;
8001 return offset < 0x10000 - extra;
8002 }
8003
8004 bool
8005 legitimate_indexed_address_p (rtx x, int strict)
8006 {
8007 rtx op0, op1;
8008
8009 if (GET_CODE (x) != PLUS)
8010 return false;
8011
8012 op0 = XEXP (x, 0);
8013 op1 = XEXP (x, 1);
8014
8015 return (REG_P (op0) && REG_P (op1)
8016 && ((INT_REG_OK_FOR_BASE_P (op0, strict)
8017 && INT_REG_OK_FOR_INDEX_P (op1, strict))
8018 || (INT_REG_OK_FOR_BASE_P (op1, strict)
8019 && INT_REG_OK_FOR_INDEX_P (op0, strict))));
8020 }
8021
8022 bool
8023 avoiding_indexed_address_p (machine_mode mode)
8024 {
8025 /* Avoid indexed addressing for modes that have non-indexed
8026 load/store instruction forms. */
8027 return (TARGET_AVOID_XFORM && VECTOR_MEM_NONE_P (mode));
8028 }
8029
8030 bool
8031 legitimate_indirect_address_p (rtx x, int strict)
8032 {
8033 return GET_CODE (x) == REG && INT_REG_OK_FOR_BASE_P (x, strict);
8034 }
8035
8036 bool
8037 macho_lo_sum_memory_operand (rtx x, machine_mode mode)
8038 {
8039 if (!TARGET_MACHO || !flag_pic
8040 || mode != SImode || GET_CODE (x) != MEM)
8041 return false;
8042 x = XEXP (x, 0);
8043
8044 if (GET_CODE (x) != LO_SUM)
8045 return false;
8046 if (GET_CODE (XEXP (x, 0)) != REG)
8047 return false;
8048 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 0))
8049 return false;
8050 x = XEXP (x, 1);
8051
8052 return CONSTANT_P (x);
8053 }
8054
8055 static bool
8056 legitimate_lo_sum_address_p (machine_mode mode, rtx x, int strict)
8057 {
8058 if (GET_CODE (x) != LO_SUM)
8059 return false;
8060 if (GET_CODE (XEXP (x, 0)) != REG)
8061 return false;
8062 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
8063 return false;
8064 /* quad word addresses are restricted, and we can't use LO_SUM. */
8065 if (mode_supports_dq_form (mode))
8066 return false;
8067 x = XEXP (x, 1);
8068
8069 if (TARGET_ELF || TARGET_MACHO)
8070 {
8071 bool large_toc_ok;
8072
8073 if (DEFAULT_ABI == ABI_V4 && flag_pic)
8074 return false;
8075 /* LRA doesn't use LEGITIMIZE_RELOAD_ADDRESS as it usually calls
8076 push_reload from reload pass code. LEGITIMIZE_RELOAD_ADDRESS
8077 recognizes some LO_SUM addresses as valid although this
8078 function says opposite. In most cases, LRA through different
8079 transformations can generate correct code for address reloads.
8080 It can not manage only some LO_SUM cases. So we need to add
8081 code analogous to one in rs6000_legitimize_reload_address for
8082 LOW_SUM here saying that some addresses are still valid. */
8083 large_toc_ok = (lra_in_progress && TARGET_CMODEL != CMODEL_SMALL
8084 && small_toc_ref (x, VOIDmode));
8085 if (TARGET_TOC && ! large_toc_ok)
8086 return false;
8087 if (GET_MODE_NUNITS (mode) != 1)
8088 return false;
8089 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
8090 && !(/* ??? Assume floating point reg based on mode? */
8091 TARGET_HARD_FLOAT && (mode == DFmode || mode == DDmode)))
8092 return false;
8093
8094 return CONSTANT_P (x) || large_toc_ok;
8095 }
8096
8097 return false;
8098 }
8099
8100
8101 /* Try machine-dependent ways of modifying an illegitimate address
8102 to be legitimate. If we find one, return the new, valid address.
8103 This is used from only one place: `memory_address' in explow.c.
8104
8105 OLDX is the address as it was before break_out_memory_refs was
8106 called. In some cases it is useful to look at this to decide what
8107 needs to be done.
8108
8109 It is always safe for this function to do nothing. It exists to
8110 recognize opportunities to optimize the output.
8111
8112 On RS/6000, first check for the sum of a register with a constant
8113 integer that is out of range. If so, generate code to add the
8114 constant with the low-order 16 bits masked to the register and force
8115 this result into another register (this can be done with `cau').
8116 Then generate an address of REG+(CONST&0xffff), allowing for the
8117 possibility of bit 16 being a one.
8118
8119 Then check for the sum of a register and something not constant, try to
8120 load the other things into a register and return the sum. */
8121
8122 static rtx
8123 rs6000_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
8124 machine_mode mode)
8125 {
8126 unsigned int extra;
8127
8128 if (!reg_offset_addressing_ok_p (mode)
8129 || mode_supports_dq_form (mode))
8130 {
8131 if (virtual_stack_registers_memory_p (x))
8132 return x;
8133
8134 /* In theory we should not be seeing addresses of the form reg+0,
8135 but just in case it is generated, optimize it away. */
8136 if (GET_CODE (x) == PLUS && XEXP (x, 1) == const0_rtx)
8137 return force_reg (Pmode, XEXP (x, 0));
8138
8139 /* For TImode with load/store quad, restrict addresses to just a single
8140 pointer, so it works with both GPRs and VSX registers. */
8141 /* Make sure both operands are registers. */
8142 else if (GET_CODE (x) == PLUS
8143 && (mode != TImode || !TARGET_VSX))
8144 return gen_rtx_PLUS (Pmode,
8145 force_reg (Pmode, XEXP (x, 0)),
8146 force_reg (Pmode, XEXP (x, 1)));
8147 else
8148 return force_reg (Pmode, x);
8149 }
8150 if (GET_CODE (x) == SYMBOL_REF)
8151 {
8152 enum tls_model model = SYMBOL_REF_TLS_MODEL (x);
8153 if (model != 0)
8154 return rs6000_legitimize_tls_address (x, model);
8155 }
8156
8157 extra = 0;
8158 switch (mode)
8159 {
8160 case E_TFmode:
8161 case E_TDmode:
8162 case E_TImode:
8163 case E_PTImode:
8164 case E_IFmode:
8165 case E_KFmode:
8166 /* As in legitimate_offset_address_p we do not assume
8167 worst-case. The mode here is just a hint as to the registers
8168 used. A TImode is usually in gprs, but may actually be in
8169 fprs. Leave worst-case scenario for reload to handle via
8170 insn constraints. PTImode is only GPRs. */
8171 extra = 8;
8172 break;
8173 default:
8174 break;
8175 }
8176
8177 if (GET_CODE (x) == PLUS
8178 && GET_CODE (XEXP (x, 0)) == REG
8179 && GET_CODE (XEXP (x, 1)) == CONST_INT
8180 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 1)) + 0x8000)
8181 >= 0x10000 - extra))
8182 {
8183 HOST_WIDE_INT high_int, low_int;
8184 rtx sum;
8185 low_int = ((INTVAL (XEXP (x, 1)) & 0xffff) ^ 0x8000) - 0x8000;
8186 if (low_int >= 0x8000 - extra)
8187 low_int = 0;
8188 high_int = INTVAL (XEXP (x, 1)) - low_int;
8189 sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (x, 0),
8190 GEN_INT (high_int)), 0);
8191 return plus_constant (Pmode, sum, low_int);
8192 }
8193 else if (GET_CODE (x) == PLUS
8194 && GET_CODE (XEXP (x, 0)) == REG
8195 && GET_CODE (XEXP (x, 1)) != CONST_INT
8196 && GET_MODE_NUNITS (mode) == 1
8197 && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
8198 || (/* ??? Assume floating point reg based on mode? */
8199 TARGET_HARD_FLOAT && (mode == DFmode || mode == DDmode)))
8200 && !avoiding_indexed_address_p (mode))
8201 {
8202 return gen_rtx_PLUS (Pmode, XEXP (x, 0),
8203 force_reg (Pmode, force_operand (XEXP (x, 1), 0)));
8204 }
8205 else if ((TARGET_ELF
8206 #if TARGET_MACHO
8207 || !MACHO_DYNAMIC_NO_PIC_P
8208 #endif
8209 )
8210 && TARGET_32BIT
8211 && TARGET_NO_TOC
8212 && ! flag_pic
8213 && GET_CODE (x) != CONST_INT
8214 && GET_CODE (x) != CONST_WIDE_INT
8215 && GET_CODE (x) != CONST_DOUBLE
8216 && CONSTANT_P (x)
8217 && GET_MODE_NUNITS (mode) == 1
8218 && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
8219 || (/* ??? Assume floating point reg based on mode? */
8220 TARGET_HARD_FLOAT && (mode == DFmode || mode == DDmode))))
8221 {
8222 rtx reg = gen_reg_rtx (Pmode);
8223 if (TARGET_ELF)
8224 emit_insn (gen_elf_high (reg, x));
8225 else
8226 emit_insn (gen_macho_high (reg, x));
8227 return gen_rtx_LO_SUM (Pmode, reg, x);
8228 }
8229 else if (TARGET_TOC
8230 && GET_CODE (x) == SYMBOL_REF
8231 && constant_pool_expr_p (x)
8232 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), Pmode))
8233 return create_TOC_reference (x, NULL_RTX);
8234 else
8235 return x;
8236 }
8237
8238 /* Debug version of rs6000_legitimize_address. */
8239 static rtx
8240 rs6000_debug_legitimize_address (rtx x, rtx oldx, machine_mode mode)
8241 {
8242 rtx ret;
8243 rtx_insn *insns;
8244
8245 start_sequence ();
8246 ret = rs6000_legitimize_address (x, oldx, mode);
8247 insns = get_insns ();
8248 end_sequence ();
8249
8250 if (ret != x)
8251 {
8252 fprintf (stderr,
8253 "\nrs6000_legitimize_address: mode %s, old code %s, "
8254 "new code %s, modified\n",
8255 GET_MODE_NAME (mode), GET_RTX_NAME (GET_CODE (x)),
8256 GET_RTX_NAME (GET_CODE (ret)));
8257
8258 fprintf (stderr, "Original address:\n");
8259 debug_rtx (x);
8260
8261 fprintf (stderr, "oldx:\n");
8262 debug_rtx (oldx);
8263
8264 fprintf (stderr, "New address:\n");
8265 debug_rtx (ret);
8266
8267 if (insns)
8268 {
8269 fprintf (stderr, "Insns added:\n");
8270 debug_rtx_list (insns, 20);
8271 }
8272 }
8273 else
8274 {
8275 fprintf (stderr,
8276 "\nrs6000_legitimize_address: mode %s, code %s, no change:\n",
8277 GET_MODE_NAME (mode), GET_RTX_NAME (GET_CODE (x)));
8278
8279 debug_rtx (x);
8280 }
8281
8282 if (insns)
8283 emit_insn (insns);
8284
8285 return ret;
8286 }
8287
8288 /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
8289 We need to emit DTP-relative relocations. */
8290
8291 static void rs6000_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
8292 static void
8293 rs6000_output_dwarf_dtprel (FILE *file, int size, rtx x)
8294 {
8295 switch (size)
8296 {
8297 case 4:
8298 fputs ("\t.long\t", file);
8299 break;
8300 case 8:
8301 fputs (DOUBLE_INT_ASM_OP, file);
8302 break;
8303 default:
8304 gcc_unreachable ();
8305 }
8306 output_addr_const (file, x);
8307 if (TARGET_ELF)
8308 fputs ("@dtprel+0x8000", file);
8309 else if (TARGET_XCOFF && GET_CODE (x) == SYMBOL_REF)
8310 {
8311 switch (SYMBOL_REF_TLS_MODEL (x))
8312 {
8313 case 0:
8314 break;
8315 case TLS_MODEL_LOCAL_EXEC:
8316 fputs ("@le", file);
8317 break;
8318 case TLS_MODEL_INITIAL_EXEC:
8319 fputs ("@ie", file);
8320 break;
8321 case TLS_MODEL_GLOBAL_DYNAMIC:
8322 case TLS_MODEL_LOCAL_DYNAMIC:
8323 fputs ("@m", file);
8324 break;
8325 default:
8326 gcc_unreachable ();
8327 }
8328 }
8329 }
8330
8331 /* Return true if X is a symbol that refers to real (rather than emulated)
8332 TLS. */
8333
8334 static bool
8335 rs6000_real_tls_symbol_ref_p (rtx x)
8336 {
8337 return (GET_CODE (x) == SYMBOL_REF
8338 && SYMBOL_REF_TLS_MODEL (x) >= TLS_MODEL_REAL);
8339 }
8340
8341 /* In the name of slightly smaller debug output, and to cater to
8342 general assembler lossage, recognize various UNSPEC sequences
8343 and turn them back into a direct symbol reference. */
8344
8345 static rtx
8346 rs6000_delegitimize_address (rtx orig_x)
8347 {
8348 rtx x, y, offset;
8349
8350 orig_x = delegitimize_mem_from_attrs (orig_x);
8351 x = orig_x;
8352 if (MEM_P (x))
8353 x = XEXP (x, 0);
8354
8355 y = x;
8356 if (TARGET_CMODEL != CMODEL_SMALL
8357 && GET_CODE (y) == LO_SUM)
8358 y = XEXP (y, 1);
8359
8360 offset = NULL_RTX;
8361 if (GET_CODE (y) == PLUS
8362 && GET_MODE (y) == Pmode
8363 && CONST_INT_P (XEXP (y, 1)))
8364 {
8365 offset = XEXP (y, 1);
8366 y = XEXP (y, 0);
8367 }
8368
8369 if (GET_CODE (y) == UNSPEC
8370 && XINT (y, 1) == UNSPEC_TOCREL)
8371 {
8372 y = XVECEXP (y, 0, 0);
8373
8374 #ifdef HAVE_AS_TLS
8375 /* Do not associate thread-local symbols with the original
8376 constant pool symbol. */
8377 if (TARGET_XCOFF
8378 && GET_CODE (y) == SYMBOL_REF
8379 && CONSTANT_POOL_ADDRESS_P (y)
8380 && rs6000_real_tls_symbol_ref_p (get_pool_constant (y)))
8381 return orig_x;
8382 #endif
8383
8384 if (offset != NULL_RTX)
8385 y = gen_rtx_PLUS (Pmode, y, offset);
8386 if (!MEM_P (orig_x))
8387 return y;
8388 else
8389 return replace_equiv_address_nv (orig_x, y);
8390 }
8391
8392 if (TARGET_MACHO
8393 && GET_CODE (orig_x) == LO_SUM
8394 && GET_CODE (XEXP (orig_x, 1)) == CONST)
8395 {
8396 y = XEXP (XEXP (orig_x, 1), 0);
8397 if (GET_CODE (y) == UNSPEC
8398 && XINT (y, 1) == UNSPEC_MACHOPIC_OFFSET)
8399 return XVECEXP (y, 0, 0);
8400 }
8401
8402 return orig_x;
8403 }
8404
8405 /* Return true if X shouldn't be emitted into the debug info.
8406 The linker doesn't like .toc section references from
8407 .debug_* sections, so reject .toc section symbols. */
8408
8409 static bool
8410 rs6000_const_not_ok_for_debug_p (rtx x)
8411 {
8412 if (GET_CODE (x) == UNSPEC)
8413 return true;
8414 if (GET_CODE (x) == SYMBOL_REF
8415 && CONSTANT_POOL_ADDRESS_P (x))
8416 {
8417 rtx c = get_pool_constant (x);
8418 machine_mode cmode = get_pool_mode (x);
8419 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (c, cmode))
8420 return true;
8421 }
8422
8423 return false;
8424 }
8425
8426 /* Implement the TARGET_LEGITIMATE_COMBINED_INSN hook. */
8427
8428 static bool
8429 rs6000_legitimate_combined_insn (rtx_insn *insn)
8430 {
8431 int icode = INSN_CODE (insn);
8432
8433 /* Reject creating doloop insns. Combine should not be allowed
8434 to create these for a number of reasons:
8435 1) In a nested loop, if combine creates one of these in an
8436 outer loop and the register allocator happens to allocate ctr
8437 to the outer loop insn, then the inner loop can't use ctr.
8438 Inner loops ought to be more highly optimized.
8439 2) Combine often wants to create one of these from what was
8440 originally a three insn sequence, first combining the three
8441 insns to two, then to ctrsi/ctrdi. When ctrsi/ctrdi is not
8442 allocated ctr, the splitter takes use back to the three insn
8443 sequence. It's better to stop combine at the two insn
8444 sequence.
8445 3) Faced with not being able to allocate ctr for ctrsi/crtdi
8446 insns, the register allocator sometimes uses floating point
8447 or vector registers for the pseudo. Since ctrsi/ctrdi is a
8448 jump insn and output reloads are not implemented for jumps,
8449 the ctrsi/ctrdi splitters need to handle all possible cases.
8450 That's a pain, and it gets to be seriously difficult when a
8451 splitter that runs after reload needs memory to transfer from
8452 a gpr to fpr. See PR70098 and PR71763 which are not fixed
8453 for the difficult case. It's better to not create problems
8454 in the first place. */
8455 if (icode != CODE_FOR_nothing
8456 && (icode == CODE_FOR_bdz_si
8457 || icode == CODE_FOR_bdz_di
8458 || icode == CODE_FOR_bdnz_si
8459 || icode == CODE_FOR_bdnz_di
8460 || icode == CODE_FOR_bdztf_si
8461 || icode == CODE_FOR_bdztf_di
8462 || icode == CODE_FOR_bdnztf_si
8463 || icode == CODE_FOR_bdnztf_di))
8464 return false;
8465
8466 return true;
8467 }
8468
8469 /* Construct the SYMBOL_REF for the tls_get_addr function. */
8470
8471 static GTY(()) rtx rs6000_tls_symbol;
8472 static rtx
8473 rs6000_tls_get_addr (void)
8474 {
8475 if (!rs6000_tls_symbol)
8476 rs6000_tls_symbol = init_one_libfunc ("__tls_get_addr");
8477
8478 return rs6000_tls_symbol;
8479 }
8480
8481 /* Construct the SYMBOL_REF for TLS GOT references. */
8482
8483 static GTY(()) rtx rs6000_got_symbol;
8484 static rtx
8485 rs6000_got_sym (void)
8486 {
8487 if (!rs6000_got_symbol)
8488 {
8489 rs6000_got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
8490 SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_LOCAL;
8491 SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_EXTERNAL;
8492 }
8493
8494 return rs6000_got_symbol;
8495 }
8496
8497 /* AIX Thread-Local Address support. */
8498
8499 static rtx
8500 rs6000_legitimize_tls_address_aix (rtx addr, enum tls_model model)
8501 {
8502 rtx sym, mem, tocref, tlsreg, tmpreg, dest, tlsaddr;
8503 const char *name;
8504 char *tlsname;
8505
8506 name = XSTR (addr, 0);
8507 /* Append TLS CSECT qualifier, unless the symbol already is qualified
8508 or the symbol will be in TLS private data section. */
8509 if (name[strlen (name) - 1] != ']'
8510 && (TREE_PUBLIC (SYMBOL_REF_DECL (addr))
8511 || bss_initializer_p (SYMBOL_REF_DECL (addr))))
8512 {
8513 tlsname = XALLOCAVEC (char, strlen (name) + 4);
8514 strcpy (tlsname, name);
8515 strcat (tlsname,
8516 bss_initializer_p (SYMBOL_REF_DECL (addr)) ? "[UL]" : "[TL]");
8517 tlsaddr = copy_rtx (addr);
8518 XSTR (tlsaddr, 0) = ggc_strdup (tlsname);
8519 }
8520 else
8521 tlsaddr = addr;
8522
8523 /* Place addr into TOC constant pool. */
8524 sym = force_const_mem (GET_MODE (tlsaddr), tlsaddr);
8525
8526 /* Output the TOC entry and create the MEM referencing the value. */
8527 if (constant_pool_expr_p (XEXP (sym, 0))
8528 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (XEXP (sym, 0)), Pmode))
8529 {
8530 tocref = create_TOC_reference (XEXP (sym, 0), NULL_RTX);
8531 mem = gen_const_mem (Pmode, tocref);
8532 set_mem_alias_set (mem, get_TOC_alias_set ());
8533 }
8534 else
8535 return sym;
8536
8537 /* Use global-dynamic for local-dynamic. */
8538 if (model == TLS_MODEL_GLOBAL_DYNAMIC
8539 || model == TLS_MODEL_LOCAL_DYNAMIC)
8540 {
8541 /* Create new TOC reference for @m symbol. */
8542 name = XSTR (XVECEXP (XEXP (mem, 0), 0, 0), 0);
8543 tlsname = XALLOCAVEC (char, strlen (name) + 1);
8544 strcpy (tlsname, "*LCM");
8545 strcat (tlsname, name + 3);
8546 rtx modaddr = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (tlsname));
8547 SYMBOL_REF_FLAGS (modaddr) |= SYMBOL_FLAG_LOCAL;
8548 tocref = create_TOC_reference (modaddr, NULL_RTX);
8549 rtx modmem = gen_const_mem (Pmode, tocref);
8550 set_mem_alias_set (modmem, get_TOC_alias_set ());
8551
8552 rtx modreg = gen_reg_rtx (Pmode);
8553 emit_insn (gen_rtx_SET (modreg, modmem));
8554
8555 tmpreg = gen_reg_rtx (Pmode);
8556 emit_insn (gen_rtx_SET (tmpreg, mem));
8557
8558 dest = gen_reg_rtx (Pmode);
8559 if (TARGET_32BIT)
8560 emit_insn (gen_tls_get_addrsi (dest, modreg, tmpreg));
8561 else
8562 emit_insn (gen_tls_get_addrdi (dest, modreg, tmpreg));
8563 return dest;
8564 }
8565 /* Obtain TLS pointer: 32 bit call or 64 bit GPR 13. */
8566 else if (TARGET_32BIT)
8567 {
8568 tlsreg = gen_reg_rtx (SImode);
8569 emit_insn (gen_tls_get_tpointer (tlsreg));
8570 }
8571 else
8572 tlsreg = gen_rtx_REG (DImode, 13);
8573
8574 /* Load the TOC value into temporary register. */
8575 tmpreg = gen_reg_rtx (Pmode);
8576 emit_insn (gen_rtx_SET (tmpreg, mem));
8577 set_unique_reg_note (get_last_insn (), REG_EQUAL,
8578 gen_rtx_MINUS (Pmode, addr, tlsreg));
8579
8580 /* Add TOC symbol value to TLS pointer. */
8581 dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, tmpreg, tlsreg));
8582
8583 return dest;
8584 }
8585
8586 /* ADDR contains a thread-local SYMBOL_REF. Generate code to compute
8587 this (thread-local) address. */
8588
8589 static rtx
8590 rs6000_legitimize_tls_address (rtx addr, enum tls_model model)
8591 {
8592 rtx dest, insn;
8593
8594 if (TARGET_XCOFF)
8595 return rs6000_legitimize_tls_address_aix (addr, model);
8596
8597 dest = gen_reg_rtx (Pmode);
8598 if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 16)
8599 {
8600 rtx tlsreg;
8601
8602 if (TARGET_64BIT)
8603 {
8604 tlsreg = gen_rtx_REG (Pmode, 13);
8605 insn = gen_tls_tprel_64 (dest, tlsreg, addr);
8606 }
8607 else
8608 {
8609 tlsreg = gen_rtx_REG (Pmode, 2);
8610 insn = gen_tls_tprel_32 (dest, tlsreg, addr);
8611 }
8612 emit_insn (insn);
8613 }
8614 else if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 32)
8615 {
8616 rtx tlsreg, tmp;
8617
8618 tmp = gen_reg_rtx (Pmode);
8619 if (TARGET_64BIT)
8620 {
8621 tlsreg = gen_rtx_REG (Pmode, 13);
8622 insn = gen_tls_tprel_ha_64 (tmp, tlsreg, addr);
8623 }
8624 else
8625 {
8626 tlsreg = gen_rtx_REG (Pmode, 2);
8627 insn = gen_tls_tprel_ha_32 (tmp, tlsreg, addr);
8628 }
8629 emit_insn (insn);
8630 if (TARGET_64BIT)
8631 insn = gen_tls_tprel_lo_64 (dest, tmp, addr);
8632 else
8633 insn = gen_tls_tprel_lo_32 (dest, tmp, addr);
8634 emit_insn (insn);
8635 }
8636 else
8637 {
8638 rtx r3, got, tga, tmp1, tmp2, call_insn;
8639
8640 /* We currently use relocations like @got@tlsgd for tls, which
8641 means the linker will handle allocation of tls entries, placing
8642 them in the .got section. So use a pointer to the .got section,
8643 not one to secondary TOC sections used by 64-bit -mminimal-toc,
8644 or to secondary GOT sections used by 32-bit -fPIC. */
8645 if (TARGET_64BIT)
8646 got = gen_rtx_REG (Pmode, 2);
8647 else
8648 {
8649 if (flag_pic == 1)
8650 got = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
8651 else
8652 {
8653 rtx gsym = rs6000_got_sym ();
8654 got = gen_reg_rtx (Pmode);
8655 if (flag_pic == 0)
8656 rs6000_emit_move (got, gsym, Pmode);
8657 else
8658 {
8659 rtx mem, lab;
8660
8661 tmp1 = gen_reg_rtx (Pmode);
8662 tmp2 = gen_reg_rtx (Pmode);
8663 mem = gen_const_mem (Pmode, tmp1);
8664 lab = gen_label_rtx ();
8665 emit_insn (gen_load_toc_v4_PIC_1b (gsym, lab));
8666 emit_move_insn (tmp1, gen_rtx_REG (Pmode, LR_REGNO));
8667 if (TARGET_LINK_STACK)
8668 emit_insn (gen_addsi3 (tmp1, tmp1, GEN_INT (4)));
8669 emit_move_insn (tmp2, mem);
8670 rtx_insn *last = emit_insn (gen_addsi3 (got, tmp1, tmp2));
8671 set_unique_reg_note (last, REG_EQUAL, gsym);
8672 }
8673 }
8674 }
8675
8676 if (model == TLS_MODEL_GLOBAL_DYNAMIC)
8677 {
8678 tga = rs6000_tls_get_addr ();
8679 emit_library_call_value (tga, dest, LCT_CONST, Pmode,
8680 const0_rtx, Pmode);
8681
8682 r3 = gen_rtx_REG (Pmode, 3);
8683 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
8684 {
8685 if (TARGET_64BIT)
8686 insn = gen_tls_gd_aix64 (r3, got, addr, tga, const0_rtx);
8687 else
8688 insn = gen_tls_gd_aix32 (r3, got, addr, tga, const0_rtx);
8689 }
8690 else if (DEFAULT_ABI == ABI_V4)
8691 insn = gen_tls_gd_sysvsi (r3, got, addr, tga, const0_rtx);
8692 else
8693 gcc_unreachable ();
8694 call_insn = last_call_insn ();
8695 PATTERN (call_insn) = insn;
8696 if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
8697 use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn),
8698 pic_offset_table_rtx);
8699 }
8700 else if (model == TLS_MODEL_LOCAL_DYNAMIC)
8701 {
8702 tga = rs6000_tls_get_addr ();
8703 tmp1 = gen_reg_rtx (Pmode);
8704 emit_library_call_value (tga, tmp1, LCT_CONST, Pmode,
8705 const0_rtx, Pmode);
8706
8707 r3 = gen_rtx_REG (Pmode, 3);
8708 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
8709 {
8710 if (TARGET_64BIT)
8711 insn = gen_tls_ld_aix64 (r3, got, tga, const0_rtx);
8712 else
8713 insn = gen_tls_ld_aix32 (r3, got, tga, const0_rtx);
8714 }
8715 else if (DEFAULT_ABI == ABI_V4)
8716 insn = gen_tls_ld_sysvsi (r3, got, tga, const0_rtx);
8717 else
8718 gcc_unreachable ();
8719 call_insn = last_call_insn ();
8720 PATTERN (call_insn) = insn;
8721 if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
8722 use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn),
8723 pic_offset_table_rtx);
8724
8725 if (rs6000_tls_size == 16)
8726 {
8727 if (TARGET_64BIT)
8728 insn = gen_tls_dtprel_64 (dest, tmp1, addr);
8729 else
8730 insn = gen_tls_dtprel_32 (dest, tmp1, addr);
8731 }
8732 else if (rs6000_tls_size == 32)
8733 {
8734 tmp2 = gen_reg_rtx (Pmode);
8735 if (TARGET_64BIT)
8736 insn = gen_tls_dtprel_ha_64 (tmp2, tmp1, addr);
8737 else
8738 insn = gen_tls_dtprel_ha_32 (tmp2, tmp1, addr);
8739 emit_insn (insn);
8740 if (TARGET_64BIT)
8741 insn = gen_tls_dtprel_lo_64 (dest, tmp2, addr);
8742 else
8743 insn = gen_tls_dtprel_lo_32 (dest, tmp2, addr);
8744 }
8745 else
8746 {
8747 tmp2 = gen_reg_rtx (Pmode);
8748 if (TARGET_64BIT)
8749 insn = gen_tls_got_dtprel_64 (tmp2, got, addr);
8750 else
8751 insn = gen_tls_got_dtprel_32 (tmp2, got, addr);
8752 emit_insn (insn);
8753 insn = gen_rtx_SET (dest, gen_rtx_PLUS (Pmode, tmp2, tmp1));
8754 }
8755 emit_insn (insn);
8756 }
8757 else
8758 {
8759 /* IE, or 64-bit offset LE. */
8760 tmp2 = gen_reg_rtx (Pmode);
8761 if (TARGET_64BIT)
8762 insn = gen_tls_got_tprel_64 (tmp2, got, addr);
8763 else
8764 insn = gen_tls_got_tprel_32 (tmp2, got, addr);
8765 emit_insn (insn);
8766 if (TARGET_64BIT)
8767 insn = gen_tls_tls_64 (dest, tmp2, addr);
8768 else
8769 insn = gen_tls_tls_32 (dest, tmp2, addr);
8770 emit_insn (insn);
8771 }
8772 }
8773
8774 return dest;
8775 }
8776
8777 /* Only create the global variable for the stack protect guard if we are using
8778 the global flavor of that guard. */
8779 static tree
8780 rs6000_init_stack_protect_guard (void)
8781 {
8782 if (rs6000_stack_protector_guard == SSP_GLOBAL)
8783 return default_stack_protect_guard ();
8784
8785 return NULL_TREE;
8786 }
8787
8788 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
8789
8790 static bool
8791 rs6000_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
8792 {
8793 if (GET_CODE (x) == HIGH
8794 && GET_CODE (XEXP (x, 0)) == UNSPEC)
8795 return true;
8796
8797 /* A TLS symbol in the TOC cannot contain a sum. */
8798 if (GET_CODE (x) == CONST
8799 && GET_CODE (XEXP (x, 0)) == PLUS
8800 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
8801 && SYMBOL_REF_TLS_MODEL (XEXP (XEXP (x, 0), 0)) != 0)
8802 return true;
8803
8804 /* Do not place an ELF TLS symbol in the constant pool. */
8805 return TARGET_ELF && tls_referenced_p (x);
8806 }
8807
8808 /* Return true iff the given SYMBOL_REF refers to a constant pool entry
8809 that we have put in the TOC, or for cmodel=medium, if the SYMBOL_REF
8810 can be addressed relative to the toc pointer. */
8811
8812 static bool
8813 use_toc_relative_ref (rtx sym, machine_mode mode)
8814 {
8815 return ((constant_pool_expr_p (sym)
8816 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (sym),
8817 get_pool_mode (sym)))
8818 || (TARGET_CMODEL == CMODEL_MEDIUM
8819 && SYMBOL_REF_LOCAL_P (sym)
8820 && GET_MODE_SIZE (mode) <= POWERPC64_TOC_POINTER_ALIGNMENT));
8821 }
8822
8823 /* Our implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to
8824 replace the input X, or the original X if no replacement is called for.
8825 The output parameter *WIN is 1 if the calling macro should goto WIN,
8826 0 if it should not.
8827
8828 For RS/6000, we wish to handle large displacements off a base
8829 register by splitting the addend across an addiu/addis and the mem insn.
8830 This cuts number of extra insns needed from 3 to 1.
8831
8832 On Darwin, we use this to generate code for floating point constants.
8833 A movsf_low is generated so we wind up with 2 instructions rather than 3.
8834 The Darwin code is inside #if TARGET_MACHO because only then are the
8835 machopic_* functions defined. */
8836 static rtx
8837 rs6000_legitimize_reload_address (rtx x, machine_mode mode,
8838 int opnum, int type,
8839 int ind_levels ATTRIBUTE_UNUSED, int *win)
8840 {
8841 bool reg_offset_p = reg_offset_addressing_ok_p (mode);
8842 bool quad_offset_p = mode_supports_dq_form (mode);
8843
8844 /* Nasty hack for vsx_splat_v2df/v2di load from mem, which takes a
8845 DFmode/DImode MEM. Ditto for ISA 3.0 vsx_splat_v4sf/v4si. */
8846 if (reg_offset_p
8847 && opnum == 1
8848 && ((mode == DFmode && recog_data.operand_mode[0] == V2DFmode)
8849 || (mode == DImode && recog_data.operand_mode[0] == V2DImode)
8850 || (mode == SFmode && recog_data.operand_mode[0] == V4SFmode
8851 && TARGET_P9_VECTOR)
8852 || (mode == SImode && recog_data.operand_mode[0] == V4SImode
8853 && TARGET_P9_VECTOR)))
8854 reg_offset_p = false;
8855
8856 /* We must recognize output that we have already generated ourselves. */
8857 if (GET_CODE (x) == PLUS
8858 && GET_CODE (XEXP (x, 0)) == PLUS
8859 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
8860 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
8861 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8862 {
8863 if (TARGET_DEBUG_ADDR)
8864 {
8865 fprintf (stderr, "\nlegitimize_reload_address push_reload #1:\n");
8866 debug_rtx (x);
8867 }
8868 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
8869 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
8870 opnum, (enum reload_type) type);
8871 *win = 1;
8872 return x;
8873 }
8874
8875 /* Likewise for (lo_sum (high ...) ...) output we have generated. */
8876 if (GET_CODE (x) == LO_SUM
8877 && GET_CODE (XEXP (x, 0)) == HIGH)
8878 {
8879 if (TARGET_DEBUG_ADDR)
8880 {
8881 fprintf (stderr, "\nlegitimize_reload_address push_reload #2:\n");
8882 debug_rtx (x);
8883 }
8884 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
8885 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
8886 opnum, (enum reload_type) type);
8887 *win = 1;
8888 return x;
8889 }
8890
8891 #if TARGET_MACHO
8892 if (DEFAULT_ABI == ABI_DARWIN && flag_pic
8893 && GET_CODE (x) == LO_SUM
8894 && GET_CODE (XEXP (x, 0)) == PLUS
8895 && XEXP (XEXP (x, 0), 0) == pic_offset_table_rtx
8896 && GET_CODE (XEXP (XEXP (x, 0), 1)) == HIGH
8897 && XEXP (XEXP (XEXP (x, 0), 1), 0) == XEXP (x, 1)
8898 && machopic_operand_p (XEXP (x, 1)))
8899 {
8900 /* Result of previous invocation of this function on Darwin
8901 floating point constant. */
8902 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
8903 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
8904 opnum, (enum reload_type) type);
8905 *win = 1;
8906 return x;
8907 }
8908 #endif
8909
8910 if (TARGET_CMODEL != CMODEL_SMALL
8911 && reg_offset_p
8912 && !quad_offset_p
8913 && small_toc_ref (x, VOIDmode))
8914 {
8915 rtx hi = gen_rtx_HIGH (Pmode, copy_rtx (x));
8916 x = gen_rtx_LO_SUM (Pmode, hi, x);
8917 if (TARGET_DEBUG_ADDR)
8918 {
8919 fprintf (stderr, "\nlegitimize_reload_address push_reload #3:\n");
8920 debug_rtx (x);
8921 }
8922 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
8923 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
8924 opnum, (enum reload_type) type);
8925 *win = 1;
8926 return x;
8927 }
8928
8929 if (GET_CODE (x) == PLUS
8930 && REG_P (XEXP (x, 0))
8931 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
8932 && INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 1)
8933 && CONST_INT_P (XEXP (x, 1))
8934 && reg_offset_p
8935 && (quad_offset_p || !VECTOR_MODE_P (mode) || VECTOR_MEM_NONE_P (mode)))
8936 {
8937 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
8938 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;
8939 HOST_WIDE_INT high
8940 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;
8941
8942 /* Check for 32-bit overflow or quad addresses with one of the
8943 four least significant bits set. */
8944 if (high + low != val
8945 || (quad_offset_p && (low & 0xf)))
8946 {
8947 *win = 0;
8948 return x;
8949 }
8950
8951 /* Reload the high part into a base reg; leave the low part
8952 in the mem directly. */
8953
8954 x = gen_rtx_PLUS (GET_MODE (x),
8955 gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
8956 GEN_INT (high)),
8957 GEN_INT (low));
8958
8959 if (TARGET_DEBUG_ADDR)
8960 {
8961 fprintf (stderr, "\nlegitimize_reload_address push_reload #4:\n");
8962 debug_rtx (x);
8963 }
8964 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
8965 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
8966 opnum, (enum reload_type) type);
8967 *win = 1;
8968 return x;
8969 }
8970
8971 if (GET_CODE (x) == SYMBOL_REF
8972 && reg_offset_p
8973 && !quad_offset_p
8974 && (!VECTOR_MODE_P (mode) || VECTOR_MEM_NONE_P (mode))
8975 #if TARGET_MACHO
8976 && DEFAULT_ABI == ABI_DARWIN
8977 && (flag_pic || MACHO_DYNAMIC_NO_PIC_P)
8978 && machopic_symbol_defined_p (x)
8979 #else
8980 && DEFAULT_ABI == ABI_V4
8981 && !flag_pic
8982 #endif
8983 /* Don't do this for TFmode or TDmode, since the result isn't offsettable.
8984 The same goes for DImode without 64-bit gprs and DFmode and DDmode
8985 without fprs.
8986 ??? Assume floating point reg based on mode? This assumption is
8987 violated by eg. powerpc-linux -m32 compile of gcc.dg/pr28796-2.c
8988 where reload ends up doing a DFmode load of a constant from
8989 mem using two gprs. Unfortunately, at this point reload
8990 hasn't yet selected regs so poking around in reload data
8991 won't help and even if we could figure out the regs reliably,
8992 we'd still want to allow this transformation when the mem is
8993 naturally aligned. Since we say the address is good here, we
8994 can't disable offsets from LO_SUMs in mem_operand_gpr.
8995 FIXME: Allow offset from lo_sum for other modes too, when
8996 mem is sufficiently aligned.
8997
8998 Also disallow this if the type can go in VMX/Altivec registers, since
8999 those registers do not have d-form (reg+offset) address modes. */
9000 && !reg_addr[mode].scalar_in_vmx_p
9001 && mode != TFmode
9002 && mode != TDmode
9003 && mode != IFmode
9004 && mode != KFmode
9005 && (mode != TImode || !TARGET_VSX)
9006 && mode != PTImode
9007 && (mode != DImode || TARGET_POWERPC64)
9008 && ((mode != DFmode && mode != DDmode) || TARGET_POWERPC64
9009 || TARGET_HARD_FLOAT))
9010 {
9011 #if TARGET_MACHO
9012 if (flag_pic)
9013 {
9014 rtx offset = machopic_gen_offset (x);
9015 x = gen_rtx_LO_SUM (GET_MODE (x),
9016 gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
9017 gen_rtx_HIGH (Pmode, offset)), offset);
9018 }
9019 else
9020 #endif
9021 x = gen_rtx_LO_SUM (GET_MODE (x),
9022 gen_rtx_HIGH (Pmode, x), x);
9023
9024 if (TARGET_DEBUG_ADDR)
9025 {
9026 fprintf (stderr, "\nlegitimize_reload_address push_reload #5:\n");
9027 debug_rtx (x);
9028 }
9029 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
9030 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
9031 opnum, (enum reload_type) type);
9032 *win = 1;
9033 return x;
9034 }
9035
9036 /* Reload an offset address wrapped by an AND that represents the
9037 masking of the lower bits. Strip the outer AND and let reload
9038 convert the offset address into an indirect address. For VSX,
9039 force reload to create the address with an AND in a separate
9040 register, because we can't guarantee an altivec register will
9041 be used. */
9042 if (VECTOR_MEM_ALTIVEC_P (mode)
9043 && GET_CODE (x) == AND
9044 && GET_CODE (XEXP (x, 0)) == PLUS
9045 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
9046 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
9047 && GET_CODE (XEXP (x, 1)) == CONST_INT
9048 && INTVAL (XEXP (x, 1)) == -16)
9049 {
9050 x = XEXP (x, 0);
9051 *win = 1;
9052 return x;
9053 }
9054
9055 if (TARGET_TOC
9056 && reg_offset_p
9057 && !quad_offset_p
9058 && GET_CODE (x) == SYMBOL_REF
9059 && use_toc_relative_ref (x, mode))
9060 {
9061 x = create_TOC_reference (x, NULL_RTX);
9062 if (TARGET_CMODEL != CMODEL_SMALL)
9063 {
9064 if (TARGET_DEBUG_ADDR)
9065 {
9066 fprintf (stderr, "\nlegitimize_reload_address push_reload #6:\n");
9067 debug_rtx (x);
9068 }
9069 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
9070 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
9071 opnum, (enum reload_type) type);
9072 }
9073 *win = 1;
9074 return x;
9075 }
9076 *win = 0;
9077 return x;
9078 }
9079
9080 /* Debug version of rs6000_legitimize_reload_address. */
9081 static rtx
9082 rs6000_debug_legitimize_reload_address (rtx x, machine_mode mode,
9083 int opnum, int type,
9084 int ind_levels, int *win)
9085 {
9086 rtx ret = rs6000_legitimize_reload_address (x, mode, opnum, type,
9087 ind_levels, win);
9088 fprintf (stderr,
9089 "\nrs6000_legitimize_reload_address: mode = %s, opnum = %d, "
9090 "type = %d, ind_levels = %d, win = %d, original addr:\n",
9091 GET_MODE_NAME (mode), opnum, type, ind_levels, *win);
9092 debug_rtx (x);
9093
9094 if (x == ret)
9095 fprintf (stderr, "Same address returned\n");
9096 else if (!ret)
9097 fprintf (stderr, "NULL returned\n");
9098 else
9099 {
9100 fprintf (stderr, "New address:\n");
9101 debug_rtx (ret);
9102 }
9103
9104 return ret;
9105 }
9106
9107 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
9108 that is a valid memory address for an instruction.
9109 The MODE argument is the machine mode for the MEM expression
9110 that wants to use this address.
9111
9112 On the RS/6000, there are four valid address: a SYMBOL_REF that
9113 refers to a constant pool entry of an address (or the sum of it
9114 plus a constant), a short (16-bit signed) constant plus a register,
9115 the sum of two registers, or a register indirect, possibly with an
9116 auto-increment. For DFmode, DDmode and DImode with a constant plus
9117 register, we must ensure that both words are addressable or PowerPC64
9118 with offset word aligned.
9119
9120 For modes spanning multiple registers (DFmode and DDmode in 32-bit GPRs,
9121 32-bit DImode, TImode, TFmode, TDmode), indexed addressing cannot be used
9122 because adjacent memory cells are accessed by adding word-sized offsets
9123 during assembly output. */
9124 static bool
9125 rs6000_legitimate_address_p (machine_mode mode, rtx x, bool reg_ok_strict)
9126 {
9127 bool reg_offset_p = reg_offset_addressing_ok_p (mode);
9128 bool quad_offset_p = mode_supports_dq_form (mode);
9129
9130 /* If this is an unaligned stvx/ldvx type address, discard the outer AND. */
9131 if (VECTOR_MEM_ALTIVEC_P (mode)
9132 && GET_CODE (x) == AND
9133 && GET_CODE (XEXP (x, 1)) == CONST_INT
9134 && INTVAL (XEXP (x, 1)) == -16)
9135 x = XEXP (x, 0);
9136
9137 if (TARGET_ELF && RS6000_SYMBOL_REF_TLS_P (x))
9138 return 0;
9139 if (legitimate_indirect_address_p (x, reg_ok_strict))
9140 return 1;
9141 if (TARGET_UPDATE
9142 && (GET_CODE (x) == PRE_INC || GET_CODE (x) == PRE_DEC)
9143 && mode_supports_pre_incdec_p (mode)
9144 && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict))
9145 return 1;
9146 /* Handle restricted vector d-form offsets in ISA 3.0. */
9147 if (quad_offset_p)
9148 {
9149 if (quad_address_p (x, mode, reg_ok_strict))
9150 return 1;
9151 }
9152 else if (virtual_stack_registers_memory_p (x))
9153 return 1;
9154
9155 else if (reg_offset_p)
9156 {
9157 if (legitimate_small_data_p (mode, x))
9158 return 1;
9159 if (legitimate_constant_pool_address_p (x, mode,
9160 reg_ok_strict || lra_in_progress))
9161 return 1;
9162 }
9163
9164 /* For TImode, if we have TImode in VSX registers, only allow register
9165 indirect addresses. This will allow the values to go in either GPRs
9166 or VSX registers without reloading. The vector types would tend to
9167 go into VSX registers, so we allow REG+REG, while TImode seems
9168 somewhat split, in that some uses are GPR based, and some VSX based. */
9169 /* FIXME: We could loosen this by changing the following to
9170 if (mode == TImode && TARGET_QUAD_MEMORY && TARGET_VSX)
9171 but currently we cannot allow REG+REG addressing for TImode. See
9172 PR72827 for complete details on how this ends up hoodwinking DSE. */
9173 if (mode == TImode && TARGET_VSX)
9174 return 0;
9175 /* If not REG_OK_STRICT (before reload) let pass any stack offset. */
9176 if (! reg_ok_strict
9177 && reg_offset_p
9178 && GET_CODE (x) == PLUS
9179 && GET_CODE (XEXP (x, 0)) == REG
9180 && (XEXP (x, 0) == virtual_stack_vars_rtx
9181 || XEXP (x, 0) == arg_pointer_rtx)
9182 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9183 return 1;
9184 if (rs6000_legitimate_offset_address_p (mode, x, reg_ok_strict, false))
9185 return 1;
9186 if (!FLOAT128_2REG_P (mode)
9187 && (TARGET_HARD_FLOAT
9188 || TARGET_POWERPC64
9189 || (mode != DFmode && mode != DDmode))
9190 && (TARGET_POWERPC64 || mode != DImode)
9191 && (mode != TImode || VECTOR_MEM_VSX_P (TImode))
9192 && mode != PTImode
9193 && !avoiding_indexed_address_p (mode)
9194 && legitimate_indexed_address_p (x, reg_ok_strict))
9195 return 1;
9196 if (TARGET_UPDATE && GET_CODE (x) == PRE_MODIFY
9197 && mode_supports_pre_modify_p (mode)
9198 && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict)
9199 && (rs6000_legitimate_offset_address_p (mode, XEXP (x, 1),
9200 reg_ok_strict, false)
9201 || (!avoiding_indexed_address_p (mode)
9202 && legitimate_indexed_address_p (XEXP (x, 1), reg_ok_strict)))
9203 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
9204 return 1;
9205 if (reg_offset_p && !quad_offset_p
9206 && legitimate_lo_sum_address_p (mode, x, reg_ok_strict))
9207 return 1;
9208 return 0;
9209 }
9210
9211 /* Debug version of rs6000_legitimate_address_p. */
9212 static bool
9213 rs6000_debug_legitimate_address_p (machine_mode mode, rtx x,
9214 bool reg_ok_strict)
9215 {
9216 bool ret = rs6000_legitimate_address_p (mode, x, reg_ok_strict);
9217 fprintf (stderr,
9218 "\nrs6000_legitimate_address_p: return = %s, mode = %s, "
9219 "strict = %d, reload = %s, code = %s\n",
9220 ret ? "true" : "false",
9221 GET_MODE_NAME (mode),
9222 reg_ok_strict,
9223 (reload_completed ? "after" : "before"),
9224 GET_RTX_NAME (GET_CODE (x)));
9225 debug_rtx (x);
9226
9227 return ret;
9228 }
9229
9230 /* Implement TARGET_MODE_DEPENDENT_ADDRESS_P. */
9231
9232 static bool
9233 rs6000_mode_dependent_address_p (const_rtx addr,
9234 addr_space_t as ATTRIBUTE_UNUSED)
9235 {
9236 return rs6000_mode_dependent_address_ptr (addr);
9237 }
9238
9239 /* Go to LABEL if ADDR (a legitimate address expression)
9240 has an effect that depends on the machine mode it is used for.
9241
9242 On the RS/6000 this is true of all integral offsets (since AltiVec
9243 and VSX modes don't allow them) or is a pre-increment or decrement.
9244
9245 ??? Except that due to conceptual problems in offsettable_address_p
9246 we can't really report the problems of integral offsets. So leave
9247 this assuming that the adjustable offset must be valid for the
9248 sub-words of a TFmode operand, which is what we had before. */
9249
9250 static bool
9251 rs6000_mode_dependent_address (const_rtx addr)
9252 {
9253 switch (GET_CODE (addr))
9254 {
9255 case PLUS:
9256 /* Any offset from virtual_stack_vars_rtx and arg_pointer_rtx
9257 is considered a legitimate address before reload, so there
9258 are no offset restrictions in that case. Note that this
9259 condition is safe in strict mode because any address involving
9260 virtual_stack_vars_rtx or arg_pointer_rtx would already have
9261 been rejected as illegitimate. */
9262 if (XEXP (addr, 0) != virtual_stack_vars_rtx
9263 && XEXP (addr, 0) != arg_pointer_rtx
9264 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
9265 {
9266 unsigned HOST_WIDE_INT val = INTVAL (XEXP (addr, 1));
9267 return val + 0x8000 >= 0x10000 - (TARGET_POWERPC64 ? 8 : 12);
9268 }
9269 break;
9270
9271 case LO_SUM:
9272 /* Anything in the constant pool is sufficiently aligned that
9273 all bytes have the same high part address. */
9274 return !legitimate_constant_pool_address_p (addr, QImode, false);
9275
9276 /* Auto-increment cases are now treated generically in recog.c. */
9277 case PRE_MODIFY:
9278 return TARGET_UPDATE;
9279
9280 /* AND is only allowed in Altivec loads. */
9281 case AND:
9282 return true;
9283
9284 default:
9285 break;
9286 }
9287
9288 return false;
9289 }
9290
9291 /* Debug version of rs6000_mode_dependent_address. */
9292 static bool
9293 rs6000_debug_mode_dependent_address (const_rtx addr)
9294 {
9295 bool ret = rs6000_mode_dependent_address (addr);
9296
9297 fprintf (stderr, "\nrs6000_mode_dependent_address: ret = %s\n",
9298 ret ? "true" : "false");
9299 debug_rtx (addr);
9300
9301 return ret;
9302 }
9303
9304 /* Implement FIND_BASE_TERM. */
9305
9306 rtx
9307 rs6000_find_base_term (rtx op)
9308 {
9309 rtx base;
9310
9311 base = op;
9312 if (GET_CODE (base) == CONST)
9313 base = XEXP (base, 0);
9314 if (GET_CODE (base) == PLUS)
9315 base = XEXP (base, 0);
9316 if (GET_CODE (base) == UNSPEC)
9317 switch (XINT (base, 1))
9318 {
9319 case UNSPEC_TOCREL:
9320 case UNSPEC_MACHOPIC_OFFSET:
9321 /* OP represents SYM [+ OFFSET] - ANCHOR. SYM is the base term
9322 for aliasing purposes. */
9323 return XVECEXP (base, 0, 0);
9324 }
9325
9326 return op;
9327 }
9328
9329 /* More elaborate version of recog's offsettable_memref_p predicate
9330 that works around the ??? note of rs6000_mode_dependent_address.
9331 In particular it accepts
9332
9333 (mem:DI (plus:SI (reg/f:SI 31 31) (const_int 32760 [0x7ff8])))
9334
9335 in 32-bit mode, that the recog predicate rejects. */
9336
9337 static bool
9338 rs6000_offsettable_memref_p (rtx op, machine_mode reg_mode, bool strict)
9339 {
9340 bool worst_case;
9341
9342 if (!MEM_P (op))
9343 return false;
9344
9345 /* First mimic offsettable_memref_p. */
9346 if (offsettable_address_p (strict, GET_MODE (op), XEXP (op, 0)))
9347 return true;
9348
9349 /* offsettable_address_p invokes rs6000_mode_dependent_address, but
9350 the latter predicate knows nothing about the mode of the memory
9351 reference and, therefore, assumes that it is the largest supported
9352 mode (TFmode). As a consequence, legitimate offsettable memory
9353 references are rejected. rs6000_legitimate_offset_address_p contains
9354 the correct logic for the PLUS case of rs6000_mode_dependent_address,
9355 at least with a little bit of help here given that we know the
9356 actual registers used. */
9357 worst_case = ((TARGET_POWERPC64 && GET_MODE_CLASS (reg_mode) == MODE_INT)
9358 || GET_MODE_SIZE (reg_mode) == 4);
9359 return rs6000_legitimate_offset_address_p (GET_MODE (op), XEXP (op, 0),
9360 strict, worst_case);
9361 }
9362
9363 /* Determine the reassociation width to be used in reassociate_bb.
9364 This takes into account how many parallel operations we
9365 can actually do of a given type, and also the latency.
9366 P8:
9367 int add/sub 6/cycle
9368 mul 2/cycle
9369 vect add/sub/mul 2/cycle
9370 fp add/sub/mul 2/cycle
9371 dfp 1/cycle
9372 */
9373
9374 static int
9375 rs6000_reassociation_width (unsigned int opc ATTRIBUTE_UNUSED,
9376 machine_mode mode)
9377 {
9378 switch (rs6000_tune)
9379 {
9380 case PROCESSOR_POWER8:
9381 case PROCESSOR_POWER9:
9382 if (DECIMAL_FLOAT_MODE_P (mode))
9383 return 1;
9384 if (VECTOR_MODE_P (mode))
9385 return 4;
9386 if (INTEGRAL_MODE_P (mode))
9387 return 1;
9388 if (FLOAT_MODE_P (mode))
9389 return 4;
9390 break;
9391 default:
9392 break;
9393 }
9394 return 1;
9395 }
9396
9397 /* Change register usage conditional on target flags. */
9398 static void
9399 rs6000_conditional_register_usage (void)
9400 {
9401 int i;
9402
9403 if (TARGET_DEBUG_TARGET)
9404 fprintf (stderr, "rs6000_conditional_register_usage called\n");
9405
9406 /* Set MQ register fixed (already call_used) so that it will not be
9407 allocated. */
9408 fixed_regs[64] = 1;
9409
9410 /* 64-bit AIX and Linux reserve GPR13 for thread-private data. */
9411 if (TARGET_64BIT)
9412 fixed_regs[13] = call_used_regs[13]
9413 = call_really_used_regs[13] = 1;
9414
9415 /* Conditionally disable FPRs. */
9416 if (TARGET_SOFT_FLOAT)
9417 for (i = 32; i < 64; i++)
9418 fixed_regs[i] = call_used_regs[i]
9419 = call_really_used_regs[i] = 1;
9420
9421 /* The TOC register is not killed across calls in a way that is
9422 visible to the compiler. */
9423 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
9424 call_really_used_regs[2] = 0;
9425
9426 if (DEFAULT_ABI == ABI_V4 && flag_pic == 2)
9427 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
9428
9429 if (DEFAULT_ABI == ABI_V4 && flag_pic == 1)
9430 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
9431 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
9432 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
9433
9434 if (DEFAULT_ABI == ABI_DARWIN && flag_pic)
9435 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
9436 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
9437 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
9438
9439 if (TARGET_TOC && TARGET_MINIMAL_TOC)
9440 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
9441 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
9442
9443 if (!TARGET_ALTIVEC && !TARGET_VSX)
9444 {
9445 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
9446 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
9447 call_really_used_regs[VRSAVE_REGNO] = 1;
9448 }
9449
9450 if (TARGET_ALTIVEC || TARGET_VSX)
9451 global_regs[VSCR_REGNO] = 1;
9452
9453 if (TARGET_ALTIVEC_ABI)
9454 {
9455 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)
9456 call_used_regs[i] = call_really_used_regs[i] = 1;
9457
9458 /* AIX reserves VR20:31 in non-extended ABI mode. */
9459 if (TARGET_XCOFF)
9460 for (i = FIRST_ALTIVEC_REGNO + 20; i < FIRST_ALTIVEC_REGNO + 32; ++i)
9461 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
9462 }
9463 }
9464
9465 \f
9466 /* Output insns to set DEST equal to the constant SOURCE as a series of
9467 lis, ori and shl instructions and return TRUE. */
9468
9469 bool
9470 rs6000_emit_set_const (rtx dest, rtx source)
9471 {
9472 machine_mode mode = GET_MODE (dest);
9473 rtx temp, set;
9474 rtx_insn *insn;
9475 HOST_WIDE_INT c;
9476
9477 gcc_checking_assert (CONST_INT_P (source));
9478 c = INTVAL (source);
9479 switch (mode)
9480 {
9481 case E_QImode:
9482 case E_HImode:
9483 emit_insn (gen_rtx_SET (dest, source));
9484 return true;
9485
9486 case E_SImode:
9487 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (SImode);
9488
9489 emit_insn (gen_rtx_SET (copy_rtx (temp),
9490 GEN_INT (c & ~(HOST_WIDE_INT) 0xffff)));
9491 emit_insn (gen_rtx_SET (dest,
9492 gen_rtx_IOR (SImode, copy_rtx (temp),
9493 GEN_INT (c & 0xffff))));
9494 break;
9495
9496 case E_DImode:
9497 if (!TARGET_POWERPC64)
9498 {
9499 rtx hi, lo;
9500
9501 hi = operand_subword_force (copy_rtx (dest), WORDS_BIG_ENDIAN == 0,
9502 DImode);
9503 lo = operand_subword_force (dest, WORDS_BIG_ENDIAN != 0,
9504 DImode);
9505 emit_move_insn (hi, GEN_INT (c >> 32));
9506 c = ((c & 0xffffffff) ^ 0x80000000) - 0x80000000;
9507 emit_move_insn (lo, GEN_INT (c));
9508 }
9509 else
9510 rs6000_emit_set_long_const (dest, c);
9511 break;
9512
9513 default:
9514 gcc_unreachable ();
9515 }
9516
9517 insn = get_last_insn ();
9518 set = single_set (insn);
9519 if (! CONSTANT_P (SET_SRC (set)))
9520 set_unique_reg_note (insn, REG_EQUAL, GEN_INT (c));
9521
9522 return true;
9523 }
9524
9525 /* Subroutine of rs6000_emit_set_const, handling PowerPC64 DImode.
9526 Output insns to set DEST equal to the constant C as a series of
9527 lis, ori and shl instructions. */
9528
9529 static void
9530 rs6000_emit_set_long_const (rtx dest, HOST_WIDE_INT c)
9531 {
9532 rtx temp;
9533 HOST_WIDE_INT ud1, ud2, ud3, ud4;
9534
9535 ud1 = c & 0xffff;
9536 c = c >> 16;
9537 ud2 = c & 0xffff;
9538 c = c >> 16;
9539 ud3 = c & 0xffff;
9540 c = c >> 16;
9541 ud4 = c & 0xffff;
9542
9543 if ((ud4 == 0xffff && ud3 == 0xffff && ud2 == 0xffff && (ud1 & 0x8000))
9544 || (ud4 == 0 && ud3 == 0 && ud2 == 0 && ! (ud1 & 0x8000)))
9545 emit_move_insn (dest, GEN_INT ((ud1 ^ 0x8000) - 0x8000));
9546
9547 else if ((ud4 == 0xffff && ud3 == 0xffff && (ud2 & 0x8000))
9548 || (ud4 == 0 && ud3 == 0 && ! (ud2 & 0x8000)))
9549 {
9550 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
9551
9552 emit_move_insn (ud1 != 0 ? copy_rtx (temp) : dest,
9553 GEN_INT (((ud2 << 16) ^ 0x80000000) - 0x80000000));
9554 if (ud1 != 0)
9555 emit_move_insn (dest,
9556 gen_rtx_IOR (DImode, copy_rtx (temp),
9557 GEN_INT (ud1)));
9558 }
9559 else if (ud3 == 0 && ud4 == 0)
9560 {
9561 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
9562
9563 gcc_assert (ud2 & 0x8000);
9564 emit_move_insn (copy_rtx (temp),
9565 GEN_INT (((ud2 << 16) ^ 0x80000000) - 0x80000000));
9566 if (ud1 != 0)
9567 emit_move_insn (copy_rtx (temp),
9568 gen_rtx_IOR (DImode, copy_rtx (temp),
9569 GEN_INT (ud1)));
9570 emit_move_insn (dest,
9571 gen_rtx_ZERO_EXTEND (DImode,
9572 gen_lowpart (SImode,
9573 copy_rtx (temp))));
9574 }
9575 else if ((ud4 == 0xffff && (ud3 & 0x8000))
9576 || (ud4 == 0 && ! (ud3 & 0x8000)))
9577 {
9578 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
9579
9580 emit_move_insn (copy_rtx (temp),
9581 GEN_INT (((ud3 << 16) ^ 0x80000000) - 0x80000000));
9582 if (ud2 != 0)
9583 emit_move_insn (copy_rtx (temp),
9584 gen_rtx_IOR (DImode, copy_rtx (temp),
9585 GEN_INT (ud2)));
9586 emit_move_insn (ud1 != 0 ? copy_rtx (temp) : dest,
9587 gen_rtx_ASHIFT (DImode, copy_rtx (temp),
9588 GEN_INT (16)));
9589 if (ud1 != 0)
9590 emit_move_insn (dest,
9591 gen_rtx_IOR (DImode, copy_rtx (temp),
9592 GEN_INT (ud1)));
9593 }
9594 else
9595 {
9596 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
9597
9598 emit_move_insn (copy_rtx (temp),
9599 GEN_INT (((ud4 << 16) ^ 0x80000000) - 0x80000000));
9600 if (ud3 != 0)
9601 emit_move_insn (copy_rtx (temp),
9602 gen_rtx_IOR (DImode, copy_rtx (temp),
9603 GEN_INT (ud3)));
9604
9605 emit_move_insn (ud2 != 0 || ud1 != 0 ? copy_rtx (temp) : dest,
9606 gen_rtx_ASHIFT (DImode, copy_rtx (temp),
9607 GEN_INT (32)));
9608 if (ud2 != 0)
9609 emit_move_insn (ud1 != 0 ? copy_rtx (temp) : dest,
9610 gen_rtx_IOR (DImode, copy_rtx (temp),
9611 GEN_INT (ud2 << 16)));
9612 if (ud1 != 0)
9613 emit_move_insn (dest,
9614 gen_rtx_IOR (DImode, copy_rtx (temp),
9615 GEN_INT (ud1)));
9616 }
9617 }
9618
9619 /* Helper for the following. Get rid of [r+r] memory refs
9620 in cases where it won't work (TImode, TFmode, TDmode, PTImode). */
9621
9622 static void
9623 rs6000_eliminate_indexed_memrefs (rtx operands[2])
9624 {
9625 if (GET_CODE (operands[0]) == MEM
9626 && GET_CODE (XEXP (operands[0], 0)) != REG
9627 && ! legitimate_constant_pool_address_p (XEXP (operands[0], 0),
9628 GET_MODE (operands[0]), false))
9629 operands[0]
9630 = replace_equiv_address (operands[0],
9631 copy_addr_to_reg (XEXP (operands[0], 0)));
9632
9633 if (GET_CODE (operands[1]) == MEM
9634 && GET_CODE (XEXP (operands[1], 0)) != REG
9635 && ! legitimate_constant_pool_address_p (XEXP (operands[1], 0),
9636 GET_MODE (operands[1]), false))
9637 operands[1]
9638 = replace_equiv_address (operands[1],
9639 copy_addr_to_reg (XEXP (operands[1], 0)));
9640 }
9641
9642 /* Generate a vector of constants to permute MODE for a little-endian
9643 storage operation by swapping the two halves of a vector. */
9644 static rtvec
9645 rs6000_const_vec (machine_mode mode)
9646 {
9647 int i, subparts;
9648 rtvec v;
9649
9650 switch (mode)
9651 {
9652 case E_V1TImode:
9653 subparts = 1;
9654 break;
9655 case E_V2DFmode:
9656 case E_V2DImode:
9657 subparts = 2;
9658 break;
9659 case E_V4SFmode:
9660 case E_V4SImode:
9661 subparts = 4;
9662 break;
9663 case E_V8HImode:
9664 subparts = 8;
9665 break;
9666 case E_V16QImode:
9667 subparts = 16;
9668 break;
9669 default:
9670 gcc_unreachable();
9671 }
9672
9673 v = rtvec_alloc (subparts);
9674
9675 for (i = 0; i < subparts / 2; ++i)
9676 RTVEC_ELT (v, i) = gen_rtx_CONST_INT (DImode, i + subparts / 2);
9677 for (i = subparts / 2; i < subparts; ++i)
9678 RTVEC_ELT (v, i) = gen_rtx_CONST_INT (DImode, i - subparts / 2);
9679
9680 return v;
9681 }
9682
9683 /* Emit an lxvd2x, stxvd2x, or xxpermdi instruction for a VSX load or
9684 store operation. */
9685 void
9686 rs6000_emit_le_vsx_permute (rtx dest, rtx source, machine_mode mode)
9687 {
9688 /* Scalar permutations are easier to express in integer modes rather than
9689 floating-point modes, so cast them here. We use V1TImode instead
9690 of TImode to ensure that the values don't go through GPRs. */
9691 if (FLOAT128_VECTOR_P (mode))
9692 {
9693 dest = gen_lowpart (V1TImode, dest);
9694 source = gen_lowpart (V1TImode, source);
9695 mode = V1TImode;
9696 }
9697
9698 /* Use ROTATE instead of VEC_SELECT if the mode contains only a single
9699 scalar. */
9700 if (mode == TImode || mode == V1TImode)
9701 emit_insn (gen_rtx_SET (dest, gen_rtx_ROTATE (mode, source,
9702 GEN_INT (64))));
9703 else
9704 {
9705 rtx par = gen_rtx_PARALLEL (VOIDmode, rs6000_const_vec (mode));
9706 emit_insn (gen_rtx_SET (dest, gen_rtx_VEC_SELECT (mode, source, par)));
9707 }
9708 }
9709
9710 /* Emit a little-endian load from vector memory location SOURCE to VSX
9711 register DEST in mode MODE. The load is done with two permuting
9712 insn's that represent an lxvd2x and xxpermdi. */
9713 void
9714 rs6000_emit_le_vsx_load (rtx dest, rtx source, machine_mode mode)
9715 {
9716 /* Use V2DImode to do swaps of types with 128-bit scalare parts (TImode,
9717 V1TImode). */
9718 if (mode == TImode || mode == V1TImode)
9719 {
9720 mode = V2DImode;
9721 dest = gen_lowpart (V2DImode, dest);
9722 source = adjust_address (source, V2DImode, 0);
9723 }
9724
9725 rtx tmp = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (dest) : dest;
9726 rs6000_emit_le_vsx_permute (tmp, source, mode);
9727 rs6000_emit_le_vsx_permute (dest, tmp, mode);
9728 }
9729
9730 /* Emit a little-endian store to vector memory location DEST from VSX
9731 register SOURCE in mode MODE. The store is done with two permuting
9732 insn's that represent an xxpermdi and an stxvd2x. */
9733 void
9734 rs6000_emit_le_vsx_store (rtx dest, rtx source, machine_mode mode)
9735 {
9736 /* This should never be called during or after LRA, because it does
9737 not re-permute the source register. It is intended only for use
9738 during expand. */
9739 gcc_assert (!lra_in_progress && !reload_completed);
9740
9741 /* Use V2DImode to do swaps of types with 128-bit scalar parts (TImode,
9742 V1TImode). */
9743 if (mode == TImode || mode == V1TImode)
9744 {
9745 mode = V2DImode;
9746 dest = adjust_address (dest, V2DImode, 0);
9747 source = gen_lowpart (V2DImode, source);
9748 }
9749
9750 rtx tmp = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (source) : source;
9751 rs6000_emit_le_vsx_permute (tmp, source, mode);
9752 rs6000_emit_le_vsx_permute (dest, tmp, mode);
9753 }
9754
9755 /* Emit a sequence representing a little-endian VSX load or store,
9756 moving data from SOURCE to DEST in mode MODE. This is done
9757 separately from rs6000_emit_move to ensure it is called only
9758 during expand. LE VSX loads and stores introduced later are
9759 handled with a split. The expand-time RTL generation allows
9760 us to optimize away redundant pairs of register-permutes. */
9761 void
9762 rs6000_emit_le_vsx_move (rtx dest, rtx source, machine_mode mode)
9763 {
9764 gcc_assert (!BYTES_BIG_ENDIAN
9765 && VECTOR_MEM_VSX_P (mode)
9766 && !TARGET_P9_VECTOR
9767 && !gpr_or_gpr_p (dest, source)
9768 && (MEM_P (source) ^ MEM_P (dest)));
9769
9770 if (MEM_P (source))
9771 {
9772 gcc_assert (REG_P (dest) || GET_CODE (dest) == SUBREG);
9773 rs6000_emit_le_vsx_load (dest, source, mode);
9774 }
9775 else
9776 {
9777 if (!REG_P (source))
9778 source = force_reg (mode, source);
9779 rs6000_emit_le_vsx_store (dest, source, mode);
9780 }
9781 }
9782
9783 /* Return whether a SFmode or SImode move can be done without converting one
9784 mode to another. This arrises when we have:
9785
9786 (SUBREG:SF (REG:SI ...))
9787 (SUBREG:SI (REG:SF ...))
9788
9789 and one of the values is in a floating point/vector register, where SFmode
9790 scalars are stored in DFmode format. */
9791
9792 bool
9793 valid_sf_si_move (rtx dest, rtx src, machine_mode mode)
9794 {
9795 if (TARGET_ALLOW_SF_SUBREG)
9796 return true;
9797
9798 if (mode != SFmode && GET_MODE_CLASS (mode) != MODE_INT)
9799 return true;
9800
9801 if (!SUBREG_P (src) || !sf_subreg_operand (src, mode))
9802 return true;
9803
9804 /*. Allow (set (SUBREG:SI (REG:SF)) (SUBREG:SI (REG:SF))). */
9805 if (SUBREG_P (dest))
9806 {
9807 rtx dest_subreg = SUBREG_REG (dest);
9808 rtx src_subreg = SUBREG_REG (src);
9809 return GET_MODE (dest_subreg) == GET_MODE (src_subreg);
9810 }
9811
9812 return false;
9813 }
9814
9815
9816 /* Helper function to change moves with:
9817
9818 (SUBREG:SF (REG:SI)) and
9819 (SUBREG:SI (REG:SF))
9820
9821 into separate UNSPEC insns. In the PowerPC architecture, scalar SFmode
9822 values are stored as DFmode values in the VSX registers. We need to convert
9823 the bits before we can use a direct move or operate on the bits in the
9824 vector register as an integer type.
9825
9826 Skip things like (set (SUBREG:SI (...) (SUBREG:SI (...)). */
9827
9828 static bool
9829 rs6000_emit_move_si_sf_subreg (rtx dest, rtx source, machine_mode mode)
9830 {
9831 if (TARGET_DIRECT_MOVE_64BIT && !lra_in_progress && !reload_completed
9832 && (!SUBREG_P (dest) || !sf_subreg_operand (dest, mode))
9833 && SUBREG_P (source) && sf_subreg_operand (source, mode))
9834 {
9835 rtx inner_source = SUBREG_REG (source);
9836 machine_mode inner_mode = GET_MODE (inner_source);
9837
9838 if (mode == SImode && inner_mode == SFmode)
9839 {
9840 emit_insn (gen_movsi_from_sf (dest, inner_source));
9841 return true;
9842 }
9843
9844 if (mode == SFmode && inner_mode == SImode)
9845 {
9846 emit_insn (gen_movsf_from_si (dest, inner_source));
9847 return true;
9848 }
9849 }
9850
9851 return false;
9852 }
9853
9854 /* Emit a move from SOURCE to DEST in mode MODE. */
9855 void
9856 rs6000_emit_move (rtx dest, rtx source, machine_mode mode)
9857 {
9858 rtx operands[2];
9859 operands[0] = dest;
9860 operands[1] = source;
9861
9862 if (TARGET_DEBUG_ADDR)
9863 {
9864 fprintf (stderr,
9865 "\nrs6000_emit_move: mode = %s, lra_in_progress = %d, "
9866 "reload_completed = %d, can_create_pseudos = %d.\ndest:\n",
9867 GET_MODE_NAME (mode),
9868 lra_in_progress,
9869 reload_completed,
9870 can_create_pseudo_p ());
9871 debug_rtx (dest);
9872 fprintf (stderr, "source:\n");
9873 debug_rtx (source);
9874 }
9875
9876 /* Sanity checks. Check that we get CONST_DOUBLE only when we should. */
9877 if (CONST_WIDE_INT_P (operands[1])
9878 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9879 {
9880 /* This should be fixed with the introduction of CONST_WIDE_INT. */
9881 gcc_unreachable ();
9882 }
9883
9884 #ifdef HAVE_AS_GNU_ATTRIBUTE
9885 /* If we use a long double type, set the flags in .gnu_attribute that say
9886 what the long double type is. This is to allow the linker's warning
9887 message for the wrong long double to be useful, even if the function does
9888 not do a call (for example, doing a 128-bit add on power9 if the long
9889 double type is IEEE 128-bit. Do not set this if __ibm128 or __floa128 are
9890 used if they aren't the default long dobule type. */
9891 if (rs6000_gnu_attr && (HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE || TARGET_64BIT))
9892 {
9893 if (TARGET_LONG_DOUBLE_128 && (mode == TFmode || mode == TCmode))
9894 rs6000_passes_float = rs6000_passes_long_double = true;
9895
9896 else if (!TARGET_LONG_DOUBLE_128 && (mode == DFmode || mode == DCmode))
9897 rs6000_passes_float = rs6000_passes_long_double = true;
9898 }
9899 #endif
9900
9901 /* See if we need to special case SImode/SFmode SUBREG moves. */
9902 if ((mode == SImode || mode == SFmode) && SUBREG_P (source)
9903 && rs6000_emit_move_si_sf_subreg (dest, source, mode))
9904 return;
9905
9906 /* Check if GCC is setting up a block move that will end up using FP
9907 registers as temporaries. We must make sure this is acceptable. */
9908 if (GET_CODE (operands[0]) == MEM
9909 && GET_CODE (operands[1]) == MEM
9910 && mode == DImode
9911 && (rs6000_slow_unaligned_access (DImode, MEM_ALIGN (operands[0]))
9912 || rs6000_slow_unaligned_access (DImode, MEM_ALIGN (operands[1])))
9913 && ! (rs6000_slow_unaligned_access (SImode,
9914 (MEM_ALIGN (operands[0]) > 32
9915 ? 32 : MEM_ALIGN (operands[0])))
9916 || rs6000_slow_unaligned_access (SImode,
9917 (MEM_ALIGN (operands[1]) > 32
9918 ? 32 : MEM_ALIGN (operands[1]))))
9919 && ! MEM_VOLATILE_P (operands [0])
9920 && ! MEM_VOLATILE_P (operands [1]))
9921 {
9922 emit_move_insn (adjust_address (operands[0], SImode, 0),
9923 adjust_address (operands[1], SImode, 0));
9924 emit_move_insn (adjust_address (copy_rtx (operands[0]), SImode, 4),
9925 adjust_address (copy_rtx (operands[1]), SImode, 4));
9926 return;
9927 }
9928
9929 if (can_create_pseudo_p () && GET_CODE (operands[0]) == MEM
9930 && !gpc_reg_operand (operands[1], mode))
9931 operands[1] = force_reg (mode, operands[1]);
9932
9933 /* Recognize the case where operand[1] is a reference to thread-local
9934 data and load its address to a register. */
9935 if (tls_referenced_p (operands[1]))
9936 {
9937 enum tls_model model;
9938 rtx tmp = operands[1];
9939 rtx addend = NULL;
9940
9941 if (GET_CODE (tmp) == CONST && GET_CODE (XEXP (tmp, 0)) == PLUS)
9942 {
9943 addend = XEXP (XEXP (tmp, 0), 1);
9944 tmp = XEXP (XEXP (tmp, 0), 0);
9945 }
9946
9947 gcc_assert (GET_CODE (tmp) == SYMBOL_REF);
9948 model = SYMBOL_REF_TLS_MODEL (tmp);
9949 gcc_assert (model != 0);
9950
9951 tmp = rs6000_legitimize_tls_address (tmp, model);
9952 if (addend)
9953 {
9954 tmp = gen_rtx_PLUS (mode, tmp, addend);
9955 tmp = force_operand (tmp, operands[0]);
9956 }
9957 operands[1] = tmp;
9958 }
9959
9960 /* 128-bit constant floating-point values on Darwin should really be loaded
9961 as two parts. However, this premature splitting is a problem when DFmode
9962 values can go into Altivec registers. */
9963 if (FLOAT128_IBM_P (mode) && !reg_addr[DFmode].scalar_in_vmx_p
9964 && GET_CODE (operands[1]) == CONST_DOUBLE)
9965 {
9966 rs6000_emit_move (simplify_gen_subreg (DFmode, operands[0], mode, 0),
9967 simplify_gen_subreg (DFmode, operands[1], mode, 0),
9968 DFmode);
9969 rs6000_emit_move (simplify_gen_subreg (DFmode, operands[0], mode,
9970 GET_MODE_SIZE (DFmode)),
9971 simplify_gen_subreg (DFmode, operands[1], mode,
9972 GET_MODE_SIZE (DFmode)),
9973 DFmode);
9974 return;
9975 }
9976
9977 /* Transform (p0:DD, (SUBREG:DD p1:SD)) to ((SUBREG:SD p0:DD),
9978 p1:SD) if p1 is not of floating point class and p0 is spilled as
9979 we can have no analogous movsd_store for this. */
9980 if (lra_in_progress && mode == DDmode
9981 && REG_P (operands[0]) && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER
9982 && reg_preferred_class (REGNO (operands[0])) == NO_REGS
9983 && GET_CODE (operands[1]) == SUBREG && REG_P (SUBREG_REG (operands[1]))
9984 && GET_MODE (SUBREG_REG (operands[1])) == SDmode)
9985 {
9986 enum reg_class cl;
9987 int regno = REGNO (SUBREG_REG (operands[1]));
9988
9989 if (regno >= FIRST_PSEUDO_REGISTER)
9990 {
9991 cl = reg_preferred_class (regno);
9992 regno = reg_renumber[regno];
9993 if (regno < 0)
9994 regno = cl == NO_REGS ? -1 : ira_class_hard_regs[cl][1];
9995 }
9996 if (regno >= 0 && ! FP_REGNO_P (regno))
9997 {
9998 mode = SDmode;
9999 operands[0] = gen_lowpart_SUBREG (SDmode, operands[0]);
10000 operands[1] = SUBREG_REG (operands[1]);
10001 }
10002 }
10003 if (lra_in_progress
10004 && mode == SDmode
10005 && REG_P (operands[0]) && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER
10006 && reg_preferred_class (REGNO (operands[0])) == NO_REGS
10007 && (REG_P (operands[1])
10008 || (GET_CODE (operands[1]) == SUBREG
10009 && REG_P (SUBREG_REG (operands[1])))))
10010 {
10011 int regno = REGNO (GET_CODE (operands[1]) == SUBREG
10012 ? SUBREG_REG (operands[1]) : operands[1]);
10013 enum reg_class cl;
10014
10015 if (regno >= FIRST_PSEUDO_REGISTER)
10016 {
10017 cl = reg_preferred_class (regno);
10018 gcc_assert (cl != NO_REGS);
10019 regno = reg_renumber[regno];
10020 if (regno < 0)
10021 regno = ira_class_hard_regs[cl][0];
10022 }
10023 if (FP_REGNO_P (regno))
10024 {
10025 if (GET_MODE (operands[0]) != DDmode)
10026 operands[0] = gen_rtx_SUBREG (DDmode, operands[0], 0);
10027 emit_insn (gen_movsd_store (operands[0], operands[1]));
10028 }
10029 else if (INT_REGNO_P (regno))
10030 emit_insn (gen_movsd_hardfloat (operands[0], operands[1]));
10031 else
10032 gcc_unreachable();
10033 return;
10034 }
10035 /* Transform ((SUBREG:DD p0:SD), p1:DD) to (p0:SD, (SUBREG:SD
10036 p:DD)) if p0 is not of floating point class and p1 is spilled as
10037 we can have no analogous movsd_load for this. */
10038 if (lra_in_progress && mode == DDmode
10039 && GET_CODE (operands[0]) == SUBREG && REG_P (SUBREG_REG (operands[0]))
10040 && GET_MODE (SUBREG_REG (operands[0])) == SDmode
10041 && REG_P (operands[1]) && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER
10042 && reg_preferred_class (REGNO (operands[1])) == NO_REGS)
10043 {
10044 enum reg_class cl;
10045 int regno = REGNO (SUBREG_REG (operands[0]));
10046
10047 if (regno >= FIRST_PSEUDO_REGISTER)
10048 {
10049 cl = reg_preferred_class (regno);
10050 regno = reg_renumber[regno];
10051 if (regno < 0)
10052 regno = cl == NO_REGS ? -1 : ira_class_hard_regs[cl][0];
10053 }
10054 if (regno >= 0 && ! FP_REGNO_P (regno))
10055 {
10056 mode = SDmode;
10057 operands[0] = SUBREG_REG (operands[0]);
10058 operands[1] = gen_lowpart_SUBREG (SDmode, operands[1]);
10059 }
10060 }
10061 if (lra_in_progress
10062 && mode == SDmode
10063 && (REG_P (operands[0])
10064 || (GET_CODE (operands[0]) == SUBREG
10065 && REG_P (SUBREG_REG (operands[0]))))
10066 && REG_P (operands[1]) && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER
10067 && reg_preferred_class (REGNO (operands[1])) == NO_REGS)
10068 {
10069 int regno = REGNO (GET_CODE (operands[0]) == SUBREG
10070 ? SUBREG_REG (operands[0]) : operands[0]);
10071 enum reg_class cl;
10072
10073 if (regno >= FIRST_PSEUDO_REGISTER)
10074 {
10075 cl = reg_preferred_class (regno);
10076 gcc_assert (cl != NO_REGS);
10077 regno = reg_renumber[regno];
10078 if (regno < 0)
10079 regno = ira_class_hard_regs[cl][0];
10080 }
10081 if (FP_REGNO_P (regno))
10082 {
10083 if (GET_MODE (operands[1]) != DDmode)
10084 operands[1] = gen_rtx_SUBREG (DDmode, operands[1], 0);
10085 emit_insn (gen_movsd_load (operands[0], operands[1]));
10086 }
10087 else if (INT_REGNO_P (regno))
10088 emit_insn (gen_movsd_hardfloat (operands[0], operands[1]));
10089 else
10090 gcc_unreachable();
10091 return;
10092 }
10093
10094 /* FIXME: In the long term, this switch statement should go away
10095 and be replaced by a sequence of tests based on things like
10096 mode == Pmode. */
10097 switch (mode)
10098 {
10099 case E_HImode:
10100 case E_QImode:
10101 if (CONSTANT_P (operands[1])
10102 && GET_CODE (operands[1]) != CONST_INT)
10103 operands[1] = force_const_mem (mode, operands[1]);
10104 break;
10105
10106 case E_TFmode:
10107 case E_TDmode:
10108 case E_IFmode:
10109 case E_KFmode:
10110 if (FLOAT128_2REG_P (mode))
10111 rs6000_eliminate_indexed_memrefs (operands);
10112 /* fall through */
10113
10114 case E_DFmode:
10115 case E_DDmode:
10116 case E_SFmode:
10117 case E_SDmode:
10118 if (CONSTANT_P (operands[1])
10119 && ! easy_fp_constant (operands[1], mode))
10120 operands[1] = force_const_mem (mode, operands[1]);
10121 break;
10122
10123 case E_V16QImode:
10124 case E_V8HImode:
10125 case E_V4SFmode:
10126 case E_V4SImode:
10127 case E_V2DFmode:
10128 case E_V2DImode:
10129 case E_V1TImode:
10130 if (CONSTANT_P (operands[1])
10131 && !easy_vector_constant (operands[1], mode))
10132 operands[1] = force_const_mem (mode, operands[1]);
10133 break;
10134
10135 case E_SImode:
10136 case E_DImode:
10137 /* Use default pattern for address of ELF small data */
10138 if (TARGET_ELF
10139 && mode == Pmode
10140 && DEFAULT_ABI == ABI_V4
10141 && (GET_CODE (operands[1]) == SYMBOL_REF
10142 || GET_CODE (operands[1]) == CONST)
10143 && small_data_operand (operands[1], mode))
10144 {
10145 emit_insn (gen_rtx_SET (operands[0], operands[1]));
10146 return;
10147 }
10148
10149 if (DEFAULT_ABI == ABI_V4
10150 && mode == Pmode && mode == SImode
10151 && flag_pic == 1 && got_operand (operands[1], mode))
10152 {
10153 emit_insn (gen_movsi_got (operands[0], operands[1]));
10154 return;
10155 }
10156
10157 if ((TARGET_ELF || DEFAULT_ABI == ABI_DARWIN)
10158 && TARGET_NO_TOC
10159 && ! flag_pic
10160 && mode == Pmode
10161 && CONSTANT_P (operands[1])
10162 && GET_CODE (operands[1]) != HIGH
10163 && GET_CODE (operands[1]) != CONST_INT)
10164 {
10165 rtx target = (!can_create_pseudo_p ()
10166 ? operands[0]
10167 : gen_reg_rtx (mode));
10168
10169 /* If this is a function address on -mcall-aixdesc,
10170 convert it to the address of the descriptor. */
10171 if (DEFAULT_ABI == ABI_AIX
10172 && GET_CODE (operands[1]) == SYMBOL_REF
10173 && XSTR (operands[1], 0)[0] == '.')
10174 {
10175 const char *name = XSTR (operands[1], 0);
10176 rtx new_ref;
10177 while (*name == '.')
10178 name++;
10179 new_ref = gen_rtx_SYMBOL_REF (Pmode, name);
10180 CONSTANT_POOL_ADDRESS_P (new_ref)
10181 = CONSTANT_POOL_ADDRESS_P (operands[1]);
10182 SYMBOL_REF_FLAGS (new_ref) = SYMBOL_REF_FLAGS (operands[1]);
10183 SYMBOL_REF_USED (new_ref) = SYMBOL_REF_USED (operands[1]);
10184 SYMBOL_REF_DATA (new_ref) = SYMBOL_REF_DATA (operands[1]);
10185 operands[1] = new_ref;
10186 }
10187
10188 if (DEFAULT_ABI == ABI_DARWIN)
10189 {
10190 #if TARGET_MACHO
10191 if (MACHO_DYNAMIC_NO_PIC_P)
10192 {
10193 /* Take care of any required data indirection. */
10194 operands[1] = rs6000_machopic_legitimize_pic_address (
10195 operands[1], mode, operands[0]);
10196 if (operands[0] != operands[1])
10197 emit_insn (gen_rtx_SET (operands[0], operands[1]));
10198 return;
10199 }
10200 #endif
10201 emit_insn (gen_macho_high (target, operands[1]));
10202 emit_insn (gen_macho_low (operands[0], target, operands[1]));
10203 return;
10204 }
10205
10206 emit_insn (gen_elf_high (target, operands[1]));
10207 emit_insn (gen_elf_low (operands[0], target, operands[1]));
10208 return;
10209 }
10210
10211 /* If this is a SYMBOL_REF that refers to a constant pool entry,
10212 and we have put it in the TOC, we just need to make a TOC-relative
10213 reference to it. */
10214 if (TARGET_TOC
10215 && GET_CODE (operands[1]) == SYMBOL_REF
10216 && use_toc_relative_ref (operands[1], mode))
10217 operands[1] = create_TOC_reference (operands[1], operands[0]);
10218 else if (mode == Pmode
10219 && CONSTANT_P (operands[1])
10220 && GET_CODE (operands[1]) != HIGH
10221 && ((GET_CODE (operands[1]) != CONST_INT
10222 && ! easy_fp_constant (operands[1], mode))
10223 || (GET_CODE (operands[1]) == CONST_INT
10224 && (num_insns_constant (operands[1], mode)
10225 > (TARGET_CMODEL != CMODEL_SMALL ? 3 : 2)))
10226 || (GET_CODE (operands[0]) == REG
10227 && FP_REGNO_P (REGNO (operands[0]))))
10228 && !toc_relative_expr_p (operands[1], false, NULL, NULL)
10229 && (TARGET_CMODEL == CMODEL_SMALL
10230 || can_create_pseudo_p ()
10231 || (REG_P (operands[0])
10232 && INT_REG_OK_FOR_BASE_P (operands[0], true))))
10233 {
10234
10235 #if TARGET_MACHO
10236 /* Darwin uses a special PIC legitimizer. */
10237 if (DEFAULT_ABI == ABI_DARWIN && MACHOPIC_INDIRECT)
10238 {
10239 operands[1] =
10240 rs6000_machopic_legitimize_pic_address (operands[1], mode,
10241 operands[0]);
10242 if (operands[0] != operands[1])
10243 emit_insn (gen_rtx_SET (operands[0], operands[1]));
10244 return;
10245 }
10246 #endif
10247
10248 /* If we are to limit the number of things we put in the TOC and
10249 this is a symbol plus a constant we can add in one insn,
10250 just put the symbol in the TOC and add the constant. */
10251 if (GET_CODE (operands[1]) == CONST
10252 && TARGET_NO_SUM_IN_TOC
10253 && GET_CODE (XEXP (operands[1], 0)) == PLUS
10254 && add_operand (XEXP (XEXP (operands[1], 0), 1), mode)
10255 && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
10256 || GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
10257 && ! side_effects_p (operands[0]))
10258 {
10259 rtx sym =
10260 force_const_mem (mode, XEXP (XEXP (operands[1], 0), 0));
10261 rtx other = XEXP (XEXP (operands[1], 0), 1);
10262
10263 sym = force_reg (mode, sym);
10264 emit_insn (gen_add3_insn (operands[0], sym, other));
10265 return;
10266 }
10267
10268 operands[1] = force_const_mem (mode, operands[1]);
10269
10270 if (TARGET_TOC
10271 && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
10272 && use_toc_relative_ref (XEXP (operands[1], 0), mode))
10273 {
10274 rtx tocref = create_TOC_reference (XEXP (operands[1], 0),
10275 operands[0]);
10276 operands[1] = gen_const_mem (mode, tocref);
10277 set_mem_alias_set (operands[1], get_TOC_alias_set ());
10278 }
10279 }
10280 break;
10281
10282 case E_TImode:
10283 if (!VECTOR_MEM_VSX_P (TImode))
10284 rs6000_eliminate_indexed_memrefs (operands);
10285 break;
10286
10287 case E_PTImode:
10288 rs6000_eliminate_indexed_memrefs (operands);
10289 break;
10290
10291 default:
10292 fatal_insn ("bad move", gen_rtx_SET (dest, source));
10293 }
10294
10295 /* Above, we may have called force_const_mem which may have returned
10296 an invalid address. If we can, fix this up; otherwise, reload will
10297 have to deal with it. */
10298 if (GET_CODE (operands[1]) == MEM)
10299 operands[1] = validize_mem (operands[1]);
10300
10301 emit_insn (gen_rtx_SET (operands[0], operands[1]));
10302 }
10303 \f
10304 /* Nonzero if we can use a floating-point register to pass this arg. */
10305 #define USE_FP_FOR_ARG_P(CUM,MODE) \
10306 (SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) \
10307 && (CUM)->fregno <= FP_ARG_MAX_REG \
10308 && TARGET_HARD_FLOAT)
10309
10310 /* Nonzero if we can use an AltiVec register to pass this arg. */
10311 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,NAMED) \
10312 (ALTIVEC_OR_VSX_VECTOR_MODE (MODE) \
10313 && (CUM)->vregno <= ALTIVEC_ARG_MAX_REG \
10314 && TARGET_ALTIVEC_ABI \
10315 && (NAMED))
10316
10317 /* Walk down the type tree of TYPE counting consecutive base elements.
10318 If *MODEP is VOIDmode, then set it to the first valid floating point
10319 or vector type. If a non-floating point or vector type is found, or
10320 if a floating point or vector type that doesn't match a non-VOIDmode
10321 *MODEP is found, then return -1, otherwise return the count in the
10322 sub-tree. */
10323
10324 static int
10325 rs6000_aggregate_candidate (const_tree type, machine_mode *modep)
10326 {
10327 machine_mode mode;
10328 HOST_WIDE_INT size;
10329
10330 switch (TREE_CODE (type))
10331 {
10332 case REAL_TYPE:
10333 mode = TYPE_MODE (type);
10334 if (!SCALAR_FLOAT_MODE_P (mode))
10335 return -1;
10336
10337 if (*modep == VOIDmode)
10338 *modep = mode;
10339
10340 if (*modep == mode)
10341 return 1;
10342
10343 break;
10344
10345 case COMPLEX_TYPE:
10346 mode = TYPE_MODE (TREE_TYPE (type));
10347 if (!SCALAR_FLOAT_MODE_P (mode))
10348 return -1;
10349
10350 if (*modep == VOIDmode)
10351 *modep = mode;
10352
10353 if (*modep == mode)
10354 return 2;
10355
10356 break;
10357
10358 case VECTOR_TYPE:
10359 if (!TARGET_ALTIVEC_ABI || !TARGET_ALTIVEC)
10360 return -1;
10361
10362 /* Use V4SImode as representative of all 128-bit vector types. */
10363 size = int_size_in_bytes (type);
10364 switch (size)
10365 {
10366 case 16:
10367 mode = V4SImode;
10368 break;
10369 default:
10370 return -1;
10371 }
10372
10373 if (*modep == VOIDmode)
10374 *modep = mode;
10375
10376 /* Vector modes are considered to be opaque: two vectors are
10377 equivalent for the purposes of being homogeneous aggregates
10378 if they are the same size. */
10379 if (*modep == mode)
10380 return 1;
10381
10382 break;
10383
10384 case ARRAY_TYPE:
10385 {
10386 int count;
10387 tree index = TYPE_DOMAIN (type);
10388
10389 /* Can't handle incomplete types nor sizes that are not
10390 fixed. */
10391 if (!COMPLETE_TYPE_P (type)
10392 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
10393 return -1;
10394
10395 count = rs6000_aggregate_candidate (TREE_TYPE (type), modep);
10396 if (count == -1
10397 || !index
10398 || !TYPE_MAX_VALUE (index)
10399 || !tree_fits_uhwi_p (TYPE_MAX_VALUE (index))
10400 || !TYPE_MIN_VALUE (index)
10401 || !tree_fits_uhwi_p (TYPE_MIN_VALUE (index))
10402 || count < 0)
10403 return -1;
10404
10405 count *= (1 + tree_to_uhwi (TYPE_MAX_VALUE (index))
10406 - tree_to_uhwi (TYPE_MIN_VALUE (index)));
10407
10408 /* There must be no padding. */
10409 if (wi::to_wide (TYPE_SIZE (type))
10410 != count * GET_MODE_BITSIZE (*modep))
10411 return -1;
10412
10413 return count;
10414 }
10415
10416 case RECORD_TYPE:
10417 {
10418 int count = 0;
10419 int sub_count;
10420 tree field;
10421
10422 /* Can't handle incomplete types nor sizes that are not
10423 fixed. */
10424 if (!COMPLETE_TYPE_P (type)
10425 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
10426 return -1;
10427
10428 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
10429 {
10430 if (TREE_CODE (field) != FIELD_DECL)
10431 continue;
10432
10433 sub_count = rs6000_aggregate_candidate (TREE_TYPE (field), modep);
10434 if (sub_count < 0)
10435 return -1;
10436 count += sub_count;
10437 }
10438
10439 /* There must be no padding. */
10440 if (wi::to_wide (TYPE_SIZE (type))
10441 != count * GET_MODE_BITSIZE (*modep))
10442 return -1;
10443
10444 return count;
10445 }
10446
10447 case UNION_TYPE:
10448 case QUAL_UNION_TYPE:
10449 {
10450 /* These aren't very interesting except in a degenerate case. */
10451 int count = 0;
10452 int sub_count;
10453 tree field;
10454
10455 /* Can't handle incomplete types nor sizes that are not
10456 fixed. */
10457 if (!COMPLETE_TYPE_P (type)
10458 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
10459 return -1;
10460
10461 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
10462 {
10463 if (TREE_CODE (field) != FIELD_DECL)
10464 continue;
10465
10466 sub_count = rs6000_aggregate_candidate (TREE_TYPE (field), modep);
10467 if (sub_count < 0)
10468 return -1;
10469 count = count > sub_count ? count : sub_count;
10470 }
10471
10472 /* There must be no padding. */
10473 if (wi::to_wide (TYPE_SIZE (type))
10474 != count * GET_MODE_BITSIZE (*modep))
10475 return -1;
10476
10477 return count;
10478 }
10479
10480 default:
10481 break;
10482 }
10483
10484 return -1;
10485 }
10486
10487 /* If an argument, whose type is described by TYPE and MODE, is a homogeneous
10488 float or vector aggregate that shall be passed in FP/vector registers
10489 according to the ELFv2 ABI, return the homogeneous element mode in
10490 *ELT_MODE and the number of elements in *N_ELTS, and return TRUE.
10491
10492 Otherwise, set *ELT_MODE to MODE and *N_ELTS to 1, and return FALSE. */
10493
10494 static bool
10495 rs6000_discover_homogeneous_aggregate (machine_mode mode, const_tree type,
10496 machine_mode *elt_mode,
10497 int *n_elts)
10498 {
10499 /* Note that we do not accept complex types at the top level as
10500 homogeneous aggregates; these types are handled via the
10501 targetm.calls.split_complex_arg mechanism. Complex types
10502 can be elements of homogeneous aggregates, however. */
10503 if (TARGET_HARD_FLOAT && DEFAULT_ABI == ABI_ELFv2 && type
10504 && AGGREGATE_TYPE_P (type))
10505 {
10506 machine_mode field_mode = VOIDmode;
10507 int field_count = rs6000_aggregate_candidate (type, &field_mode);
10508
10509 if (field_count > 0)
10510 {
10511 int reg_size = ALTIVEC_OR_VSX_VECTOR_MODE (field_mode) ? 16 : 8;
10512 int field_size = ROUND_UP (GET_MODE_SIZE (field_mode), reg_size);
10513
10514 /* The ELFv2 ABI allows homogeneous aggregates to occupy
10515 up to AGGR_ARG_NUM_REG registers. */
10516 if (field_count * field_size <= AGGR_ARG_NUM_REG * reg_size)
10517 {
10518 if (elt_mode)
10519 *elt_mode = field_mode;
10520 if (n_elts)
10521 *n_elts = field_count;
10522 return true;
10523 }
10524 }
10525 }
10526
10527 if (elt_mode)
10528 *elt_mode = mode;
10529 if (n_elts)
10530 *n_elts = 1;
10531 return false;
10532 }
10533
10534 /* Return a nonzero value to say to return the function value in
10535 memory, just as large structures are always returned. TYPE will be
10536 the data type of the value, and FNTYPE will be the type of the
10537 function doing the returning, or @code{NULL} for libcalls.
10538
10539 The AIX ABI for the RS/6000 specifies that all structures are
10540 returned in memory. The Darwin ABI does the same.
10541
10542 For the Darwin 64 Bit ABI, a function result can be returned in
10543 registers or in memory, depending on the size of the return data
10544 type. If it is returned in registers, the value occupies the same
10545 registers as it would if it were the first and only function
10546 argument. Otherwise, the function places its result in memory at
10547 the location pointed to by GPR3.
10548
10549 The SVR4 ABI specifies that structures <= 8 bytes are returned in r3/r4,
10550 but a draft put them in memory, and GCC used to implement the draft
10551 instead of the final standard. Therefore, aix_struct_return
10552 controls this instead of DEFAULT_ABI; V.4 targets needing backward
10553 compatibility can change DRAFT_V4_STRUCT_RET to override the
10554 default, and -m switches get the final word. See
10555 rs6000_option_override_internal for more details.
10556
10557 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
10558 long double support is enabled. These values are returned in memory.
10559
10560 int_size_in_bytes returns -1 for variable size objects, which go in
10561 memory always. The cast to unsigned makes -1 > 8. */
10562
10563 static bool
10564 rs6000_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
10565 {
10566 /* For the Darwin64 ABI, test if we can fit the return value in regs. */
10567 if (TARGET_MACHO
10568 && rs6000_darwin64_abi
10569 && TREE_CODE (type) == RECORD_TYPE
10570 && int_size_in_bytes (type) > 0)
10571 {
10572 CUMULATIVE_ARGS valcum;
10573 rtx valret;
10574
10575 valcum.words = 0;
10576 valcum.fregno = FP_ARG_MIN_REG;
10577 valcum.vregno = ALTIVEC_ARG_MIN_REG;
10578 /* Do a trial code generation as if this were going to be passed
10579 as an argument; if any part goes in memory, we return NULL. */
10580 valret = rs6000_darwin64_record_arg (&valcum, type, true, true);
10581 if (valret)
10582 return false;
10583 /* Otherwise fall through to more conventional ABI rules. */
10584 }
10585
10586 /* The ELFv2 ABI returns homogeneous VFP aggregates in registers */
10587 if (rs6000_discover_homogeneous_aggregate (TYPE_MODE (type), type,
10588 NULL, NULL))
10589 return false;
10590
10591 /* The ELFv2 ABI returns aggregates up to 16B in registers */
10592 if (DEFAULT_ABI == ABI_ELFv2 && AGGREGATE_TYPE_P (type)
10593 && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) <= 16)
10594 return false;
10595
10596 if (AGGREGATE_TYPE_P (type)
10597 && (aix_struct_return
10598 || (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8))
10599 return true;
10600
10601 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
10602 modes only exist for GCC vector types if -maltivec. */
10603 if (TARGET_32BIT && !TARGET_ALTIVEC_ABI
10604 && ALTIVEC_VECTOR_MODE (TYPE_MODE (type)))
10605 return false;
10606
10607 /* Return synthetic vectors in memory. */
10608 if (TREE_CODE (type) == VECTOR_TYPE
10609 && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
10610 {
10611 static bool warned_for_return_big_vectors = false;
10612 if (!warned_for_return_big_vectors)
10613 {
10614 warning (OPT_Wpsabi, "GCC vector returned by reference: "
10615 "non-standard ABI extension with no compatibility "
10616 "guarantee");
10617 warned_for_return_big_vectors = true;
10618 }
10619 return true;
10620 }
10621
10622 if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD
10623 && FLOAT128_IEEE_P (TYPE_MODE (type)))
10624 return true;
10625
10626 return false;
10627 }
10628
10629 /* Specify whether values returned in registers should be at the most
10630 significant end of a register. We want aggregates returned by
10631 value to match the way aggregates are passed to functions. */
10632
10633 static bool
10634 rs6000_return_in_msb (const_tree valtype)
10635 {
10636 return (DEFAULT_ABI == ABI_ELFv2
10637 && BYTES_BIG_ENDIAN
10638 && AGGREGATE_TYPE_P (valtype)
10639 && (rs6000_function_arg_padding (TYPE_MODE (valtype), valtype)
10640 == PAD_UPWARD));
10641 }
10642
10643 #ifdef HAVE_AS_GNU_ATTRIBUTE
10644 /* Return TRUE if a call to function FNDECL may be one that
10645 potentially affects the function calling ABI of the object file. */
10646
10647 static bool
10648 call_ABI_of_interest (tree fndecl)
10649 {
10650 if (rs6000_gnu_attr && symtab->state == EXPANSION)
10651 {
10652 struct cgraph_node *c_node;
10653
10654 /* Libcalls are always interesting. */
10655 if (fndecl == NULL_TREE)
10656 return true;
10657
10658 /* Any call to an external function is interesting. */
10659 if (DECL_EXTERNAL (fndecl))
10660 return true;
10661
10662 /* Interesting functions that we are emitting in this object file. */
10663 c_node = cgraph_node::get (fndecl);
10664 c_node = c_node->ultimate_alias_target ();
10665 return !c_node->only_called_directly_p ();
10666 }
10667 return false;
10668 }
10669 #endif
10670
10671 /* Initialize a variable CUM of type CUMULATIVE_ARGS
10672 for a call to a function whose data type is FNTYPE.
10673 For a library call, FNTYPE is 0 and RETURN_MODE the return value mode.
10674
10675 For incoming args we set the number of arguments in the prototype large
10676 so we never return a PARALLEL. */
10677
10678 void
10679 init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
10680 rtx libname ATTRIBUTE_UNUSED, int incoming,
10681 int libcall, int n_named_args,
10682 tree fndecl ATTRIBUTE_UNUSED,
10683 machine_mode return_mode ATTRIBUTE_UNUSED)
10684 {
10685 static CUMULATIVE_ARGS zero_cumulative;
10686
10687 *cum = zero_cumulative;
10688 cum->words = 0;
10689 cum->fregno = FP_ARG_MIN_REG;
10690 cum->vregno = ALTIVEC_ARG_MIN_REG;
10691 cum->prototype = (fntype && prototype_p (fntype));
10692 cum->call_cookie = ((DEFAULT_ABI == ABI_V4 && libcall)
10693 ? CALL_LIBCALL : CALL_NORMAL);
10694 cum->sysv_gregno = GP_ARG_MIN_REG;
10695 cum->stdarg = stdarg_p (fntype);
10696 cum->libcall = libcall;
10697
10698 cum->nargs_prototype = 0;
10699 if (incoming || cum->prototype)
10700 cum->nargs_prototype = n_named_args;
10701
10702 /* Check for a longcall attribute. */
10703 if ((!fntype && rs6000_default_long_calls)
10704 || (fntype
10705 && lookup_attribute ("longcall", TYPE_ATTRIBUTES (fntype))
10706 && !lookup_attribute ("shortcall", TYPE_ATTRIBUTES (fntype))))
10707 cum->call_cookie |= CALL_LONG;
10708
10709 if (TARGET_DEBUG_ARG)
10710 {
10711 fprintf (stderr, "\ninit_cumulative_args:");
10712 if (fntype)
10713 {
10714 tree ret_type = TREE_TYPE (fntype);
10715 fprintf (stderr, " ret code = %s,",
10716 get_tree_code_name (TREE_CODE (ret_type)));
10717 }
10718
10719 if (cum->call_cookie & CALL_LONG)
10720 fprintf (stderr, " longcall,");
10721
10722 fprintf (stderr, " proto = %d, nargs = %d\n",
10723 cum->prototype, cum->nargs_prototype);
10724 }
10725
10726 #ifdef HAVE_AS_GNU_ATTRIBUTE
10727 if (TARGET_ELF && (TARGET_64BIT || DEFAULT_ABI == ABI_V4))
10728 {
10729 cum->escapes = call_ABI_of_interest (fndecl);
10730 if (cum->escapes)
10731 {
10732 tree return_type;
10733
10734 if (fntype)
10735 {
10736 return_type = TREE_TYPE (fntype);
10737 return_mode = TYPE_MODE (return_type);
10738 }
10739 else
10740 return_type = lang_hooks.types.type_for_mode (return_mode, 0);
10741
10742 if (return_type != NULL)
10743 {
10744 if (TREE_CODE (return_type) == RECORD_TYPE
10745 && TYPE_TRANSPARENT_AGGR (return_type))
10746 {
10747 return_type = TREE_TYPE (first_field (return_type));
10748 return_mode = TYPE_MODE (return_type);
10749 }
10750 if (AGGREGATE_TYPE_P (return_type)
10751 && ((unsigned HOST_WIDE_INT) int_size_in_bytes (return_type)
10752 <= 8))
10753 rs6000_returns_struct = true;
10754 }
10755 if (SCALAR_FLOAT_MODE_P (return_mode))
10756 {
10757 rs6000_passes_float = true;
10758 if ((HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE || TARGET_64BIT)
10759 && (FLOAT128_IBM_P (return_mode)
10760 || FLOAT128_IEEE_P (return_mode)
10761 || (return_type != NULL
10762 && (TYPE_MAIN_VARIANT (return_type)
10763 == long_double_type_node))))
10764 rs6000_passes_long_double = true;
10765
10766 /* Note if we passed or return a IEEE 128-bit type. We changed
10767 the mangling for these types, and we may need to make an alias
10768 with the old mangling. */
10769 if (FLOAT128_IEEE_P (return_mode))
10770 rs6000_passes_ieee128 = true;
10771 }
10772 if (ALTIVEC_OR_VSX_VECTOR_MODE (return_mode))
10773 rs6000_passes_vector = true;
10774 }
10775 }
10776 #endif
10777
10778 if (fntype
10779 && !TARGET_ALTIVEC
10780 && TARGET_ALTIVEC_ABI
10781 && ALTIVEC_VECTOR_MODE (TYPE_MODE (TREE_TYPE (fntype))))
10782 {
10783 error ("cannot return value in vector register because"
10784 " altivec instructions are disabled, use %qs"
10785 " to enable them", "-maltivec");
10786 }
10787 }
10788 \f
10789 /* The mode the ABI uses for a word. This is not the same as word_mode
10790 for -m32 -mpowerpc64. This is used to implement various target hooks. */
10791
10792 static scalar_int_mode
10793 rs6000_abi_word_mode (void)
10794 {
10795 return TARGET_32BIT ? SImode : DImode;
10796 }
10797
10798 /* Implement the TARGET_OFFLOAD_OPTIONS hook. */
10799 static char *
10800 rs6000_offload_options (void)
10801 {
10802 if (TARGET_64BIT)
10803 return xstrdup ("-foffload-abi=lp64");
10804 else
10805 return xstrdup ("-foffload-abi=ilp32");
10806 }
10807
10808 /* On rs6000, function arguments are promoted, as are function return
10809 values. */
10810
10811 static machine_mode
10812 rs6000_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
10813 machine_mode mode,
10814 int *punsignedp ATTRIBUTE_UNUSED,
10815 const_tree, int)
10816 {
10817 PROMOTE_MODE (mode, *punsignedp, type);
10818
10819 return mode;
10820 }
10821
10822 /* Return true if TYPE must be passed on the stack and not in registers. */
10823
10824 static bool
10825 rs6000_must_pass_in_stack (machine_mode mode, const_tree type)
10826 {
10827 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2 || TARGET_64BIT)
10828 return must_pass_in_stack_var_size (mode, type);
10829 else
10830 return must_pass_in_stack_var_size_or_pad (mode, type);
10831 }
10832
10833 static inline bool
10834 is_complex_IBM_long_double (machine_mode mode)
10835 {
10836 return mode == ICmode || (mode == TCmode && FLOAT128_IBM_P (TCmode));
10837 }
10838
10839 /* Whether ABI_V4 passes MODE args to a function in floating point
10840 registers. */
10841
10842 static bool
10843 abi_v4_pass_in_fpr (machine_mode mode, bool named)
10844 {
10845 if (!TARGET_HARD_FLOAT)
10846 return false;
10847 if (mode == DFmode)
10848 return true;
10849 if (mode == SFmode && named)
10850 return true;
10851 /* ABI_V4 passes complex IBM long double in 8 gprs.
10852 Stupid, but we can't change the ABI now. */
10853 if (is_complex_IBM_long_double (mode))
10854 return false;
10855 if (FLOAT128_2REG_P (mode))
10856 return true;
10857 if (DECIMAL_FLOAT_MODE_P (mode))
10858 return true;
10859 return false;
10860 }
10861
10862 /* Implement TARGET_FUNCTION_ARG_PADDING.
10863
10864 For the AIX ABI structs are always stored left shifted in their
10865 argument slot. */
10866
10867 static pad_direction
10868 rs6000_function_arg_padding (machine_mode mode, const_tree type)
10869 {
10870 #ifndef AGGREGATE_PADDING_FIXED
10871 #define AGGREGATE_PADDING_FIXED 0
10872 #endif
10873 #ifndef AGGREGATES_PAD_UPWARD_ALWAYS
10874 #define AGGREGATES_PAD_UPWARD_ALWAYS 0
10875 #endif
10876
10877 if (!AGGREGATE_PADDING_FIXED)
10878 {
10879 /* GCC used to pass structures of the same size as integer types as
10880 if they were in fact integers, ignoring TARGET_FUNCTION_ARG_PADDING.
10881 i.e. Structures of size 1 or 2 (or 4 when TARGET_64BIT) were
10882 passed padded downward, except that -mstrict-align further
10883 muddied the water in that multi-component structures of 2 and 4
10884 bytes in size were passed padded upward.
10885
10886 The following arranges for best compatibility with previous
10887 versions of gcc, but removes the -mstrict-align dependency. */
10888 if (BYTES_BIG_ENDIAN)
10889 {
10890 HOST_WIDE_INT size = 0;
10891
10892 if (mode == BLKmode)
10893 {
10894 if (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
10895 size = int_size_in_bytes (type);
10896 }
10897 else
10898 size = GET_MODE_SIZE (mode);
10899
10900 if (size == 1 || size == 2 || size == 4)
10901 return PAD_DOWNWARD;
10902 }
10903 return PAD_UPWARD;
10904 }
10905
10906 if (AGGREGATES_PAD_UPWARD_ALWAYS)
10907 {
10908 if (type != 0 && AGGREGATE_TYPE_P (type))
10909 return PAD_UPWARD;
10910 }
10911
10912 /* Fall back to the default. */
10913 return default_function_arg_padding (mode, type);
10914 }
10915
10916 /* If defined, a C expression that gives the alignment boundary, in bits,
10917 of an argument with the specified mode and type. If it is not defined,
10918 PARM_BOUNDARY is used for all arguments.
10919
10920 V.4 wants long longs and doubles to be double word aligned. Just
10921 testing the mode size is a boneheaded way to do this as it means
10922 that other types such as complex int are also double word aligned.
10923 However, we're stuck with this because changing the ABI might break
10924 existing library interfaces.
10925
10926 Quadword align Altivec/VSX vectors.
10927 Quadword align large synthetic vector types. */
10928
10929 static unsigned int
10930 rs6000_function_arg_boundary (machine_mode mode, const_tree type)
10931 {
10932 machine_mode elt_mode;
10933 int n_elts;
10934
10935 rs6000_discover_homogeneous_aggregate (mode, type, &elt_mode, &n_elts);
10936
10937 if (DEFAULT_ABI == ABI_V4
10938 && (GET_MODE_SIZE (mode) == 8
10939 || (TARGET_HARD_FLOAT
10940 && !is_complex_IBM_long_double (mode)
10941 && FLOAT128_2REG_P (mode))))
10942 return 64;
10943 else if (FLOAT128_VECTOR_P (mode))
10944 return 128;
10945 else if (type && TREE_CODE (type) == VECTOR_TYPE
10946 && int_size_in_bytes (type) >= 8
10947 && int_size_in_bytes (type) < 16)
10948 return 64;
10949 else if (ALTIVEC_OR_VSX_VECTOR_MODE (elt_mode)
10950 || (type && TREE_CODE (type) == VECTOR_TYPE
10951 && int_size_in_bytes (type) >= 16))
10952 return 128;
10953
10954 /* Aggregate types that need > 8 byte alignment are quadword-aligned
10955 in the parameter area in the ELFv2 ABI, and in the AIX ABI unless
10956 -mcompat-align-parm is used. */
10957 if (((DEFAULT_ABI == ABI_AIX && !rs6000_compat_align_parm)
10958 || DEFAULT_ABI == ABI_ELFv2)
10959 && type && TYPE_ALIGN (type) > 64)
10960 {
10961 /* "Aggregate" means any AGGREGATE_TYPE except for single-element
10962 or homogeneous float/vector aggregates here. We already handled
10963 vector aggregates above, but still need to check for float here. */
10964 bool aggregate_p = (AGGREGATE_TYPE_P (type)
10965 && !SCALAR_FLOAT_MODE_P (elt_mode));
10966
10967 /* We used to check for BLKmode instead of the above aggregate type
10968 check. Warn when this results in any difference to the ABI. */
10969 if (aggregate_p != (mode == BLKmode))
10970 {
10971 static bool warned;
10972 if (!warned && warn_psabi)
10973 {
10974 warned = true;
10975 inform (input_location,
10976 "the ABI of passing aggregates with %d-byte alignment"
10977 " has changed in GCC 5",
10978 (int) TYPE_ALIGN (type) / BITS_PER_UNIT);
10979 }
10980 }
10981
10982 if (aggregate_p)
10983 return 128;
10984 }
10985
10986 /* Similar for the Darwin64 ABI. Note that for historical reasons we
10987 implement the "aggregate type" check as a BLKmode check here; this
10988 means certain aggregate types are in fact not aligned. */
10989 if (TARGET_MACHO && rs6000_darwin64_abi
10990 && mode == BLKmode
10991 && type && TYPE_ALIGN (type) > 64)
10992 return 128;
10993
10994 return PARM_BOUNDARY;
10995 }
10996
10997 /* The offset in words to the start of the parameter save area. */
10998
10999 static unsigned int
11000 rs6000_parm_offset (void)
11001 {
11002 return (DEFAULT_ABI == ABI_V4 ? 2
11003 : DEFAULT_ABI == ABI_ELFv2 ? 4
11004 : 6);
11005 }
11006
11007 /* For a function parm of MODE and TYPE, return the starting word in
11008 the parameter area. NWORDS of the parameter area are already used. */
11009
11010 static unsigned int
11011 rs6000_parm_start (machine_mode mode, const_tree type,
11012 unsigned int nwords)
11013 {
11014 unsigned int align;
11015
11016 align = rs6000_function_arg_boundary (mode, type) / PARM_BOUNDARY - 1;
11017 return nwords + (-(rs6000_parm_offset () + nwords) & align);
11018 }
11019
11020 /* Compute the size (in words) of a function argument. */
11021
11022 static unsigned long
11023 rs6000_arg_size (machine_mode mode, const_tree type)
11024 {
11025 unsigned long size;
11026
11027 if (mode != BLKmode)
11028 size = GET_MODE_SIZE (mode);
11029 else
11030 size = int_size_in_bytes (type);
11031
11032 if (TARGET_32BIT)
11033 return (size + 3) >> 2;
11034 else
11035 return (size + 7) >> 3;
11036 }
11037 \f
11038 /* Use this to flush pending int fields. */
11039
11040 static void
11041 rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS *cum,
11042 HOST_WIDE_INT bitpos, int final)
11043 {
11044 unsigned int startbit, endbit;
11045 int intregs, intoffset;
11046
11047 /* Handle the situations where a float is taking up the first half
11048 of the GPR, and the other half is empty (typically due to
11049 alignment restrictions). We can detect this by a 8-byte-aligned
11050 int field, or by seeing that this is the final flush for this
11051 argument. Count the word and continue on. */
11052 if (cum->floats_in_gpr == 1
11053 && (cum->intoffset % 64 == 0
11054 || (cum->intoffset == -1 && final)))
11055 {
11056 cum->words++;
11057 cum->floats_in_gpr = 0;
11058 }
11059
11060 if (cum->intoffset == -1)
11061 return;
11062
11063 intoffset = cum->intoffset;
11064 cum->intoffset = -1;
11065 cum->floats_in_gpr = 0;
11066
11067 if (intoffset % BITS_PER_WORD != 0)
11068 {
11069 unsigned int bits = BITS_PER_WORD - intoffset % BITS_PER_WORD;
11070 if (!int_mode_for_size (bits, 0).exists ())
11071 {
11072 /* We couldn't find an appropriate mode, which happens,
11073 e.g., in packed structs when there are 3 bytes to load.
11074 Back intoffset back to the beginning of the word in this
11075 case. */
11076 intoffset = ROUND_DOWN (intoffset, BITS_PER_WORD);
11077 }
11078 }
11079
11080 startbit = ROUND_DOWN (intoffset, BITS_PER_WORD);
11081 endbit = ROUND_UP (bitpos, BITS_PER_WORD);
11082 intregs = (endbit - startbit) / BITS_PER_WORD;
11083 cum->words += intregs;
11084 /* words should be unsigned. */
11085 if ((unsigned)cum->words < (endbit/BITS_PER_WORD))
11086 {
11087 int pad = (endbit/BITS_PER_WORD) - cum->words;
11088 cum->words += pad;
11089 }
11090 }
11091
11092 /* The darwin64 ABI calls for us to recurse down through structs,
11093 looking for elements passed in registers. Unfortunately, we have
11094 to track int register count here also because of misalignments
11095 in powerpc alignment mode. */
11096
11097 static void
11098 rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS *cum,
11099 const_tree type,
11100 HOST_WIDE_INT startbitpos)
11101 {
11102 tree f;
11103
11104 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
11105 if (TREE_CODE (f) == FIELD_DECL)
11106 {
11107 HOST_WIDE_INT bitpos = startbitpos;
11108 tree ftype = TREE_TYPE (f);
11109 machine_mode mode;
11110 if (ftype == error_mark_node)
11111 continue;
11112 mode = TYPE_MODE (ftype);
11113
11114 if (DECL_SIZE (f) != 0
11115 && tree_fits_uhwi_p (bit_position (f)))
11116 bitpos += int_bit_position (f);
11117
11118 /* ??? FIXME: else assume zero offset. */
11119
11120 if (TREE_CODE (ftype) == RECORD_TYPE)
11121 rs6000_darwin64_record_arg_advance_recurse (cum, ftype, bitpos);
11122 else if (USE_FP_FOR_ARG_P (cum, mode))
11123 {
11124 unsigned n_fpregs = (GET_MODE_SIZE (mode) + 7) >> 3;
11125 rs6000_darwin64_record_arg_advance_flush (cum, bitpos, 0);
11126 cum->fregno += n_fpregs;
11127 /* Single-precision floats present a special problem for
11128 us, because they are smaller than an 8-byte GPR, and so
11129 the structure-packing rules combined with the standard
11130 varargs behavior mean that we want to pack float/float
11131 and float/int combinations into a single register's
11132 space. This is complicated by the arg advance flushing,
11133 which works on arbitrarily large groups of int-type
11134 fields. */
11135 if (mode == SFmode)
11136 {
11137 if (cum->floats_in_gpr == 1)
11138 {
11139 /* Two floats in a word; count the word and reset
11140 the float count. */
11141 cum->words++;
11142 cum->floats_in_gpr = 0;
11143 }
11144 else if (bitpos % 64 == 0)
11145 {
11146 /* A float at the beginning of an 8-byte word;
11147 count it and put off adjusting cum->words until
11148 we see if a arg advance flush is going to do it
11149 for us. */
11150 cum->floats_in_gpr++;
11151 }
11152 else
11153 {
11154 /* The float is at the end of a word, preceded
11155 by integer fields, so the arg advance flush
11156 just above has already set cum->words and
11157 everything is taken care of. */
11158 }
11159 }
11160 else
11161 cum->words += n_fpregs;
11162 }
11163 else if (USE_ALTIVEC_FOR_ARG_P (cum, mode, 1))
11164 {
11165 rs6000_darwin64_record_arg_advance_flush (cum, bitpos, 0);
11166 cum->vregno++;
11167 cum->words += 2;
11168 }
11169 else if (cum->intoffset == -1)
11170 cum->intoffset = bitpos;
11171 }
11172 }
11173
11174 /* Check for an item that needs to be considered specially under the darwin 64
11175 bit ABI. These are record types where the mode is BLK or the structure is
11176 8 bytes in size. */
11177 static int
11178 rs6000_darwin64_struct_check_p (machine_mode mode, const_tree type)
11179 {
11180 return rs6000_darwin64_abi
11181 && ((mode == BLKmode
11182 && TREE_CODE (type) == RECORD_TYPE
11183 && int_size_in_bytes (type) > 0)
11184 || (type && TREE_CODE (type) == RECORD_TYPE
11185 && int_size_in_bytes (type) == 8)) ? 1 : 0;
11186 }
11187
11188 /* Update the data in CUM to advance over an argument
11189 of mode MODE and data type TYPE.
11190 (TYPE is null for libcalls where that information may not be available.)
11191
11192 Note that for args passed by reference, function_arg will be called
11193 with MODE and TYPE set to that of the pointer to the arg, not the arg
11194 itself. */
11195
11196 static void
11197 rs6000_function_arg_advance_1 (CUMULATIVE_ARGS *cum, machine_mode mode,
11198 const_tree type, bool named, int depth)
11199 {
11200 machine_mode elt_mode;
11201 int n_elts;
11202
11203 rs6000_discover_homogeneous_aggregate (mode, type, &elt_mode, &n_elts);
11204
11205 /* Only tick off an argument if we're not recursing. */
11206 if (depth == 0)
11207 cum->nargs_prototype--;
11208
11209 #ifdef HAVE_AS_GNU_ATTRIBUTE
11210 if (TARGET_ELF && (TARGET_64BIT || DEFAULT_ABI == ABI_V4)
11211 && cum->escapes)
11212 {
11213 if (SCALAR_FLOAT_MODE_P (mode))
11214 {
11215 rs6000_passes_float = true;
11216 if ((HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE || TARGET_64BIT)
11217 && (FLOAT128_IBM_P (mode)
11218 || FLOAT128_IEEE_P (mode)
11219 || (type != NULL
11220 && TYPE_MAIN_VARIANT (type) == long_double_type_node)))
11221 rs6000_passes_long_double = true;
11222
11223 /* Note if we passed or return a IEEE 128-bit type. We changed the
11224 mangling for these types, and we may need to make an alias with
11225 the old mangling. */
11226 if (FLOAT128_IEEE_P (mode))
11227 rs6000_passes_ieee128 = true;
11228 }
11229 if (named && ALTIVEC_OR_VSX_VECTOR_MODE (mode))
11230 rs6000_passes_vector = true;
11231 }
11232 #endif
11233
11234 if (TARGET_ALTIVEC_ABI
11235 && (ALTIVEC_OR_VSX_VECTOR_MODE (elt_mode)
11236 || (type && TREE_CODE (type) == VECTOR_TYPE
11237 && int_size_in_bytes (type) == 16)))
11238 {
11239 bool stack = false;
11240
11241 if (USE_ALTIVEC_FOR_ARG_P (cum, elt_mode, named))
11242 {
11243 cum->vregno += n_elts;
11244
11245 if (!TARGET_ALTIVEC)
11246 error ("cannot pass argument in vector register because"
11247 " altivec instructions are disabled, use %qs"
11248 " to enable them", "-maltivec");
11249
11250 /* PowerPC64 Linux and AIX allocate GPRs for a vector argument
11251 even if it is going to be passed in a vector register.
11252 Darwin does the same for variable-argument functions. */
11253 if (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
11254 && TARGET_64BIT)
11255 || (cum->stdarg && DEFAULT_ABI != ABI_V4))
11256 stack = true;
11257 }
11258 else
11259 stack = true;
11260
11261 if (stack)
11262 {
11263 int align;
11264
11265 /* Vector parameters must be 16-byte aligned. In 32-bit
11266 mode this means we need to take into account the offset
11267 to the parameter save area. In 64-bit mode, they just
11268 have to start on an even word, since the parameter save
11269 area is 16-byte aligned. */
11270 if (TARGET_32BIT)
11271 align = -(rs6000_parm_offset () + cum->words) & 3;
11272 else
11273 align = cum->words & 1;
11274 cum->words += align + rs6000_arg_size (mode, type);
11275
11276 if (TARGET_DEBUG_ARG)
11277 {
11278 fprintf (stderr, "function_adv: words = %2d, align=%d, ",
11279 cum->words, align);
11280 fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s\n",
11281 cum->nargs_prototype, cum->prototype,
11282 GET_MODE_NAME (mode));
11283 }
11284 }
11285 }
11286 else if (TARGET_MACHO && rs6000_darwin64_struct_check_p (mode, type))
11287 {
11288 int size = int_size_in_bytes (type);
11289 /* Variable sized types have size == -1 and are
11290 treated as if consisting entirely of ints.
11291 Pad to 16 byte boundary if needed. */
11292 if (TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
11293 && (cum->words % 2) != 0)
11294 cum->words++;
11295 /* For varargs, we can just go up by the size of the struct. */
11296 if (!named)
11297 cum->words += (size + 7) / 8;
11298 else
11299 {
11300 /* It is tempting to say int register count just goes up by
11301 sizeof(type)/8, but this is wrong in a case such as
11302 { int; double; int; } [powerpc alignment]. We have to
11303 grovel through the fields for these too. */
11304 cum->intoffset = 0;
11305 cum->floats_in_gpr = 0;
11306 rs6000_darwin64_record_arg_advance_recurse (cum, type, 0);
11307 rs6000_darwin64_record_arg_advance_flush (cum,
11308 size * BITS_PER_UNIT, 1);
11309 }
11310 if (TARGET_DEBUG_ARG)
11311 {
11312 fprintf (stderr, "function_adv: words = %2d, align=%d, size=%d",
11313 cum->words, TYPE_ALIGN (type), size);
11314 fprintf (stderr,
11315 "nargs = %4d, proto = %d, mode = %4s (darwin64 abi)\n",
11316 cum->nargs_prototype, cum->prototype,
11317 GET_MODE_NAME (mode));
11318 }
11319 }
11320 else if (DEFAULT_ABI == ABI_V4)
11321 {
11322 if (abi_v4_pass_in_fpr (mode, named))
11323 {
11324 /* _Decimal128 must use an even/odd register pair. This assumes
11325 that the register number is odd when fregno is odd. */
11326 if (mode == TDmode && (cum->fregno % 2) == 1)
11327 cum->fregno++;
11328
11329 if (cum->fregno + (FLOAT128_2REG_P (mode) ? 1 : 0)
11330 <= FP_ARG_V4_MAX_REG)
11331 cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
11332 else
11333 {
11334 cum->fregno = FP_ARG_V4_MAX_REG + 1;
11335 if (mode == DFmode || FLOAT128_IBM_P (mode)
11336 || mode == DDmode || mode == TDmode)
11337 cum->words += cum->words & 1;
11338 cum->words += rs6000_arg_size (mode, type);
11339 }
11340 }
11341 else
11342 {
11343 int n_words = rs6000_arg_size (mode, type);
11344 int gregno = cum->sysv_gregno;
11345
11346 /* Long long is put in (r3,r4), (r5,r6), (r7,r8) or (r9,r10).
11347 As does any other 2 word item such as complex int due to a
11348 historical mistake. */
11349 if (n_words == 2)
11350 gregno += (1 - gregno) & 1;
11351
11352 /* Multi-reg args are not split between registers and stack. */
11353 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
11354 {
11355 /* Long long is aligned on the stack. So are other 2 word
11356 items such as complex int due to a historical mistake. */
11357 if (n_words == 2)
11358 cum->words += cum->words & 1;
11359 cum->words += n_words;
11360 }
11361
11362 /* Note: continuing to accumulate gregno past when we've started
11363 spilling to the stack indicates the fact that we've started
11364 spilling to the stack to expand_builtin_saveregs. */
11365 cum->sysv_gregno = gregno + n_words;
11366 }
11367
11368 if (TARGET_DEBUG_ARG)
11369 {
11370 fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
11371 cum->words, cum->fregno);
11372 fprintf (stderr, "gregno = %2d, nargs = %4d, proto = %d, ",
11373 cum->sysv_gregno, cum->nargs_prototype, cum->prototype);
11374 fprintf (stderr, "mode = %4s, named = %d\n",
11375 GET_MODE_NAME (mode), named);
11376 }
11377 }
11378 else
11379 {
11380 int n_words = rs6000_arg_size (mode, type);
11381 int start_words = cum->words;
11382 int align_words = rs6000_parm_start (mode, type, start_words);
11383
11384 cum->words = align_words + n_words;
11385
11386 if (SCALAR_FLOAT_MODE_P (elt_mode) && TARGET_HARD_FLOAT)
11387 {
11388 /* _Decimal128 must be passed in an even/odd float register pair.
11389 This assumes that the register number is odd when fregno is
11390 odd. */
11391 if (elt_mode == TDmode && (cum->fregno % 2) == 1)
11392 cum->fregno++;
11393 cum->fregno += n_elts * ((GET_MODE_SIZE (elt_mode) + 7) >> 3);
11394 }
11395
11396 if (TARGET_DEBUG_ARG)
11397 {
11398 fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
11399 cum->words, cum->fregno);
11400 fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s, ",
11401 cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode));
11402 fprintf (stderr, "named = %d, align = %d, depth = %d\n",
11403 named, align_words - start_words, depth);
11404 }
11405 }
11406 }
11407
11408 static void
11409 rs6000_function_arg_advance (cumulative_args_t cum, machine_mode mode,
11410 const_tree type, bool named)
11411 {
11412 rs6000_function_arg_advance_1 (get_cumulative_args (cum), mode, type, named,
11413 0);
11414 }
11415
11416 /* A subroutine of rs6000_darwin64_record_arg. Assign the bits of the
11417 structure between cum->intoffset and bitpos to integer registers. */
11418
11419 static void
11420 rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS *cum,
11421 HOST_WIDE_INT bitpos, rtx rvec[], int *k)
11422 {
11423 machine_mode mode;
11424 unsigned int regno;
11425 unsigned int startbit, endbit;
11426 int this_regno, intregs, intoffset;
11427 rtx reg;
11428
11429 if (cum->intoffset == -1)
11430 return;
11431
11432 intoffset = cum->intoffset;
11433 cum->intoffset = -1;
11434
11435 /* If this is the trailing part of a word, try to only load that
11436 much into the register. Otherwise load the whole register. Note
11437 that in the latter case we may pick up unwanted bits. It's not a
11438 problem at the moment but may wish to revisit. */
11439
11440 if (intoffset % BITS_PER_WORD != 0)
11441 {
11442 unsigned int bits = BITS_PER_WORD - intoffset % BITS_PER_WORD;
11443 if (!int_mode_for_size (bits, 0).exists (&mode))
11444 {
11445 /* We couldn't find an appropriate mode, which happens,
11446 e.g., in packed structs when there are 3 bytes to load.
11447 Back intoffset back to the beginning of the word in this
11448 case. */
11449 intoffset = ROUND_DOWN (intoffset, BITS_PER_WORD);
11450 mode = word_mode;
11451 }
11452 }
11453 else
11454 mode = word_mode;
11455
11456 startbit = ROUND_DOWN (intoffset, BITS_PER_WORD);
11457 endbit = ROUND_UP (bitpos, BITS_PER_WORD);
11458 intregs = (endbit - startbit) / BITS_PER_WORD;
11459 this_regno = cum->words + intoffset / BITS_PER_WORD;
11460
11461 if (intregs > 0 && intregs > GP_ARG_NUM_REG - this_regno)
11462 cum->use_stack = 1;
11463
11464 intregs = MIN (intregs, GP_ARG_NUM_REG - this_regno);
11465 if (intregs <= 0)
11466 return;
11467
11468 intoffset /= BITS_PER_UNIT;
11469 do
11470 {
11471 regno = GP_ARG_MIN_REG + this_regno;
11472 reg = gen_rtx_REG (mode, regno);
11473 rvec[(*k)++] =
11474 gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset));
11475
11476 this_regno += 1;
11477 intoffset = (intoffset | (UNITS_PER_WORD-1)) + 1;
11478 mode = word_mode;
11479 intregs -= 1;
11480 }
11481 while (intregs > 0);
11482 }
11483
11484 /* Recursive workhorse for the following. */
11485
11486 static void
11487 rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS *cum, const_tree type,
11488 HOST_WIDE_INT startbitpos, rtx rvec[],
11489 int *k)
11490 {
11491 tree f;
11492
11493 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
11494 if (TREE_CODE (f) == FIELD_DECL)
11495 {
11496 HOST_WIDE_INT bitpos = startbitpos;
11497 tree ftype = TREE_TYPE (f);
11498 machine_mode mode;
11499 if (ftype == error_mark_node)
11500 continue;
11501 mode = TYPE_MODE (ftype);
11502
11503 if (DECL_SIZE (f) != 0
11504 && tree_fits_uhwi_p (bit_position (f)))
11505 bitpos += int_bit_position (f);
11506
11507 /* ??? FIXME: else assume zero offset. */
11508
11509 if (TREE_CODE (ftype) == RECORD_TYPE)
11510 rs6000_darwin64_record_arg_recurse (cum, ftype, bitpos, rvec, k);
11511 else if (cum->named && USE_FP_FOR_ARG_P (cum, mode))
11512 {
11513 unsigned n_fpreg = (GET_MODE_SIZE (mode) + 7) >> 3;
11514 #if 0
11515 switch (mode)
11516 {
11517 case E_SCmode: mode = SFmode; break;
11518 case E_DCmode: mode = DFmode; break;
11519 case E_TCmode: mode = TFmode; break;
11520 default: break;
11521 }
11522 #endif
11523 rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
11524 if (cum->fregno + n_fpreg > FP_ARG_MAX_REG + 1)
11525 {
11526 gcc_assert (cum->fregno == FP_ARG_MAX_REG
11527 && (mode == TFmode || mode == TDmode));
11528 /* Long double or _Decimal128 split over regs and memory. */
11529 mode = DECIMAL_FLOAT_MODE_P (mode) ? DDmode : DFmode;
11530 cum->use_stack=1;
11531 }
11532 rvec[(*k)++]
11533 = gen_rtx_EXPR_LIST (VOIDmode,
11534 gen_rtx_REG (mode, cum->fregno++),
11535 GEN_INT (bitpos / BITS_PER_UNIT));
11536 if (FLOAT128_2REG_P (mode))
11537 cum->fregno++;
11538 }
11539 else if (cum->named && USE_ALTIVEC_FOR_ARG_P (cum, mode, 1))
11540 {
11541 rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
11542 rvec[(*k)++]
11543 = gen_rtx_EXPR_LIST (VOIDmode,
11544 gen_rtx_REG (mode, cum->vregno++),
11545 GEN_INT (bitpos / BITS_PER_UNIT));
11546 }
11547 else if (cum->intoffset == -1)
11548 cum->intoffset = bitpos;
11549 }
11550 }
11551
11552 /* For the darwin64 ABI, we want to construct a PARALLEL consisting of
11553 the register(s) to be used for each field and subfield of a struct
11554 being passed by value, along with the offset of where the
11555 register's value may be found in the block. FP fields go in FP
11556 register, vector fields go in vector registers, and everything
11557 else goes in int registers, packed as in memory.
11558
11559 This code is also used for function return values. RETVAL indicates
11560 whether this is the case.
11561
11562 Much of this is taken from the SPARC V9 port, which has a similar
11563 calling convention. */
11564
11565 static rtx
11566 rs6000_darwin64_record_arg (CUMULATIVE_ARGS *orig_cum, const_tree type,
11567 bool named, bool retval)
11568 {
11569 rtx rvec[FIRST_PSEUDO_REGISTER];
11570 int k = 1, kbase = 1;
11571 HOST_WIDE_INT typesize = int_size_in_bytes (type);
11572 /* This is a copy; modifications are not visible to our caller. */
11573 CUMULATIVE_ARGS copy_cum = *orig_cum;
11574 CUMULATIVE_ARGS *cum = &copy_cum;
11575
11576 /* Pad to 16 byte boundary if needed. */
11577 if (!retval && TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
11578 && (cum->words % 2) != 0)
11579 cum->words++;
11580
11581 cum->intoffset = 0;
11582 cum->use_stack = 0;
11583 cum->named = named;
11584
11585 /* Put entries into rvec[] for individual FP and vector fields, and
11586 for the chunks of memory that go in int regs. Note we start at
11587 element 1; 0 is reserved for an indication of using memory, and
11588 may or may not be filled in below. */
11589 rs6000_darwin64_record_arg_recurse (cum, type, /* startbit pos= */ 0, rvec, &k);
11590 rs6000_darwin64_record_arg_flush (cum, typesize * BITS_PER_UNIT, rvec, &k);
11591
11592 /* If any part of the struct went on the stack put all of it there.
11593 This hack is because the generic code for
11594 FUNCTION_ARG_PARTIAL_NREGS cannot handle cases where the register
11595 parts of the struct are not at the beginning. */
11596 if (cum->use_stack)
11597 {
11598 if (retval)
11599 return NULL_RTX; /* doesn't go in registers at all */
11600 kbase = 0;
11601 rvec[0] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
11602 }
11603 if (k > 1 || cum->use_stack)
11604 return gen_rtx_PARALLEL (BLKmode, gen_rtvec_v (k - kbase, &rvec[kbase]));
11605 else
11606 return NULL_RTX;
11607 }
11608
11609 /* Determine where to place an argument in 64-bit mode with 32-bit ABI. */
11610
11611 static rtx
11612 rs6000_mixed_function_arg (machine_mode mode, const_tree type,
11613 int align_words)
11614 {
11615 int n_units;
11616 int i, k;
11617 rtx rvec[GP_ARG_NUM_REG + 1];
11618
11619 if (align_words >= GP_ARG_NUM_REG)
11620 return NULL_RTX;
11621
11622 n_units = rs6000_arg_size (mode, type);
11623
11624 /* Optimize the simple case where the arg fits in one gpr, except in
11625 the case of BLKmode due to assign_parms assuming that registers are
11626 BITS_PER_WORD wide. */
11627 if (n_units == 0
11628 || (n_units == 1 && mode != BLKmode))
11629 return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
11630
11631 k = 0;
11632 if (align_words + n_units > GP_ARG_NUM_REG)
11633 /* Not all of the arg fits in gprs. Say that it goes in memory too,
11634 using a magic NULL_RTX component.
11635 This is not strictly correct. Only some of the arg belongs in
11636 memory, not all of it. However, the normal scheme using
11637 function_arg_partial_nregs can result in unusual subregs, eg.
11638 (subreg:SI (reg:DF) 4), which are not handled well. The code to
11639 store the whole arg to memory is often more efficient than code
11640 to store pieces, and we know that space is available in the right
11641 place for the whole arg. */
11642 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
11643
11644 i = 0;
11645 do
11646 {
11647 rtx r = gen_rtx_REG (SImode, GP_ARG_MIN_REG + align_words);
11648 rtx off = GEN_INT (i++ * 4);
11649 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
11650 }
11651 while (++align_words < GP_ARG_NUM_REG && --n_units != 0);
11652
11653 return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
11654 }
11655
11656 /* We have an argument of MODE and TYPE that goes into FPRs or VRs,
11657 but must also be copied into the parameter save area starting at
11658 offset ALIGN_WORDS. Fill in RVEC with the elements corresponding
11659 to the GPRs and/or memory. Return the number of elements used. */
11660
11661 static int
11662 rs6000_psave_function_arg (machine_mode mode, const_tree type,
11663 int align_words, rtx *rvec)
11664 {
11665 int k = 0;
11666
11667 if (align_words < GP_ARG_NUM_REG)
11668 {
11669 int n_words = rs6000_arg_size (mode, type);
11670
11671 if (align_words + n_words > GP_ARG_NUM_REG
11672 || mode == BLKmode
11673 || (TARGET_32BIT && TARGET_POWERPC64))
11674 {
11675 /* If this is partially on the stack, then we only
11676 include the portion actually in registers here. */
11677 machine_mode rmode = TARGET_32BIT ? SImode : DImode;
11678 int i = 0;
11679
11680 if (align_words + n_words > GP_ARG_NUM_REG)
11681 {
11682 /* Not all of the arg fits in gprs. Say that it goes in memory
11683 too, using a magic NULL_RTX component. Also see comment in
11684 rs6000_mixed_function_arg for why the normal
11685 function_arg_partial_nregs scheme doesn't work in this case. */
11686 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
11687 }
11688
11689 do
11690 {
11691 rtx r = gen_rtx_REG (rmode, GP_ARG_MIN_REG + align_words);
11692 rtx off = GEN_INT (i++ * GET_MODE_SIZE (rmode));
11693 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
11694 }
11695 while (++align_words < GP_ARG_NUM_REG && --n_words != 0);
11696 }
11697 else
11698 {
11699 /* The whole arg fits in gprs. */
11700 rtx r = gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
11701 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, const0_rtx);
11702 }
11703 }
11704 else
11705 {
11706 /* It's entirely in memory. */
11707 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
11708 }
11709
11710 return k;
11711 }
11712
11713 /* RVEC is a vector of K components of an argument of mode MODE.
11714 Construct the final function_arg return value from it. */
11715
11716 static rtx
11717 rs6000_finish_function_arg (machine_mode mode, rtx *rvec, int k)
11718 {
11719 gcc_assert (k >= 1);
11720
11721 /* Avoid returning a PARALLEL in the trivial cases. */
11722 if (k == 1)
11723 {
11724 if (XEXP (rvec[0], 0) == NULL_RTX)
11725 return NULL_RTX;
11726
11727 if (GET_MODE (XEXP (rvec[0], 0)) == mode)
11728 return XEXP (rvec[0], 0);
11729 }
11730
11731 return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
11732 }
11733
11734 /* Determine where to put an argument to a function.
11735 Value is zero to push the argument on the stack,
11736 or a hard register in which to store the argument.
11737
11738 MODE is the argument's machine mode.
11739 TYPE is the data type of the argument (as a tree).
11740 This is null for libcalls where that information may
11741 not be available.
11742 CUM is a variable of type CUMULATIVE_ARGS which gives info about
11743 the preceding args and about the function being called. It is
11744 not modified in this routine.
11745 NAMED is nonzero if this argument is a named parameter
11746 (otherwise it is an extra parameter matching an ellipsis).
11747
11748 On RS/6000 the first eight words of non-FP are normally in registers
11749 and the rest are pushed. Under AIX, the first 13 FP args are in registers.
11750 Under V.4, the first 8 FP args are in registers.
11751
11752 If this is floating-point and no prototype is specified, we use
11753 both an FP and integer register (or possibly FP reg and stack). Library
11754 functions (when CALL_LIBCALL is set) always have the proper types for args,
11755 so we can pass the FP value just in one register. emit_library_function
11756 doesn't support PARALLEL anyway.
11757
11758 Note that for args passed by reference, function_arg will be called
11759 with MODE and TYPE set to that of the pointer to the arg, not the arg
11760 itself. */
11761
11762 static rtx
11763 rs6000_function_arg (cumulative_args_t cum_v, machine_mode mode,
11764 const_tree type, bool named)
11765 {
11766 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
11767 enum rs6000_abi abi = DEFAULT_ABI;
11768 machine_mode elt_mode;
11769 int n_elts;
11770
11771 /* Return a marker to indicate whether CR1 needs to set or clear the
11772 bit that V.4 uses to say fp args were passed in registers.
11773 Assume that we don't need the marker for software floating point,
11774 or compiler generated library calls. */
11775 if (mode == VOIDmode)
11776 {
11777 if (abi == ABI_V4
11778 && (cum->call_cookie & CALL_LIBCALL) == 0
11779 && (cum->stdarg
11780 || (cum->nargs_prototype < 0
11781 && (cum->prototype || TARGET_NO_PROTOTYPE)))
11782 && TARGET_HARD_FLOAT)
11783 return GEN_INT (cum->call_cookie
11784 | ((cum->fregno == FP_ARG_MIN_REG)
11785 ? CALL_V4_SET_FP_ARGS
11786 : CALL_V4_CLEAR_FP_ARGS));
11787
11788 return GEN_INT (cum->call_cookie & ~CALL_LIBCALL);
11789 }
11790
11791 rs6000_discover_homogeneous_aggregate (mode, type, &elt_mode, &n_elts);
11792
11793 if (TARGET_MACHO && rs6000_darwin64_struct_check_p (mode, type))
11794 {
11795 rtx rslt = rs6000_darwin64_record_arg (cum, type, named, /*retval= */false);
11796 if (rslt != NULL_RTX)
11797 return rslt;
11798 /* Else fall through to usual handling. */
11799 }
11800
11801 if (USE_ALTIVEC_FOR_ARG_P (cum, elt_mode, named))
11802 {
11803 rtx rvec[GP_ARG_NUM_REG + AGGR_ARG_NUM_REG + 1];
11804 rtx r, off;
11805 int i, k = 0;
11806
11807 /* Do we also need to pass this argument in the parameter save area?
11808 Library support functions for IEEE 128-bit are assumed to not need the
11809 value passed both in GPRs and in vector registers. */
11810 if (TARGET_64BIT && !cum->prototype
11811 && (!cum->libcall || !FLOAT128_VECTOR_P (elt_mode)))
11812 {
11813 int align_words = ROUND_UP (cum->words, 2);
11814 k = rs6000_psave_function_arg (mode, type, align_words, rvec);
11815 }
11816
11817 /* Describe where this argument goes in the vector registers. */
11818 for (i = 0; i < n_elts && cum->vregno + i <= ALTIVEC_ARG_MAX_REG; i++)
11819 {
11820 r = gen_rtx_REG (elt_mode, cum->vregno + i);
11821 off = GEN_INT (i * GET_MODE_SIZE (elt_mode));
11822 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
11823 }
11824
11825 return rs6000_finish_function_arg (mode, rvec, k);
11826 }
11827 else if (TARGET_ALTIVEC_ABI
11828 && (ALTIVEC_OR_VSX_VECTOR_MODE (mode)
11829 || (type && TREE_CODE (type) == VECTOR_TYPE
11830 && int_size_in_bytes (type) == 16)))
11831 {
11832 if (named || abi == ABI_V4)
11833 return NULL_RTX;
11834 else
11835 {
11836 /* Vector parameters to varargs functions under AIX or Darwin
11837 get passed in memory and possibly also in GPRs. */
11838 int align, align_words, n_words;
11839 machine_mode part_mode;
11840
11841 /* Vector parameters must be 16-byte aligned. In 32-bit
11842 mode this means we need to take into account the offset
11843 to the parameter save area. In 64-bit mode, they just
11844 have to start on an even word, since the parameter save
11845 area is 16-byte aligned. */
11846 if (TARGET_32BIT)
11847 align = -(rs6000_parm_offset () + cum->words) & 3;
11848 else
11849 align = cum->words & 1;
11850 align_words = cum->words + align;
11851
11852 /* Out of registers? Memory, then. */
11853 if (align_words >= GP_ARG_NUM_REG)
11854 return NULL_RTX;
11855
11856 if (TARGET_32BIT && TARGET_POWERPC64)
11857 return rs6000_mixed_function_arg (mode, type, align_words);
11858
11859 /* The vector value goes in GPRs. Only the part of the
11860 value in GPRs is reported here. */
11861 part_mode = mode;
11862 n_words = rs6000_arg_size (mode, type);
11863 if (align_words + n_words > GP_ARG_NUM_REG)
11864 /* Fortunately, there are only two possibilities, the value
11865 is either wholly in GPRs or half in GPRs and half not. */
11866 part_mode = DImode;
11867
11868 return gen_rtx_REG (part_mode, GP_ARG_MIN_REG + align_words);
11869 }
11870 }
11871
11872 else if (abi == ABI_V4)
11873 {
11874 if (abi_v4_pass_in_fpr (mode, named))
11875 {
11876 /* _Decimal128 must use an even/odd register pair. This assumes
11877 that the register number is odd when fregno is odd. */
11878 if (mode == TDmode && (cum->fregno % 2) == 1)
11879 cum->fregno++;
11880
11881 if (cum->fregno + (FLOAT128_2REG_P (mode) ? 1 : 0)
11882 <= FP_ARG_V4_MAX_REG)
11883 return gen_rtx_REG (mode, cum->fregno);
11884 else
11885 return NULL_RTX;
11886 }
11887 else
11888 {
11889 int n_words = rs6000_arg_size (mode, type);
11890 int gregno = cum->sysv_gregno;
11891
11892 /* Long long is put in (r3,r4), (r5,r6), (r7,r8) or (r9,r10).
11893 As does any other 2 word item such as complex int due to a
11894 historical mistake. */
11895 if (n_words == 2)
11896 gregno += (1 - gregno) & 1;
11897
11898 /* Multi-reg args are not split between registers and stack. */
11899 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
11900 return NULL_RTX;
11901
11902 if (TARGET_32BIT && TARGET_POWERPC64)
11903 return rs6000_mixed_function_arg (mode, type,
11904 gregno - GP_ARG_MIN_REG);
11905 return gen_rtx_REG (mode, gregno);
11906 }
11907 }
11908 else
11909 {
11910 int align_words = rs6000_parm_start (mode, type, cum->words);
11911
11912 /* _Decimal128 must be passed in an even/odd float register pair.
11913 This assumes that the register number is odd when fregno is odd. */
11914 if (elt_mode == TDmode && (cum->fregno % 2) == 1)
11915 cum->fregno++;
11916
11917 if (USE_FP_FOR_ARG_P (cum, elt_mode))
11918 {
11919 rtx rvec[GP_ARG_NUM_REG + AGGR_ARG_NUM_REG + 1];
11920 rtx r, off;
11921 int i, k = 0;
11922 unsigned long n_fpreg = (GET_MODE_SIZE (elt_mode) + 7) >> 3;
11923 int fpr_words;
11924
11925 /* Do we also need to pass this argument in the parameter
11926 save area? */
11927 if (type && (cum->nargs_prototype <= 0
11928 || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
11929 && TARGET_XL_COMPAT
11930 && align_words >= GP_ARG_NUM_REG)))
11931 k = rs6000_psave_function_arg (mode, type, align_words, rvec);
11932
11933 /* Describe where this argument goes in the fprs. */
11934 for (i = 0; i < n_elts
11935 && cum->fregno + i * n_fpreg <= FP_ARG_MAX_REG; i++)
11936 {
11937 /* Check if the argument is split over registers and memory.
11938 This can only ever happen for long double or _Decimal128;
11939 complex types are handled via split_complex_arg. */
11940 machine_mode fmode = elt_mode;
11941 if (cum->fregno + (i + 1) * n_fpreg > FP_ARG_MAX_REG + 1)
11942 {
11943 gcc_assert (FLOAT128_2REG_P (fmode));
11944 fmode = DECIMAL_FLOAT_MODE_P (fmode) ? DDmode : DFmode;
11945 }
11946
11947 r = gen_rtx_REG (fmode, cum->fregno + i * n_fpreg);
11948 off = GEN_INT (i * GET_MODE_SIZE (elt_mode));
11949 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
11950 }
11951
11952 /* If there were not enough FPRs to hold the argument, the rest
11953 usually goes into memory. However, if the current position
11954 is still within the register parameter area, a portion may
11955 actually have to go into GPRs.
11956
11957 Note that it may happen that the portion of the argument
11958 passed in the first "half" of the first GPR was already
11959 passed in the last FPR as well.
11960
11961 For unnamed arguments, we already set up GPRs to cover the
11962 whole argument in rs6000_psave_function_arg, so there is
11963 nothing further to do at this point. */
11964 fpr_words = (i * GET_MODE_SIZE (elt_mode)) / (TARGET_32BIT ? 4 : 8);
11965 if (i < n_elts && align_words + fpr_words < GP_ARG_NUM_REG
11966 && cum->nargs_prototype > 0)
11967 {
11968 static bool warned;
11969
11970 machine_mode rmode = TARGET_32BIT ? SImode : DImode;
11971 int n_words = rs6000_arg_size (mode, type);
11972
11973 align_words += fpr_words;
11974 n_words -= fpr_words;
11975
11976 do
11977 {
11978 r = gen_rtx_REG (rmode, GP_ARG_MIN_REG + align_words);
11979 off = GEN_INT (fpr_words++ * GET_MODE_SIZE (rmode));
11980 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
11981 }
11982 while (++align_words < GP_ARG_NUM_REG && --n_words != 0);
11983
11984 if (!warned && warn_psabi)
11985 {
11986 warned = true;
11987 inform (input_location,
11988 "the ABI of passing homogeneous float aggregates"
11989 " has changed in GCC 5");
11990 }
11991 }
11992
11993 return rs6000_finish_function_arg (mode, rvec, k);
11994 }
11995 else if (align_words < GP_ARG_NUM_REG)
11996 {
11997 if (TARGET_32BIT && TARGET_POWERPC64)
11998 return rs6000_mixed_function_arg (mode, type, align_words);
11999
12000 return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
12001 }
12002 else
12003 return NULL_RTX;
12004 }
12005 }
12006 \f
12007 /* For an arg passed partly in registers and partly in memory, this is
12008 the number of bytes passed in registers. For args passed entirely in
12009 registers or entirely in memory, zero. When an arg is described by a
12010 PARALLEL, perhaps using more than one register type, this function
12011 returns the number of bytes used by the first element of the PARALLEL. */
12012
12013 static int
12014 rs6000_arg_partial_bytes (cumulative_args_t cum_v, machine_mode mode,
12015 tree type, bool named)
12016 {
12017 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
12018 bool passed_in_gprs = true;
12019 int ret = 0;
12020 int align_words;
12021 machine_mode elt_mode;
12022 int n_elts;
12023
12024 rs6000_discover_homogeneous_aggregate (mode, type, &elt_mode, &n_elts);
12025
12026 if (DEFAULT_ABI == ABI_V4)
12027 return 0;
12028
12029 if (USE_ALTIVEC_FOR_ARG_P (cum, elt_mode, named))
12030 {
12031 /* If we are passing this arg in the fixed parameter save area (gprs or
12032 memory) as well as VRs, we do not use the partial bytes mechanism;
12033 instead, rs6000_function_arg will return a PARALLEL including a memory
12034 element as necessary. Library support functions for IEEE 128-bit are
12035 assumed to not need the value passed both in GPRs and in vector
12036 registers. */
12037 if (TARGET_64BIT && !cum->prototype
12038 && (!cum->libcall || !FLOAT128_VECTOR_P (elt_mode)))
12039 return 0;
12040
12041 /* Otherwise, we pass in VRs only. Check for partial copies. */
12042 passed_in_gprs = false;
12043 if (cum->vregno + n_elts > ALTIVEC_ARG_MAX_REG + 1)
12044 ret = (ALTIVEC_ARG_MAX_REG + 1 - cum->vregno) * 16;
12045 }
12046
12047 /* In this complicated case we just disable the partial_nregs code. */
12048 if (TARGET_MACHO && rs6000_darwin64_struct_check_p (mode, type))
12049 return 0;
12050
12051 align_words = rs6000_parm_start (mode, type, cum->words);
12052
12053 if (USE_FP_FOR_ARG_P (cum, elt_mode))
12054 {
12055 unsigned long n_fpreg = (GET_MODE_SIZE (elt_mode) + 7) >> 3;
12056
12057 /* If we are passing this arg in the fixed parameter save area
12058 (gprs or memory) as well as FPRs, we do not use the partial
12059 bytes mechanism; instead, rs6000_function_arg will return a
12060 PARALLEL including a memory element as necessary. */
12061 if (type
12062 && (cum->nargs_prototype <= 0
12063 || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
12064 && TARGET_XL_COMPAT
12065 && align_words >= GP_ARG_NUM_REG)))
12066 return 0;
12067
12068 /* Otherwise, we pass in FPRs only. Check for partial copies. */
12069 passed_in_gprs = false;
12070 if (cum->fregno + n_elts * n_fpreg > FP_ARG_MAX_REG + 1)
12071 {
12072 /* Compute number of bytes / words passed in FPRs. If there
12073 is still space available in the register parameter area
12074 *after* that amount, a part of the argument will be passed
12075 in GPRs. In that case, the total amount passed in any
12076 registers is equal to the amount that would have been passed
12077 in GPRs if everything were passed there, so we fall back to
12078 the GPR code below to compute the appropriate value. */
12079 int fpr = ((FP_ARG_MAX_REG + 1 - cum->fregno)
12080 * MIN (8, GET_MODE_SIZE (elt_mode)));
12081 int fpr_words = fpr / (TARGET_32BIT ? 4 : 8);
12082
12083 if (align_words + fpr_words < GP_ARG_NUM_REG)
12084 passed_in_gprs = true;
12085 else
12086 ret = fpr;
12087 }
12088 }
12089
12090 if (passed_in_gprs
12091 && align_words < GP_ARG_NUM_REG
12092 && GP_ARG_NUM_REG < align_words + rs6000_arg_size (mode, type))
12093 ret = (GP_ARG_NUM_REG - align_words) * (TARGET_32BIT ? 4 : 8);
12094
12095 if (ret != 0 && TARGET_DEBUG_ARG)
12096 fprintf (stderr, "rs6000_arg_partial_bytes: %d\n", ret);
12097
12098 return ret;
12099 }
12100 \f
12101 /* A C expression that indicates when an argument must be passed by
12102 reference. If nonzero for an argument, a copy of that argument is
12103 made in memory and a pointer to the argument is passed instead of
12104 the argument itself. The pointer is passed in whatever way is
12105 appropriate for passing a pointer to that type.
12106
12107 Under V.4, aggregates and long double are passed by reference.
12108
12109 As an extension to all 32-bit ABIs, AltiVec vectors are passed by
12110 reference unless the AltiVec vector extension ABI is in force.
12111
12112 As an extension to all ABIs, variable sized types are passed by
12113 reference. */
12114
12115 static bool
12116 rs6000_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
12117 machine_mode mode, const_tree type,
12118 bool named ATTRIBUTE_UNUSED)
12119 {
12120 if (!type)
12121 return 0;
12122
12123 if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD
12124 && FLOAT128_IEEE_P (TYPE_MODE (type)))
12125 {
12126 if (TARGET_DEBUG_ARG)
12127 fprintf (stderr, "function_arg_pass_by_reference: V4 IEEE 128-bit\n");
12128 return 1;
12129 }
12130
12131 if (DEFAULT_ABI == ABI_V4 && AGGREGATE_TYPE_P (type))
12132 {
12133 if (TARGET_DEBUG_ARG)
12134 fprintf (stderr, "function_arg_pass_by_reference: V4 aggregate\n");
12135 return 1;
12136 }
12137
12138 if (int_size_in_bytes (type) < 0)
12139 {
12140 if (TARGET_DEBUG_ARG)
12141 fprintf (stderr, "function_arg_pass_by_reference: variable size\n");
12142 return 1;
12143 }
12144
12145 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
12146 modes only exist for GCC vector types if -maltivec. */
12147 if (TARGET_32BIT && !TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
12148 {
12149 if (TARGET_DEBUG_ARG)
12150 fprintf (stderr, "function_arg_pass_by_reference: AltiVec\n");
12151 return 1;
12152 }
12153
12154 /* Pass synthetic vectors in memory. */
12155 if (TREE_CODE (type) == VECTOR_TYPE
12156 && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
12157 {
12158 static bool warned_for_pass_big_vectors = false;
12159 if (TARGET_DEBUG_ARG)
12160 fprintf (stderr, "function_arg_pass_by_reference: synthetic vector\n");
12161 if (!warned_for_pass_big_vectors)
12162 {
12163 warning (OPT_Wpsabi, "GCC vector passed by reference: "
12164 "non-standard ABI extension with no compatibility "
12165 "guarantee");
12166 warned_for_pass_big_vectors = true;
12167 }
12168 return 1;
12169 }
12170
12171 return 0;
12172 }
12173
12174 /* Process parameter of type TYPE after ARGS_SO_FAR parameters were
12175 already processes. Return true if the parameter must be passed
12176 (fully or partially) on the stack. */
12177
12178 static bool
12179 rs6000_parm_needs_stack (cumulative_args_t args_so_far, tree type)
12180 {
12181 machine_mode mode;
12182 int unsignedp;
12183 rtx entry_parm;
12184
12185 /* Catch errors. */
12186 if (type == NULL || type == error_mark_node)
12187 return true;
12188
12189 /* Handle types with no storage requirement. */
12190 if (TYPE_MODE (type) == VOIDmode)
12191 return false;
12192
12193 /* Handle complex types. */
12194 if (TREE_CODE (type) == COMPLEX_TYPE)
12195 return (rs6000_parm_needs_stack (args_so_far, TREE_TYPE (type))
12196 || rs6000_parm_needs_stack (args_so_far, TREE_TYPE (type)));
12197
12198 /* Handle transparent aggregates. */
12199 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
12200 && TYPE_TRANSPARENT_AGGR (type))
12201 type = TREE_TYPE (first_field (type));
12202
12203 /* See if this arg was passed by invisible reference. */
12204 if (pass_by_reference (get_cumulative_args (args_so_far),
12205 TYPE_MODE (type), type, true))
12206 type = build_pointer_type (type);
12207
12208 /* Find mode as it is passed by the ABI. */
12209 unsignedp = TYPE_UNSIGNED (type);
12210 mode = promote_mode (type, TYPE_MODE (type), &unsignedp);
12211
12212 /* If we must pass in stack, we need a stack. */
12213 if (rs6000_must_pass_in_stack (mode, type))
12214 return true;
12215
12216 /* If there is no incoming register, we need a stack. */
12217 entry_parm = rs6000_function_arg (args_so_far, mode, type, true);
12218 if (entry_parm == NULL)
12219 return true;
12220
12221 /* Likewise if we need to pass both in registers and on the stack. */
12222 if (GET_CODE (entry_parm) == PARALLEL
12223 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
12224 return true;
12225
12226 /* Also true if we're partially in registers and partially not. */
12227 if (rs6000_arg_partial_bytes (args_so_far, mode, type, true) != 0)
12228 return true;
12229
12230 /* Update info on where next arg arrives in registers. */
12231 rs6000_function_arg_advance (args_so_far, mode, type, true);
12232 return false;
12233 }
12234
12235 /* Return true if FUN has no prototype, has a variable argument
12236 list, or passes any parameter in memory. */
12237
12238 static bool
12239 rs6000_function_parms_need_stack (tree fun, bool incoming)
12240 {
12241 tree fntype, result;
12242 CUMULATIVE_ARGS args_so_far_v;
12243 cumulative_args_t args_so_far;
12244
12245 if (!fun)
12246 /* Must be a libcall, all of which only use reg parms. */
12247 return false;
12248
12249 fntype = fun;
12250 if (!TYPE_P (fun))
12251 fntype = TREE_TYPE (fun);
12252
12253 /* Varargs functions need the parameter save area. */
12254 if ((!incoming && !prototype_p (fntype)) || stdarg_p (fntype))
12255 return true;
12256
12257 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far_v, fntype, NULL_RTX);
12258 args_so_far = pack_cumulative_args (&args_so_far_v);
12259
12260 /* When incoming, we will have been passed the function decl.
12261 It is necessary to use the decl to handle K&R style functions,
12262 where TYPE_ARG_TYPES may not be available. */
12263 if (incoming)
12264 {
12265 gcc_assert (DECL_P (fun));
12266 result = DECL_RESULT (fun);
12267 }
12268 else
12269 result = TREE_TYPE (fntype);
12270
12271 if (result && aggregate_value_p (result, fntype))
12272 {
12273 if (!TYPE_P (result))
12274 result = TREE_TYPE (result);
12275 result = build_pointer_type (result);
12276 rs6000_parm_needs_stack (args_so_far, result);
12277 }
12278
12279 if (incoming)
12280 {
12281 tree parm;
12282
12283 for (parm = DECL_ARGUMENTS (fun);
12284 parm && parm != void_list_node;
12285 parm = TREE_CHAIN (parm))
12286 if (rs6000_parm_needs_stack (args_so_far, TREE_TYPE (parm)))
12287 return true;
12288 }
12289 else
12290 {
12291 function_args_iterator args_iter;
12292 tree arg_type;
12293
12294 FOREACH_FUNCTION_ARGS (fntype, arg_type, args_iter)
12295 if (rs6000_parm_needs_stack (args_so_far, arg_type))
12296 return true;
12297 }
12298
12299 return false;
12300 }
12301
12302 /* Return the size of the REG_PARM_STACK_SPACE are for FUN. This is
12303 usually a constant depending on the ABI. However, in the ELFv2 ABI
12304 the register parameter area is optional when calling a function that
12305 has a prototype is scope, has no variable argument list, and passes
12306 all parameters in registers. */
12307
12308 int
12309 rs6000_reg_parm_stack_space (tree fun, bool incoming)
12310 {
12311 int reg_parm_stack_space;
12312
12313 switch (DEFAULT_ABI)
12314 {
12315 default:
12316 reg_parm_stack_space = 0;
12317 break;
12318
12319 case ABI_AIX:
12320 case ABI_DARWIN:
12321 reg_parm_stack_space = TARGET_64BIT ? 64 : 32;
12322 break;
12323
12324 case ABI_ELFv2:
12325 /* ??? Recomputing this every time is a bit expensive. Is there
12326 a place to cache this information? */
12327 if (rs6000_function_parms_need_stack (fun, incoming))
12328 reg_parm_stack_space = TARGET_64BIT ? 64 : 32;
12329 else
12330 reg_parm_stack_space = 0;
12331 break;
12332 }
12333
12334 return reg_parm_stack_space;
12335 }
12336
12337 static void
12338 rs6000_move_block_from_reg (int regno, rtx x, int nregs)
12339 {
12340 int i;
12341 machine_mode reg_mode = TARGET_32BIT ? SImode : DImode;
12342
12343 if (nregs == 0)
12344 return;
12345
12346 for (i = 0; i < nregs; i++)
12347 {
12348 rtx tem = adjust_address_nv (x, reg_mode, i * GET_MODE_SIZE (reg_mode));
12349 if (reload_completed)
12350 {
12351 if (! strict_memory_address_p (reg_mode, XEXP (tem, 0)))
12352 tem = NULL_RTX;
12353 else
12354 tem = simplify_gen_subreg (reg_mode, x, BLKmode,
12355 i * GET_MODE_SIZE (reg_mode));
12356 }
12357 else
12358 tem = replace_equiv_address (tem, XEXP (tem, 0));
12359
12360 gcc_assert (tem);
12361
12362 emit_move_insn (tem, gen_rtx_REG (reg_mode, regno + i));
12363 }
12364 }
12365 \f
12366 /* Perform any needed actions needed for a function that is receiving a
12367 variable number of arguments.
12368
12369 CUM is as above.
12370
12371 MODE and TYPE are the mode and type of the current parameter.
12372
12373 PRETEND_SIZE is a variable that should be set to the amount of stack
12374 that must be pushed by the prolog to pretend that our caller pushed
12375 it.
12376
12377 Normally, this macro will push all remaining incoming registers on the
12378 stack and set PRETEND_SIZE to the length of the registers pushed. */
12379
12380 static void
12381 setup_incoming_varargs (cumulative_args_t cum, machine_mode mode,
12382 tree type, int *pretend_size ATTRIBUTE_UNUSED,
12383 int no_rtl)
12384 {
12385 CUMULATIVE_ARGS next_cum;
12386 int reg_size = TARGET_32BIT ? 4 : 8;
12387 rtx save_area = NULL_RTX, mem;
12388 int first_reg_offset;
12389 alias_set_type set;
12390
12391 /* Skip the last named argument. */
12392 next_cum = *get_cumulative_args (cum);
12393 rs6000_function_arg_advance_1 (&next_cum, mode, type, true, 0);
12394
12395 if (DEFAULT_ABI == ABI_V4)
12396 {
12397 first_reg_offset = next_cum.sysv_gregno - GP_ARG_MIN_REG;
12398
12399 if (! no_rtl)
12400 {
12401 int gpr_reg_num = 0, gpr_size = 0, fpr_size = 0;
12402 HOST_WIDE_INT offset = 0;
12403
12404 /* Try to optimize the size of the varargs save area.
12405 The ABI requires that ap.reg_save_area is doubleword
12406 aligned, but we don't need to allocate space for all
12407 the bytes, only those to which we actually will save
12408 anything. */
12409 if (cfun->va_list_gpr_size && first_reg_offset < GP_ARG_NUM_REG)
12410 gpr_reg_num = GP_ARG_NUM_REG - first_reg_offset;
12411 if (TARGET_HARD_FLOAT
12412 && next_cum.fregno <= FP_ARG_V4_MAX_REG
12413 && cfun->va_list_fpr_size)
12414 {
12415 if (gpr_reg_num)
12416 fpr_size = (next_cum.fregno - FP_ARG_MIN_REG)
12417 * UNITS_PER_FP_WORD;
12418 if (cfun->va_list_fpr_size
12419 < FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
12420 fpr_size += cfun->va_list_fpr_size * UNITS_PER_FP_WORD;
12421 else
12422 fpr_size += (FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
12423 * UNITS_PER_FP_WORD;
12424 }
12425 if (gpr_reg_num)
12426 {
12427 offset = -((first_reg_offset * reg_size) & ~7);
12428 if (!fpr_size && gpr_reg_num > cfun->va_list_gpr_size)
12429 {
12430 gpr_reg_num = cfun->va_list_gpr_size;
12431 if (reg_size == 4 && (first_reg_offset & 1))
12432 gpr_reg_num++;
12433 }
12434 gpr_size = (gpr_reg_num * reg_size + 7) & ~7;
12435 }
12436 else if (fpr_size)
12437 offset = - (int) (next_cum.fregno - FP_ARG_MIN_REG)
12438 * UNITS_PER_FP_WORD
12439 - (int) (GP_ARG_NUM_REG * reg_size);
12440
12441 if (gpr_size + fpr_size)
12442 {
12443 rtx reg_save_area
12444 = assign_stack_local (BLKmode, gpr_size + fpr_size, 64);
12445 gcc_assert (GET_CODE (reg_save_area) == MEM);
12446 reg_save_area = XEXP (reg_save_area, 0);
12447 if (GET_CODE (reg_save_area) == PLUS)
12448 {
12449 gcc_assert (XEXP (reg_save_area, 0)
12450 == virtual_stack_vars_rtx);
12451 gcc_assert (GET_CODE (XEXP (reg_save_area, 1)) == CONST_INT);
12452 offset += INTVAL (XEXP (reg_save_area, 1));
12453 }
12454 else
12455 gcc_assert (reg_save_area == virtual_stack_vars_rtx);
12456 }
12457
12458 cfun->machine->varargs_save_offset = offset;
12459 save_area = plus_constant (Pmode, virtual_stack_vars_rtx, offset);
12460 }
12461 }
12462 else
12463 {
12464 first_reg_offset = next_cum.words;
12465 save_area = crtl->args.internal_arg_pointer;
12466
12467 if (targetm.calls.must_pass_in_stack (mode, type))
12468 first_reg_offset += rs6000_arg_size (TYPE_MODE (type), type);
12469 }
12470
12471 set = get_varargs_alias_set ();
12472 if (! no_rtl && first_reg_offset < GP_ARG_NUM_REG
12473 && cfun->va_list_gpr_size)
12474 {
12475 int n_gpr, nregs = GP_ARG_NUM_REG - first_reg_offset;
12476
12477 if (va_list_gpr_counter_field)
12478 /* V4 va_list_gpr_size counts number of registers needed. */
12479 n_gpr = cfun->va_list_gpr_size;
12480 else
12481 /* char * va_list instead counts number of bytes needed. */
12482 n_gpr = (cfun->va_list_gpr_size + reg_size - 1) / reg_size;
12483
12484 if (nregs > n_gpr)
12485 nregs = n_gpr;
12486
12487 mem = gen_rtx_MEM (BLKmode,
12488 plus_constant (Pmode, save_area,
12489 first_reg_offset * reg_size));
12490 MEM_NOTRAP_P (mem) = 1;
12491 set_mem_alias_set (mem, set);
12492 set_mem_align (mem, BITS_PER_WORD);
12493
12494 rs6000_move_block_from_reg (GP_ARG_MIN_REG + first_reg_offset, mem,
12495 nregs);
12496 }
12497
12498 /* Save FP registers if needed. */
12499 if (DEFAULT_ABI == ABI_V4
12500 && TARGET_HARD_FLOAT
12501 && ! no_rtl
12502 && next_cum.fregno <= FP_ARG_V4_MAX_REG
12503 && cfun->va_list_fpr_size)
12504 {
12505 int fregno = next_cum.fregno, nregs;
12506 rtx cr1 = gen_rtx_REG (CCmode, CR1_REGNO);
12507 rtx lab = gen_label_rtx ();
12508 int off = (GP_ARG_NUM_REG * reg_size) + ((fregno - FP_ARG_MIN_REG)
12509 * UNITS_PER_FP_WORD);
12510
12511 emit_jump_insn
12512 (gen_rtx_SET (pc_rtx,
12513 gen_rtx_IF_THEN_ELSE (VOIDmode,
12514 gen_rtx_NE (VOIDmode, cr1,
12515 const0_rtx),
12516 gen_rtx_LABEL_REF (VOIDmode, lab),
12517 pc_rtx)));
12518
12519 for (nregs = 0;
12520 fregno <= FP_ARG_V4_MAX_REG && nregs < cfun->va_list_fpr_size;
12521 fregno++, off += UNITS_PER_FP_WORD, nregs++)
12522 {
12523 mem = gen_rtx_MEM (TARGET_HARD_FLOAT ? DFmode : SFmode,
12524 plus_constant (Pmode, save_area, off));
12525 MEM_NOTRAP_P (mem) = 1;
12526 set_mem_alias_set (mem, set);
12527 set_mem_align (mem, GET_MODE_ALIGNMENT (
12528 TARGET_HARD_FLOAT ? DFmode : SFmode));
12529 emit_move_insn (mem, gen_rtx_REG (
12530 TARGET_HARD_FLOAT ? DFmode : SFmode, fregno));
12531 }
12532
12533 emit_label (lab);
12534 }
12535 }
12536
12537 /* Create the va_list data type. */
12538
12539 static tree
12540 rs6000_build_builtin_va_list (void)
12541 {
12542 tree f_gpr, f_fpr, f_res, f_ovf, f_sav, record, type_decl;
12543
12544 /* For AIX, prefer 'char *' because that's what the system
12545 header files like. */
12546 if (DEFAULT_ABI != ABI_V4)
12547 return build_pointer_type (char_type_node);
12548
12549 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
12550 type_decl = build_decl (BUILTINS_LOCATION, TYPE_DECL,
12551 get_identifier ("__va_list_tag"), record);
12552
12553 f_gpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("gpr"),
12554 unsigned_char_type_node);
12555 f_fpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("fpr"),
12556 unsigned_char_type_node);
12557 /* Give the two bytes of padding a name, so that -Wpadded won't warn on
12558 every user file. */
12559 f_res = build_decl (BUILTINS_LOCATION, FIELD_DECL,
12560 get_identifier ("reserved"), short_unsigned_type_node);
12561 f_ovf = build_decl (BUILTINS_LOCATION, FIELD_DECL,
12562 get_identifier ("overflow_arg_area"),
12563 ptr_type_node);
12564 f_sav = build_decl (BUILTINS_LOCATION, FIELD_DECL,
12565 get_identifier ("reg_save_area"),
12566 ptr_type_node);
12567
12568 va_list_gpr_counter_field = f_gpr;
12569 va_list_fpr_counter_field = f_fpr;
12570
12571 DECL_FIELD_CONTEXT (f_gpr) = record;
12572 DECL_FIELD_CONTEXT (f_fpr) = record;
12573 DECL_FIELD_CONTEXT (f_res) = record;
12574 DECL_FIELD_CONTEXT (f_ovf) = record;
12575 DECL_FIELD_CONTEXT (f_sav) = record;
12576
12577 TYPE_STUB_DECL (record) = type_decl;
12578 TYPE_NAME (record) = type_decl;
12579 TYPE_FIELDS (record) = f_gpr;
12580 DECL_CHAIN (f_gpr) = f_fpr;
12581 DECL_CHAIN (f_fpr) = f_res;
12582 DECL_CHAIN (f_res) = f_ovf;
12583 DECL_CHAIN (f_ovf) = f_sav;
12584
12585 layout_type (record);
12586
12587 /* The correct type is an array type of one element. */
12588 return build_array_type (record, build_index_type (size_zero_node));
12589 }
12590
12591 /* Implement va_start. */
12592
12593 static void
12594 rs6000_va_start (tree valist, rtx nextarg)
12595 {
12596 HOST_WIDE_INT words, n_gpr, n_fpr;
12597 tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
12598 tree gpr, fpr, ovf, sav, t;
12599
12600 /* Only SVR4 needs something special. */
12601 if (DEFAULT_ABI != ABI_V4)
12602 {
12603 std_expand_builtin_va_start (valist, nextarg);
12604 return;
12605 }
12606
12607 f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
12608 f_fpr = DECL_CHAIN (f_gpr);
12609 f_res = DECL_CHAIN (f_fpr);
12610 f_ovf = DECL_CHAIN (f_res);
12611 f_sav = DECL_CHAIN (f_ovf);
12612
12613 valist = build_simple_mem_ref (valist);
12614 gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
12615 fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
12616 f_fpr, NULL_TREE);
12617 ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
12618 f_ovf, NULL_TREE);
12619 sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
12620 f_sav, NULL_TREE);
12621
12622 /* Count number of gp and fp argument registers used. */
12623 words = crtl->args.info.words;
12624 n_gpr = MIN (crtl->args.info.sysv_gregno - GP_ARG_MIN_REG,
12625 GP_ARG_NUM_REG);
12626 n_fpr = MIN (crtl->args.info.fregno - FP_ARG_MIN_REG,
12627 FP_ARG_NUM_REG);
12628
12629 if (TARGET_DEBUG_ARG)
12630 fprintf (stderr, "va_start: words = " HOST_WIDE_INT_PRINT_DEC", n_gpr = "
12631 HOST_WIDE_INT_PRINT_DEC", n_fpr = " HOST_WIDE_INT_PRINT_DEC"\n",
12632 words, n_gpr, n_fpr);
12633
12634 if (cfun->va_list_gpr_size)
12635 {
12636 t = build2 (MODIFY_EXPR, TREE_TYPE (gpr), gpr,
12637 build_int_cst (NULL_TREE, n_gpr));
12638 TREE_SIDE_EFFECTS (t) = 1;
12639 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
12640 }
12641
12642 if (cfun->va_list_fpr_size)
12643 {
12644 t = build2 (MODIFY_EXPR, TREE_TYPE (fpr), fpr,
12645 build_int_cst (NULL_TREE, n_fpr));
12646 TREE_SIDE_EFFECTS (t) = 1;
12647 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
12648
12649 #ifdef HAVE_AS_GNU_ATTRIBUTE
12650 if (call_ABI_of_interest (cfun->decl))
12651 rs6000_passes_float = true;
12652 #endif
12653 }
12654
12655 /* Find the overflow area. */
12656 t = make_tree (TREE_TYPE (ovf), crtl->args.internal_arg_pointer);
12657 if (words != 0)
12658 t = fold_build_pointer_plus_hwi (t, words * MIN_UNITS_PER_WORD);
12659 t = build2 (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
12660 TREE_SIDE_EFFECTS (t) = 1;
12661 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
12662
12663 /* If there were no va_arg invocations, don't set up the register
12664 save area. */
12665 if (!cfun->va_list_gpr_size
12666 && !cfun->va_list_fpr_size
12667 && n_gpr < GP_ARG_NUM_REG
12668 && n_fpr < FP_ARG_V4_MAX_REG)
12669 return;
12670
12671 /* Find the register save area. */
12672 t = make_tree (TREE_TYPE (sav), virtual_stack_vars_rtx);
12673 if (cfun->machine->varargs_save_offset)
12674 t = fold_build_pointer_plus_hwi (t, cfun->machine->varargs_save_offset);
12675 t = build2 (MODIFY_EXPR, TREE_TYPE (sav), sav, t);
12676 TREE_SIDE_EFFECTS (t) = 1;
12677 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
12678 }
12679
12680 /* Implement va_arg. */
12681
12682 static tree
12683 rs6000_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
12684 gimple_seq *post_p)
12685 {
12686 tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
12687 tree gpr, fpr, ovf, sav, reg, t, u;
12688 int size, rsize, n_reg, sav_ofs, sav_scale;
12689 tree lab_false, lab_over, addr;
12690 int align;
12691 tree ptrtype = build_pointer_type_for_mode (type, ptr_mode, true);
12692 int regalign = 0;
12693 gimple *stmt;
12694
12695 if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
12696 {
12697 t = rs6000_gimplify_va_arg (valist, ptrtype, pre_p, post_p);
12698 return build_va_arg_indirect_ref (t);
12699 }
12700
12701 /* We need to deal with the fact that the darwin ppc64 ABI is defined by an
12702 earlier version of gcc, with the property that it always applied alignment
12703 adjustments to the va-args (even for zero-sized types). The cheapest way
12704 to deal with this is to replicate the effect of the part of
12705 std_gimplify_va_arg_expr that carries out the align adjust, for the case
12706 of relevance.
12707 We don't need to check for pass-by-reference because of the test above.
12708 We can return a simplifed answer, since we know there's no offset to add. */
12709
12710 if (((TARGET_MACHO
12711 && rs6000_darwin64_abi)
12712 || DEFAULT_ABI == ABI_ELFv2
12713 || (DEFAULT_ABI == ABI_AIX && !rs6000_compat_align_parm))
12714 && integer_zerop (TYPE_SIZE (type)))
12715 {
12716 unsigned HOST_WIDE_INT align, boundary;
12717 tree valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL);
12718 align = PARM_BOUNDARY / BITS_PER_UNIT;
12719 boundary = rs6000_function_arg_boundary (TYPE_MODE (type), type);
12720 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
12721 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
12722 boundary /= BITS_PER_UNIT;
12723 if (boundary > align)
12724 {
12725 tree t ;
12726 /* This updates arg ptr by the amount that would be necessary
12727 to align the zero-sized (but not zero-alignment) item. */
12728 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
12729 fold_build_pointer_plus_hwi (valist_tmp, boundary - 1));
12730 gimplify_and_add (t, pre_p);
12731
12732 t = fold_convert (sizetype, valist_tmp);
12733 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
12734 fold_convert (TREE_TYPE (valist),
12735 fold_build2 (BIT_AND_EXPR, sizetype, t,
12736 size_int (-boundary))));
12737 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
12738 gimplify_and_add (t, pre_p);
12739 }
12740 /* Since it is zero-sized there's no increment for the item itself. */
12741 valist_tmp = fold_convert (build_pointer_type (type), valist_tmp);
12742 return build_va_arg_indirect_ref (valist_tmp);
12743 }
12744
12745 if (DEFAULT_ABI != ABI_V4)
12746 {
12747 if (targetm.calls.split_complex_arg && TREE_CODE (type) == COMPLEX_TYPE)
12748 {
12749 tree elem_type = TREE_TYPE (type);
12750 machine_mode elem_mode = TYPE_MODE (elem_type);
12751 int elem_size = GET_MODE_SIZE (elem_mode);
12752
12753 if (elem_size < UNITS_PER_WORD)
12754 {
12755 tree real_part, imag_part;
12756 gimple_seq post = NULL;
12757
12758 real_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
12759 &post);
12760 /* Copy the value into a temporary, lest the formal temporary
12761 be reused out from under us. */
12762 real_part = get_initialized_tmp_var (real_part, pre_p, &post);
12763 gimple_seq_add_seq (pre_p, post);
12764
12765 imag_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
12766 post_p);
12767
12768 return build2 (COMPLEX_EXPR, type, real_part, imag_part);
12769 }
12770 }
12771
12772 return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
12773 }
12774
12775 f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
12776 f_fpr = DECL_CHAIN (f_gpr);
12777 f_res = DECL_CHAIN (f_fpr);
12778 f_ovf = DECL_CHAIN (f_res);
12779 f_sav = DECL_CHAIN (f_ovf);
12780
12781 gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
12782 fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
12783 f_fpr, NULL_TREE);
12784 ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
12785 f_ovf, NULL_TREE);
12786 sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
12787 f_sav, NULL_TREE);
12788
12789 size = int_size_in_bytes (type);
12790 rsize = (size + 3) / 4;
12791 int pad = 4 * rsize - size;
12792 align = 1;
12793
12794 machine_mode mode = TYPE_MODE (type);
12795 if (abi_v4_pass_in_fpr (mode, false))
12796 {
12797 /* FP args go in FP registers, if present. */
12798 reg = fpr;
12799 n_reg = (size + 7) / 8;
12800 sav_ofs = (TARGET_HARD_FLOAT ? 8 : 4) * 4;
12801 sav_scale = (TARGET_HARD_FLOAT ? 8 : 4);
12802 if (mode != SFmode && mode != SDmode)
12803 align = 8;
12804 }
12805 else
12806 {
12807 /* Otherwise into GP registers. */
12808 reg = gpr;
12809 n_reg = rsize;
12810 sav_ofs = 0;
12811 sav_scale = 4;
12812 if (n_reg == 2)
12813 align = 8;
12814 }
12815
12816 /* Pull the value out of the saved registers.... */
12817
12818 lab_over = NULL;
12819 addr = create_tmp_var (ptr_type_node, "addr");
12820
12821 /* AltiVec vectors never go in registers when -mabi=altivec. */
12822 if (TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
12823 align = 16;
12824 else
12825 {
12826 lab_false = create_artificial_label (input_location);
12827 lab_over = create_artificial_label (input_location);
12828
12829 /* Long long is aligned in the registers. As are any other 2 gpr
12830 item such as complex int due to a historical mistake. */
12831 u = reg;
12832 if (n_reg == 2 && reg == gpr)
12833 {
12834 regalign = 1;
12835 u = build2 (BIT_AND_EXPR, TREE_TYPE (reg), unshare_expr (reg),
12836 build_int_cst (TREE_TYPE (reg), n_reg - 1));
12837 u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg),
12838 unshare_expr (reg), u);
12839 }
12840 /* _Decimal128 is passed in even/odd fpr pairs; the stored
12841 reg number is 0 for f1, so we want to make it odd. */
12842 else if (reg == fpr && mode == TDmode)
12843 {
12844 t = build2 (BIT_IOR_EXPR, TREE_TYPE (reg), unshare_expr (reg),
12845 build_int_cst (TREE_TYPE (reg), 1));
12846 u = build2 (MODIFY_EXPR, void_type_node, unshare_expr (reg), t);
12847 }
12848
12849 t = fold_convert (TREE_TYPE (reg), size_int (8 - n_reg + 1));
12850 t = build2 (GE_EXPR, boolean_type_node, u, t);
12851 u = build1 (GOTO_EXPR, void_type_node, lab_false);
12852 t = build3 (COND_EXPR, void_type_node, t, u, NULL_TREE);
12853 gimplify_and_add (t, pre_p);
12854
12855 t = sav;
12856 if (sav_ofs)
12857 t = fold_build_pointer_plus_hwi (sav, sav_ofs);
12858
12859 u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg), unshare_expr (reg),
12860 build_int_cst (TREE_TYPE (reg), n_reg));
12861 u = fold_convert (sizetype, u);
12862 u = build2 (MULT_EXPR, sizetype, u, size_int (sav_scale));
12863 t = fold_build_pointer_plus (t, u);
12864
12865 /* _Decimal32 varargs are located in the second word of the 64-bit
12866 FP register for 32-bit binaries. */
12867 if (TARGET_32BIT && TARGET_HARD_FLOAT && mode == SDmode)
12868 t = fold_build_pointer_plus_hwi (t, size);
12869
12870 /* Args are passed right-aligned. */
12871 if (BYTES_BIG_ENDIAN)
12872 t = fold_build_pointer_plus_hwi (t, pad);
12873
12874 gimplify_assign (addr, t, pre_p);
12875
12876 gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over));
12877
12878 stmt = gimple_build_label (lab_false);
12879 gimple_seq_add_stmt (pre_p, stmt);
12880
12881 if ((n_reg == 2 && !regalign) || n_reg > 2)
12882 {
12883 /* Ensure that we don't find any more args in regs.
12884 Alignment has taken care of for special cases. */
12885 gimplify_assign (reg, build_int_cst (TREE_TYPE (reg), 8), pre_p);
12886 }
12887 }
12888
12889 /* ... otherwise out of the overflow area. */
12890
12891 /* Care for on-stack alignment if needed. */
12892 t = ovf;
12893 if (align != 1)
12894 {
12895 t = fold_build_pointer_plus_hwi (t, align - 1);
12896 t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
12897 build_int_cst (TREE_TYPE (t), -align));
12898 }
12899
12900 /* Args are passed right-aligned. */
12901 if (BYTES_BIG_ENDIAN)
12902 t = fold_build_pointer_plus_hwi (t, pad);
12903
12904 gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue);
12905
12906 gimplify_assign (unshare_expr (addr), t, pre_p);
12907
12908 t = fold_build_pointer_plus_hwi (t, size);
12909 gimplify_assign (unshare_expr (ovf), t, pre_p);
12910
12911 if (lab_over)
12912 {
12913 stmt = gimple_build_label (lab_over);
12914 gimple_seq_add_stmt (pre_p, stmt);
12915 }
12916
12917 if (STRICT_ALIGNMENT
12918 && (TYPE_ALIGN (type)
12919 > (unsigned) BITS_PER_UNIT * (align < 4 ? 4 : align)))
12920 {
12921 /* The value (of type complex double, for example) may not be
12922 aligned in memory in the saved registers, so copy via a
12923 temporary. (This is the same code as used for SPARC.) */
12924 tree tmp = create_tmp_var (type, "va_arg_tmp");
12925 tree dest_addr = build_fold_addr_expr (tmp);
12926
12927 tree copy = build_call_expr (builtin_decl_implicit (BUILT_IN_MEMCPY),
12928 3, dest_addr, addr, size_int (rsize * 4));
12929 TREE_ADDRESSABLE (tmp) = 1;
12930
12931 gimplify_and_add (copy, pre_p);
12932 addr = dest_addr;
12933 }
12934
12935 addr = fold_convert (ptrtype, addr);
12936 return build_va_arg_indirect_ref (addr);
12937 }
12938
12939 /* Builtins. */
12940
12941 static void
12942 def_builtin (const char *name, tree type, enum rs6000_builtins code)
12943 {
12944 tree t;
12945 unsigned classify = rs6000_builtin_info[(int)code].attr;
12946 const char *attr_string = "";
12947
12948 gcc_assert (name != NULL);
12949 gcc_assert (IN_RANGE ((int)code, 0, (int)RS6000_BUILTIN_COUNT));
12950
12951 if (rs6000_builtin_decls[(int)code])
12952 fatal_error (input_location,
12953 "internal error: builtin function %qs already processed",
12954 name);
12955
12956 rs6000_builtin_decls[(int)code] = t =
12957 add_builtin_function (name, type, (int)code, BUILT_IN_MD, NULL, NULL_TREE);
12958
12959 /* Set any special attributes. */
12960 if ((classify & RS6000_BTC_CONST) != 0)
12961 {
12962 /* const function, function only depends on the inputs. */
12963 TREE_READONLY (t) = 1;
12964 TREE_NOTHROW (t) = 1;
12965 attr_string = ", const";
12966 }
12967 else if ((classify & RS6000_BTC_PURE) != 0)
12968 {
12969 /* pure function, function can read global memory, but does not set any
12970 external state. */
12971 DECL_PURE_P (t) = 1;
12972 TREE_NOTHROW (t) = 1;
12973 attr_string = ", pure";
12974 }
12975 else if ((classify & RS6000_BTC_FP) != 0)
12976 {
12977 /* Function is a math function. If rounding mode is on, then treat the
12978 function as not reading global memory, but it can have arbitrary side
12979 effects. If it is off, then assume the function is a const function.
12980 This mimics the ATTR_MATHFN_FPROUNDING attribute in
12981 builtin-attribute.def that is used for the math functions. */
12982 TREE_NOTHROW (t) = 1;
12983 if (flag_rounding_math)
12984 {
12985 DECL_PURE_P (t) = 1;
12986 DECL_IS_NOVOPS (t) = 1;
12987 attr_string = ", fp, pure";
12988 }
12989 else
12990 {
12991 TREE_READONLY (t) = 1;
12992 attr_string = ", fp, const";
12993 }
12994 }
12995 else if ((classify & RS6000_BTC_ATTR_MASK) != 0)
12996 gcc_unreachable ();
12997
12998 if (TARGET_DEBUG_BUILTIN)
12999 fprintf (stderr, "rs6000_builtin, code = %4d, %s%s\n",
13000 (int)code, name, attr_string);
13001 }
13002
13003 /* Simple ternary operations: VECd = foo (VECa, VECb, VECc). */
13004
13005 #undef RS6000_BUILTIN_0
13006 #undef RS6000_BUILTIN_1
13007 #undef RS6000_BUILTIN_2
13008 #undef RS6000_BUILTIN_3
13009 #undef RS6000_BUILTIN_A
13010 #undef RS6000_BUILTIN_D
13011 #undef RS6000_BUILTIN_H
13012 #undef RS6000_BUILTIN_P
13013 #undef RS6000_BUILTIN_X
13014
13015 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13016 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13017 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13018 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) \
13019 { MASK, ICODE, NAME, ENUM },
13020
13021 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13022 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13023 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13024 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13025 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13026
13027 static const struct builtin_description bdesc_3arg[] =
13028 {
13029 #include "rs6000-builtin.def"
13030 };
13031
13032 /* DST operations: void foo (void *, const int, const char). */
13033
13034 #undef RS6000_BUILTIN_0
13035 #undef RS6000_BUILTIN_1
13036 #undef RS6000_BUILTIN_2
13037 #undef RS6000_BUILTIN_3
13038 #undef RS6000_BUILTIN_A
13039 #undef RS6000_BUILTIN_D
13040 #undef RS6000_BUILTIN_H
13041 #undef RS6000_BUILTIN_P
13042 #undef RS6000_BUILTIN_X
13043
13044 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13045 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13046 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13047 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13048 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13049 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) \
13050 { MASK, ICODE, NAME, ENUM },
13051
13052 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13053 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13054 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13055
13056 static const struct builtin_description bdesc_dst[] =
13057 {
13058 #include "rs6000-builtin.def"
13059 };
13060
13061 /* Simple binary operations: VECc = foo (VECa, VECb). */
13062
13063 #undef RS6000_BUILTIN_0
13064 #undef RS6000_BUILTIN_1
13065 #undef RS6000_BUILTIN_2
13066 #undef RS6000_BUILTIN_3
13067 #undef RS6000_BUILTIN_A
13068 #undef RS6000_BUILTIN_D
13069 #undef RS6000_BUILTIN_H
13070 #undef RS6000_BUILTIN_P
13071 #undef RS6000_BUILTIN_X
13072
13073 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13074 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13075 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) \
13076 { MASK, ICODE, NAME, ENUM },
13077
13078 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13079 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13080 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13081 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13082 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13083 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13084
13085 static const struct builtin_description bdesc_2arg[] =
13086 {
13087 #include "rs6000-builtin.def"
13088 };
13089
13090 #undef RS6000_BUILTIN_0
13091 #undef RS6000_BUILTIN_1
13092 #undef RS6000_BUILTIN_2
13093 #undef RS6000_BUILTIN_3
13094 #undef RS6000_BUILTIN_A
13095 #undef RS6000_BUILTIN_D
13096 #undef RS6000_BUILTIN_H
13097 #undef RS6000_BUILTIN_P
13098 #undef RS6000_BUILTIN_X
13099
13100 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13101 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13102 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13103 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13104 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13105 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13106 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13107 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) \
13108 { MASK, ICODE, NAME, ENUM },
13109
13110 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13111
13112 /* AltiVec predicates. */
13113
13114 static const struct builtin_description bdesc_altivec_preds[] =
13115 {
13116 #include "rs6000-builtin.def"
13117 };
13118
13119 /* ABS* operations. */
13120
13121 #undef RS6000_BUILTIN_0
13122 #undef RS6000_BUILTIN_1
13123 #undef RS6000_BUILTIN_2
13124 #undef RS6000_BUILTIN_3
13125 #undef RS6000_BUILTIN_A
13126 #undef RS6000_BUILTIN_D
13127 #undef RS6000_BUILTIN_H
13128 #undef RS6000_BUILTIN_P
13129 #undef RS6000_BUILTIN_X
13130
13131 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13132 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13133 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13134 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13135 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) \
13136 { MASK, ICODE, NAME, ENUM },
13137
13138 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13139 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13140 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13141 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13142
13143 static const struct builtin_description bdesc_abs[] =
13144 {
13145 #include "rs6000-builtin.def"
13146 };
13147
13148 /* Simple unary operations: VECb = foo (unsigned literal) or VECb =
13149 foo (VECa). */
13150
13151 #undef RS6000_BUILTIN_0
13152 #undef RS6000_BUILTIN_1
13153 #undef RS6000_BUILTIN_2
13154 #undef RS6000_BUILTIN_3
13155 #undef RS6000_BUILTIN_A
13156 #undef RS6000_BUILTIN_D
13157 #undef RS6000_BUILTIN_H
13158 #undef RS6000_BUILTIN_P
13159 #undef RS6000_BUILTIN_X
13160
13161 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13162 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) \
13163 { MASK, ICODE, NAME, ENUM },
13164
13165 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13166 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13167 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13168 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13169 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13170 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13171 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13172
13173 static const struct builtin_description bdesc_1arg[] =
13174 {
13175 #include "rs6000-builtin.def"
13176 };
13177
13178 /* Simple no-argument operations: result = __builtin_darn_32 () */
13179
13180 #undef RS6000_BUILTIN_0
13181 #undef RS6000_BUILTIN_1
13182 #undef RS6000_BUILTIN_2
13183 #undef RS6000_BUILTIN_3
13184 #undef RS6000_BUILTIN_A
13185 #undef RS6000_BUILTIN_D
13186 #undef RS6000_BUILTIN_H
13187 #undef RS6000_BUILTIN_P
13188 #undef RS6000_BUILTIN_X
13189
13190 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) \
13191 { MASK, ICODE, NAME, ENUM },
13192
13193 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13194 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13195 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13196 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13197 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13198 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13199 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13200 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13201
13202 static const struct builtin_description bdesc_0arg[] =
13203 {
13204 #include "rs6000-builtin.def"
13205 };
13206
13207 /* HTM builtins. */
13208 #undef RS6000_BUILTIN_0
13209 #undef RS6000_BUILTIN_1
13210 #undef RS6000_BUILTIN_2
13211 #undef RS6000_BUILTIN_3
13212 #undef RS6000_BUILTIN_A
13213 #undef RS6000_BUILTIN_D
13214 #undef RS6000_BUILTIN_H
13215 #undef RS6000_BUILTIN_P
13216 #undef RS6000_BUILTIN_X
13217
13218 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13219 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13220 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13221 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13222 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13223 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13224 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) \
13225 { MASK, ICODE, NAME, ENUM },
13226
13227 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13228 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13229
13230 static const struct builtin_description bdesc_htm[] =
13231 {
13232 #include "rs6000-builtin.def"
13233 };
13234
13235 #undef RS6000_BUILTIN_0
13236 #undef RS6000_BUILTIN_1
13237 #undef RS6000_BUILTIN_2
13238 #undef RS6000_BUILTIN_3
13239 #undef RS6000_BUILTIN_A
13240 #undef RS6000_BUILTIN_D
13241 #undef RS6000_BUILTIN_H
13242 #undef RS6000_BUILTIN_P
13243
13244 /* Return true if a builtin function is overloaded. */
13245 bool
13246 rs6000_overloaded_builtin_p (enum rs6000_builtins fncode)
13247 {
13248 return (rs6000_builtin_info[(int)fncode].attr & RS6000_BTC_OVERLOADED) != 0;
13249 }
13250
13251 const char *
13252 rs6000_overloaded_builtin_name (enum rs6000_builtins fncode)
13253 {
13254 return rs6000_builtin_info[(int)fncode].name;
13255 }
13256
13257 /* Expand an expression EXP that calls a builtin without arguments. */
13258 static rtx
13259 rs6000_expand_zeroop_builtin (enum insn_code icode, rtx target)
13260 {
13261 rtx pat;
13262 machine_mode tmode = insn_data[icode].operand[0].mode;
13263
13264 if (icode == CODE_FOR_nothing)
13265 /* Builtin not supported on this processor. */
13266 return 0;
13267
13268 if (icode == CODE_FOR_rs6000_mffsl
13269 && rs6000_isa_flags_explicit & OPTION_MASK_SOFT_FLOAT)
13270 {
13271 error ("__builtin_mffsl() not supported with -msoft-float");
13272 return const0_rtx;
13273 }
13274
13275 if (target == 0
13276 || GET_MODE (target) != tmode
13277 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13278 target = gen_reg_rtx (tmode);
13279
13280 pat = GEN_FCN (icode) (target);
13281 if (! pat)
13282 return 0;
13283 emit_insn (pat);
13284
13285 return target;
13286 }
13287
13288
13289 static rtx
13290 rs6000_expand_mtfsf_builtin (enum insn_code icode, tree exp)
13291 {
13292 rtx pat;
13293 tree arg0 = CALL_EXPR_ARG (exp, 0);
13294 tree arg1 = CALL_EXPR_ARG (exp, 1);
13295 rtx op0 = expand_normal (arg0);
13296 rtx op1 = expand_normal (arg1);
13297 machine_mode mode0 = insn_data[icode].operand[0].mode;
13298 machine_mode mode1 = insn_data[icode].operand[1].mode;
13299
13300 if (icode == CODE_FOR_nothing)
13301 /* Builtin not supported on this processor. */
13302 return 0;
13303
13304 /* If we got invalid arguments bail out before generating bad rtl. */
13305 if (arg0 == error_mark_node || arg1 == error_mark_node)
13306 return const0_rtx;
13307
13308 if (GET_CODE (op0) != CONST_INT
13309 || INTVAL (op0) > 255
13310 || INTVAL (op0) < 0)
13311 {
13312 error ("argument 1 must be an 8-bit field value");
13313 return const0_rtx;
13314 }
13315
13316 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
13317 op0 = copy_to_mode_reg (mode0, op0);
13318
13319 if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
13320 op1 = copy_to_mode_reg (mode1, op1);
13321
13322 pat = GEN_FCN (icode) (op0, op1);
13323 if (!pat)
13324 return const0_rtx;
13325 emit_insn (pat);
13326
13327 return NULL_RTX;
13328 }
13329
13330 static rtx
13331 rs6000_expand_mtfsb_builtin (enum insn_code icode, tree exp)
13332 {
13333 rtx pat;
13334 tree arg0 = CALL_EXPR_ARG (exp, 0);
13335 rtx op0 = expand_normal (arg0);
13336
13337 if (icode == CODE_FOR_nothing)
13338 /* Builtin not supported on this processor. */
13339 return 0;
13340
13341 if (rs6000_isa_flags_explicit & OPTION_MASK_SOFT_FLOAT)
13342 {
13343 error ("__builtin_mtfsb0 and __builtin_mtfsb1 not supported with -msoft-float");
13344 return const0_rtx;
13345 }
13346
13347 /* If we got invalid arguments bail out before generating bad rtl. */
13348 if (arg0 == error_mark_node)
13349 return const0_rtx;
13350
13351 /* Only allow bit numbers 0 to 31. */
13352 if (!u5bit_cint_operand (op0, VOIDmode))
13353 {
13354 error ("Argument must be a constant between 0 and 31.");
13355 return const0_rtx;
13356 }
13357
13358 pat = GEN_FCN (icode) (op0);
13359 if (!pat)
13360 return const0_rtx;
13361 emit_insn (pat);
13362
13363 return NULL_RTX;
13364 }
13365
13366 static rtx
13367 rs6000_expand_set_fpscr_rn_builtin (enum insn_code icode, tree exp)
13368 {
13369 rtx pat;
13370 tree arg0 = CALL_EXPR_ARG (exp, 0);
13371 rtx op0 = expand_normal (arg0);
13372 machine_mode mode0 = insn_data[icode].operand[0].mode;
13373
13374 if (icode == CODE_FOR_nothing)
13375 /* Builtin not supported on this processor. */
13376 return 0;
13377
13378 if (rs6000_isa_flags_explicit & OPTION_MASK_SOFT_FLOAT)
13379 {
13380 error ("__builtin_set_fpscr_rn not supported with -msoft-float");
13381 return const0_rtx;
13382 }
13383
13384 /* If we got invalid arguments bail out before generating bad rtl. */
13385 if (arg0 == error_mark_node)
13386 return const0_rtx;
13387
13388 /* If the argument is a constant, check the range. Argument can only be a
13389 2-bit value. Unfortunately, can't check the range of the value at
13390 compile time if the argument is a variable. The least significant two
13391 bits of the argument, regardless of type, are used to set the rounding
13392 mode. All other bits are ignored. */
13393 if (GET_CODE (op0) == CONST_INT && !const_0_to_3_operand(op0, VOIDmode))
13394 {
13395 error ("Argument must be a value between 0 and 3.");
13396 return const0_rtx;
13397 }
13398
13399 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
13400 op0 = copy_to_mode_reg (mode0, op0);
13401
13402 pat = GEN_FCN (icode) (op0);
13403 if (!pat)
13404 return const0_rtx;
13405 emit_insn (pat);
13406
13407 return NULL_RTX;
13408 }
13409 static rtx
13410 rs6000_expand_set_fpscr_drn_builtin (enum insn_code icode, tree exp)
13411 {
13412 rtx pat;
13413 tree arg0 = CALL_EXPR_ARG (exp, 0);
13414 rtx op0 = expand_normal (arg0);
13415 machine_mode mode0 = insn_data[icode].operand[0].mode;
13416
13417 if (TARGET_32BIT)
13418 /* Builtin not supported in 32-bit mode. */
13419 fatal_error (input_location,
13420 "__builtin_set_fpscr_drn is not supported in 32-bit mode.");
13421
13422 if (rs6000_isa_flags_explicit & OPTION_MASK_SOFT_FLOAT)
13423 {
13424 error ("__builtin_set_fpscr_drn not supported with -msoft-float");
13425 return const0_rtx;
13426 }
13427
13428 if (icode == CODE_FOR_nothing)
13429 /* Builtin not supported on this processor. */
13430 return 0;
13431
13432 /* If we got invalid arguments bail out before generating bad rtl. */
13433 if (arg0 == error_mark_node)
13434 return const0_rtx;
13435
13436 /* If the argument is a constant, check the range. Agrument can only be a
13437 3-bit value. Unfortunately, can't check the range of the value at
13438 compile time if the argument is a variable. The least significant two
13439 bits of the argument, regardless of type, are used to set the rounding
13440 mode. All other bits are ignored. */
13441 if (GET_CODE (op0) == CONST_INT && !const_0_to_7_operand(op0, VOIDmode))
13442 {
13443 error ("Argument must be a value between 0 and 7.");
13444 return const0_rtx;
13445 }
13446
13447 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
13448 op0 = copy_to_mode_reg (mode0, op0);
13449
13450 pat = GEN_FCN (icode) (op0);
13451 if (! pat)
13452 return const0_rtx;
13453 emit_insn (pat);
13454
13455 return NULL_RTX;
13456 }
13457
13458 static rtx
13459 rs6000_expand_unop_builtin (enum insn_code icode, tree exp, rtx target)
13460 {
13461 rtx pat;
13462 tree arg0 = CALL_EXPR_ARG (exp, 0);
13463 rtx op0 = expand_normal (arg0);
13464 machine_mode tmode = insn_data[icode].operand[0].mode;
13465 machine_mode mode0 = insn_data[icode].operand[1].mode;
13466
13467 if (icode == CODE_FOR_nothing)
13468 /* Builtin not supported on this processor. */
13469 return 0;
13470
13471 /* If we got invalid arguments bail out before generating bad rtl. */
13472 if (arg0 == error_mark_node)
13473 return const0_rtx;
13474
13475 if (icode == CODE_FOR_altivec_vspltisb
13476 || icode == CODE_FOR_altivec_vspltish
13477 || icode == CODE_FOR_altivec_vspltisw)
13478 {
13479 /* Only allow 5-bit *signed* literals. */
13480 if (GET_CODE (op0) != CONST_INT
13481 || INTVAL (op0) > 15
13482 || INTVAL (op0) < -16)
13483 {
13484 error ("argument 1 must be a 5-bit signed literal");
13485 return CONST0_RTX (tmode);
13486 }
13487 }
13488
13489 if (target == 0
13490 || GET_MODE (target) != tmode
13491 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13492 target = gen_reg_rtx (tmode);
13493
13494 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
13495 op0 = copy_to_mode_reg (mode0, op0);
13496
13497 pat = GEN_FCN (icode) (target, op0);
13498 if (! pat)
13499 return 0;
13500 emit_insn (pat);
13501
13502 return target;
13503 }
13504
13505 static rtx
13506 altivec_expand_abs_builtin (enum insn_code icode, tree exp, rtx target)
13507 {
13508 rtx pat, scratch1, scratch2;
13509 tree arg0 = CALL_EXPR_ARG (exp, 0);
13510 rtx op0 = expand_normal (arg0);
13511 machine_mode tmode = insn_data[icode].operand[0].mode;
13512 machine_mode mode0 = insn_data[icode].operand[1].mode;
13513
13514 /* If we have invalid arguments, bail out before generating bad rtl. */
13515 if (arg0 == error_mark_node)
13516 return const0_rtx;
13517
13518 if (target == 0
13519 || GET_MODE (target) != tmode
13520 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13521 target = gen_reg_rtx (tmode);
13522
13523 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
13524 op0 = copy_to_mode_reg (mode0, op0);
13525
13526 scratch1 = gen_reg_rtx (mode0);
13527 scratch2 = gen_reg_rtx (mode0);
13528
13529 pat = GEN_FCN (icode) (target, op0, scratch1, scratch2);
13530 if (! pat)
13531 return 0;
13532 emit_insn (pat);
13533
13534 return target;
13535 }
13536
13537 static rtx
13538 rs6000_expand_binop_builtin (enum insn_code icode, tree exp, rtx target)
13539 {
13540 rtx pat;
13541 tree arg0 = CALL_EXPR_ARG (exp, 0);
13542 tree arg1 = CALL_EXPR_ARG (exp, 1);
13543 rtx op0 = expand_normal (arg0);
13544 rtx op1 = expand_normal (arg1);
13545 machine_mode tmode = insn_data[icode].operand[0].mode;
13546 machine_mode mode0 = insn_data[icode].operand[1].mode;
13547 machine_mode mode1 = insn_data[icode].operand[2].mode;
13548
13549 if (icode == CODE_FOR_nothing)
13550 /* Builtin not supported on this processor. */
13551 return 0;
13552
13553 /* If we got invalid arguments bail out before generating bad rtl. */
13554 if (arg0 == error_mark_node || arg1 == error_mark_node)
13555 return const0_rtx;
13556
13557 if (icode == CODE_FOR_unpackv1ti
13558 || icode == CODE_FOR_unpackkf
13559 || icode == CODE_FOR_unpacktf
13560 || icode == CODE_FOR_unpackif
13561 || icode == CODE_FOR_unpacktd)
13562 {
13563 /* Only allow 1-bit unsigned literals. */
13564 STRIP_NOPS (arg1);
13565 if (TREE_CODE (arg1) != INTEGER_CST
13566 || !IN_RANGE (TREE_INT_CST_LOW (arg1), 0, 1))
13567 {
13568 error ("argument 2 must be a 1-bit unsigned literal");
13569 return CONST0_RTX (tmode);
13570 }
13571 }
13572 else if (icode == CODE_FOR_altivec_vspltw)
13573 {
13574 /* Only allow 2-bit unsigned literals. */
13575 STRIP_NOPS (arg1);
13576 if (TREE_CODE (arg1) != INTEGER_CST
13577 || TREE_INT_CST_LOW (arg1) & ~3)
13578 {
13579 error ("argument 2 must be a 2-bit unsigned literal");
13580 return CONST0_RTX (tmode);
13581 }
13582 }
13583 else if (icode == CODE_FOR_altivec_vsplth)
13584 {
13585 /* Only allow 3-bit unsigned literals. */
13586 STRIP_NOPS (arg1);
13587 if (TREE_CODE (arg1) != INTEGER_CST
13588 || TREE_INT_CST_LOW (arg1) & ~7)
13589 {
13590 error ("argument 2 must be a 3-bit unsigned literal");
13591 return CONST0_RTX (tmode);
13592 }
13593 }
13594 else if (icode == CODE_FOR_altivec_vspltb)
13595 {
13596 /* Only allow 4-bit unsigned literals. */
13597 STRIP_NOPS (arg1);
13598 if (TREE_CODE (arg1) != INTEGER_CST
13599 || TREE_INT_CST_LOW (arg1) & ~15)
13600 {
13601 error ("argument 2 must be a 4-bit unsigned literal");
13602 return CONST0_RTX (tmode);
13603 }
13604 }
13605 else if (icode == CODE_FOR_altivec_vcfux
13606 || icode == CODE_FOR_altivec_vcfsx
13607 || icode == CODE_FOR_altivec_vctsxs
13608 || icode == CODE_FOR_altivec_vctuxs)
13609 {
13610 /* Only allow 5-bit unsigned literals. */
13611 STRIP_NOPS (arg1);
13612 if (TREE_CODE (arg1) != INTEGER_CST
13613 || TREE_INT_CST_LOW (arg1) & ~0x1f)
13614 {
13615 error ("argument 2 must be a 5-bit unsigned literal");
13616 return CONST0_RTX (tmode);
13617 }
13618 }
13619 else if (icode == CODE_FOR_dfptstsfi_eq_dd
13620 || icode == CODE_FOR_dfptstsfi_lt_dd
13621 || icode == CODE_FOR_dfptstsfi_gt_dd
13622 || icode == CODE_FOR_dfptstsfi_unordered_dd
13623 || icode == CODE_FOR_dfptstsfi_eq_td
13624 || icode == CODE_FOR_dfptstsfi_lt_td
13625 || icode == CODE_FOR_dfptstsfi_gt_td
13626 || icode == CODE_FOR_dfptstsfi_unordered_td)
13627 {
13628 /* Only allow 6-bit unsigned literals. */
13629 STRIP_NOPS (arg0);
13630 if (TREE_CODE (arg0) != INTEGER_CST
13631 || !IN_RANGE (TREE_INT_CST_LOW (arg0), 0, 63))
13632 {
13633 error ("argument 1 must be a 6-bit unsigned literal");
13634 return CONST0_RTX (tmode);
13635 }
13636 }
13637 else if (icode == CODE_FOR_xststdcqp_kf
13638 || icode == CODE_FOR_xststdcqp_tf
13639 || icode == CODE_FOR_xststdcdp
13640 || icode == CODE_FOR_xststdcsp
13641 || icode == CODE_FOR_xvtstdcdp
13642 || icode == CODE_FOR_xvtstdcsp)
13643 {
13644 /* Only allow 7-bit unsigned literals. */
13645 STRIP_NOPS (arg1);
13646 if (TREE_CODE (arg1) != INTEGER_CST
13647 || !IN_RANGE (TREE_INT_CST_LOW (arg1), 0, 127))
13648 {
13649 error ("argument 2 must be a 7-bit unsigned literal");
13650 return CONST0_RTX (tmode);
13651 }
13652 }
13653
13654 if (target == 0
13655 || GET_MODE (target) != tmode
13656 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13657 target = gen_reg_rtx (tmode);
13658
13659 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
13660 op0 = copy_to_mode_reg (mode0, op0);
13661 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
13662 op1 = copy_to_mode_reg (mode1, op1);
13663
13664 pat = GEN_FCN (icode) (target, op0, op1);
13665 if (! pat)
13666 return 0;
13667 emit_insn (pat);
13668
13669 return target;
13670 }
13671
13672 static rtx
13673 altivec_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
13674 {
13675 rtx pat, scratch;
13676 tree cr6_form = CALL_EXPR_ARG (exp, 0);
13677 tree arg0 = CALL_EXPR_ARG (exp, 1);
13678 tree arg1 = CALL_EXPR_ARG (exp, 2);
13679 rtx op0 = expand_normal (arg0);
13680 rtx op1 = expand_normal (arg1);
13681 machine_mode tmode = SImode;
13682 machine_mode mode0 = insn_data[icode].operand[1].mode;
13683 machine_mode mode1 = insn_data[icode].operand[2].mode;
13684 int cr6_form_int;
13685
13686 if (TREE_CODE (cr6_form) != INTEGER_CST)
13687 {
13688 error ("argument 1 of %qs must be a constant",
13689 "__builtin_altivec_predicate");
13690 return const0_rtx;
13691 }
13692 else
13693 cr6_form_int = TREE_INT_CST_LOW (cr6_form);
13694
13695 gcc_assert (mode0 == mode1);
13696
13697 /* If we have invalid arguments, bail out before generating bad rtl. */
13698 if (arg0 == error_mark_node || arg1 == error_mark_node)
13699 return const0_rtx;
13700
13701 if (target == 0
13702 || GET_MODE (target) != tmode
13703 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13704 target = gen_reg_rtx (tmode);
13705
13706 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
13707 op0 = copy_to_mode_reg (mode0, op0);
13708 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
13709 op1 = copy_to_mode_reg (mode1, op1);
13710
13711 /* Note that for many of the relevant operations (e.g. cmpne or
13712 cmpeq) with float or double operands, it makes more sense for the
13713 mode of the allocated scratch register to select a vector of
13714 integer. But the choice to copy the mode of operand 0 was made
13715 long ago and there are no plans to change it. */
13716 scratch = gen_reg_rtx (mode0);
13717
13718 pat = GEN_FCN (icode) (scratch, op0, op1);
13719 if (! pat)
13720 return 0;
13721 emit_insn (pat);
13722
13723 /* The vec_any* and vec_all* predicates use the same opcodes for two
13724 different operations, but the bits in CR6 will be different
13725 depending on what information we want. So we have to play tricks
13726 with CR6 to get the right bits out.
13727
13728 If you think this is disgusting, look at the specs for the
13729 AltiVec predicates. */
13730
13731 switch (cr6_form_int)
13732 {
13733 case 0:
13734 emit_insn (gen_cr6_test_for_zero (target));
13735 break;
13736 case 1:
13737 emit_insn (gen_cr6_test_for_zero_reverse (target));
13738 break;
13739 case 2:
13740 emit_insn (gen_cr6_test_for_lt (target));
13741 break;
13742 case 3:
13743 emit_insn (gen_cr6_test_for_lt_reverse (target));
13744 break;
13745 default:
13746 error ("argument 1 of %qs is out of range",
13747 "__builtin_altivec_predicate");
13748 break;
13749 }
13750
13751 return target;
13752 }
13753
13754 rtx
13755 swap_endian_selector_for_mode (machine_mode mode)
13756 {
13757 unsigned int swap1[16] = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
13758 unsigned int swap2[16] = {7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8};
13759 unsigned int swap4[16] = {3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12};
13760 unsigned int swap8[16] = {1,0,3,2,5,4,7,6,9,8,11,10,13,12,15,14};
13761
13762 unsigned int *swaparray, i;
13763 rtx perm[16];
13764
13765 switch (mode)
13766 {
13767 case E_V1TImode:
13768 swaparray = swap1;
13769 break;
13770 case E_V2DFmode:
13771 case E_V2DImode:
13772 swaparray = swap2;
13773 break;
13774 case E_V4SFmode:
13775 case E_V4SImode:
13776 swaparray = swap4;
13777 break;
13778 case E_V8HImode:
13779 swaparray = swap8;
13780 break;
13781 default:
13782 gcc_unreachable ();
13783 }
13784
13785 for (i = 0; i < 16; ++i)
13786 perm[i] = GEN_INT (swaparray[i]);
13787
13788 return force_reg (V16QImode, gen_rtx_CONST_VECTOR (V16QImode,
13789 gen_rtvec_v (16, perm)));
13790 }
13791
13792 static rtx
13793 altivec_expand_lv_builtin (enum insn_code icode, tree exp, rtx target, bool blk)
13794 {
13795 rtx pat, addr;
13796 tree arg0 = CALL_EXPR_ARG (exp, 0);
13797 tree arg1 = CALL_EXPR_ARG (exp, 1);
13798 machine_mode tmode = insn_data[icode].operand[0].mode;
13799 machine_mode mode0 = Pmode;
13800 machine_mode mode1 = Pmode;
13801 rtx op0 = expand_normal (arg0);
13802 rtx op1 = expand_normal (arg1);
13803
13804 if (icode == CODE_FOR_nothing)
13805 /* Builtin not supported on this processor. */
13806 return 0;
13807
13808 /* If we got invalid arguments bail out before generating bad rtl. */
13809 if (arg0 == error_mark_node || arg1 == error_mark_node)
13810 return const0_rtx;
13811
13812 if (target == 0
13813 || GET_MODE (target) != tmode
13814 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13815 target = gen_reg_rtx (tmode);
13816
13817 op1 = copy_to_mode_reg (mode1, op1);
13818
13819 /* For LVX, express the RTL accurately by ANDing the address with -16.
13820 LVXL and LVE*X expand to use UNSPECs to hide their special behavior,
13821 so the raw address is fine. */
13822 if (icode == CODE_FOR_altivec_lvx_v1ti
13823 || icode == CODE_FOR_altivec_lvx_v2df
13824 || icode == CODE_FOR_altivec_lvx_v2di
13825 || icode == CODE_FOR_altivec_lvx_v4sf
13826 || icode == CODE_FOR_altivec_lvx_v4si
13827 || icode == CODE_FOR_altivec_lvx_v8hi
13828 || icode == CODE_FOR_altivec_lvx_v16qi)
13829 {
13830 rtx rawaddr;
13831 if (op0 == const0_rtx)
13832 rawaddr = op1;
13833 else
13834 {
13835 op0 = copy_to_mode_reg (mode0, op0);
13836 rawaddr = gen_rtx_PLUS (Pmode, op1, op0);
13837 }
13838 addr = gen_rtx_AND (Pmode, rawaddr, gen_rtx_CONST_INT (Pmode, -16));
13839 addr = gen_rtx_MEM (blk ? BLKmode : tmode, addr);
13840
13841 emit_insn (gen_rtx_SET (target, addr));
13842 }
13843 else
13844 {
13845 if (op0 == const0_rtx)
13846 addr = gen_rtx_MEM (blk ? BLKmode : tmode, op1);
13847 else
13848 {
13849 op0 = copy_to_mode_reg (mode0, op0);
13850 addr = gen_rtx_MEM (blk ? BLKmode : tmode,
13851 gen_rtx_PLUS (Pmode, op1, op0));
13852 }
13853
13854 pat = GEN_FCN (icode) (target, addr);
13855 if (! pat)
13856 return 0;
13857 emit_insn (pat);
13858 }
13859
13860 return target;
13861 }
13862
13863 static rtx
13864 altivec_expand_stxvl_builtin (enum insn_code icode, tree exp)
13865 {
13866 rtx pat;
13867 tree arg0 = CALL_EXPR_ARG (exp, 0);
13868 tree arg1 = CALL_EXPR_ARG (exp, 1);
13869 tree arg2 = CALL_EXPR_ARG (exp, 2);
13870 rtx op0 = expand_normal (arg0);
13871 rtx op1 = expand_normal (arg1);
13872 rtx op2 = expand_normal (arg2);
13873 machine_mode mode0 = insn_data[icode].operand[0].mode;
13874 machine_mode mode1 = insn_data[icode].operand[1].mode;
13875 machine_mode mode2 = insn_data[icode].operand[2].mode;
13876
13877 if (icode == CODE_FOR_nothing)
13878 /* Builtin not supported on this processor. */
13879 return NULL_RTX;
13880
13881 /* If we got invalid arguments bail out before generating bad rtl. */
13882 if (arg0 == error_mark_node
13883 || arg1 == error_mark_node
13884 || arg2 == error_mark_node)
13885 return NULL_RTX;
13886
13887 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
13888 op0 = copy_to_mode_reg (mode0, op0);
13889 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
13890 op1 = copy_to_mode_reg (mode1, op1);
13891 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
13892 op2 = copy_to_mode_reg (mode2, op2);
13893
13894 pat = GEN_FCN (icode) (op0, op1, op2);
13895 if (pat)
13896 emit_insn (pat);
13897
13898 return NULL_RTX;
13899 }
13900
13901 static rtx
13902 altivec_expand_stv_builtin (enum insn_code icode, tree exp)
13903 {
13904 tree arg0 = CALL_EXPR_ARG (exp, 0);
13905 tree arg1 = CALL_EXPR_ARG (exp, 1);
13906 tree arg2 = CALL_EXPR_ARG (exp, 2);
13907 rtx op0 = expand_normal (arg0);
13908 rtx op1 = expand_normal (arg1);
13909 rtx op2 = expand_normal (arg2);
13910 rtx pat, addr, rawaddr;
13911 machine_mode tmode = insn_data[icode].operand[0].mode;
13912 machine_mode smode = insn_data[icode].operand[1].mode;
13913 machine_mode mode1 = Pmode;
13914 machine_mode mode2 = Pmode;
13915
13916 /* Invalid arguments. Bail before doing anything stoopid! */
13917 if (arg0 == error_mark_node
13918 || arg1 == error_mark_node
13919 || arg2 == error_mark_node)
13920 return const0_rtx;
13921
13922 op2 = copy_to_mode_reg (mode2, op2);
13923
13924 /* For STVX, express the RTL accurately by ANDing the address with -16.
13925 STVXL and STVE*X expand to use UNSPECs to hide their special behavior,
13926 so the raw address is fine. */
13927 if (icode == CODE_FOR_altivec_stvx_v2df
13928 || icode == CODE_FOR_altivec_stvx_v2di
13929 || icode == CODE_FOR_altivec_stvx_v4sf
13930 || icode == CODE_FOR_altivec_stvx_v4si
13931 || icode == CODE_FOR_altivec_stvx_v8hi
13932 || icode == CODE_FOR_altivec_stvx_v16qi)
13933 {
13934 if (op1 == const0_rtx)
13935 rawaddr = op2;
13936 else
13937 {
13938 op1 = copy_to_mode_reg (mode1, op1);
13939 rawaddr = gen_rtx_PLUS (Pmode, op2, op1);
13940 }
13941
13942 addr = gen_rtx_AND (Pmode, rawaddr, gen_rtx_CONST_INT (Pmode, -16));
13943 addr = gen_rtx_MEM (tmode, addr);
13944
13945 op0 = copy_to_mode_reg (tmode, op0);
13946
13947 emit_insn (gen_rtx_SET (addr, op0));
13948 }
13949 else
13950 {
13951 if (! (*insn_data[icode].operand[1].predicate) (op0, smode))
13952 op0 = copy_to_mode_reg (smode, op0);
13953
13954 if (op1 == const0_rtx)
13955 addr = gen_rtx_MEM (tmode, op2);
13956 else
13957 {
13958 op1 = copy_to_mode_reg (mode1, op1);
13959 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op2, op1));
13960 }
13961
13962 pat = GEN_FCN (icode) (addr, op0);
13963 if (pat)
13964 emit_insn (pat);
13965 }
13966
13967 return NULL_RTX;
13968 }
13969
13970 /* Return the appropriate SPR number associated with the given builtin. */
13971 static inline HOST_WIDE_INT
13972 htm_spr_num (enum rs6000_builtins code)
13973 {
13974 if (code == HTM_BUILTIN_GET_TFHAR
13975 || code == HTM_BUILTIN_SET_TFHAR)
13976 return TFHAR_SPR;
13977 else if (code == HTM_BUILTIN_GET_TFIAR
13978 || code == HTM_BUILTIN_SET_TFIAR)
13979 return TFIAR_SPR;
13980 else if (code == HTM_BUILTIN_GET_TEXASR
13981 || code == HTM_BUILTIN_SET_TEXASR)
13982 return TEXASR_SPR;
13983 gcc_assert (code == HTM_BUILTIN_GET_TEXASRU
13984 || code == HTM_BUILTIN_SET_TEXASRU);
13985 return TEXASRU_SPR;
13986 }
13987
13988 /* Return the appropriate SPR regno associated with the given builtin. */
13989 static inline HOST_WIDE_INT
13990 htm_spr_regno (enum rs6000_builtins code)
13991 {
13992 if (code == HTM_BUILTIN_GET_TFHAR
13993 || code == HTM_BUILTIN_SET_TFHAR)
13994 return TFHAR_REGNO;
13995 else if (code == HTM_BUILTIN_GET_TFIAR
13996 || code == HTM_BUILTIN_SET_TFIAR)
13997 return TFIAR_REGNO;
13998 gcc_assert (code == HTM_BUILTIN_GET_TEXASR
13999 || code == HTM_BUILTIN_SET_TEXASR
14000 || code == HTM_BUILTIN_GET_TEXASRU
14001 || code == HTM_BUILTIN_SET_TEXASRU);
14002 return TEXASR_REGNO;
14003 }
14004
14005 /* Return the correct ICODE value depending on whether we are
14006 setting or reading the HTM SPRs. */
14007 static inline enum insn_code
14008 rs6000_htm_spr_icode (bool nonvoid)
14009 {
14010 if (nonvoid)
14011 return (TARGET_POWERPC64) ? CODE_FOR_htm_mfspr_di : CODE_FOR_htm_mfspr_si;
14012 else
14013 return (TARGET_POWERPC64) ? CODE_FOR_htm_mtspr_di : CODE_FOR_htm_mtspr_si;
14014 }
14015
14016 /* Expand the HTM builtin in EXP and store the result in TARGET.
14017 Store true in *EXPANDEDP if we found a builtin to expand. */
14018 static rtx
14019 htm_expand_builtin (tree exp, rtx target, bool * expandedp)
14020 {
14021 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
14022 bool nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
14023 enum rs6000_builtins fcode = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
14024 const struct builtin_description *d;
14025 size_t i;
14026
14027 *expandedp = true;
14028
14029 if (!TARGET_POWERPC64
14030 && (fcode == HTM_BUILTIN_TABORTDC
14031 || fcode == HTM_BUILTIN_TABORTDCI))
14032 {
14033 size_t uns_fcode = (size_t)fcode;
14034 const char *name = rs6000_builtin_info[uns_fcode].name;
14035 error ("builtin %qs is only valid in 64-bit mode", name);
14036 return const0_rtx;
14037 }
14038
14039 /* Expand the HTM builtins. */
14040 d = bdesc_htm;
14041 for (i = 0; i < ARRAY_SIZE (bdesc_htm); i++, d++)
14042 if (d->code == fcode)
14043 {
14044 rtx op[MAX_HTM_OPERANDS], pat;
14045 int nopnds = 0;
14046 tree arg;
14047 call_expr_arg_iterator iter;
14048 unsigned attr = rs6000_builtin_info[fcode].attr;
14049 enum insn_code icode = d->icode;
14050 const struct insn_operand_data *insn_op;
14051 bool uses_spr = (attr & RS6000_BTC_SPR);
14052 rtx cr = NULL_RTX;
14053
14054 if (uses_spr)
14055 icode = rs6000_htm_spr_icode (nonvoid);
14056 insn_op = &insn_data[icode].operand[0];
14057
14058 if (nonvoid)
14059 {
14060 machine_mode tmode = (uses_spr) ? insn_op->mode : E_SImode;
14061 if (!target
14062 || GET_MODE (target) != tmode
14063 || (uses_spr && !(*insn_op->predicate) (target, tmode)))
14064 target = gen_reg_rtx (tmode);
14065 if (uses_spr)
14066 op[nopnds++] = target;
14067 }
14068
14069 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
14070 {
14071 if (arg == error_mark_node || nopnds >= MAX_HTM_OPERANDS)
14072 return const0_rtx;
14073
14074 insn_op = &insn_data[icode].operand[nopnds];
14075
14076 op[nopnds] = expand_normal (arg);
14077
14078 if (!(*insn_op->predicate) (op[nopnds], insn_op->mode))
14079 {
14080 if (!strcmp (insn_op->constraint, "n"))
14081 {
14082 int arg_num = (nonvoid) ? nopnds : nopnds + 1;
14083 if (!CONST_INT_P (op[nopnds]))
14084 error ("argument %d must be an unsigned literal", arg_num);
14085 else
14086 error ("argument %d is an unsigned literal that is "
14087 "out of range", arg_num);
14088 return const0_rtx;
14089 }
14090 op[nopnds] = copy_to_mode_reg (insn_op->mode, op[nopnds]);
14091 }
14092
14093 nopnds++;
14094 }
14095
14096 /* Handle the builtins for extended mnemonics. These accept
14097 no arguments, but map to builtins that take arguments. */
14098 switch (fcode)
14099 {
14100 case HTM_BUILTIN_TENDALL: /* Alias for: tend. 1 */
14101 case HTM_BUILTIN_TRESUME: /* Alias for: tsr. 1 */
14102 op[nopnds++] = GEN_INT (1);
14103 if (flag_checking)
14104 attr |= RS6000_BTC_UNARY;
14105 break;
14106 case HTM_BUILTIN_TSUSPEND: /* Alias for: tsr. 0 */
14107 op[nopnds++] = GEN_INT (0);
14108 if (flag_checking)
14109 attr |= RS6000_BTC_UNARY;
14110 break;
14111 default:
14112 break;
14113 }
14114
14115 /* If this builtin accesses SPRs, then pass in the appropriate
14116 SPR number and SPR regno as the last two operands. */
14117 if (uses_spr)
14118 {
14119 machine_mode mode = (TARGET_POWERPC64) ? DImode : SImode;
14120 op[nopnds++] = gen_rtx_CONST_INT (mode, htm_spr_num (fcode));
14121 op[nopnds++] = gen_rtx_REG (mode, htm_spr_regno (fcode));
14122 }
14123 /* If this builtin accesses a CR, then pass in a scratch
14124 CR as the last operand. */
14125 else if (attr & RS6000_BTC_CR)
14126 { cr = gen_reg_rtx (CCmode);
14127 op[nopnds++] = cr;
14128 }
14129
14130 if (flag_checking)
14131 {
14132 int expected_nopnds = 0;
14133 if ((attr & RS6000_BTC_TYPE_MASK) == RS6000_BTC_UNARY)
14134 expected_nopnds = 1;
14135 else if ((attr & RS6000_BTC_TYPE_MASK) == RS6000_BTC_BINARY)
14136 expected_nopnds = 2;
14137 else if ((attr & RS6000_BTC_TYPE_MASK) == RS6000_BTC_TERNARY)
14138 expected_nopnds = 3;
14139 if (!(attr & RS6000_BTC_VOID))
14140 expected_nopnds += 1;
14141 if (uses_spr)
14142 expected_nopnds += 2;
14143
14144 gcc_assert (nopnds == expected_nopnds
14145 && nopnds <= MAX_HTM_OPERANDS);
14146 }
14147
14148 switch (nopnds)
14149 {
14150 case 1:
14151 pat = GEN_FCN (icode) (op[0]);
14152 break;
14153 case 2:
14154 pat = GEN_FCN (icode) (op[0], op[1]);
14155 break;
14156 case 3:
14157 pat = GEN_FCN (icode) (op[0], op[1], op[2]);
14158 break;
14159 case 4:
14160 pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
14161 break;
14162 default:
14163 gcc_unreachable ();
14164 }
14165 if (!pat)
14166 return NULL_RTX;
14167 emit_insn (pat);
14168
14169 if (attr & RS6000_BTC_CR)
14170 {
14171 if (fcode == HTM_BUILTIN_TBEGIN)
14172 {
14173 /* Emit code to set TARGET to true or false depending on
14174 whether the tbegin. instruction successfully or failed
14175 to start a transaction. We do this by placing the 1's
14176 complement of CR's EQ bit into TARGET. */
14177 rtx scratch = gen_reg_rtx (SImode);
14178 emit_insn (gen_rtx_SET (scratch,
14179 gen_rtx_EQ (SImode, cr,
14180 const0_rtx)));
14181 emit_insn (gen_rtx_SET (target,
14182 gen_rtx_XOR (SImode, scratch,
14183 GEN_INT (1))));
14184 }
14185 else
14186 {
14187 /* Emit code to copy the 4-bit condition register field
14188 CR into the least significant end of register TARGET. */
14189 rtx scratch1 = gen_reg_rtx (SImode);
14190 rtx scratch2 = gen_reg_rtx (SImode);
14191 rtx subreg = simplify_gen_subreg (CCmode, scratch1, SImode, 0);
14192 emit_insn (gen_movcc (subreg, cr));
14193 emit_insn (gen_lshrsi3 (scratch2, scratch1, GEN_INT (28)));
14194 emit_insn (gen_andsi3 (target, scratch2, GEN_INT (0xf)));
14195 }
14196 }
14197
14198 if (nonvoid)
14199 return target;
14200 return const0_rtx;
14201 }
14202
14203 *expandedp = false;
14204 return NULL_RTX;
14205 }
14206
14207 /* Expand the CPU builtin in FCODE and store the result in TARGET. */
14208
14209 static rtx
14210 cpu_expand_builtin (enum rs6000_builtins fcode, tree exp ATTRIBUTE_UNUSED,
14211 rtx target)
14212 {
14213 /* __builtin_cpu_init () is a nop, so expand to nothing. */
14214 if (fcode == RS6000_BUILTIN_CPU_INIT)
14215 return const0_rtx;
14216
14217 if (target == 0 || GET_MODE (target) != SImode)
14218 target = gen_reg_rtx (SImode);
14219
14220 #ifdef TARGET_LIBC_PROVIDES_HWCAP_IN_TCB
14221 tree arg = TREE_OPERAND (CALL_EXPR_ARG (exp, 0), 0);
14222 /* Target clones creates an ARRAY_REF instead of STRING_CST, convert it back
14223 to a STRING_CST. */
14224 if (TREE_CODE (arg) == ARRAY_REF
14225 && TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST
14226 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST
14227 && compare_tree_int (TREE_OPERAND (arg, 1), 0) == 0)
14228 arg = TREE_OPERAND (arg, 0);
14229
14230 if (TREE_CODE (arg) != STRING_CST)
14231 {
14232 error ("builtin %qs only accepts a string argument",
14233 rs6000_builtin_info[(size_t) fcode].name);
14234 return const0_rtx;
14235 }
14236
14237 if (fcode == RS6000_BUILTIN_CPU_IS)
14238 {
14239 const char *cpu = TREE_STRING_POINTER (arg);
14240 rtx cpuid = NULL_RTX;
14241 for (size_t i = 0; i < ARRAY_SIZE (cpu_is_info); i++)
14242 if (strcmp (cpu, cpu_is_info[i].cpu) == 0)
14243 {
14244 /* The CPUID value in the TCB is offset by _DL_FIRST_PLATFORM. */
14245 cpuid = GEN_INT (cpu_is_info[i].cpuid + _DL_FIRST_PLATFORM);
14246 break;
14247 }
14248 if (cpuid == NULL_RTX)
14249 {
14250 /* Invalid CPU argument. */
14251 error ("cpu %qs is an invalid argument to builtin %qs",
14252 cpu, rs6000_builtin_info[(size_t) fcode].name);
14253 return const0_rtx;
14254 }
14255
14256 rtx platform = gen_reg_rtx (SImode);
14257 rtx tcbmem = gen_const_mem (SImode,
14258 gen_rtx_PLUS (Pmode,
14259 gen_rtx_REG (Pmode, TLS_REGNUM),
14260 GEN_INT (TCB_PLATFORM_OFFSET)));
14261 emit_move_insn (platform, tcbmem);
14262 emit_insn (gen_eqsi3 (target, platform, cpuid));
14263 }
14264 else if (fcode == RS6000_BUILTIN_CPU_SUPPORTS)
14265 {
14266 const char *hwcap = TREE_STRING_POINTER (arg);
14267 rtx mask = NULL_RTX;
14268 int hwcap_offset;
14269 for (size_t i = 0; i < ARRAY_SIZE (cpu_supports_info); i++)
14270 if (strcmp (hwcap, cpu_supports_info[i].hwcap) == 0)
14271 {
14272 mask = GEN_INT (cpu_supports_info[i].mask);
14273 hwcap_offset = TCB_HWCAP_OFFSET (cpu_supports_info[i].id);
14274 break;
14275 }
14276 if (mask == NULL_RTX)
14277 {
14278 /* Invalid HWCAP argument. */
14279 error ("%s %qs is an invalid argument to builtin %qs",
14280 "hwcap", hwcap, rs6000_builtin_info[(size_t) fcode].name);
14281 return const0_rtx;
14282 }
14283
14284 rtx tcb_hwcap = gen_reg_rtx (SImode);
14285 rtx tcbmem = gen_const_mem (SImode,
14286 gen_rtx_PLUS (Pmode,
14287 gen_rtx_REG (Pmode, TLS_REGNUM),
14288 GEN_INT (hwcap_offset)));
14289 emit_move_insn (tcb_hwcap, tcbmem);
14290 rtx scratch1 = gen_reg_rtx (SImode);
14291 emit_insn (gen_rtx_SET (scratch1, gen_rtx_AND (SImode, tcb_hwcap, mask)));
14292 rtx scratch2 = gen_reg_rtx (SImode);
14293 emit_insn (gen_eqsi3 (scratch2, scratch1, const0_rtx));
14294 emit_insn (gen_rtx_SET (target, gen_rtx_XOR (SImode, scratch2, const1_rtx)));
14295 }
14296 else
14297 gcc_unreachable ();
14298
14299 /* Record that we have expanded a CPU builtin, so that we can later
14300 emit a reference to the special symbol exported by LIBC to ensure we
14301 do not link against an old LIBC that doesn't support this feature. */
14302 cpu_builtin_p = true;
14303
14304 #else
14305 warning (0, "builtin %qs needs GLIBC (2.23 and newer) that exports hardware "
14306 "capability bits", rs6000_builtin_info[(size_t) fcode].name);
14307
14308 /* For old LIBCs, always return FALSE. */
14309 emit_move_insn (target, GEN_INT (0));
14310 #endif /* TARGET_LIBC_PROVIDES_HWCAP_IN_TCB */
14311
14312 return target;
14313 }
14314
14315 static rtx
14316 rs6000_expand_ternop_builtin (enum insn_code icode, tree exp, rtx target)
14317 {
14318 rtx pat;
14319 tree arg0 = CALL_EXPR_ARG (exp, 0);
14320 tree arg1 = CALL_EXPR_ARG (exp, 1);
14321 tree arg2 = CALL_EXPR_ARG (exp, 2);
14322 rtx op0 = expand_normal (arg0);
14323 rtx op1 = expand_normal (arg1);
14324 rtx op2 = expand_normal (arg2);
14325 machine_mode tmode = insn_data[icode].operand[0].mode;
14326 machine_mode mode0 = insn_data[icode].operand[1].mode;
14327 machine_mode mode1 = insn_data[icode].operand[2].mode;
14328 machine_mode mode2 = insn_data[icode].operand[3].mode;
14329
14330 if (icode == CODE_FOR_nothing)
14331 /* Builtin not supported on this processor. */
14332 return 0;
14333
14334 /* If we got invalid arguments bail out before generating bad rtl. */
14335 if (arg0 == error_mark_node
14336 || arg1 == error_mark_node
14337 || arg2 == error_mark_node)
14338 return const0_rtx;
14339
14340 /* Check and prepare argument depending on the instruction code.
14341
14342 Note that a switch statement instead of the sequence of tests
14343 would be incorrect as many of the CODE_FOR values could be
14344 CODE_FOR_nothing and that would yield multiple alternatives
14345 with identical values. We'd never reach here at runtime in
14346 this case. */
14347 if (icode == CODE_FOR_altivec_vsldoi_v4sf
14348 || icode == CODE_FOR_altivec_vsldoi_v2df
14349 || icode == CODE_FOR_altivec_vsldoi_v4si
14350 || icode == CODE_FOR_altivec_vsldoi_v8hi
14351 || icode == CODE_FOR_altivec_vsldoi_v16qi)
14352 {
14353 /* Only allow 4-bit unsigned literals. */
14354 STRIP_NOPS (arg2);
14355 if (TREE_CODE (arg2) != INTEGER_CST
14356 || TREE_INT_CST_LOW (arg2) & ~0xf)
14357 {
14358 error ("argument 3 must be a 4-bit unsigned literal");
14359 return CONST0_RTX (tmode);
14360 }
14361 }
14362 else if (icode == CODE_FOR_vsx_xxpermdi_v2df
14363 || icode == CODE_FOR_vsx_xxpermdi_v2di
14364 || icode == CODE_FOR_vsx_xxpermdi_v2df_be
14365 || icode == CODE_FOR_vsx_xxpermdi_v2di_be
14366 || icode == CODE_FOR_vsx_xxpermdi_v1ti
14367 || icode == CODE_FOR_vsx_xxpermdi_v4sf
14368 || icode == CODE_FOR_vsx_xxpermdi_v4si
14369 || icode == CODE_FOR_vsx_xxpermdi_v8hi
14370 || icode == CODE_FOR_vsx_xxpermdi_v16qi
14371 || icode == CODE_FOR_vsx_xxsldwi_v16qi
14372 || icode == CODE_FOR_vsx_xxsldwi_v8hi
14373 || icode == CODE_FOR_vsx_xxsldwi_v4si
14374 || icode == CODE_FOR_vsx_xxsldwi_v4sf
14375 || icode == CODE_FOR_vsx_xxsldwi_v2di
14376 || icode == CODE_FOR_vsx_xxsldwi_v2df)
14377 {
14378 /* Only allow 2-bit unsigned literals. */
14379 STRIP_NOPS (arg2);
14380 if (TREE_CODE (arg2) != INTEGER_CST
14381 || TREE_INT_CST_LOW (arg2) & ~0x3)
14382 {
14383 error ("argument 3 must be a 2-bit unsigned literal");
14384 return CONST0_RTX (tmode);
14385 }
14386 }
14387 else if (icode == CODE_FOR_vsx_set_v2df
14388 || icode == CODE_FOR_vsx_set_v2di
14389 || icode == CODE_FOR_bcdadd
14390 || icode == CODE_FOR_bcdadd_lt
14391 || icode == CODE_FOR_bcdadd_eq
14392 || icode == CODE_FOR_bcdadd_gt
14393 || icode == CODE_FOR_bcdsub
14394 || icode == CODE_FOR_bcdsub_lt
14395 || icode == CODE_FOR_bcdsub_eq
14396 || icode == CODE_FOR_bcdsub_gt)
14397 {
14398 /* Only allow 1-bit unsigned literals. */
14399 STRIP_NOPS (arg2);
14400 if (TREE_CODE (arg2) != INTEGER_CST
14401 || TREE_INT_CST_LOW (arg2) & ~0x1)
14402 {
14403 error ("argument 3 must be a 1-bit unsigned literal");
14404 return CONST0_RTX (tmode);
14405 }
14406 }
14407 else if (icode == CODE_FOR_dfp_ddedpd_dd
14408 || icode == CODE_FOR_dfp_ddedpd_td)
14409 {
14410 /* Only allow 2-bit unsigned literals where the value is 0 or 2. */
14411 STRIP_NOPS (arg0);
14412 if (TREE_CODE (arg0) != INTEGER_CST
14413 || TREE_INT_CST_LOW (arg2) & ~0x3)
14414 {
14415 error ("argument 1 must be 0 or 2");
14416 return CONST0_RTX (tmode);
14417 }
14418 }
14419 else if (icode == CODE_FOR_dfp_denbcd_dd
14420 || icode == CODE_FOR_dfp_denbcd_td)
14421 {
14422 /* Only allow 1-bit unsigned literals. */
14423 STRIP_NOPS (arg0);
14424 if (TREE_CODE (arg0) != INTEGER_CST
14425 || TREE_INT_CST_LOW (arg0) & ~0x1)
14426 {
14427 error ("argument 1 must be a 1-bit unsigned literal");
14428 return CONST0_RTX (tmode);
14429 }
14430 }
14431 else if (icode == CODE_FOR_dfp_dscli_dd
14432 || icode == CODE_FOR_dfp_dscli_td
14433 || icode == CODE_FOR_dfp_dscri_dd
14434 || icode == CODE_FOR_dfp_dscri_td)
14435 {
14436 /* Only allow 6-bit unsigned literals. */
14437 STRIP_NOPS (arg1);
14438 if (TREE_CODE (arg1) != INTEGER_CST
14439 || TREE_INT_CST_LOW (arg1) & ~0x3f)
14440 {
14441 error ("argument 2 must be a 6-bit unsigned literal");
14442 return CONST0_RTX (tmode);
14443 }
14444 }
14445 else if (icode == CODE_FOR_crypto_vshasigmaw
14446 || icode == CODE_FOR_crypto_vshasigmad)
14447 {
14448 /* Check whether the 2nd and 3rd arguments are integer constants and in
14449 range and prepare arguments. */
14450 STRIP_NOPS (arg1);
14451 if (TREE_CODE (arg1) != INTEGER_CST || wi::geu_p (wi::to_wide (arg1), 2))
14452 {
14453 error ("argument 2 must be 0 or 1");
14454 return CONST0_RTX (tmode);
14455 }
14456
14457 STRIP_NOPS (arg2);
14458 if (TREE_CODE (arg2) != INTEGER_CST
14459 || wi::geu_p (wi::to_wide (arg2), 16))
14460 {
14461 error ("argument 3 must be in the range 0..15");
14462 return CONST0_RTX (tmode);
14463 }
14464 }
14465
14466 if (target == 0
14467 || GET_MODE (target) != tmode
14468 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
14469 target = gen_reg_rtx (tmode);
14470
14471 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
14472 op0 = copy_to_mode_reg (mode0, op0);
14473 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
14474 op1 = copy_to_mode_reg (mode1, op1);
14475 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
14476 op2 = copy_to_mode_reg (mode2, op2);
14477
14478 pat = GEN_FCN (icode) (target, op0, op1, op2);
14479 if (! pat)
14480 return 0;
14481 emit_insn (pat);
14482
14483 return target;
14484 }
14485
14486
14487 /* Expand the dst builtins. */
14488 static rtx
14489 altivec_expand_dst_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
14490 bool *expandedp)
14491 {
14492 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
14493 enum rs6000_builtins fcode = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
14494 tree arg0, arg1, arg2;
14495 machine_mode mode0, mode1;
14496 rtx pat, op0, op1, op2;
14497 const struct builtin_description *d;
14498 size_t i;
14499
14500 *expandedp = false;
14501
14502 /* Handle DST variants. */
14503 d = bdesc_dst;
14504 for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
14505 if (d->code == fcode)
14506 {
14507 arg0 = CALL_EXPR_ARG (exp, 0);
14508 arg1 = CALL_EXPR_ARG (exp, 1);
14509 arg2 = CALL_EXPR_ARG (exp, 2);
14510 op0 = expand_normal (arg0);
14511 op1 = expand_normal (arg1);
14512 op2 = expand_normal (arg2);
14513 mode0 = insn_data[d->icode].operand[0].mode;
14514 mode1 = insn_data[d->icode].operand[1].mode;
14515
14516 /* Invalid arguments, bail out before generating bad rtl. */
14517 if (arg0 == error_mark_node
14518 || arg1 == error_mark_node
14519 || arg2 == error_mark_node)
14520 return const0_rtx;
14521
14522 *expandedp = true;
14523 STRIP_NOPS (arg2);
14524 if (TREE_CODE (arg2) != INTEGER_CST
14525 || TREE_INT_CST_LOW (arg2) & ~0x3)
14526 {
14527 error ("argument to %qs must be a 2-bit unsigned literal", d->name);
14528 return const0_rtx;
14529 }
14530
14531 if (! (*insn_data[d->icode].operand[0].predicate) (op0, mode0))
14532 op0 = copy_to_mode_reg (Pmode, op0);
14533 if (! (*insn_data[d->icode].operand[1].predicate) (op1, mode1))
14534 op1 = copy_to_mode_reg (mode1, op1);
14535
14536 pat = GEN_FCN (d->icode) (op0, op1, op2);
14537 if (pat != 0)
14538 emit_insn (pat);
14539
14540 return NULL_RTX;
14541 }
14542
14543 return NULL_RTX;
14544 }
14545
14546 /* Expand vec_init builtin. */
14547 static rtx
14548 altivec_expand_vec_init_builtin (tree type, tree exp, rtx target)
14549 {
14550 machine_mode tmode = TYPE_MODE (type);
14551 machine_mode inner_mode = GET_MODE_INNER (tmode);
14552 int i, n_elt = GET_MODE_NUNITS (tmode);
14553
14554 gcc_assert (VECTOR_MODE_P (tmode));
14555 gcc_assert (n_elt == call_expr_nargs (exp));
14556
14557 if (!target || !register_operand (target, tmode))
14558 target = gen_reg_rtx (tmode);
14559
14560 /* If we have a vector compromised of a single element, such as V1TImode, do
14561 the initialization directly. */
14562 if (n_elt == 1 && GET_MODE_SIZE (tmode) == GET_MODE_SIZE (inner_mode))
14563 {
14564 rtx x = expand_normal (CALL_EXPR_ARG (exp, 0));
14565 emit_move_insn (target, gen_lowpart (tmode, x));
14566 }
14567 else
14568 {
14569 rtvec v = rtvec_alloc (n_elt);
14570
14571 for (i = 0; i < n_elt; ++i)
14572 {
14573 rtx x = expand_normal (CALL_EXPR_ARG (exp, i));
14574 RTVEC_ELT (v, i) = gen_lowpart (inner_mode, x);
14575 }
14576
14577 rs6000_expand_vector_init (target, gen_rtx_PARALLEL (tmode, v));
14578 }
14579
14580 return target;
14581 }
14582
14583 /* Return the integer constant in ARG. Constrain it to be in the range
14584 of the subparts of VEC_TYPE; issue an error if not. */
14585
14586 static int
14587 get_element_number (tree vec_type, tree arg)
14588 {
14589 unsigned HOST_WIDE_INT elt, max = TYPE_VECTOR_SUBPARTS (vec_type) - 1;
14590
14591 if (!tree_fits_uhwi_p (arg)
14592 || (elt = tree_to_uhwi (arg), elt > max))
14593 {
14594 error ("selector must be an integer constant in the range 0..%wi", max);
14595 return 0;
14596 }
14597
14598 return elt;
14599 }
14600
14601 /* Expand vec_set builtin. */
14602 static rtx
14603 altivec_expand_vec_set_builtin (tree exp)
14604 {
14605 machine_mode tmode, mode1;
14606 tree arg0, arg1, arg2;
14607 int elt;
14608 rtx op0, op1;
14609
14610 arg0 = CALL_EXPR_ARG (exp, 0);
14611 arg1 = CALL_EXPR_ARG (exp, 1);
14612 arg2 = CALL_EXPR_ARG (exp, 2);
14613
14614 tmode = TYPE_MODE (TREE_TYPE (arg0));
14615 mode1 = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
14616 gcc_assert (VECTOR_MODE_P (tmode));
14617
14618 op0 = expand_expr (arg0, NULL_RTX, tmode, EXPAND_NORMAL);
14619 op1 = expand_expr (arg1, NULL_RTX, mode1, EXPAND_NORMAL);
14620 elt = get_element_number (TREE_TYPE (arg0), arg2);
14621
14622 if (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode)
14623 op1 = convert_modes (mode1, GET_MODE (op1), op1, true);
14624
14625 op0 = force_reg (tmode, op0);
14626 op1 = force_reg (mode1, op1);
14627
14628 rs6000_expand_vector_set (op0, op1, elt);
14629
14630 return op0;
14631 }
14632
14633 /* Expand vec_ext builtin. */
14634 static rtx
14635 altivec_expand_vec_ext_builtin (tree exp, rtx target)
14636 {
14637 machine_mode tmode, mode0;
14638 tree arg0, arg1;
14639 rtx op0;
14640 rtx op1;
14641
14642 arg0 = CALL_EXPR_ARG (exp, 0);
14643 arg1 = CALL_EXPR_ARG (exp, 1);
14644
14645 op0 = expand_normal (arg0);
14646 op1 = expand_normal (arg1);
14647
14648 /* Call get_element_number to validate arg1 if it is a constant. */
14649 if (TREE_CODE (arg1) == INTEGER_CST)
14650 (void) get_element_number (TREE_TYPE (arg0), arg1);
14651
14652 tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
14653 mode0 = TYPE_MODE (TREE_TYPE (arg0));
14654 gcc_assert (VECTOR_MODE_P (mode0));
14655
14656 op0 = force_reg (mode0, op0);
14657
14658 if (optimize || !target || !register_operand (target, tmode))
14659 target = gen_reg_rtx (tmode);
14660
14661 rs6000_expand_vector_extract (target, op0, op1);
14662
14663 return target;
14664 }
14665
14666 /* Expand the builtin in EXP and store the result in TARGET. Store
14667 true in *EXPANDEDP if we found a builtin to expand. */
14668 static rtx
14669 altivec_expand_builtin (tree exp, rtx target, bool *expandedp)
14670 {
14671 const struct builtin_description *d;
14672 size_t i;
14673 enum insn_code icode;
14674 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
14675 tree arg0, arg1, arg2;
14676 rtx op0, pat;
14677 machine_mode tmode, mode0;
14678 enum rs6000_builtins fcode
14679 = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
14680
14681 if (rs6000_overloaded_builtin_p (fcode))
14682 {
14683 *expandedp = true;
14684 error ("unresolved overload for Altivec builtin %qF", fndecl);
14685
14686 /* Given it is invalid, just generate a normal call. */
14687 return expand_call (exp, target, false);
14688 }
14689
14690 target = altivec_expand_dst_builtin (exp, target, expandedp);
14691 if (*expandedp)
14692 return target;
14693
14694 *expandedp = true;
14695
14696 switch (fcode)
14697 {
14698 case ALTIVEC_BUILTIN_STVX_V2DF:
14699 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v2df, exp);
14700 case ALTIVEC_BUILTIN_STVX_V2DI:
14701 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v2di, exp);
14702 case ALTIVEC_BUILTIN_STVX_V4SF:
14703 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v4sf, exp);
14704 case ALTIVEC_BUILTIN_STVX:
14705 case ALTIVEC_BUILTIN_STVX_V4SI:
14706 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v4si, exp);
14707 case ALTIVEC_BUILTIN_STVX_V8HI:
14708 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v8hi, exp);
14709 case ALTIVEC_BUILTIN_STVX_V16QI:
14710 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v16qi, exp);
14711 case ALTIVEC_BUILTIN_STVEBX:
14712 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvebx, exp);
14713 case ALTIVEC_BUILTIN_STVEHX:
14714 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvehx, exp);
14715 case ALTIVEC_BUILTIN_STVEWX:
14716 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvewx, exp);
14717 case ALTIVEC_BUILTIN_STVXL_V2DF:
14718 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v2df, exp);
14719 case ALTIVEC_BUILTIN_STVXL_V2DI:
14720 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v2di, exp);
14721 case ALTIVEC_BUILTIN_STVXL_V4SF:
14722 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v4sf, exp);
14723 case ALTIVEC_BUILTIN_STVXL:
14724 case ALTIVEC_BUILTIN_STVXL_V4SI:
14725 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v4si, exp);
14726 case ALTIVEC_BUILTIN_STVXL_V8HI:
14727 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v8hi, exp);
14728 case ALTIVEC_BUILTIN_STVXL_V16QI:
14729 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v16qi, exp);
14730
14731 case ALTIVEC_BUILTIN_STVLX:
14732 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlx, exp);
14733 case ALTIVEC_BUILTIN_STVLXL:
14734 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlxl, exp);
14735 case ALTIVEC_BUILTIN_STVRX:
14736 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrx, exp);
14737 case ALTIVEC_BUILTIN_STVRXL:
14738 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrxl, exp);
14739
14740 case P9V_BUILTIN_STXVL:
14741 return altivec_expand_stxvl_builtin (CODE_FOR_stxvl, exp);
14742
14743 case P9V_BUILTIN_XST_LEN_R:
14744 return altivec_expand_stxvl_builtin (CODE_FOR_xst_len_r, exp);
14745
14746 case VSX_BUILTIN_STXVD2X_V1TI:
14747 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v1ti, exp);
14748 case VSX_BUILTIN_STXVD2X_V2DF:
14749 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v2df, exp);
14750 case VSX_BUILTIN_STXVD2X_V2DI:
14751 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v2di, exp);
14752 case VSX_BUILTIN_STXVW4X_V4SF:
14753 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v4sf, exp);
14754 case VSX_BUILTIN_STXVW4X_V4SI:
14755 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v4si, exp);
14756 case VSX_BUILTIN_STXVW4X_V8HI:
14757 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v8hi, exp);
14758 case VSX_BUILTIN_STXVW4X_V16QI:
14759 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v16qi, exp);
14760
14761 /* For the following on big endian, it's ok to use any appropriate
14762 unaligned-supporting store, so use a generic expander. For
14763 little-endian, the exact element-reversing instruction must
14764 be used. */
14765 case VSX_BUILTIN_ST_ELEMREV_V1TI:
14766 {
14767 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v1ti
14768 : CODE_FOR_vsx_st_elemrev_v1ti);
14769 return altivec_expand_stv_builtin (code, exp);
14770 }
14771 case VSX_BUILTIN_ST_ELEMREV_V2DF:
14772 {
14773 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v2df
14774 : CODE_FOR_vsx_st_elemrev_v2df);
14775 return altivec_expand_stv_builtin (code, exp);
14776 }
14777 case VSX_BUILTIN_ST_ELEMREV_V2DI:
14778 {
14779 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v2di
14780 : CODE_FOR_vsx_st_elemrev_v2di);
14781 return altivec_expand_stv_builtin (code, exp);
14782 }
14783 case VSX_BUILTIN_ST_ELEMREV_V4SF:
14784 {
14785 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v4sf
14786 : CODE_FOR_vsx_st_elemrev_v4sf);
14787 return altivec_expand_stv_builtin (code, exp);
14788 }
14789 case VSX_BUILTIN_ST_ELEMREV_V4SI:
14790 {
14791 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v4si
14792 : CODE_FOR_vsx_st_elemrev_v4si);
14793 return altivec_expand_stv_builtin (code, exp);
14794 }
14795 case VSX_BUILTIN_ST_ELEMREV_V8HI:
14796 {
14797 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v8hi
14798 : CODE_FOR_vsx_st_elemrev_v8hi);
14799 return altivec_expand_stv_builtin (code, exp);
14800 }
14801 case VSX_BUILTIN_ST_ELEMREV_V16QI:
14802 {
14803 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v16qi
14804 : CODE_FOR_vsx_st_elemrev_v16qi);
14805 return altivec_expand_stv_builtin (code, exp);
14806 }
14807
14808 case ALTIVEC_BUILTIN_MFVSCR:
14809 icode = CODE_FOR_altivec_mfvscr;
14810 tmode = insn_data[icode].operand[0].mode;
14811
14812 if (target == 0
14813 || GET_MODE (target) != tmode
14814 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
14815 target = gen_reg_rtx (tmode);
14816
14817 pat = GEN_FCN (icode) (target);
14818 if (! pat)
14819 return 0;
14820 emit_insn (pat);
14821 return target;
14822
14823 case ALTIVEC_BUILTIN_MTVSCR:
14824 icode = CODE_FOR_altivec_mtvscr;
14825 arg0 = CALL_EXPR_ARG (exp, 0);
14826 op0 = expand_normal (arg0);
14827 mode0 = insn_data[icode].operand[0].mode;
14828
14829 /* If we got invalid arguments bail out before generating bad rtl. */
14830 if (arg0 == error_mark_node)
14831 return const0_rtx;
14832
14833 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
14834 op0 = copy_to_mode_reg (mode0, op0);
14835
14836 pat = GEN_FCN (icode) (op0);
14837 if (pat)
14838 emit_insn (pat);
14839 return NULL_RTX;
14840
14841 case ALTIVEC_BUILTIN_DSSALL:
14842 emit_insn (gen_altivec_dssall ());
14843 return NULL_RTX;
14844
14845 case ALTIVEC_BUILTIN_DSS:
14846 icode = CODE_FOR_altivec_dss;
14847 arg0 = CALL_EXPR_ARG (exp, 0);
14848 STRIP_NOPS (arg0);
14849 op0 = expand_normal (arg0);
14850 mode0 = insn_data[icode].operand[0].mode;
14851
14852 /* If we got invalid arguments bail out before generating bad rtl. */
14853 if (arg0 == error_mark_node)
14854 return const0_rtx;
14855
14856 if (TREE_CODE (arg0) != INTEGER_CST
14857 || TREE_INT_CST_LOW (arg0) & ~0x3)
14858 {
14859 error ("argument to %qs must be a 2-bit unsigned literal", "dss");
14860 return const0_rtx;
14861 }
14862
14863 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
14864 op0 = copy_to_mode_reg (mode0, op0);
14865
14866 emit_insn (gen_altivec_dss (op0));
14867 return NULL_RTX;
14868
14869 case ALTIVEC_BUILTIN_VEC_INIT_V4SI:
14870 case ALTIVEC_BUILTIN_VEC_INIT_V8HI:
14871 case ALTIVEC_BUILTIN_VEC_INIT_V16QI:
14872 case ALTIVEC_BUILTIN_VEC_INIT_V4SF:
14873 case VSX_BUILTIN_VEC_INIT_V2DF:
14874 case VSX_BUILTIN_VEC_INIT_V2DI:
14875 case VSX_BUILTIN_VEC_INIT_V1TI:
14876 return altivec_expand_vec_init_builtin (TREE_TYPE (exp), exp, target);
14877
14878 case ALTIVEC_BUILTIN_VEC_SET_V4SI:
14879 case ALTIVEC_BUILTIN_VEC_SET_V8HI:
14880 case ALTIVEC_BUILTIN_VEC_SET_V16QI:
14881 case ALTIVEC_BUILTIN_VEC_SET_V4SF:
14882 case VSX_BUILTIN_VEC_SET_V2DF:
14883 case VSX_BUILTIN_VEC_SET_V2DI:
14884 case VSX_BUILTIN_VEC_SET_V1TI:
14885 return altivec_expand_vec_set_builtin (exp);
14886
14887 case ALTIVEC_BUILTIN_VEC_EXT_V4SI:
14888 case ALTIVEC_BUILTIN_VEC_EXT_V8HI:
14889 case ALTIVEC_BUILTIN_VEC_EXT_V16QI:
14890 case ALTIVEC_BUILTIN_VEC_EXT_V4SF:
14891 case VSX_BUILTIN_VEC_EXT_V2DF:
14892 case VSX_BUILTIN_VEC_EXT_V2DI:
14893 case VSX_BUILTIN_VEC_EXT_V1TI:
14894 return altivec_expand_vec_ext_builtin (exp, target);
14895
14896 case P9V_BUILTIN_VEC_EXTRACT4B:
14897 arg1 = CALL_EXPR_ARG (exp, 1);
14898 STRIP_NOPS (arg1);
14899
14900 /* Generate a normal call if it is invalid. */
14901 if (arg1 == error_mark_node)
14902 return expand_call (exp, target, false);
14903
14904 if (TREE_CODE (arg1) != INTEGER_CST || TREE_INT_CST_LOW (arg1) > 12)
14905 {
14906 error ("second argument to %qs must be 0..12", "vec_vextract4b");
14907 return expand_call (exp, target, false);
14908 }
14909 break;
14910
14911 case P9V_BUILTIN_VEC_INSERT4B:
14912 arg2 = CALL_EXPR_ARG (exp, 2);
14913 STRIP_NOPS (arg2);
14914
14915 /* Generate a normal call if it is invalid. */
14916 if (arg2 == error_mark_node)
14917 return expand_call (exp, target, false);
14918
14919 if (TREE_CODE (arg2) != INTEGER_CST || TREE_INT_CST_LOW (arg2) > 12)
14920 {
14921 error ("third argument to %qs must be 0..12", "vec_vinsert4b");
14922 return expand_call (exp, target, false);
14923 }
14924 break;
14925
14926 default:
14927 break;
14928 /* Fall through. */
14929 }
14930
14931 /* Expand abs* operations. */
14932 d = bdesc_abs;
14933 for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
14934 if (d->code == fcode)
14935 return altivec_expand_abs_builtin (d->icode, exp, target);
14936
14937 /* Expand the AltiVec predicates. */
14938 d = bdesc_altivec_preds;
14939 for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, d++)
14940 if (d->code == fcode)
14941 return altivec_expand_predicate_builtin (d->icode, exp, target);
14942
14943 /* LV* are funky. We initialized them differently. */
14944 switch (fcode)
14945 {
14946 case ALTIVEC_BUILTIN_LVSL:
14947 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsl,
14948 exp, target, false);
14949 case ALTIVEC_BUILTIN_LVSR:
14950 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsr,
14951 exp, target, false);
14952 case ALTIVEC_BUILTIN_LVEBX:
14953 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvebx,
14954 exp, target, false);
14955 case ALTIVEC_BUILTIN_LVEHX:
14956 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvehx,
14957 exp, target, false);
14958 case ALTIVEC_BUILTIN_LVEWX:
14959 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvewx,
14960 exp, target, false);
14961 case ALTIVEC_BUILTIN_LVXL_V2DF:
14962 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v2df,
14963 exp, target, false);
14964 case ALTIVEC_BUILTIN_LVXL_V2DI:
14965 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v2di,
14966 exp, target, false);
14967 case ALTIVEC_BUILTIN_LVXL_V4SF:
14968 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v4sf,
14969 exp, target, false);
14970 case ALTIVEC_BUILTIN_LVXL:
14971 case ALTIVEC_BUILTIN_LVXL_V4SI:
14972 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v4si,
14973 exp, target, false);
14974 case ALTIVEC_BUILTIN_LVXL_V8HI:
14975 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v8hi,
14976 exp, target, false);
14977 case ALTIVEC_BUILTIN_LVXL_V16QI:
14978 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v16qi,
14979 exp, target, false);
14980 case ALTIVEC_BUILTIN_LVX_V1TI:
14981 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v1ti,
14982 exp, target, false);
14983 case ALTIVEC_BUILTIN_LVX_V2DF:
14984 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v2df,
14985 exp, target, false);
14986 case ALTIVEC_BUILTIN_LVX_V2DI:
14987 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v2di,
14988 exp, target, false);
14989 case ALTIVEC_BUILTIN_LVX_V4SF:
14990 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v4sf,
14991 exp, target, false);
14992 case ALTIVEC_BUILTIN_LVX:
14993 case ALTIVEC_BUILTIN_LVX_V4SI:
14994 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v4si,
14995 exp, target, false);
14996 case ALTIVEC_BUILTIN_LVX_V8HI:
14997 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v8hi,
14998 exp, target, false);
14999 case ALTIVEC_BUILTIN_LVX_V16QI:
15000 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v16qi,
15001 exp, target, false);
15002 case ALTIVEC_BUILTIN_LVLX:
15003 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlx,
15004 exp, target, true);
15005 case ALTIVEC_BUILTIN_LVLXL:
15006 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlxl,
15007 exp, target, true);
15008 case ALTIVEC_BUILTIN_LVRX:
15009 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrx,
15010 exp, target, true);
15011 case ALTIVEC_BUILTIN_LVRXL:
15012 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrxl,
15013 exp, target, true);
15014 case VSX_BUILTIN_LXVD2X_V1TI:
15015 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v1ti,
15016 exp, target, false);
15017 case VSX_BUILTIN_LXVD2X_V2DF:
15018 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v2df,
15019 exp, target, false);
15020 case VSX_BUILTIN_LXVD2X_V2DI:
15021 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v2di,
15022 exp, target, false);
15023 case VSX_BUILTIN_LXVW4X_V4SF:
15024 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v4sf,
15025 exp, target, false);
15026 case VSX_BUILTIN_LXVW4X_V4SI:
15027 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v4si,
15028 exp, target, false);
15029 case VSX_BUILTIN_LXVW4X_V8HI:
15030 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v8hi,
15031 exp, target, false);
15032 case VSX_BUILTIN_LXVW4X_V16QI:
15033 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v16qi,
15034 exp, target, false);
15035 /* For the following on big endian, it's ok to use any appropriate
15036 unaligned-supporting load, so use a generic expander. For
15037 little-endian, the exact element-reversing instruction must
15038 be used. */
15039 case VSX_BUILTIN_LD_ELEMREV_V2DF:
15040 {
15041 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v2df
15042 : CODE_FOR_vsx_ld_elemrev_v2df);
15043 return altivec_expand_lv_builtin (code, exp, target, false);
15044 }
15045 case VSX_BUILTIN_LD_ELEMREV_V1TI:
15046 {
15047 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v1ti
15048 : CODE_FOR_vsx_ld_elemrev_v1ti);
15049 return altivec_expand_lv_builtin (code, exp, target, false);
15050 }
15051 case VSX_BUILTIN_LD_ELEMREV_V2DI:
15052 {
15053 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v2di
15054 : CODE_FOR_vsx_ld_elemrev_v2di);
15055 return altivec_expand_lv_builtin (code, exp, target, false);
15056 }
15057 case VSX_BUILTIN_LD_ELEMREV_V4SF:
15058 {
15059 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v4sf
15060 : CODE_FOR_vsx_ld_elemrev_v4sf);
15061 return altivec_expand_lv_builtin (code, exp, target, false);
15062 }
15063 case VSX_BUILTIN_LD_ELEMREV_V4SI:
15064 {
15065 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v4si
15066 : CODE_FOR_vsx_ld_elemrev_v4si);
15067 return altivec_expand_lv_builtin (code, exp, target, false);
15068 }
15069 case VSX_BUILTIN_LD_ELEMREV_V8HI:
15070 {
15071 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v8hi
15072 : CODE_FOR_vsx_ld_elemrev_v8hi);
15073 return altivec_expand_lv_builtin (code, exp, target, false);
15074 }
15075 case VSX_BUILTIN_LD_ELEMREV_V16QI:
15076 {
15077 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v16qi
15078 : CODE_FOR_vsx_ld_elemrev_v16qi);
15079 return altivec_expand_lv_builtin (code, exp, target, false);
15080 }
15081 break;
15082 default:
15083 break;
15084 /* Fall through. */
15085 }
15086
15087 *expandedp = false;
15088 return NULL_RTX;
15089 }
15090
15091 /* Check whether a builtin function is supported in this target
15092 configuration. */
15093 bool
15094 rs6000_builtin_is_supported_p (enum rs6000_builtins fncode)
15095 {
15096 HOST_WIDE_INT fnmask = rs6000_builtin_info[fncode].mask;
15097 if ((fnmask & rs6000_builtin_mask) != fnmask)
15098 return false;
15099 else
15100 return true;
15101 }
15102
15103 /* Raise an error message for a builtin function that is called without the
15104 appropriate target options being set. */
15105
15106 static void
15107 rs6000_invalid_builtin (enum rs6000_builtins fncode)
15108 {
15109 size_t uns_fncode = (size_t) fncode;
15110 const char *name = rs6000_builtin_info[uns_fncode].name;
15111 HOST_WIDE_INT fnmask = rs6000_builtin_info[uns_fncode].mask;
15112
15113 gcc_assert (name != NULL);
15114 if ((fnmask & RS6000_BTM_CELL) != 0)
15115 error ("builtin function %qs is only valid for the cell processor", name);
15116 else if ((fnmask & RS6000_BTM_VSX) != 0)
15117 error ("builtin function %qs requires the %qs option", name, "-mvsx");
15118 else if ((fnmask & RS6000_BTM_HTM) != 0)
15119 error ("builtin function %qs requires the %qs option", name, "-mhtm");
15120 else if ((fnmask & RS6000_BTM_ALTIVEC) != 0)
15121 error ("builtin function %qs requires the %qs option", name, "-maltivec");
15122 else if ((fnmask & (RS6000_BTM_DFP | RS6000_BTM_P8_VECTOR))
15123 == (RS6000_BTM_DFP | RS6000_BTM_P8_VECTOR))
15124 error ("builtin function %qs requires the %qs and %qs options",
15125 name, "-mhard-dfp", "-mpower8-vector");
15126 else if ((fnmask & RS6000_BTM_DFP) != 0)
15127 error ("builtin function %qs requires the %qs option", name, "-mhard-dfp");
15128 else if ((fnmask & RS6000_BTM_P8_VECTOR) != 0)
15129 error ("builtin function %qs requires the %qs option", name,
15130 "-mpower8-vector");
15131 else if ((fnmask & (RS6000_BTM_P9_VECTOR | RS6000_BTM_64BIT))
15132 == (RS6000_BTM_P9_VECTOR | RS6000_BTM_64BIT))
15133 error ("builtin function %qs requires the %qs and %qs options",
15134 name, "-mcpu=power9", "-m64");
15135 else if ((fnmask & RS6000_BTM_P9_VECTOR) != 0)
15136 error ("builtin function %qs requires the %qs option", name,
15137 "-mcpu=power9");
15138 else if ((fnmask & (RS6000_BTM_P9_MISC | RS6000_BTM_64BIT))
15139 == (RS6000_BTM_P9_MISC | RS6000_BTM_64BIT))
15140 error ("builtin function %qs requires the %qs and %qs options",
15141 name, "-mcpu=power9", "-m64");
15142 else if ((fnmask & RS6000_BTM_P9_MISC) == RS6000_BTM_P9_MISC)
15143 error ("builtin function %qs requires the %qs option", name,
15144 "-mcpu=power9");
15145 else if ((fnmask & RS6000_BTM_LDBL128) == RS6000_BTM_LDBL128)
15146 {
15147 if (!TARGET_HARD_FLOAT)
15148 error ("builtin function %qs requires the %qs option", name,
15149 "-mhard-float");
15150 else
15151 error ("builtin function %qs requires the %qs option", name,
15152 TARGET_IEEEQUAD ? "-mabi=ibmlongdouble" : "-mlong-double-128");
15153 }
15154 else if ((fnmask & RS6000_BTM_HARD_FLOAT) != 0)
15155 error ("builtin function %qs requires the %qs option", name,
15156 "-mhard-float");
15157 else if ((fnmask & RS6000_BTM_FLOAT128_HW) != 0)
15158 error ("builtin function %qs requires ISA 3.0 IEEE 128-bit floating point",
15159 name);
15160 else if ((fnmask & RS6000_BTM_FLOAT128) != 0)
15161 error ("builtin function %qs requires the %qs option", name, "-mfloat128");
15162 else if ((fnmask & (RS6000_BTM_POPCNTD | RS6000_BTM_POWERPC64))
15163 == (RS6000_BTM_POPCNTD | RS6000_BTM_POWERPC64))
15164 error ("builtin function %qs requires the %qs (or newer), and "
15165 "%qs or %qs options",
15166 name, "-mcpu=power7", "-m64", "-mpowerpc64");
15167 else
15168 error ("builtin function %qs is not supported with the current options",
15169 name);
15170 }
15171
15172 /* Target hook for early folding of built-ins, shamelessly stolen
15173 from ia64.c. */
15174
15175 static tree
15176 rs6000_fold_builtin (tree fndecl ATTRIBUTE_UNUSED,
15177 int n_args ATTRIBUTE_UNUSED,
15178 tree *args ATTRIBUTE_UNUSED,
15179 bool ignore ATTRIBUTE_UNUSED)
15180 {
15181 #ifdef SUBTARGET_FOLD_BUILTIN
15182 return SUBTARGET_FOLD_BUILTIN (fndecl, n_args, args, ignore);
15183 #else
15184 return NULL_TREE;
15185 #endif
15186 }
15187
15188 /* Helper function to sort out which built-ins may be valid without having
15189 a LHS. */
15190 static bool
15191 rs6000_builtin_valid_without_lhs (enum rs6000_builtins fn_code)
15192 {
15193 switch (fn_code)
15194 {
15195 case ALTIVEC_BUILTIN_STVX_V16QI:
15196 case ALTIVEC_BUILTIN_STVX_V8HI:
15197 case ALTIVEC_BUILTIN_STVX_V4SI:
15198 case ALTIVEC_BUILTIN_STVX_V4SF:
15199 case ALTIVEC_BUILTIN_STVX_V2DI:
15200 case ALTIVEC_BUILTIN_STVX_V2DF:
15201 case VSX_BUILTIN_STXVW4X_V16QI:
15202 case VSX_BUILTIN_STXVW4X_V8HI:
15203 case VSX_BUILTIN_STXVW4X_V4SF:
15204 case VSX_BUILTIN_STXVW4X_V4SI:
15205 case VSX_BUILTIN_STXVD2X_V2DF:
15206 case VSX_BUILTIN_STXVD2X_V2DI:
15207 return true;
15208 default:
15209 return false;
15210 }
15211 }
15212
15213 /* Helper function to handle the gimple folding of a vector compare
15214 operation. This sets up true/false vectors, and uses the
15215 VEC_COND_EXPR operation.
15216 CODE indicates which comparison is to be made. (EQ, GT, ...).
15217 TYPE indicates the type of the result. */
15218 static tree
15219 fold_build_vec_cmp (tree_code code, tree type,
15220 tree arg0, tree arg1)
15221 {
15222 tree cmp_type = build_same_sized_truth_vector_type (type);
15223 tree zero_vec = build_zero_cst (type);
15224 tree minus_one_vec = build_minus_one_cst (type);
15225 tree cmp = fold_build2 (code, cmp_type, arg0, arg1);
15226 return fold_build3 (VEC_COND_EXPR, type, cmp, minus_one_vec, zero_vec);
15227 }
15228
15229 /* Helper function to handle the in-between steps for the
15230 vector compare built-ins. */
15231 static void
15232 fold_compare_helper (gimple_stmt_iterator *gsi, tree_code code, gimple *stmt)
15233 {
15234 tree arg0 = gimple_call_arg (stmt, 0);
15235 tree arg1 = gimple_call_arg (stmt, 1);
15236 tree lhs = gimple_call_lhs (stmt);
15237 tree cmp = fold_build_vec_cmp (code, TREE_TYPE (lhs), arg0, arg1);
15238 gimple *g = gimple_build_assign (lhs, cmp);
15239 gimple_set_location (g, gimple_location (stmt));
15240 gsi_replace (gsi, g, true);
15241 }
15242
15243 /* Helper function to map V2DF and V4SF types to their
15244 integral equivalents (V2DI and V4SI). */
15245 tree map_to_integral_tree_type (tree input_tree_type)
15246 {
15247 if (INTEGRAL_TYPE_P (TREE_TYPE (input_tree_type)))
15248 return input_tree_type;
15249 else
15250 {
15251 if (types_compatible_p (TREE_TYPE (input_tree_type),
15252 TREE_TYPE (V2DF_type_node)))
15253 return V2DI_type_node;
15254 else if (types_compatible_p (TREE_TYPE (input_tree_type),
15255 TREE_TYPE (V4SF_type_node)))
15256 return V4SI_type_node;
15257 else
15258 gcc_unreachable ();
15259 }
15260 }
15261
15262 /* Helper function to handle the vector merge[hl] built-ins. The
15263 implementation difference between h and l versions for this code are in
15264 the values used when building of the permute vector for high word versus
15265 low word merge. The variance is keyed off the use_high parameter. */
15266 static void
15267 fold_mergehl_helper (gimple_stmt_iterator *gsi, gimple *stmt, int use_high)
15268 {
15269 tree arg0 = gimple_call_arg (stmt, 0);
15270 tree arg1 = gimple_call_arg (stmt, 1);
15271 tree lhs = gimple_call_lhs (stmt);
15272 tree lhs_type = TREE_TYPE (lhs);
15273 int n_elts = TYPE_VECTOR_SUBPARTS (lhs_type);
15274 int midpoint = n_elts / 2;
15275 int offset = 0;
15276
15277 if (use_high == 1)
15278 offset = midpoint;
15279
15280 /* The permute_type will match the lhs for integral types. For double and
15281 float types, the permute type needs to map to the V2 or V4 type that
15282 matches size. */
15283 tree permute_type;
15284 permute_type = map_to_integral_tree_type (lhs_type);
15285 tree_vector_builder elts (permute_type, VECTOR_CST_NELTS (arg0), 1);
15286
15287 for (int i = 0; i < midpoint; i++)
15288 {
15289 elts.safe_push (build_int_cst (TREE_TYPE (permute_type),
15290 offset + i));
15291 elts.safe_push (build_int_cst (TREE_TYPE (permute_type),
15292 offset + n_elts + i));
15293 }
15294
15295 tree permute = elts.build ();
15296
15297 gimple *g = gimple_build_assign (lhs, VEC_PERM_EXPR, arg0, arg1, permute);
15298 gimple_set_location (g, gimple_location (stmt));
15299 gsi_replace (gsi, g, true);
15300 }
15301
15302 /* Helper function to handle the vector merge[eo] built-ins. */
15303 static void
15304 fold_mergeeo_helper (gimple_stmt_iterator *gsi, gimple *stmt, int use_odd)
15305 {
15306 tree arg0 = gimple_call_arg (stmt, 0);
15307 tree arg1 = gimple_call_arg (stmt, 1);
15308 tree lhs = gimple_call_lhs (stmt);
15309 tree lhs_type = TREE_TYPE (lhs);
15310 int n_elts = TYPE_VECTOR_SUBPARTS (lhs_type);
15311
15312 /* The permute_type will match the lhs for integral types. For double and
15313 float types, the permute type needs to map to the V2 or V4 type that
15314 matches size. */
15315 tree permute_type;
15316 permute_type = map_to_integral_tree_type (lhs_type);
15317
15318 tree_vector_builder elts (permute_type, VECTOR_CST_NELTS (arg0), 1);
15319
15320 /* Build the permute vector. */
15321 for (int i = 0; i < n_elts / 2; i++)
15322 {
15323 elts.safe_push (build_int_cst (TREE_TYPE (permute_type),
15324 2*i + use_odd));
15325 elts.safe_push (build_int_cst (TREE_TYPE (permute_type),
15326 2*i + use_odd + n_elts));
15327 }
15328
15329 tree permute = elts.build ();
15330
15331 gimple *g = gimple_build_assign (lhs, VEC_PERM_EXPR, arg0, arg1, permute);
15332 gimple_set_location (g, gimple_location (stmt));
15333 gsi_replace (gsi, g, true);
15334 }
15335
15336 /* Fold a machine-dependent built-in in GIMPLE. (For folding into
15337 a constant, use rs6000_fold_builtin.) */
15338
15339 bool
15340 rs6000_gimple_fold_builtin (gimple_stmt_iterator *gsi)
15341 {
15342 gimple *stmt = gsi_stmt (*gsi);
15343 tree fndecl = gimple_call_fndecl (stmt);
15344 gcc_checking_assert (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD);
15345 enum rs6000_builtins fn_code
15346 = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
15347 tree arg0, arg1, lhs, temp;
15348 gimple *g;
15349
15350 size_t uns_fncode = (size_t) fn_code;
15351 enum insn_code icode = rs6000_builtin_info[uns_fncode].icode;
15352 const char *fn_name1 = rs6000_builtin_info[uns_fncode].name;
15353 const char *fn_name2 = (icode != CODE_FOR_nothing)
15354 ? get_insn_name ((int) icode)
15355 : "nothing";
15356
15357 if (TARGET_DEBUG_BUILTIN)
15358 fprintf (stderr, "rs6000_gimple_fold_builtin %d %s %s\n",
15359 fn_code, fn_name1, fn_name2);
15360
15361 if (!rs6000_fold_gimple)
15362 return false;
15363
15364 /* Prevent gimple folding for code that does not have a LHS, unless it is
15365 allowed per the rs6000_builtin_valid_without_lhs helper function. */
15366 if (!gimple_call_lhs (stmt) && !rs6000_builtin_valid_without_lhs (fn_code))
15367 return false;
15368
15369 /* Don't fold invalid builtins, let rs6000_expand_builtin diagnose it. */
15370 HOST_WIDE_INT mask = rs6000_builtin_info[uns_fncode].mask;
15371 bool func_valid_p = (rs6000_builtin_mask & mask) == mask;
15372 if (!func_valid_p)
15373 return false;
15374
15375 switch (fn_code)
15376 {
15377 /* Flavors of vec_add. We deliberately don't expand
15378 P8V_BUILTIN_VADDUQM as it gets lowered from V1TImode to
15379 TImode, resulting in much poorer code generation. */
15380 case ALTIVEC_BUILTIN_VADDUBM:
15381 case ALTIVEC_BUILTIN_VADDUHM:
15382 case ALTIVEC_BUILTIN_VADDUWM:
15383 case P8V_BUILTIN_VADDUDM:
15384 case ALTIVEC_BUILTIN_VADDFP:
15385 case VSX_BUILTIN_XVADDDP:
15386 arg0 = gimple_call_arg (stmt, 0);
15387 arg1 = gimple_call_arg (stmt, 1);
15388 lhs = gimple_call_lhs (stmt);
15389 g = gimple_build_assign (lhs, PLUS_EXPR, arg0, arg1);
15390 gimple_set_location (g, gimple_location (stmt));
15391 gsi_replace (gsi, g, true);
15392 return true;
15393 /* Flavors of vec_sub. We deliberately don't expand
15394 P8V_BUILTIN_VSUBUQM. */
15395 case ALTIVEC_BUILTIN_VSUBUBM:
15396 case ALTIVEC_BUILTIN_VSUBUHM:
15397 case ALTIVEC_BUILTIN_VSUBUWM:
15398 case P8V_BUILTIN_VSUBUDM:
15399 case ALTIVEC_BUILTIN_VSUBFP:
15400 case VSX_BUILTIN_XVSUBDP:
15401 arg0 = gimple_call_arg (stmt, 0);
15402 arg1 = gimple_call_arg (stmt, 1);
15403 lhs = gimple_call_lhs (stmt);
15404 g = gimple_build_assign (lhs, MINUS_EXPR, arg0, arg1);
15405 gimple_set_location (g, gimple_location (stmt));
15406 gsi_replace (gsi, g, true);
15407 return true;
15408 case VSX_BUILTIN_XVMULSP:
15409 case VSX_BUILTIN_XVMULDP:
15410 arg0 = gimple_call_arg (stmt, 0);
15411 arg1 = gimple_call_arg (stmt, 1);
15412 lhs = gimple_call_lhs (stmt);
15413 g = gimple_build_assign (lhs, MULT_EXPR, arg0, arg1);
15414 gimple_set_location (g, gimple_location (stmt));
15415 gsi_replace (gsi, g, true);
15416 return true;
15417 /* Even element flavors of vec_mul (signed). */
15418 case ALTIVEC_BUILTIN_VMULESB:
15419 case ALTIVEC_BUILTIN_VMULESH:
15420 case P8V_BUILTIN_VMULESW:
15421 /* Even element flavors of vec_mul (unsigned). */
15422 case ALTIVEC_BUILTIN_VMULEUB:
15423 case ALTIVEC_BUILTIN_VMULEUH:
15424 case P8V_BUILTIN_VMULEUW:
15425 arg0 = gimple_call_arg (stmt, 0);
15426 arg1 = gimple_call_arg (stmt, 1);
15427 lhs = gimple_call_lhs (stmt);
15428 g = gimple_build_assign (lhs, VEC_WIDEN_MULT_EVEN_EXPR, arg0, arg1);
15429 gimple_set_location (g, gimple_location (stmt));
15430 gsi_replace (gsi, g, true);
15431 return true;
15432 /* Odd element flavors of vec_mul (signed). */
15433 case ALTIVEC_BUILTIN_VMULOSB:
15434 case ALTIVEC_BUILTIN_VMULOSH:
15435 case P8V_BUILTIN_VMULOSW:
15436 /* Odd element flavors of vec_mul (unsigned). */
15437 case ALTIVEC_BUILTIN_VMULOUB:
15438 case ALTIVEC_BUILTIN_VMULOUH:
15439 case P8V_BUILTIN_VMULOUW:
15440 arg0 = gimple_call_arg (stmt, 0);
15441 arg1 = gimple_call_arg (stmt, 1);
15442 lhs = gimple_call_lhs (stmt);
15443 g = gimple_build_assign (lhs, VEC_WIDEN_MULT_ODD_EXPR, arg0, arg1);
15444 gimple_set_location (g, gimple_location (stmt));
15445 gsi_replace (gsi, g, true);
15446 return true;
15447 /* Flavors of vec_div (Integer). */
15448 case VSX_BUILTIN_DIV_V2DI:
15449 case VSX_BUILTIN_UDIV_V2DI:
15450 arg0 = gimple_call_arg (stmt, 0);
15451 arg1 = gimple_call_arg (stmt, 1);
15452 lhs = gimple_call_lhs (stmt);
15453 g = gimple_build_assign (lhs, TRUNC_DIV_EXPR, arg0, arg1);
15454 gimple_set_location (g, gimple_location (stmt));
15455 gsi_replace (gsi, g, true);
15456 return true;
15457 /* Flavors of vec_div (Float). */
15458 case VSX_BUILTIN_XVDIVSP:
15459 case VSX_BUILTIN_XVDIVDP:
15460 arg0 = gimple_call_arg (stmt, 0);
15461 arg1 = gimple_call_arg (stmt, 1);
15462 lhs = gimple_call_lhs (stmt);
15463 g = gimple_build_assign (lhs, RDIV_EXPR, arg0, arg1);
15464 gimple_set_location (g, gimple_location (stmt));
15465 gsi_replace (gsi, g, true);
15466 return true;
15467 /* Flavors of vec_and. */
15468 case ALTIVEC_BUILTIN_VAND:
15469 arg0 = gimple_call_arg (stmt, 0);
15470 arg1 = gimple_call_arg (stmt, 1);
15471 lhs = gimple_call_lhs (stmt);
15472 g = gimple_build_assign (lhs, BIT_AND_EXPR, arg0, arg1);
15473 gimple_set_location (g, gimple_location (stmt));
15474 gsi_replace (gsi, g, true);
15475 return true;
15476 /* Flavors of vec_andc. */
15477 case ALTIVEC_BUILTIN_VANDC:
15478 arg0 = gimple_call_arg (stmt, 0);
15479 arg1 = gimple_call_arg (stmt, 1);
15480 lhs = gimple_call_lhs (stmt);
15481 temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
15482 g = gimple_build_assign (temp, BIT_NOT_EXPR, arg1);
15483 gimple_set_location (g, gimple_location (stmt));
15484 gsi_insert_before (gsi, g, GSI_SAME_STMT);
15485 g = gimple_build_assign (lhs, BIT_AND_EXPR, arg0, temp);
15486 gimple_set_location (g, gimple_location (stmt));
15487 gsi_replace (gsi, g, true);
15488 return true;
15489 /* Flavors of vec_nand. */
15490 case P8V_BUILTIN_VEC_NAND:
15491 case P8V_BUILTIN_NAND_V16QI:
15492 case P8V_BUILTIN_NAND_V8HI:
15493 case P8V_BUILTIN_NAND_V4SI:
15494 case P8V_BUILTIN_NAND_V4SF:
15495 case P8V_BUILTIN_NAND_V2DF:
15496 case P8V_BUILTIN_NAND_V2DI:
15497 arg0 = gimple_call_arg (stmt, 0);
15498 arg1 = gimple_call_arg (stmt, 1);
15499 lhs = gimple_call_lhs (stmt);
15500 temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
15501 g = gimple_build_assign (temp, BIT_AND_EXPR, arg0, arg1);
15502 gimple_set_location (g, gimple_location (stmt));
15503 gsi_insert_before (gsi, g, GSI_SAME_STMT);
15504 g = gimple_build_assign (lhs, BIT_NOT_EXPR, temp);
15505 gimple_set_location (g, gimple_location (stmt));
15506 gsi_replace (gsi, g, true);
15507 return true;
15508 /* Flavors of vec_or. */
15509 case ALTIVEC_BUILTIN_VOR:
15510 arg0 = gimple_call_arg (stmt, 0);
15511 arg1 = gimple_call_arg (stmt, 1);
15512 lhs = gimple_call_lhs (stmt);
15513 g = gimple_build_assign (lhs, BIT_IOR_EXPR, arg0, arg1);
15514 gimple_set_location (g, gimple_location (stmt));
15515 gsi_replace (gsi, g, true);
15516 return true;
15517 /* flavors of vec_orc. */
15518 case P8V_BUILTIN_ORC_V16QI:
15519 case P8V_BUILTIN_ORC_V8HI:
15520 case P8V_BUILTIN_ORC_V4SI:
15521 case P8V_BUILTIN_ORC_V4SF:
15522 case P8V_BUILTIN_ORC_V2DF:
15523 case P8V_BUILTIN_ORC_V2DI:
15524 arg0 = gimple_call_arg (stmt, 0);
15525 arg1 = gimple_call_arg (stmt, 1);
15526 lhs = gimple_call_lhs (stmt);
15527 temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
15528 g = gimple_build_assign (temp, BIT_NOT_EXPR, arg1);
15529 gimple_set_location (g, gimple_location (stmt));
15530 gsi_insert_before (gsi, g, GSI_SAME_STMT);
15531 g = gimple_build_assign (lhs, BIT_IOR_EXPR, arg0, temp);
15532 gimple_set_location (g, gimple_location (stmt));
15533 gsi_replace (gsi, g, true);
15534 return true;
15535 /* Flavors of vec_xor. */
15536 case ALTIVEC_BUILTIN_VXOR:
15537 arg0 = gimple_call_arg (stmt, 0);
15538 arg1 = gimple_call_arg (stmt, 1);
15539 lhs = gimple_call_lhs (stmt);
15540 g = gimple_build_assign (lhs, BIT_XOR_EXPR, arg0, arg1);
15541 gimple_set_location (g, gimple_location (stmt));
15542 gsi_replace (gsi, g, true);
15543 return true;
15544 /* Flavors of vec_nor. */
15545 case ALTIVEC_BUILTIN_VNOR:
15546 arg0 = gimple_call_arg (stmt, 0);
15547 arg1 = gimple_call_arg (stmt, 1);
15548 lhs = gimple_call_lhs (stmt);
15549 temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
15550 g = gimple_build_assign (temp, BIT_IOR_EXPR, arg0, arg1);
15551 gimple_set_location (g, gimple_location (stmt));
15552 gsi_insert_before (gsi, g, GSI_SAME_STMT);
15553 g = gimple_build_assign (lhs, BIT_NOT_EXPR, temp);
15554 gimple_set_location (g, gimple_location (stmt));
15555 gsi_replace (gsi, g, true);
15556 return true;
15557 /* flavors of vec_abs. */
15558 case ALTIVEC_BUILTIN_ABS_V16QI:
15559 case ALTIVEC_BUILTIN_ABS_V8HI:
15560 case ALTIVEC_BUILTIN_ABS_V4SI:
15561 case ALTIVEC_BUILTIN_ABS_V4SF:
15562 case P8V_BUILTIN_ABS_V2DI:
15563 case VSX_BUILTIN_XVABSDP:
15564 arg0 = gimple_call_arg (stmt, 0);
15565 if (INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (arg0)))
15566 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (TREE_TYPE (arg0))))
15567 return false;
15568 lhs = gimple_call_lhs (stmt);
15569 g = gimple_build_assign (lhs, ABS_EXPR, arg0);
15570 gimple_set_location (g, gimple_location (stmt));
15571 gsi_replace (gsi, g, true);
15572 return true;
15573 /* flavors of vec_min. */
15574 case VSX_BUILTIN_XVMINDP:
15575 case P8V_BUILTIN_VMINSD:
15576 case P8V_BUILTIN_VMINUD:
15577 case ALTIVEC_BUILTIN_VMINSB:
15578 case ALTIVEC_BUILTIN_VMINSH:
15579 case ALTIVEC_BUILTIN_VMINSW:
15580 case ALTIVEC_BUILTIN_VMINUB:
15581 case ALTIVEC_BUILTIN_VMINUH:
15582 case ALTIVEC_BUILTIN_VMINUW:
15583 case ALTIVEC_BUILTIN_VMINFP:
15584 arg0 = gimple_call_arg (stmt, 0);
15585 arg1 = gimple_call_arg (stmt, 1);
15586 lhs = gimple_call_lhs (stmt);
15587 g = gimple_build_assign (lhs, MIN_EXPR, arg0, arg1);
15588 gimple_set_location (g, gimple_location (stmt));
15589 gsi_replace (gsi, g, true);
15590 return true;
15591 /* flavors of vec_max. */
15592 case VSX_BUILTIN_XVMAXDP:
15593 case P8V_BUILTIN_VMAXSD:
15594 case P8V_BUILTIN_VMAXUD:
15595 case ALTIVEC_BUILTIN_VMAXSB:
15596 case ALTIVEC_BUILTIN_VMAXSH:
15597 case ALTIVEC_BUILTIN_VMAXSW:
15598 case ALTIVEC_BUILTIN_VMAXUB:
15599 case ALTIVEC_BUILTIN_VMAXUH:
15600 case ALTIVEC_BUILTIN_VMAXUW:
15601 case ALTIVEC_BUILTIN_VMAXFP:
15602 arg0 = gimple_call_arg (stmt, 0);
15603 arg1 = gimple_call_arg (stmt, 1);
15604 lhs = gimple_call_lhs (stmt);
15605 g = gimple_build_assign (lhs, MAX_EXPR, arg0, arg1);
15606 gimple_set_location (g, gimple_location (stmt));
15607 gsi_replace (gsi, g, true);
15608 return true;
15609 /* Flavors of vec_eqv. */
15610 case P8V_BUILTIN_EQV_V16QI:
15611 case P8V_BUILTIN_EQV_V8HI:
15612 case P8V_BUILTIN_EQV_V4SI:
15613 case P8V_BUILTIN_EQV_V4SF:
15614 case P8V_BUILTIN_EQV_V2DF:
15615 case P8V_BUILTIN_EQV_V2DI:
15616 arg0 = gimple_call_arg (stmt, 0);
15617 arg1 = gimple_call_arg (stmt, 1);
15618 lhs = gimple_call_lhs (stmt);
15619 temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
15620 g = gimple_build_assign (temp, BIT_XOR_EXPR, arg0, arg1);
15621 gimple_set_location (g, gimple_location (stmt));
15622 gsi_insert_before (gsi, g, GSI_SAME_STMT);
15623 g = gimple_build_assign (lhs, BIT_NOT_EXPR, temp);
15624 gimple_set_location (g, gimple_location (stmt));
15625 gsi_replace (gsi, g, true);
15626 return true;
15627 /* Flavors of vec_rotate_left. */
15628 case ALTIVEC_BUILTIN_VRLB:
15629 case ALTIVEC_BUILTIN_VRLH:
15630 case ALTIVEC_BUILTIN_VRLW:
15631 case P8V_BUILTIN_VRLD:
15632 arg0 = gimple_call_arg (stmt, 0);
15633 arg1 = gimple_call_arg (stmt, 1);
15634 lhs = gimple_call_lhs (stmt);
15635 g = gimple_build_assign (lhs, LROTATE_EXPR, arg0, arg1);
15636 gimple_set_location (g, gimple_location (stmt));
15637 gsi_replace (gsi, g, true);
15638 return true;
15639 /* Flavors of vector shift right algebraic.
15640 vec_sra{b,h,w} -> vsra{b,h,w}. */
15641 case ALTIVEC_BUILTIN_VSRAB:
15642 case ALTIVEC_BUILTIN_VSRAH:
15643 case ALTIVEC_BUILTIN_VSRAW:
15644 case P8V_BUILTIN_VSRAD:
15645 arg0 = gimple_call_arg (stmt, 0);
15646 arg1 = gimple_call_arg (stmt, 1);
15647 lhs = gimple_call_lhs (stmt);
15648 g = gimple_build_assign (lhs, RSHIFT_EXPR, arg0, arg1);
15649 gimple_set_location (g, gimple_location (stmt));
15650 gsi_replace (gsi, g, true);
15651 return true;
15652 /* Flavors of vector shift left.
15653 builtin_altivec_vsl{b,h,w} -> vsl{b,h,w}. */
15654 case ALTIVEC_BUILTIN_VSLB:
15655 case ALTIVEC_BUILTIN_VSLH:
15656 case ALTIVEC_BUILTIN_VSLW:
15657 case P8V_BUILTIN_VSLD:
15658 {
15659 location_t loc;
15660 gimple_seq stmts = NULL;
15661 arg0 = gimple_call_arg (stmt, 0);
15662 tree arg0_type = TREE_TYPE (arg0);
15663 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0_type))
15664 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0_type)))
15665 return false;
15666 arg1 = gimple_call_arg (stmt, 1);
15667 tree arg1_type = TREE_TYPE (arg1);
15668 tree unsigned_arg1_type = unsigned_type_for (TREE_TYPE (arg1));
15669 tree unsigned_element_type = unsigned_type_for (TREE_TYPE (arg1_type));
15670 loc = gimple_location (stmt);
15671 lhs = gimple_call_lhs (stmt);
15672 /* Force arg1 into the range valid matching the arg0 type. */
15673 /* Build a vector consisting of the max valid bit-size values. */
15674 int n_elts = VECTOR_CST_NELTS (arg1);
15675 int tree_size_in_bits = TREE_INT_CST_LOW (size_in_bytes (arg1_type))
15676 * BITS_PER_UNIT;
15677 tree element_size = build_int_cst (unsigned_element_type,
15678 tree_size_in_bits / n_elts);
15679 tree_vector_builder elts (unsigned_type_for (arg1_type), n_elts, 1);
15680 for (int i = 0; i < n_elts; i++)
15681 elts.safe_push (element_size);
15682 tree modulo_tree = elts.build ();
15683 /* Modulo the provided shift value against that vector. */
15684 tree unsigned_arg1 = gimple_build (&stmts, VIEW_CONVERT_EXPR,
15685 unsigned_arg1_type, arg1);
15686 tree new_arg1 = gimple_build (&stmts, loc, TRUNC_MOD_EXPR,
15687 unsigned_arg1_type, unsigned_arg1,
15688 modulo_tree);
15689 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15690 /* And finally, do the shift. */
15691 g = gimple_build_assign (lhs, LSHIFT_EXPR, arg0, new_arg1);
15692 gimple_set_location (g, gimple_location (stmt));
15693 gsi_replace (gsi, g, true);
15694 return true;
15695 }
15696 /* Flavors of vector shift right. */
15697 case ALTIVEC_BUILTIN_VSRB:
15698 case ALTIVEC_BUILTIN_VSRH:
15699 case ALTIVEC_BUILTIN_VSRW:
15700 case P8V_BUILTIN_VSRD:
15701 {
15702 arg0 = gimple_call_arg (stmt, 0);
15703 arg1 = gimple_call_arg (stmt, 1);
15704 lhs = gimple_call_lhs (stmt);
15705 gimple_seq stmts = NULL;
15706 /* Convert arg0 to unsigned. */
15707 tree arg0_unsigned
15708 = gimple_build (&stmts, VIEW_CONVERT_EXPR,
15709 unsigned_type_for (TREE_TYPE (arg0)), arg0);
15710 tree res
15711 = gimple_build (&stmts, RSHIFT_EXPR,
15712 TREE_TYPE (arg0_unsigned), arg0_unsigned, arg1);
15713 /* Convert result back to the lhs type. */
15714 res = gimple_build (&stmts, VIEW_CONVERT_EXPR, TREE_TYPE (lhs), res);
15715 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15716 update_call_from_tree (gsi, res);
15717 return true;
15718 }
15719 /* Vector loads. */
15720 case ALTIVEC_BUILTIN_LVX_V16QI:
15721 case ALTIVEC_BUILTIN_LVX_V8HI:
15722 case ALTIVEC_BUILTIN_LVX_V4SI:
15723 case ALTIVEC_BUILTIN_LVX_V4SF:
15724 case ALTIVEC_BUILTIN_LVX_V2DI:
15725 case ALTIVEC_BUILTIN_LVX_V2DF:
15726 case ALTIVEC_BUILTIN_LVX_V1TI:
15727 {
15728 arg0 = gimple_call_arg (stmt, 0); // offset
15729 arg1 = gimple_call_arg (stmt, 1); // address
15730 lhs = gimple_call_lhs (stmt);
15731 location_t loc = gimple_location (stmt);
15732 /* Since arg1 may be cast to a different type, just use ptr_type_node
15733 here instead of trying to enforce TBAA on pointer types. */
15734 tree arg1_type = ptr_type_node;
15735 tree lhs_type = TREE_TYPE (lhs);
15736 /* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
15737 the tree using the value from arg0. The resulting type will match
15738 the type of arg1. */
15739 gimple_seq stmts = NULL;
15740 tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg0);
15741 tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
15742 arg1_type, arg1, temp_offset);
15743 /* Mask off any lower bits from the address. */
15744 tree aligned_addr = gimple_build (&stmts, loc, BIT_AND_EXPR,
15745 arg1_type, temp_addr,
15746 build_int_cst (arg1_type, -16));
15747 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15748 /* Use the build2 helper to set up the mem_ref. The MEM_REF could also
15749 take an offset, but since we've already incorporated the offset
15750 above, here we just pass in a zero. */
15751 gimple *g
15752 = gimple_build_assign (lhs, build2 (MEM_REF, lhs_type, aligned_addr,
15753 build_int_cst (arg1_type, 0)));
15754 gimple_set_location (g, loc);
15755 gsi_replace (gsi, g, true);
15756 return true;
15757 }
15758 /* Vector stores. */
15759 case ALTIVEC_BUILTIN_STVX_V16QI:
15760 case ALTIVEC_BUILTIN_STVX_V8HI:
15761 case ALTIVEC_BUILTIN_STVX_V4SI:
15762 case ALTIVEC_BUILTIN_STVX_V4SF:
15763 case ALTIVEC_BUILTIN_STVX_V2DI:
15764 case ALTIVEC_BUILTIN_STVX_V2DF:
15765 {
15766 arg0 = gimple_call_arg (stmt, 0); /* Value to be stored. */
15767 arg1 = gimple_call_arg (stmt, 1); /* Offset. */
15768 tree arg2 = gimple_call_arg (stmt, 2); /* Store-to address. */
15769 location_t loc = gimple_location (stmt);
15770 tree arg0_type = TREE_TYPE (arg0);
15771 /* Use ptr_type_node (no TBAA) for the arg2_type.
15772 FIXME: (Richard) "A proper fix would be to transition this type as
15773 seen from the frontend to GIMPLE, for example in a similar way we
15774 do for MEM_REFs by piggy-backing that on an extra argument, a
15775 constant zero pointer of the alias pointer type to use (which would
15776 also serve as a type indicator of the store itself). I'd use a
15777 target specific internal function for this (not sure if we can have
15778 those target specific, but I guess if it's folded away then that's
15779 fine) and get away with the overload set." */
15780 tree arg2_type = ptr_type_node;
15781 /* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
15782 the tree using the value from arg0. The resulting type will match
15783 the type of arg2. */
15784 gimple_seq stmts = NULL;
15785 tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg1);
15786 tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
15787 arg2_type, arg2, temp_offset);
15788 /* Mask off any lower bits from the address. */
15789 tree aligned_addr = gimple_build (&stmts, loc, BIT_AND_EXPR,
15790 arg2_type, temp_addr,
15791 build_int_cst (arg2_type, -16));
15792 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15793 /* The desired gimple result should be similar to:
15794 MEM[(__vector floatD.1407 *)_1] = vf1D.2697; */
15795 gimple *g
15796 = gimple_build_assign (build2 (MEM_REF, arg0_type, aligned_addr,
15797 build_int_cst (arg2_type, 0)), arg0);
15798 gimple_set_location (g, loc);
15799 gsi_replace (gsi, g, true);
15800 return true;
15801 }
15802
15803 /* unaligned Vector loads. */
15804 case VSX_BUILTIN_LXVW4X_V16QI:
15805 case VSX_BUILTIN_LXVW4X_V8HI:
15806 case VSX_BUILTIN_LXVW4X_V4SF:
15807 case VSX_BUILTIN_LXVW4X_V4SI:
15808 case VSX_BUILTIN_LXVD2X_V2DF:
15809 case VSX_BUILTIN_LXVD2X_V2DI:
15810 {
15811 arg0 = gimple_call_arg (stmt, 0); // offset
15812 arg1 = gimple_call_arg (stmt, 1); // address
15813 lhs = gimple_call_lhs (stmt);
15814 location_t loc = gimple_location (stmt);
15815 /* Since arg1 may be cast to a different type, just use ptr_type_node
15816 here instead of trying to enforce TBAA on pointer types. */
15817 tree arg1_type = ptr_type_node;
15818 tree lhs_type = TREE_TYPE (lhs);
15819 /* In GIMPLE the type of the MEM_REF specifies the alignment. The
15820 required alignment (power) is 4 bytes regardless of data type. */
15821 tree align_ltype = build_aligned_type (lhs_type, 4);
15822 /* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
15823 the tree using the value from arg0. The resulting type will match
15824 the type of arg1. */
15825 gimple_seq stmts = NULL;
15826 tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg0);
15827 tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
15828 arg1_type, arg1, temp_offset);
15829 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15830 /* Use the build2 helper to set up the mem_ref. The MEM_REF could also
15831 take an offset, but since we've already incorporated the offset
15832 above, here we just pass in a zero. */
15833 gimple *g;
15834 g = gimple_build_assign (lhs, build2 (MEM_REF, align_ltype, temp_addr,
15835 build_int_cst (arg1_type, 0)));
15836 gimple_set_location (g, loc);
15837 gsi_replace (gsi, g, true);
15838 return true;
15839 }
15840
15841 /* unaligned Vector stores. */
15842 case VSX_BUILTIN_STXVW4X_V16QI:
15843 case VSX_BUILTIN_STXVW4X_V8HI:
15844 case VSX_BUILTIN_STXVW4X_V4SF:
15845 case VSX_BUILTIN_STXVW4X_V4SI:
15846 case VSX_BUILTIN_STXVD2X_V2DF:
15847 case VSX_BUILTIN_STXVD2X_V2DI:
15848 {
15849 arg0 = gimple_call_arg (stmt, 0); /* Value to be stored. */
15850 arg1 = gimple_call_arg (stmt, 1); /* Offset. */
15851 tree arg2 = gimple_call_arg (stmt, 2); /* Store-to address. */
15852 location_t loc = gimple_location (stmt);
15853 tree arg0_type = TREE_TYPE (arg0);
15854 /* Use ptr_type_node (no TBAA) for the arg2_type. */
15855 tree arg2_type = ptr_type_node;
15856 /* In GIMPLE the type of the MEM_REF specifies the alignment. The
15857 required alignment (power) is 4 bytes regardless of data type. */
15858 tree align_stype = build_aligned_type (arg0_type, 4);
15859 /* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
15860 the tree using the value from arg1. */
15861 gimple_seq stmts = NULL;
15862 tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg1);
15863 tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
15864 arg2_type, arg2, temp_offset);
15865 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15866 gimple *g;
15867 g = gimple_build_assign (build2 (MEM_REF, align_stype, temp_addr,
15868 build_int_cst (arg2_type, 0)), arg0);
15869 gimple_set_location (g, loc);
15870 gsi_replace (gsi, g, true);
15871 return true;
15872 }
15873
15874 /* Vector Fused multiply-add (fma). */
15875 case ALTIVEC_BUILTIN_VMADDFP:
15876 case VSX_BUILTIN_XVMADDDP:
15877 case ALTIVEC_BUILTIN_VMLADDUHM:
15878 {
15879 arg0 = gimple_call_arg (stmt, 0);
15880 arg1 = gimple_call_arg (stmt, 1);
15881 tree arg2 = gimple_call_arg (stmt, 2);
15882 lhs = gimple_call_lhs (stmt);
15883 gcall *g = gimple_build_call_internal (IFN_FMA, 3, arg0, arg1, arg2);
15884 gimple_call_set_lhs (g, lhs);
15885 gimple_call_set_nothrow (g, true);
15886 gimple_set_location (g, gimple_location (stmt));
15887 gsi_replace (gsi, g, true);
15888 return true;
15889 }
15890
15891 /* Vector compares; EQ, NE, GE, GT, LE. */
15892 case ALTIVEC_BUILTIN_VCMPEQUB:
15893 case ALTIVEC_BUILTIN_VCMPEQUH:
15894 case ALTIVEC_BUILTIN_VCMPEQUW:
15895 case P8V_BUILTIN_VCMPEQUD:
15896 fold_compare_helper (gsi, EQ_EXPR, stmt);
15897 return true;
15898
15899 case P9V_BUILTIN_CMPNEB:
15900 case P9V_BUILTIN_CMPNEH:
15901 case P9V_BUILTIN_CMPNEW:
15902 fold_compare_helper (gsi, NE_EXPR, stmt);
15903 return true;
15904
15905 case VSX_BUILTIN_CMPGE_16QI:
15906 case VSX_BUILTIN_CMPGE_U16QI:
15907 case VSX_BUILTIN_CMPGE_8HI:
15908 case VSX_BUILTIN_CMPGE_U8HI:
15909 case VSX_BUILTIN_CMPGE_4SI:
15910 case VSX_BUILTIN_CMPGE_U4SI:
15911 case VSX_BUILTIN_CMPGE_2DI:
15912 case VSX_BUILTIN_CMPGE_U2DI:
15913 fold_compare_helper (gsi, GE_EXPR, stmt);
15914 return true;
15915
15916 case ALTIVEC_BUILTIN_VCMPGTSB:
15917 case ALTIVEC_BUILTIN_VCMPGTUB:
15918 case ALTIVEC_BUILTIN_VCMPGTSH:
15919 case ALTIVEC_BUILTIN_VCMPGTUH:
15920 case ALTIVEC_BUILTIN_VCMPGTSW:
15921 case ALTIVEC_BUILTIN_VCMPGTUW:
15922 case P8V_BUILTIN_VCMPGTUD:
15923 case P8V_BUILTIN_VCMPGTSD:
15924 fold_compare_helper (gsi, GT_EXPR, stmt);
15925 return true;
15926
15927 case VSX_BUILTIN_CMPLE_16QI:
15928 case VSX_BUILTIN_CMPLE_U16QI:
15929 case VSX_BUILTIN_CMPLE_8HI:
15930 case VSX_BUILTIN_CMPLE_U8HI:
15931 case VSX_BUILTIN_CMPLE_4SI:
15932 case VSX_BUILTIN_CMPLE_U4SI:
15933 case VSX_BUILTIN_CMPLE_2DI:
15934 case VSX_BUILTIN_CMPLE_U2DI:
15935 fold_compare_helper (gsi, LE_EXPR, stmt);
15936 return true;
15937
15938 /* flavors of vec_splat_[us]{8,16,32}. */
15939 case ALTIVEC_BUILTIN_VSPLTISB:
15940 case ALTIVEC_BUILTIN_VSPLTISH:
15941 case ALTIVEC_BUILTIN_VSPLTISW:
15942 {
15943 int size;
15944 if (fn_code == ALTIVEC_BUILTIN_VSPLTISB)
15945 size = 8;
15946 else if (fn_code == ALTIVEC_BUILTIN_VSPLTISH)
15947 size = 16;
15948 else
15949 size = 32;
15950
15951 arg0 = gimple_call_arg (stmt, 0);
15952 lhs = gimple_call_lhs (stmt);
15953
15954 /* Only fold the vec_splat_*() if the lower bits of arg 0 is a
15955 5-bit signed constant in range -16 to +15. */
15956 if (TREE_CODE (arg0) != INTEGER_CST
15957 || !IN_RANGE (sext_hwi (TREE_INT_CST_LOW (arg0), size),
15958 -16, 15))
15959 return false;
15960 gimple_seq stmts = NULL;
15961 location_t loc = gimple_location (stmt);
15962 tree splat_value = gimple_convert (&stmts, loc,
15963 TREE_TYPE (TREE_TYPE (lhs)), arg0);
15964 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15965 tree splat_tree = build_vector_from_val (TREE_TYPE (lhs), splat_value);
15966 g = gimple_build_assign (lhs, splat_tree);
15967 gimple_set_location (g, gimple_location (stmt));
15968 gsi_replace (gsi, g, true);
15969 return true;
15970 }
15971
15972 /* Flavors of vec_splat. */
15973 /* a = vec_splat (b, 0x3) becomes a = { b[3],b[3],b[3],...}; */
15974 case ALTIVEC_BUILTIN_VSPLTB:
15975 case ALTIVEC_BUILTIN_VSPLTH:
15976 case ALTIVEC_BUILTIN_VSPLTW:
15977 case VSX_BUILTIN_XXSPLTD_V2DI:
15978 case VSX_BUILTIN_XXSPLTD_V2DF:
15979 {
15980 arg0 = gimple_call_arg (stmt, 0); /* input vector. */
15981 arg1 = gimple_call_arg (stmt, 1); /* index into arg0. */
15982 /* Only fold the vec_splat_*() if arg1 is both a constant value and
15983 is a valid index into the arg0 vector. */
15984 unsigned int n_elts = VECTOR_CST_NELTS (arg0);
15985 if (TREE_CODE (arg1) != INTEGER_CST
15986 || TREE_INT_CST_LOW (arg1) > (n_elts -1))
15987 return false;
15988 lhs = gimple_call_lhs (stmt);
15989 tree lhs_type = TREE_TYPE (lhs);
15990 tree arg0_type = TREE_TYPE (arg0);
15991 tree splat;
15992 if (TREE_CODE (arg0) == VECTOR_CST)
15993 splat = VECTOR_CST_ELT (arg0, TREE_INT_CST_LOW (arg1));
15994 else
15995 {
15996 /* Determine (in bits) the length and start location of the
15997 splat value for a call to the tree_vec_extract helper. */
15998 int splat_elem_size = TREE_INT_CST_LOW (size_in_bytes (arg0_type))
15999 * BITS_PER_UNIT / n_elts;
16000 int splat_start_bit = TREE_INT_CST_LOW (arg1) * splat_elem_size;
16001 tree len = build_int_cst (bitsizetype, splat_elem_size);
16002 tree start = build_int_cst (bitsizetype, splat_start_bit);
16003 splat = tree_vec_extract (gsi, TREE_TYPE (lhs_type), arg0,
16004 len, start);
16005 }
16006 /* And finally, build the new vector. */
16007 tree splat_tree = build_vector_from_val (lhs_type, splat);
16008 g = gimple_build_assign (lhs, splat_tree);
16009 gimple_set_location (g, gimple_location (stmt));
16010 gsi_replace (gsi, g, true);
16011 return true;
16012 }
16013
16014 /* vec_mergel (integrals). */
16015 case ALTIVEC_BUILTIN_VMRGLH:
16016 case ALTIVEC_BUILTIN_VMRGLW:
16017 case VSX_BUILTIN_XXMRGLW_4SI:
16018 case ALTIVEC_BUILTIN_VMRGLB:
16019 case VSX_BUILTIN_VEC_MERGEL_V2DI:
16020 case VSX_BUILTIN_XXMRGLW_4SF:
16021 case VSX_BUILTIN_VEC_MERGEL_V2DF:
16022 fold_mergehl_helper (gsi, stmt, 1);
16023 return true;
16024 /* vec_mergeh (integrals). */
16025 case ALTIVEC_BUILTIN_VMRGHH:
16026 case ALTIVEC_BUILTIN_VMRGHW:
16027 case VSX_BUILTIN_XXMRGHW_4SI:
16028 case ALTIVEC_BUILTIN_VMRGHB:
16029 case VSX_BUILTIN_VEC_MERGEH_V2DI:
16030 case VSX_BUILTIN_XXMRGHW_4SF:
16031 case VSX_BUILTIN_VEC_MERGEH_V2DF:
16032 fold_mergehl_helper (gsi, stmt, 0);
16033 return true;
16034
16035 /* Flavors of vec_mergee. */
16036 case P8V_BUILTIN_VMRGEW_V4SI:
16037 case P8V_BUILTIN_VMRGEW_V2DI:
16038 case P8V_BUILTIN_VMRGEW_V4SF:
16039 case P8V_BUILTIN_VMRGEW_V2DF:
16040 fold_mergeeo_helper (gsi, stmt, 0);
16041 return true;
16042 /* Flavors of vec_mergeo. */
16043 case P8V_BUILTIN_VMRGOW_V4SI:
16044 case P8V_BUILTIN_VMRGOW_V2DI:
16045 case P8V_BUILTIN_VMRGOW_V4SF:
16046 case P8V_BUILTIN_VMRGOW_V2DF:
16047 fold_mergeeo_helper (gsi, stmt, 1);
16048 return true;
16049
16050 /* d = vec_pack (a, b) */
16051 case P8V_BUILTIN_VPKUDUM:
16052 case ALTIVEC_BUILTIN_VPKUHUM:
16053 case ALTIVEC_BUILTIN_VPKUWUM:
16054 {
16055 arg0 = gimple_call_arg (stmt, 0);
16056 arg1 = gimple_call_arg (stmt, 1);
16057 lhs = gimple_call_lhs (stmt);
16058 gimple *g = gimple_build_assign (lhs, VEC_PACK_TRUNC_EXPR, arg0, arg1);
16059 gimple_set_location (g, gimple_location (stmt));
16060 gsi_replace (gsi, g, true);
16061 return true;
16062 }
16063
16064 /* d = vec_unpackh (a) */
16065 /* Note that the UNPACK_{HI,LO}_EXPR used in the gimple_build_assign call
16066 in this code is sensitive to endian-ness, and needs to be inverted to
16067 handle both LE and BE targets. */
16068 case ALTIVEC_BUILTIN_VUPKHSB:
16069 case ALTIVEC_BUILTIN_VUPKHSH:
16070 case P8V_BUILTIN_VUPKHSW:
16071 {
16072 arg0 = gimple_call_arg (stmt, 0);
16073 lhs = gimple_call_lhs (stmt);
16074 if (BYTES_BIG_ENDIAN)
16075 g = gimple_build_assign (lhs, VEC_UNPACK_HI_EXPR, arg0);
16076 else
16077 g = gimple_build_assign (lhs, VEC_UNPACK_LO_EXPR, arg0);
16078 gimple_set_location (g, gimple_location (stmt));
16079 gsi_replace (gsi, g, true);
16080 return true;
16081 }
16082 /* d = vec_unpackl (a) */
16083 case ALTIVEC_BUILTIN_VUPKLSB:
16084 case ALTIVEC_BUILTIN_VUPKLSH:
16085 case P8V_BUILTIN_VUPKLSW:
16086 {
16087 arg0 = gimple_call_arg (stmt, 0);
16088 lhs = gimple_call_lhs (stmt);
16089 if (BYTES_BIG_ENDIAN)
16090 g = gimple_build_assign (lhs, VEC_UNPACK_LO_EXPR, arg0);
16091 else
16092 g = gimple_build_assign (lhs, VEC_UNPACK_HI_EXPR, arg0);
16093 gimple_set_location (g, gimple_location (stmt));
16094 gsi_replace (gsi, g, true);
16095 return true;
16096 }
16097 /* There is no gimple type corresponding with pixel, so just return. */
16098 case ALTIVEC_BUILTIN_VUPKHPX:
16099 case ALTIVEC_BUILTIN_VUPKLPX:
16100 return false;
16101
16102 /* vec_perm. */
16103 case ALTIVEC_BUILTIN_VPERM_16QI:
16104 case ALTIVEC_BUILTIN_VPERM_8HI:
16105 case ALTIVEC_BUILTIN_VPERM_4SI:
16106 case ALTIVEC_BUILTIN_VPERM_2DI:
16107 case ALTIVEC_BUILTIN_VPERM_4SF:
16108 case ALTIVEC_BUILTIN_VPERM_2DF:
16109 {
16110 arg0 = gimple_call_arg (stmt, 0);
16111 arg1 = gimple_call_arg (stmt, 1);
16112 tree permute = gimple_call_arg (stmt, 2);
16113 lhs = gimple_call_lhs (stmt);
16114 location_t loc = gimple_location (stmt);
16115 gimple_seq stmts = NULL;
16116 // convert arg0 and arg1 to match the type of the permute
16117 // for the VEC_PERM_EXPR operation.
16118 tree permute_type = (TREE_TYPE (permute));
16119 tree arg0_ptype = gimple_convert (&stmts, loc, permute_type, arg0);
16120 tree arg1_ptype = gimple_convert (&stmts, loc, permute_type, arg1);
16121 tree lhs_ptype = gimple_build (&stmts, loc, VEC_PERM_EXPR,
16122 permute_type, arg0_ptype, arg1_ptype,
16123 permute);
16124 // Convert the result back to the desired lhs type upon completion.
16125 tree temp = gimple_convert (&stmts, loc, TREE_TYPE (lhs), lhs_ptype);
16126 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
16127 g = gimple_build_assign (lhs, temp);
16128 gimple_set_location (g, loc);
16129 gsi_replace (gsi, g, true);
16130 return true;
16131 }
16132
16133 default:
16134 if (TARGET_DEBUG_BUILTIN)
16135 fprintf (stderr, "gimple builtin intrinsic not matched:%d %s %s\n",
16136 fn_code, fn_name1, fn_name2);
16137 break;
16138 }
16139
16140 return false;
16141 }
16142
16143 /* Expand an expression EXP that calls a built-in function,
16144 with result going to TARGET if that's convenient
16145 (and in mode MODE if that's convenient).
16146 SUBTARGET may be used as the target for computing one of EXP's operands.
16147 IGNORE is nonzero if the value is to be ignored. */
16148
16149 static rtx
16150 rs6000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
16151 machine_mode mode ATTRIBUTE_UNUSED,
16152 int ignore ATTRIBUTE_UNUSED)
16153 {
16154 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
16155 enum rs6000_builtins fcode
16156 = (enum rs6000_builtins)DECL_FUNCTION_CODE (fndecl);
16157 size_t uns_fcode = (size_t)fcode;
16158 const struct builtin_description *d;
16159 size_t i;
16160 rtx ret;
16161 bool success;
16162 HOST_WIDE_INT mask = rs6000_builtin_info[uns_fcode].mask;
16163 bool func_valid_p = ((rs6000_builtin_mask & mask) == mask);
16164 enum insn_code icode = rs6000_builtin_info[uns_fcode].icode;
16165
16166 /* We have two different modes (KFmode, TFmode) that are the IEEE 128-bit
16167 floating point type, depending on whether long double is the IBM extended
16168 double (KFmode) or long double is IEEE 128-bit (TFmode). It is simpler if
16169 we only define one variant of the built-in function, and switch the code
16170 when defining it, rather than defining two built-ins and using the
16171 overload table in rs6000-c.c to switch between the two. If we don't have
16172 the proper assembler, don't do this switch because CODE_FOR_*kf* and
16173 CODE_FOR_*tf* will be CODE_FOR_nothing. */
16174 if (FLOAT128_IEEE_P (TFmode))
16175 switch (icode)
16176 {
16177 default:
16178 break;
16179
16180 case CODE_FOR_sqrtkf2_odd: icode = CODE_FOR_sqrttf2_odd; break;
16181 case CODE_FOR_trunckfdf2_odd: icode = CODE_FOR_trunctfdf2_odd; break;
16182 case CODE_FOR_addkf3_odd: icode = CODE_FOR_addtf3_odd; break;
16183 case CODE_FOR_subkf3_odd: icode = CODE_FOR_subtf3_odd; break;
16184 case CODE_FOR_mulkf3_odd: icode = CODE_FOR_multf3_odd; break;
16185 case CODE_FOR_divkf3_odd: icode = CODE_FOR_divtf3_odd; break;
16186 case CODE_FOR_fmakf4_odd: icode = CODE_FOR_fmatf4_odd; break;
16187 case CODE_FOR_xsxexpqp_kf: icode = CODE_FOR_xsxexpqp_tf; break;
16188 case CODE_FOR_xsxsigqp_kf: icode = CODE_FOR_xsxsigqp_tf; break;
16189 case CODE_FOR_xststdcnegqp_kf: icode = CODE_FOR_xststdcnegqp_tf; break;
16190 case CODE_FOR_xsiexpqp_kf: icode = CODE_FOR_xsiexpqp_tf; break;
16191 case CODE_FOR_xsiexpqpf_kf: icode = CODE_FOR_xsiexpqpf_tf; break;
16192 case CODE_FOR_xststdcqp_kf: icode = CODE_FOR_xststdcqp_tf; break;
16193 }
16194
16195 if (TARGET_DEBUG_BUILTIN)
16196 {
16197 const char *name1 = rs6000_builtin_info[uns_fcode].name;
16198 const char *name2 = (icode != CODE_FOR_nothing)
16199 ? get_insn_name ((int) icode)
16200 : "nothing";
16201 const char *name3;
16202
16203 switch (rs6000_builtin_info[uns_fcode].attr & RS6000_BTC_TYPE_MASK)
16204 {
16205 default: name3 = "unknown"; break;
16206 case RS6000_BTC_SPECIAL: name3 = "special"; break;
16207 case RS6000_BTC_UNARY: name3 = "unary"; break;
16208 case RS6000_BTC_BINARY: name3 = "binary"; break;
16209 case RS6000_BTC_TERNARY: name3 = "ternary"; break;
16210 case RS6000_BTC_PREDICATE: name3 = "predicate"; break;
16211 case RS6000_BTC_ABS: name3 = "abs"; break;
16212 case RS6000_BTC_DST: name3 = "dst"; break;
16213 }
16214
16215
16216 fprintf (stderr,
16217 "rs6000_expand_builtin, %s (%d), insn = %s (%d), type=%s%s\n",
16218 (name1) ? name1 : "---", fcode,
16219 (name2) ? name2 : "---", (int) icode,
16220 name3,
16221 func_valid_p ? "" : ", not valid");
16222 }
16223
16224 if (!func_valid_p)
16225 {
16226 rs6000_invalid_builtin (fcode);
16227
16228 /* Given it is invalid, just generate a normal call. */
16229 return expand_call (exp, target, ignore);
16230 }
16231
16232 switch (fcode)
16233 {
16234 case RS6000_BUILTIN_RECIP:
16235 return rs6000_expand_binop_builtin (CODE_FOR_recipdf3, exp, target);
16236
16237 case RS6000_BUILTIN_RECIPF:
16238 return rs6000_expand_binop_builtin (CODE_FOR_recipsf3, exp, target);
16239
16240 case RS6000_BUILTIN_RSQRTF:
16241 return rs6000_expand_unop_builtin (CODE_FOR_rsqrtsf2, exp, target);
16242
16243 case RS6000_BUILTIN_RSQRT:
16244 return rs6000_expand_unop_builtin (CODE_FOR_rsqrtdf2, exp, target);
16245
16246 case POWER7_BUILTIN_BPERMD:
16247 return rs6000_expand_binop_builtin (((TARGET_64BIT)
16248 ? CODE_FOR_bpermd_di
16249 : CODE_FOR_bpermd_si), exp, target);
16250
16251 case RS6000_BUILTIN_GET_TB:
16252 return rs6000_expand_zeroop_builtin (CODE_FOR_rs6000_get_timebase,
16253 target);
16254
16255 case RS6000_BUILTIN_MFTB:
16256 return rs6000_expand_zeroop_builtin (((TARGET_64BIT)
16257 ? CODE_FOR_rs6000_mftb_di
16258 : CODE_FOR_rs6000_mftb_si),
16259 target);
16260
16261 case RS6000_BUILTIN_MFFS:
16262 return rs6000_expand_zeroop_builtin (CODE_FOR_rs6000_mffs, target);
16263
16264 case RS6000_BUILTIN_MTFSB0:
16265 return rs6000_expand_mtfsb_builtin (CODE_FOR_rs6000_mtfsb0, exp);
16266
16267 case RS6000_BUILTIN_MTFSB1:
16268 return rs6000_expand_mtfsb_builtin (CODE_FOR_rs6000_mtfsb1, exp);
16269
16270 case RS6000_BUILTIN_SET_FPSCR_RN:
16271 return rs6000_expand_set_fpscr_rn_builtin (CODE_FOR_rs6000_set_fpscr_rn,
16272 exp);
16273
16274 case RS6000_BUILTIN_SET_FPSCR_DRN:
16275 return
16276 rs6000_expand_set_fpscr_drn_builtin (CODE_FOR_rs6000_set_fpscr_drn,
16277 exp);
16278
16279 case RS6000_BUILTIN_MFFSL:
16280 return rs6000_expand_zeroop_builtin (CODE_FOR_rs6000_mffsl, target);
16281
16282 case RS6000_BUILTIN_MTFSF:
16283 return rs6000_expand_mtfsf_builtin (CODE_FOR_rs6000_mtfsf, exp);
16284
16285 case RS6000_BUILTIN_CPU_INIT:
16286 case RS6000_BUILTIN_CPU_IS:
16287 case RS6000_BUILTIN_CPU_SUPPORTS:
16288 return cpu_expand_builtin (fcode, exp, target);
16289
16290 case MISC_BUILTIN_SPEC_BARRIER:
16291 {
16292 emit_insn (gen_speculation_barrier ());
16293 return NULL_RTX;
16294 }
16295
16296 case ALTIVEC_BUILTIN_MASK_FOR_LOAD:
16297 case ALTIVEC_BUILTIN_MASK_FOR_STORE:
16298 {
16299 int icode2 = (BYTES_BIG_ENDIAN ? (int) CODE_FOR_altivec_lvsr_direct
16300 : (int) CODE_FOR_altivec_lvsl_direct);
16301 machine_mode tmode = insn_data[icode2].operand[0].mode;
16302 machine_mode mode = insn_data[icode2].operand[1].mode;
16303 tree arg;
16304 rtx op, addr, pat;
16305
16306 gcc_assert (TARGET_ALTIVEC);
16307
16308 arg = CALL_EXPR_ARG (exp, 0);
16309 gcc_assert (POINTER_TYPE_P (TREE_TYPE (arg)));
16310 op = expand_expr (arg, NULL_RTX, Pmode, EXPAND_NORMAL);
16311 addr = memory_address (mode, op);
16312 if (fcode == ALTIVEC_BUILTIN_MASK_FOR_STORE)
16313 op = addr;
16314 else
16315 {
16316 /* For the load case need to negate the address. */
16317 op = gen_reg_rtx (GET_MODE (addr));
16318 emit_insn (gen_rtx_SET (op, gen_rtx_NEG (GET_MODE (addr), addr)));
16319 }
16320 op = gen_rtx_MEM (mode, op);
16321
16322 if (target == 0
16323 || GET_MODE (target) != tmode
16324 || ! (*insn_data[icode2].operand[0].predicate) (target, tmode))
16325 target = gen_reg_rtx (tmode);
16326
16327 pat = GEN_FCN (icode2) (target, op);
16328 if (!pat)
16329 return 0;
16330 emit_insn (pat);
16331
16332 return target;
16333 }
16334
16335 case ALTIVEC_BUILTIN_VCFUX:
16336 case ALTIVEC_BUILTIN_VCFSX:
16337 case ALTIVEC_BUILTIN_VCTUXS:
16338 case ALTIVEC_BUILTIN_VCTSXS:
16339 /* FIXME: There's got to be a nicer way to handle this case than
16340 constructing a new CALL_EXPR. */
16341 if (call_expr_nargs (exp) == 1)
16342 {
16343 exp = build_call_nary (TREE_TYPE (exp), CALL_EXPR_FN (exp),
16344 2, CALL_EXPR_ARG (exp, 0), integer_zero_node);
16345 }
16346 break;
16347
16348 /* For the pack and unpack int128 routines, fix up the builtin so it
16349 uses the correct IBM128 type. */
16350 case MISC_BUILTIN_PACK_IF:
16351 if (TARGET_LONG_DOUBLE_128 && !TARGET_IEEEQUAD)
16352 {
16353 icode = CODE_FOR_packtf;
16354 fcode = MISC_BUILTIN_PACK_TF;
16355 uns_fcode = (size_t)fcode;
16356 }
16357 break;
16358
16359 case MISC_BUILTIN_UNPACK_IF:
16360 if (TARGET_LONG_DOUBLE_128 && !TARGET_IEEEQUAD)
16361 {
16362 icode = CODE_FOR_unpacktf;
16363 fcode = MISC_BUILTIN_UNPACK_TF;
16364 uns_fcode = (size_t)fcode;
16365 }
16366 break;
16367
16368 default:
16369 break;
16370 }
16371
16372 if (TARGET_ALTIVEC)
16373 {
16374 ret = altivec_expand_builtin (exp, target, &success);
16375
16376 if (success)
16377 return ret;
16378 }
16379 if (TARGET_HTM)
16380 {
16381 ret = htm_expand_builtin (exp, target, &success);
16382
16383 if (success)
16384 return ret;
16385 }
16386
16387 unsigned attr = rs6000_builtin_info[uns_fcode].attr & RS6000_BTC_TYPE_MASK;
16388 /* RS6000_BTC_SPECIAL represents no-operand operators. */
16389 gcc_assert (attr == RS6000_BTC_UNARY
16390 || attr == RS6000_BTC_BINARY
16391 || attr == RS6000_BTC_TERNARY
16392 || attr == RS6000_BTC_SPECIAL);
16393
16394 /* Handle simple unary operations. */
16395 d = bdesc_1arg;
16396 for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
16397 if (d->code == fcode)
16398 return rs6000_expand_unop_builtin (icode, exp, target);
16399
16400 /* Handle simple binary operations. */
16401 d = bdesc_2arg;
16402 for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
16403 if (d->code == fcode)
16404 return rs6000_expand_binop_builtin (icode, exp, target);
16405
16406 /* Handle simple ternary operations. */
16407 d = bdesc_3arg;
16408 for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
16409 if (d->code == fcode)
16410 return rs6000_expand_ternop_builtin (icode, exp, target);
16411
16412 /* Handle simple no-argument operations. */
16413 d = bdesc_0arg;
16414 for (i = 0; i < ARRAY_SIZE (bdesc_0arg); i++, d++)
16415 if (d->code == fcode)
16416 return rs6000_expand_zeroop_builtin (icode, target);
16417
16418 gcc_unreachable ();
16419 }
16420
16421 /* Create a builtin vector type with a name. Taking care not to give
16422 the canonical type a name. */
16423
16424 static tree
16425 rs6000_vector_type (const char *name, tree elt_type, unsigned num_elts)
16426 {
16427 tree result = build_vector_type (elt_type, num_elts);
16428
16429 /* Copy so we don't give the canonical type a name. */
16430 result = build_variant_type_copy (result);
16431
16432 add_builtin_type (name, result);
16433
16434 return result;
16435 }
16436
16437 static void
16438 rs6000_init_builtins (void)
16439 {
16440 tree tdecl;
16441 tree ftype;
16442 machine_mode mode;
16443
16444 if (TARGET_DEBUG_BUILTIN)
16445 fprintf (stderr, "rs6000_init_builtins%s%s\n",
16446 (TARGET_ALTIVEC) ? ", altivec" : "",
16447 (TARGET_VSX) ? ", vsx" : "");
16448
16449 V2DI_type_node = rs6000_vector_type (TARGET_POWERPC64 ? "__vector long"
16450 : "__vector long long",
16451 intDI_type_node, 2);
16452 V2DF_type_node = rs6000_vector_type ("__vector double", double_type_node, 2);
16453 V4SI_type_node = rs6000_vector_type ("__vector signed int",
16454 intSI_type_node, 4);
16455 V4SF_type_node = rs6000_vector_type ("__vector float", float_type_node, 4);
16456 V8HI_type_node = rs6000_vector_type ("__vector signed short",
16457 intHI_type_node, 8);
16458 V16QI_type_node = rs6000_vector_type ("__vector signed char",
16459 intQI_type_node, 16);
16460
16461 unsigned_V16QI_type_node = rs6000_vector_type ("__vector unsigned char",
16462 unsigned_intQI_type_node, 16);
16463 unsigned_V8HI_type_node = rs6000_vector_type ("__vector unsigned short",
16464 unsigned_intHI_type_node, 8);
16465 unsigned_V4SI_type_node = rs6000_vector_type ("__vector unsigned int",
16466 unsigned_intSI_type_node, 4);
16467 unsigned_V2DI_type_node = rs6000_vector_type (TARGET_POWERPC64
16468 ? "__vector unsigned long"
16469 : "__vector unsigned long long",
16470 unsigned_intDI_type_node, 2);
16471
16472 opaque_V4SI_type_node = build_opaque_vector_type (intSI_type_node, 4);
16473
16474 const_str_type_node
16475 = build_pointer_type (build_qualified_type (char_type_node,
16476 TYPE_QUAL_CONST));
16477
16478 /* We use V1TI mode as a special container to hold __int128_t items that
16479 must live in VSX registers. */
16480 if (intTI_type_node)
16481 {
16482 V1TI_type_node = rs6000_vector_type ("__vector __int128",
16483 intTI_type_node, 1);
16484 unsigned_V1TI_type_node
16485 = rs6000_vector_type ("__vector unsigned __int128",
16486 unsigned_intTI_type_node, 1);
16487 }
16488
16489 /* The 'vector bool ...' types must be kept distinct from 'vector unsigned ...'
16490 types, especially in C++ land. Similarly, 'vector pixel' is distinct from
16491 'vector unsigned short'. */
16492
16493 bool_char_type_node = build_distinct_type_copy (unsigned_intQI_type_node);
16494 bool_short_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
16495 bool_int_type_node = build_distinct_type_copy (unsigned_intSI_type_node);
16496 bool_long_long_type_node = build_distinct_type_copy (unsigned_intDI_type_node);
16497 pixel_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
16498
16499 long_integer_type_internal_node = long_integer_type_node;
16500 long_unsigned_type_internal_node = long_unsigned_type_node;
16501 long_long_integer_type_internal_node = long_long_integer_type_node;
16502 long_long_unsigned_type_internal_node = long_long_unsigned_type_node;
16503 intQI_type_internal_node = intQI_type_node;
16504 uintQI_type_internal_node = unsigned_intQI_type_node;
16505 intHI_type_internal_node = intHI_type_node;
16506 uintHI_type_internal_node = unsigned_intHI_type_node;
16507 intSI_type_internal_node = intSI_type_node;
16508 uintSI_type_internal_node = unsigned_intSI_type_node;
16509 intDI_type_internal_node = intDI_type_node;
16510 uintDI_type_internal_node = unsigned_intDI_type_node;
16511 intTI_type_internal_node = intTI_type_node;
16512 uintTI_type_internal_node = unsigned_intTI_type_node;
16513 float_type_internal_node = float_type_node;
16514 double_type_internal_node = double_type_node;
16515 long_double_type_internal_node = long_double_type_node;
16516 dfloat64_type_internal_node = dfloat64_type_node;
16517 dfloat128_type_internal_node = dfloat128_type_node;
16518 void_type_internal_node = void_type_node;
16519
16520 /* 128-bit floating point support. KFmode is IEEE 128-bit floating point.
16521 IFmode is the IBM extended 128-bit format that is a pair of doubles.
16522 TFmode will be either IEEE 128-bit floating point or the IBM double-double
16523 format that uses a pair of doubles, depending on the switches and
16524 defaults.
16525
16526 If we don't support for either 128-bit IBM double double or IEEE 128-bit
16527 floating point, we need make sure the type is non-zero or else self-test
16528 fails during bootstrap.
16529
16530 Always create __ibm128 as a separate type, even if the current long double
16531 format is IBM extended double.
16532
16533 For IEEE 128-bit floating point, always create the type __ieee128. If the
16534 user used -mfloat128, rs6000-c.c will create a define from __float128 to
16535 __ieee128. */
16536 if (TARGET_FLOAT128_TYPE)
16537 {
16538 if (!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128)
16539 ibm128_float_type_node = long_double_type_node;
16540 else
16541 {
16542 ibm128_float_type_node = make_node (REAL_TYPE);
16543 TYPE_PRECISION (ibm128_float_type_node) = 128;
16544 SET_TYPE_MODE (ibm128_float_type_node, IFmode);
16545 layout_type (ibm128_float_type_node);
16546 }
16547
16548 lang_hooks.types.register_builtin_type (ibm128_float_type_node,
16549 "__ibm128");
16550
16551 if (TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128)
16552 ieee128_float_type_node = long_double_type_node;
16553 else
16554 ieee128_float_type_node = float128_type_node;
16555
16556 lang_hooks.types.register_builtin_type (ieee128_float_type_node,
16557 "__ieee128");
16558 }
16559
16560 else
16561 ieee128_float_type_node = ibm128_float_type_node = long_double_type_node;
16562
16563 /* Initialize the modes for builtin_function_type, mapping a machine mode to
16564 tree type node. */
16565 builtin_mode_to_type[QImode][0] = integer_type_node;
16566 builtin_mode_to_type[HImode][0] = integer_type_node;
16567 builtin_mode_to_type[SImode][0] = intSI_type_node;
16568 builtin_mode_to_type[SImode][1] = unsigned_intSI_type_node;
16569 builtin_mode_to_type[DImode][0] = intDI_type_node;
16570 builtin_mode_to_type[DImode][1] = unsigned_intDI_type_node;
16571 builtin_mode_to_type[TImode][0] = intTI_type_node;
16572 builtin_mode_to_type[TImode][1] = unsigned_intTI_type_node;
16573 builtin_mode_to_type[SFmode][0] = float_type_node;
16574 builtin_mode_to_type[DFmode][0] = double_type_node;
16575 builtin_mode_to_type[IFmode][0] = ibm128_float_type_node;
16576 builtin_mode_to_type[KFmode][0] = ieee128_float_type_node;
16577 builtin_mode_to_type[TFmode][0] = long_double_type_node;
16578 builtin_mode_to_type[DDmode][0] = dfloat64_type_node;
16579 builtin_mode_to_type[TDmode][0] = dfloat128_type_node;
16580 builtin_mode_to_type[V1TImode][0] = V1TI_type_node;
16581 builtin_mode_to_type[V1TImode][1] = unsigned_V1TI_type_node;
16582 builtin_mode_to_type[V2DImode][0] = V2DI_type_node;
16583 builtin_mode_to_type[V2DImode][1] = unsigned_V2DI_type_node;
16584 builtin_mode_to_type[V2DFmode][0] = V2DF_type_node;
16585 builtin_mode_to_type[V4SImode][0] = V4SI_type_node;
16586 builtin_mode_to_type[V4SImode][1] = unsigned_V4SI_type_node;
16587 builtin_mode_to_type[V4SFmode][0] = V4SF_type_node;
16588 builtin_mode_to_type[V8HImode][0] = V8HI_type_node;
16589 builtin_mode_to_type[V8HImode][1] = unsigned_V8HI_type_node;
16590 builtin_mode_to_type[V16QImode][0] = V16QI_type_node;
16591 builtin_mode_to_type[V16QImode][1] = unsigned_V16QI_type_node;
16592
16593 tdecl = add_builtin_type ("__bool char", bool_char_type_node);
16594 TYPE_NAME (bool_char_type_node) = tdecl;
16595
16596 tdecl = add_builtin_type ("__bool short", bool_short_type_node);
16597 TYPE_NAME (bool_short_type_node) = tdecl;
16598
16599 tdecl = add_builtin_type ("__bool int", bool_int_type_node);
16600 TYPE_NAME (bool_int_type_node) = tdecl;
16601
16602 tdecl = add_builtin_type ("__pixel", pixel_type_node);
16603 TYPE_NAME (pixel_type_node) = tdecl;
16604
16605 bool_V16QI_type_node = rs6000_vector_type ("__vector __bool char",
16606 bool_char_type_node, 16);
16607 bool_V8HI_type_node = rs6000_vector_type ("__vector __bool short",
16608 bool_short_type_node, 8);
16609 bool_V4SI_type_node = rs6000_vector_type ("__vector __bool int",
16610 bool_int_type_node, 4);
16611 bool_V2DI_type_node = rs6000_vector_type (TARGET_POWERPC64
16612 ? "__vector __bool long"
16613 : "__vector __bool long long",
16614 bool_long_long_type_node, 2);
16615 pixel_V8HI_type_node = rs6000_vector_type ("__vector __pixel",
16616 pixel_type_node, 8);
16617
16618 /* Create Altivec and VSX builtins on machines with at least the
16619 general purpose extensions (970 and newer) to allow the use of
16620 the target attribute. */
16621 if (TARGET_EXTRA_BUILTINS)
16622 altivec_init_builtins ();
16623 if (TARGET_HTM)
16624 htm_init_builtins ();
16625
16626 if (TARGET_EXTRA_BUILTINS)
16627 rs6000_common_init_builtins ();
16628
16629 ftype = builtin_function_type (DFmode, DFmode, DFmode, VOIDmode,
16630 RS6000_BUILTIN_RECIP, "__builtin_recipdiv");
16631 def_builtin ("__builtin_recipdiv", ftype, RS6000_BUILTIN_RECIP);
16632
16633 ftype = builtin_function_type (SFmode, SFmode, SFmode, VOIDmode,
16634 RS6000_BUILTIN_RECIPF, "__builtin_recipdivf");
16635 def_builtin ("__builtin_recipdivf", ftype, RS6000_BUILTIN_RECIPF);
16636
16637 ftype = builtin_function_type (DFmode, DFmode, VOIDmode, VOIDmode,
16638 RS6000_BUILTIN_RSQRT, "__builtin_rsqrt");
16639 def_builtin ("__builtin_rsqrt", ftype, RS6000_BUILTIN_RSQRT);
16640
16641 ftype = builtin_function_type (SFmode, SFmode, VOIDmode, VOIDmode,
16642 RS6000_BUILTIN_RSQRTF, "__builtin_rsqrtf");
16643 def_builtin ("__builtin_rsqrtf", ftype, RS6000_BUILTIN_RSQRTF);
16644
16645 mode = (TARGET_64BIT) ? DImode : SImode;
16646 ftype = builtin_function_type (mode, mode, mode, VOIDmode,
16647 POWER7_BUILTIN_BPERMD, "__builtin_bpermd");
16648 def_builtin ("__builtin_bpermd", ftype, POWER7_BUILTIN_BPERMD);
16649
16650 ftype = build_function_type_list (unsigned_intDI_type_node,
16651 NULL_TREE);
16652 def_builtin ("__builtin_ppc_get_timebase", ftype, RS6000_BUILTIN_GET_TB);
16653
16654 if (TARGET_64BIT)
16655 ftype = build_function_type_list (unsigned_intDI_type_node,
16656 NULL_TREE);
16657 else
16658 ftype = build_function_type_list (unsigned_intSI_type_node,
16659 NULL_TREE);
16660 def_builtin ("__builtin_ppc_mftb", ftype, RS6000_BUILTIN_MFTB);
16661
16662 ftype = build_function_type_list (double_type_node, NULL_TREE);
16663 def_builtin ("__builtin_mffs", ftype, RS6000_BUILTIN_MFFS);
16664
16665 ftype = build_function_type_list (double_type_node, NULL_TREE);
16666 def_builtin ("__builtin_mffsl", ftype, RS6000_BUILTIN_MFFSL);
16667
16668 ftype = build_function_type_list (void_type_node,
16669 intSI_type_node,
16670 NULL_TREE);
16671 def_builtin ("__builtin_mtfsb0", ftype, RS6000_BUILTIN_MTFSB0);
16672
16673 ftype = build_function_type_list (void_type_node,
16674 intSI_type_node,
16675 NULL_TREE);
16676 def_builtin ("__builtin_mtfsb1", ftype, RS6000_BUILTIN_MTFSB1);
16677
16678 ftype = build_function_type_list (void_type_node,
16679 intDI_type_node,
16680 NULL_TREE);
16681 def_builtin ("__builtin_set_fpscr_rn", ftype, RS6000_BUILTIN_SET_FPSCR_RN);
16682
16683 ftype = build_function_type_list (void_type_node,
16684 intDI_type_node,
16685 NULL_TREE);
16686 def_builtin ("__builtin_set_fpscr_drn", ftype, RS6000_BUILTIN_SET_FPSCR_DRN);
16687
16688 ftype = build_function_type_list (void_type_node,
16689 intSI_type_node, double_type_node,
16690 NULL_TREE);
16691 def_builtin ("__builtin_mtfsf", ftype, RS6000_BUILTIN_MTFSF);
16692
16693 ftype = build_function_type_list (void_type_node, NULL_TREE);
16694 def_builtin ("__builtin_cpu_init", ftype, RS6000_BUILTIN_CPU_INIT);
16695 def_builtin ("__builtin_ppc_speculation_barrier", ftype,
16696 MISC_BUILTIN_SPEC_BARRIER);
16697
16698 ftype = build_function_type_list (bool_int_type_node, const_ptr_type_node,
16699 NULL_TREE);
16700 def_builtin ("__builtin_cpu_is", ftype, RS6000_BUILTIN_CPU_IS);
16701 def_builtin ("__builtin_cpu_supports", ftype, RS6000_BUILTIN_CPU_SUPPORTS);
16702
16703 /* AIX libm provides clog as __clog. */
16704 if (TARGET_XCOFF &&
16705 (tdecl = builtin_decl_explicit (BUILT_IN_CLOG)) != NULL_TREE)
16706 set_user_assembler_name (tdecl, "__clog");
16707
16708 #ifdef SUBTARGET_INIT_BUILTINS
16709 SUBTARGET_INIT_BUILTINS;
16710 #endif
16711 }
16712
16713 /* Returns the rs6000 builtin decl for CODE. */
16714
16715 static tree
16716 rs6000_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
16717 {
16718 HOST_WIDE_INT fnmask;
16719
16720 if (code >= RS6000_BUILTIN_COUNT)
16721 return error_mark_node;
16722
16723 fnmask = rs6000_builtin_info[code].mask;
16724 if ((fnmask & rs6000_builtin_mask) != fnmask)
16725 {
16726 rs6000_invalid_builtin ((enum rs6000_builtins)code);
16727 return error_mark_node;
16728 }
16729
16730 return rs6000_builtin_decls[code];
16731 }
16732
16733 static void
16734 altivec_init_builtins (void)
16735 {
16736 const struct builtin_description *d;
16737 size_t i;
16738 tree ftype;
16739 tree decl;
16740 HOST_WIDE_INT builtin_mask = rs6000_builtin_mask;
16741
16742 tree pvoid_type_node = build_pointer_type (void_type_node);
16743
16744 tree pcvoid_type_node
16745 = build_pointer_type (build_qualified_type (void_type_node,
16746 TYPE_QUAL_CONST));
16747
16748 tree int_ftype_opaque
16749 = build_function_type_list (integer_type_node,
16750 opaque_V4SI_type_node, NULL_TREE);
16751 tree opaque_ftype_opaque
16752 = build_function_type_list (integer_type_node, NULL_TREE);
16753 tree opaque_ftype_opaque_int
16754 = build_function_type_list (opaque_V4SI_type_node,
16755 opaque_V4SI_type_node, integer_type_node, NULL_TREE);
16756 tree opaque_ftype_opaque_opaque_int
16757 = build_function_type_list (opaque_V4SI_type_node,
16758 opaque_V4SI_type_node, opaque_V4SI_type_node,
16759 integer_type_node, NULL_TREE);
16760 tree opaque_ftype_opaque_opaque_opaque
16761 = build_function_type_list (opaque_V4SI_type_node,
16762 opaque_V4SI_type_node, opaque_V4SI_type_node,
16763 opaque_V4SI_type_node, NULL_TREE);
16764 tree opaque_ftype_opaque_opaque
16765 = build_function_type_list (opaque_V4SI_type_node,
16766 opaque_V4SI_type_node, opaque_V4SI_type_node,
16767 NULL_TREE);
16768 tree int_ftype_int_opaque_opaque
16769 = build_function_type_list (integer_type_node,
16770 integer_type_node, opaque_V4SI_type_node,
16771 opaque_V4SI_type_node, NULL_TREE);
16772 tree int_ftype_int_v4si_v4si
16773 = build_function_type_list (integer_type_node,
16774 integer_type_node, V4SI_type_node,
16775 V4SI_type_node, NULL_TREE);
16776 tree int_ftype_int_v2di_v2di
16777 = build_function_type_list (integer_type_node,
16778 integer_type_node, V2DI_type_node,
16779 V2DI_type_node, NULL_TREE);
16780 tree void_ftype_v4si
16781 = build_function_type_list (void_type_node, V4SI_type_node, NULL_TREE);
16782 tree v8hi_ftype_void
16783 = build_function_type_list (V8HI_type_node, NULL_TREE);
16784 tree void_ftype_void
16785 = build_function_type_list (void_type_node, NULL_TREE);
16786 tree void_ftype_int
16787 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
16788
16789 tree opaque_ftype_long_pcvoid
16790 = build_function_type_list (opaque_V4SI_type_node,
16791 long_integer_type_node, pcvoid_type_node,
16792 NULL_TREE);
16793 tree v16qi_ftype_long_pcvoid
16794 = build_function_type_list (V16QI_type_node,
16795 long_integer_type_node, pcvoid_type_node,
16796 NULL_TREE);
16797 tree v8hi_ftype_long_pcvoid
16798 = build_function_type_list (V8HI_type_node,
16799 long_integer_type_node, pcvoid_type_node,
16800 NULL_TREE);
16801 tree v4si_ftype_long_pcvoid
16802 = build_function_type_list (V4SI_type_node,
16803 long_integer_type_node, pcvoid_type_node,
16804 NULL_TREE);
16805 tree v4sf_ftype_long_pcvoid
16806 = build_function_type_list (V4SF_type_node,
16807 long_integer_type_node, pcvoid_type_node,
16808 NULL_TREE);
16809 tree v2df_ftype_long_pcvoid
16810 = build_function_type_list (V2DF_type_node,
16811 long_integer_type_node, pcvoid_type_node,
16812 NULL_TREE);
16813 tree v2di_ftype_long_pcvoid
16814 = build_function_type_list (V2DI_type_node,
16815 long_integer_type_node, pcvoid_type_node,
16816 NULL_TREE);
16817 tree v1ti_ftype_long_pcvoid
16818 = build_function_type_list (V1TI_type_node,
16819 long_integer_type_node, pcvoid_type_node,
16820 NULL_TREE);
16821
16822 tree void_ftype_opaque_long_pvoid
16823 = build_function_type_list (void_type_node,
16824 opaque_V4SI_type_node, long_integer_type_node,
16825 pvoid_type_node, NULL_TREE);
16826 tree void_ftype_v4si_long_pvoid
16827 = build_function_type_list (void_type_node,
16828 V4SI_type_node, long_integer_type_node,
16829 pvoid_type_node, NULL_TREE);
16830 tree void_ftype_v16qi_long_pvoid
16831 = build_function_type_list (void_type_node,
16832 V16QI_type_node, long_integer_type_node,
16833 pvoid_type_node, NULL_TREE);
16834
16835 tree void_ftype_v16qi_pvoid_long
16836 = build_function_type_list (void_type_node,
16837 V16QI_type_node, pvoid_type_node,
16838 long_integer_type_node, NULL_TREE);
16839
16840 tree void_ftype_v8hi_long_pvoid
16841 = build_function_type_list (void_type_node,
16842 V8HI_type_node, long_integer_type_node,
16843 pvoid_type_node, NULL_TREE);
16844 tree void_ftype_v4sf_long_pvoid
16845 = build_function_type_list (void_type_node,
16846 V4SF_type_node, long_integer_type_node,
16847 pvoid_type_node, NULL_TREE);
16848 tree void_ftype_v2df_long_pvoid
16849 = build_function_type_list (void_type_node,
16850 V2DF_type_node, long_integer_type_node,
16851 pvoid_type_node, NULL_TREE);
16852 tree void_ftype_v1ti_long_pvoid
16853 = build_function_type_list (void_type_node,
16854 V1TI_type_node, long_integer_type_node,
16855 pvoid_type_node, NULL_TREE);
16856 tree void_ftype_v2di_long_pvoid
16857 = build_function_type_list (void_type_node,
16858 V2DI_type_node, long_integer_type_node,
16859 pvoid_type_node, NULL_TREE);
16860 tree int_ftype_int_v8hi_v8hi
16861 = build_function_type_list (integer_type_node,
16862 integer_type_node, V8HI_type_node,
16863 V8HI_type_node, NULL_TREE);
16864 tree int_ftype_int_v16qi_v16qi
16865 = build_function_type_list (integer_type_node,
16866 integer_type_node, V16QI_type_node,
16867 V16QI_type_node, NULL_TREE);
16868 tree int_ftype_int_v4sf_v4sf
16869 = build_function_type_list (integer_type_node,
16870 integer_type_node, V4SF_type_node,
16871 V4SF_type_node, NULL_TREE);
16872 tree int_ftype_int_v2df_v2df
16873 = build_function_type_list (integer_type_node,
16874 integer_type_node, V2DF_type_node,
16875 V2DF_type_node, NULL_TREE);
16876 tree v2di_ftype_v2di
16877 = build_function_type_list (V2DI_type_node, V2DI_type_node, NULL_TREE);
16878 tree v4si_ftype_v4si
16879 = build_function_type_list (V4SI_type_node, V4SI_type_node, NULL_TREE);
16880 tree v8hi_ftype_v8hi
16881 = build_function_type_list (V8HI_type_node, V8HI_type_node, NULL_TREE);
16882 tree v16qi_ftype_v16qi
16883 = build_function_type_list (V16QI_type_node, V16QI_type_node, NULL_TREE);
16884 tree v4sf_ftype_v4sf
16885 = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE);
16886 tree v2df_ftype_v2df
16887 = build_function_type_list (V2DF_type_node, V2DF_type_node, NULL_TREE);
16888 tree void_ftype_pcvoid_int_int
16889 = build_function_type_list (void_type_node,
16890 pcvoid_type_node, integer_type_node,
16891 integer_type_node, NULL_TREE);
16892
16893 def_builtin ("__builtin_altivec_mtvscr", void_ftype_v4si, ALTIVEC_BUILTIN_MTVSCR);
16894 def_builtin ("__builtin_altivec_mfvscr", v8hi_ftype_void, ALTIVEC_BUILTIN_MFVSCR);
16895 def_builtin ("__builtin_altivec_dssall", void_ftype_void, ALTIVEC_BUILTIN_DSSALL);
16896 def_builtin ("__builtin_altivec_dss", void_ftype_int, ALTIVEC_BUILTIN_DSS);
16897 def_builtin ("__builtin_altivec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSL);
16898 def_builtin ("__builtin_altivec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSR);
16899 def_builtin ("__builtin_altivec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEBX);
16900 def_builtin ("__builtin_altivec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEHX);
16901 def_builtin ("__builtin_altivec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEWX);
16902 def_builtin ("__builtin_altivec_lvxl", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVXL);
16903 def_builtin ("__builtin_altivec_lvxl_v2df", v2df_ftype_long_pcvoid,
16904 ALTIVEC_BUILTIN_LVXL_V2DF);
16905 def_builtin ("__builtin_altivec_lvxl_v2di", v2di_ftype_long_pcvoid,
16906 ALTIVEC_BUILTIN_LVXL_V2DI);
16907 def_builtin ("__builtin_altivec_lvxl_v4sf", v4sf_ftype_long_pcvoid,
16908 ALTIVEC_BUILTIN_LVXL_V4SF);
16909 def_builtin ("__builtin_altivec_lvxl_v4si", v4si_ftype_long_pcvoid,
16910 ALTIVEC_BUILTIN_LVXL_V4SI);
16911 def_builtin ("__builtin_altivec_lvxl_v8hi", v8hi_ftype_long_pcvoid,
16912 ALTIVEC_BUILTIN_LVXL_V8HI);
16913 def_builtin ("__builtin_altivec_lvxl_v16qi", v16qi_ftype_long_pcvoid,
16914 ALTIVEC_BUILTIN_LVXL_V16QI);
16915 def_builtin ("__builtin_altivec_lvx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVX);
16916 def_builtin ("__builtin_altivec_lvx_v1ti", v1ti_ftype_long_pcvoid,
16917 ALTIVEC_BUILTIN_LVX_V1TI);
16918 def_builtin ("__builtin_altivec_lvx_v2df", v2df_ftype_long_pcvoid,
16919 ALTIVEC_BUILTIN_LVX_V2DF);
16920 def_builtin ("__builtin_altivec_lvx_v2di", v2di_ftype_long_pcvoid,
16921 ALTIVEC_BUILTIN_LVX_V2DI);
16922 def_builtin ("__builtin_altivec_lvx_v4sf", v4sf_ftype_long_pcvoid,
16923 ALTIVEC_BUILTIN_LVX_V4SF);
16924 def_builtin ("__builtin_altivec_lvx_v4si", v4si_ftype_long_pcvoid,
16925 ALTIVEC_BUILTIN_LVX_V4SI);
16926 def_builtin ("__builtin_altivec_lvx_v8hi", v8hi_ftype_long_pcvoid,
16927 ALTIVEC_BUILTIN_LVX_V8HI);
16928 def_builtin ("__builtin_altivec_lvx_v16qi", v16qi_ftype_long_pcvoid,
16929 ALTIVEC_BUILTIN_LVX_V16QI);
16930 def_builtin ("__builtin_altivec_stvx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVX);
16931 def_builtin ("__builtin_altivec_stvx_v2df", void_ftype_v2df_long_pvoid,
16932 ALTIVEC_BUILTIN_STVX_V2DF);
16933 def_builtin ("__builtin_altivec_stvx_v2di", void_ftype_v2di_long_pvoid,
16934 ALTIVEC_BUILTIN_STVX_V2DI);
16935 def_builtin ("__builtin_altivec_stvx_v4sf", void_ftype_v4sf_long_pvoid,
16936 ALTIVEC_BUILTIN_STVX_V4SF);
16937 def_builtin ("__builtin_altivec_stvx_v4si", void_ftype_v4si_long_pvoid,
16938 ALTIVEC_BUILTIN_STVX_V4SI);
16939 def_builtin ("__builtin_altivec_stvx_v8hi", void_ftype_v8hi_long_pvoid,
16940 ALTIVEC_BUILTIN_STVX_V8HI);
16941 def_builtin ("__builtin_altivec_stvx_v16qi", void_ftype_v16qi_long_pvoid,
16942 ALTIVEC_BUILTIN_STVX_V16QI);
16943 def_builtin ("__builtin_altivec_stvewx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVEWX);
16944 def_builtin ("__builtin_altivec_stvxl", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVXL);
16945 def_builtin ("__builtin_altivec_stvxl_v2df", void_ftype_v2df_long_pvoid,
16946 ALTIVEC_BUILTIN_STVXL_V2DF);
16947 def_builtin ("__builtin_altivec_stvxl_v2di", void_ftype_v2di_long_pvoid,
16948 ALTIVEC_BUILTIN_STVXL_V2DI);
16949 def_builtin ("__builtin_altivec_stvxl_v4sf", void_ftype_v4sf_long_pvoid,
16950 ALTIVEC_BUILTIN_STVXL_V4SF);
16951 def_builtin ("__builtin_altivec_stvxl_v4si", void_ftype_v4si_long_pvoid,
16952 ALTIVEC_BUILTIN_STVXL_V4SI);
16953 def_builtin ("__builtin_altivec_stvxl_v8hi", void_ftype_v8hi_long_pvoid,
16954 ALTIVEC_BUILTIN_STVXL_V8HI);
16955 def_builtin ("__builtin_altivec_stvxl_v16qi", void_ftype_v16qi_long_pvoid,
16956 ALTIVEC_BUILTIN_STVXL_V16QI);
16957 def_builtin ("__builtin_altivec_stvebx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVEBX);
16958 def_builtin ("__builtin_altivec_stvehx", void_ftype_v8hi_long_pvoid, ALTIVEC_BUILTIN_STVEHX);
16959 def_builtin ("__builtin_vec_ld", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LD);
16960 def_builtin ("__builtin_vec_lde", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDE);
16961 def_builtin ("__builtin_vec_ldl", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDL);
16962 def_builtin ("__builtin_vec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSL);
16963 def_builtin ("__builtin_vec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSR);
16964 def_builtin ("__builtin_vec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEBX);
16965 def_builtin ("__builtin_vec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEHX);
16966 def_builtin ("__builtin_vec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEWX);
16967 def_builtin ("__builtin_vec_st", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_ST);
16968 def_builtin ("__builtin_vec_ste", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STE);
16969 def_builtin ("__builtin_vec_stl", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STL);
16970 def_builtin ("__builtin_vec_stvewx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEWX);
16971 def_builtin ("__builtin_vec_stvebx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEBX);
16972 def_builtin ("__builtin_vec_stvehx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEHX);
16973
16974 def_builtin ("__builtin_vsx_lxvd2x_v2df", v2df_ftype_long_pcvoid,
16975 VSX_BUILTIN_LXVD2X_V2DF);
16976 def_builtin ("__builtin_vsx_lxvd2x_v2di", v2di_ftype_long_pcvoid,
16977 VSX_BUILTIN_LXVD2X_V2DI);
16978 def_builtin ("__builtin_vsx_lxvw4x_v4sf", v4sf_ftype_long_pcvoid,
16979 VSX_BUILTIN_LXVW4X_V4SF);
16980 def_builtin ("__builtin_vsx_lxvw4x_v4si", v4si_ftype_long_pcvoid,
16981 VSX_BUILTIN_LXVW4X_V4SI);
16982 def_builtin ("__builtin_vsx_lxvw4x_v8hi", v8hi_ftype_long_pcvoid,
16983 VSX_BUILTIN_LXVW4X_V8HI);
16984 def_builtin ("__builtin_vsx_lxvw4x_v16qi", v16qi_ftype_long_pcvoid,
16985 VSX_BUILTIN_LXVW4X_V16QI);
16986 def_builtin ("__builtin_vsx_stxvd2x_v2df", void_ftype_v2df_long_pvoid,
16987 VSX_BUILTIN_STXVD2X_V2DF);
16988 def_builtin ("__builtin_vsx_stxvd2x_v2di", void_ftype_v2di_long_pvoid,
16989 VSX_BUILTIN_STXVD2X_V2DI);
16990 def_builtin ("__builtin_vsx_stxvw4x_v4sf", void_ftype_v4sf_long_pvoid,
16991 VSX_BUILTIN_STXVW4X_V4SF);
16992 def_builtin ("__builtin_vsx_stxvw4x_v4si", void_ftype_v4si_long_pvoid,
16993 VSX_BUILTIN_STXVW4X_V4SI);
16994 def_builtin ("__builtin_vsx_stxvw4x_v8hi", void_ftype_v8hi_long_pvoid,
16995 VSX_BUILTIN_STXVW4X_V8HI);
16996 def_builtin ("__builtin_vsx_stxvw4x_v16qi", void_ftype_v16qi_long_pvoid,
16997 VSX_BUILTIN_STXVW4X_V16QI);
16998
16999 def_builtin ("__builtin_vsx_ld_elemrev_v2df", v2df_ftype_long_pcvoid,
17000 VSX_BUILTIN_LD_ELEMREV_V2DF);
17001 def_builtin ("__builtin_vsx_ld_elemrev_v2di", v2di_ftype_long_pcvoid,
17002 VSX_BUILTIN_LD_ELEMREV_V2DI);
17003 def_builtin ("__builtin_vsx_ld_elemrev_v4sf", v4sf_ftype_long_pcvoid,
17004 VSX_BUILTIN_LD_ELEMREV_V4SF);
17005 def_builtin ("__builtin_vsx_ld_elemrev_v4si", v4si_ftype_long_pcvoid,
17006 VSX_BUILTIN_LD_ELEMREV_V4SI);
17007 def_builtin ("__builtin_vsx_ld_elemrev_v8hi", v8hi_ftype_long_pcvoid,
17008 VSX_BUILTIN_LD_ELEMREV_V8HI);
17009 def_builtin ("__builtin_vsx_ld_elemrev_v16qi", v16qi_ftype_long_pcvoid,
17010 VSX_BUILTIN_LD_ELEMREV_V16QI);
17011 def_builtin ("__builtin_vsx_st_elemrev_v2df", void_ftype_v2df_long_pvoid,
17012 VSX_BUILTIN_ST_ELEMREV_V2DF);
17013 def_builtin ("__builtin_vsx_st_elemrev_v1ti", void_ftype_v1ti_long_pvoid,
17014 VSX_BUILTIN_ST_ELEMREV_V1TI);
17015 def_builtin ("__builtin_vsx_st_elemrev_v2di", void_ftype_v2di_long_pvoid,
17016 VSX_BUILTIN_ST_ELEMREV_V2DI);
17017 def_builtin ("__builtin_vsx_st_elemrev_v4sf", void_ftype_v4sf_long_pvoid,
17018 VSX_BUILTIN_ST_ELEMREV_V4SF);
17019 def_builtin ("__builtin_vsx_st_elemrev_v4si", void_ftype_v4si_long_pvoid,
17020 VSX_BUILTIN_ST_ELEMREV_V4SI);
17021 def_builtin ("__builtin_vsx_st_elemrev_v8hi", void_ftype_v8hi_long_pvoid,
17022 VSX_BUILTIN_ST_ELEMREV_V8HI);
17023 def_builtin ("__builtin_vsx_st_elemrev_v16qi", void_ftype_v16qi_long_pvoid,
17024 VSX_BUILTIN_ST_ELEMREV_V16QI);
17025
17026 def_builtin ("__builtin_vec_vsx_ld", opaque_ftype_long_pcvoid,
17027 VSX_BUILTIN_VEC_LD);
17028 def_builtin ("__builtin_vec_vsx_st", void_ftype_opaque_long_pvoid,
17029 VSX_BUILTIN_VEC_ST);
17030 def_builtin ("__builtin_vec_xl", opaque_ftype_long_pcvoid,
17031 VSX_BUILTIN_VEC_XL);
17032 def_builtin ("__builtin_vec_xl_be", opaque_ftype_long_pcvoid,
17033 VSX_BUILTIN_VEC_XL_BE);
17034 def_builtin ("__builtin_vec_xst", void_ftype_opaque_long_pvoid,
17035 VSX_BUILTIN_VEC_XST);
17036 def_builtin ("__builtin_vec_xst_be", void_ftype_opaque_long_pvoid,
17037 VSX_BUILTIN_VEC_XST_BE);
17038
17039 def_builtin ("__builtin_vec_step", int_ftype_opaque, ALTIVEC_BUILTIN_VEC_STEP);
17040 def_builtin ("__builtin_vec_splats", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_SPLATS);
17041 def_builtin ("__builtin_vec_promote", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_PROMOTE);
17042
17043 def_builtin ("__builtin_vec_sld", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_SLD);
17044 def_builtin ("__builtin_vec_splat", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_SPLAT);
17045 def_builtin ("__builtin_vec_extract", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_EXTRACT);
17046 def_builtin ("__builtin_vec_insert", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_INSERT);
17047 def_builtin ("__builtin_vec_vspltw", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTW);
17048 def_builtin ("__builtin_vec_vsplth", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTH);
17049 def_builtin ("__builtin_vec_vspltb", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTB);
17050 def_builtin ("__builtin_vec_ctf", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTF);
17051 def_builtin ("__builtin_vec_vcfsx", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFSX);
17052 def_builtin ("__builtin_vec_vcfux", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFUX);
17053 def_builtin ("__builtin_vec_cts", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTS);
17054 def_builtin ("__builtin_vec_ctu", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTU);
17055
17056 def_builtin ("__builtin_vec_adde", opaque_ftype_opaque_opaque_opaque,
17057 ALTIVEC_BUILTIN_VEC_ADDE);
17058 def_builtin ("__builtin_vec_addec", opaque_ftype_opaque_opaque_opaque,
17059 ALTIVEC_BUILTIN_VEC_ADDEC);
17060 def_builtin ("__builtin_vec_cmpne", opaque_ftype_opaque_opaque,
17061 ALTIVEC_BUILTIN_VEC_CMPNE);
17062 def_builtin ("__builtin_vec_mul", opaque_ftype_opaque_opaque,
17063 ALTIVEC_BUILTIN_VEC_MUL);
17064 def_builtin ("__builtin_vec_sube", opaque_ftype_opaque_opaque_opaque,
17065 ALTIVEC_BUILTIN_VEC_SUBE);
17066 def_builtin ("__builtin_vec_subec", opaque_ftype_opaque_opaque_opaque,
17067 ALTIVEC_BUILTIN_VEC_SUBEC);
17068
17069 /* Cell builtins. */
17070 def_builtin ("__builtin_altivec_lvlx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLX);
17071 def_builtin ("__builtin_altivec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLXL);
17072 def_builtin ("__builtin_altivec_lvrx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRX);
17073 def_builtin ("__builtin_altivec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRXL);
17074
17075 def_builtin ("__builtin_vec_lvlx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLX);
17076 def_builtin ("__builtin_vec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLXL);
17077 def_builtin ("__builtin_vec_lvrx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRX);
17078 def_builtin ("__builtin_vec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRXL);
17079
17080 def_builtin ("__builtin_altivec_stvlx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLX);
17081 def_builtin ("__builtin_altivec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLXL);
17082 def_builtin ("__builtin_altivec_stvrx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRX);
17083 def_builtin ("__builtin_altivec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRXL);
17084
17085 def_builtin ("__builtin_vec_stvlx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLX);
17086 def_builtin ("__builtin_vec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLXL);
17087 def_builtin ("__builtin_vec_stvrx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRX);
17088 def_builtin ("__builtin_vec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRXL);
17089
17090 if (TARGET_P9_VECTOR)
17091 {
17092 def_builtin ("__builtin_altivec_stxvl", void_ftype_v16qi_pvoid_long,
17093 P9V_BUILTIN_STXVL);
17094 def_builtin ("__builtin_xst_len_r", void_ftype_v16qi_pvoid_long,
17095 P9V_BUILTIN_XST_LEN_R);
17096 }
17097
17098 /* Add the DST variants. */
17099 d = bdesc_dst;
17100 for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
17101 {
17102 HOST_WIDE_INT mask = d->mask;
17103
17104 /* It is expected that these dst built-in functions may have
17105 d->icode equal to CODE_FOR_nothing. */
17106 if ((mask & builtin_mask) != mask)
17107 {
17108 if (TARGET_DEBUG_BUILTIN)
17109 fprintf (stderr, "altivec_init_builtins, skip dst %s\n",
17110 d->name);
17111 continue;
17112 }
17113 def_builtin (d->name, void_ftype_pcvoid_int_int, d->code);
17114 }
17115
17116 /* Initialize the predicates. */
17117 d = bdesc_altivec_preds;
17118 for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, d++)
17119 {
17120 machine_mode mode1;
17121 tree type;
17122 HOST_WIDE_INT mask = d->mask;
17123
17124 if ((mask & builtin_mask) != mask)
17125 {
17126 if (TARGET_DEBUG_BUILTIN)
17127 fprintf (stderr, "altivec_init_builtins, skip predicate %s\n",
17128 d->name);
17129 continue;
17130 }
17131
17132 if (rs6000_overloaded_builtin_p (d->code))
17133 mode1 = VOIDmode;
17134 else
17135 {
17136 /* Cannot define builtin if the instruction is disabled. */
17137 gcc_assert (d->icode != CODE_FOR_nothing);
17138 mode1 = insn_data[d->icode].operand[1].mode;
17139 }
17140
17141 switch (mode1)
17142 {
17143 case E_VOIDmode:
17144 type = int_ftype_int_opaque_opaque;
17145 break;
17146 case E_V2DImode:
17147 type = int_ftype_int_v2di_v2di;
17148 break;
17149 case E_V4SImode:
17150 type = int_ftype_int_v4si_v4si;
17151 break;
17152 case E_V8HImode:
17153 type = int_ftype_int_v8hi_v8hi;
17154 break;
17155 case E_V16QImode:
17156 type = int_ftype_int_v16qi_v16qi;
17157 break;
17158 case E_V4SFmode:
17159 type = int_ftype_int_v4sf_v4sf;
17160 break;
17161 case E_V2DFmode:
17162 type = int_ftype_int_v2df_v2df;
17163 break;
17164 default:
17165 gcc_unreachable ();
17166 }
17167
17168 def_builtin (d->name, type, d->code);
17169 }
17170
17171 /* Initialize the abs* operators. */
17172 d = bdesc_abs;
17173 for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
17174 {
17175 machine_mode mode0;
17176 tree type;
17177 HOST_WIDE_INT mask = d->mask;
17178
17179 if ((mask & builtin_mask) != mask)
17180 {
17181 if (TARGET_DEBUG_BUILTIN)
17182 fprintf (stderr, "altivec_init_builtins, skip abs %s\n",
17183 d->name);
17184 continue;
17185 }
17186
17187 /* Cannot define builtin if the instruction is disabled. */
17188 gcc_assert (d->icode != CODE_FOR_nothing);
17189 mode0 = insn_data[d->icode].operand[0].mode;
17190
17191 switch (mode0)
17192 {
17193 case E_V2DImode:
17194 type = v2di_ftype_v2di;
17195 break;
17196 case E_V4SImode:
17197 type = v4si_ftype_v4si;
17198 break;
17199 case E_V8HImode:
17200 type = v8hi_ftype_v8hi;
17201 break;
17202 case E_V16QImode:
17203 type = v16qi_ftype_v16qi;
17204 break;
17205 case E_V4SFmode:
17206 type = v4sf_ftype_v4sf;
17207 break;
17208 case E_V2DFmode:
17209 type = v2df_ftype_v2df;
17210 break;
17211 default:
17212 gcc_unreachable ();
17213 }
17214
17215 def_builtin (d->name, type, d->code);
17216 }
17217
17218 /* Initialize target builtin that implements
17219 targetm.vectorize.builtin_mask_for_load. */
17220
17221 decl = add_builtin_function ("__builtin_altivec_mask_for_load",
17222 v16qi_ftype_long_pcvoid,
17223 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
17224 BUILT_IN_MD, NULL, NULL_TREE);
17225 TREE_READONLY (decl) = 1;
17226 /* Record the decl. Will be used by rs6000_builtin_mask_for_load. */
17227 altivec_builtin_mask_for_load = decl;
17228
17229 /* Access to the vec_init patterns. */
17230 ftype = build_function_type_list (V4SI_type_node, integer_type_node,
17231 integer_type_node, integer_type_node,
17232 integer_type_node, NULL_TREE);
17233 def_builtin ("__builtin_vec_init_v4si", ftype, ALTIVEC_BUILTIN_VEC_INIT_V4SI);
17234
17235 ftype = build_function_type_list (V8HI_type_node, short_integer_type_node,
17236 short_integer_type_node,
17237 short_integer_type_node,
17238 short_integer_type_node,
17239 short_integer_type_node,
17240 short_integer_type_node,
17241 short_integer_type_node,
17242 short_integer_type_node, NULL_TREE);
17243 def_builtin ("__builtin_vec_init_v8hi", ftype, ALTIVEC_BUILTIN_VEC_INIT_V8HI);
17244
17245 ftype = build_function_type_list (V16QI_type_node, char_type_node,
17246 char_type_node, char_type_node,
17247 char_type_node, char_type_node,
17248 char_type_node, char_type_node,
17249 char_type_node, char_type_node,
17250 char_type_node, char_type_node,
17251 char_type_node, char_type_node,
17252 char_type_node, char_type_node,
17253 char_type_node, NULL_TREE);
17254 def_builtin ("__builtin_vec_init_v16qi", ftype,
17255 ALTIVEC_BUILTIN_VEC_INIT_V16QI);
17256
17257 ftype = build_function_type_list (V4SF_type_node, float_type_node,
17258 float_type_node, float_type_node,
17259 float_type_node, NULL_TREE);
17260 def_builtin ("__builtin_vec_init_v4sf", ftype, ALTIVEC_BUILTIN_VEC_INIT_V4SF);
17261
17262 /* VSX builtins. */
17263 ftype = build_function_type_list (V2DF_type_node, double_type_node,
17264 double_type_node, NULL_TREE);
17265 def_builtin ("__builtin_vec_init_v2df", ftype, VSX_BUILTIN_VEC_INIT_V2DF);
17266
17267 ftype = build_function_type_list (V2DI_type_node, intDI_type_node,
17268 intDI_type_node, NULL_TREE);
17269 def_builtin ("__builtin_vec_init_v2di", ftype, VSX_BUILTIN_VEC_INIT_V2DI);
17270
17271 /* Access to the vec_set patterns. */
17272 ftype = build_function_type_list (V4SI_type_node, V4SI_type_node,
17273 intSI_type_node,
17274 integer_type_node, NULL_TREE);
17275 def_builtin ("__builtin_vec_set_v4si", ftype, ALTIVEC_BUILTIN_VEC_SET_V4SI);
17276
17277 ftype = build_function_type_list (V8HI_type_node, V8HI_type_node,
17278 intHI_type_node,
17279 integer_type_node, NULL_TREE);
17280 def_builtin ("__builtin_vec_set_v8hi", ftype, ALTIVEC_BUILTIN_VEC_SET_V8HI);
17281
17282 ftype = build_function_type_list (V16QI_type_node, V16QI_type_node,
17283 intQI_type_node,
17284 integer_type_node, NULL_TREE);
17285 def_builtin ("__builtin_vec_set_v16qi", ftype, ALTIVEC_BUILTIN_VEC_SET_V16QI);
17286
17287 ftype = build_function_type_list (V4SF_type_node, V4SF_type_node,
17288 float_type_node,
17289 integer_type_node, NULL_TREE);
17290 def_builtin ("__builtin_vec_set_v4sf", ftype, ALTIVEC_BUILTIN_VEC_SET_V4SF);
17291
17292 ftype = build_function_type_list (V2DF_type_node, V2DF_type_node,
17293 double_type_node,
17294 integer_type_node, NULL_TREE);
17295 def_builtin ("__builtin_vec_set_v2df", ftype, VSX_BUILTIN_VEC_SET_V2DF);
17296
17297 ftype = build_function_type_list (V2DI_type_node, V2DI_type_node,
17298 intDI_type_node,
17299 integer_type_node, NULL_TREE);
17300 def_builtin ("__builtin_vec_set_v2di", ftype, VSX_BUILTIN_VEC_SET_V2DI);
17301
17302 /* Access to the vec_extract patterns. */
17303 ftype = build_function_type_list (intSI_type_node, V4SI_type_node,
17304 integer_type_node, NULL_TREE);
17305 def_builtin ("__builtin_vec_ext_v4si", ftype, ALTIVEC_BUILTIN_VEC_EXT_V4SI);
17306
17307 ftype = build_function_type_list (intHI_type_node, V8HI_type_node,
17308 integer_type_node, NULL_TREE);
17309 def_builtin ("__builtin_vec_ext_v8hi", ftype, ALTIVEC_BUILTIN_VEC_EXT_V8HI);
17310
17311 ftype = build_function_type_list (intQI_type_node, V16QI_type_node,
17312 integer_type_node, NULL_TREE);
17313 def_builtin ("__builtin_vec_ext_v16qi", ftype, ALTIVEC_BUILTIN_VEC_EXT_V16QI);
17314
17315 ftype = build_function_type_list (float_type_node, V4SF_type_node,
17316 integer_type_node, NULL_TREE);
17317 def_builtin ("__builtin_vec_ext_v4sf", ftype, ALTIVEC_BUILTIN_VEC_EXT_V4SF);
17318
17319 ftype = build_function_type_list (double_type_node, V2DF_type_node,
17320 integer_type_node, NULL_TREE);
17321 def_builtin ("__builtin_vec_ext_v2df", ftype, VSX_BUILTIN_VEC_EXT_V2DF);
17322
17323 ftype = build_function_type_list (intDI_type_node, V2DI_type_node,
17324 integer_type_node, NULL_TREE);
17325 def_builtin ("__builtin_vec_ext_v2di", ftype, VSX_BUILTIN_VEC_EXT_V2DI);
17326
17327
17328 if (V1TI_type_node)
17329 {
17330 tree v1ti_ftype_long_pcvoid
17331 = build_function_type_list (V1TI_type_node,
17332 long_integer_type_node, pcvoid_type_node,
17333 NULL_TREE);
17334 tree void_ftype_v1ti_long_pvoid
17335 = build_function_type_list (void_type_node,
17336 V1TI_type_node, long_integer_type_node,
17337 pvoid_type_node, NULL_TREE);
17338 def_builtin ("__builtin_vsx_ld_elemrev_v1ti", v1ti_ftype_long_pcvoid,
17339 VSX_BUILTIN_LD_ELEMREV_V1TI);
17340 def_builtin ("__builtin_vsx_lxvd2x_v1ti", v1ti_ftype_long_pcvoid,
17341 VSX_BUILTIN_LXVD2X_V1TI);
17342 def_builtin ("__builtin_vsx_stxvd2x_v1ti", void_ftype_v1ti_long_pvoid,
17343 VSX_BUILTIN_STXVD2X_V1TI);
17344 ftype = build_function_type_list (V1TI_type_node, intTI_type_node,
17345 NULL_TREE, NULL_TREE);
17346 def_builtin ("__builtin_vec_init_v1ti", ftype, VSX_BUILTIN_VEC_INIT_V1TI);
17347 ftype = build_function_type_list (V1TI_type_node, V1TI_type_node,
17348 intTI_type_node,
17349 integer_type_node, NULL_TREE);
17350 def_builtin ("__builtin_vec_set_v1ti", ftype, VSX_BUILTIN_VEC_SET_V1TI);
17351 ftype = build_function_type_list (intTI_type_node, V1TI_type_node,
17352 integer_type_node, NULL_TREE);
17353 def_builtin ("__builtin_vec_ext_v1ti", ftype, VSX_BUILTIN_VEC_EXT_V1TI);
17354 }
17355
17356 }
17357
17358 static void
17359 htm_init_builtins (void)
17360 {
17361 HOST_WIDE_INT builtin_mask = rs6000_builtin_mask;
17362 const struct builtin_description *d;
17363 size_t i;
17364
17365 d = bdesc_htm;
17366 for (i = 0; i < ARRAY_SIZE (bdesc_htm); i++, d++)
17367 {
17368 tree op[MAX_HTM_OPERANDS], type;
17369 HOST_WIDE_INT mask = d->mask;
17370 unsigned attr = rs6000_builtin_info[d->code].attr;
17371 bool void_func = (attr & RS6000_BTC_VOID);
17372 int attr_args = (attr & RS6000_BTC_TYPE_MASK);
17373 int nopnds = 0;
17374 tree gpr_type_node;
17375 tree rettype;
17376 tree argtype;
17377
17378 /* It is expected that these htm built-in functions may have
17379 d->icode equal to CODE_FOR_nothing. */
17380
17381 if (TARGET_32BIT && TARGET_POWERPC64)
17382 gpr_type_node = long_long_unsigned_type_node;
17383 else
17384 gpr_type_node = long_unsigned_type_node;
17385
17386 if (attr & RS6000_BTC_SPR)
17387 {
17388 rettype = gpr_type_node;
17389 argtype = gpr_type_node;
17390 }
17391 else if (d->code == HTM_BUILTIN_TABORTDC
17392 || d->code == HTM_BUILTIN_TABORTDCI)
17393 {
17394 rettype = unsigned_type_node;
17395 argtype = gpr_type_node;
17396 }
17397 else
17398 {
17399 rettype = unsigned_type_node;
17400 argtype = unsigned_type_node;
17401 }
17402
17403 if ((mask & builtin_mask) != mask)
17404 {
17405 if (TARGET_DEBUG_BUILTIN)
17406 fprintf (stderr, "htm_builtin, skip binary %s\n", d->name);
17407 continue;
17408 }
17409
17410 if (d->name == 0)
17411 {
17412 if (TARGET_DEBUG_BUILTIN)
17413 fprintf (stderr, "htm_builtin, bdesc_htm[%ld] no name\n",
17414 (long unsigned) i);
17415 continue;
17416 }
17417
17418 op[nopnds++] = (void_func) ? void_type_node : rettype;
17419
17420 if (attr_args == RS6000_BTC_UNARY)
17421 op[nopnds++] = argtype;
17422 else if (attr_args == RS6000_BTC_BINARY)
17423 {
17424 op[nopnds++] = argtype;
17425 op[nopnds++] = argtype;
17426 }
17427 else if (attr_args == RS6000_BTC_TERNARY)
17428 {
17429 op[nopnds++] = argtype;
17430 op[nopnds++] = argtype;
17431 op[nopnds++] = argtype;
17432 }
17433
17434 switch (nopnds)
17435 {
17436 case 1:
17437 type = build_function_type_list (op[0], NULL_TREE);
17438 break;
17439 case 2:
17440 type = build_function_type_list (op[0], op[1], NULL_TREE);
17441 break;
17442 case 3:
17443 type = build_function_type_list (op[0], op[1], op[2], NULL_TREE);
17444 break;
17445 case 4:
17446 type = build_function_type_list (op[0], op[1], op[2], op[3],
17447 NULL_TREE);
17448 break;
17449 default:
17450 gcc_unreachable ();
17451 }
17452
17453 def_builtin (d->name, type, d->code);
17454 }
17455 }
17456
17457 /* Hash function for builtin functions with up to 3 arguments and a return
17458 type. */
17459 hashval_t
17460 builtin_hasher::hash (builtin_hash_struct *bh)
17461 {
17462 unsigned ret = 0;
17463 int i;
17464
17465 for (i = 0; i < 4; i++)
17466 {
17467 ret = (ret * (unsigned)MAX_MACHINE_MODE) + ((unsigned)bh->mode[i]);
17468 ret = (ret * 2) + bh->uns_p[i];
17469 }
17470
17471 return ret;
17472 }
17473
17474 /* Compare builtin hash entries H1 and H2 for equivalence. */
17475 bool
17476 builtin_hasher::equal (builtin_hash_struct *p1, builtin_hash_struct *p2)
17477 {
17478 return ((p1->mode[0] == p2->mode[0])
17479 && (p1->mode[1] == p2->mode[1])
17480 && (p1->mode[2] == p2->mode[2])
17481 && (p1->mode[3] == p2->mode[3])
17482 && (p1->uns_p[0] == p2->uns_p[0])
17483 && (p1->uns_p[1] == p2->uns_p[1])
17484 && (p1->uns_p[2] == p2->uns_p[2])
17485 && (p1->uns_p[3] == p2->uns_p[3]));
17486 }
17487
17488 /* Map types for builtin functions with an explicit return type and up to 3
17489 arguments. Functions with fewer than 3 arguments use VOIDmode as the type
17490 of the argument. */
17491 static tree
17492 builtin_function_type (machine_mode mode_ret, machine_mode mode_arg0,
17493 machine_mode mode_arg1, machine_mode mode_arg2,
17494 enum rs6000_builtins builtin, const char *name)
17495 {
17496 struct builtin_hash_struct h;
17497 struct builtin_hash_struct *h2;
17498 int num_args = 3;
17499 int i;
17500 tree ret_type = NULL_TREE;
17501 tree arg_type[3] = { NULL_TREE, NULL_TREE, NULL_TREE };
17502
17503 /* Create builtin_hash_table. */
17504 if (builtin_hash_table == NULL)
17505 builtin_hash_table = hash_table<builtin_hasher>::create_ggc (1500);
17506
17507 h.type = NULL_TREE;
17508 h.mode[0] = mode_ret;
17509 h.mode[1] = mode_arg0;
17510 h.mode[2] = mode_arg1;
17511 h.mode[3] = mode_arg2;
17512 h.uns_p[0] = 0;
17513 h.uns_p[1] = 0;
17514 h.uns_p[2] = 0;
17515 h.uns_p[3] = 0;
17516
17517 /* If the builtin is a type that produces unsigned results or takes unsigned
17518 arguments, and it is returned as a decl for the vectorizer (such as
17519 widening multiplies, permute), make sure the arguments and return value
17520 are type correct. */
17521 switch (builtin)
17522 {
17523 /* unsigned 1 argument functions. */
17524 case CRYPTO_BUILTIN_VSBOX:
17525 case P8V_BUILTIN_VGBBD:
17526 case MISC_BUILTIN_CDTBCD:
17527 case MISC_BUILTIN_CBCDTD:
17528 h.uns_p[0] = 1;
17529 h.uns_p[1] = 1;
17530 break;
17531
17532 /* unsigned 2 argument functions. */
17533 case ALTIVEC_BUILTIN_VMULEUB:
17534 case ALTIVEC_BUILTIN_VMULEUH:
17535 case P8V_BUILTIN_VMULEUW:
17536 case ALTIVEC_BUILTIN_VMULOUB:
17537 case ALTIVEC_BUILTIN_VMULOUH:
17538 case P8V_BUILTIN_VMULOUW:
17539 case CRYPTO_BUILTIN_VCIPHER:
17540 case CRYPTO_BUILTIN_VCIPHERLAST:
17541 case CRYPTO_BUILTIN_VNCIPHER:
17542 case CRYPTO_BUILTIN_VNCIPHERLAST:
17543 case CRYPTO_BUILTIN_VPMSUMB:
17544 case CRYPTO_BUILTIN_VPMSUMH:
17545 case CRYPTO_BUILTIN_VPMSUMW:
17546 case CRYPTO_BUILTIN_VPMSUMD:
17547 case CRYPTO_BUILTIN_VPMSUM:
17548 case MISC_BUILTIN_ADDG6S:
17549 case MISC_BUILTIN_DIVWEU:
17550 case MISC_BUILTIN_DIVDEU:
17551 case VSX_BUILTIN_UDIV_V2DI:
17552 case ALTIVEC_BUILTIN_VMAXUB:
17553 case ALTIVEC_BUILTIN_VMINUB:
17554 case ALTIVEC_BUILTIN_VMAXUH:
17555 case ALTIVEC_BUILTIN_VMINUH:
17556 case ALTIVEC_BUILTIN_VMAXUW:
17557 case ALTIVEC_BUILTIN_VMINUW:
17558 case P8V_BUILTIN_VMAXUD:
17559 case P8V_BUILTIN_VMINUD:
17560 h.uns_p[0] = 1;
17561 h.uns_p[1] = 1;
17562 h.uns_p[2] = 1;
17563 break;
17564
17565 /* unsigned 3 argument functions. */
17566 case ALTIVEC_BUILTIN_VPERM_16QI_UNS:
17567 case ALTIVEC_BUILTIN_VPERM_8HI_UNS:
17568 case ALTIVEC_BUILTIN_VPERM_4SI_UNS:
17569 case ALTIVEC_BUILTIN_VPERM_2DI_UNS:
17570 case ALTIVEC_BUILTIN_VSEL_16QI_UNS:
17571 case ALTIVEC_BUILTIN_VSEL_8HI_UNS:
17572 case ALTIVEC_BUILTIN_VSEL_4SI_UNS:
17573 case ALTIVEC_BUILTIN_VSEL_2DI_UNS:
17574 case VSX_BUILTIN_VPERM_16QI_UNS:
17575 case VSX_BUILTIN_VPERM_8HI_UNS:
17576 case VSX_BUILTIN_VPERM_4SI_UNS:
17577 case VSX_BUILTIN_VPERM_2DI_UNS:
17578 case VSX_BUILTIN_XXSEL_16QI_UNS:
17579 case VSX_BUILTIN_XXSEL_8HI_UNS:
17580 case VSX_BUILTIN_XXSEL_4SI_UNS:
17581 case VSX_BUILTIN_XXSEL_2DI_UNS:
17582 case CRYPTO_BUILTIN_VPERMXOR:
17583 case CRYPTO_BUILTIN_VPERMXOR_V2DI:
17584 case CRYPTO_BUILTIN_VPERMXOR_V4SI:
17585 case CRYPTO_BUILTIN_VPERMXOR_V8HI:
17586 case CRYPTO_BUILTIN_VPERMXOR_V16QI:
17587 case CRYPTO_BUILTIN_VSHASIGMAW:
17588 case CRYPTO_BUILTIN_VSHASIGMAD:
17589 case CRYPTO_BUILTIN_VSHASIGMA:
17590 h.uns_p[0] = 1;
17591 h.uns_p[1] = 1;
17592 h.uns_p[2] = 1;
17593 h.uns_p[3] = 1;
17594 break;
17595
17596 /* signed permute functions with unsigned char mask. */
17597 case ALTIVEC_BUILTIN_VPERM_16QI:
17598 case ALTIVEC_BUILTIN_VPERM_8HI:
17599 case ALTIVEC_BUILTIN_VPERM_4SI:
17600 case ALTIVEC_BUILTIN_VPERM_4SF:
17601 case ALTIVEC_BUILTIN_VPERM_2DI:
17602 case ALTIVEC_BUILTIN_VPERM_2DF:
17603 case VSX_BUILTIN_VPERM_16QI:
17604 case VSX_BUILTIN_VPERM_8HI:
17605 case VSX_BUILTIN_VPERM_4SI:
17606 case VSX_BUILTIN_VPERM_4SF:
17607 case VSX_BUILTIN_VPERM_2DI:
17608 case VSX_BUILTIN_VPERM_2DF:
17609 h.uns_p[3] = 1;
17610 break;
17611
17612 /* unsigned args, signed return. */
17613 case VSX_BUILTIN_XVCVUXDSP:
17614 case VSX_BUILTIN_XVCVUXDDP_UNS:
17615 case ALTIVEC_BUILTIN_UNSFLOAT_V4SI_V4SF:
17616 h.uns_p[1] = 1;
17617 break;
17618
17619 /* signed args, unsigned return. */
17620 case VSX_BUILTIN_XVCVDPUXDS_UNS:
17621 case ALTIVEC_BUILTIN_FIXUNS_V4SF_V4SI:
17622 case MISC_BUILTIN_UNPACK_TD:
17623 case MISC_BUILTIN_UNPACK_V1TI:
17624 h.uns_p[0] = 1;
17625 break;
17626
17627 /* unsigned arguments, bool return (compares). */
17628 case ALTIVEC_BUILTIN_VCMPEQUB:
17629 case ALTIVEC_BUILTIN_VCMPEQUH:
17630 case ALTIVEC_BUILTIN_VCMPEQUW:
17631 case P8V_BUILTIN_VCMPEQUD:
17632 case VSX_BUILTIN_CMPGE_U16QI:
17633 case VSX_BUILTIN_CMPGE_U8HI:
17634 case VSX_BUILTIN_CMPGE_U4SI:
17635 case VSX_BUILTIN_CMPGE_U2DI:
17636 case ALTIVEC_BUILTIN_VCMPGTUB:
17637 case ALTIVEC_BUILTIN_VCMPGTUH:
17638 case ALTIVEC_BUILTIN_VCMPGTUW:
17639 case P8V_BUILTIN_VCMPGTUD:
17640 h.uns_p[1] = 1;
17641 h.uns_p[2] = 1;
17642 break;
17643
17644 /* unsigned arguments for 128-bit pack instructions. */
17645 case MISC_BUILTIN_PACK_TD:
17646 case MISC_BUILTIN_PACK_V1TI:
17647 h.uns_p[1] = 1;
17648 h.uns_p[2] = 1;
17649 break;
17650
17651 /* unsigned second arguments (vector shift right). */
17652 case ALTIVEC_BUILTIN_VSRB:
17653 case ALTIVEC_BUILTIN_VSRH:
17654 case ALTIVEC_BUILTIN_VSRW:
17655 case P8V_BUILTIN_VSRD:
17656 h.uns_p[2] = 1;
17657 break;
17658
17659 default:
17660 break;
17661 }
17662
17663 /* Figure out how many args are present. */
17664 while (num_args > 0 && h.mode[num_args] == VOIDmode)
17665 num_args--;
17666
17667 ret_type = builtin_mode_to_type[h.mode[0]][h.uns_p[0]];
17668 if (!ret_type && h.uns_p[0])
17669 ret_type = builtin_mode_to_type[h.mode[0]][0];
17670
17671 if (!ret_type)
17672 fatal_error (input_location,
17673 "internal error: builtin function %qs had an unexpected "
17674 "return type %qs", name, GET_MODE_NAME (h.mode[0]));
17675
17676 for (i = 0; i < (int) ARRAY_SIZE (arg_type); i++)
17677 arg_type[i] = NULL_TREE;
17678
17679 for (i = 0; i < num_args; i++)
17680 {
17681 int m = (int) h.mode[i+1];
17682 int uns_p = h.uns_p[i+1];
17683
17684 arg_type[i] = builtin_mode_to_type[m][uns_p];
17685 if (!arg_type[i] && uns_p)
17686 arg_type[i] = builtin_mode_to_type[m][0];
17687
17688 if (!arg_type[i])
17689 fatal_error (input_location,
17690 "internal error: builtin function %qs, argument %d "
17691 "had unexpected argument type %qs", name, i,
17692 GET_MODE_NAME (m));
17693 }
17694
17695 builtin_hash_struct **found = builtin_hash_table->find_slot (&h, INSERT);
17696 if (*found == NULL)
17697 {
17698 h2 = ggc_alloc<builtin_hash_struct> ();
17699 *h2 = h;
17700 *found = h2;
17701
17702 h2->type = build_function_type_list (ret_type, arg_type[0], arg_type[1],
17703 arg_type[2], NULL_TREE);
17704 }
17705
17706 return (*found)->type;
17707 }
17708
17709 static void
17710 rs6000_common_init_builtins (void)
17711 {
17712 const struct builtin_description *d;
17713 size_t i;
17714
17715 tree opaque_ftype_opaque = NULL_TREE;
17716 tree opaque_ftype_opaque_opaque = NULL_TREE;
17717 tree opaque_ftype_opaque_opaque_opaque = NULL_TREE;
17718 HOST_WIDE_INT builtin_mask = rs6000_builtin_mask;
17719
17720 /* Create Altivec and VSX builtins on machines with at least the
17721 general purpose extensions (970 and newer) to allow the use of
17722 the target attribute. */
17723
17724 if (TARGET_EXTRA_BUILTINS)
17725 builtin_mask |= RS6000_BTM_COMMON;
17726
17727 /* Add the ternary operators. */
17728 d = bdesc_3arg;
17729 for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
17730 {
17731 tree type;
17732 HOST_WIDE_INT mask = d->mask;
17733
17734 if ((mask & builtin_mask) != mask)
17735 {
17736 if (TARGET_DEBUG_BUILTIN)
17737 fprintf (stderr, "rs6000_builtin, skip ternary %s\n", d->name);
17738 continue;
17739 }
17740
17741 if (rs6000_overloaded_builtin_p (d->code))
17742 {
17743 if (! (type = opaque_ftype_opaque_opaque_opaque))
17744 type = opaque_ftype_opaque_opaque_opaque
17745 = build_function_type_list (opaque_V4SI_type_node,
17746 opaque_V4SI_type_node,
17747 opaque_V4SI_type_node,
17748 opaque_V4SI_type_node,
17749 NULL_TREE);
17750 }
17751 else
17752 {
17753 enum insn_code icode = d->icode;
17754 if (d->name == 0)
17755 {
17756 if (TARGET_DEBUG_BUILTIN)
17757 fprintf (stderr, "rs6000_builtin, bdesc_3arg[%ld] no name\n",
17758 (long unsigned)i);
17759
17760 continue;
17761 }
17762
17763 if (icode == CODE_FOR_nothing)
17764 {
17765 if (TARGET_DEBUG_BUILTIN)
17766 fprintf (stderr, "rs6000_builtin, skip ternary %s (no code)\n",
17767 d->name);
17768
17769 continue;
17770 }
17771
17772 type = builtin_function_type (insn_data[icode].operand[0].mode,
17773 insn_data[icode].operand[1].mode,
17774 insn_data[icode].operand[2].mode,
17775 insn_data[icode].operand[3].mode,
17776 d->code, d->name);
17777 }
17778
17779 def_builtin (d->name, type, d->code);
17780 }
17781
17782 /* Add the binary operators. */
17783 d = bdesc_2arg;
17784 for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
17785 {
17786 machine_mode mode0, mode1, mode2;
17787 tree type;
17788 HOST_WIDE_INT mask = d->mask;
17789
17790 if ((mask & builtin_mask) != mask)
17791 {
17792 if (TARGET_DEBUG_BUILTIN)
17793 fprintf (stderr, "rs6000_builtin, skip binary %s\n", d->name);
17794 continue;
17795 }
17796
17797 if (rs6000_overloaded_builtin_p (d->code))
17798 {
17799 if (! (type = opaque_ftype_opaque_opaque))
17800 type = opaque_ftype_opaque_opaque
17801 = build_function_type_list (opaque_V4SI_type_node,
17802 opaque_V4SI_type_node,
17803 opaque_V4SI_type_node,
17804 NULL_TREE);
17805 }
17806 else
17807 {
17808 enum insn_code icode = d->icode;
17809 if (d->name == 0)
17810 {
17811 if (TARGET_DEBUG_BUILTIN)
17812 fprintf (stderr, "rs6000_builtin, bdesc_2arg[%ld] no name\n",
17813 (long unsigned)i);
17814
17815 continue;
17816 }
17817
17818 if (icode == CODE_FOR_nothing)
17819 {
17820 if (TARGET_DEBUG_BUILTIN)
17821 fprintf (stderr, "rs6000_builtin, skip binary %s (no code)\n",
17822 d->name);
17823
17824 continue;
17825 }
17826
17827 mode0 = insn_data[icode].operand[0].mode;
17828 mode1 = insn_data[icode].operand[1].mode;
17829 mode2 = insn_data[icode].operand[2].mode;
17830
17831 type = builtin_function_type (mode0, mode1, mode2, VOIDmode,
17832 d->code, d->name);
17833 }
17834
17835 def_builtin (d->name, type, d->code);
17836 }
17837
17838 /* Add the simple unary operators. */
17839 d = bdesc_1arg;
17840 for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
17841 {
17842 machine_mode mode0, mode1;
17843 tree type;
17844 HOST_WIDE_INT mask = d->mask;
17845
17846 if ((mask & builtin_mask) != mask)
17847 {
17848 if (TARGET_DEBUG_BUILTIN)
17849 fprintf (stderr, "rs6000_builtin, skip unary %s\n", d->name);
17850 continue;
17851 }
17852
17853 if (rs6000_overloaded_builtin_p (d->code))
17854 {
17855 if (! (type = opaque_ftype_opaque))
17856 type = opaque_ftype_opaque
17857 = build_function_type_list (opaque_V4SI_type_node,
17858 opaque_V4SI_type_node,
17859 NULL_TREE);
17860 }
17861 else
17862 {
17863 enum insn_code icode = d->icode;
17864 if (d->name == 0)
17865 {
17866 if (TARGET_DEBUG_BUILTIN)
17867 fprintf (stderr, "rs6000_builtin, bdesc_1arg[%ld] no name\n",
17868 (long unsigned)i);
17869
17870 continue;
17871 }
17872
17873 if (icode == CODE_FOR_nothing)
17874 {
17875 if (TARGET_DEBUG_BUILTIN)
17876 fprintf (stderr, "rs6000_builtin, skip unary %s (no code)\n",
17877 d->name);
17878
17879 continue;
17880 }
17881
17882 mode0 = insn_data[icode].operand[0].mode;
17883 mode1 = insn_data[icode].operand[1].mode;
17884
17885 type = builtin_function_type (mode0, mode1, VOIDmode, VOIDmode,
17886 d->code, d->name);
17887 }
17888
17889 def_builtin (d->name, type, d->code);
17890 }
17891
17892 /* Add the simple no-argument operators. */
17893 d = bdesc_0arg;
17894 for (i = 0; i < ARRAY_SIZE (bdesc_0arg); i++, d++)
17895 {
17896 machine_mode mode0;
17897 tree type;
17898 HOST_WIDE_INT mask = d->mask;
17899
17900 if ((mask & builtin_mask) != mask)
17901 {
17902 if (TARGET_DEBUG_BUILTIN)
17903 fprintf (stderr, "rs6000_builtin, skip no-argument %s\n", d->name);
17904 continue;
17905 }
17906 if (rs6000_overloaded_builtin_p (d->code))
17907 {
17908 if (!opaque_ftype_opaque)
17909 opaque_ftype_opaque
17910 = build_function_type_list (opaque_V4SI_type_node, NULL_TREE);
17911 type = opaque_ftype_opaque;
17912 }
17913 else
17914 {
17915 enum insn_code icode = d->icode;
17916 if (d->name == 0)
17917 {
17918 if (TARGET_DEBUG_BUILTIN)
17919 fprintf (stderr, "rs6000_builtin, bdesc_0arg[%lu] no name\n",
17920 (long unsigned) i);
17921 continue;
17922 }
17923 if (icode == CODE_FOR_nothing)
17924 {
17925 if (TARGET_DEBUG_BUILTIN)
17926 fprintf (stderr,
17927 "rs6000_builtin, skip no-argument %s (no code)\n",
17928 d->name);
17929 continue;
17930 }
17931 mode0 = insn_data[icode].operand[0].mode;
17932 type = builtin_function_type (mode0, VOIDmode, VOIDmode, VOIDmode,
17933 d->code, d->name);
17934 }
17935 def_builtin (d->name, type, d->code);
17936 }
17937 }
17938
17939 /* Set up AIX/Darwin/64-bit Linux quad floating point routines. */
17940 static void
17941 init_float128_ibm (machine_mode mode)
17942 {
17943 if (!TARGET_XL_COMPAT)
17944 {
17945 set_optab_libfunc (add_optab, mode, "__gcc_qadd");
17946 set_optab_libfunc (sub_optab, mode, "__gcc_qsub");
17947 set_optab_libfunc (smul_optab, mode, "__gcc_qmul");
17948 set_optab_libfunc (sdiv_optab, mode, "__gcc_qdiv");
17949
17950 if (!TARGET_HARD_FLOAT)
17951 {
17952 set_optab_libfunc (neg_optab, mode, "__gcc_qneg");
17953 set_optab_libfunc (eq_optab, mode, "__gcc_qeq");
17954 set_optab_libfunc (ne_optab, mode, "__gcc_qne");
17955 set_optab_libfunc (gt_optab, mode, "__gcc_qgt");
17956 set_optab_libfunc (ge_optab, mode, "__gcc_qge");
17957 set_optab_libfunc (lt_optab, mode, "__gcc_qlt");
17958 set_optab_libfunc (le_optab, mode, "__gcc_qle");
17959 set_optab_libfunc (unord_optab, mode, "__gcc_qunord");
17960
17961 set_conv_libfunc (sext_optab, mode, SFmode, "__gcc_stoq");
17962 set_conv_libfunc (sext_optab, mode, DFmode, "__gcc_dtoq");
17963 set_conv_libfunc (trunc_optab, SFmode, mode, "__gcc_qtos");
17964 set_conv_libfunc (trunc_optab, DFmode, mode, "__gcc_qtod");
17965 set_conv_libfunc (sfix_optab, SImode, mode, "__gcc_qtoi");
17966 set_conv_libfunc (ufix_optab, SImode, mode, "__gcc_qtou");
17967 set_conv_libfunc (sfloat_optab, mode, SImode, "__gcc_itoq");
17968 set_conv_libfunc (ufloat_optab, mode, SImode, "__gcc_utoq");
17969 }
17970 }
17971 else
17972 {
17973 set_optab_libfunc (add_optab, mode, "_xlqadd");
17974 set_optab_libfunc (sub_optab, mode, "_xlqsub");
17975 set_optab_libfunc (smul_optab, mode, "_xlqmul");
17976 set_optab_libfunc (sdiv_optab, mode, "_xlqdiv");
17977 }
17978
17979 /* Add various conversions for IFmode to use the traditional TFmode
17980 names. */
17981 if (mode == IFmode)
17982 {
17983 set_conv_libfunc (sext_optab, mode, SDmode, "__dpd_extendsdtf");
17984 set_conv_libfunc (sext_optab, mode, DDmode, "__dpd_extendddtf");
17985 set_conv_libfunc (trunc_optab, mode, TDmode, "__dpd_trunctdtf");
17986 set_conv_libfunc (trunc_optab, SDmode, mode, "__dpd_trunctfsd");
17987 set_conv_libfunc (trunc_optab, DDmode, mode, "__dpd_trunctfdd");
17988 set_conv_libfunc (sext_optab, TDmode, mode, "__dpd_extendtftd");
17989
17990 if (TARGET_POWERPC64)
17991 {
17992 set_conv_libfunc (sfix_optab, TImode, mode, "__fixtfti");
17993 set_conv_libfunc (ufix_optab, TImode, mode, "__fixunstfti");
17994 set_conv_libfunc (sfloat_optab, mode, TImode, "__floattitf");
17995 set_conv_libfunc (ufloat_optab, mode, TImode, "__floatuntitf");
17996 }
17997 }
17998 }
17999
18000 /* Create a decl for either complex long double multiply or complex long double
18001 divide when long double is IEEE 128-bit floating point. We can't use
18002 __multc3 and __divtc3 because the original long double using IBM extended
18003 double used those names. The complex multiply/divide functions are encoded
18004 as builtin functions with a complex result and 4 scalar inputs. */
18005
18006 static void
18007 create_complex_muldiv (const char *name, built_in_function fncode, tree fntype)
18008 {
18009 tree fndecl = add_builtin_function (name, fntype, fncode, BUILT_IN_NORMAL,
18010 name, NULL_TREE);
18011
18012 set_builtin_decl (fncode, fndecl, true);
18013
18014 if (TARGET_DEBUG_BUILTIN)
18015 fprintf (stderr, "create complex %s, fncode: %d\n", name, (int) fncode);
18016
18017 return;
18018 }
18019
18020 /* Set up IEEE 128-bit floating point routines. Use different names if the
18021 arguments can be passed in a vector register. The historical PowerPC
18022 implementation of IEEE 128-bit floating point used _q_<op> for the names, so
18023 continue to use that if we aren't using vector registers to pass IEEE
18024 128-bit floating point. */
18025
18026 static void
18027 init_float128_ieee (machine_mode mode)
18028 {
18029 if (FLOAT128_VECTOR_P (mode))
18030 {
18031 static bool complex_muldiv_init_p = false;
18032
18033 /* Set up to call __mulkc3 and __divkc3 under -mabi=ieeelongdouble. If
18034 we have clone or target attributes, this will be called a second
18035 time. We want to create the built-in function only once. */
18036 if (mode == TFmode && TARGET_IEEEQUAD && !complex_muldiv_init_p)
18037 {
18038 complex_muldiv_init_p = true;
18039 built_in_function fncode_mul =
18040 (built_in_function) (BUILT_IN_COMPLEX_MUL_MIN + TCmode
18041 - MIN_MODE_COMPLEX_FLOAT);
18042 built_in_function fncode_div =
18043 (built_in_function) (BUILT_IN_COMPLEX_DIV_MIN + TCmode
18044 - MIN_MODE_COMPLEX_FLOAT);
18045
18046 tree fntype = build_function_type_list (complex_long_double_type_node,
18047 long_double_type_node,
18048 long_double_type_node,
18049 long_double_type_node,
18050 long_double_type_node,
18051 NULL_TREE);
18052
18053 create_complex_muldiv ("__mulkc3", fncode_mul, fntype);
18054 create_complex_muldiv ("__divkc3", fncode_div, fntype);
18055 }
18056
18057 set_optab_libfunc (add_optab, mode, "__addkf3");
18058 set_optab_libfunc (sub_optab, mode, "__subkf3");
18059 set_optab_libfunc (neg_optab, mode, "__negkf2");
18060 set_optab_libfunc (smul_optab, mode, "__mulkf3");
18061 set_optab_libfunc (sdiv_optab, mode, "__divkf3");
18062 set_optab_libfunc (sqrt_optab, mode, "__sqrtkf2");
18063 set_optab_libfunc (abs_optab, mode, "__abskf2");
18064 set_optab_libfunc (powi_optab, mode, "__powikf2");
18065
18066 set_optab_libfunc (eq_optab, mode, "__eqkf2");
18067 set_optab_libfunc (ne_optab, mode, "__nekf2");
18068 set_optab_libfunc (gt_optab, mode, "__gtkf2");
18069 set_optab_libfunc (ge_optab, mode, "__gekf2");
18070 set_optab_libfunc (lt_optab, mode, "__ltkf2");
18071 set_optab_libfunc (le_optab, mode, "__lekf2");
18072 set_optab_libfunc (unord_optab, mode, "__unordkf2");
18073
18074 set_conv_libfunc (sext_optab, mode, SFmode, "__extendsfkf2");
18075 set_conv_libfunc (sext_optab, mode, DFmode, "__extenddfkf2");
18076 set_conv_libfunc (trunc_optab, SFmode, mode, "__trunckfsf2");
18077 set_conv_libfunc (trunc_optab, DFmode, mode, "__trunckfdf2");
18078
18079 set_conv_libfunc (sext_optab, mode, IFmode, "__trunctfkf2");
18080 if (mode != TFmode && FLOAT128_IBM_P (TFmode))
18081 set_conv_libfunc (sext_optab, mode, TFmode, "__trunctfkf2");
18082
18083 set_conv_libfunc (trunc_optab, IFmode, mode, "__extendkftf2");
18084 if (mode != TFmode && FLOAT128_IBM_P (TFmode))
18085 set_conv_libfunc (trunc_optab, TFmode, mode, "__extendkftf2");
18086
18087 set_conv_libfunc (sext_optab, mode, SDmode, "__dpd_extendsdkf");
18088 set_conv_libfunc (sext_optab, mode, DDmode, "__dpd_extendddkf");
18089 set_conv_libfunc (trunc_optab, mode, TDmode, "__dpd_trunctdkf");
18090 set_conv_libfunc (trunc_optab, SDmode, mode, "__dpd_trunckfsd");
18091 set_conv_libfunc (trunc_optab, DDmode, mode, "__dpd_trunckfdd");
18092 set_conv_libfunc (sext_optab, TDmode, mode, "__dpd_extendkftd");
18093
18094 set_conv_libfunc (sfix_optab, SImode, mode, "__fixkfsi");
18095 set_conv_libfunc (ufix_optab, SImode, mode, "__fixunskfsi");
18096 set_conv_libfunc (sfix_optab, DImode, mode, "__fixkfdi");
18097 set_conv_libfunc (ufix_optab, DImode, mode, "__fixunskfdi");
18098
18099 set_conv_libfunc (sfloat_optab, mode, SImode, "__floatsikf");
18100 set_conv_libfunc (ufloat_optab, mode, SImode, "__floatunsikf");
18101 set_conv_libfunc (sfloat_optab, mode, DImode, "__floatdikf");
18102 set_conv_libfunc (ufloat_optab, mode, DImode, "__floatundikf");
18103
18104 if (TARGET_POWERPC64)
18105 {
18106 set_conv_libfunc (sfix_optab, TImode, mode, "__fixkfti");
18107 set_conv_libfunc (ufix_optab, TImode, mode, "__fixunskfti");
18108 set_conv_libfunc (sfloat_optab, mode, TImode, "__floattikf");
18109 set_conv_libfunc (ufloat_optab, mode, TImode, "__floatuntikf");
18110 }
18111 }
18112
18113 else
18114 {
18115 set_optab_libfunc (add_optab, mode, "_q_add");
18116 set_optab_libfunc (sub_optab, mode, "_q_sub");
18117 set_optab_libfunc (neg_optab, mode, "_q_neg");
18118 set_optab_libfunc (smul_optab, mode, "_q_mul");
18119 set_optab_libfunc (sdiv_optab, mode, "_q_div");
18120 if (TARGET_PPC_GPOPT)
18121 set_optab_libfunc (sqrt_optab, mode, "_q_sqrt");
18122
18123 set_optab_libfunc (eq_optab, mode, "_q_feq");
18124 set_optab_libfunc (ne_optab, mode, "_q_fne");
18125 set_optab_libfunc (gt_optab, mode, "_q_fgt");
18126 set_optab_libfunc (ge_optab, mode, "_q_fge");
18127 set_optab_libfunc (lt_optab, mode, "_q_flt");
18128 set_optab_libfunc (le_optab, mode, "_q_fle");
18129
18130 set_conv_libfunc (sext_optab, mode, SFmode, "_q_stoq");
18131 set_conv_libfunc (sext_optab, mode, DFmode, "_q_dtoq");
18132 set_conv_libfunc (trunc_optab, SFmode, mode, "_q_qtos");
18133 set_conv_libfunc (trunc_optab, DFmode, mode, "_q_qtod");
18134 set_conv_libfunc (sfix_optab, SImode, mode, "_q_qtoi");
18135 set_conv_libfunc (ufix_optab, SImode, mode, "_q_qtou");
18136 set_conv_libfunc (sfloat_optab, mode, SImode, "_q_itoq");
18137 set_conv_libfunc (ufloat_optab, mode, SImode, "_q_utoq");
18138 }
18139 }
18140
18141 static void
18142 rs6000_init_libfuncs (void)
18143 {
18144 /* __float128 support. */
18145 if (TARGET_FLOAT128_TYPE)
18146 {
18147 init_float128_ibm (IFmode);
18148 init_float128_ieee (KFmode);
18149 }
18150
18151 /* AIX/Darwin/64-bit Linux quad floating point routines. */
18152 if (TARGET_LONG_DOUBLE_128)
18153 {
18154 if (!TARGET_IEEEQUAD)
18155 init_float128_ibm (TFmode);
18156
18157 /* IEEE 128-bit including 32-bit SVR4 quad floating point routines. */
18158 else
18159 init_float128_ieee (TFmode);
18160 }
18161 }
18162
18163 /* Emit a potentially record-form instruction, setting DST from SRC.
18164 If DOT is 0, that is all; otherwise, set CCREG to the result of the
18165 signed comparison of DST with zero. If DOT is 1, the generated RTL
18166 doesn't care about the DST result; if DOT is 2, it does. If CCREG
18167 is CR0 do a single dot insn (as a PARALLEL); otherwise, do a SET and
18168 a separate COMPARE. */
18169
18170 void
18171 rs6000_emit_dot_insn (rtx dst, rtx src, int dot, rtx ccreg)
18172 {
18173 if (dot == 0)
18174 {
18175 emit_move_insn (dst, src);
18176 return;
18177 }
18178
18179 if (cc_reg_not_cr0_operand (ccreg, CCmode))
18180 {
18181 emit_move_insn (dst, src);
18182 emit_move_insn (ccreg, gen_rtx_COMPARE (CCmode, dst, const0_rtx));
18183 return;
18184 }
18185
18186 rtx ccset = gen_rtx_SET (ccreg, gen_rtx_COMPARE (CCmode, src, const0_rtx));
18187 if (dot == 1)
18188 {
18189 rtx clobber = gen_rtx_CLOBBER (VOIDmode, dst);
18190 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, ccset, clobber)));
18191 }
18192 else
18193 {
18194 rtx set = gen_rtx_SET (dst, src);
18195 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, ccset, set)));
18196 }
18197 }
18198
18199 \f
18200 /* A validation routine: say whether CODE, a condition code, and MODE
18201 match. The other alternatives either don't make sense or should
18202 never be generated. */
18203
18204 void
18205 validate_condition_mode (enum rtx_code code, machine_mode mode)
18206 {
18207 gcc_assert ((GET_RTX_CLASS (code) == RTX_COMPARE
18208 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
18209 && GET_MODE_CLASS (mode) == MODE_CC);
18210
18211 /* These don't make sense. */
18212 gcc_assert ((code != GT && code != LT && code != GE && code != LE)
18213 || mode != CCUNSmode);
18214
18215 gcc_assert ((code != GTU && code != LTU && code != GEU && code != LEU)
18216 || mode == CCUNSmode);
18217
18218 gcc_assert (mode == CCFPmode
18219 || (code != ORDERED && code != UNORDERED
18220 && code != UNEQ && code != LTGT
18221 && code != UNGT && code != UNLT
18222 && code != UNGE && code != UNLE));
18223
18224 /* These should never be generated except for
18225 flag_finite_math_only. */
18226 gcc_assert (mode != CCFPmode
18227 || flag_finite_math_only
18228 || (code != LE && code != GE
18229 && code != UNEQ && code != LTGT
18230 && code != UNGT && code != UNLT));
18231
18232 /* These are invalid; the information is not there. */
18233 gcc_assert (mode != CCEQmode || code == EQ || code == NE);
18234 }
18235
18236 \f
18237 /* Return whether MASK (a CONST_INT) is a valid mask for any rlwinm,
18238 rldicl, rldicr, or rldic instruction in mode MODE. If so, if E is
18239 not zero, store there the bit offset (counted from the right) where
18240 the single stretch of 1 bits begins; and similarly for B, the bit
18241 offset where it ends. */
18242
18243 bool
18244 rs6000_is_valid_mask (rtx mask, int *b, int *e, machine_mode mode)
18245 {
18246 unsigned HOST_WIDE_INT val = INTVAL (mask);
18247 unsigned HOST_WIDE_INT bit;
18248 int nb, ne;
18249 int n = GET_MODE_PRECISION (mode);
18250
18251 if (mode != DImode && mode != SImode)
18252 return false;
18253
18254 if (INTVAL (mask) >= 0)
18255 {
18256 bit = val & -val;
18257 ne = exact_log2 (bit);
18258 nb = exact_log2 (val + bit);
18259 }
18260 else if (val + 1 == 0)
18261 {
18262 nb = n;
18263 ne = 0;
18264 }
18265 else if (val & 1)
18266 {
18267 val = ~val;
18268 bit = val & -val;
18269 nb = exact_log2 (bit);
18270 ne = exact_log2 (val + bit);
18271 }
18272 else
18273 {
18274 bit = val & -val;
18275 ne = exact_log2 (bit);
18276 if (val + bit == 0)
18277 nb = n;
18278 else
18279 nb = 0;
18280 }
18281
18282 nb--;
18283
18284 if (nb < 0 || ne < 0 || nb >= n || ne >= n)
18285 return false;
18286
18287 if (b)
18288 *b = nb;
18289 if (e)
18290 *e = ne;
18291
18292 return true;
18293 }
18294
18295 /* Return whether MASK (a CONST_INT) is a valid mask for any rlwinm, rldicl,
18296 or rldicr instruction, to implement an AND with it in mode MODE. */
18297
18298 bool
18299 rs6000_is_valid_and_mask (rtx mask, machine_mode mode)
18300 {
18301 int nb, ne;
18302
18303 if (!rs6000_is_valid_mask (mask, &nb, &ne, mode))
18304 return false;
18305
18306 /* For DImode, we need a rldicl, rldicr, or a rlwinm with mask that
18307 does not wrap. */
18308 if (mode == DImode)
18309 return (ne == 0 || nb == 63 || (nb < 32 && ne <= nb));
18310
18311 /* For SImode, rlwinm can do everything. */
18312 if (mode == SImode)
18313 return (nb < 32 && ne < 32);
18314
18315 return false;
18316 }
18317
18318 /* Return the instruction template for an AND with mask in mode MODE, with
18319 operands OPERANDS. If DOT is true, make it a record-form instruction. */
18320
18321 const char *
18322 rs6000_insn_for_and_mask (machine_mode mode, rtx *operands, bool dot)
18323 {
18324 int nb, ne;
18325
18326 if (!rs6000_is_valid_mask (operands[2], &nb, &ne, mode))
18327 gcc_unreachable ();
18328
18329 if (mode == DImode && ne == 0)
18330 {
18331 operands[3] = GEN_INT (63 - nb);
18332 if (dot)
18333 return "rldicl. %0,%1,0,%3";
18334 return "rldicl %0,%1,0,%3";
18335 }
18336
18337 if (mode == DImode && nb == 63)
18338 {
18339 operands[3] = GEN_INT (63 - ne);
18340 if (dot)
18341 return "rldicr. %0,%1,0,%3";
18342 return "rldicr %0,%1,0,%3";
18343 }
18344
18345 if (nb < 32 && ne < 32)
18346 {
18347 operands[3] = GEN_INT (31 - nb);
18348 operands[4] = GEN_INT (31 - ne);
18349 if (dot)
18350 return "rlwinm. %0,%1,0,%3,%4";
18351 return "rlwinm %0,%1,0,%3,%4";
18352 }
18353
18354 gcc_unreachable ();
18355 }
18356
18357 /* Return whether MASK (a CONST_INT) is a valid mask for any rlw[i]nm,
18358 rld[i]cl, rld[i]cr, or rld[i]c instruction, to implement an AND with
18359 shift SHIFT (a ROTATE, ASHIFT, or LSHIFTRT) in mode MODE. */
18360
18361 bool
18362 rs6000_is_valid_shift_mask (rtx mask, rtx shift, machine_mode mode)
18363 {
18364 int nb, ne;
18365
18366 if (!rs6000_is_valid_mask (mask, &nb, &ne, mode))
18367 return false;
18368
18369 int n = GET_MODE_PRECISION (mode);
18370 int sh = -1;
18371
18372 if (CONST_INT_P (XEXP (shift, 1)))
18373 {
18374 sh = INTVAL (XEXP (shift, 1));
18375 if (sh < 0 || sh >= n)
18376 return false;
18377 }
18378
18379 rtx_code code = GET_CODE (shift);
18380
18381 /* Convert any shift by 0 to a rotate, to simplify below code. */
18382 if (sh == 0)
18383 code = ROTATE;
18384
18385 /* Convert rotate to simple shift if we can, to make analysis simpler. */
18386 if (code == ROTATE && sh >= 0 && nb >= ne && ne >= sh)
18387 code = ASHIFT;
18388 if (code == ROTATE && sh >= 0 && nb >= ne && nb < sh)
18389 {
18390 code = LSHIFTRT;
18391 sh = n - sh;
18392 }
18393
18394 /* DImode rotates need rld*. */
18395 if (mode == DImode && code == ROTATE)
18396 return (nb == 63 || ne == 0 || ne == sh);
18397
18398 /* SImode rotates need rlw*. */
18399 if (mode == SImode && code == ROTATE)
18400 return (nb < 32 && ne < 32 && sh < 32);
18401
18402 /* Wrap-around masks are only okay for rotates. */
18403 if (ne > nb)
18404 return false;
18405
18406 /* Variable shifts are only okay for rotates. */
18407 if (sh < 0)
18408 return false;
18409
18410 /* Don't allow ASHIFT if the mask is wrong for that. */
18411 if (code == ASHIFT && ne < sh)
18412 return false;
18413
18414 /* If we can do it with an rlw*, we can do it. Don't allow LSHIFTRT
18415 if the mask is wrong for that. */
18416 if (nb < 32 && ne < 32 && sh < 32
18417 && !(code == LSHIFTRT && nb >= 32 - sh))
18418 return true;
18419
18420 /* If we can do it with an rld*, we can do it. Don't allow LSHIFTRT
18421 if the mask is wrong for that. */
18422 if (code == LSHIFTRT)
18423 sh = 64 - sh;
18424 if (nb == 63 || ne == 0 || ne == sh)
18425 return !(code == LSHIFTRT && nb >= sh);
18426
18427 return false;
18428 }
18429
18430 /* Return the instruction template for a shift with mask in mode MODE, with
18431 operands OPERANDS. If DOT is true, make it a record-form instruction. */
18432
18433 const char *
18434 rs6000_insn_for_shift_mask (machine_mode mode, rtx *operands, bool dot)
18435 {
18436 int nb, ne;
18437
18438 if (!rs6000_is_valid_mask (operands[3], &nb, &ne, mode))
18439 gcc_unreachable ();
18440
18441 if (mode == DImode && ne == 0)
18442 {
18443 if (GET_CODE (operands[4]) == LSHIFTRT && INTVAL (operands[2]))
18444 operands[2] = GEN_INT (64 - INTVAL (operands[2]));
18445 operands[3] = GEN_INT (63 - nb);
18446 if (dot)
18447 return "rld%I2cl. %0,%1,%2,%3";
18448 return "rld%I2cl %0,%1,%2,%3";
18449 }
18450
18451 if (mode == DImode && nb == 63)
18452 {
18453 operands[3] = GEN_INT (63 - ne);
18454 if (dot)
18455 return "rld%I2cr. %0,%1,%2,%3";
18456 return "rld%I2cr %0,%1,%2,%3";
18457 }
18458
18459 if (mode == DImode
18460 && GET_CODE (operands[4]) != LSHIFTRT
18461 && CONST_INT_P (operands[2])
18462 && ne == INTVAL (operands[2]))
18463 {
18464 operands[3] = GEN_INT (63 - nb);
18465 if (dot)
18466 return "rld%I2c. %0,%1,%2,%3";
18467 return "rld%I2c %0,%1,%2,%3";
18468 }
18469
18470 if (nb < 32 && ne < 32)
18471 {
18472 if (GET_CODE (operands[4]) == LSHIFTRT && INTVAL (operands[2]))
18473 operands[2] = GEN_INT (32 - INTVAL (operands[2]));
18474 operands[3] = GEN_INT (31 - nb);
18475 operands[4] = GEN_INT (31 - ne);
18476 /* This insn can also be a 64-bit rotate with mask that really makes
18477 it just a shift right (with mask); the %h below are to adjust for
18478 that situation (shift count is >= 32 in that case). */
18479 if (dot)
18480 return "rlw%I2nm. %0,%1,%h2,%3,%4";
18481 return "rlw%I2nm %0,%1,%h2,%3,%4";
18482 }
18483
18484 gcc_unreachable ();
18485 }
18486
18487 /* Return whether MASK (a CONST_INT) is a valid mask for any rlwimi or
18488 rldimi instruction, to implement an insert with shift SHIFT (a ROTATE,
18489 ASHIFT, or LSHIFTRT) in mode MODE. */
18490
18491 bool
18492 rs6000_is_valid_insert_mask (rtx mask, rtx shift, machine_mode mode)
18493 {
18494 int nb, ne;
18495
18496 if (!rs6000_is_valid_mask (mask, &nb, &ne, mode))
18497 return false;
18498
18499 int n = GET_MODE_PRECISION (mode);
18500
18501 int sh = INTVAL (XEXP (shift, 1));
18502 if (sh < 0 || sh >= n)
18503 return false;
18504
18505 rtx_code code = GET_CODE (shift);
18506
18507 /* Convert any shift by 0 to a rotate, to simplify below code. */
18508 if (sh == 0)
18509 code = ROTATE;
18510
18511 /* Convert rotate to simple shift if we can, to make analysis simpler. */
18512 if (code == ROTATE && sh >= 0 && nb >= ne && ne >= sh)
18513 code = ASHIFT;
18514 if (code == ROTATE && sh >= 0 && nb >= ne && nb < sh)
18515 {
18516 code = LSHIFTRT;
18517 sh = n - sh;
18518 }
18519
18520 /* DImode rotates need rldimi. */
18521 if (mode == DImode && code == ROTATE)
18522 return (ne == sh);
18523
18524 /* SImode rotates need rlwimi. */
18525 if (mode == SImode && code == ROTATE)
18526 return (nb < 32 && ne < 32 && sh < 32);
18527
18528 /* Wrap-around masks are only okay for rotates. */
18529 if (ne > nb)
18530 return false;
18531
18532 /* Don't allow ASHIFT if the mask is wrong for that. */
18533 if (code == ASHIFT && ne < sh)
18534 return false;
18535
18536 /* If we can do it with an rlwimi, we can do it. Don't allow LSHIFTRT
18537 if the mask is wrong for that. */
18538 if (nb < 32 && ne < 32 && sh < 32
18539 && !(code == LSHIFTRT && nb >= 32 - sh))
18540 return true;
18541
18542 /* If we can do it with an rldimi, we can do it. Don't allow LSHIFTRT
18543 if the mask is wrong for that. */
18544 if (code == LSHIFTRT)
18545 sh = 64 - sh;
18546 if (ne == sh)
18547 return !(code == LSHIFTRT && nb >= sh);
18548
18549 return false;
18550 }
18551
18552 /* Return the instruction template for an insert with mask in mode MODE, with
18553 operands OPERANDS. If DOT is true, make it a record-form instruction. */
18554
18555 const char *
18556 rs6000_insn_for_insert_mask (machine_mode mode, rtx *operands, bool dot)
18557 {
18558 int nb, ne;
18559
18560 if (!rs6000_is_valid_mask (operands[3], &nb, &ne, mode))
18561 gcc_unreachable ();
18562
18563 /* Prefer rldimi because rlwimi is cracked. */
18564 if (TARGET_POWERPC64
18565 && (!dot || mode == DImode)
18566 && GET_CODE (operands[4]) != LSHIFTRT
18567 && ne == INTVAL (operands[2]))
18568 {
18569 operands[3] = GEN_INT (63 - nb);
18570 if (dot)
18571 return "rldimi. %0,%1,%2,%3";
18572 return "rldimi %0,%1,%2,%3";
18573 }
18574
18575 if (nb < 32 && ne < 32)
18576 {
18577 if (GET_CODE (operands[4]) == LSHIFTRT && INTVAL (operands[2]))
18578 operands[2] = GEN_INT (32 - INTVAL (operands[2]));
18579 operands[3] = GEN_INT (31 - nb);
18580 operands[4] = GEN_INT (31 - ne);
18581 if (dot)
18582 return "rlwimi. %0,%1,%2,%3,%4";
18583 return "rlwimi %0,%1,%2,%3,%4";
18584 }
18585
18586 gcc_unreachable ();
18587 }
18588
18589 /* Return whether an AND with C (a CONST_INT) in mode MODE can be done
18590 using two machine instructions. */
18591
18592 bool
18593 rs6000_is_valid_2insn_and (rtx c, machine_mode mode)
18594 {
18595 /* There are two kinds of AND we can handle with two insns:
18596 1) those we can do with two rl* insn;
18597 2) ori[s];xori[s].
18598
18599 We do not handle that last case yet. */
18600
18601 /* If there is just one stretch of ones, we can do it. */
18602 if (rs6000_is_valid_mask (c, NULL, NULL, mode))
18603 return true;
18604
18605 /* Otherwise, fill in the lowest "hole"; if we can do the result with
18606 one insn, we can do the whole thing with two. */
18607 unsigned HOST_WIDE_INT val = INTVAL (c);
18608 unsigned HOST_WIDE_INT bit1 = val & -val;
18609 unsigned HOST_WIDE_INT bit2 = (val + bit1) & ~val;
18610 unsigned HOST_WIDE_INT val1 = (val + bit1) & val;
18611 unsigned HOST_WIDE_INT bit3 = val1 & -val1;
18612 return rs6000_is_valid_and_mask (GEN_INT (val + bit3 - bit2), mode);
18613 }
18614
18615 /* Emit the two insns to do an AND in mode MODE, with operands OPERANDS.
18616 If EXPAND is true, split rotate-and-mask instructions we generate to
18617 their constituent parts as well (this is used during expand); if DOT
18618 is 1, make the last insn a record-form instruction clobbering the
18619 destination GPR and setting the CC reg (from operands[3]); if 2, set
18620 that GPR as well as the CC reg. */
18621
18622 void
18623 rs6000_emit_2insn_and (machine_mode mode, rtx *operands, bool expand, int dot)
18624 {
18625 gcc_assert (!(expand && dot));
18626
18627 unsigned HOST_WIDE_INT val = INTVAL (operands[2]);
18628
18629 /* If it is one stretch of ones, it is DImode; shift left, mask, then
18630 shift right. This generates better code than doing the masks without
18631 shifts, or shifting first right and then left. */
18632 int nb, ne;
18633 if (rs6000_is_valid_mask (operands[2], &nb, &ne, mode) && nb >= ne)
18634 {
18635 gcc_assert (mode == DImode);
18636
18637 int shift = 63 - nb;
18638 if (expand)
18639 {
18640 rtx tmp1 = gen_reg_rtx (DImode);
18641 rtx tmp2 = gen_reg_rtx (DImode);
18642 emit_insn (gen_ashldi3 (tmp1, operands[1], GEN_INT (shift)));
18643 emit_insn (gen_anddi3 (tmp2, tmp1, GEN_INT (val << shift)));
18644 emit_insn (gen_lshrdi3 (operands[0], tmp2, GEN_INT (shift)));
18645 }
18646 else
18647 {
18648 rtx tmp = gen_rtx_ASHIFT (mode, operands[1], GEN_INT (shift));
18649 tmp = gen_rtx_AND (mode, tmp, GEN_INT (val << shift));
18650 emit_move_insn (operands[0], tmp);
18651 tmp = gen_rtx_LSHIFTRT (mode, operands[0], GEN_INT (shift));
18652 rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
18653 }
18654 return;
18655 }
18656
18657 /* Otherwise, make a mask2 that cuts out the lowest "hole", and a mask1
18658 that does the rest. */
18659 unsigned HOST_WIDE_INT bit1 = val & -val;
18660 unsigned HOST_WIDE_INT bit2 = (val + bit1) & ~val;
18661 unsigned HOST_WIDE_INT val1 = (val + bit1) & val;
18662 unsigned HOST_WIDE_INT bit3 = val1 & -val1;
18663
18664 unsigned HOST_WIDE_INT mask1 = -bit3 + bit2 - 1;
18665 unsigned HOST_WIDE_INT mask2 = val + bit3 - bit2;
18666
18667 gcc_assert (rs6000_is_valid_and_mask (GEN_INT (mask2), mode));
18668
18669 /* Two "no-rotate"-and-mask instructions, for SImode. */
18670 if (rs6000_is_valid_and_mask (GEN_INT (mask1), mode))
18671 {
18672 gcc_assert (mode == SImode);
18673
18674 rtx reg = expand ? gen_reg_rtx (mode) : operands[0];
18675 rtx tmp = gen_rtx_AND (mode, operands[1], GEN_INT (mask1));
18676 emit_move_insn (reg, tmp);
18677 tmp = gen_rtx_AND (mode, reg, GEN_INT (mask2));
18678 rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
18679 return;
18680 }
18681
18682 gcc_assert (mode == DImode);
18683
18684 /* Two "no-rotate"-and-mask instructions, for DImode: both are rlwinm
18685 insns; we have to do the first in SImode, because it wraps. */
18686 if (mask2 <= 0xffffffff
18687 && rs6000_is_valid_and_mask (GEN_INT (mask1), SImode))
18688 {
18689 rtx reg = expand ? gen_reg_rtx (mode) : operands[0];
18690 rtx tmp = gen_rtx_AND (SImode, gen_lowpart (SImode, operands[1]),
18691 GEN_INT (mask1));
18692 rtx reg_low = gen_lowpart (SImode, reg);
18693 emit_move_insn (reg_low, tmp);
18694 tmp = gen_rtx_AND (mode, reg, GEN_INT (mask2));
18695 rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
18696 return;
18697 }
18698
18699 /* Two rld* insns: rotate, clear the hole in the middle (which now is
18700 at the top end), rotate back and clear the other hole. */
18701 int right = exact_log2 (bit3);
18702 int left = 64 - right;
18703
18704 /* Rotate the mask too. */
18705 mask1 = (mask1 >> right) | ((bit2 - 1) << left);
18706
18707 if (expand)
18708 {
18709 rtx tmp1 = gen_reg_rtx (DImode);
18710 rtx tmp2 = gen_reg_rtx (DImode);
18711 rtx tmp3 = gen_reg_rtx (DImode);
18712 emit_insn (gen_rotldi3 (tmp1, operands[1], GEN_INT (left)));
18713 emit_insn (gen_anddi3 (tmp2, tmp1, GEN_INT (mask1)));
18714 emit_insn (gen_rotldi3 (tmp3, tmp2, GEN_INT (right)));
18715 emit_insn (gen_anddi3 (operands[0], tmp3, GEN_INT (mask2)));
18716 }
18717 else
18718 {
18719 rtx tmp = gen_rtx_ROTATE (mode, operands[1], GEN_INT (left));
18720 tmp = gen_rtx_AND (mode, tmp, GEN_INT (mask1));
18721 emit_move_insn (operands[0], tmp);
18722 tmp = gen_rtx_ROTATE (mode, operands[0], GEN_INT (right));
18723 tmp = gen_rtx_AND (mode, tmp, GEN_INT (mask2));
18724 rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
18725 }
18726 }
18727 \f
18728 /* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates
18729 for lfq and stfq insns iff the registers are hard registers. */
18730
18731 int
18732 registers_ok_for_quad_peep (rtx reg1, rtx reg2)
18733 {
18734 /* We might have been passed a SUBREG. */
18735 if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
18736 return 0;
18737
18738 /* We might have been passed non floating point registers. */
18739 if (!FP_REGNO_P (REGNO (reg1))
18740 || !FP_REGNO_P (REGNO (reg2)))
18741 return 0;
18742
18743 return (REGNO (reg1) == REGNO (reg2) - 1);
18744 }
18745
18746 /* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn.
18747 addr1 and addr2 must be in consecutive memory locations
18748 (addr2 == addr1 + 8). */
18749
18750 int
18751 mems_ok_for_quad_peep (rtx mem1, rtx mem2)
18752 {
18753 rtx addr1, addr2;
18754 unsigned int reg1, reg2;
18755 int offset1, offset2;
18756
18757 /* The mems cannot be volatile. */
18758 if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2))
18759 return 0;
18760
18761 addr1 = XEXP (mem1, 0);
18762 addr2 = XEXP (mem2, 0);
18763
18764 /* Extract an offset (if used) from the first addr. */
18765 if (GET_CODE (addr1) == PLUS)
18766 {
18767 /* If not a REG, return zero. */
18768 if (GET_CODE (XEXP (addr1, 0)) != REG)
18769 return 0;
18770 else
18771 {
18772 reg1 = REGNO (XEXP (addr1, 0));
18773 /* The offset must be constant! */
18774 if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
18775 return 0;
18776 offset1 = INTVAL (XEXP (addr1, 1));
18777 }
18778 }
18779 else if (GET_CODE (addr1) != REG)
18780 return 0;
18781 else
18782 {
18783 reg1 = REGNO (addr1);
18784 /* This was a simple (mem (reg)) expression. Offset is 0. */
18785 offset1 = 0;
18786 }
18787
18788 /* And now for the second addr. */
18789 if (GET_CODE (addr2) == PLUS)
18790 {
18791 /* If not a REG, return zero. */
18792 if (GET_CODE (XEXP (addr2, 0)) != REG)
18793 return 0;
18794 else
18795 {
18796 reg2 = REGNO (XEXP (addr2, 0));
18797 /* The offset must be constant. */
18798 if (GET_CODE (XEXP (addr2, 1)) != CONST_INT)
18799 return 0;
18800 offset2 = INTVAL (XEXP (addr2, 1));
18801 }
18802 }
18803 else if (GET_CODE (addr2) != REG)
18804 return 0;
18805 else
18806 {
18807 reg2 = REGNO (addr2);
18808 /* This was a simple (mem (reg)) expression. Offset is 0. */
18809 offset2 = 0;
18810 }
18811
18812 /* Both of these must have the same base register. */
18813 if (reg1 != reg2)
18814 return 0;
18815
18816 /* The offset for the second addr must be 8 more than the first addr. */
18817 if (offset2 != offset1 + 8)
18818 return 0;
18819
18820 /* All the tests passed. addr1 and addr2 are valid for lfq or stfq
18821 instructions. */
18822 return 1;
18823 }
18824 \f
18825 /* Implement TARGET_SECONDARY_RELOAD_NEEDED_MODE. For SDmode values we
18826 need to use DDmode, in all other cases we can use the same mode. */
18827 static machine_mode
18828 rs6000_secondary_memory_needed_mode (machine_mode mode)
18829 {
18830 if (lra_in_progress && mode == SDmode)
18831 return DDmode;
18832 return mode;
18833 }
18834
18835 /* Classify a register type. Because the FMRGOW/FMRGEW instructions only work
18836 on traditional floating point registers, and the VMRGOW/VMRGEW instructions
18837 only work on the traditional altivec registers, note if an altivec register
18838 was chosen. */
18839
18840 static enum rs6000_reg_type
18841 register_to_reg_type (rtx reg, bool *is_altivec)
18842 {
18843 HOST_WIDE_INT regno;
18844 enum reg_class rclass;
18845
18846 if (GET_CODE (reg) == SUBREG)
18847 reg = SUBREG_REG (reg);
18848
18849 if (!REG_P (reg))
18850 return NO_REG_TYPE;
18851
18852 regno = REGNO (reg);
18853 if (regno >= FIRST_PSEUDO_REGISTER)
18854 {
18855 if (!lra_in_progress && !reload_completed)
18856 return PSEUDO_REG_TYPE;
18857
18858 regno = true_regnum (reg);
18859 if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
18860 return PSEUDO_REG_TYPE;
18861 }
18862
18863 gcc_assert (regno >= 0);
18864
18865 if (is_altivec && ALTIVEC_REGNO_P (regno))
18866 *is_altivec = true;
18867
18868 rclass = rs6000_regno_regclass[regno];
18869 return reg_class_to_reg_type[(int)rclass];
18870 }
18871
18872 /* Helper function to return the cost of adding a TOC entry address. */
18873
18874 static inline int
18875 rs6000_secondary_reload_toc_costs (addr_mask_type addr_mask)
18876 {
18877 int ret;
18878
18879 if (TARGET_CMODEL != CMODEL_SMALL)
18880 ret = ((addr_mask & RELOAD_REG_OFFSET) == 0) ? 1 : 2;
18881
18882 else
18883 ret = (TARGET_MINIMAL_TOC) ? 6 : 3;
18884
18885 return ret;
18886 }
18887
18888 /* Helper function for rs6000_secondary_reload to determine whether the memory
18889 address (ADDR) with a given register class (RCLASS) and machine mode (MODE)
18890 needs reloading. Return negative if the memory is not handled by the memory
18891 helper functions and to try a different reload method, 0 if no additional
18892 instructions are need, and positive to give the extra cost for the
18893 memory. */
18894
18895 static int
18896 rs6000_secondary_reload_memory (rtx addr,
18897 enum reg_class rclass,
18898 machine_mode mode)
18899 {
18900 int extra_cost = 0;
18901 rtx reg, and_arg, plus_arg0, plus_arg1;
18902 addr_mask_type addr_mask;
18903 const char *type = NULL;
18904 const char *fail_msg = NULL;
18905
18906 if (GPR_REG_CLASS_P (rclass))
18907 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_GPR];
18908
18909 else if (rclass == FLOAT_REGS)
18910 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_FPR];
18911
18912 else if (rclass == ALTIVEC_REGS)
18913 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_VMX];
18914
18915 /* For the combined VSX_REGS, turn off Altivec AND -16. */
18916 else if (rclass == VSX_REGS)
18917 addr_mask = (reg_addr[mode].addr_mask[RELOAD_REG_VMX]
18918 & ~RELOAD_REG_AND_M16);
18919
18920 /* If the register allocator hasn't made up its mind yet on the register
18921 class to use, settle on defaults to use. */
18922 else if (rclass == NO_REGS)
18923 {
18924 addr_mask = (reg_addr[mode].addr_mask[RELOAD_REG_ANY]
18925 & ~RELOAD_REG_AND_M16);
18926
18927 if ((addr_mask & RELOAD_REG_MULTIPLE) != 0)
18928 addr_mask &= ~(RELOAD_REG_INDEXED
18929 | RELOAD_REG_PRE_INCDEC
18930 | RELOAD_REG_PRE_MODIFY);
18931 }
18932
18933 else
18934 addr_mask = 0;
18935
18936 /* If the register isn't valid in this register class, just return now. */
18937 if ((addr_mask & RELOAD_REG_VALID) == 0)
18938 {
18939 if (TARGET_DEBUG_ADDR)
18940 {
18941 fprintf (stderr,
18942 "rs6000_secondary_reload_memory: mode = %s, class = %s, "
18943 "not valid in class\n",
18944 GET_MODE_NAME (mode), reg_class_names[rclass]);
18945 debug_rtx (addr);
18946 }
18947
18948 return -1;
18949 }
18950
18951 switch (GET_CODE (addr))
18952 {
18953 /* Does the register class supports auto update forms for this mode? We
18954 don't need a scratch register, since the powerpc only supports
18955 PRE_INC, PRE_DEC, and PRE_MODIFY. */
18956 case PRE_INC:
18957 case PRE_DEC:
18958 reg = XEXP (addr, 0);
18959 if (!base_reg_operand (addr, GET_MODE (reg)))
18960 {
18961 fail_msg = "no base register #1";
18962 extra_cost = -1;
18963 }
18964
18965 else if ((addr_mask & RELOAD_REG_PRE_INCDEC) == 0)
18966 {
18967 extra_cost = 1;
18968 type = "update";
18969 }
18970 break;
18971
18972 case PRE_MODIFY:
18973 reg = XEXP (addr, 0);
18974 plus_arg1 = XEXP (addr, 1);
18975 if (!base_reg_operand (reg, GET_MODE (reg))
18976 || GET_CODE (plus_arg1) != PLUS
18977 || !rtx_equal_p (reg, XEXP (plus_arg1, 0)))
18978 {
18979 fail_msg = "bad PRE_MODIFY";
18980 extra_cost = -1;
18981 }
18982
18983 else if ((addr_mask & RELOAD_REG_PRE_MODIFY) == 0)
18984 {
18985 extra_cost = 1;
18986 type = "update";
18987 }
18988 break;
18989
18990 /* Do we need to simulate AND -16 to clear the bottom address bits used
18991 in VMX load/stores? Only allow the AND for vector sizes. */
18992 case AND:
18993 and_arg = XEXP (addr, 0);
18994 if (GET_MODE_SIZE (mode) != 16
18995 || GET_CODE (XEXP (addr, 1)) != CONST_INT
18996 || INTVAL (XEXP (addr, 1)) != -16)
18997 {
18998 fail_msg = "bad Altivec AND #1";
18999 extra_cost = -1;
19000 }
19001
19002 if (rclass != ALTIVEC_REGS)
19003 {
19004 if (legitimate_indirect_address_p (and_arg, false))
19005 extra_cost = 1;
19006
19007 else if (legitimate_indexed_address_p (and_arg, false))
19008 extra_cost = 2;
19009
19010 else
19011 {
19012 fail_msg = "bad Altivec AND #2";
19013 extra_cost = -1;
19014 }
19015
19016 type = "and";
19017 }
19018 break;
19019
19020 /* If this is an indirect address, make sure it is a base register. */
19021 case REG:
19022 case SUBREG:
19023 if (!legitimate_indirect_address_p (addr, false))
19024 {
19025 extra_cost = 1;
19026 type = "move";
19027 }
19028 break;
19029
19030 /* If this is an indexed address, make sure the register class can handle
19031 indexed addresses for this mode. */
19032 case PLUS:
19033 plus_arg0 = XEXP (addr, 0);
19034 plus_arg1 = XEXP (addr, 1);
19035
19036 /* (plus (plus (reg) (constant)) (constant)) is generated during
19037 push_reload processing, so handle it now. */
19038 if (GET_CODE (plus_arg0) == PLUS && CONST_INT_P (plus_arg1))
19039 {
19040 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19041 {
19042 extra_cost = 1;
19043 type = "offset";
19044 }
19045 }
19046
19047 /* (plus (plus (reg) (constant)) (reg)) is also generated during
19048 push_reload processing, so handle it now. */
19049 else if (GET_CODE (plus_arg0) == PLUS && REG_P (plus_arg1))
19050 {
19051 if ((addr_mask & RELOAD_REG_INDEXED) == 0)
19052 {
19053 extra_cost = 1;
19054 type = "indexed #2";
19055 }
19056 }
19057
19058 else if (!base_reg_operand (plus_arg0, GET_MODE (plus_arg0)))
19059 {
19060 fail_msg = "no base register #2";
19061 extra_cost = -1;
19062 }
19063
19064 else if (int_reg_operand (plus_arg1, GET_MODE (plus_arg1)))
19065 {
19066 if ((addr_mask & RELOAD_REG_INDEXED) == 0
19067 || !legitimate_indexed_address_p (addr, false))
19068 {
19069 extra_cost = 1;
19070 type = "indexed";
19071 }
19072 }
19073
19074 else if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0
19075 && CONST_INT_P (plus_arg1))
19076 {
19077 if (!quad_address_offset_p (INTVAL (plus_arg1)))
19078 {
19079 extra_cost = 1;
19080 type = "vector d-form offset";
19081 }
19082 }
19083
19084 /* Make sure the register class can handle offset addresses. */
19085 else if (rs6000_legitimate_offset_address_p (mode, addr, false, true))
19086 {
19087 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19088 {
19089 extra_cost = 1;
19090 type = "offset #2";
19091 }
19092 }
19093
19094 else
19095 {
19096 fail_msg = "bad PLUS";
19097 extra_cost = -1;
19098 }
19099
19100 break;
19101
19102 case LO_SUM:
19103 /* Quad offsets are restricted and can't handle normal addresses. */
19104 if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0)
19105 {
19106 extra_cost = -1;
19107 type = "vector d-form lo_sum";
19108 }
19109
19110 else if (!legitimate_lo_sum_address_p (mode, addr, false))
19111 {
19112 fail_msg = "bad LO_SUM";
19113 extra_cost = -1;
19114 }
19115
19116 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19117 {
19118 extra_cost = 1;
19119 type = "lo_sum";
19120 }
19121 break;
19122
19123 /* Static addresses need to create a TOC entry. */
19124 case CONST:
19125 case SYMBOL_REF:
19126 case LABEL_REF:
19127 if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0)
19128 {
19129 extra_cost = -1;
19130 type = "vector d-form lo_sum #2";
19131 }
19132
19133 else
19134 {
19135 type = "address";
19136 extra_cost = rs6000_secondary_reload_toc_costs (addr_mask);
19137 }
19138 break;
19139
19140 /* TOC references look like offsetable memory. */
19141 case UNSPEC:
19142 if (TARGET_CMODEL == CMODEL_SMALL || XINT (addr, 1) != UNSPEC_TOCREL)
19143 {
19144 fail_msg = "bad UNSPEC";
19145 extra_cost = -1;
19146 }
19147
19148 else if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0)
19149 {
19150 extra_cost = -1;
19151 type = "vector d-form lo_sum #3";
19152 }
19153
19154 else if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19155 {
19156 extra_cost = 1;
19157 type = "toc reference";
19158 }
19159 break;
19160
19161 default:
19162 {
19163 fail_msg = "bad address";
19164 extra_cost = -1;
19165 }
19166 }
19167
19168 if (TARGET_DEBUG_ADDR /* && extra_cost != 0 */)
19169 {
19170 if (extra_cost < 0)
19171 fprintf (stderr,
19172 "rs6000_secondary_reload_memory error: mode = %s, "
19173 "class = %s, addr_mask = '%s', %s\n",
19174 GET_MODE_NAME (mode),
19175 reg_class_names[rclass],
19176 rs6000_debug_addr_mask (addr_mask, false),
19177 (fail_msg != NULL) ? fail_msg : "<bad address>");
19178
19179 else
19180 fprintf (stderr,
19181 "rs6000_secondary_reload_memory: mode = %s, class = %s, "
19182 "addr_mask = '%s', extra cost = %d, %s\n",
19183 GET_MODE_NAME (mode),
19184 reg_class_names[rclass],
19185 rs6000_debug_addr_mask (addr_mask, false),
19186 extra_cost,
19187 (type) ? type : "<none>");
19188
19189 debug_rtx (addr);
19190 }
19191
19192 return extra_cost;
19193 }
19194
19195 /* Helper function for rs6000_secondary_reload to return true if a move to a
19196 different register classe is really a simple move. */
19197
19198 static bool
19199 rs6000_secondary_reload_simple_move (enum rs6000_reg_type to_type,
19200 enum rs6000_reg_type from_type,
19201 machine_mode mode)
19202 {
19203 int size = GET_MODE_SIZE (mode);
19204
19205 /* Add support for various direct moves available. In this function, we only
19206 look at cases where we don't need any extra registers, and one or more
19207 simple move insns are issued. Originally small integers are not allowed
19208 in FPR/VSX registers. Single precision binary floating is not a simple
19209 move because we need to convert to the single precision memory layout.
19210 The 4-byte SDmode can be moved. TDmode values are disallowed since they
19211 need special direct move handling, which we do not support yet. */
19212 if (TARGET_DIRECT_MOVE
19213 && ((to_type == GPR_REG_TYPE && from_type == VSX_REG_TYPE)
19214 || (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE)))
19215 {
19216 if (TARGET_POWERPC64)
19217 {
19218 /* ISA 2.07: MTVSRD or MVFVSRD. */
19219 if (size == 8)
19220 return true;
19221
19222 /* ISA 3.0: MTVSRDD or MFVSRD + MFVSRLD. */
19223 if (size == 16 && TARGET_P9_VECTOR && mode != TDmode)
19224 return true;
19225 }
19226
19227 /* ISA 2.07: MTVSRWZ or MFVSRWZ. */
19228 if (TARGET_P8_VECTOR)
19229 {
19230 if (mode == SImode)
19231 return true;
19232
19233 if (TARGET_P9_VECTOR && (mode == HImode || mode == QImode))
19234 return true;
19235 }
19236
19237 /* ISA 2.07: MTVSRWZ or MFVSRWZ. */
19238 if (mode == SDmode)
19239 return true;
19240 }
19241
19242 /* Power6+: MFTGPR or MFFGPR. */
19243 else if (TARGET_MFPGPR && TARGET_POWERPC64 && size == 8
19244 && ((to_type == GPR_REG_TYPE && from_type == FPR_REG_TYPE)
19245 || (to_type == FPR_REG_TYPE && from_type == GPR_REG_TYPE)))
19246 return true;
19247
19248 /* Move to/from SPR. */
19249 else if ((size == 4 || (TARGET_POWERPC64 && size == 8))
19250 && ((to_type == GPR_REG_TYPE && from_type == SPR_REG_TYPE)
19251 || (to_type == SPR_REG_TYPE && from_type == GPR_REG_TYPE)))
19252 return true;
19253
19254 return false;
19255 }
19256
19257 /* Direct move helper function for rs6000_secondary_reload, handle all of the
19258 special direct moves that involve allocating an extra register, return the
19259 insn code of the helper function if there is such a function or
19260 CODE_FOR_nothing if not. */
19261
19262 static bool
19263 rs6000_secondary_reload_direct_move (enum rs6000_reg_type to_type,
19264 enum rs6000_reg_type from_type,
19265 machine_mode mode,
19266 secondary_reload_info *sri,
19267 bool altivec_p)
19268 {
19269 bool ret = false;
19270 enum insn_code icode = CODE_FOR_nothing;
19271 int cost = 0;
19272 int size = GET_MODE_SIZE (mode);
19273
19274 if (TARGET_POWERPC64 && size == 16)
19275 {
19276 /* Handle moving 128-bit values from GPRs to VSX point registers on
19277 ISA 2.07 (power8, power9) when running in 64-bit mode using
19278 XXPERMDI to glue the two 64-bit values back together. */
19279 if (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE)
19280 {
19281 cost = 3; /* 2 mtvsrd's, 1 xxpermdi. */
19282 icode = reg_addr[mode].reload_vsx_gpr;
19283 }
19284
19285 /* Handle moving 128-bit values from VSX point registers to GPRs on
19286 ISA 2.07 when running in 64-bit mode using XXPERMDI to get access to the
19287 bottom 64-bit value. */
19288 else if (to_type == GPR_REG_TYPE && from_type == VSX_REG_TYPE)
19289 {
19290 cost = 3; /* 2 mfvsrd's, 1 xxpermdi. */
19291 icode = reg_addr[mode].reload_gpr_vsx;
19292 }
19293 }
19294
19295 else if (TARGET_POWERPC64 && mode == SFmode)
19296 {
19297 if (to_type == GPR_REG_TYPE && from_type == VSX_REG_TYPE)
19298 {
19299 cost = 3; /* xscvdpspn, mfvsrd, and. */
19300 icode = reg_addr[mode].reload_gpr_vsx;
19301 }
19302
19303 else if (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE)
19304 {
19305 cost = 2; /* mtvsrz, xscvspdpn. */
19306 icode = reg_addr[mode].reload_vsx_gpr;
19307 }
19308 }
19309
19310 else if (!TARGET_POWERPC64 && size == 8)
19311 {
19312 /* Handle moving 64-bit values from GPRs to floating point registers on
19313 ISA 2.07 when running in 32-bit mode using FMRGOW to glue the two
19314 32-bit values back together. Altivec register classes must be handled
19315 specially since a different instruction is used, and the secondary
19316 reload support requires a single instruction class in the scratch
19317 register constraint. However, right now TFmode is not allowed in
19318 Altivec registers, so the pattern will never match. */
19319 if (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE && !altivec_p)
19320 {
19321 cost = 3; /* 2 mtvsrwz's, 1 fmrgow. */
19322 icode = reg_addr[mode].reload_fpr_gpr;
19323 }
19324 }
19325
19326 if (icode != CODE_FOR_nothing)
19327 {
19328 ret = true;
19329 if (sri)
19330 {
19331 sri->icode = icode;
19332 sri->extra_cost = cost;
19333 }
19334 }
19335
19336 return ret;
19337 }
19338
19339 /* Return whether a move between two register classes can be done either
19340 directly (simple move) or via a pattern that uses a single extra temporary
19341 (using ISA 2.07's direct move in this case. */
19342
19343 static bool
19344 rs6000_secondary_reload_move (enum rs6000_reg_type to_type,
19345 enum rs6000_reg_type from_type,
19346 machine_mode mode,
19347 secondary_reload_info *sri,
19348 bool altivec_p)
19349 {
19350 /* Fall back to load/store reloads if either type is not a register. */
19351 if (to_type == NO_REG_TYPE || from_type == NO_REG_TYPE)
19352 return false;
19353
19354 /* If we haven't allocated registers yet, assume the move can be done for the
19355 standard register types. */
19356 if ((to_type == PSEUDO_REG_TYPE && from_type == PSEUDO_REG_TYPE)
19357 || (to_type == PSEUDO_REG_TYPE && IS_STD_REG_TYPE (from_type))
19358 || (from_type == PSEUDO_REG_TYPE && IS_STD_REG_TYPE (to_type)))
19359 return true;
19360
19361 /* Moves to the same set of registers is a simple move for non-specialized
19362 registers. */
19363 if (to_type == from_type && IS_STD_REG_TYPE (to_type))
19364 return true;
19365
19366 /* Check whether a simple move can be done directly. */
19367 if (rs6000_secondary_reload_simple_move (to_type, from_type, mode))
19368 {
19369 if (sri)
19370 {
19371 sri->icode = CODE_FOR_nothing;
19372 sri->extra_cost = 0;
19373 }
19374 return true;
19375 }
19376
19377 /* Now check if we can do it in a few steps. */
19378 return rs6000_secondary_reload_direct_move (to_type, from_type, mode, sri,
19379 altivec_p);
19380 }
19381
19382 /* Inform reload about cases where moving X with a mode MODE to a register in
19383 RCLASS requires an extra scratch or immediate register. Return the class
19384 needed for the immediate register.
19385
19386 For VSX and Altivec, we may need a register to convert sp+offset into
19387 reg+sp.
19388
19389 For misaligned 64-bit gpr loads and stores we need a register to
19390 convert an offset address to indirect. */
19391
19392 static reg_class_t
19393 rs6000_secondary_reload (bool in_p,
19394 rtx x,
19395 reg_class_t rclass_i,
19396 machine_mode mode,
19397 secondary_reload_info *sri)
19398 {
19399 enum reg_class rclass = (enum reg_class) rclass_i;
19400 reg_class_t ret = ALL_REGS;
19401 enum insn_code icode;
19402 bool default_p = false;
19403 bool done_p = false;
19404
19405 /* Allow subreg of memory before/during reload. */
19406 bool memory_p = (MEM_P (x)
19407 || (!reload_completed && GET_CODE (x) == SUBREG
19408 && MEM_P (SUBREG_REG (x))));
19409
19410 sri->icode = CODE_FOR_nothing;
19411 sri->t_icode = CODE_FOR_nothing;
19412 sri->extra_cost = 0;
19413 icode = ((in_p)
19414 ? reg_addr[mode].reload_load
19415 : reg_addr[mode].reload_store);
19416
19417 if (REG_P (x) || register_operand (x, mode))
19418 {
19419 enum rs6000_reg_type to_type = reg_class_to_reg_type[(int)rclass];
19420 bool altivec_p = (rclass == ALTIVEC_REGS);
19421 enum rs6000_reg_type from_type = register_to_reg_type (x, &altivec_p);
19422
19423 if (!in_p)
19424 std::swap (to_type, from_type);
19425
19426 /* Can we do a direct move of some sort? */
19427 if (rs6000_secondary_reload_move (to_type, from_type, mode, sri,
19428 altivec_p))
19429 {
19430 icode = (enum insn_code)sri->icode;
19431 default_p = false;
19432 done_p = true;
19433 ret = NO_REGS;
19434 }
19435 }
19436
19437 /* Make sure 0.0 is not reloaded or forced into memory. */
19438 if (x == CONST0_RTX (mode) && VSX_REG_CLASS_P (rclass))
19439 {
19440 ret = NO_REGS;
19441 default_p = false;
19442 done_p = true;
19443 }
19444
19445 /* If this is a scalar floating point value and we want to load it into the
19446 traditional Altivec registers, do it via a move via a traditional floating
19447 point register, unless we have D-form addressing. Also make sure that
19448 non-zero constants use a FPR. */
19449 if (!done_p && reg_addr[mode].scalar_in_vmx_p
19450 && !mode_supports_vmx_dform (mode)
19451 && (rclass == VSX_REGS || rclass == ALTIVEC_REGS)
19452 && (memory_p || (GET_CODE (x) == CONST_DOUBLE)))
19453 {
19454 ret = FLOAT_REGS;
19455 default_p = false;
19456 done_p = true;
19457 }
19458
19459 /* Handle reload of load/stores if we have reload helper functions. */
19460 if (!done_p && icode != CODE_FOR_nothing && memory_p)
19461 {
19462 int extra_cost = rs6000_secondary_reload_memory (XEXP (x, 0), rclass,
19463 mode);
19464
19465 if (extra_cost >= 0)
19466 {
19467 done_p = true;
19468 ret = NO_REGS;
19469 if (extra_cost > 0)
19470 {
19471 sri->extra_cost = extra_cost;
19472 sri->icode = icode;
19473 }
19474 }
19475 }
19476
19477 /* Handle unaligned loads and stores of integer registers. */
19478 if (!done_p && TARGET_POWERPC64
19479 && reg_class_to_reg_type[(int)rclass] == GPR_REG_TYPE
19480 && memory_p
19481 && GET_MODE_SIZE (GET_MODE (x)) >= UNITS_PER_WORD)
19482 {
19483 rtx addr = XEXP (x, 0);
19484 rtx off = address_offset (addr);
19485
19486 if (off != NULL_RTX)
19487 {
19488 unsigned int extra = GET_MODE_SIZE (GET_MODE (x)) - UNITS_PER_WORD;
19489 unsigned HOST_WIDE_INT offset = INTVAL (off);
19490
19491 /* We need a secondary reload when our legitimate_address_p
19492 says the address is good (as otherwise the entire address
19493 will be reloaded), and the offset is not a multiple of
19494 four or we have an address wrap. Address wrap will only
19495 occur for LO_SUMs since legitimate_offset_address_p
19496 rejects addresses for 16-byte mems that will wrap. */
19497 if (GET_CODE (addr) == LO_SUM
19498 ? (1 /* legitimate_address_p allows any offset for lo_sum */
19499 && ((offset & 3) != 0
19500 || ((offset & 0xffff) ^ 0x8000) >= 0x10000 - extra))
19501 : (offset + 0x8000 < 0x10000 - extra /* legitimate_address_p */
19502 && (offset & 3) != 0))
19503 {
19504 /* -m32 -mpowerpc64 needs to use a 32-bit scratch register. */
19505 if (in_p)
19506 sri->icode = ((TARGET_32BIT) ? CODE_FOR_reload_si_load
19507 : CODE_FOR_reload_di_load);
19508 else
19509 sri->icode = ((TARGET_32BIT) ? CODE_FOR_reload_si_store
19510 : CODE_FOR_reload_di_store);
19511 sri->extra_cost = 2;
19512 ret = NO_REGS;
19513 done_p = true;
19514 }
19515 else
19516 default_p = true;
19517 }
19518 else
19519 default_p = true;
19520 }
19521
19522 if (!done_p && !TARGET_POWERPC64
19523 && reg_class_to_reg_type[(int)rclass] == GPR_REG_TYPE
19524 && memory_p
19525 && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
19526 {
19527 rtx addr = XEXP (x, 0);
19528 rtx off = address_offset (addr);
19529
19530 if (off != NULL_RTX)
19531 {
19532 unsigned int extra = GET_MODE_SIZE (GET_MODE (x)) - UNITS_PER_WORD;
19533 unsigned HOST_WIDE_INT offset = INTVAL (off);
19534
19535 /* We need a secondary reload when our legitimate_address_p
19536 says the address is good (as otherwise the entire address
19537 will be reloaded), and we have a wrap.
19538
19539 legitimate_lo_sum_address_p allows LO_SUM addresses to
19540 have any offset so test for wrap in the low 16 bits.
19541
19542 legitimate_offset_address_p checks for the range
19543 [-0x8000,0x7fff] for mode size of 8 and [-0x8000,0x7ff7]
19544 for mode size of 16. We wrap at [0x7ffc,0x7fff] and
19545 [0x7ff4,0x7fff] respectively, so test for the
19546 intersection of these ranges, [0x7ffc,0x7fff] and
19547 [0x7ff4,0x7ff7] respectively.
19548
19549 Note that the address we see here may have been
19550 manipulated by legitimize_reload_address. */
19551 if (GET_CODE (addr) == LO_SUM
19552 ? ((offset & 0xffff) ^ 0x8000) >= 0x10000 - extra
19553 : offset - (0x8000 - extra) < UNITS_PER_WORD)
19554 {
19555 if (in_p)
19556 sri->icode = CODE_FOR_reload_si_load;
19557 else
19558 sri->icode = CODE_FOR_reload_si_store;
19559 sri->extra_cost = 2;
19560 ret = NO_REGS;
19561 done_p = true;
19562 }
19563 else
19564 default_p = true;
19565 }
19566 else
19567 default_p = true;
19568 }
19569
19570 if (!done_p)
19571 default_p = true;
19572
19573 if (default_p)
19574 ret = default_secondary_reload (in_p, x, rclass, mode, sri);
19575
19576 gcc_assert (ret != ALL_REGS);
19577
19578 if (TARGET_DEBUG_ADDR)
19579 {
19580 fprintf (stderr,
19581 "\nrs6000_secondary_reload, return %s, in_p = %s, rclass = %s, "
19582 "mode = %s",
19583 reg_class_names[ret],
19584 in_p ? "true" : "false",
19585 reg_class_names[rclass],
19586 GET_MODE_NAME (mode));
19587
19588 if (reload_completed)
19589 fputs (", after reload", stderr);
19590
19591 if (!done_p)
19592 fputs (", done_p not set", stderr);
19593
19594 if (default_p)
19595 fputs (", default secondary reload", stderr);
19596
19597 if (sri->icode != CODE_FOR_nothing)
19598 fprintf (stderr, ", reload func = %s, extra cost = %d",
19599 insn_data[sri->icode].name, sri->extra_cost);
19600
19601 else if (sri->extra_cost > 0)
19602 fprintf (stderr, ", extra cost = %d", sri->extra_cost);
19603
19604 fputs ("\n", stderr);
19605 debug_rtx (x);
19606 }
19607
19608 return ret;
19609 }
19610
19611 /* Better tracing for rs6000_secondary_reload_inner. */
19612
19613 static void
19614 rs6000_secondary_reload_trace (int line, rtx reg, rtx mem, rtx scratch,
19615 bool store_p)
19616 {
19617 rtx set, clobber;
19618
19619 gcc_assert (reg != NULL_RTX && mem != NULL_RTX && scratch != NULL_RTX);
19620
19621 fprintf (stderr, "rs6000_secondary_reload_inner:%d, type = %s\n", line,
19622 store_p ? "store" : "load");
19623
19624 if (store_p)
19625 set = gen_rtx_SET (mem, reg);
19626 else
19627 set = gen_rtx_SET (reg, mem);
19628
19629 clobber = gen_rtx_CLOBBER (VOIDmode, scratch);
19630 debug_rtx (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
19631 }
19632
19633 static void rs6000_secondary_reload_fail (int, rtx, rtx, rtx, bool)
19634 ATTRIBUTE_NORETURN;
19635
19636 static void
19637 rs6000_secondary_reload_fail (int line, rtx reg, rtx mem, rtx scratch,
19638 bool store_p)
19639 {
19640 rs6000_secondary_reload_trace (line, reg, mem, scratch, store_p);
19641 gcc_unreachable ();
19642 }
19643
19644 /* Fixup reload addresses for values in GPR, FPR, and VMX registers that have
19645 reload helper functions. These were identified in
19646 rs6000_secondary_reload_memory, and if reload decided to use the secondary
19647 reload, it calls the insns:
19648 reload_<RELOAD:mode>_<P:mptrsize>_store
19649 reload_<RELOAD:mode>_<P:mptrsize>_load
19650
19651 which in turn calls this function, to do whatever is necessary to create
19652 valid addresses. */
19653
19654 void
19655 rs6000_secondary_reload_inner (rtx reg, rtx mem, rtx scratch, bool store_p)
19656 {
19657 int regno = true_regnum (reg);
19658 machine_mode mode = GET_MODE (reg);
19659 addr_mask_type addr_mask;
19660 rtx addr;
19661 rtx new_addr;
19662 rtx op_reg, op0, op1;
19663 rtx and_op;
19664 rtx cc_clobber;
19665 rtvec rv;
19666
19667 if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER || !MEM_P (mem)
19668 || !base_reg_operand (scratch, GET_MODE (scratch)))
19669 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19670
19671 if (IN_RANGE (regno, FIRST_GPR_REGNO, LAST_GPR_REGNO))
19672 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_GPR];
19673
19674 else if (IN_RANGE (regno, FIRST_FPR_REGNO, LAST_FPR_REGNO))
19675 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_FPR];
19676
19677 else if (IN_RANGE (regno, FIRST_ALTIVEC_REGNO, LAST_ALTIVEC_REGNO))
19678 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_VMX];
19679
19680 else
19681 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19682
19683 /* Make sure the mode is valid in this register class. */
19684 if ((addr_mask & RELOAD_REG_VALID) == 0)
19685 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19686
19687 if (TARGET_DEBUG_ADDR)
19688 rs6000_secondary_reload_trace (__LINE__, reg, mem, scratch, store_p);
19689
19690 new_addr = addr = XEXP (mem, 0);
19691 switch (GET_CODE (addr))
19692 {
19693 /* Does the register class support auto update forms for this mode? If
19694 not, do the update now. We don't need a scratch register, since the
19695 powerpc only supports PRE_INC, PRE_DEC, and PRE_MODIFY. */
19696 case PRE_INC:
19697 case PRE_DEC:
19698 op_reg = XEXP (addr, 0);
19699 if (!base_reg_operand (op_reg, Pmode))
19700 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19701
19702 if ((addr_mask & RELOAD_REG_PRE_INCDEC) == 0)
19703 {
19704 int delta = GET_MODE_SIZE (mode);
19705 if (GET_CODE (addr) == PRE_DEC)
19706 delta = -delta;
19707 emit_insn (gen_add2_insn (op_reg, GEN_INT (delta)));
19708 new_addr = op_reg;
19709 }
19710 break;
19711
19712 case PRE_MODIFY:
19713 op0 = XEXP (addr, 0);
19714 op1 = XEXP (addr, 1);
19715 if (!base_reg_operand (op0, Pmode)
19716 || GET_CODE (op1) != PLUS
19717 || !rtx_equal_p (op0, XEXP (op1, 0)))
19718 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19719
19720 if ((addr_mask & RELOAD_REG_PRE_MODIFY) == 0)
19721 {
19722 emit_insn (gen_rtx_SET (op0, op1));
19723 new_addr = reg;
19724 }
19725 break;
19726
19727 /* Do we need to simulate AND -16 to clear the bottom address bits used
19728 in VMX load/stores? */
19729 case AND:
19730 op0 = XEXP (addr, 0);
19731 op1 = XEXP (addr, 1);
19732 if ((addr_mask & RELOAD_REG_AND_M16) == 0)
19733 {
19734 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
19735 op_reg = op0;
19736
19737 else if (GET_CODE (op1) == PLUS)
19738 {
19739 emit_insn (gen_rtx_SET (scratch, op1));
19740 op_reg = scratch;
19741 }
19742
19743 else
19744 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19745
19746 and_op = gen_rtx_AND (GET_MODE (scratch), op_reg, op1);
19747 cc_clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (CCmode));
19748 rv = gen_rtvec (2, gen_rtx_SET (scratch, and_op), cc_clobber);
19749 emit_insn (gen_rtx_PARALLEL (VOIDmode, rv));
19750 new_addr = scratch;
19751 }
19752 break;
19753
19754 /* If this is an indirect address, make sure it is a base register. */
19755 case REG:
19756 case SUBREG:
19757 if (!base_reg_operand (addr, GET_MODE (addr)))
19758 {
19759 emit_insn (gen_rtx_SET (scratch, addr));
19760 new_addr = scratch;
19761 }
19762 break;
19763
19764 /* If this is an indexed address, make sure the register class can handle
19765 indexed addresses for this mode. */
19766 case PLUS:
19767 op0 = XEXP (addr, 0);
19768 op1 = XEXP (addr, 1);
19769 if (!base_reg_operand (op0, Pmode))
19770 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19771
19772 else if (int_reg_operand (op1, Pmode))
19773 {
19774 if ((addr_mask & RELOAD_REG_INDEXED) == 0)
19775 {
19776 emit_insn (gen_rtx_SET (scratch, addr));
19777 new_addr = scratch;
19778 }
19779 }
19780
19781 else if (mode_supports_dq_form (mode) && CONST_INT_P (op1))
19782 {
19783 if (((addr_mask & RELOAD_REG_QUAD_OFFSET) == 0)
19784 || !quad_address_p (addr, mode, false))
19785 {
19786 emit_insn (gen_rtx_SET (scratch, addr));
19787 new_addr = scratch;
19788 }
19789 }
19790
19791 /* Make sure the register class can handle offset addresses. */
19792 else if (rs6000_legitimate_offset_address_p (mode, addr, false, true))
19793 {
19794 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19795 {
19796 emit_insn (gen_rtx_SET (scratch, addr));
19797 new_addr = scratch;
19798 }
19799 }
19800
19801 else
19802 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19803
19804 break;
19805
19806 case LO_SUM:
19807 op0 = XEXP (addr, 0);
19808 op1 = XEXP (addr, 1);
19809 if (!base_reg_operand (op0, Pmode))
19810 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19811
19812 else if (int_reg_operand (op1, Pmode))
19813 {
19814 if ((addr_mask & RELOAD_REG_INDEXED) == 0)
19815 {
19816 emit_insn (gen_rtx_SET (scratch, addr));
19817 new_addr = scratch;
19818 }
19819 }
19820
19821 /* Quad offsets are restricted and can't handle normal addresses. */
19822 else if (mode_supports_dq_form (mode))
19823 {
19824 emit_insn (gen_rtx_SET (scratch, addr));
19825 new_addr = scratch;
19826 }
19827
19828 /* Make sure the register class can handle offset addresses. */
19829 else if (legitimate_lo_sum_address_p (mode, addr, false))
19830 {
19831 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19832 {
19833 emit_insn (gen_rtx_SET (scratch, addr));
19834 new_addr = scratch;
19835 }
19836 }
19837
19838 else
19839 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19840
19841 break;
19842
19843 case SYMBOL_REF:
19844 case CONST:
19845 case LABEL_REF:
19846 rs6000_emit_move (scratch, addr, Pmode);
19847 new_addr = scratch;
19848 break;
19849
19850 default:
19851 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19852 }
19853
19854 /* Adjust the address if it changed. */
19855 if (addr != new_addr)
19856 {
19857 mem = replace_equiv_address_nv (mem, new_addr);
19858 if (TARGET_DEBUG_ADDR)
19859 fprintf (stderr, "\nrs6000_secondary_reload_inner, mem adjusted.\n");
19860 }
19861
19862 /* Now create the move. */
19863 if (store_p)
19864 emit_insn (gen_rtx_SET (mem, reg));
19865 else
19866 emit_insn (gen_rtx_SET (reg, mem));
19867
19868 return;
19869 }
19870
19871 /* Convert reloads involving 64-bit gprs and misaligned offset
19872 addressing, or multiple 32-bit gprs and offsets that are too large,
19873 to use indirect addressing. */
19874
19875 void
19876 rs6000_secondary_reload_gpr (rtx reg, rtx mem, rtx scratch, bool store_p)
19877 {
19878 int regno = true_regnum (reg);
19879 enum reg_class rclass;
19880 rtx addr;
19881 rtx scratch_or_premodify = scratch;
19882
19883 if (TARGET_DEBUG_ADDR)
19884 {
19885 fprintf (stderr, "\nrs6000_secondary_reload_gpr, type = %s\n",
19886 store_p ? "store" : "load");
19887 fprintf (stderr, "reg:\n");
19888 debug_rtx (reg);
19889 fprintf (stderr, "mem:\n");
19890 debug_rtx (mem);
19891 fprintf (stderr, "scratch:\n");
19892 debug_rtx (scratch);
19893 }
19894
19895 gcc_assert (regno >= 0 && regno < FIRST_PSEUDO_REGISTER);
19896 gcc_assert (GET_CODE (mem) == MEM);
19897 rclass = REGNO_REG_CLASS (regno);
19898 gcc_assert (rclass == GENERAL_REGS || rclass == BASE_REGS);
19899 addr = XEXP (mem, 0);
19900
19901 if (GET_CODE (addr) == PRE_MODIFY)
19902 {
19903 gcc_assert (REG_P (XEXP (addr, 0))
19904 && GET_CODE (XEXP (addr, 1)) == PLUS
19905 && XEXP (XEXP (addr, 1), 0) == XEXP (addr, 0));
19906 scratch_or_premodify = XEXP (addr, 0);
19907 addr = XEXP (addr, 1);
19908 }
19909 gcc_assert (GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM);
19910
19911 rs6000_emit_move (scratch_or_premodify, addr, Pmode);
19912
19913 mem = replace_equiv_address_nv (mem, scratch_or_premodify);
19914
19915 /* Now create the move. */
19916 if (store_p)
19917 emit_insn (gen_rtx_SET (mem, reg));
19918 else
19919 emit_insn (gen_rtx_SET (reg, mem));
19920
19921 return;
19922 }
19923
19924 /* Given an rtx X being reloaded into a reg required to be
19925 in class CLASS, return the class of reg to actually use.
19926 In general this is just CLASS; but on some machines
19927 in some cases it is preferable to use a more restrictive class.
19928
19929 On the RS/6000, we have to return NO_REGS when we want to reload a
19930 floating-point CONST_DOUBLE to force it to be copied to memory.
19931
19932 We also don't want to reload integer values into floating-point
19933 registers if we can at all help it. In fact, this can
19934 cause reload to die, if it tries to generate a reload of CTR
19935 into a FP register and discovers it doesn't have the memory location
19936 required.
19937
19938 ??? Would it be a good idea to have reload do the converse, that is
19939 try to reload floating modes into FP registers if possible?
19940 */
19941
19942 static enum reg_class
19943 rs6000_preferred_reload_class (rtx x, enum reg_class rclass)
19944 {
19945 machine_mode mode = GET_MODE (x);
19946 bool is_constant = CONSTANT_P (x);
19947
19948 /* If a mode can't go in FPR/ALTIVEC/VSX registers, don't return a preferred
19949 reload class for it. */
19950 if ((rclass == ALTIVEC_REGS || rclass == VSX_REGS)
19951 && (reg_addr[mode].addr_mask[RELOAD_REG_VMX] & RELOAD_REG_VALID) == 0)
19952 return NO_REGS;
19953
19954 if ((rclass == FLOAT_REGS || rclass == VSX_REGS)
19955 && (reg_addr[mode].addr_mask[RELOAD_REG_FPR] & RELOAD_REG_VALID) == 0)
19956 return NO_REGS;
19957
19958 /* For VSX, see if we should prefer FLOAT_REGS or ALTIVEC_REGS. Do not allow
19959 the reloading of address expressions using PLUS into floating point
19960 registers. */
19961 if (TARGET_VSX && VSX_REG_CLASS_P (rclass) && GET_CODE (x) != PLUS)
19962 {
19963 if (is_constant)
19964 {
19965 /* Zero is always allowed in all VSX registers. */
19966 if (x == CONST0_RTX (mode))
19967 return rclass;
19968
19969 /* If this is a vector constant that can be formed with a few Altivec
19970 instructions, we want altivec registers. */
19971 if (GET_CODE (x) == CONST_VECTOR && easy_vector_constant (x, mode))
19972 return ALTIVEC_REGS;
19973
19974 /* If this is an integer constant that can easily be loaded into
19975 vector registers, allow it. */
19976 if (CONST_INT_P (x))
19977 {
19978 HOST_WIDE_INT value = INTVAL (x);
19979
19980 /* ISA 2.07 can generate -1 in all registers with XXLORC. ISA
19981 2.06 can generate it in the Altivec registers with
19982 VSPLTI<x>. */
19983 if (value == -1)
19984 {
19985 if (TARGET_P8_VECTOR)
19986 return rclass;
19987 else if (rclass == ALTIVEC_REGS || rclass == VSX_REGS)
19988 return ALTIVEC_REGS;
19989 else
19990 return NO_REGS;
19991 }
19992
19993 /* ISA 3.0 can load -128..127 using the XXSPLTIB instruction and
19994 a sign extend in the Altivec registers. */
19995 if (IN_RANGE (value, -128, 127) && TARGET_P9_VECTOR
19996 && (rclass == ALTIVEC_REGS || rclass == VSX_REGS))
19997 return ALTIVEC_REGS;
19998 }
19999
20000 /* Force constant to memory. */
20001 return NO_REGS;
20002 }
20003
20004 /* D-form addressing can easily reload the value. */
20005 if (mode_supports_vmx_dform (mode)
20006 || mode_supports_dq_form (mode))
20007 return rclass;
20008
20009 /* If this is a scalar floating point value and we don't have D-form
20010 addressing, prefer the traditional floating point registers so that we
20011 can use D-form (register+offset) addressing. */
20012 if (rclass == VSX_REGS
20013 && (mode == SFmode || GET_MODE_SIZE (mode) == 8))
20014 return FLOAT_REGS;
20015
20016 /* Prefer the Altivec registers if Altivec is handling the vector
20017 operations (i.e. V16QI, V8HI, and V4SI), or if we prefer Altivec
20018 loads. */
20019 if (VECTOR_UNIT_ALTIVEC_P (mode) || VECTOR_MEM_ALTIVEC_P (mode)
20020 || mode == V1TImode)
20021 return ALTIVEC_REGS;
20022
20023 return rclass;
20024 }
20025
20026 if (is_constant || GET_CODE (x) == PLUS)
20027 {
20028 if (reg_class_subset_p (GENERAL_REGS, rclass))
20029 return GENERAL_REGS;
20030 if (reg_class_subset_p (BASE_REGS, rclass))
20031 return BASE_REGS;
20032 return NO_REGS;
20033 }
20034
20035 if (GET_MODE_CLASS (mode) == MODE_INT && rclass == NON_SPECIAL_REGS)
20036 return GENERAL_REGS;
20037
20038 return rclass;
20039 }
20040
20041 /* Debug version of rs6000_preferred_reload_class. */
20042 static enum reg_class
20043 rs6000_debug_preferred_reload_class (rtx x, enum reg_class rclass)
20044 {
20045 enum reg_class ret = rs6000_preferred_reload_class (x, rclass);
20046
20047 fprintf (stderr,
20048 "\nrs6000_preferred_reload_class, return %s, rclass = %s, "
20049 "mode = %s, x:\n",
20050 reg_class_names[ret], reg_class_names[rclass],
20051 GET_MODE_NAME (GET_MODE (x)));
20052 debug_rtx (x);
20053
20054 return ret;
20055 }
20056
20057 /* If we are copying between FP or AltiVec registers and anything else, we need
20058 a memory location. The exception is when we are targeting ppc64 and the
20059 move to/from fpr to gpr instructions are available. Also, under VSX, you
20060 can copy vector registers from the FP register set to the Altivec register
20061 set and vice versa. */
20062
20063 static bool
20064 rs6000_secondary_memory_needed (machine_mode mode,
20065 reg_class_t from_class,
20066 reg_class_t to_class)
20067 {
20068 enum rs6000_reg_type from_type, to_type;
20069 bool altivec_p = ((from_class == ALTIVEC_REGS)
20070 || (to_class == ALTIVEC_REGS));
20071
20072 /* If a simple/direct move is available, we don't need secondary memory */
20073 from_type = reg_class_to_reg_type[(int)from_class];
20074 to_type = reg_class_to_reg_type[(int)to_class];
20075
20076 if (rs6000_secondary_reload_move (to_type, from_type, mode,
20077 (secondary_reload_info *)0, altivec_p))
20078 return false;
20079
20080 /* If we have a floating point or vector register class, we need to use
20081 memory to transfer the data. */
20082 if (IS_FP_VECT_REG_TYPE (from_type) || IS_FP_VECT_REG_TYPE (to_type))
20083 return true;
20084
20085 return false;
20086 }
20087
20088 /* Debug version of rs6000_secondary_memory_needed. */
20089 static bool
20090 rs6000_debug_secondary_memory_needed (machine_mode mode,
20091 reg_class_t from_class,
20092 reg_class_t to_class)
20093 {
20094 bool ret = rs6000_secondary_memory_needed (mode, from_class, to_class);
20095
20096 fprintf (stderr,
20097 "rs6000_secondary_memory_needed, return: %s, from_class = %s, "
20098 "to_class = %s, mode = %s\n",
20099 ret ? "true" : "false",
20100 reg_class_names[from_class],
20101 reg_class_names[to_class],
20102 GET_MODE_NAME (mode));
20103
20104 return ret;
20105 }
20106
20107 /* Return the register class of a scratch register needed to copy IN into
20108 or out of a register in RCLASS in MODE. If it can be done directly,
20109 NO_REGS is returned. */
20110
20111 static enum reg_class
20112 rs6000_secondary_reload_class (enum reg_class rclass, machine_mode mode,
20113 rtx in)
20114 {
20115 int regno;
20116
20117 if (TARGET_ELF || (DEFAULT_ABI == ABI_DARWIN
20118 #if TARGET_MACHO
20119 && MACHOPIC_INDIRECT
20120 #endif
20121 ))
20122 {
20123 /* We cannot copy a symbolic operand directly into anything
20124 other than BASE_REGS for TARGET_ELF. So indicate that a
20125 register from BASE_REGS is needed as an intermediate
20126 register.
20127
20128 On Darwin, pic addresses require a load from memory, which
20129 needs a base register. */
20130 if (rclass != BASE_REGS
20131 && (GET_CODE (in) == SYMBOL_REF
20132 || GET_CODE (in) == HIGH
20133 || GET_CODE (in) == LABEL_REF
20134 || GET_CODE (in) == CONST))
20135 return BASE_REGS;
20136 }
20137
20138 if (GET_CODE (in) == REG)
20139 {
20140 regno = REGNO (in);
20141 if (regno >= FIRST_PSEUDO_REGISTER)
20142 {
20143 regno = true_regnum (in);
20144 if (regno >= FIRST_PSEUDO_REGISTER)
20145 regno = -1;
20146 }
20147 }
20148 else if (GET_CODE (in) == SUBREG)
20149 {
20150 regno = true_regnum (in);
20151 if (regno >= FIRST_PSEUDO_REGISTER)
20152 regno = -1;
20153 }
20154 else
20155 regno = -1;
20156
20157 /* If we have VSX register moves, prefer moving scalar values between
20158 Altivec registers and GPR by going via an FPR (and then via memory)
20159 instead of reloading the secondary memory address for Altivec moves. */
20160 if (TARGET_VSX
20161 && GET_MODE_SIZE (mode) < 16
20162 && !mode_supports_vmx_dform (mode)
20163 && (((rclass == GENERAL_REGS || rclass == BASE_REGS)
20164 && (regno >= 0 && ALTIVEC_REGNO_P (regno)))
20165 || ((rclass == VSX_REGS || rclass == ALTIVEC_REGS)
20166 && (regno >= 0 && INT_REGNO_P (regno)))))
20167 return FLOAT_REGS;
20168
20169 /* We can place anything into GENERAL_REGS and can put GENERAL_REGS
20170 into anything. */
20171 if (rclass == GENERAL_REGS || rclass == BASE_REGS
20172 || (regno >= 0 && INT_REGNO_P (regno)))
20173 return NO_REGS;
20174
20175 /* Constants, memory, and VSX registers can go into VSX registers (both the
20176 traditional floating point and the altivec registers). */
20177 if (rclass == VSX_REGS
20178 && (regno == -1 || VSX_REGNO_P (regno)))
20179 return NO_REGS;
20180
20181 /* Constants, memory, and FP registers can go into FP registers. */
20182 if ((regno == -1 || FP_REGNO_P (regno))
20183 && (rclass == FLOAT_REGS || rclass == NON_SPECIAL_REGS))
20184 return (mode != SDmode || lra_in_progress) ? NO_REGS : GENERAL_REGS;
20185
20186 /* Memory, and AltiVec registers can go into AltiVec registers. */
20187 if ((regno == -1 || ALTIVEC_REGNO_P (regno))
20188 && rclass == ALTIVEC_REGS)
20189 return NO_REGS;
20190
20191 /* We can copy among the CR registers. */
20192 if ((rclass == CR_REGS || rclass == CR0_REGS)
20193 && regno >= 0 && CR_REGNO_P (regno))
20194 return NO_REGS;
20195
20196 /* Otherwise, we need GENERAL_REGS. */
20197 return GENERAL_REGS;
20198 }
20199
20200 /* Debug version of rs6000_secondary_reload_class. */
20201 static enum reg_class
20202 rs6000_debug_secondary_reload_class (enum reg_class rclass,
20203 machine_mode mode, rtx in)
20204 {
20205 enum reg_class ret = rs6000_secondary_reload_class (rclass, mode, in);
20206 fprintf (stderr,
20207 "\nrs6000_secondary_reload_class, return %s, rclass = %s, "
20208 "mode = %s, input rtx:\n",
20209 reg_class_names[ret], reg_class_names[rclass],
20210 GET_MODE_NAME (mode));
20211 debug_rtx (in);
20212
20213 return ret;
20214 }
20215
20216 /* Implement TARGET_CAN_CHANGE_MODE_CLASS. */
20217
20218 static bool
20219 rs6000_can_change_mode_class (machine_mode from,
20220 machine_mode to,
20221 reg_class_t rclass)
20222 {
20223 unsigned from_size = GET_MODE_SIZE (from);
20224 unsigned to_size = GET_MODE_SIZE (to);
20225
20226 if (from_size != to_size)
20227 {
20228 enum reg_class xclass = (TARGET_VSX) ? VSX_REGS : FLOAT_REGS;
20229
20230 if (reg_classes_intersect_p (xclass, rclass))
20231 {
20232 unsigned to_nregs = hard_regno_nregs (FIRST_FPR_REGNO, to);
20233 unsigned from_nregs = hard_regno_nregs (FIRST_FPR_REGNO, from);
20234 bool to_float128_vector_p = FLOAT128_VECTOR_P (to);
20235 bool from_float128_vector_p = FLOAT128_VECTOR_P (from);
20236
20237 /* Don't allow 64-bit types to overlap with 128-bit types that take a
20238 single register under VSX because the scalar part of the register
20239 is in the upper 64-bits, and not the lower 64-bits. Types like
20240 TFmode/TDmode that take 2 scalar register can overlap. 128-bit
20241 IEEE floating point can't overlap, and neither can small
20242 values. */
20243
20244 if (to_float128_vector_p && from_float128_vector_p)
20245 return true;
20246
20247 else if (to_float128_vector_p || from_float128_vector_p)
20248 return false;
20249
20250 /* TDmode in floating-mode registers must always go into a register
20251 pair with the most significant word in the even-numbered register
20252 to match ISA requirements. In little-endian mode, this does not
20253 match subreg numbering, so we cannot allow subregs. */
20254 if (!BYTES_BIG_ENDIAN && (to == TDmode || from == TDmode))
20255 return false;
20256
20257 if (from_size < 8 || to_size < 8)
20258 return false;
20259
20260 if (from_size == 8 && (8 * to_nregs) != to_size)
20261 return false;
20262
20263 if (to_size == 8 && (8 * from_nregs) != from_size)
20264 return false;
20265
20266 return true;
20267 }
20268 else
20269 return true;
20270 }
20271
20272 /* Since the VSX register set includes traditional floating point registers
20273 and altivec registers, just check for the size being different instead of
20274 trying to check whether the modes are vector modes. Otherwise it won't
20275 allow say DF and DI to change classes. For types like TFmode and TDmode
20276 that take 2 64-bit registers, rather than a single 128-bit register, don't
20277 allow subregs of those types to other 128 bit types. */
20278 if (TARGET_VSX && VSX_REG_CLASS_P (rclass))
20279 {
20280 unsigned num_regs = (from_size + 15) / 16;
20281 if (hard_regno_nregs (FIRST_FPR_REGNO, to) > num_regs
20282 || hard_regno_nregs (FIRST_FPR_REGNO, from) > num_regs)
20283 return false;
20284
20285 return (from_size == 8 || from_size == 16);
20286 }
20287
20288 if (TARGET_ALTIVEC && rclass == ALTIVEC_REGS
20289 && (ALTIVEC_VECTOR_MODE (from) + ALTIVEC_VECTOR_MODE (to)) == 1)
20290 return false;
20291
20292 return true;
20293 }
20294
20295 /* Debug version of rs6000_can_change_mode_class. */
20296 static bool
20297 rs6000_debug_can_change_mode_class (machine_mode from,
20298 machine_mode to,
20299 reg_class_t rclass)
20300 {
20301 bool ret = rs6000_can_change_mode_class (from, to, rclass);
20302
20303 fprintf (stderr,
20304 "rs6000_can_change_mode_class, return %s, from = %s, "
20305 "to = %s, rclass = %s\n",
20306 ret ? "true" : "false",
20307 GET_MODE_NAME (from), GET_MODE_NAME (to),
20308 reg_class_names[rclass]);
20309
20310 return ret;
20311 }
20312 \f
20313 /* Return a string to do a move operation of 128 bits of data. */
20314
20315 const char *
20316 rs6000_output_move_128bit (rtx operands[])
20317 {
20318 rtx dest = operands[0];
20319 rtx src = operands[1];
20320 machine_mode mode = GET_MODE (dest);
20321 int dest_regno;
20322 int src_regno;
20323 bool dest_gpr_p, dest_fp_p, dest_vmx_p, dest_vsx_p;
20324 bool src_gpr_p, src_fp_p, src_vmx_p, src_vsx_p;
20325
20326 if (REG_P (dest))
20327 {
20328 dest_regno = REGNO (dest);
20329 dest_gpr_p = INT_REGNO_P (dest_regno);
20330 dest_fp_p = FP_REGNO_P (dest_regno);
20331 dest_vmx_p = ALTIVEC_REGNO_P (dest_regno);
20332 dest_vsx_p = dest_fp_p | dest_vmx_p;
20333 }
20334 else
20335 {
20336 dest_regno = -1;
20337 dest_gpr_p = dest_fp_p = dest_vmx_p = dest_vsx_p = false;
20338 }
20339
20340 if (REG_P (src))
20341 {
20342 src_regno = REGNO (src);
20343 src_gpr_p = INT_REGNO_P (src_regno);
20344 src_fp_p = FP_REGNO_P (src_regno);
20345 src_vmx_p = ALTIVEC_REGNO_P (src_regno);
20346 src_vsx_p = src_fp_p | src_vmx_p;
20347 }
20348 else
20349 {
20350 src_regno = -1;
20351 src_gpr_p = src_fp_p = src_vmx_p = src_vsx_p = false;
20352 }
20353
20354 /* Register moves. */
20355 if (dest_regno >= 0 && src_regno >= 0)
20356 {
20357 if (dest_gpr_p)
20358 {
20359 if (src_gpr_p)
20360 return "#";
20361
20362 if (TARGET_DIRECT_MOVE_128 && src_vsx_p)
20363 return (WORDS_BIG_ENDIAN
20364 ? "mfvsrd %0,%x1\n\tmfvsrld %L0,%x1"
20365 : "mfvsrd %L0,%x1\n\tmfvsrld %0,%x1");
20366
20367 else if (TARGET_VSX && TARGET_DIRECT_MOVE && src_vsx_p)
20368 return "#";
20369 }
20370
20371 else if (TARGET_VSX && dest_vsx_p)
20372 {
20373 if (src_vsx_p)
20374 return "xxlor %x0,%x1,%x1";
20375
20376 else if (TARGET_DIRECT_MOVE_128 && src_gpr_p)
20377 return (WORDS_BIG_ENDIAN
20378 ? "mtvsrdd %x0,%1,%L1"
20379 : "mtvsrdd %x0,%L1,%1");
20380
20381 else if (TARGET_DIRECT_MOVE && src_gpr_p)
20382 return "#";
20383 }
20384
20385 else if (TARGET_ALTIVEC && dest_vmx_p && src_vmx_p)
20386 return "vor %0,%1,%1";
20387
20388 else if (dest_fp_p && src_fp_p)
20389 return "#";
20390 }
20391
20392 /* Loads. */
20393 else if (dest_regno >= 0 && MEM_P (src))
20394 {
20395 if (dest_gpr_p)
20396 {
20397 if (TARGET_QUAD_MEMORY && quad_load_store_p (dest, src))
20398 return "lq %0,%1";
20399 else
20400 return "#";
20401 }
20402
20403 else if (TARGET_ALTIVEC && dest_vmx_p
20404 && altivec_indexed_or_indirect_operand (src, mode))
20405 return "lvx %0,%y1";
20406
20407 else if (TARGET_VSX && dest_vsx_p)
20408 {
20409 if (mode_supports_dq_form (mode)
20410 && quad_address_p (XEXP (src, 0), mode, true))
20411 return "lxv %x0,%1";
20412
20413 else if (TARGET_P9_VECTOR)
20414 return "lxvx %x0,%y1";
20415
20416 else if (mode == V16QImode || mode == V8HImode || mode == V4SImode)
20417 return "lxvw4x %x0,%y1";
20418
20419 else
20420 return "lxvd2x %x0,%y1";
20421 }
20422
20423 else if (TARGET_ALTIVEC && dest_vmx_p)
20424 return "lvx %0,%y1";
20425
20426 else if (dest_fp_p)
20427 return "#";
20428 }
20429
20430 /* Stores. */
20431 else if (src_regno >= 0 && MEM_P (dest))
20432 {
20433 if (src_gpr_p)
20434 {
20435 if (TARGET_QUAD_MEMORY && quad_load_store_p (dest, src))
20436 return "stq %1,%0";
20437 else
20438 return "#";
20439 }
20440
20441 else if (TARGET_ALTIVEC && src_vmx_p
20442 && altivec_indexed_or_indirect_operand (dest, mode))
20443 return "stvx %1,%y0";
20444
20445 else if (TARGET_VSX && src_vsx_p)
20446 {
20447 if (mode_supports_dq_form (mode)
20448 && quad_address_p (XEXP (dest, 0), mode, true))
20449 return "stxv %x1,%0";
20450
20451 else if (TARGET_P9_VECTOR)
20452 return "stxvx %x1,%y0";
20453
20454 else if (mode == V16QImode || mode == V8HImode || mode == V4SImode)
20455 return "stxvw4x %x1,%y0";
20456
20457 else
20458 return "stxvd2x %x1,%y0";
20459 }
20460
20461 else if (TARGET_ALTIVEC && src_vmx_p)
20462 return "stvx %1,%y0";
20463
20464 else if (src_fp_p)
20465 return "#";
20466 }
20467
20468 /* Constants. */
20469 else if (dest_regno >= 0
20470 && (GET_CODE (src) == CONST_INT
20471 || GET_CODE (src) == CONST_WIDE_INT
20472 || GET_CODE (src) == CONST_DOUBLE
20473 || GET_CODE (src) == CONST_VECTOR))
20474 {
20475 if (dest_gpr_p)
20476 return "#";
20477
20478 else if ((dest_vmx_p && TARGET_ALTIVEC)
20479 || (dest_vsx_p && TARGET_VSX))
20480 return output_vec_const_move (operands);
20481 }
20482
20483 fatal_insn ("Bad 128-bit move", gen_rtx_SET (dest, src));
20484 }
20485
20486 /* Validate a 128-bit move. */
20487 bool
20488 rs6000_move_128bit_ok_p (rtx operands[])
20489 {
20490 machine_mode mode = GET_MODE (operands[0]);
20491 return (gpc_reg_operand (operands[0], mode)
20492 || gpc_reg_operand (operands[1], mode));
20493 }
20494
20495 /* Return true if a 128-bit move needs to be split. */
20496 bool
20497 rs6000_split_128bit_ok_p (rtx operands[])
20498 {
20499 if (!reload_completed)
20500 return false;
20501
20502 if (!gpr_or_gpr_p (operands[0], operands[1]))
20503 return false;
20504
20505 if (quad_load_store_p (operands[0], operands[1]))
20506 return false;
20507
20508 return true;
20509 }
20510
20511 \f
20512 /* Given a comparison operation, return the bit number in CCR to test. We
20513 know this is a valid comparison.
20514
20515 SCC_P is 1 if this is for an scc. That means that %D will have been
20516 used instead of %C, so the bits will be in different places.
20517
20518 Return -1 if OP isn't a valid comparison for some reason. */
20519
20520 int
20521 ccr_bit (rtx op, int scc_p)
20522 {
20523 enum rtx_code code = GET_CODE (op);
20524 machine_mode cc_mode;
20525 int cc_regnum;
20526 int base_bit;
20527 rtx reg;
20528
20529 if (!COMPARISON_P (op))
20530 return -1;
20531
20532 reg = XEXP (op, 0);
20533
20534 gcc_assert (GET_CODE (reg) == REG && CR_REGNO_P (REGNO (reg)));
20535
20536 cc_mode = GET_MODE (reg);
20537 cc_regnum = REGNO (reg);
20538 base_bit = 4 * (cc_regnum - CR0_REGNO);
20539
20540 validate_condition_mode (code, cc_mode);
20541
20542 /* When generating a sCOND operation, only positive conditions are
20543 allowed. */
20544 gcc_assert (!scc_p
20545 || code == EQ || code == GT || code == LT || code == UNORDERED
20546 || code == GTU || code == LTU);
20547
20548 switch (code)
20549 {
20550 case NE:
20551 return scc_p ? base_bit + 3 : base_bit + 2;
20552 case EQ:
20553 return base_bit + 2;
20554 case GT: case GTU: case UNLE:
20555 return base_bit + 1;
20556 case LT: case LTU: case UNGE:
20557 return base_bit;
20558 case ORDERED: case UNORDERED:
20559 return base_bit + 3;
20560
20561 case GE: case GEU:
20562 /* If scc, we will have done a cror to put the bit in the
20563 unordered position. So test that bit. For integer, this is ! LT
20564 unless this is an scc insn. */
20565 return scc_p ? base_bit + 3 : base_bit;
20566
20567 case LE: case LEU:
20568 return scc_p ? base_bit + 3 : base_bit + 1;
20569
20570 default:
20571 gcc_unreachable ();
20572 }
20573 }
20574 \f
20575 /* Return the GOT register. */
20576
20577 rtx
20578 rs6000_got_register (rtx value ATTRIBUTE_UNUSED)
20579 {
20580 /* The second flow pass currently (June 1999) can't update
20581 regs_ever_live without disturbing other parts of the compiler, so
20582 update it here to make the prolog/epilogue code happy. */
20583 if (!can_create_pseudo_p ()
20584 && !df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM))
20585 df_set_regs_ever_live (RS6000_PIC_OFFSET_TABLE_REGNUM, true);
20586
20587 crtl->uses_pic_offset_table = 1;
20588
20589 return pic_offset_table_rtx;
20590 }
20591 \f
20592 static rs6000_stack_t stack_info;
20593
20594 /* Function to init struct machine_function.
20595 This will be called, via a pointer variable,
20596 from push_function_context. */
20597
20598 static struct machine_function *
20599 rs6000_init_machine_status (void)
20600 {
20601 stack_info.reload_completed = 0;
20602 return ggc_cleared_alloc<machine_function> ();
20603 }
20604 \f
20605 #define INT_P(X) (GET_CODE (X) == CONST_INT && GET_MODE (X) == VOIDmode)
20606
20607 /* Write out a function code label. */
20608
20609 void
20610 rs6000_output_function_entry (FILE *file, const char *fname)
20611 {
20612 if (fname[0] != '.')
20613 {
20614 switch (DEFAULT_ABI)
20615 {
20616 default:
20617 gcc_unreachable ();
20618
20619 case ABI_AIX:
20620 if (DOT_SYMBOLS)
20621 putc ('.', file);
20622 else
20623 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "L.");
20624 break;
20625
20626 case ABI_ELFv2:
20627 case ABI_V4:
20628 case ABI_DARWIN:
20629 break;
20630 }
20631 }
20632
20633 RS6000_OUTPUT_BASENAME (file, fname);
20634 }
20635
20636 /* Print an operand. Recognize special options, documented below. */
20637
20638 #if TARGET_ELF
20639 /* Access to .sdata2 through r2 (see -msdata=eabi in invoke.texi) is
20640 only introduced by the linker, when applying the sda21
20641 relocation. */
20642 #define SMALL_DATA_RELOC ((rs6000_sdata == SDATA_EABI) ? "sda21" : "sdarel")
20643 #define SMALL_DATA_REG ((rs6000_sdata == SDATA_EABI) ? 0 : 13)
20644 #else
20645 #define SMALL_DATA_RELOC "sda21"
20646 #define SMALL_DATA_REG 0
20647 #endif
20648
20649 void
20650 print_operand (FILE *file, rtx x, int code)
20651 {
20652 int i;
20653 unsigned HOST_WIDE_INT uval;
20654
20655 switch (code)
20656 {
20657 /* %a is output_address. */
20658
20659 /* %c is output_addr_const if a CONSTANT_ADDRESS_P, otherwise
20660 output_operand. */
20661
20662 case 'D':
20663 /* Like 'J' but get to the GT bit only. */
20664 gcc_assert (REG_P (x));
20665
20666 /* Bit 1 is GT bit. */
20667 i = 4 * (REGNO (x) - CR0_REGNO) + 1;
20668
20669 /* Add one for shift count in rlinm for scc. */
20670 fprintf (file, "%d", i + 1);
20671 return;
20672
20673 case 'e':
20674 /* If the low 16 bits are 0, but some other bit is set, write 's'. */
20675 if (! INT_P (x))
20676 {
20677 output_operand_lossage ("invalid %%e value");
20678 return;
20679 }
20680
20681 uval = INTVAL (x);
20682 if ((uval & 0xffff) == 0 && uval != 0)
20683 putc ('s', file);
20684 return;
20685
20686 case 'E':
20687 /* X is a CR register. Print the number of the EQ bit of the CR */
20688 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
20689 output_operand_lossage ("invalid %%E value");
20690 else
20691 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 2);
20692 return;
20693
20694 case 'f':
20695 /* X is a CR register. Print the shift count needed to move it
20696 to the high-order four bits. */
20697 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
20698 output_operand_lossage ("invalid %%f value");
20699 else
20700 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO));
20701 return;
20702
20703 case 'F':
20704 /* Similar, but print the count for the rotate in the opposite
20705 direction. */
20706 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
20707 output_operand_lossage ("invalid %%F value");
20708 else
20709 fprintf (file, "%d", 32 - 4 * (REGNO (x) - CR0_REGNO));
20710 return;
20711
20712 case 'G':
20713 /* X is a constant integer. If it is negative, print "m",
20714 otherwise print "z". This is to make an aze or ame insn. */
20715 if (GET_CODE (x) != CONST_INT)
20716 output_operand_lossage ("invalid %%G value");
20717 else if (INTVAL (x) >= 0)
20718 putc ('z', file);
20719 else
20720 putc ('m', file);
20721 return;
20722
20723 case 'h':
20724 /* If constant, output low-order five bits. Otherwise, write
20725 normally. */
20726 if (INT_P (x))
20727 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 31);
20728 else
20729 print_operand (file, x, 0);
20730 return;
20731
20732 case 'H':
20733 /* If constant, output low-order six bits. Otherwise, write
20734 normally. */
20735 if (INT_P (x))
20736 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 63);
20737 else
20738 print_operand (file, x, 0);
20739 return;
20740
20741 case 'I':
20742 /* Print `i' if this is a constant, else nothing. */
20743 if (INT_P (x))
20744 putc ('i', file);
20745 return;
20746
20747 case 'j':
20748 /* Write the bit number in CCR for jump. */
20749 i = ccr_bit (x, 0);
20750 if (i == -1)
20751 output_operand_lossage ("invalid %%j code");
20752 else
20753 fprintf (file, "%d", i);
20754 return;
20755
20756 case 'J':
20757 /* Similar, but add one for shift count in rlinm for scc and pass
20758 scc flag to `ccr_bit'. */
20759 i = ccr_bit (x, 1);
20760 if (i == -1)
20761 output_operand_lossage ("invalid %%J code");
20762 else
20763 /* If we want bit 31, write a shift count of zero, not 32. */
20764 fprintf (file, "%d", i == 31 ? 0 : i + 1);
20765 return;
20766
20767 case 'k':
20768 /* X must be a constant. Write the 1's complement of the
20769 constant. */
20770 if (! INT_P (x))
20771 output_operand_lossage ("invalid %%k value");
20772 else
20773 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x));
20774 return;
20775
20776 case 'K':
20777 /* X must be a symbolic constant on ELF. Write an
20778 expression suitable for an 'addi' that adds in the low 16
20779 bits of the MEM. */
20780 if (GET_CODE (x) == CONST)
20781 {
20782 if (GET_CODE (XEXP (x, 0)) != PLUS
20783 || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
20784 && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
20785 || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
20786 output_operand_lossage ("invalid %%K value");
20787 }
20788 print_operand_address (file, x);
20789 fputs ("@l", file);
20790 return;
20791
20792 /* %l is output_asm_label. */
20793
20794 case 'L':
20795 /* Write second word of DImode or DFmode reference. Works on register
20796 or non-indexed memory only. */
20797 if (REG_P (x))
20798 fputs (reg_names[REGNO (x) + 1], file);
20799 else if (MEM_P (x))
20800 {
20801 machine_mode mode = GET_MODE (x);
20802 /* Handle possible auto-increment. Since it is pre-increment and
20803 we have already done it, we can just use an offset of word. */
20804 if (GET_CODE (XEXP (x, 0)) == PRE_INC
20805 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
20806 output_address (mode, plus_constant (Pmode, XEXP (XEXP (x, 0), 0),
20807 UNITS_PER_WORD));
20808 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
20809 output_address (mode, plus_constant (Pmode, XEXP (XEXP (x, 0), 0),
20810 UNITS_PER_WORD));
20811 else
20812 output_address (mode, XEXP (adjust_address_nv (x, SImode,
20813 UNITS_PER_WORD),
20814 0));
20815
20816 if (small_data_operand (x, GET_MODE (x)))
20817 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
20818 reg_names[SMALL_DATA_REG]);
20819 }
20820 return;
20821
20822 case 'N': /* Unused */
20823 /* Write the number of elements in the vector times 4. */
20824 if (GET_CODE (x) != PARALLEL)
20825 output_operand_lossage ("invalid %%N value");
20826 else
20827 fprintf (file, "%d", XVECLEN (x, 0) * 4);
20828 return;
20829
20830 case 'O': /* Unused */
20831 /* Similar, but subtract 1 first. */
20832 if (GET_CODE (x) != PARALLEL)
20833 output_operand_lossage ("invalid %%O value");
20834 else
20835 fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4);
20836 return;
20837
20838 case 'p':
20839 /* X is a CONST_INT that is a power of two. Output the logarithm. */
20840 if (! INT_P (x)
20841 || INTVAL (x) < 0
20842 || (i = exact_log2 (INTVAL (x))) < 0)
20843 output_operand_lossage ("invalid %%p value");
20844 else
20845 fprintf (file, "%d", i);
20846 return;
20847
20848 case 'P':
20849 /* The operand must be an indirect memory reference. The result
20850 is the register name. */
20851 if (GET_CODE (x) != MEM || GET_CODE (XEXP (x, 0)) != REG
20852 || REGNO (XEXP (x, 0)) >= 32)
20853 output_operand_lossage ("invalid %%P value");
20854 else
20855 fputs (reg_names[REGNO (XEXP (x, 0))], file);
20856 return;
20857
20858 case 'q':
20859 /* This outputs the logical code corresponding to a boolean
20860 expression. The expression may have one or both operands
20861 negated (if one, only the first one). For condition register
20862 logical operations, it will also treat the negated
20863 CR codes as NOTs, but not handle NOTs of them. */
20864 {
20865 const char *const *t = 0;
20866 const char *s;
20867 enum rtx_code code = GET_CODE (x);
20868 static const char * const tbl[3][3] = {
20869 { "and", "andc", "nor" },
20870 { "or", "orc", "nand" },
20871 { "xor", "eqv", "xor" } };
20872
20873 if (code == AND)
20874 t = tbl[0];
20875 else if (code == IOR)
20876 t = tbl[1];
20877 else if (code == XOR)
20878 t = tbl[2];
20879 else
20880 output_operand_lossage ("invalid %%q value");
20881
20882 if (GET_CODE (XEXP (x, 0)) != NOT)
20883 s = t[0];
20884 else
20885 {
20886 if (GET_CODE (XEXP (x, 1)) == NOT)
20887 s = t[2];
20888 else
20889 s = t[1];
20890 }
20891
20892 fputs (s, file);
20893 }
20894 return;
20895
20896 case 'Q':
20897 if (! TARGET_MFCRF)
20898 return;
20899 fputc (',', file);
20900 /* FALLTHRU */
20901
20902 case 'R':
20903 /* X is a CR register. Print the mask for `mtcrf'. */
20904 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
20905 output_operand_lossage ("invalid %%R value");
20906 else
20907 fprintf (file, "%d", 128 >> (REGNO (x) - CR0_REGNO));
20908 return;
20909
20910 case 's':
20911 /* Low 5 bits of 32 - value */
20912 if (! INT_P (x))
20913 output_operand_lossage ("invalid %%s value");
20914 else
20915 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (32 - INTVAL (x)) & 31);
20916 return;
20917
20918 case 't':
20919 /* Like 'J' but get to the OVERFLOW/UNORDERED bit. */
20920 gcc_assert (REG_P (x) && GET_MODE (x) == CCmode);
20921
20922 /* Bit 3 is OV bit. */
20923 i = 4 * (REGNO (x) - CR0_REGNO) + 3;
20924
20925 /* If we want bit 31, write a shift count of zero, not 32. */
20926 fprintf (file, "%d", i == 31 ? 0 : i + 1);
20927 return;
20928
20929 case 'T':
20930 /* Print the symbolic name of a branch target register. */
20931 if (GET_CODE (x) != REG || (REGNO (x) != LR_REGNO
20932 && REGNO (x) != CTR_REGNO))
20933 output_operand_lossage ("invalid %%T value");
20934 else if (REGNO (x) == LR_REGNO)
20935 fputs ("lr", file);
20936 else
20937 fputs ("ctr", file);
20938 return;
20939
20940 case 'u':
20941 /* High-order or low-order 16 bits of constant, whichever is non-zero,
20942 for use in unsigned operand. */
20943 if (! INT_P (x))
20944 {
20945 output_operand_lossage ("invalid %%u value");
20946 return;
20947 }
20948
20949 uval = INTVAL (x);
20950 if ((uval & 0xffff) == 0)
20951 uval >>= 16;
20952
20953 fprintf (file, HOST_WIDE_INT_PRINT_HEX, uval & 0xffff);
20954 return;
20955
20956 case 'v':
20957 /* High-order 16 bits of constant for use in signed operand. */
20958 if (! INT_P (x))
20959 output_operand_lossage ("invalid %%v value");
20960 else
20961 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
20962 (INTVAL (x) >> 16) & 0xffff);
20963 return;
20964
20965 case 'U':
20966 /* Print `u' if this has an auto-increment or auto-decrement. */
20967 if (MEM_P (x)
20968 && (GET_CODE (XEXP (x, 0)) == PRE_INC
20969 || GET_CODE (XEXP (x, 0)) == PRE_DEC
20970 || GET_CODE (XEXP (x, 0)) == PRE_MODIFY))
20971 putc ('u', file);
20972 return;
20973
20974 case 'V':
20975 /* Print the trap code for this operand. */
20976 switch (GET_CODE (x))
20977 {
20978 case EQ:
20979 fputs ("eq", file); /* 4 */
20980 break;
20981 case NE:
20982 fputs ("ne", file); /* 24 */
20983 break;
20984 case LT:
20985 fputs ("lt", file); /* 16 */
20986 break;
20987 case LE:
20988 fputs ("le", file); /* 20 */
20989 break;
20990 case GT:
20991 fputs ("gt", file); /* 8 */
20992 break;
20993 case GE:
20994 fputs ("ge", file); /* 12 */
20995 break;
20996 case LTU:
20997 fputs ("llt", file); /* 2 */
20998 break;
20999 case LEU:
21000 fputs ("lle", file); /* 6 */
21001 break;
21002 case GTU:
21003 fputs ("lgt", file); /* 1 */
21004 break;
21005 case GEU:
21006 fputs ("lge", file); /* 5 */
21007 break;
21008 default:
21009 gcc_unreachable ();
21010 }
21011 break;
21012
21013 case 'w':
21014 /* If constant, low-order 16 bits of constant, signed. Otherwise, write
21015 normally. */
21016 if (INT_P (x))
21017 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
21018 ((INTVAL (x) & 0xffff) ^ 0x8000) - 0x8000);
21019 else
21020 print_operand (file, x, 0);
21021 return;
21022
21023 case 'x':
21024 /* X is a FPR or Altivec register used in a VSX context. */
21025 if (GET_CODE (x) != REG || !VSX_REGNO_P (REGNO (x)))
21026 output_operand_lossage ("invalid %%x value");
21027 else
21028 {
21029 int reg = REGNO (x);
21030 int vsx_reg = (FP_REGNO_P (reg)
21031 ? reg - 32
21032 : reg - FIRST_ALTIVEC_REGNO + 32);
21033
21034 #ifdef TARGET_REGNAMES
21035 if (TARGET_REGNAMES)
21036 fprintf (file, "%%vs%d", vsx_reg);
21037 else
21038 #endif
21039 fprintf (file, "%d", vsx_reg);
21040 }
21041 return;
21042
21043 case 'X':
21044 if (MEM_P (x)
21045 && (legitimate_indexed_address_p (XEXP (x, 0), 0)
21046 || (GET_CODE (XEXP (x, 0)) == PRE_MODIFY
21047 && legitimate_indexed_address_p (XEXP (XEXP (x, 0), 1), 0))))
21048 putc ('x', file);
21049 return;
21050
21051 case 'Y':
21052 /* Like 'L', for third word of TImode/PTImode */
21053 if (REG_P (x))
21054 fputs (reg_names[REGNO (x) + 2], file);
21055 else if (MEM_P (x))
21056 {
21057 machine_mode mode = GET_MODE (x);
21058 if (GET_CODE (XEXP (x, 0)) == PRE_INC
21059 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
21060 output_address (mode, plus_constant (Pmode,
21061 XEXP (XEXP (x, 0), 0), 8));
21062 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
21063 output_address (mode, plus_constant (Pmode,
21064 XEXP (XEXP (x, 0), 0), 8));
21065 else
21066 output_address (mode, XEXP (adjust_address_nv (x, SImode, 8), 0));
21067 if (small_data_operand (x, GET_MODE (x)))
21068 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
21069 reg_names[SMALL_DATA_REG]);
21070 }
21071 return;
21072
21073 case 'z':
21074 /* X is a SYMBOL_REF. Write out the name preceded by a
21075 period and without any trailing data in brackets. Used for function
21076 names. If we are configured for System V (or the embedded ABI) on
21077 the PowerPC, do not emit the period, since those systems do not use
21078 TOCs and the like. */
21079 gcc_assert (GET_CODE (x) == SYMBOL_REF);
21080
21081 /* For macho, check to see if we need a stub. */
21082 if (TARGET_MACHO)
21083 {
21084 const char *name = XSTR (x, 0);
21085 #if TARGET_MACHO
21086 if (darwin_emit_branch_islands
21087 && MACHOPIC_INDIRECT
21088 && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION)
21089 name = machopic_indirection_name (x, /*stub_p=*/true);
21090 #endif
21091 assemble_name (file, name);
21092 }
21093 else if (!DOT_SYMBOLS)
21094 assemble_name (file, XSTR (x, 0));
21095 else
21096 rs6000_output_function_entry (file, XSTR (x, 0));
21097 return;
21098
21099 case 'Z':
21100 /* Like 'L', for last word of TImode/PTImode. */
21101 if (REG_P (x))
21102 fputs (reg_names[REGNO (x) + 3], file);
21103 else if (MEM_P (x))
21104 {
21105 machine_mode mode = GET_MODE (x);
21106 if (GET_CODE (XEXP (x, 0)) == PRE_INC
21107 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
21108 output_address (mode, plus_constant (Pmode,
21109 XEXP (XEXP (x, 0), 0), 12));
21110 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
21111 output_address (mode, plus_constant (Pmode,
21112 XEXP (XEXP (x, 0), 0), 12));
21113 else
21114 output_address (mode, XEXP (adjust_address_nv (x, SImode, 12), 0));
21115 if (small_data_operand (x, GET_MODE (x)))
21116 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
21117 reg_names[SMALL_DATA_REG]);
21118 }
21119 return;
21120
21121 /* Print AltiVec memory operand. */
21122 case 'y':
21123 {
21124 rtx tmp;
21125
21126 gcc_assert (MEM_P (x));
21127
21128 tmp = XEXP (x, 0);
21129
21130 if (VECTOR_MEM_ALTIVEC_OR_VSX_P (GET_MODE (x))
21131 && GET_CODE (tmp) == AND
21132 && GET_CODE (XEXP (tmp, 1)) == CONST_INT
21133 && INTVAL (XEXP (tmp, 1)) == -16)
21134 tmp = XEXP (tmp, 0);
21135 else if (VECTOR_MEM_VSX_P (GET_MODE (x))
21136 && GET_CODE (tmp) == PRE_MODIFY)
21137 tmp = XEXP (tmp, 1);
21138 if (REG_P (tmp))
21139 fprintf (file, "0,%s", reg_names[REGNO (tmp)]);
21140 else
21141 {
21142 if (GET_CODE (tmp) != PLUS
21143 || !REG_P (XEXP (tmp, 0))
21144 || !REG_P (XEXP (tmp, 1)))
21145 {
21146 output_operand_lossage ("invalid %%y value, try using the 'Z' constraint");
21147 break;
21148 }
21149
21150 if (REGNO (XEXP (tmp, 0)) == 0)
21151 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 1)) ],
21152 reg_names[ REGNO (XEXP (tmp, 0)) ]);
21153 else
21154 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 0)) ],
21155 reg_names[ REGNO (XEXP (tmp, 1)) ]);
21156 }
21157 break;
21158 }
21159
21160 case 0:
21161 if (REG_P (x))
21162 fprintf (file, "%s", reg_names[REGNO (x)]);
21163 else if (MEM_P (x))
21164 {
21165 /* We need to handle PRE_INC and PRE_DEC here, since we need to
21166 know the width from the mode. */
21167 if (GET_CODE (XEXP (x, 0)) == PRE_INC)
21168 fprintf (file, "%d(%s)", GET_MODE_SIZE (GET_MODE (x)),
21169 reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
21170 else if (GET_CODE (XEXP (x, 0)) == PRE_DEC)
21171 fprintf (file, "%d(%s)", - GET_MODE_SIZE (GET_MODE (x)),
21172 reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
21173 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
21174 output_address (GET_MODE (x), XEXP (XEXP (x, 0), 1));
21175 else
21176 output_address (GET_MODE (x), XEXP (x, 0));
21177 }
21178 else
21179 {
21180 if (toc_relative_expr_p (x, false, &tocrel_base_oac, &tocrel_offset_oac))
21181 /* This hack along with a corresponding hack in
21182 rs6000_output_addr_const_extra arranges to output addends
21183 where the assembler expects to find them. eg.
21184 (plus (unspec [(symbol_ref ("x")) (reg 2)] tocrel) 4)
21185 without this hack would be output as "x@toc+4". We
21186 want "x+4@toc". */
21187 output_addr_const (file, CONST_CAST_RTX (tocrel_base_oac));
21188 else
21189 output_addr_const (file, x);
21190 }
21191 return;
21192
21193 case '&':
21194 if (const char *name = get_some_local_dynamic_name ())
21195 assemble_name (file, name);
21196 else
21197 output_operand_lossage ("'%%&' used without any "
21198 "local dynamic TLS references");
21199 return;
21200
21201 default:
21202 output_operand_lossage ("invalid %%xn code");
21203 }
21204 }
21205 \f
21206 /* Print the address of an operand. */
21207
21208 void
21209 print_operand_address (FILE *file, rtx x)
21210 {
21211 if (REG_P (x))
21212 fprintf (file, "0(%s)", reg_names[ REGNO (x) ]);
21213 else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST
21214 || GET_CODE (x) == LABEL_REF)
21215 {
21216 output_addr_const (file, x);
21217 if (small_data_operand (x, GET_MODE (x)))
21218 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
21219 reg_names[SMALL_DATA_REG]);
21220 else
21221 gcc_assert (!TARGET_TOC);
21222 }
21223 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
21224 && REG_P (XEXP (x, 1)))
21225 {
21226 if (REGNO (XEXP (x, 0)) == 0)
21227 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 1)) ],
21228 reg_names[ REGNO (XEXP (x, 0)) ]);
21229 else
21230 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 0)) ],
21231 reg_names[ REGNO (XEXP (x, 1)) ]);
21232 }
21233 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
21234 && GET_CODE (XEXP (x, 1)) == CONST_INT)
21235 fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%s)",
21236 INTVAL (XEXP (x, 1)), reg_names[ REGNO (XEXP (x, 0)) ]);
21237 #if TARGET_MACHO
21238 else if (GET_CODE (x) == LO_SUM && REG_P (XEXP (x, 0))
21239 && CONSTANT_P (XEXP (x, 1)))
21240 {
21241 fprintf (file, "lo16(");
21242 output_addr_const (file, XEXP (x, 1));
21243 fprintf (file, ")(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
21244 }
21245 #endif
21246 #if TARGET_ELF
21247 else if (GET_CODE (x) == LO_SUM && REG_P (XEXP (x, 0))
21248 && CONSTANT_P (XEXP (x, 1)))
21249 {
21250 output_addr_const (file, XEXP (x, 1));
21251 fprintf (file, "@l(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
21252 }
21253 #endif
21254 else if (toc_relative_expr_p (x, false, &tocrel_base_oac, &tocrel_offset_oac))
21255 {
21256 /* This hack along with a corresponding hack in
21257 rs6000_output_addr_const_extra arranges to output addends
21258 where the assembler expects to find them. eg.
21259 (lo_sum (reg 9)
21260 . (plus (unspec [(symbol_ref ("x")) (reg 2)] tocrel) 8))
21261 without this hack would be output as "x@toc+8@l(9)". We
21262 want "x+8@toc@l(9)". */
21263 output_addr_const (file, CONST_CAST_RTX (tocrel_base_oac));
21264 if (GET_CODE (x) == LO_SUM)
21265 fprintf (file, "@l(%s)", reg_names[REGNO (XEXP (x, 0))]);
21266 else
21267 fprintf (file, "(%s)", reg_names[REGNO (XVECEXP (tocrel_base_oac, 0, 1))]);
21268 }
21269 else
21270 output_addr_const (file, x);
21271 }
21272 \f
21273 /* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */
21274
21275 static bool
21276 rs6000_output_addr_const_extra (FILE *file, rtx x)
21277 {
21278 if (GET_CODE (x) == UNSPEC)
21279 switch (XINT (x, 1))
21280 {
21281 case UNSPEC_TOCREL:
21282 gcc_checking_assert (GET_CODE (XVECEXP (x, 0, 0)) == SYMBOL_REF
21283 && REG_P (XVECEXP (x, 0, 1))
21284 && REGNO (XVECEXP (x, 0, 1)) == TOC_REGISTER);
21285 output_addr_const (file, XVECEXP (x, 0, 0));
21286 if (x == tocrel_base_oac && tocrel_offset_oac != const0_rtx)
21287 {
21288 if (INTVAL (tocrel_offset_oac) >= 0)
21289 fprintf (file, "+");
21290 output_addr_const (file, CONST_CAST_RTX (tocrel_offset_oac));
21291 }
21292 if (!TARGET_AIX || (TARGET_ELF && TARGET_MINIMAL_TOC))
21293 {
21294 putc ('-', file);
21295 assemble_name (file, toc_label_name);
21296 need_toc_init = 1;
21297 }
21298 else if (TARGET_ELF)
21299 fputs ("@toc", file);
21300 return true;
21301
21302 #if TARGET_MACHO
21303 case UNSPEC_MACHOPIC_OFFSET:
21304 output_addr_const (file, XVECEXP (x, 0, 0));
21305 putc ('-', file);
21306 machopic_output_function_base_name (file);
21307 return true;
21308 #endif
21309 }
21310 return false;
21311 }
21312 \f
21313 /* Target hook for assembling integer objects. The PowerPC version has
21314 to handle fixup entries for relocatable code if RELOCATABLE_NEEDS_FIXUP
21315 is defined. It also needs to handle DI-mode objects on 64-bit
21316 targets. */
21317
21318 static bool
21319 rs6000_assemble_integer (rtx x, unsigned int size, int aligned_p)
21320 {
21321 #ifdef RELOCATABLE_NEEDS_FIXUP
21322 /* Special handling for SI values. */
21323 if (RELOCATABLE_NEEDS_FIXUP && size == 4 && aligned_p)
21324 {
21325 static int recurse = 0;
21326
21327 /* For -mrelocatable, we mark all addresses that need to be fixed up in
21328 the .fixup section. Since the TOC section is already relocated, we
21329 don't need to mark it here. We used to skip the text section, but it
21330 should never be valid for relocated addresses to be placed in the text
21331 section. */
21332 if (DEFAULT_ABI == ABI_V4
21333 && (TARGET_RELOCATABLE || flag_pic > 1)
21334 && in_section != toc_section
21335 && !recurse
21336 && !CONST_SCALAR_INT_P (x)
21337 && CONSTANT_P (x))
21338 {
21339 char buf[256];
21340
21341 recurse = 1;
21342 ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", fixuplabelno);
21343 fixuplabelno++;
21344 ASM_OUTPUT_LABEL (asm_out_file, buf);
21345 fprintf (asm_out_file, "\t.long\t(");
21346 output_addr_const (asm_out_file, x);
21347 fprintf (asm_out_file, ")@fixup\n");
21348 fprintf (asm_out_file, "\t.section\t\".fixup\",\"aw\"\n");
21349 ASM_OUTPUT_ALIGN (asm_out_file, 2);
21350 fprintf (asm_out_file, "\t.long\t");
21351 assemble_name (asm_out_file, buf);
21352 fprintf (asm_out_file, "\n\t.previous\n");
21353 recurse = 0;
21354 return true;
21355 }
21356 /* Remove initial .'s to turn a -mcall-aixdesc function
21357 address into the address of the descriptor, not the function
21358 itself. */
21359 else if (GET_CODE (x) == SYMBOL_REF
21360 && XSTR (x, 0)[0] == '.'
21361 && DEFAULT_ABI == ABI_AIX)
21362 {
21363 const char *name = XSTR (x, 0);
21364 while (*name == '.')
21365 name++;
21366
21367 fprintf (asm_out_file, "\t.long\t%s\n", name);
21368 return true;
21369 }
21370 }
21371 #endif /* RELOCATABLE_NEEDS_FIXUP */
21372 return default_assemble_integer (x, size, aligned_p);
21373 }
21374
21375 #if defined (HAVE_GAS_HIDDEN) && !TARGET_MACHO
21376 /* Emit an assembler directive to set symbol visibility for DECL to
21377 VISIBILITY_TYPE. */
21378
21379 static void
21380 rs6000_assemble_visibility (tree decl, int vis)
21381 {
21382 if (TARGET_XCOFF)
21383 return;
21384
21385 /* Functions need to have their entry point symbol visibility set as
21386 well as their descriptor symbol visibility. */
21387 if (DEFAULT_ABI == ABI_AIX
21388 && DOT_SYMBOLS
21389 && TREE_CODE (decl) == FUNCTION_DECL)
21390 {
21391 static const char * const visibility_types[] = {
21392 NULL, "protected", "hidden", "internal"
21393 };
21394
21395 const char *name, *type;
21396
21397 name = ((* targetm.strip_name_encoding)
21398 (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl))));
21399 type = visibility_types[vis];
21400
21401 fprintf (asm_out_file, "\t.%s\t%s\n", type, name);
21402 fprintf (asm_out_file, "\t.%s\t.%s\n", type, name);
21403 }
21404 else
21405 default_assemble_visibility (decl, vis);
21406 }
21407 #endif
21408 \f
21409 enum rtx_code
21410 rs6000_reverse_condition (machine_mode mode, enum rtx_code code)
21411 {
21412 /* Reversal of FP compares takes care -- an ordered compare
21413 becomes an unordered compare and vice versa. */
21414 if (mode == CCFPmode
21415 && (!flag_finite_math_only
21416 || code == UNLT || code == UNLE || code == UNGT || code == UNGE
21417 || code == UNEQ || code == LTGT))
21418 return reverse_condition_maybe_unordered (code);
21419 else
21420 return reverse_condition (code);
21421 }
21422
21423 /* Generate a compare for CODE. Return a brand-new rtx that
21424 represents the result of the compare. */
21425
21426 static rtx
21427 rs6000_generate_compare (rtx cmp, machine_mode mode)
21428 {
21429 machine_mode comp_mode;
21430 rtx compare_result;
21431 enum rtx_code code = GET_CODE (cmp);
21432 rtx op0 = XEXP (cmp, 0);
21433 rtx op1 = XEXP (cmp, 1);
21434
21435 if (!TARGET_FLOAT128_HW && FLOAT128_VECTOR_P (mode))
21436 comp_mode = CCmode;
21437 else if (FLOAT_MODE_P (mode))
21438 comp_mode = CCFPmode;
21439 else if (code == GTU || code == LTU
21440 || code == GEU || code == LEU)
21441 comp_mode = CCUNSmode;
21442 else if ((code == EQ || code == NE)
21443 && unsigned_reg_p (op0)
21444 && (unsigned_reg_p (op1)
21445 || (CONST_INT_P (op1) && INTVAL (op1) != 0)))
21446 /* These are unsigned values, perhaps there will be a later
21447 ordering compare that can be shared with this one. */
21448 comp_mode = CCUNSmode;
21449 else
21450 comp_mode = CCmode;
21451
21452 /* If we have an unsigned compare, make sure we don't have a signed value as
21453 an immediate. */
21454 if (comp_mode == CCUNSmode && GET_CODE (op1) == CONST_INT
21455 && INTVAL (op1) < 0)
21456 {
21457 op0 = copy_rtx_if_shared (op0);
21458 op1 = force_reg (GET_MODE (op0), op1);
21459 cmp = gen_rtx_fmt_ee (code, GET_MODE (cmp), op0, op1);
21460 }
21461
21462 /* First, the compare. */
21463 compare_result = gen_reg_rtx (comp_mode);
21464
21465 /* IEEE 128-bit support in VSX registers when we do not have hardware
21466 support. */
21467 if (!TARGET_FLOAT128_HW && FLOAT128_VECTOR_P (mode))
21468 {
21469 rtx libfunc = NULL_RTX;
21470 bool check_nan = false;
21471 rtx dest;
21472
21473 switch (code)
21474 {
21475 case EQ:
21476 case NE:
21477 libfunc = optab_libfunc (eq_optab, mode);
21478 break;
21479
21480 case GT:
21481 case GE:
21482 libfunc = optab_libfunc (ge_optab, mode);
21483 break;
21484
21485 case LT:
21486 case LE:
21487 libfunc = optab_libfunc (le_optab, mode);
21488 break;
21489
21490 case UNORDERED:
21491 case ORDERED:
21492 libfunc = optab_libfunc (unord_optab, mode);
21493 code = (code == UNORDERED) ? NE : EQ;
21494 break;
21495
21496 case UNGE:
21497 case UNGT:
21498 check_nan = true;
21499 libfunc = optab_libfunc (ge_optab, mode);
21500 code = (code == UNGE) ? GE : GT;
21501 break;
21502
21503 case UNLE:
21504 case UNLT:
21505 check_nan = true;
21506 libfunc = optab_libfunc (le_optab, mode);
21507 code = (code == UNLE) ? LE : LT;
21508 break;
21509
21510 case UNEQ:
21511 case LTGT:
21512 check_nan = true;
21513 libfunc = optab_libfunc (eq_optab, mode);
21514 code = (code = UNEQ) ? EQ : NE;
21515 break;
21516
21517 default:
21518 gcc_unreachable ();
21519 }
21520
21521 gcc_assert (libfunc);
21522
21523 if (!check_nan)
21524 dest = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
21525 SImode, op0, mode, op1, mode);
21526
21527 /* The library signals an exception for signalling NaNs, so we need to
21528 handle isgreater, etc. by first checking isordered. */
21529 else
21530 {
21531 rtx ne_rtx, normal_dest, unord_dest;
21532 rtx unord_func = optab_libfunc (unord_optab, mode);
21533 rtx join_label = gen_label_rtx ();
21534 rtx join_ref = gen_rtx_LABEL_REF (VOIDmode, join_label);
21535 rtx unord_cmp = gen_reg_rtx (comp_mode);
21536
21537
21538 /* Test for either value being a NaN. */
21539 gcc_assert (unord_func);
21540 unord_dest = emit_library_call_value (unord_func, NULL_RTX, LCT_CONST,
21541 SImode, op0, mode, op1, mode);
21542
21543 /* Set value (0) if either value is a NaN, and jump to the join
21544 label. */
21545 dest = gen_reg_rtx (SImode);
21546 emit_move_insn (dest, const1_rtx);
21547 emit_insn (gen_rtx_SET (unord_cmp,
21548 gen_rtx_COMPARE (comp_mode, unord_dest,
21549 const0_rtx)));
21550
21551 ne_rtx = gen_rtx_NE (comp_mode, unord_cmp, const0_rtx);
21552 emit_jump_insn (gen_rtx_SET (pc_rtx,
21553 gen_rtx_IF_THEN_ELSE (VOIDmode, ne_rtx,
21554 join_ref,
21555 pc_rtx)));
21556
21557 /* Do the normal comparison, knowing that the values are not
21558 NaNs. */
21559 normal_dest = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
21560 SImode, op0, mode, op1, mode);
21561
21562 emit_insn (gen_cstoresi4 (dest,
21563 gen_rtx_fmt_ee (code, SImode, normal_dest,
21564 const0_rtx),
21565 normal_dest, const0_rtx));
21566
21567 /* Join NaN and non-Nan paths. Compare dest against 0. */
21568 emit_label (join_label);
21569 code = NE;
21570 }
21571
21572 emit_insn (gen_rtx_SET (compare_result,
21573 gen_rtx_COMPARE (comp_mode, dest, const0_rtx)));
21574 }
21575
21576 else
21577 {
21578 /* Generate XLC-compatible TFmode compare as PARALLEL with extra
21579 CLOBBERs to match cmptf_internal2 pattern. */
21580 if (comp_mode == CCFPmode && TARGET_XL_COMPAT
21581 && FLOAT128_IBM_P (GET_MODE (op0))
21582 && TARGET_HARD_FLOAT)
21583 emit_insn (gen_rtx_PARALLEL (VOIDmode,
21584 gen_rtvec (10,
21585 gen_rtx_SET (compare_result,
21586 gen_rtx_COMPARE (comp_mode, op0, op1)),
21587 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21588 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21589 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21590 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21591 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21592 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21593 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21594 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21595 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (Pmode)))));
21596 else if (GET_CODE (op1) == UNSPEC
21597 && XINT (op1, 1) == UNSPEC_SP_TEST)
21598 {
21599 rtx op1b = XVECEXP (op1, 0, 0);
21600 comp_mode = CCEQmode;
21601 compare_result = gen_reg_rtx (CCEQmode);
21602 if (TARGET_64BIT)
21603 emit_insn (gen_stack_protect_testdi (compare_result, op0, op1b));
21604 else
21605 emit_insn (gen_stack_protect_testsi (compare_result, op0, op1b));
21606 }
21607 else
21608 emit_insn (gen_rtx_SET (compare_result,
21609 gen_rtx_COMPARE (comp_mode, op0, op1)));
21610 }
21611
21612 /* Some kinds of FP comparisons need an OR operation;
21613 under flag_finite_math_only we don't bother. */
21614 if (FLOAT_MODE_P (mode)
21615 && (!FLOAT128_IEEE_P (mode) || TARGET_FLOAT128_HW)
21616 && !flag_finite_math_only
21617 && (code == LE || code == GE
21618 || code == UNEQ || code == LTGT
21619 || code == UNGT || code == UNLT))
21620 {
21621 enum rtx_code or1, or2;
21622 rtx or1_rtx, or2_rtx, compare2_rtx;
21623 rtx or_result = gen_reg_rtx (CCEQmode);
21624
21625 switch (code)
21626 {
21627 case LE: or1 = LT; or2 = EQ; break;
21628 case GE: or1 = GT; or2 = EQ; break;
21629 case UNEQ: or1 = UNORDERED; or2 = EQ; break;
21630 case LTGT: or1 = LT; or2 = GT; break;
21631 case UNGT: or1 = UNORDERED; or2 = GT; break;
21632 case UNLT: or1 = UNORDERED; or2 = LT; break;
21633 default: gcc_unreachable ();
21634 }
21635 validate_condition_mode (or1, comp_mode);
21636 validate_condition_mode (or2, comp_mode);
21637 or1_rtx = gen_rtx_fmt_ee (or1, SImode, compare_result, const0_rtx);
21638 or2_rtx = gen_rtx_fmt_ee (or2, SImode, compare_result, const0_rtx);
21639 compare2_rtx = gen_rtx_COMPARE (CCEQmode,
21640 gen_rtx_IOR (SImode, or1_rtx, or2_rtx),
21641 const_true_rtx);
21642 emit_insn (gen_rtx_SET (or_result, compare2_rtx));
21643
21644 compare_result = or_result;
21645 code = EQ;
21646 }
21647
21648 validate_condition_mode (code, GET_MODE (compare_result));
21649
21650 return gen_rtx_fmt_ee (code, VOIDmode, compare_result, const0_rtx);
21651 }
21652
21653 \f
21654 /* Return the diagnostic message string if the binary operation OP is
21655 not permitted on TYPE1 and TYPE2, NULL otherwise. */
21656
21657 static const char*
21658 rs6000_invalid_binary_op (int op ATTRIBUTE_UNUSED,
21659 const_tree type1,
21660 const_tree type2)
21661 {
21662 machine_mode mode1 = TYPE_MODE (type1);
21663 machine_mode mode2 = TYPE_MODE (type2);
21664
21665 /* For complex modes, use the inner type. */
21666 if (COMPLEX_MODE_P (mode1))
21667 mode1 = GET_MODE_INNER (mode1);
21668
21669 if (COMPLEX_MODE_P (mode2))
21670 mode2 = GET_MODE_INNER (mode2);
21671
21672 /* Don't allow IEEE 754R 128-bit binary floating point and IBM extended
21673 double to intermix unless -mfloat128-convert. */
21674 if (mode1 == mode2)
21675 return NULL;
21676
21677 if (!TARGET_FLOAT128_CVT)
21678 {
21679 if ((mode1 == KFmode && mode2 == IFmode)
21680 || (mode1 == IFmode && mode2 == KFmode))
21681 return N_("__float128 and __ibm128 cannot be used in the same "
21682 "expression");
21683
21684 if (TARGET_IEEEQUAD
21685 && ((mode1 == IFmode && mode2 == TFmode)
21686 || (mode1 == TFmode && mode2 == IFmode)))
21687 return N_("__ibm128 and long double cannot be used in the same "
21688 "expression");
21689
21690 if (!TARGET_IEEEQUAD
21691 && ((mode1 == KFmode && mode2 == TFmode)
21692 || (mode1 == TFmode && mode2 == KFmode)))
21693 return N_("__float128 and long double cannot be used in the same "
21694 "expression");
21695 }
21696
21697 return NULL;
21698 }
21699
21700 \f
21701 /* Expand floating point conversion to/from __float128 and __ibm128. */
21702
21703 void
21704 rs6000_expand_float128_convert (rtx dest, rtx src, bool unsigned_p)
21705 {
21706 machine_mode dest_mode = GET_MODE (dest);
21707 machine_mode src_mode = GET_MODE (src);
21708 convert_optab cvt = unknown_optab;
21709 bool do_move = false;
21710 rtx libfunc = NULL_RTX;
21711 rtx dest2;
21712 typedef rtx (*rtx_2func_t) (rtx, rtx);
21713 rtx_2func_t hw_convert = (rtx_2func_t)0;
21714 size_t kf_or_tf;
21715
21716 struct hw_conv_t {
21717 rtx_2func_t from_df;
21718 rtx_2func_t from_sf;
21719 rtx_2func_t from_si_sign;
21720 rtx_2func_t from_si_uns;
21721 rtx_2func_t from_di_sign;
21722 rtx_2func_t from_di_uns;
21723 rtx_2func_t to_df;
21724 rtx_2func_t to_sf;
21725 rtx_2func_t to_si_sign;
21726 rtx_2func_t to_si_uns;
21727 rtx_2func_t to_di_sign;
21728 rtx_2func_t to_di_uns;
21729 } hw_conversions[2] = {
21730 /* convertions to/from KFmode */
21731 {
21732 gen_extenddfkf2_hw, /* KFmode <- DFmode. */
21733 gen_extendsfkf2_hw, /* KFmode <- SFmode. */
21734 gen_float_kfsi2_hw, /* KFmode <- SImode (signed). */
21735 gen_floatuns_kfsi2_hw, /* KFmode <- SImode (unsigned). */
21736 gen_float_kfdi2_hw, /* KFmode <- DImode (signed). */
21737 gen_floatuns_kfdi2_hw, /* KFmode <- DImode (unsigned). */
21738 gen_trunckfdf2_hw, /* DFmode <- KFmode. */
21739 gen_trunckfsf2_hw, /* SFmode <- KFmode. */
21740 gen_fix_kfsi2_hw, /* SImode <- KFmode (signed). */
21741 gen_fixuns_kfsi2_hw, /* SImode <- KFmode (unsigned). */
21742 gen_fix_kfdi2_hw, /* DImode <- KFmode (signed). */
21743 gen_fixuns_kfdi2_hw, /* DImode <- KFmode (unsigned). */
21744 },
21745
21746 /* convertions to/from TFmode */
21747 {
21748 gen_extenddftf2_hw, /* TFmode <- DFmode. */
21749 gen_extendsftf2_hw, /* TFmode <- SFmode. */
21750 gen_float_tfsi2_hw, /* TFmode <- SImode (signed). */
21751 gen_floatuns_tfsi2_hw, /* TFmode <- SImode (unsigned). */
21752 gen_float_tfdi2_hw, /* TFmode <- DImode (signed). */
21753 gen_floatuns_tfdi2_hw, /* TFmode <- DImode (unsigned). */
21754 gen_trunctfdf2_hw, /* DFmode <- TFmode. */
21755 gen_trunctfsf2_hw, /* SFmode <- TFmode. */
21756 gen_fix_tfsi2_hw, /* SImode <- TFmode (signed). */
21757 gen_fixuns_tfsi2_hw, /* SImode <- TFmode (unsigned). */
21758 gen_fix_tfdi2_hw, /* DImode <- TFmode (signed). */
21759 gen_fixuns_tfdi2_hw, /* DImode <- TFmode (unsigned). */
21760 },
21761 };
21762
21763 if (dest_mode == src_mode)
21764 gcc_unreachable ();
21765
21766 /* Eliminate memory operations. */
21767 if (MEM_P (src))
21768 src = force_reg (src_mode, src);
21769
21770 if (MEM_P (dest))
21771 {
21772 rtx tmp = gen_reg_rtx (dest_mode);
21773 rs6000_expand_float128_convert (tmp, src, unsigned_p);
21774 rs6000_emit_move (dest, tmp, dest_mode);
21775 return;
21776 }
21777
21778 /* Convert to IEEE 128-bit floating point. */
21779 if (FLOAT128_IEEE_P (dest_mode))
21780 {
21781 if (dest_mode == KFmode)
21782 kf_or_tf = 0;
21783 else if (dest_mode == TFmode)
21784 kf_or_tf = 1;
21785 else
21786 gcc_unreachable ();
21787
21788 switch (src_mode)
21789 {
21790 case E_DFmode:
21791 cvt = sext_optab;
21792 hw_convert = hw_conversions[kf_or_tf].from_df;
21793 break;
21794
21795 case E_SFmode:
21796 cvt = sext_optab;
21797 hw_convert = hw_conversions[kf_or_tf].from_sf;
21798 break;
21799
21800 case E_KFmode:
21801 case E_IFmode:
21802 case E_TFmode:
21803 if (FLOAT128_IBM_P (src_mode))
21804 cvt = sext_optab;
21805 else
21806 do_move = true;
21807 break;
21808
21809 case E_SImode:
21810 if (unsigned_p)
21811 {
21812 cvt = ufloat_optab;
21813 hw_convert = hw_conversions[kf_or_tf].from_si_uns;
21814 }
21815 else
21816 {
21817 cvt = sfloat_optab;
21818 hw_convert = hw_conversions[kf_or_tf].from_si_sign;
21819 }
21820 break;
21821
21822 case E_DImode:
21823 if (unsigned_p)
21824 {
21825 cvt = ufloat_optab;
21826 hw_convert = hw_conversions[kf_or_tf].from_di_uns;
21827 }
21828 else
21829 {
21830 cvt = sfloat_optab;
21831 hw_convert = hw_conversions[kf_or_tf].from_di_sign;
21832 }
21833 break;
21834
21835 default:
21836 gcc_unreachable ();
21837 }
21838 }
21839
21840 /* Convert from IEEE 128-bit floating point. */
21841 else if (FLOAT128_IEEE_P (src_mode))
21842 {
21843 if (src_mode == KFmode)
21844 kf_or_tf = 0;
21845 else if (src_mode == TFmode)
21846 kf_or_tf = 1;
21847 else
21848 gcc_unreachable ();
21849
21850 switch (dest_mode)
21851 {
21852 case E_DFmode:
21853 cvt = trunc_optab;
21854 hw_convert = hw_conversions[kf_or_tf].to_df;
21855 break;
21856
21857 case E_SFmode:
21858 cvt = trunc_optab;
21859 hw_convert = hw_conversions[kf_or_tf].to_sf;
21860 break;
21861
21862 case E_KFmode:
21863 case E_IFmode:
21864 case E_TFmode:
21865 if (FLOAT128_IBM_P (dest_mode))
21866 cvt = trunc_optab;
21867 else
21868 do_move = true;
21869 break;
21870
21871 case E_SImode:
21872 if (unsigned_p)
21873 {
21874 cvt = ufix_optab;
21875 hw_convert = hw_conversions[kf_or_tf].to_si_uns;
21876 }
21877 else
21878 {
21879 cvt = sfix_optab;
21880 hw_convert = hw_conversions[kf_or_tf].to_si_sign;
21881 }
21882 break;
21883
21884 case E_DImode:
21885 if (unsigned_p)
21886 {
21887 cvt = ufix_optab;
21888 hw_convert = hw_conversions[kf_or_tf].to_di_uns;
21889 }
21890 else
21891 {
21892 cvt = sfix_optab;
21893 hw_convert = hw_conversions[kf_or_tf].to_di_sign;
21894 }
21895 break;
21896
21897 default:
21898 gcc_unreachable ();
21899 }
21900 }
21901
21902 /* Both IBM format. */
21903 else if (FLOAT128_IBM_P (dest_mode) && FLOAT128_IBM_P (src_mode))
21904 do_move = true;
21905
21906 else
21907 gcc_unreachable ();
21908
21909 /* Handle conversion between TFmode/KFmode/IFmode. */
21910 if (do_move)
21911 emit_insn (gen_rtx_SET (dest, gen_rtx_FLOAT_EXTEND (dest_mode, src)));
21912
21913 /* Handle conversion if we have hardware support. */
21914 else if (TARGET_FLOAT128_HW && hw_convert)
21915 emit_insn ((hw_convert) (dest, src));
21916
21917 /* Call an external function to do the conversion. */
21918 else if (cvt != unknown_optab)
21919 {
21920 libfunc = convert_optab_libfunc (cvt, dest_mode, src_mode);
21921 gcc_assert (libfunc != NULL_RTX);
21922
21923 dest2 = emit_library_call_value (libfunc, dest, LCT_CONST, dest_mode,
21924 src, src_mode);
21925
21926 gcc_assert (dest2 != NULL_RTX);
21927 if (!rtx_equal_p (dest, dest2))
21928 emit_move_insn (dest, dest2);
21929 }
21930
21931 else
21932 gcc_unreachable ();
21933
21934 return;
21935 }
21936
21937 \f
21938 /* Emit RTL that sets a register to zero if OP1 and OP2 are equal. SCRATCH
21939 can be used as that dest register. Return the dest register. */
21940
21941 rtx
21942 rs6000_emit_eqne (machine_mode mode, rtx op1, rtx op2, rtx scratch)
21943 {
21944 if (op2 == const0_rtx)
21945 return op1;
21946
21947 if (GET_CODE (scratch) == SCRATCH)
21948 scratch = gen_reg_rtx (mode);
21949
21950 if (logical_operand (op2, mode))
21951 emit_insn (gen_rtx_SET (scratch, gen_rtx_XOR (mode, op1, op2)));
21952 else
21953 emit_insn (gen_rtx_SET (scratch,
21954 gen_rtx_PLUS (mode, op1, negate_rtx (mode, op2))));
21955
21956 return scratch;
21957 }
21958
21959 void
21960 rs6000_emit_sCOND (machine_mode mode, rtx operands[])
21961 {
21962 rtx condition_rtx;
21963 machine_mode op_mode;
21964 enum rtx_code cond_code;
21965 rtx result = operands[0];
21966
21967 condition_rtx = rs6000_generate_compare (operands[1], mode);
21968 cond_code = GET_CODE (condition_rtx);
21969
21970 if (cond_code == NE
21971 || cond_code == GE || cond_code == LE
21972 || cond_code == GEU || cond_code == LEU
21973 || cond_code == ORDERED || cond_code == UNGE || cond_code == UNLE)
21974 {
21975 rtx not_result = gen_reg_rtx (CCEQmode);
21976 rtx not_op, rev_cond_rtx;
21977 machine_mode cc_mode;
21978
21979 cc_mode = GET_MODE (XEXP (condition_rtx, 0));
21980
21981 rev_cond_rtx = gen_rtx_fmt_ee (rs6000_reverse_condition (cc_mode, cond_code),
21982 SImode, XEXP (condition_rtx, 0), const0_rtx);
21983 not_op = gen_rtx_COMPARE (CCEQmode, rev_cond_rtx, const0_rtx);
21984 emit_insn (gen_rtx_SET (not_result, not_op));
21985 condition_rtx = gen_rtx_EQ (VOIDmode, not_result, const0_rtx);
21986 }
21987
21988 op_mode = GET_MODE (XEXP (operands[1], 0));
21989 if (op_mode == VOIDmode)
21990 op_mode = GET_MODE (XEXP (operands[1], 1));
21991
21992 if (TARGET_POWERPC64 && (op_mode == DImode || FLOAT_MODE_P (mode)))
21993 {
21994 PUT_MODE (condition_rtx, DImode);
21995 convert_move (result, condition_rtx, 0);
21996 }
21997 else
21998 {
21999 PUT_MODE (condition_rtx, SImode);
22000 emit_insn (gen_rtx_SET (result, condition_rtx));
22001 }
22002 }
22003
22004 /* Emit a branch of kind CODE to location LOC. */
22005
22006 void
22007 rs6000_emit_cbranch (machine_mode mode, rtx operands[])
22008 {
22009 rtx condition_rtx, loc_ref;
22010
22011 condition_rtx = rs6000_generate_compare (operands[0], mode);
22012 loc_ref = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
22013 emit_jump_insn (gen_rtx_SET (pc_rtx,
22014 gen_rtx_IF_THEN_ELSE (VOIDmode, condition_rtx,
22015 loc_ref, pc_rtx)));
22016 }
22017
22018 /* Return the string to output a conditional branch to LABEL, which is
22019 the operand template of the label, or NULL if the branch is really a
22020 conditional return.
22021
22022 OP is the conditional expression. XEXP (OP, 0) is assumed to be a
22023 condition code register and its mode specifies what kind of
22024 comparison we made.
22025
22026 REVERSED is nonzero if we should reverse the sense of the comparison.
22027
22028 INSN is the insn. */
22029
22030 char *
22031 output_cbranch (rtx op, const char *label, int reversed, rtx_insn *insn)
22032 {
22033 static char string[64];
22034 enum rtx_code code = GET_CODE (op);
22035 rtx cc_reg = XEXP (op, 0);
22036 machine_mode mode = GET_MODE (cc_reg);
22037 int cc_regno = REGNO (cc_reg) - CR0_REGNO;
22038 int need_longbranch = label != NULL && get_attr_length (insn) == 8;
22039 int really_reversed = reversed ^ need_longbranch;
22040 char *s = string;
22041 const char *ccode;
22042 const char *pred;
22043 rtx note;
22044
22045 validate_condition_mode (code, mode);
22046
22047 /* Work out which way this really branches. We could use
22048 reverse_condition_maybe_unordered here always but this
22049 makes the resulting assembler clearer. */
22050 if (really_reversed)
22051 {
22052 /* Reversal of FP compares takes care -- an ordered compare
22053 becomes an unordered compare and vice versa. */
22054 if (mode == CCFPmode)
22055 code = reverse_condition_maybe_unordered (code);
22056 else
22057 code = reverse_condition (code);
22058 }
22059
22060 switch (code)
22061 {
22062 /* Not all of these are actually distinct opcodes, but
22063 we distinguish them for clarity of the resulting assembler. */
22064 case NE: case LTGT:
22065 ccode = "ne"; break;
22066 case EQ: case UNEQ:
22067 ccode = "eq"; break;
22068 case GE: case GEU:
22069 ccode = "ge"; break;
22070 case GT: case GTU: case UNGT:
22071 ccode = "gt"; break;
22072 case LE: case LEU:
22073 ccode = "le"; break;
22074 case LT: case LTU: case UNLT:
22075 ccode = "lt"; break;
22076 case UNORDERED: ccode = "un"; break;
22077 case ORDERED: ccode = "nu"; break;
22078 case UNGE: ccode = "nl"; break;
22079 case UNLE: ccode = "ng"; break;
22080 default:
22081 gcc_unreachable ();
22082 }
22083
22084 /* Maybe we have a guess as to how likely the branch is. */
22085 pred = "";
22086 note = find_reg_note (insn, REG_BR_PROB, NULL_RTX);
22087 if (note != NULL_RTX)
22088 {
22089 /* PROB is the difference from 50%. */
22090 int prob = profile_probability::from_reg_br_prob_note (XINT (note, 0))
22091 .to_reg_br_prob_base () - REG_BR_PROB_BASE / 2;
22092
22093 /* Only hint for highly probable/improbable branches on newer cpus when
22094 we have real profile data, as static prediction overrides processor
22095 dynamic prediction. For older cpus we may as well always hint, but
22096 assume not taken for branches that are very close to 50% as a
22097 mispredicted taken branch is more expensive than a
22098 mispredicted not-taken branch. */
22099 if (rs6000_always_hint
22100 || (abs (prob) > REG_BR_PROB_BASE / 100 * 48
22101 && (profile_status_for_fn (cfun) != PROFILE_GUESSED)
22102 && br_prob_note_reliable_p (note)))
22103 {
22104 if (abs (prob) > REG_BR_PROB_BASE / 20
22105 && ((prob > 0) ^ need_longbranch))
22106 pred = "+";
22107 else
22108 pred = "-";
22109 }
22110 }
22111
22112 if (label == NULL)
22113 s += sprintf (s, "b%slr%s ", ccode, pred);
22114 else
22115 s += sprintf (s, "b%s%s ", ccode, pred);
22116
22117 /* We need to escape any '%' characters in the reg_names string.
22118 Assume they'd only be the first character.... */
22119 if (reg_names[cc_regno + CR0_REGNO][0] == '%')
22120 *s++ = '%';
22121 s += sprintf (s, "%s", reg_names[cc_regno + CR0_REGNO]);
22122
22123 if (label != NULL)
22124 {
22125 /* If the branch distance was too far, we may have to use an
22126 unconditional branch to go the distance. */
22127 if (need_longbranch)
22128 s += sprintf (s, ",$+8\n\tb %s", label);
22129 else
22130 s += sprintf (s, ",%s", label);
22131 }
22132
22133 return string;
22134 }
22135
22136 /* Return insn for VSX or Altivec comparisons. */
22137
22138 static rtx
22139 rs6000_emit_vector_compare_inner (enum rtx_code code, rtx op0, rtx op1)
22140 {
22141 rtx mask;
22142 machine_mode mode = GET_MODE (op0);
22143
22144 switch (code)
22145 {
22146 default:
22147 break;
22148
22149 case GE:
22150 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
22151 return NULL_RTX;
22152 /* FALLTHRU */
22153
22154 case EQ:
22155 case GT:
22156 case GTU:
22157 case ORDERED:
22158 case UNORDERED:
22159 case UNEQ:
22160 case LTGT:
22161 mask = gen_reg_rtx (mode);
22162 emit_insn (gen_rtx_SET (mask, gen_rtx_fmt_ee (code, mode, op0, op1)));
22163 return mask;
22164 }
22165
22166 return NULL_RTX;
22167 }
22168
22169 /* Emit vector compare for operands OP0 and OP1 using code RCODE.
22170 DMODE is expected destination mode. This is a recursive function. */
22171
22172 static rtx
22173 rs6000_emit_vector_compare (enum rtx_code rcode,
22174 rtx op0, rtx op1,
22175 machine_mode dmode)
22176 {
22177 rtx mask;
22178 bool swap_operands = false;
22179 bool try_again = false;
22180
22181 gcc_assert (VECTOR_UNIT_ALTIVEC_OR_VSX_P (dmode));
22182 gcc_assert (GET_MODE (op0) == GET_MODE (op1));
22183
22184 /* See if the comparison works as is. */
22185 mask = rs6000_emit_vector_compare_inner (rcode, op0, op1);
22186 if (mask)
22187 return mask;
22188
22189 switch (rcode)
22190 {
22191 case LT:
22192 rcode = GT;
22193 swap_operands = true;
22194 try_again = true;
22195 break;
22196 case LTU:
22197 rcode = GTU;
22198 swap_operands = true;
22199 try_again = true;
22200 break;
22201 case NE:
22202 case UNLE:
22203 case UNLT:
22204 case UNGE:
22205 case UNGT:
22206 /* Invert condition and try again.
22207 e.g., A != B becomes ~(A==B). */
22208 {
22209 enum rtx_code rev_code;
22210 enum insn_code nor_code;
22211 rtx mask2;
22212
22213 rev_code = reverse_condition_maybe_unordered (rcode);
22214 if (rev_code == UNKNOWN)
22215 return NULL_RTX;
22216
22217 nor_code = optab_handler (one_cmpl_optab, dmode);
22218 if (nor_code == CODE_FOR_nothing)
22219 return NULL_RTX;
22220
22221 mask2 = rs6000_emit_vector_compare (rev_code, op0, op1, dmode);
22222 if (!mask2)
22223 return NULL_RTX;
22224
22225 mask = gen_reg_rtx (dmode);
22226 emit_insn (GEN_FCN (nor_code) (mask, mask2));
22227 return mask;
22228 }
22229 break;
22230 case GE:
22231 case GEU:
22232 case LE:
22233 case LEU:
22234 /* Try GT/GTU/LT/LTU OR EQ */
22235 {
22236 rtx c_rtx, eq_rtx;
22237 enum insn_code ior_code;
22238 enum rtx_code new_code;
22239
22240 switch (rcode)
22241 {
22242 case GE:
22243 new_code = GT;
22244 break;
22245
22246 case GEU:
22247 new_code = GTU;
22248 break;
22249
22250 case LE:
22251 new_code = LT;
22252 break;
22253
22254 case LEU:
22255 new_code = LTU;
22256 break;
22257
22258 default:
22259 gcc_unreachable ();
22260 }
22261
22262 ior_code = optab_handler (ior_optab, dmode);
22263 if (ior_code == CODE_FOR_nothing)
22264 return NULL_RTX;
22265
22266 c_rtx = rs6000_emit_vector_compare (new_code, op0, op1, dmode);
22267 if (!c_rtx)
22268 return NULL_RTX;
22269
22270 eq_rtx = rs6000_emit_vector_compare (EQ, op0, op1, dmode);
22271 if (!eq_rtx)
22272 return NULL_RTX;
22273
22274 mask = gen_reg_rtx (dmode);
22275 emit_insn (GEN_FCN (ior_code) (mask, c_rtx, eq_rtx));
22276 return mask;
22277 }
22278 break;
22279 default:
22280 return NULL_RTX;
22281 }
22282
22283 if (try_again)
22284 {
22285 if (swap_operands)
22286 std::swap (op0, op1);
22287
22288 mask = rs6000_emit_vector_compare_inner (rcode, op0, op1);
22289 if (mask)
22290 return mask;
22291 }
22292
22293 /* You only get two chances. */
22294 return NULL_RTX;
22295 }
22296
22297 /* Emit vector conditional expression. DEST is destination. OP_TRUE and
22298 OP_FALSE are two VEC_COND_EXPR operands. CC_OP0 and CC_OP1 are the two
22299 operands for the relation operation COND. */
22300
22301 int
22302 rs6000_emit_vector_cond_expr (rtx dest, rtx op_true, rtx op_false,
22303 rtx cond, rtx cc_op0, rtx cc_op1)
22304 {
22305 machine_mode dest_mode = GET_MODE (dest);
22306 machine_mode mask_mode = GET_MODE (cc_op0);
22307 enum rtx_code rcode = GET_CODE (cond);
22308 machine_mode cc_mode = CCmode;
22309 rtx mask;
22310 rtx cond2;
22311 bool invert_move = false;
22312
22313 if (VECTOR_UNIT_NONE_P (dest_mode))
22314 return 0;
22315
22316 gcc_assert (GET_MODE_SIZE (dest_mode) == GET_MODE_SIZE (mask_mode)
22317 && GET_MODE_NUNITS (dest_mode) == GET_MODE_NUNITS (mask_mode));
22318
22319 switch (rcode)
22320 {
22321 /* Swap operands if we can, and fall back to doing the operation as
22322 specified, and doing a NOR to invert the test. */
22323 case NE:
22324 case UNLE:
22325 case UNLT:
22326 case UNGE:
22327 case UNGT:
22328 /* Invert condition and try again.
22329 e.g., A = (B != C) ? D : E becomes A = (B == C) ? E : D. */
22330 invert_move = true;
22331 rcode = reverse_condition_maybe_unordered (rcode);
22332 if (rcode == UNKNOWN)
22333 return 0;
22334 break;
22335
22336 case GE:
22337 case LE:
22338 if (GET_MODE_CLASS (mask_mode) == MODE_VECTOR_INT)
22339 {
22340 /* Invert condition to avoid compound test. */
22341 invert_move = true;
22342 rcode = reverse_condition (rcode);
22343 }
22344 break;
22345
22346 case GTU:
22347 case GEU:
22348 case LTU:
22349 case LEU:
22350 /* Mark unsigned tests with CCUNSmode. */
22351 cc_mode = CCUNSmode;
22352
22353 /* Invert condition to avoid compound test if necessary. */
22354 if (rcode == GEU || rcode == LEU)
22355 {
22356 invert_move = true;
22357 rcode = reverse_condition (rcode);
22358 }
22359 break;
22360
22361 default:
22362 break;
22363 }
22364
22365 /* Get the vector mask for the given relational operations. */
22366 mask = rs6000_emit_vector_compare (rcode, cc_op0, cc_op1, mask_mode);
22367
22368 if (!mask)
22369 return 0;
22370
22371 if (invert_move)
22372 std::swap (op_true, op_false);
22373
22374 /* Optimize vec1 == vec2, to know the mask generates -1/0. */
22375 if (GET_MODE_CLASS (dest_mode) == MODE_VECTOR_INT
22376 && (GET_CODE (op_true) == CONST_VECTOR
22377 || GET_CODE (op_false) == CONST_VECTOR))
22378 {
22379 rtx constant_0 = CONST0_RTX (dest_mode);
22380 rtx constant_m1 = CONSTM1_RTX (dest_mode);
22381
22382 if (op_true == constant_m1 && op_false == constant_0)
22383 {
22384 emit_move_insn (dest, mask);
22385 return 1;
22386 }
22387
22388 else if (op_true == constant_0 && op_false == constant_m1)
22389 {
22390 emit_insn (gen_rtx_SET (dest, gen_rtx_NOT (dest_mode, mask)));
22391 return 1;
22392 }
22393
22394 /* If we can't use the vector comparison directly, perhaps we can use
22395 the mask for the true or false fields, instead of loading up a
22396 constant. */
22397 if (op_true == constant_m1)
22398 op_true = mask;
22399
22400 if (op_false == constant_0)
22401 op_false = mask;
22402 }
22403
22404 if (!REG_P (op_true) && !SUBREG_P (op_true))
22405 op_true = force_reg (dest_mode, op_true);
22406
22407 if (!REG_P (op_false) && !SUBREG_P (op_false))
22408 op_false = force_reg (dest_mode, op_false);
22409
22410 cond2 = gen_rtx_fmt_ee (NE, cc_mode, gen_lowpart (dest_mode, mask),
22411 CONST0_RTX (dest_mode));
22412 emit_insn (gen_rtx_SET (dest,
22413 gen_rtx_IF_THEN_ELSE (dest_mode,
22414 cond2,
22415 op_true,
22416 op_false)));
22417 return 1;
22418 }
22419
22420 /* ISA 3.0 (power9) minmax subcase to emit a XSMAXCDP or XSMINCDP instruction
22421 for SF/DF scalars. Move TRUE_COND to DEST if OP of the operands of the last
22422 comparison is nonzero/true, FALSE_COND if it is zero/false. Return 0 if the
22423 hardware has no such operation. */
22424
22425 static int
22426 rs6000_emit_p9_fp_minmax (rtx dest, rtx op, rtx true_cond, rtx false_cond)
22427 {
22428 enum rtx_code code = GET_CODE (op);
22429 rtx op0 = XEXP (op, 0);
22430 rtx op1 = XEXP (op, 1);
22431 machine_mode compare_mode = GET_MODE (op0);
22432 machine_mode result_mode = GET_MODE (dest);
22433 bool max_p = false;
22434
22435 if (result_mode != compare_mode)
22436 return 0;
22437
22438 if (code == GE || code == GT)
22439 max_p = true;
22440 else if (code == LE || code == LT)
22441 max_p = false;
22442 else
22443 return 0;
22444
22445 if (rtx_equal_p (op0, true_cond) && rtx_equal_p (op1, false_cond))
22446 ;
22447
22448 else if (rtx_equal_p (op1, true_cond) && rtx_equal_p (op0, false_cond))
22449 max_p = !max_p;
22450
22451 else
22452 return 0;
22453
22454 rs6000_emit_minmax (dest, max_p ? SMAX : SMIN, op0, op1);
22455 return 1;
22456 }
22457
22458 /* ISA 3.0 (power9) conditional move subcase to emit XSCMP{EQ,GE,GT,NE}DP and
22459 XXSEL instructions for SF/DF scalars. Move TRUE_COND to DEST if OP of the
22460 operands of the last comparison is nonzero/true, FALSE_COND if it is
22461 zero/false. Return 0 if the hardware has no such operation. */
22462
22463 static int
22464 rs6000_emit_p9_fp_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
22465 {
22466 enum rtx_code code = GET_CODE (op);
22467 rtx op0 = XEXP (op, 0);
22468 rtx op1 = XEXP (op, 1);
22469 machine_mode result_mode = GET_MODE (dest);
22470 rtx compare_rtx;
22471 rtx cmove_rtx;
22472 rtx clobber_rtx;
22473
22474 if (!can_create_pseudo_p ())
22475 return 0;
22476
22477 switch (code)
22478 {
22479 case EQ:
22480 case GE:
22481 case GT:
22482 break;
22483
22484 case NE:
22485 case LT:
22486 case LE:
22487 code = swap_condition (code);
22488 std::swap (op0, op1);
22489 break;
22490
22491 default:
22492 return 0;
22493 }
22494
22495 /* Generate: [(parallel [(set (dest)
22496 (if_then_else (op (cmp1) (cmp2))
22497 (true)
22498 (false)))
22499 (clobber (scratch))])]. */
22500
22501 compare_rtx = gen_rtx_fmt_ee (code, CCFPmode, op0, op1);
22502 cmove_rtx = gen_rtx_SET (dest,
22503 gen_rtx_IF_THEN_ELSE (result_mode,
22504 compare_rtx,
22505 true_cond,
22506 false_cond));
22507
22508 clobber_rtx = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (V2DImode));
22509 emit_insn (gen_rtx_PARALLEL (VOIDmode,
22510 gen_rtvec (2, cmove_rtx, clobber_rtx)));
22511
22512 return 1;
22513 }
22514
22515 /* Emit a conditional move: move TRUE_COND to DEST if OP of the
22516 operands of the last comparison is nonzero/true, FALSE_COND if it
22517 is zero/false. Return 0 if the hardware has no such operation. */
22518
22519 int
22520 rs6000_emit_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
22521 {
22522 enum rtx_code code = GET_CODE (op);
22523 rtx op0 = XEXP (op, 0);
22524 rtx op1 = XEXP (op, 1);
22525 machine_mode compare_mode = GET_MODE (op0);
22526 machine_mode result_mode = GET_MODE (dest);
22527 rtx temp;
22528 bool is_against_zero;
22529
22530 /* These modes should always match. */
22531 if (GET_MODE (op1) != compare_mode
22532 /* In the isel case however, we can use a compare immediate, so
22533 op1 may be a small constant. */
22534 && (!TARGET_ISEL || !short_cint_operand (op1, VOIDmode)))
22535 return 0;
22536 if (GET_MODE (true_cond) != result_mode)
22537 return 0;
22538 if (GET_MODE (false_cond) != result_mode)
22539 return 0;
22540
22541 /* See if we can use the ISA 3.0 (power9) min/max/compare functions. */
22542 if (TARGET_P9_MINMAX
22543 && (compare_mode == SFmode || compare_mode == DFmode)
22544 && (result_mode == SFmode || result_mode == DFmode))
22545 {
22546 if (rs6000_emit_p9_fp_minmax (dest, op, true_cond, false_cond))
22547 return 1;
22548
22549 if (rs6000_emit_p9_fp_cmove (dest, op, true_cond, false_cond))
22550 return 1;
22551 }
22552
22553 /* Don't allow using floating point comparisons for integer results for
22554 now. */
22555 if (FLOAT_MODE_P (compare_mode) && !FLOAT_MODE_P (result_mode))
22556 return 0;
22557
22558 /* First, work out if the hardware can do this at all, or
22559 if it's too slow.... */
22560 if (!FLOAT_MODE_P (compare_mode))
22561 {
22562 if (TARGET_ISEL)
22563 return rs6000_emit_int_cmove (dest, op, true_cond, false_cond);
22564 return 0;
22565 }
22566
22567 is_against_zero = op1 == CONST0_RTX (compare_mode);
22568
22569 /* A floating-point subtract might overflow, underflow, or produce
22570 an inexact result, thus changing the floating-point flags, so it
22571 can't be generated if we care about that. It's safe if one side
22572 of the construct is zero, since then no subtract will be
22573 generated. */
22574 if (SCALAR_FLOAT_MODE_P (compare_mode)
22575 && flag_trapping_math && ! is_against_zero)
22576 return 0;
22577
22578 /* Eliminate half of the comparisons by switching operands, this
22579 makes the remaining code simpler. */
22580 if (code == UNLT || code == UNGT || code == UNORDERED || code == NE
22581 || code == LTGT || code == LT || code == UNLE)
22582 {
22583 code = reverse_condition_maybe_unordered (code);
22584 temp = true_cond;
22585 true_cond = false_cond;
22586 false_cond = temp;
22587 }
22588
22589 /* UNEQ and LTGT take four instructions for a comparison with zero,
22590 it'll probably be faster to use a branch here too. */
22591 if (code == UNEQ && HONOR_NANS (compare_mode))
22592 return 0;
22593
22594 /* We're going to try to implement comparisons by performing
22595 a subtract, then comparing against zero. Unfortunately,
22596 Inf - Inf is NaN which is not zero, and so if we don't
22597 know that the operand is finite and the comparison
22598 would treat EQ different to UNORDERED, we can't do it. */
22599 if (HONOR_INFINITIES (compare_mode)
22600 && code != GT && code != UNGE
22601 && (GET_CODE (op1) != CONST_DOUBLE
22602 || real_isinf (CONST_DOUBLE_REAL_VALUE (op1)))
22603 /* Constructs of the form (a OP b ? a : b) are safe. */
22604 && ((! rtx_equal_p (op0, false_cond) && ! rtx_equal_p (op1, false_cond))
22605 || (! rtx_equal_p (op0, true_cond)
22606 && ! rtx_equal_p (op1, true_cond))))
22607 return 0;
22608
22609 /* At this point we know we can use fsel. */
22610
22611 /* Reduce the comparison to a comparison against zero. */
22612 if (! is_against_zero)
22613 {
22614 temp = gen_reg_rtx (compare_mode);
22615 emit_insn (gen_rtx_SET (temp, gen_rtx_MINUS (compare_mode, op0, op1)));
22616 op0 = temp;
22617 op1 = CONST0_RTX (compare_mode);
22618 }
22619
22620 /* If we don't care about NaNs we can reduce some of the comparisons
22621 down to faster ones. */
22622 if (! HONOR_NANS (compare_mode))
22623 switch (code)
22624 {
22625 case GT:
22626 code = LE;
22627 temp = true_cond;
22628 true_cond = false_cond;
22629 false_cond = temp;
22630 break;
22631 case UNGE:
22632 code = GE;
22633 break;
22634 case UNEQ:
22635 code = EQ;
22636 break;
22637 default:
22638 break;
22639 }
22640
22641 /* Now, reduce everything down to a GE. */
22642 switch (code)
22643 {
22644 case GE:
22645 break;
22646
22647 case LE:
22648 temp = gen_reg_rtx (compare_mode);
22649 emit_insn (gen_rtx_SET (temp, gen_rtx_NEG (compare_mode, op0)));
22650 op0 = temp;
22651 break;
22652
22653 case ORDERED:
22654 temp = gen_reg_rtx (compare_mode);
22655 emit_insn (gen_rtx_SET (temp, gen_rtx_ABS (compare_mode, op0)));
22656 op0 = temp;
22657 break;
22658
22659 case EQ:
22660 temp = gen_reg_rtx (compare_mode);
22661 emit_insn (gen_rtx_SET (temp,
22662 gen_rtx_NEG (compare_mode,
22663 gen_rtx_ABS (compare_mode, op0))));
22664 op0 = temp;
22665 break;
22666
22667 case UNGE:
22668 /* a UNGE 0 <-> (a GE 0 || -a UNLT 0) */
22669 temp = gen_reg_rtx (result_mode);
22670 emit_insn (gen_rtx_SET (temp,
22671 gen_rtx_IF_THEN_ELSE (result_mode,
22672 gen_rtx_GE (VOIDmode,
22673 op0, op1),
22674 true_cond, false_cond)));
22675 false_cond = true_cond;
22676 true_cond = temp;
22677
22678 temp = gen_reg_rtx (compare_mode);
22679 emit_insn (gen_rtx_SET (temp, gen_rtx_NEG (compare_mode, op0)));
22680 op0 = temp;
22681 break;
22682
22683 case GT:
22684 /* a GT 0 <-> (a GE 0 && -a UNLT 0) */
22685 temp = gen_reg_rtx (result_mode);
22686 emit_insn (gen_rtx_SET (temp,
22687 gen_rtx_IF_THEN_ELSE (result_mode,
22688 gen_rtx_GE (VOIDmode,
22689 op0, op1),
22690 true_cond, false_cond)));
22691 true_cond = false_cond;
22692 false_cond = temp;
22693
22694 temp = gen_reg_rtx (compare_mode);
22695 emit_insn (gen_rtx_SET (temp, gen_rtx_NEG (compare_mode, op0)));
22696 op0 = temp;
22697 break;
22698
22699 default:
22700 gcc_unreachable ();
22701 }
22702
22703 emit_insn (gen_rtx_SET (dest,
22704 gen_rtx_IF_THEN_ELSE (result_mode,
22705 gen_rtx_GE (VOIDmode,
22706 op0, op1),
22707 true_cond, false_cond)));
22708 return 1;
22709 }
22710
22711 /* Same as above, but for ints (isel). */
22712
22713 int
22714 rs6000_emit_int_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
22715 {
22716 rtx condition_rtx, cr;
22717 machine_mode mode = GET_MODE (dest);
22718 enum rtx_code cond_code;
22719 rtx (*isel_func) (rtx, rtx, rtx, rtx, rtx);
22720 bool signedp;
22721
22722 if (mode != SImode && (!TARGET_POWERPC64 || mode != DImode))
22723 return 0;
22724
22725 /* We still have to do the compare, because isel doesn't do a
22726 compare, it just looks at the CRx bits set by a previous compare
22727 instruction. */
22728 condition_rtx = rs6000_generate_compare (op, mode);
22729 cond_code = GET_CODE (condition_rtx);
22730 cr = XEXP (condition_rtx, 0);
22731 signedp = GET_MODE (cr) == CCmode;
22732
22733 isel_func = (mode == SImode
22734 ? (signedp ? gen_isel_signed_si : gen_isel_unsigned_si)
22735 : (signedp ? gen_isel_signed_di : gen_isel_unsigned_di));
22736
22737 switch (cond_code)
22738 {
22739 case LT: case GT: case LTU: case GTU: case EQ:
22740 /* isel handles these directly. */
22741 break;
22742
22743 default:
22744 /* We need to swap the sense of the comparison. */
22745 {
22746 std::swap (false_cond, true_cond);
22747 PUT_CODE (condition_rtx, reverse_condition (cond_code));
22748 }
22749 break;
22750 }
22751
22752 false_cond = force_reg (mode, false_cond);
22753 if (true_cond != const0_rtx)
22754 true_cond = force_reg (mode, true_cond);
22755
22756 emit_insn (isel_func (dest, condition_rtx, true_cond, false_cond, cr));
22757
22758 return 1;
22759 }
22760
22761 void
22762 rs6000_emit_minmax (rtx dest, enum rtx_code code, rtx op0, rtx op1)
22763 {
22764 machine_mode mode = GET_MODE (op0);
22765 enum rtx_code c;
22766 rtx target;
22767
22768 /* VSX/altivec have direct min/max insns. */
22769 if ((code == SMAX || code == SMIN)
22770 && (VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)
22771 || (mode == SFmode && VECTOR_UNIT_VSX_P (DFmode))))
22772 {
22773 emit_insn (gen_rtx_SET (dest, gen_rtx_fmt_ee (code, mode, op0, op1)));
22774 return;
22775 }
22776
22777 if (code == SMAX || code == SMIN)
22778 c = GE;
22779 else
22780 c = GEU;
22781
22782 if (code == SMAX || code == UMAX)
22783 target = emit_conditional_move (dest, c, op0, op1, mode,
22784 op0, op1, mode, 0);
22785 else
22786 target = emit_conditional_move (dest, c, op0, op1, mode,
22787 op1, op0, mode, 0);
22788 gcc_assert (target);
22789 if (target != dest)
22790 emit_move_insn (dest, target);
22791 }
22792
22793 /* A subroutine of the atomic operation splitters. Jump to LABEL if
22794 COND is true. Mark the jump as unlikely to be taken. */
22795
22796 static void
22797 emit_unlikely_jump (rtx cond, rtx label)
22798 {
22799 rtx x = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, label, pc_rtx);
22800 rtx_insn *insn = emit_jump_insn (gen_rtx_SET (pc_rtx, x));
22801 add_reg_br_prob_note (insn, profile_probability::very_unlikely ());
22802 }
22803
22804 /* A subroutine of the atomic operation splitters. Emit a load-locked
22805 instruction in MODE. For QI/HImode, possibly use a pattern than includes
22806 the zero_extend operation. */
22807
22808 static void
22809 emit_load_locked (machine_mode mode, rtx reg, rtx mem)
22810 {
22811 rtx (*fn) (rtx, rtx) = NULL;
22812
22813 switch (mode)
22814 {
22815 case E_QImode:
22816 fn = gen_load_lockedqi;
22817 break;
22818 case E_HImode:
22819 fn = gen_load_lockedhi;
22820 break;
22821 case E_SImode:
22822 if (GET_MODE (mem) == QImode)
22823 fn = gen_load_lockedqi_si;
22824 else if (GET_MODE (mem) == HImode)
22825 fn = gen_load_lockedhi_si;
22826 else
22827 fn = gen_load_lockedsi;
22828 break;
22829 case E_DImode:
22830 fn = gen_load_lockeddi;
22831 break;
22832 case E_TImode:
22833 fn = gen_load_lockedti;
22834 break;
22835 default:
22836 gcc_unreachable ();
22837 }
22838 emit_insn (fn (reg, mem));
22839 }
22840
22841 /* A subroutine of the atomic operation splitters. Emit a store-conditional
22842 instruction in MODE. */
22843
22844 static void
22845 emit_store_conditional (machine_mode mode, rtx res, rtx mem, rtx val)
22846 {
22847 rtx (*fn) (rtx, rtx, rtx) = NULL;
22848
22849 switch (mode)
22850 {
22851 case E_QImode:
22852 fn = gen_store_conditionalqi;
22853 break;
22854 case E_HImode:
22855 fn = gen_store_conditionalhi;
22856 break;
22857 case E_SImode:
22858 fn = gen_store_conditionalsi;
22859 break;
22860 case E_DImode:
22861 fn = gen_store_conditionaldi;
22862 break;
22863 case E_TImode:
22864 fn = gen_store_conditionalti;
22865 break;
22866 default:
22867 gcc_unreachable ();
22868 }
22869
22870 /* Emit sync before stwcx. to address PPC405 Erratum. */
22871 if (PPC405_ERRATUM77)
22872 emit_insn (gen_hwsync ());
22873
22874 emit_insn (fn (res, mem, val));
22875 }
22876
22877 /* Expand barriers before and after a load_locked/store_cond sequence. */
22878
22879 static rtx
22880 rs6000_pre_atomic_barrier (rtx mem, enum memmodel model)
22881 {
22882 rtx addr = XEXP (mem, 0);
22883
22884 if (!legitimate_indirect_address_p (addr, reload_completed)
22885 && !legitimate_indexed_address_p (addr, reload_completed))
22886 {
22887 addr = force_reg (Pmode, addr);
22888 mem = replace_equiv_address_nv (mem, addr);
22889 }
22890
22891 switch (model)
22892 {
22893 case MEMMODEL_RELAXED:
22894 case MEMMODEL_CONSUME:
22895 case MEMMODEL_ACQUIRE:
22896 break;
22897 case MEMMODEL_RELEASE:
22898 case MEMMODEL_ACQ_REL:
22899 emit_insn (gen_lwsync ());
22900 break;
22901 case MEMMODEL_SEQ_CST:
22902 emit_insn (gen_hwsync ());
22903 break;
22904 default:
22905 gcc_unreachable ();
22906 }
22907 return mem;
22908 }
22909
22910 static void
22911 rs6000_post_atomic_barrier (enum memmodel model)
22912 {
22913 switch (model)
22914 {
22915 case MEMMODEL_RELAXED:
22916 case MEMMODEL_CONSUME:
22917 case MEMMODEL_RELEASE:
22918 break;
22919 case MEMMODEL_ACQUIRE:
22920 case MEMMODEL_ACQ_REL:
22921 case MEMMODEL_SEQ_CST:
22922 emit_insn (gen_isync ());
22923 break;
22924 default:
22925 gcc_unreachable ();
22926 }
22927 }
22928
22929 /* A subroutine of the various atomic expanders. For sub-word operations,
22930 we must adjust things to operate on SImode. Given the original MEM,
22931 return a new aligned memory. Also build and return the quantities by
22932 which to shift and mask. */
22933
22934 static rtx
22935 rs6000_adjust_atomic_subword (rtx orig_mem, rtx *pshift, rtx *pmask)
22936 {
22937 rtx addr, align, shift, mask, mem;
22938 HOST_WIDE_INT shift_mask;
22939 machine_mode mode = GET_MODE (orig_mem);
22940
22941 /* For smaller modes, we have to implement this via SImode. */
22942 shift_mask = (mode == QImode ? 0x18 : 0x10);
22943
22944 addr = XEXP (orig_mem, 0);
22945 addr = force_reg (GET_MODE (addr), addr);
22946
22947 /* Aligned memory containing subword. Generate a new memory. We
22948 do not want any of the existing MEM_ATTR data, as we're now
22949 accessing memory outside the original object. */
22950 align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-4),
22951 NULL_RTX, 1, OPTAB_LIB_WIDEN);
22952 mem = gen_rtx_MEM (SImode, align);
22953 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (orig_mem);
22954 if (MEM_ALIAS_SET (orig_mem) == ALIAS_SET_MEMORY_BARRIER)
22955 set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
22956
22957 /* Shift amount for subword relative to aligned word. */
22958 shift = gen_reg_rtx (SImode);
22959 addr = gen_lowpart (SImode, addr);
22960 rtx tmp = gen_reg_rtx (SImode);
22961 emit_insn (gen_ashlsi3 (tmp, addr, GEN_INT (3)));
22962 emit_insn (gen_andsi3 (shift, tmp, GEN_INT (shift_mask)));
22963 if (BYTES_BIG_ENDIAN)
22964 shift = expand_simple_binop (SImode, XOR, shift, GEN_INT (shift_mask),
22965 shift, 1, OPTAB_LIB_WIDEN);
22966 *pshift = shift;
22967
22968 /* Mask for insertion. */
22969 mask = expand_simple_binop (SImode, ASHIFT, GEN_INT (GET_MODE_MASK (mode)),
22970 shift, NULL_RTX, 1, OPTAB_LIB_WIDEN);
22971 *pmask = mask;
22972
22973 return mem;
22974 }
22975
22976 /* A subroutine of the various atomic expanders. For sub-word operands,
22977 combine OLDVAL and NEWVAL via MASK. Returns a new pseduo. */
22978
22979 static rtx
22980 rs6000_mask_atomic_subword (rtx oldval, rtx newval, rtx mask)
22981 {
22982 rtx x;
22983
22984 x = gen_reg_rtx (SImode);
22985 emit_insn (gen_rtx_SET (x, gen_rtx_AND (SImode,
22986 gen_rtx_NOT (SImode, mask),
22987 oldval)));
22988
22989 x = expand_simple_binop (SImode, IOR, newval, x, x, 1, OPTAB_LIB_WIDEN);
22990
22991 return x;
22992 }
22993
22994 /* A subroutine of the various atomic expanders. For sub-word operands,
22995 extract WIDE to NARROW via SHIFT. */
22996
22997 static void
22998 rs6000_finish_atomic_subword (rtx narrow, rtx wide, rtx shift)
22999 {
23000 wide = expand_simple_binop (SImode, LSHIFTRT, wide, shift,
23001 wide, 1, OPTAB_LIB_WIDEN);
23002 emit_move_insn (narrow, gen_lowpart (GET_MODE (narrow), wide));
23003 }
23004
23005 /* Expand an atomic compare and swap operation. */
23006
23007 void
23008 rs6000_expand_atomic_compare_and_swap (rtx operands[])
23009 {
23010 rtx boolval, retval, mem, oldval, newval, cond;
23011 rtx label1, label2, x, mask, shift;
23012 machine_mode mode, orig_mode;
23013 enum memmodel mod_s, mod_f;
23014 bool is_weak;
23015
23016 boolval = operands[0];
23017 retval = operands[1];
23018 mem = operands[2];
23019 oldval = operands[3];
23020 newval = operands[4];
23021 is_weak = (INTVAL (operands[5]) != 0);
23022 mod_s = memmodel_base (INTVAL (operands[6]));
23023 mod_f = memmodel_base (INTVAL (operands[7]));
23024 orig_mode = mode = GET_MODE (mem);
23025
23026 mask = shift = NULL_RTX;
23027 if (mode == QImode || mode == HImode)
23028 {
23029 /* Before power8, we didn't have access to lbarx/lharx, so generate a
23030 lwarx and shift/mask operations. With power8, we need to do the
23031 comparison in SImode, but the store is still done in QI/HImode. */
23032 oldval = convert_modes (SImode, mode, oldval, 1);
23033
23034 if (!TARGET_SYNC_HI_QI)
23035 {
23036 mem = rs6000_adjust_atomic_subword (mem, &shift, &mask);
23037
23038 /* Shift and mask OLDVAL into position with the word. */
23039 oldval = expand_simple_binop (SImode, ASHIFT, oldval, shift,
23040 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23041
23042 /* Shift and mask NEWVAL into position within the word. */
23043 newval = convert_modes (SImode, mode, newval, 1);
23044 newval = expand_simple_binop (SImode, ASHIFT, newval, shift,
23045 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23046 }
23047
23048 /* Prepare to adjust the return value. */
23049 retval = gen_reg_rtx (SImode);
23050 mode = SImode;
23051 }
23052 else if (reg_overlap_mentioned_p (retval, oldval))
23053 oldval = copy_to_reg (oldval);
23054
23055 if (mode != TImode && !reg_or_short_operand (oldval, mode))
23056 oldval = copy_to_mode_reg (mode, oldval);
23057
23058 if (reg_overlap_mentioned_p (retval, newval))
23059 newval = copy_to_reg (newval);
23060
23061 mem = rs6000_pre_atomic_barrier (mem, mod_s);
23062
23063 label1 = NULL_RTX;
23064 if (!is_weak)
23065 {
23066 label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
23067 emit_label (XEXP (label1, 0));
23068 }
23069 label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
23070
23071 emit_load_locked (mode, retval, mem);
23072
23073 x = retval;
23074 if (mask)
23075 x = expand_simple_binop (SImode, AND, retval, mask,
23076 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23077
23078 cond = gen_reg_rtx (CCmode);
23079 /* If we have TImode, synthesize a comparison. */
23080 if (mode != TImode)
23081 x = gen_rtx_COMPARE (CCmode, x, oldval);
23082 else
23083 {
23084 rtx xor1_result = gen_reg_rtx (DImode);
23085 rtx xor2_result = gen_reg_rtx (DImode);
23086 rtx or_result = gen_reg_rtx (DImode);
23087 rtx new_word0 = simplify_gen_subreg (DImode, x, TImode, 0);
23088 rtx new_word1 = simplify_gen_subreg (DImode, x, TImode, 8);
23089 rtx old_word0 = simplify_gen_subreg (DImode, oldval, TImode, 0);
23090 rtx old_word1 = simplify_gen_subreg (DImode, oldval, TImode, 8);
23091
23092 emit_insn (gen_xordi3 (xor1_result, new_word0, old_word0));
23093 emit_insn (gen_xordi3 (xor2_result, new_word1, old_word1));
23094 emit_insn (gen_iordi3 (or_result, xor1_result, xor2_result));
23095 x = gen_rtx_COMPARE (CCmode, or_result, const0_rtx);
23096 }
23097
23098 emit_insn (gen_rtx_SET (cond, x));
23099
23100 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
23101 emit_unlikely_jump (x, label2);
23102
23103 x = newval;
23104 if (mask)
23105 x = rs6000_mask_atomic_subword (retval, newval, mask);
23106
23107 emit_store_conditional (orig_mode, cond, mem, x);
23108
23109 if (!is_weak)
23110 {
23111 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
23112 emit_unlikely_jump (x, label1);
23113 }
23114
23115 if (!is_mm_relaxed (mod_f))
23116 emit_label (XEXP (label2, 0));
23117
23118 rs6000_post_atomic_barrier (mod_s);
23119
23120 if (is_mm_relaxed (mod_f))
23121 emit_label (XEXP (label2, 0));
23122
23123 if (shift)
23124 rs6000_finish_atomic_subword (operands[1], retval, shift);
23125 else if (mode != GET_MODE (operands[1]))
23126 convert_move (operands[1], retval, 1);
23127
23128 /* In all cases, CR0 contains EQ on success, and NE on failure. */
23129 x = gen_rtx_EQ (SImode, cond, const0_rtx);
23130 emit_insn (gen_rtx_SET (boolval, x));
23131 }
23132
23133 /* Expand an atomic exchange operation. */
23134
23135 void
23136 rs6000_expand_atomic_exchange (rtx operands[])
23137 {
23138 rtx retval, mem, val, cond;
23139 machine_mode mode;
23140 enum memmodel model;
23141 rtx label, x, mask, shift;
23142
23143 retval = operands[0];
23144 mem = operands[1];
23145 val = operands[2];
23146 model = memmodel_base (INTVAL (operands[3]));
23147 mode = GET_MODE (mem);
23148
23149 mask = shift = NULL_RTX;
23150 if (!TARGET_SYNC_HI_QI && (mode == QImode || mode == HImode))
23151 {
23152 mem = rs6000_adjust_atomic_subword (mem, &shift, &mask);
23153
23154 /* Shift and mask VAL into position with the word. */
23155 val = convert_modes (SImode, mode, val, 1);
23156 val = expand_simple_binop (SImode, ASHIFT, val, shift,
23157 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23158
23159 /* Prepare to adjust the return value. */
23160 retval = gen_reg_rtx (SImode);
23161 mode = SImode;
23162 }
23163
23164 mem = rs6000_pre_atomic_barrier (mem, model);
23165
23166 label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
23167 emit_label (XEXP (label, 0));
23168
23169 emit_load_locked (mode, retval, mem);
23170
23171 x = val;
23172 if (mask)
23173 x = rs6000_mask_atomic_subword (retval, val, mask);
23174
23175 cond = gen_reg_rtx (CCmode);
23176 emit_store_conditional (mode, cond, mem, x);
23177
23178 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
23179 emit_unlikely_jump (x, label);
23180
23181 rs6000_post_atomic_barrier (model);
23182
23183 if (shift)
23184 rs6000_finish_atomic_subword (operands[0], retval, shift);
23185 }
23186
23187 /* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
23188 to perform. MEM is the memory on which to operate. VAL is the second
23189 operand of the binary operator. BEFORE and AFTER are optional locations to
23190 return the value of MEM either before of after the operation. MODEL_RTX
23191 is a CONST_INT containing the memory model to use. */
23192
23193 void
23194 rs6000_expand_atomic_op (enum rtx_code code, rtx mem, rtx val,
23195 rtx orig_before, rtx orig_after, rtx model_rtx)
23196 {
23197 enum memmodel model = memmodel_base (INTVAL (model_rtx));
23198 machine_mode mode = GET_MODE (mem);
23199 machine_mode store_mode = mode;
23200 rtx label, x, cond, mask, shift;
23201 rtx before = orig_before, after = orig_after;
23202
23203 mask = shift = NULL_RTX;
23204 /* On power8, we want to use SImode for the operation. On previous systems,
23205 use the operation in a subword and shift/mask to get the proper byte or
23206 halfword. */
23207 if (mode == QImode || mode == HImode)
23208 {
23209 if (TARGET_SYNC_HI_QI)
23210 {
23211 val = convert_modes (SImode, mode, val, 1);
23212
23213 /* Prepare to adjust the return value. */
23214 before = gen_reg_rtx (SImode);
23215 if (after)
23216 after = gen_reg_rtx (SImode);
23217 mode = SImode;
23218 }
23219 else
23220 {
23221 mem = rs6000_adjust_atomic_subword (mem, &shift, &mask);
23222
23223 /* Shift and mask VAL into position with the word. */
23224 val = convert_modes (SImode, mode, val, 1);
23225 val = expand_simple_binop (SImode, ASHIFT, val, shift,
23226 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23227
23228 switch (code)
23229 {
23230 case IOR:
23231 case XOR:
23232 /* We've already zero-extended VAL. That is sufficient to
23233 make certain that it does not affect other bits. */
23234 mask = NULL;
23235 break;
23236
23237 case AND:
23238 /* If we make certain that all of the other bits in VAL are
23239 set, that will be sufficient to not affect other bits. */
23240 x = gen_rtx_NOT (SImode, mask);
23241 x = gen_rtx_IOR (SImode, x, val);
23242 emit_insn (gen_rtx_SET (val, x));
23243 mask = NULL;
23244 break;
23245
23246 case NOT:
23247 case PLUS:
23248 case MINUS:
23249 /* These will all affect bits outside the field and need
23250 adjustment via MASK within the loop. */
23251 break;
23252
23253 default:
23254 gcc_unreachable ();
23255 }
23256
23257 /* Prepare to adjust the return value. */
23258 before = gen_reg_rtx (SImode);
23259 if (after)
23260 after = gen_reg_rtx (SImode);
23261 store_mode = mode = SImode;
23262 }
23263 }
23264
23265 mem = rs6000_pre_atomic_barrier (mem, model);
23266
23267 label = gen_label_rtx ();
23268 emit_label (label);
23269 label = gen_rtx_LABEL_REF (VOIDmode, label);
23270
23271 if (before == NULL_RTX)
23272 before = gen_reg_rtx (mode);
23273
23274 emit_load_locked (mode, before, mem);
23275
23276 if (code == NOT)
23277 {
23278 x = expand_simple_binop (mode, AND, before, val,
23279 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23280 after = expand_simple_unop (mode, NOT, x, after, 1);
23281 }
23282 else
23283 {
23284 after = expand_simple_binop (mode, code, before, val,
23285 after, 1, OPTAB_LIB_WIDEN);
23286 }
23287
23288 x = after;
23289 if (mask)
23290 {
23291 x = expand_simple_binop (SImode, AND, after, mask,
23292 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23293 x = rs6000_mask_atomic_subword (before, x, mask);
23294 }
23295 else if (store_mode != mode)
23296 x = convert_modes (store_mode, mode, x, 1);
23297
23298 cond = gen_reg_rtx (CCmode);
23299 emit_store_conditional (store_mode, cond, mem, x);
23300
23301 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
23302 emit_unlikely_jump (x, label);
23303
23304 rs6000_post_atomic_barrier (model);
23305
23306 if (shift)
23307 {
23308 /* QImode/HImode on machines without lbarx/lharx where we do a lwarx and
23309 then do the calcuations in a SImode register. */
23310 if (orig_before)
23311 rs6000_finish_atomic_subword (orig_before, before, shift);
23312 if (orig_after)
23313 rs6000_finish_atomic_subword (orig_after, after, shift);
23314 }
23315 else if (store_mode != mode)
23316 {
23317 /* QImode/HImode on machines with lbarx/lharx where we do the native
23318 operation and then do the calcuations in a SImode register. */
23319 if (orig_before)
23320 convert_move (orig_before, before, 1);
23321 if (orig_after)
23322 convert_move (orig_after, after, 1);
23323 }
23324 else if (orig_after && after != orig_after)
23325 emit_move_insn (orig_after, after);
23326 }
23327
23328 /* Emit instructions to move SRC to DST. Called by splitters for
23329 multi-register moves. It will emit at most one instruction for
23330 each register that is accessed; that is, it won't emit li/lis pairs
23331 (or equivalent for 64-bit code). One of SRC or DST must be a hard
23332 register. */
23333
23334 void
23335 rs6000_split_multireg_move (rtx dst, rtx src)
23336 {
23337 /* The register number of the first register being moved. */
23338 int reg;
23339 /* The mode that is to be moved. */
23340 machine_mode mode;
23341 /* The mode that the move is being done in, and its size. */
23342 machine_mode reg_mode;
23343 int reg_mode_size;
23344 /* The number of registers that will be moved. */
23345 int nregs;
23346
23347 reg = REG_P (dst) ? REGNO (dst) : REGNO (src);
23348 mode = GET_MODE (dst);
23349 nregs = hard_regno_nregs (reg, mode);
23350 if (FP_REGNO_P (reg))
23351 reg_mode = DECIMAL_FLOAT_MODE_P (mode) ? DDmode :
23352 (TARGET_HARD_FLOAT ? DFmode : SFmode);
23353 else if (ALTIVEC_REGNO_P (reg))
23354 reg_mode = V16QImode;
23355 else
23356 reg_mode = word_mode;
23357 reg_mode_size = GET_MODE_SIZE (reg_mode);
23358
23359 gcc_assert (reg_mode_size * nregs == GET_MODE_SIZE (mode));
23360
23361 /* TDmode residing in FP registers is special, since the ISA requires that
23362 the lower-numbered word of a register pair is always the most significant
23363 word, even in little-endian mode. This does not match the usual subreg
23364 semantics, so we cannnot use simplify_gen_subreg in those cases. Access
23365 the appropriate constituent registers "by hand" in little-endian mode.
23366
23367 Note we do not need to check for destructive overlap here since TDmode
23368 can only reside in even/odd register pairs. */
23369 if (FP_REGNO_P (reg) && DECIMAL_FLOAT_MODE_P (mode) && !BYTES_BIG_ENDIAN)
23370 {
23371 rtx p_src, p_dst;
23372 int i;
23373
23374 for (i = 0; i < nregs; i++)
23375 {
23376 if (REG_P (src) && FP_REGNO_P (REGNO (src)))
23377 p_src = gen_rtx_REG (reg_mode, REGNO (src) + nregs - 1 - i);
23378 else
23379 p_src = simplify_gen_subreg (reg_mode, src, mode,
23380 i * reg_mode_size);
23381
23382 if (REG_P (dst) && FP_REGNO_P (REGNO (dst)))
23383 p_dst = gen_rtx_REG (reg_mode, REGNO (dst) + nregs - 1 - i);
23384 else
23385 p_dst = simplify_gen_subreg (reg_mode, dst, mode,
23386 i * reg_mode_size);
23387
23388 emit_insn (gen_rtx_SET (p_dst, p_src));
23389 }
23390
23391 return;
23392 }
23393
23394 if (REG_P (src) && REG_P (dst) && (REGNO (src) < REGNO (dst)))
23395 {
23396 /* Move register range backwards, if we might have destructive
23397 overlap. */
23398 int i;
23399 for (i = nregs - 1; i >= 0; i--)
23400 emit_insn (gen_rtx_SET (simplify_gen_subreg (reg_mode, dst, mode,
23401 i * reg_mode_size),
23402 simplify_gen_subreg (reg_mode, src, mode,
23403 i * reg_mode_size)));
23404 }
23405 else
23406 {
23407 int i;
23408 int j = -1;
23409 bool used_update = false;
23410 rtx restore_basereg = NULL_RTX;
23411
23412 if (MEM_P (src) && INT_REGNO_P (reg))
23413 {
23414 rtx breg;
23415
23416 if (GET_CODE (XEXP (src, 0)) == PRE_INC
23417 || GET_CODE (XEXP (src, 0)) == PRE_DEC)
23418 {
23419 rtx delta_rtx;
23420 breg = XEXP (XEXP (src, 0), 0);
23421 delta_rtx = (GET_CODE (XEXP (src, 0)) == PRE_INC
23422 ? GEN_INT (GET_MODE_SIZE (GET_MODE (src)))
23423 : GEN_INT (-GET_MODE_SIZE (GET_MODE (src))));
23424 emit_insn (gen_add3_insn (breg, breg, delta_rtx));
23425 src = replace_equiv_address (src, breg);
23426 }
23427 else if (! rs6000_offsettable_memref_p (src, reg_mode, true))
23428 {
23429 if (GET_CODE (XEXP (src, 0)) == PRE_MODIFY)
23430 {
23431 rtx basereg = XEXP (XEXP (src, 0), 0);
23432 if (TARGET_UPDATE)
23433 {
23434 rtx ndst = simplify_gen_subreg (reg_mode, dst, mode, 0);
23435 emit_insn (gen_rtx_SET (ndst,
23436 gen_rtx_MEM (reg_mode,
23437 XEXP (src, 0))));
23438 used_update = true;
23439 }
23440 else
23441 emit_insn (gen_rtx_SET (basereg,
23442 XEXP (XEXP (src, 0), 1)));
23443 src = replace_equiv_address (src, basereg);
23444 }
23445 else
23446 {
23447 rtx basereg = gen_rtx_REG (Pmode, reg);
23448 emit_insn (gen_rtx_SET (basereg, XEXP (src, 0)));
23449 src = replace_equiv_address (src, basereg);
23450 }
23451 }
23452
23453 breg = XEXP (src, 0);
23454 if (GET_CODE (breg) == PLUS || GET_CODE (breg) == LO_SUM)
23455 breg = XEXP (breg, 0);
23456
23457 /* If the base register we are using to address memory is
23458 also a destination reg, then change that register last. */
23459 if (REG_P (breg)
23460 && REGNO (breg) >= REGNO (dst)
23461 && REGNO (breg) < REGNO (dst) + nregs)
23462 j = REGNO (breg) - REGNO (dst);
23463 }
23464 else if (MEM_P (dst) && INT_REGNO_P (reg))
23465 {
23466 rtx breg;
23467
23468 if (GET_CODE (XEXP (dst, 0)) == PRE_INC
23469 || GET_CODE (XEXP (dst, 0)) == PRE_DEC)
23470 {
23471 rtx delta_rtx;
23472 breg = XEXP (XEXP (dst, 0), 0);
23473 delta_rtx = (GET_CODE (XEXP (dst, 0)) == PRE_INC
23474 ? GEN_INT (GET_MODE_SIZE (GET_MODE (dst)))
23475 : GEN_INT (-GET_MODE_SIZE (GET_MODE (dst))));
23476
23477 /* We have to update the breg before doing the store.
23478 Use store with update, if available. */
23479
23480 if (TARGET_UPDATE)
23481 {
23482 rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
23483 emit_insn (TARGET_32BIT
23484 ? (TARGET_POWERPC64
23485 ? gen_movdi_si_update (breg, breg, delta_rtx, nsrc)
23486 : gen_movsi_update (breg, breg, delta_rtx, nsrc))
23487 : gen_movdi_di_update (breg, breg, delta_rtx, nsrc));
23488 used_update = true;
23489 }
23490 else
23491 emit_insn (gen_add3_insn (breg, breg, delta_rtx));
23492 dst = replace_equiv_address (dst, breg);
23493 }
23494 else if (!rs6000_offsettable_memref_p (dst, reg_mode, true)
23495 && GET_CODE (XEXP (dst, 0)) != LO_SUM)
23496 {
23497 if (GET_CODE (XEXP (dst, 0)) == PRE_MODIFY)
23498 {
23499 rtx basereg = XEXP (XEXP (dst, 0), 0);
23500 if (TARGET_UPDATE)
23501 {
23502 rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
23503 emit_insn (gen_rtx_SET (gen_rtx_MEM (reg_mode,
23504 XEXP (dst, 0)),
23505 nsrc));
23506 used_update = true;
23507 }
23508 else
23509 emit_insn (gen_rtx_SET (basereg,
23510 XEXP (XEXP (dst, 0), 1)));
23511 dst = replace_equiv_address (dst, basereg);
23512 }
23513 else
23514 {
23515 rtx basereg = XEXP (XEXP (dst, 0), 0);
23516 rtx offsetreg = XEXP (XEXP (dst, 0), 1);
23517 gcc_assert (GET_CODE (XEXP (dst, 0)) == PLUS
23518 && REG_P (basereg)
23519 && REG_P (offsetreg)
23520 && REGNO (basereg) != REGNO (offsetreg));
23521 if (REGNO (basereg) == 0)
23522 {
23523 rtx tmp = offsetreg;
23524 offsetreg = basereg;
23525 basereg = tmp;
23526 }
23527 emit_insn (gen_add3_insn (basereg, basereg, offsetreg));
23528 restore_basereg = gen_sub3_insn (basereg, basereg, offsetreg);
23529 dst = replace_equiv_address (dst, basereg);
23530 }
23531 }
23532 else if (GET_CODE (XEXP (dst, 0)) != LO_SUM)
23533 gcc_assert (rs6000_offsettable_memref_p (dst, reg_mode, true));
23534 }
23535
23536 for (i = 0; i < nregs; i++)
23537 {
23538 /* Calculate index to next subword. */
23539 ++j;
23540 if (j == nregs)
23541 j = 0;
23542
23543 /* If compiler already emitted move of first word by
23544 store with update, no need to do anything. */
23545 if (j == 0 && used_update)
23546 continue;
23547
23548 emit_insn (gen_rtx_SET (simplify_gen_subreg (reg_mode, dst, mode,
23549 j * reg_mode_size),
23550 simplify_gen_subreg (reg_mode, src, mode,
23551 j * reg_mode_size)));
23552 }
23553 if (restore_basereg != NULL_RTX)
23554 emit_insn (restore_basereg);
23555 }
23556 }
23557
23558 \f
23559 /* This page contains routines that are used to determine what the
23560 function prologue and epilogue code will do and write them out. */
23561
23562 /* Determine whether the REG is really used. */
23563
23564 static bool
23565 save_reg_p (int reg)
23566 {
23567 /* We need to mark the PIC offset register live for the same conditions
23568 as it is set up, or otherwise it won't be saved before we clobber it. */
23569
23570 if (reg == RS6000_PIC_OFFSET_TABLE_REGNUM && !TARGET_SINGLE_PIC_BASE)
23571 {
23572 /* When calling eh_return, we must return true for all the cases
23573 where conditional_register_usage marks the PIC offset reg
23574 call used. */
23575 if (TARGET_TOC && TARGET_MINIMAL_TOC
23576 && (crtl->calls_eh_return
23577 || df_regs_ever_live_p (reg)
23578 || !constant_pool_empty_p ()))
23579 return true;
23580
23581 if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN)
23582 && flag_pic)
23583 return true;
23584 }
23585
23586 return !call_used_regs[reg] && df_regs_ever_live_p (reg);
23587 }
23588
23589 /* Return the first fixed-point register that is required to be
23590 saved. 32 if none. */
23591
23592 int
23593 first_reg_to_save (void)
23594 {
23595 int first_reg;
23596
23597 /* Find lowest numbered live register. */
23598 for (first_reg = 13; first_reg <= 31; first_reg++)
23599 if (save_reg_p (first_reg))
23600 break;
23601
23602 #if TARGET_MACHO
23603 if (flag_pic
23604 && crtl->uses_pic_offset_table
23605 && first_reg > RS6000_PIC_OFFSET_TABLE_REGNUM)
23606 return RS6000_PIC_OFFSET_TABLE_REGNUM;
23607 #endif
23608
23609 return first_reg;
23610 }
23611
23612 /* Similar, for FP regs. */
23613
23614 int
23615 first_fp_reg_to_save (void)
23616 {
23617 int first_reg;
23618
23619 /* Find lowest numbered live register. */
23620 for (first_reg = 14 + 32; first_reg <= 63; first_reg++)
23621 if (save_reg_p (first_reg))
23622 break;
23623
23624 return first_reg;
23625 }
23626
23627 /* Similar, for AltiVec regs. */
23628
23629 static int
23630 first_altivec_reg_to_save (void)
23631 {
23632 int i;
23633
23634 /* Stack frame remains as is unless we are in AltiVec ABI. */
23635 if (! TARGET_ALTIVEC_ABI)
23636 return LAST_ALTIVEC_REGNO + 1;
23637
23638 /* On Darwin, the unwind routines are compiled without
23639 TARGET_ALTIVEC, and use save_world to save/restore the
23640 altivec registers when necessary. */
23641 if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
23642 && ! TARGET_ALTIVEC)
23643 return FIRST_ALTIVEC_REGNO + 20;
23644
23645 /* Find lowest numbered live register. */
23646 for (i = FIRST_ALTIVEC_REGNO + 20; i <= LAST_ALTIVEC_REGNO; ++i)
23647 if (save_reg_p (i))
23648 break;
23649
23650 return i;
23651 }
23652
23653 /* Return a 32-bit mask of the AltiVec registers we need to set in
23654 VRSAVE. Bit n of the return value is 1 if Vn is live. The MSB in
23655 the 32-bit word is 0. */
23656
23657 static unsigned int
23658 compute_vrsave_mask (void)
23659 {
23660 unsigned int i, mask = 0;
23661
23662 /* On Darwin, the unwind routines are compiled without
23663 TARGET_ALTIVEC, and use save_world to save/restore the
23664 call-saved altivec registers when necessary. */
23665 if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
23666 && ! TARGET_ALTIVEC)
23667 mask |= 0xFFF;
23668
23669 /* First, find out if we use _any_ altivec registers. */
23670 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
23671 if (df_regs_ever_live_p (i))
23672 mask |= ALTIVEC_REG_BIT (i);
23673
23674 if (mask == 0)
23675 return mask;
23676
23677 /* Next, remove the argument registers from the set. These must
23678 be in the VRSAVE mask set by the caller, so we don't need to add
23679 them in again. More importantly, the mask we compute here is
23680 used to generate CLOBBERs in the set_vrsave insn, and we do not
23681 wish the argument registers to die. */
23682 for (i = ALTIVEC_ARG_MIN_REG; i < (unsigned) crtl->args.info.vregno; i++)
23683 mask &= ~ALTIVEC_REG_BIT (i);
23684
23685 /* Similarly, remove the return value from the set. */
23686 {
23687 bool yes = false;
23688 diddle_return_value (is_altivec_return_reg, &yes);
23689 if (yes)
23690 mask &= ~ALTIVEC_REG_BIT (ALTIVEC_ARG_RETURN);
23691 }
23692
23693 return mask;
23694 }
23695
23696 /* For a very restricted set of circumstances, we can cut down the
23697 size of prologues/epilogues by calling our own save/restore-the-world
23698 routines. */
23699
23700 static void
23701 compute_save_world_info (rs6000_stack_t *info)
23702 {
23703 info->world_save_p = 1;
23704 info->world_save_p
23705 = (WORLD_SAVE_P (info)
23706 && DEFAULT_ABI == ABI_DARWIN
23707 && !cfun->has_nonlocal_label
23708 && info->first_fp_reg_save == FIRST_SAVED_FP_REGNO
23709 && info->first_gp_reg_save == FIRST_SAVED_GP_REGNO
23710 && info->first_altivec_reg_save == FIRST_SAVED_ALTIVEC_REGNO
23711 && info->cr_save_p);
23712
23713 /* This will not work in conjunction with sibcalls. Make sure there
23714 are none. (This check is expensive, but seldom executed.) */
23715 if (WORLD_SAVE_P (info))
23716 {
23717 rtx_insn *insn;
23718 for (insn = get_last_insn_anywhere (); insn; insn = PREV_INSN (insn))
23719 if (CALL_P (insn) && SIBLING_CALL_P (insn))
23720 {
23721 info->world_save_p = 0;
23722 break;
23723 }
23724 }
23725
23726 if (WORLD_SAVE_P (info))
23727 {
23728 /* Even if we're not touching VRsave, make sure there's room on the
23729 stack for it, if it looks like we're calling SAVE_WORLD, which
23730 will attempt to save it. */
23731 info->vrsave_size = 4;
23732
23733 /* If we are going to save the world, we need to save the link register too. */
23734 info->lr_save_p = 1;
23735
23736 /* "Save" the VRsave register too if we're saving the world. */
23737 if (info->vrsave_mask == 0)
23738 info->vrsave_mask = compute_vrsave_mask ();
23739
23740 /* Because the Darwin register save/restore routines only handle
23741 F14 .. F31 and V20 .. V31 as per the ABI, perform a consistency
23742 check. */
23743 gcc_assert (info->first_fp_reg_save >= FIRST_SAVED_FP_REGNO
23744 && (info->first_altivec_reg_save
23745 >= FIRST_SAVED_ALTIVEC_REGNO));
23746 }
23747
23748 return;
23749 }
23750
23751
23752 static void
23753 is_altivec_return_reg (rtx reg, void *xyes)
23754 {
23755 bool *yes = (bool *) xyes;
23756 if (REGNO (reg) == ALTIVEC_ARG_RETURN)
23757 *yes = true;
23758 }
23759
23760 \f
23761 /* Return whether REG is a global user reg or has been specifed by
23762 -ffixed-REG. We should not restore these, and so cannot use
23763 lmw or out-of-line restore functions if there are any. We also
23764 can't save them (well, emit frame notes for them), because frame
23765 unwinding during exception handling will restore saved registers. */
23766
23767 static bool
23768 fixed_reg_p (int reg)
23769 {
23770 /* Ignore fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] when the
23771 backend sets it, overriding anything the user might have given. */
23772 if (reg == RS6000_PIC_OFFSET_TABLE_REGNUM
23773 && ((DEFAULT_ABI == ABI_V4 && flag_pic)
23774 || (DEFAULT_ABI == ABI_DARWIN && flag_pic)
23775 || (TARGET_TOC && TARGET_MINIMAL_TOC)))
23776 return false;
23777
23778 return fixed_regs[reg];
23779 }
23780
23781 /* Determine the strategy for savings/restoring registers. */
23782
23783 enum {
23784 SAVE_MULTIPLE = 0x1,
23785 SAVE_INLINE_GPRS = 0x2,
23786 SAVE_INLINE_FPRS = 0x4,
23787 SAVE_NOINLINE_GPRS_SAVES_LR = 0x8,
23788 SAVE_NOINLINE_FPRS_SAVES_LR = 0x10,
23789 SAVE_INLINE_VRS = 0x20,
23790 REST_MULTIPLE = 0x100,
23791 REST_INLINE_GPRS = 0x200,
23792 REST_INLINE_FPRS = 0x400,
23793 REST_NOINLINE_FPRS_DOESNT_RESTORE_LR = 0x800,
23794 REST_INLINE_VRS = 0x1000
23795 };
23796
23797 static int
23798 rs6000_savres_strategy (rs6000_stack_t *info,
23799 bool using_static_chain_p)
23800 {
23801 int strategy = 0;
23802
23803 /* Select between in-line and out-of-line save and restore of regs.
23804 First, all the obvious cases where we don't use out-of-line. */
23805 if (crtl->calls_eh_return
23806 || cfun->machine->ra_need_lr)
23807 strategy |= (SAVE_INLINE_FPRS | REST_INLINE_FPRS
23808 | SAVE_INLINE_GPRS | REST_INLINE_GPRS
23809 | SAVE_INLINE_VRS | REST_INLINE_VRS);
23810
23811 if (info->first_gp_reg_save == 32)
23812 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23813
23814 if (info->first_fp_reg_save == 64)
23815 strategy |= SAVE_INLINE_FPRS | REST_INLINE_FPRS;
23816
23817 if (info->first_altivec_reg_save == LAST_ALTIVEC_REGNO + 1)
23818 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
23819
23820 /* Define cutoff for using out-of-line functions to save registers. */
23821 if (DEFAULT_ABI == ABI_V4 || TARGET_ELF)
23822 {
23823 if (!optimize_size)
23824 {
23825 strategy |= SAVE_INLINE_FPRS | REST_INLINE_FPRS;
23826 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23827 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
23828 }
23829 else
23830 {
23831 /* Prefer out-of-line restore if it will exit. */
23832 if (info->first_fp_reg_save > 61)
23833 strategy |= SAVE_INLINE_FPRS;
23834 if (info->first_gp_reg_save > 29)
23835 {
23836 if (info->first_fp_reg_save == 64)
23837 strategy |= SAVE_INLINE_GPRS;
23838 else
23839 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23840 }
23841 if (info->first_altivec_reg_save == LAST_ALTIVEC_REGNO)
23842 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
23843 }
23844 }
23845 else if (DEFAULT_ABI == ABI_DARWIN)
23846 {
23847 if (info->first_fp_reg_save > 60)
23848 strategy |= SAVE_INLINE_FPRS | REST_INLINE_FPRS;
23849 if (info->first_gp_reg_save > 29)
23850 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23851 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
23852 }
23853 else
23854 {
23855 gcc_checking_assert (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2);
23856 if ((flag_shrink_wrap_separate && optimize_function_for_speed_p (cfun))
23857 || info->first_fp_reg_save > 61)
23858 strategy |= SAVE_INLINE_FPRS | REST_INLINE_FPRS;
23859 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23860 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
23861 }
23862
23863 /* Don't bother to try to save things out-of-line if r11 is occupied
23864 by the static chain. It would require too much fiddling and the
23865 static chain is rarely used anyway. FPRs are saved w.r.t the stack
23866 pointer on Darwin, and AIX uses r1 or r12. */
23867 if (using_static_chain_p
23868 && (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN))
23869 strategy |= ((DEFAULT_ABI == ABI_DARWIN ? 0 : SAVE_INLINE_FPRS)
23870 | SAVE_INLINE_GPRS
23871 | SAVE_INLINE_VRS);
23872
23873 /* Don't ever restore fixed regs. That means we can't use the
23874 out-of-line register restore functions if a fixed reg is in the
23875 range of regs restored. */
23876 if (!(strategy & REST_INLINE_FPRS))
23877 for (int i = info->first_fp_reg_save; i < 64; i++)
23878 if (fixed_regs[i])
23879 {
23880 strategy |= REST_INLINE_FPRS;
23881 break;
23882 }
23883
23884 /* We can only use the out-of-line routines to restore fprs if we've
23885 saved all the registers from first_fp_reg_save in the prologue.
23886 Otherwise, we risk loading garbage. Of course, if we have saved
23887 out-of-line then we know we haven't skipped any fprs. */
23888 if ((strategy & SAVE_INLINE_FPRS)
23889 && !(strategy & REST_INLINE_FPRS))
23890 for (int i = info->first_fp_reg_save; i < 64; i++)
23891 if (!save_reg_p (i))
23892 {
23893 strategy |= REST_INLINE_FPRS;
23894 break;
23895 }
23896
23897 /* Similarly, for altivec regs. */
23898 if (!(strategy & REST_INLINE_VRS))
23899 for (int i = info->first_altivec_reg_save; i < LAST_ALTIVEC_REGNO + 1; i++)
23900 if (fixed_regs[i])
23901 {
23902 strategy |= REST_INLINE_VRS;
23903 break;
23904 }
23905
23906 if ((strategy & SAVE_INLINE_VRS)
23907 && !(strategy & REST_INLINE_VRS))
23908 for (int i = info->first_altivec_reg_save; i < LAST_ALTIVEC_REGNO + 1; i++)
23909 if (!save_reg_p (i))
23910 {
23911 strategy |= REST_INLINE_VRS;
23912 break;
23913 }
23914
23915 /* info->lr_save_p isn't yet set if the only reason lr needs to be
23916 saved is an out-of-line save or restore. Set up the value for
23917 the next test (excluding out-of-line gprs). */
23918 bool lr_save_p = (info->lr_save_p
23919 || !(strategy & SAVE_INLINE_FPRS)
23920 || !(strategy & SAVE_INLINE_VRS)
23921 || !(strategy & REST_INLINE_FPRS)
23922 || !(strategy & REST_INLINE_VRS));
23923
23924 if (TARGET_MULTIPLE
23925 && !TARGET_POWERPC64
23926 && info->first_gp_reg_save < 31
23927 && !(flag_shrink_wrap
23928 && flag_shrink_wrap_separate
23929 && optimize_function_for_speed_p (cfun)))
23930 {
23931 int count = 0;
23932 for (int i = info->first_gp_reg_save; i < 32; i++)
23933 if (save_reg_p (i))
23934 count++;
23935
23936 if (count <= 1)
23937 /* Don't use store multiple if only one reg needs to be
23938 saved. This can occur for example when the ABI_V4 pic reg
23939 (r30) needs to be saved to make calls, but r31 is not
23940 used. */
23941 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23942 else
23943 {
23944 /* Prefer store multiple for saves over out-of-line
23945 routines, since the store-multiple instruction will
23946 always be smaller. */
23947 strategy |= SAVE_INLINE_GPRS | SAVE_MULTIPLE;
23948
23949 /* The situation is more complicated with load multiple.
23950 We'd prefer to use the out-of-line routines for restores,
23951 since the "exit" out-of-line routines can handle the
23952 restore of LR and the frame teardown. However if doesn't
23953 make sense to use the out-of-line routine if that is the
23954 only reason we'd need to save LR, and we can't use the
23955 "exit" out-of-line gpr restore if we have saved some
23956 fprs; In those cases it is advantageous to use load
23957 multiple when available. */
23958 if (info->first_fp_reg_save != 64 || !lr_save_p)
23959 strategy |= REST_INLINE_GPRS | REST_MULTIPLE;
23960 }
23961 }
23962
23963 /* Using the "exit" out-of-line routine does not improve code size
23964 if using it would require lr to be saved and if only saving one
23965 or two gprs. */
23966 else if (!lr_save_p && info->first_gp_reg_save > 29)
23967 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23968
23969 /* Don't ever restore fixed regs. */
23970 if ((strategy & (REST_INLINE_GPRS | REST_MULTIPLE)) != REST_INLINE_GPRS)
23971 for (int i = info->first_gp_reg_save; i < 32; i++)
23972 if (fixed_reg_p (i))
23973 {
23974 strategy |= REST_INLINE_GPRS;
23975 strategy &= ~REST_MULTIPLE;
23976 break;
23977 }
23978
23979 /* We can only use load multiple or the out-of-line routines to
23980 restore gprs if we've saved all the registers from
23981 first_gp_reg_save. Otherwise, we risk loading garbage.
23982 Of course, if we have saved out-of-line or used stmw then we know
23983 we haven't skipped any gprs. */
23984 if ((strategy & (SAVE_INLINE_GPRS | SAVE_MULTIPLE)) == SAVE_INLINE_GPRS
23985 && (strategy & (REST_INLINE_GPRS | REST_MULTIPLE)) != REST_INLINE_GPRS)
23986 for (int i = info->first_gp_reg_save; i < 32; i++)
23987 if (!save_reg_p (i))
23988 {
23989 strategy |= REST_INLINE_GPRS;
23990 strategy &= ~REST_MULTIPLE;
23991 break;
23992 }
23993
23994 if (TARGET_ELF && TARGET_64BIT)
23995 {
23996 if (!(strategy & SAVE_INLINE_FPRS))
23997 strategy |= SAVE_NOINLINE_FPRS_SAVES_LR;
23998 else if (!(strategy & SAVE_INLINE_GPRS)
23999 && info->first_fp_reg_save == 64)
24000 strategy |= SAVE_NOINLINE_GPRS_SAVES_LR;
24001 }
24002 else if (TARGET_AIX && !(strategy & REST_INLINE_FPRS))
24003 strategy |= REST_NOINLINE_FPRS_DOESNT_RESTORE_LR;
24004
24005 if (TARGET_MACHO && !(strategy & SAVE_INLINE_FPRS))
24006 strategy |= SAVE_NOINLINE_FPRS_SAVES_LR;
24007
24008 return strategy;
24009 }
24010
24011 /* Calculate the stack information for the current function. This is
24012 complicated by having two separate calling sequences, the AIX calling
24013 sequence and the V.4 calling sequence.
24014
24015 AIX (and Darwin/Mac OS X) stack frames look like:
24016 32-bit 64-bit
24017 SP----> +---------------------------------------+
24018 | back chain to caller | 0 0
24019 +---------------------------------------+
24020 | saved CR | 4 8 (8-11)
24021 +---------------------------------------+
24022 | saved LR | 8 16
24023 +---------------------------------------+
24024 | reserved for compilers | 12 24
24025 +---------------------------------------+
24026 | reserved for binders | 16 32
24027 +---------------------------------------+
24028 | saved TOC pointer | 20 40
24029 +---------------------------------------+
24030 | Parameter save area (+padding*) (P) | 24 48
24031 +---------------------------------------+
24032 | Alloca space (A) | 24+P etc.
24033 +---------------------------------------+
24034 | Local variable space (L) | 24+P+A
24035 +---------------------------------------+
24036 | Float/int conversion temporary (X) | 24+P+A+L
24037 +---------------------------------------+
24038 | Save area for AltiVec registers (W) | 24+P+A+L+X
24039 +---------------------------------------+
24040 | AltiVec alignment padding (Y) | 24+P+A+L+X+W
24041 +---------------------------------------+
24042 | Save area for VRSAVE register (Z) | 24+P+A+L+X+W+Y
24043 +---------------------------------------+
24044 | Save area for GP registers (G) | 24+P+A+X+L+X+W+Y+Z
24045 +---------------------------------------+
24046 | Save area for FP registers (F) | 24+P+A+X+L+X+W+Y+Z+G
24047 +---------------------------------------+
24048 old SP->| back chain to caller's caller |
24049 +---------------------------------------+
24050
24051 * If the alloca area is present, the parameter save area is
24052 padded so that the former starts 16-byte aligned.
24053
24054 The required alignment for AIX configurations is two words (i.e., 8
24055 or 16 bytes).
24056
24057 The ELFv2 ABI is a variant of the AIX ABI. Stack frames look like:
24058
24059 SP----> +---------------------------------------+
24060 | Back chain to caller | 0
24061 +---------------------------------------+
24062 | Save area for CR | 8
24063 +---------------------------------------+
24064 | Saved LR | 16
24065 +---------------------------------------+
24066 | Saved TOC pointer | 24
24067 +---------------------------------------+
24068 | Parameter save area (+padding*) (P) | 32
24069 +---------------------------------------+
24070 | Alloca space (A) | 32+P
24071 +---------------------------------------+
24072 | Local variable space (L) | 32+P+A
24073 +---------------------------------------+
24074 | Save area for AltiVec registers (W) | 32+P+A+L
24075 +---------------------------------------+
24076 | AltiVec alignment padding (Y) | 32+P+A+L+W
24077 +---------------------------------------+
24078 | Save area for GP registers (G) | 32+P+A+L+W+Y
24079 +---------------------------------------+
24080 | Save area for FP registers (F) | 32+P+A+L+W+Y+G
24081 +---------------------------------------+
24082 old SP->| back chain to caller's caller | 32+P+A+L+W+Y+G+F
24083 +---------------------------------------+
24084
24085 * If the alloca area is present, the parameter save area is
24086 padded so that the former starts 16-byte aligned.
24087
24088 V.4 stack frames look like:
24089
24090 SP----> +---------------------------------------+
24091 | back chain to caller | 0
24092 +---------------------------------------+
24093 | caller's saved LR | 4
24094 +---------------------------------------+
24095 | Parameter save area (+padding*) (P) | 8
24096 +---------------------------------------+
24097 | Alloca space (A) | 8+P
24098 +---------------------------------------+
24099 | Varargs save area (V) | 8+P+A
24100 +---------------------------------------+
24101 | Local variable space (L) | 8+P+A+V
24102 +---------------------------------------+
24103 | Float/int conversion temporary (X) | 8+P+A+V+L
24104 +---------------------------------------+
24105 | Save area for AltiVec registers (W) | 8+P+A+V+L+X
24106 +---------------------------------------+
24107 | AltiVec alignment padding (Y) | 8+P+A+V+L+X+W
24108 +---------------------------------------+
24109 | Save area for VRSAVE register (Z) | 8+P+A+V+L+X+W+Y
24110 +---------------------------------------+
24111 | saved CR (C) | 8+P+A+V+L+X+W+Y+Z
24112 +---------------------------------------+
24113 | Save area for GP registers (G) | 8+P+A+V+L+X+W+Y+Z+C
24114 +---------------------------------------+
24115 | Save area for FP registers (F) | 8+P+A+V+L+X+W+Y+Z+C+G
24116 +---------------------------------------+
24117 old SP->| back chain to caller's caller |
24118 +---------------------------------------+
24119
24120 * If the alloca area is present and the required alignment is
24121 16 bytes, the parameter save area is padded so that the
24122 alloca area starts 16-byte aligned.
24123
24124 The required alignment for V.4 is 16 bytes, or 8 bytes if -meabi is
24125 given. (But note below and in sysv4.h that we require only 8 and
24126 may round up the size of our stack frame anyways. The historical
24127 reason is early versions of powerpc-linux which didn't properly
24128 align the stack at program startup. A happy side-effect is that
24129 -mno-eabi libraries can be used with -meabi programs.)
24130
24131 The EABI configuration defaults to the V.4 layout. However,
24132 the stack alignment requirements may differ. If -mno-eabi is not
24133 given, the required stack alignment is 8 bytes; if -mno-eabi is
24134 given, the required alignment is 16 bytes. (But see V.4 comment
24135 above.) */
24136
24137 #ifndef ABI_STACK_BOUNDARY
24138 #define ABI_STACK_BOUNDARY STACK_BOUNDARY
24139 #endif
24140
24141 static rs6000_stack_t *
24142 rs6000_stack_info (void)
24143 {
24144 /* We should never be called for thunks, we are not set up for that. */
24145 gcc_assert (!cfun->is_thunk);
24146
24147 rs6000_stack_t *info = &stack_info;
24148 int reg_size = TARGET_32BIT ? 4 : 8;
24149 int ehrd_size;
24150 int ehcr_size;
24151 int save_align;
24152 int first_gp;
24153 HOST_WIDE_INT non_fixed_size;
24154 bool using_static_chain_p;
24155
24156 if (reload_completed && info->reload_completed)
24157 return info;
24158
24159 memset (info, 0, sizeof (*info));
24160 info->reload_completed = reload_completed;
24161
24162 /* Select which calling sequence. */
24163 info->abi = DEFAULT_ABI;
24164
24165 /* Calculate which registers need to be saved & save area size. */
24166 info->first_gp_reg_save = first_reg_to_save ();
24167 /* Assume that we will have to save RS6000_PIC_OFFSET_TABLE_REGNUM,
24168 even if it currently looks like we won't. Reload may need it to
24169 get at a constant; if so, it will have already created a constant
24170 pool entry for it. */
24171 if (((TARGET_TOC && TARGET_MINIMAL_TOC)
24172 || (flag_pic == 1 && DEFAULT_ABI == ABI_V4)
24173 || (flag_pic && DEFAULT_ABI == ABI_DARWIN))
24174 && crtl->uses_const_pool
24175 && info->first_gp_reg_save > RS6000_PIC_OFFSET_TABLE_REGNUM)
24176 first_gp = RS6000_PIC_OFFSET_TABLE_REGNUM;
24177 else
24178 first_gp = info->first_gp_reg_save;
24179
24180 info->gp_size = reg_size * (32 - first_gp);
24181
24182 info->first_fp_reg_save = first_fp_reg_to_save ();
24183 info->fp_size = 8 * (64 - info->first_fp_reg_save);
24184
24185 info->first_altivec_reg_save = first_altivec_reg_to_save ();
24186 info->altivec_size = 16 * (LAST_ALTIVEC_REGNO + 1
24187 - info->first_altivec_reg_save);
24188
24189 /* Does this function call anything? */
24190 info->calls_p = (!crtl->is_leaf || cfun->machine->ra_needs_full_frame);
24191
24192 /* Determine if we need to save the condition code registers. */
24193 if (save_reg_p (CR2_REGNO)
24194 || save_reg_p (CR3_REGNO)
24195 || save_reg_p (CR4_REGNO))
24196 {
24197 info->cr_save_p = 1;
24198 if (DEFAULT_ABI == ABI_V4)
24199 info->cr_size = reg_size;
24200 }
24201
24202 /* If the current function calls __builtin_eh_return, then we need
24203 to allocate stack space for registers that will hold data for
24204 the exception handler. */
24205 if (crtl->calls_eh_return)
24206 {
24207 unsigned int i;
24208 for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i)
24209 continue;
24210
24211 ehrd_size = i * UNITS_PER_WORD;
24212 }
24213 else
24214 ehrd_size = 0;
24215
24216 /* In the ELFv2 ABI, we also need to allocate space for separate
24217 CR field save areas if the function calls __builtin_eh_return. */
24218 if (DEFAULT_ABI == ABI_ELFv2 && crtl->calls_eh_return)
24219 {
24220 /* This hard-codes that we have three call-saved CR fields. */
24221 ehcr_size = 3 * reg_size;
24222 /* We do *not* use the regular CR save mechanism. */
24223 info->cr_save_p = 0;
24224 }
24225 else
24226 ehcr_size = 0;
24227
24228 /* Determine various sizes. */
24229 info->reg_size = reg_size;
24230 info->fixed_size = RS6000_SAVE_AREA;
24231 info->vars_size = RS6000_ALIGN (get_frame_size (), 8);
24232 if (cfun->calls_alloca)
24233 info->parm_size =
24234 RS6000_ALIGN (crtl->outgoing_args_size + info->fixed_size,
24235 STACK_BOUNDARY / BITS_PER_UNIT) - info->fixed_size;
24236 else
24237 info->parm_size = RS6000_ALIGN (crtl->outgoing_args_size,
24238 TARGET_ALTIVEC ? 16 : 8);
24239 if (FRAME_GROWS_DOWNWARD)
24240 info->vars_size
24241 += RS6000_ALIGN (info->fixed_size + info->vars_size + info->parm_size,
24242 ABI_STACK_BOUNDARY / BITS_PER_UNIT)
24243 - (info->fixed_size + info->vars_size + info->parm_size);
24244
24245 if (TARGET_ALTIVEC_ABI)
24246 info->vrsave_mask = compute_vrsave_mask ();
24247
24248 if (TARGET_ALTIVEC_VRSAVE && info->vrsave_mask)
24249 info->vrsave_size = 4;
24250
24251 compute_save_world_info (info);
24252
24253 /* Calculate the offsets. */
24254 switch (DEFAULT_ABI)
24255 {
24256 case ABI_NONE:
24257 default:
24258 gcc_unreachable ();
24259
24260 case ABI_AIX:
24261 case ABI_ELFv2:
24262 case ABI_DARWIN:
24263 info->fp_save_offset = -info->fp_size;
24264 info->gp_save_offset = info->fp_save_offset - info->gp_size;
24265
24266 if (TARGET_ALTIVEC_ABI)
24267 {
24268 info->vrsave_save_offset = info->gp_save_offset - info->vrsave_size;
24269
24270 /* Align stack so vector save area is on a quadword boundary.
24271 The padding goes above the vectors. */
24272 if (info->altivec_size != 0)
24273 info->altivec_padding_size = info->vrsave_save_offset & 0xF;
24274
24275 info->altivec_save_offset = info->vrsave_save_offset
24276 - info->altivec_padding_size
24277 - info->altivec_size;
24278 gcc_assert (info->altivec_size == 0
24279 || info->altivec_save_offset % 16 == 0);
24280
24281 /* Adjust for AltiVec case. */
24282 info->ehrd_offset = info->altivec_save_offset - ehrd_size;
24283 }
24284 else
24285 info->ehrd_offset = info->gp_save_offset - ehrd_size;
24286
24287 info->ehcr_offset = info->ehrd_offset - ehcr_size;
24288 info->cr_save_offset = reg_size; /* first word when 64-bit. */
24289 info->lr_save_offset = 2*reg_size;
24290 break;
24291
24292 case ABI_V4:
24293 info->fp_save_offset = -info->fp_size;
24294 info->gp_save_offset = info->fp_save_offset - info->gp_size;
24295 info->cr_save_offset = info->gp_save_offset - info->cr_size;
24296
24297 if (TARGET_ALTIVEC_ABI)
24298 {
24299 info->vrsave_save_offset = info->cr_save_offset - info->vrsave_size;
24300
24301 /* Align stack so vector save area is on a quadword boundary. */
24302 if (info->altivec_size != 0)
24303 info->altivec_padding_size = 16 - (-info->vrsave_save_offset % 16);
24304
24305 info->altivec_save_offset = info->vrsave_save_offset
24306 - info->altivec_padding_size
24307 - info->altivec_size;
24308
24309 /* Adjust for AltiVec case. */
24310 info->ehrd_offset = info->altivec_save_offset;
24311 }
24312 else
24313 info->ehrd_offset = info->cr_save_offset;
24314
24315 info->ehrd_offset -= ehrd_size;
24316 info->lr_save_offset = reg_size;
24317 }
24318
24319 save_align = (TARGET_ALTIVEC_ABI || DEFAULT_ABI == ABI_DARWIN) ? 16 : 8;
24320 info->save_size = RS6000_ALIGN (info->fp_size
24321 + info->gp_size
24322 + info->altivec_size
24323 + info->altivec_padding_size
24324 + ehrd_size
24325 + ehcr_size
24326 + info->cr_size
24327 + info->vrsave_size,
24328 save_align);
24329
24330 non_fixed_size = info->vars_size + info->parm_size + info->save_size;
24331
24332 info->total_size = RS6000_ALIGN (non_fixed_size + info->fixed_size,
24333 ABI_STACK_BOUNDARY / BITS_PER_UNIT);
24334
24335 /* Determine if we need to save the link register. */
24336 if (info->calls_p
24337 || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
24338 && crtl->profile
24339 && !TARGET_PROFILE_KERNEL)
24340 || (DEFAULT_ABI == ABI_V4 && cfun->calls_alloca)
24341 #ifdef TARGET_RELOCATABLE
24342 || (DEFAULT_ABI == ABI_V4
24343 && (TARGET_RELOCATABLE || flag_pic > 1)
24344 && !constant_pool_empty_p ())
24345 #endif
24346 || rs6000_ra_ever_killed ())
24347 info->lr_save_p = 1;
24348
24349 using_static_chain_p = (cfun->static_chain_decl != NULL_TREE
24350 && df_regs_ever_live_p (STATIC_CHAIN_REGNUM)
24351 && call_used_regs[STATIC_CHAIN_REGNUM]);
24352 info->savres_strategy = rs6000_savres_strategy (info, using_static_chain_p);
24353
24354 if (!(info->savres_strategy & SAVE_INLINE_GPRS)
24355 || !(info->savres_strategy & SAVE_INLINE_FPRS)
24356 || !(info->savres_strategy & SAVE_INLINE_VRS)
24357 || !(info->savres_strategy & REST_INLINE_GPRS)
24358 || !(info->savres_strategy & REST_INLINE_FPRS)
24359 || !(info->savres_strategy & REST_INLINE_VRS))
24360 info->lr_save_p = 1;
24361
24362 if (info->lr_save_p)
24363 df_set_regs_ever_live (LR_REGNO, true);
24364
24365 /* Determine if we need to allocate any stack frame:
24366
24367 For AIX we need to push the stack if a frame pointer is needed
24368 (because the stack might be dynamically adjusted), if we are
24369 debugging, if we make calls, or if the sum of fp_save, gp_save,
24370 and local variables are more than the space needed to save all
24371 non-volatile registers: 32-bit: 18*8 + 19*4 = 220 or 64-bit: 18*8
24372 + 18*8 = 288 (GPR13 reserved).
24373
24374 For V.4 we don't have the stack cushion that AIX uses, but assume
24375 that the debugger can handle stackless frames. */
24376
24377 if (info->calls_p)
24378 info->push_p = 1;
24379
24380 else if (DEFAULT_ABI == ABI_V4)
24381 info->push_p = non_fixed_size != 0;
24382
24383 else if (frame_pointer_needed)
24384 info->push_p = 1;
24385
24386 else if (TARGET_XCOFF && write_symbols != NO_DEBUG)
24387 info->push_p = 1;
24388
24389 else
24390 info->push_p = non_fixed_size > (TARGET_32BIT ? 220 : 288);
24391
24392 return info;
24393 }
24394
24395 static void
24396 debug_stack_info (rs6000_stack_t *info)
24397 {
24398 const char *abi_string;
24399
24400 if (! info)
24401 info = rs6000_stack_info ();
24402
24403 fprintf (stderr, "\nStack information for function %s:\n",
24404 ((current_function_decl && DECL_NAME (current_function_decl))
24405 ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
24406 : "<unknown>"));
24407
24408 switch (info->abi)
24409 {
24410 default: abi_string = "Unknown"; break;
24411 case ABI_NONE: abi_string = "NONE"; break;
24412 case ABI_AIX: abi_string = "AIX"; break;
24413 case ABI_ELFv2: abi_string = "ELFv2"; break;
24414 case ABI_DARWIN: abi_string = "Darwin"; break;
24415 case ABI_V4: abi_string = "V.4"; break;
24416 }
24417
24418 fprintf (stderr, "\tABI = %5s\n", abi_string);
24419
24420 if (TARGET_ALTIVEC_ABI)
24421 fprintf (stderr, "\tALTIVEC ABI extensions enabled.\n");
24422
24423 if (info->first_gp_reg_save != 32)
24424 fprintf (stderr, "\tfirst_gp_reg_save = %5d\n", info->first_gp_reg_save);
24425
24426 if (info->first_fp_reg_save != 64)
24427 fprintf (stderr, "\tfirst_fp_reg_save = %5d\n", info->first_fp_reg_save);
24428
24429 if (info->first_altivec_reg_save <= LAST_ALTIVEC_REGNO)
24430 fprintf (stderr, "\tfirst_altivec_reg_save = %5d\n",
24431 info->first_altivec_reg_save);
24432
24433 if (info->lr_save_p)
24434 fprintf (stderr, "\tlr_save_p = %5d\n", info->lr_save_p);
24435
24436 if (info->cr_save_p)
24437 fprintf (stderr, "\tcr_save_p = %5d\n", info->cr_save_p);
24438
24439 if (info->vrsave_mask)
24440 fprintf (stderr, "\tvrsave_mask = 0x%x\n", info->vrsave_mask);
24441
24442 if (info->push_p)
24443 fprintf (stderr, "\tpush_p = %5d\n", info->push_p);
24444
24445 if (info->calls_p)
24446 fprintf (stderr, "\tcalls_p = %5d\n", info->calls_p);
24447
24448 if (info->gp_size)
24449 fprintf (stderr, "\tgp_save_offset = %5d\n", info->gp_save_offset);
24450
24451 if (info->fp_size)
24452 fprintf (stderr, "\tfp_save_offset = %5d\n", info->fp_save_offset);
24453
24454 if (info->altivec_size)
24455 fprintf (stderr, "\taltivec_save_offset = %5d\n",
24456 info->altivec_save_offset);
24457
24458 if (info->vrsave_size)
24459 fprintf (stderr, "\tvrsave_save_offset = %5d\n",
24460 info->vrsave_save_offset);
24461
24462 if (info->lr_save_p)
24463 fprintf (stderr, "\tlr_save_offset = %5d\n", info->lr_save_offset);
24464
24465 if (info->cr_save_p)
24466 fprintf (stderr, "\tcr_save_offset = %5d\n", info->cr_save_offset);
24467
24468 if (info->varargs_save_offset)
24469 fprintf (stderr, "\tvarargs_save_offset = %5d\n", info->varargs_save_offset);
24470
24471 if (info->total_size)
24472 fprintf (stderr, "\ttotal_size = " HOST_WIDE_INT_PRINT_DEC"\n",
24473 info->total_size);
24474
24475 if (info->vars_size)
24476 fprintf (stderr, "\tvars_size = " HOST_WIDE_INT_PRINT_DEC"\n",
24477 info->vars_size);
24478
24479 if (info->parm_size)
24480 fprintf (stderr, "\tparm_size = %5d\n", info->parm_size);
24481
24482 if (info->fixed_size)
24483 fprintf (stderr, "\tfixed_size = %5d\n", info->fixed_size);
24484
24485 if (info->gp_size)
24486 fprintf (stderr, "\tgp_size = %5d\n", info->gp_size);
24487
24488 if (info->fp_size)
24489 fprintf (stderr, "\tfp_size = %5d\n", info->fp_size);
24490
24491 if (info->altivec_size)
24492 fprintf (stderr, "\taltivec_size = %5d\n", info->altivec_size);
24493
24494 if (info->vrsave_size)
24495 fprintf (stderr, "\tvrsave_size = %5d\n", info->vrsave_size);
24496
24497 if (info->altivec_padding_size)
24498 fprintf (stderr, "\taltivec_padding_size= %5d\n",
24499 info->altivec_padding_size);
24500
24501 if (info->cr_size)
24502 fprintf (stderr, "\tcr_size = %5d\n", info->cr_size);
24503
24504 if (info->save_size)
24505 fprintf (stderr, "\tsave_size = %5d\n", info->save_size);
24506
24507 if (info->reg_size != 4)
24508 fprintf (stderr, "\treg_size = %5d\n", info->reg_size);
24509
24510 fprintf (stderr, "\tsave-strategy = %04x\n", info->savres_strategy);
24511
24512 fprintf (stderr, "\n");
24513 }
24514
24515 rtx
24516 rs6000_return_addr (int count, rtx frame)
24517 {
24518 /* We can't use get_hard_reg_initial_val for LR when count == 0 if LR
24519 is trashed by the prologue, as it is for PIC on ABI_V4 and Darwin. */
24520 if (count != 0
24521 || ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN) && flag_pic))
24522 {
24523 cfun->machine->ra_needs_full_frame = 1;
24524
24525 if (count == 0)
24526 /* FRAME is set to frame_pointer_rtx by the generic code, but that
24527 is good for loading 0(r1) only when !FRAME_GROWS_DOWNWARD. */
24528 frame = stack_pointer_rtx;
24529 rtx prev_frame_addr = memory_address (Pmode, frame);
24530 rtx prev_frame = copy_to_reg (gen_rtx_MEM (Pmode, prev_frame_addr));
24531 rtx lr_save_off = plus_constant (Pmode,
24532 prev_frame, RETURN_ADDRESS_OFFSET);
24533 rtx lr_save_addr = memory_address (Pmode, lr_save_off);
24534 return gen_rtx_MEM (Pmode, lr_save_addr);
24535 }
24536
24537 cfun->machine->ra_need_lr = 1;
24538 return get_hard_reg_initial_val (Pmode, LR_REGNO);
24539 }
24540
24541 /* Say whether a function is a candidate for sibcall handling or not. */
24542
24543 static bool
24544 rs6000_function_ok_for_sibcall (tree decl, tree exp)
24545 {
24546 tree fntype;
24547
24548 /* The sibcall epilogue may clobber the static chain register.
24549 ??? We could work harder and avoid that, but it's probably
24550 not worth the hassle in practice. */
24551 if (CALL_EXPR_STATIC_CHAIN (exp))
24552 return false;
24553
24554 if (decl)
24555 fntype = TREE_TYPE (decl);
24556 else
24557 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (exp)));
24558
24559 /* We can't do it if the called function has more vector parameters
24560 than the current function; there's nowhere to put the VRsave code. */
24561 if (TARGET_ALTIVEC_ABI
24562 && TARGET_ALTIVEC_VRSAVE
24563 && !(decl && decl == current_function_decl))
24564 {
24565 function_args_iterator args_iter;
24566 tree type;
24567 int nvreg = 0;
24568
24569 /* Functions with vector parameters are required to have a
24570 prototype, so the argument type info must be available
24571 here. */
24572 FOREACH_FUNCTION_ARGS(fntype, type, args_iter)
24573 if (TREE_CODE (type) == VECTOR_TYPE
24574 && ALTIVEC_OR_VSX_VECTOR_MODE (TYPE_MODE (type)))
24575 nvreg++;
24576
24577 FOREACH_FUNCTION_ARGS(TREE_TYPE (current_function_decl), type, args_iter)
24578 if (TREE_CODE (type) == VECTOR_TYPE
24579 && ALTIVEC_OR_VSX_VECTOR_MODE (TYPE_MODE (type)))
24580 nvreg--;
24581
24582 if (nvreg > 0)
24583 return false;
24584 }
24585
24586 /* Under the AIX or ELFv2 ABIs we can't allow calls to non-local
24587 functions, because the callee may have a different TOC pointer to
24588 the caller and there's no way to ensure we restore the TOC when
24589 we return. With the secure-plt SYSV ABI we can't make non-local
24590 calls when -fpic/PIC because the plt call stubs use r30. */
24591 if (DEFAULT_ABI == ABI_DARWIN
24592 || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
24593 && decl
24594 && !DECL_EXTERNAL (decl)
24595 && !DECL_WEAK (decl)
24596 && (*targetm.binds_local_p) (decl))
24597 || (DEFAULT_ABI == ABI_V4
24598 && (!TARGET_SECURE_PLT
24599 || !flag_pic
24600 || (decl
24601 && (*targetm.binds_local_p) (decl)))))
24602 {
24603 tree attr_list = TYPE_ATTRIBUTES (fntype);
24604
24605 if (!lookup_attribute ("longcall", attr_list)
24606 || lookup_attribute ("shortcall", attr_list))
24607 return true;
24608 }
24609
24610 return false;
24611 }
24612
24613 static int
24614 rs6000_ra_ever_killed (void)
24615 {
24616 rtx_insn *top;
24617 rtx reg;
24618 rtx_insn *insn;
24619
24620 if (cfun->is_thunk)
24621 return 0;
24622
24623 if (cfun->machine->lr_save_state)
24624 return cfun->machine->lr_save_state - 1;
24625
24626 /* regs_ever_live has LR marked as used if any sibcalls are present,
24627 but this should not force saving and restoring in the
24628 pro/epilogue. Likewise, reg_set_between_p thinks a sibcall
24629 clobbers LR, so that is inappropriate. */
24630
24631 /* Also, the prologue can generate a store into LR that
24632 doesn't really count, like this:
24633
24634 move LR->R0
24635 bcl to set PIC register
24636 move LR->R31
24637 move R0->LR
24638
24639 When we're called from the epilogue, we need to avoid counting
24640 this as a store. */
24641
24642 push_topmost_sequence ();
24643 top = get_insns ();
24644 pop_topmost_sequence ();
24645 reg = gen_rtx_REG (Pmode, LR_REGNO);
24646
24647 for (insn = NEXT_INSN (top); insn != NULL_RTX; insn = NEXT_INSN (insn))
24648 {
24649 if (INSN_P (insn))
24650 {
24651 if (CALL_P (insn))
24652 {
24653 if (!SIBLING_CALL_P (insn))
24654 return 1;
24655 }
24656 else if (find_regno_note (insn, REG_INC, LR_REGNO))
24657 return 1;
24658 else if (set_of (reg, insn) != NULL_RTX
24659 && !prologue_epilogue_contains (insn))
24660 return 1;
24661 }
24662 }
24663 return 0;
24664 }
24665 \f
24666 /* Emit instructions needed to load the TOC register.
24667 This is only needed when TARGET_TOC, TARGET_MINIMAL_TOC, and there is
24668 a constant pool; or for SVR4 -fpic. */
24669
24670 void
24671 rs6000_emit_load_toc_table (int fromprolog)
24672 {
24673 rtx dest;
24674 dest = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
24675
24676 if (TARGET_ELF && TARGET_SECURE_PLT && DEFAULT_ABI == ABI_V4 && flag_pic)
24677 {
24678 char buf[30];
24679 rtx lab, tmp1, tmp2, got;
24680
24681 lab = gen_label_rtx ();
24682 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (lab));
24683 lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
24684 if (flag_pic == 2)
24685 {
24686 got = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (toc_label_name));
24687 need_toc_init = 1;
24688 }
24689 else
24690 got = rs6000_got_sym ();
24691 tmp1 = tmp2 = dest;
24692 if (!fromprolog)
24693 {
24694 tmp1 = gen_reg_rtx (Pmode);
24695 tmp2 = gen_reg_rtx (Pmode);
24696 }
24697 emit_insn (gen_load_toc_v4_PIC_1 (lab));
24698 emit_move_insn (tmp1, gen_rtx_REG (Pmode, LR_REGNO));
24699 emit_insn (gen_load_toc_v4_PIC_3b (tmp2, tmp1, got, lab));
24700 emit_insn (gen_load_toc_v4_PIC_3c (dest, tmp2, got, lab));
24701 }
24702 else if (TARGET_ELF && DEFAULT_ABI == ABI_V4 && flag_pic == 1)
24703 {
24704 emit_insn (gen_load_toc_v4_pic_si ());
24705 emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
24706 }
24707 else if (TARGET_ELF && DEFAULT_ABI == ABI_V4 && flag_pic == 2)
24708 {
24709 char buf[30];
24710 rtx temp0 = (fromprolog
24711 ? gen_rtx_REG (Pmode, 0)
24712 : gen_reg_rtx (Pmode));
24713
24714 if (fromprolog)
24715 {
24716 rtx symF, symL;
24717
24718 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
24719 symF = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
24720
24721 ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno);
24722 symL = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
24723
24724 emit_insn (gen_load_toc_v4_PIC_1 (symF));
24725 emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
24726 emit_insn (gen_load_toc_v4_PIC_2 (temp0, dest, symL, symF));
24727 }
24728 else
24729 {
24730 rtx tocsym, lab;
24731
24732 tocsym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (toc_label_name));
24733 need_toc_init = 1;
24734 lab = gen_label_rtx ();
24735 emit_insn (gen_load_toc_v4_PIC_1b (tocsym, lab));
24736 emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
24737 if (TARGET_LINK_STACK)
24738 emit_insn (gen_addsi3 (dest, dest, GEN_INT (4)));
24739 emit_move_insn (temp0, gen_rtx_MEM (Pmode, dest));
24740 }
24741 emit_insn (gen_addsi3 (dest, temp0, dest));
24742 }
24743 else if (TARGET_ELF && !TARGET_AIX && flag_pic == 0 && TARGET_MINIMAL_TOC)
24744 {
24745 /* This is for AIX code running in non-PIC ELF32. */
24746 rtx realsym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (toc_label_name));
24747
24748 need_toc_init = 1;
24749 emit_insn (gen_elf_high (dest, realsym));
24750 emit_insn (gen_elf_low (dest, dest, realsym));
24751 }
24752 else
24753 {
24754 gcc_assert (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2);
24755
24756 if (TARGET_32BIT)
24757 emit_insn (gen_load_toc_aix_si (dest));
24758 else
24759 emit_insn (gen_load_toc_aix_di (dest));
24760 }
24761 }
24762
24763 /* Emit instructions to restore the link register after determining where
24764 its value has been stored. */
24765
24766 void
24767 rs6000_emit_eh_reg_restore (rtx source, rtx scratch)
24768 {
24769 rs6000_stack_t *info = rs6000_stack_info ();
24770 rtx operands[2];
24771
24772 operands[0] = source;
24773 operands[1] = scratch;
24774
24775 if (info->lr_save_p)
24776 {
24777 rtx frame_rtx = stack_pointer_rtx;
24778 HOST_WIDE_INT sp_offset = 0;
24779 rtx tmp;
24780
24781 if (frame_pointer_needed
24782 || cfun->calls_alloca
24783 || info->total_size > 32767)
24784 {
24785 tmp = gen_frame_mem (Pmode, frame_rtx);
24786 emit_move_insn (operands[1], tmp);
24787 frame_rtx = operands[1];
24788 }
24789 else if (info->push_p)
24790 sp_offset = info->total_size;
24791
24792 tmp = plus_constant (Pmode, frame_rtx,
24793 info->lr_save_offset + sp_offset);
24794 tmp = gen_frame_mem (Pmode, tmp);
24795 emit_move_insn (tmp, operands[0]);
24796 }
24797 else
24798 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNO), operands[0]);
24799
24800 /* Freeze lr_save_p. We've just emitted rtl that depends on the
24801 state of lr_save_p so any change from here on would be a bug. In
24802 particular, stop rs6000_ra_ever_killed from considering the SET
24803 of lr we may have added just above. */
24804 cfun->machine->lr_save_state = info->lr_save_p + 1;
24805 }
24806
24807 static GTY(()) alias_set_type set = -1;
24808
24809 alias_set_type
24810 get_TOC_alias_set (void)
24811 {
24812 if (set == -1)
24813 set = new_alias_set ();
24814 return set;
24815 }
24816
24817 /* This returns nonzero if the current function uses the TOC. This is
24818 determined by the presence of (use (unspec ... UNSPEC_TOC)), which
24819 is generated by the ABI_V4 load_toc_* patterns.
24820 Return 2 instead of 1 if the load_toc_* pattern is in the function
24821 partition that doesn't start the function. */
24822 #if TARGET_ELF
24823 static int
24824 uses_TOC (void)
24825 {
24826 rtx_insn *insn;
24827 int ret = 1;
24828
24829 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
24830 {
24831 if (INSN_P (insn))
24832 {
24833 rtx pat = PATTERN (insn);
24834 int i;
24835
24836 if (GET_CODE (pat) == PARALLEL)
24837 for (i = 0; i < XVECLEN (pat, 0); i++)
24838 {
24839 rtx sub = XVECEXP (pat, 0, i);
24840 if (GET_CODE (sub) == USE)
24841 {
24842 sub = XEXP (sub, 0);
24843 if (GET_CODE (sub) == UNSPEC
24844 && XINT (sub, 1) == UNSPEC_TOC)
24845 return ret;
24846 }
24847 }
24848 }
24849 else if (crtl->has_bb_partition
24850 && NOTE_P (insn)
24851 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
24852 ret = 2;
24853 }
24854 return 0;
24855 }
24856 #endif
24857
24858 rtx
24859 create_TOC_reference (rtx symbol, rtx largetoc_reg)
24860 {
24861 rtx tocrel, tocreg, hi;
24862
24863 if (TARGET_DEBUG_ADDR)
24864 {
24865 if (GET_CODE (symbol) == SYMBOL_REF)
24866 fprintf (stderr, "\ncreate_TOC_reference, (symbol_ref %s)\n",
24867 XSTR (symbol, 0));
24868 else
24869 {
24870 fprintf (stderr, "\ncreate_TOC_reference, code %s:\n",
24871 GET_RTX_NAME (GET_CODE (symbol)));
24872 debug_rtx (symbol);
24873 }
24874 }
24875
24876 if (!can_create_pseudo_p ())
24877 df_set_regs_ever_live (TOC_REGISTER, true);
24878
24879 tocreg = gen_rtx_REG (Pmode, TOC_REGISTER);
24880 tocrel = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, symbol, tocreg), UNSPEC_TOCREL);
24881 if (TARGET_CMODEL == CMODEL_SMALL || can_create_pseudo_p ())
24882 return tocrel;
24883
24884 hi = gen_rtx_HIGH (Pmode, copy_rtx (tocrel));
24885 if (largetoc_reg != NULL)
24886 {
24887 emit_move_insn (largetoc_reg, hi);
24888 hi = largetoc_reg;
24889 }
24890 return gen_rtx_LO_SUM (Pmode, hi, tocrel);
24891 }
24892
24893 /* Issue assembly directives that create a reference to the given DWARF
24894 FRAME_TABLE_LABEL from the current function section. */
24895 void
24896 rs6000_aix_asm_output_dwarf_table_ref (char * frame_table_label)
24897 {
24898 fprintf (asm_out_file, "\t.ref %s\n",
24899 (* targetm.strip_name_encoding) (frame_table_label));
24900 }
24901 \f
24902 /* This ties together stack memory (MEM with an alias set of frame_alias_set)
24903 and the change to the stack pointer. */
24904
24905 static void
24906 rs6000_emit_stack_tie (rtx fp, bool hard_frame_needed)
24907 {
24908 rtvec p;
24909 int i;
24910 rtx regs[3];
24911
24912 i = 0;
24913 regs[i++] = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
24914 if (hard_frame_needed)
24915 regs[i++] = gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
24916 if (!(REGNO (fp) == STACK_POINTER_REGNUM
24917 || (hard_frame_needed
24918 && REGNO (fp) == HARD_FRAME_POINTER_REGNUM)))
24919 regs[i++] = fp;
24920
24921 p = rtvec_alloc (i);
24922 while (--i >= 0)
24923 {
24924 rtx mem = gen_frame_mem (BLKmode, regs[i]);
24925 RTVEC_ELT (p, i) = gen_rtx_SET (mem, const0_rtx);
24926 }
24927
24928 emit_insn (gen_stack_tie (gen_rtx_PARALLEL (VOIDmode, p)));
24929 }
24930
24931 /* Allocate SIZE_INT bytes on the stack using a store with update style insn
24932 and set the appropriate attributes for the generated insn. Return the
24933 first insn which adjusts the stack pointer or the last insn before
24934 the stack adjustment loop.
24935
24936 SIZE_INT is used to create the CFI note for the allocation.
24937
24938 SIZE_RTX is an rtx containing the size of the adjustment. Note that
24939 since stacks grow to lower addresses its runtime value is -SIZE_INT.
24940
24941 ORIG_SP contains the backchain value that must be stored at *sp. */
24942
24943 static rtx_insn *
24944 rs6000_emit_allocate_stack_1 (HOST_WIDE_INT size_int, rtx orig_sp)
24945 {
24946 rtx_insn *insn;
24947
24948 rtx size_rtx = GEN_INT (-size_int);
24949 if (size_int > 32767)
24950 {
24951 rtx tmp_reg = gen_rtx_REG (Pmode, 0);
24952 /* Need a note here so that try_split doesn't get confused. */
24953 if (get_last_insn () == NULL_RTX)
24954 emit_note (NOTE_INSN_DELETED);
24955 insn = emit_move_insn (tmp_reg, size_rtx);
24956 try_split (PATTERN (insn), insn, 0);
24957 size_rtx = tmp_reg;
24958 }
24959
24960 if (Pmode == SImode)
24961 insn = emit_insn (gen_movsi_update_stack (stack_pointer_rtx,
24962 stack_pointer_rtx,
24963 size_rtx,
24964 orig_sp));
24965 else
24966 insn = emit_insn (gen_movdi_di_update_stack (stack_pointer_rtx,
24967 stack_pointer_rtx,
24968 size_rtx,
24969 orig_sp));
24970 rtx par = PATTERN (insn);
24971 gcc_assert (GET_CODE (par) == PARALLEL);
24972 rtx set = XVECEXP (par, 0, 0);
24973 gcc_assert (GET_CODE (set) == SET);
24974 rtx mem = SET_DEST (set);
24975 gcc_assert (MEM_P (mem));
24976 MEM_NOTRAP_P (mem) = 1;
24977 set_mem_alias_set (mem, get_frame_alias_set ());
24978
24979 RTX_FRAME_RELATED_P (insn) = 1;
24980 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
24981 gen_rtx_SET (stack_pointer_rtx,
24982 gen_rtx_PLUS (Pmode,
24983 stack_pointer_rtx,
24984 GEN_INT (-size_int))));
24985
24986 /* Emit a blockage to ensure the allocation/probing insns are
24987 not optimized, combined, removed, etc. Add REG_STACK_CHECK
24988 note for similar reasons. */
24989 if (flag_stack_clash_protection)
24990 {
24991 add_reg_note (insn, REG_STACK_CHECK, const0_rtx);
24992 emit_insn (gen_blockage ());
24993 }
24994
24995 return insn;
24996 }
24997
24998 static HOST_WIDE_INT
24999 get_stack_clash_protection_probe_interval (void)
25000 {
25001 return (HOST_WIDE_INT_1U
25002 << PARAM_VALUE (PARAM_STACK_CLASH_PROTECTION_PROBE_INTERVAL));
25003 }
25004
25005 static HOST_WIDE_INT
25006 get_stack_clash_protection_guard_size (void)
25007 {
25008 return (HOST_WIDE_INT_1U
25009 << PARAM_VALUE (PARAM_STACK_CLASH_PROTECTION_GUARD_SIZE));
25010 }
25011
25012 /* Allocate ORIG_SIZE bytes on the stack and probe the newly
25013 allocated space every STACK_CLASH_PROTECTION_PROBE_INTERVAL bytes.
25014
25015 COPY_REG, if non-null, should contain a copy of the original
25016 stack pointer at exit from this function.
25017
25018 This is subtly different than the Ada probing in that it tries hard to
25019 prevent attacks that jump the stack guard. Thus it is never allowed to
25020 allocate more than STACK_CLASH_PROTECTION_PROBE_INTERVAL bytes of stack
25021 space without a suitable probe. */
25022 static rtx_insn *
25023 rs6000_emit_probe_stack_range_stack_clash (HOST_WIDE_INT orig_size,
25024 rtx copy_reg)
25025 {
25026 rtx orig_sp = copy_reg;
25027
25028 HOST_WIDE_INT probe_interval = get_stack_clash_protection_probe_interval ();
25029
25030 /* Round the size down to a multiple of PROBE_INTERVAL. */
25031 HOST_WIDE_INT rounded_size = ROUND_DOWN (orig_size, probe_interval);
25032
25033 /* If explicitly requested,
25034 or the rounded size is not the same as the original size
25035 or the the rounded size is greater than a page,
25036 then we will need a copy of the original stack pointer. */
25037 if (rounded_size != orig_size
25038 || rounded_size > probe_interval
25039 || copy_reg)
25040 {
25041 /* If the caller did not request a copy of the incoming stack
25042 pointer, then we use r0 to hold the copy. */
25043 if (!copy_reg)
25044 orig_sp = gen_rtx_REG (Pmode, 0);
25045 emit_move_insn (orig_sp, stack_pointer_rtx);
25046 }
25047
25048 /* There's three cases here.
25049
25050 One is a single probe which is the most common and most efficiently
25051 implemented as it does not have to have a copy of the original
25052 stack pointer if there are no residuals.
25053
25054 Second is unrolled allocation/probes which we use if there's just
25055 a few of them. It needs to save the original stack pointer into a
25056 temporary for use as a source register in the allocation/probe.
25057
25058 Last is a loop. This is the most uncommon case and least efficient. */
25059 rtx_insn *retval = NULL;
25060 if (rounded_size == probe_interval)
25061 {
25062 retval = rs6000_emit_allocate_stack_1 (probe_interval, stack_pointer_rtx);
25063
25064 dump_stack_clash_frame_info (PROBE_INLINE, rounded_size != orig_size);
25065 }
25066 else if (rounded_size <= 8 * probe_interval)
25067 {
25068 /* The ABI requires using the store with update insns to allocate
25069 space and store the backchain into the stack
25070
25071 So we save the current stack pointer into a temporary, then
25072 emit the store-with-update insns to store the saved stack pointer
25073 into the right location in each new page. */
25074 for (int i = 0; i < rounded_size; i += probe_interval)
25075 {
25076 rtx_insn *insn
25077 = rs6000_emit_allocate_stack_1 (probe_interval, orig_sp);
25078
25079 /* Save the first stack adjustment in RETVAL. */
25080 if (i == 0)
25081 retval = insn;
25082 }
25083
25084 dump_stack_clash_frame_info (PROBE_INLINE, rounded_size != orig_size);
25085 }
25086 else
25087 {
25088 /* Compute the ending address. */
25089 rtx end_addr
25090 = copy_reg ? gen_rtx_REG (Pmode, 0) : gen_rtx_REG (Pmode, 12);
25091 rtx rs = GEN_INT (-rounded_size);
25092 rtx_insn *insn;
25093 if (add_operand (rs, Pmode))
25094 insn = emit_insn (gen_add3_insn (end_addr, stack_pointer_rtx, rs));
25095 else
25096 {
25097 emit_move_insn (end_addr, GEN_INT (-rounded_size));
25098 insn = emit_insn (gen_add3_insn (end_addr, end_addr,
25099 stack_pointer_rtx));
25100 /* Describe the effect of INSN to the CFI engine. */
25101 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
25102 gen_rtx_SET (end_addr,
25103 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
25104 rs)));
25105 }
25106 RTX_FRAME_RELATED_P (insn) = 1;
25107
25108 /* Emit the loop. */
25109 if (TARGET_64BIT)
25110 retval = emit_insn (gen_probe_stack_rangedi (stack_pointer_rtx,
25111 stack_pointer_rtx, orig_sp,
25112 end_addr));
25113 else
25114 retval = emit_insn (gen_probe_stack_rangesi (stack_pointer_rtx,
25115 stack_pointer_rtx, orig_sp,
25116 end_addr));
25117 RTX_FRAME_RELATED_P (retval) = 1;
25118 /* Describe the effect of INSN to the CFI engine. */
25119 add_reg_note (retval, REG_FRAME_RELATED_EXPR,
25120 gen_rtx_SET (stack_pointer_rtx, end_addr));
25121
25122 /* Emit a blockage to ensure the allocation/probing insns are
25123 not optimized, combined, removed, etc. Other cases handle this
25124 within their call to rs6000_emit_allocate_stack_1. */
25125 emit_insn (gen_blockage ());
25126
25127 dump_stack_clash_frame_info (PROBE_LOOP, rounded_size != orig_size);
25128 }
25129
25130 if (orig_size != rounded_size)
25131 {
25132 /* Allocate (and implicitly probe) any residual space. */
25133 HOST_WIDE_INT residual = orig_size - rounded_size;
25134
25135 rtx_insn *insn = rs6000_emit_allocate_stack_1 (residual, orig_sp);
25136
25137 /* If the residual was the only allocation, then we can return the
25138 allocating insn. */
25139 if (!retval)
25140 retval = insn;
25141 }
25142
25143 return retval;
25144 }
25145
25146 /* Emit the correct code for allocating stack space, as insns.
25147 If COPY_REG, make sure a copy of the old frame is left there.
25148 The generated code may use hard register 0 as a temporary. */
25149
25150 static rtx_insn *
25151 rs6000_emit_allocate_stack (HOST_WIDE_INT size, rtx copy_reg, int copy_off)
25152 {
25153 rtx_insn *insn;
25154 rtx stack_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
25155 rtx tmp_reg = gen_rtx_REG (Pmode, 0);
25156 rtx todec = gen_int_mode (-size, Pmode);
25157
25158 if (INTVAL (todec) != -size)
25159 {
25160 warning (0, "stack frame too large");
25161 emit_insn (gen_trap ());
25162 return 0;
25163 }
25164
25165 if (crtl->limit_stack)
25166 {
25167 if (REG_P (stack_limit_rtx)
25168 && REGNO (stack_limit_rtx) > 1
25169 && REGNO (stack_limit_rtx) <= 31)
25170 {
25171 rtx_insn *insn
25172 = gen_add3_insn (tmp_reg, stack_limit_rtx, GEN_INT (size));
25173 gcc_assert (insn);
25174 emit_insn (insn);
25175 emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg, const0_rtx));
25176 }
25177 else if (GET_CODE (stack_limit_rtx) == SYMBOL_REF
25178 && TARGET_32BIT
25179 && DEFAULT_ABI == ABI_V4
25180 && !flag_pic)
25181 {
25182 rtx toload = gen_rtx_CONST (VOIDmode,
25183 gen_rtx_PLUS (Pmode,
25184 stack_limit_rtx,
25185 GEN_INT (size)));
25186
25187 emit_insn (gen_elf_high (tmp_reg, toload));
25188 emit_insn (gen_elf_low (tmp_reg, tmp_reg, toload));
25189 emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg,
25190 const0_rtx));
25191 }
25192 else
25193 warning (0, "stack limit expression is not supported");
25194 }
25195
25196 if (flag_stack_clash_protection)
25197 {
25198 if (size < get_stack_clash_protection_guard_size ())
25199 dump_stack_clash_frame_info (NO_PROBE_SMALL_FRAME, true);
25200 else
25201 {
25202 rtx_insn *insn = rs6000_emit_probe_stack_range_stack_clash (size,
25203 copy_reg);
25204
25205 /* If we asked for a copy with an offset, then we still need add in
25206 the offset. */
25207 if (copy_reg && copy_off)
25208 emit_insn (gen_add3_insn (copy_reg, copy_reg, GEN_INT (copy_off)));
25209 return insn;
25210 }
25211 }
25212
25213 if (copy_reg)
25214 {
25215 if (copy_off != 0)
25216 emit_insn (gen_add3_insn (copy_reg, stack_reg, GEN_INT (copy_off)));
25217 else
25218 emit_move_insn (copy_reg, stack_reg);
25219 }
25220
25221 /* Since we didn't use gen_frame_mem to generate the MEM, grab
25222 it now and set the alias set/attributes. The above gen_*_update
25223 calls will generate a PARALLEL with the MEM set being the first
25224 operation. */
25225 insn = rs6000_emit_allocate_stack_1 (size, stack_reg);
25226 return insn;
25227 }
25228
25229 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
25230
25231 #if PROBE_INTERVAL > 32768
25232 #error Cannot use indexed addressing mode for stack probing
25233 #endif
25234
25235 /* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
25236 inclusive. These are offsets from the current stack pointer. */
25237
25238 static void
25239 rs6000_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size)
25240 {
25241 /* See if we have a constant small number of probes to generate. If so,
25242 that's the easy case. */
25243 if (first + size <= 32768)
25244 {
25245 HOST_WIDE_INT i;
25246
25247 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
25248 it exceeds SIZE. If only one probe is needed, this will not
25249 generate any code. Then probe at FIRST + SIZE. */
25250 for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
25251 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
25252 -(first + i)));
25253
25254 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
25255 -(first + size)));
25256 }
25257
25258 /* Otherwise, do the same as above, but in a loop. Note that we must be
25259 extra careful with variables wrapping around because we might be at
25260 the very top (or the very bottom) of the address space and we have
25261 to be able to handle this case properly; in particular, we use an
25262 equality test for the loop condition. */
25263 else
25264 {
25265 HOST_WIDE_INT rounded_size;
25266 rtx r12 = gen_rtx_REG (Pmode, 12);
25267 rtx r0 = gen_rtx_REG (Pmode, 0);
25268
25269 /* Sanity check for the addressing mode we're going to use. */
25270 gcc_assert (first <= 32768);
25271
25272 /* Step 1: round SIZE to the previous multiple of the interval. */
25273
25274 rounded_size = ROUND_DOWN (size, PROBE_INTERVAL);
25275
25276
25277 /* Step 2: compute initial and final value of the loop counter. */
25278
25279 /* TEST_ADDR = SP + FIRST. */
25280 emit_insn (gen_rtx_SET (r12, plus_constant (Pmode, stack_pointer_rtx,
25281 -first)));
25282
25283 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
25284 if (rounded_size > 32768)
25285 {
25286 emit_move_insn (r0, GEN_INT (-rounded_size));
25287 emit_insn (gen_rtx_SET (r0, gen_rtx_PLUS (Pmode, r12, r0)));
25288 }
25289 else
25290 emit_insn (gen_rtx_SET (r0, plus_constant (Pmode, r12,
25291 -rounded_size)));
25292
25293
25294 /* Step 3: the loop
25295
25296 do
25297 {
25298 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
25299 probe at TEST_ADDR
25300 }
25301 while (TEST_ADDR != LAST_ADDR)
25302
25303 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
25304 until it is equal to ROUNDED_SIZE. */
25305
25306 if (TARGET_64BIT)
25307 emit_insn (gen_probe_stack_rangedi (r12, r12, stack_pointer_rtx, r0));
25308 else
25309 emit_insn (gen_probe_stack_rangesi (r12, r12, stack_pointer_rtx, r0));
25310
25311
25312 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
25313 that SIZE is equal to ROUNDED_SIZE. */
25314
25315 if (size != rounded_size)
25316 emit_stack_probe (plus_constant (Pmode, r12, rounded_size - size));
25317 }
25318 }
25319
25320 /* Probe a range of stack addresses from REG1 to REG2 inclusive. These are
25321 addresses, not offsets. */
25322
25323 static const char *
25324 output_probe_stack_range_1 (rtx reg1, rtx reg2)
25325 {
25326 static int labelno = 0;
25327 char loop_lab[32];
25328 rtx xops[2];
25329
25330 ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);
25331
25332 /* Loop. */
25333 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
25334
25335 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
25336 xops[0] = reg1;
25337 xops[1] = GEN_INT (-PROBE_INTERVAL);
25338 output_asm_insn ("addi %0,%0,%1", xops);
25339
25340 /* Probe at TEST_ADDR. */
25341 xops[1] = gen_rtx_REG (Pmode, 0);
25342 output_asm_insn ("stw %1,0(%0)", xops);
25343
25344 /* Test if TEST_ADDR == LAST_ADDR. */
25345 xops[1] = reg2;
25346 if (TARGET_64BIT)
25347 output_asm_insn ("cmpd 0,%0,%1", xops);
25348 else
25349 output_asm_insn ("cmpw 0,%0,%1", xops);
25350
25351 /* Branch. */
25352 fputs ("\tbne 0,", asm_out_file);
25353 assemble_name_raw (asm_out_file, loop_lab);
25354 fputc ('\n', asm_out_file);
25355
25356 return "";
25357 }
25358
25359 /* This function is called when rs6000_frame_related is processing
25360 SETs within a PARALLEL, and returns whether the REGNO save ought to
25361 be marked RTX_FRAME_RELATED_P. The PARALLELs involved are those
25362 for out-of-line register save functions, store multiple, and the
25363 Darwin world_save. They may contain registers that don't really
25364 need saving. */
25365
25366 static bool
25367 interesting_frame_related_regno (unsigned int regno)
25368 {
25369 /* Saves apparently of r0 are actually saving LR. It doesn't make
25370 sense to substitute the regno here to test save_reg_p (LR_REGNO).
25371 We *know* LR needs saving, and dwarf2cfi.c is able to deduce that
25372 (set (mem) (r0)) is saving LR from a prior (set (r0) (lr)) marked
25373 as frame related. */
25374 if (regno == 0)
25375 return true;
25376 /* If we see CR2 then we are here on a Darwin world save. Saves of
25377 CR2 signify the whole CR is being saved. This is a long-standing
25378 ABI wart fixed by ELFv2. As for r0/lr there is no need to check
25379 that CR needs to be saved. */
25380 if (regno == CR2_REGNO)
25381 return true;
25382 /* Omit frame info for any user-defined global regs. If frame info
25383 is supplied for them, frame unwinding will restore a user reg.
25384 Also omit frame info for any reg we don't need to save, as that
25385 bloats frame info and can cause problems with shrink wrapping.
25386 Since global regs won't be seen as needing to be saved, both of
25387 these conditions are covered by save_reg_p. */
25388 return save_reg_p (regno);
25389 }
25390
25391 /* Probe a range of stack addresses from REG1 to REG3 inclusive. These are
25392 addresses, not offsets.
25393
25394 REG2 contains the backchain that must be stored into *sp at each allocation.
25395
25396 This is subtly different than the Ada probing above in that it tries hard
25397 to prevent attacks that jump the stack guard. Thus, it is never allowed
25398 to allocate more than PROBE_INTERVAL bytes of stack space without a
25399 suitable probe. */
25400
25401 static const char *
25402 output_probe_stack_range_stack_clash (rtx reg1, rtx reg2, rtx reg3)
25403 {
25404 static int labelno = 0;
25405 char loop_lab[32];
25406 rtx xops[3];
25407
25408 HOST_WIDE_INT probe_interval = get_stack_clash_protection_probe_interval ();
25409
25410 ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);
25411
25412 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
25413
25414 /* This allocates and probes. */
25415 xops[0] = reg1;
25416 xops[1] = reg2;
25417 xops[2] = GEN_INT (-probe_interval);
25418 if (TARGET_64BIT)
25419 output_asm_insn ("stdu %1,%2(%0)", xops);
25420 else
25421 output_asm_insn ("stwu %1,%2(%0)", xops);
25422
25423 /* Jump to LOOP_LAB if TEST_ADDR != LAST_ADDR. */
25424 xops[0] = reg1;
25425 xops[1] = reg3;
25426 if (TARGET_64BIT)
25427 output_asm_insn ("cmpd 0,%0,%1", xops);
25428 else
25429 output_asm_insn ("cmpw 0,%0,%1", xops);
25430
25431 fputs ("\tbne 0,", asm_out_file);
25432 assemble_name_raw (asm_out_file, loop_lab);
25433 fputc ('\n', asm_out_file);
25434
25435 return "";
25436 }
25437
25438 /* Wrapper around the output_probe_stack_range routines. */
25439 const char *
25440 output_probe_stack_range (rtx reg1, rtx reg2, rtx reg3)
25441 {
25442 if (flag_stack_clash_protection)
25443 return output_probe_stack_range_stack_clash (reg1, reg2, reg3);
25444 else
25445 return output_probe_stack_range_1 (reg1, reg3);
25446 }
25447
25448 /* Add to 'insn' a note which is PATTERN (INSN) but with REG replaced
25449 with (plus:P (reg 1) VAL), and with REG2 replaced with REPL2 if REG2
25450 is not NULL. It would be nice if dwarf2out_frame_debug_expr could
25451 deduce these equivalences by itself so it wasn't necessary to hold
25452 its hand so much. Don't be tempted to always supply d2_f_d_e with
25453 the actual cfa register, ie. r31 when we are using a hard frame
25454 pointer. That fails when saving regs off r1, and sched moves the
25455 r31 setup past the reg saves. */
25456
25457 static rtx_insn *
25458 rs6000_frame_related (rtx_insn *insn, rtx reg, HOST_WIDE_INT val,
25459 rtx reg2, rtx repl2)
25460 {
25461 rtx repl;
25462
25463 if (REGNO (reg) == STACK_POINTER_REGNUM)
25464 {
25465 gcc_checking_assert (val == 0);
25466 repl = NULL_RTX;
25467 }
25468 else
25469 repl = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM),
25470 GEN_INT (val));
25471
25472 rtx pat = PATTERN (insn);
25473 if (!repl && !reg2)
25474 {
25475 /* No need for any replacement. Just set RTX_FRAME_RELATED_P. */
25476 if (GET_CODE (pat) == PARALLEL)
25477 for (int i = 0; i < XVECLEN (pat, 0); i++)
25478 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
25479 {
25480 rtx set = XVECEXP (pat, 0, i);
25481
25482 if (!REG_P (SET_SRC (set))
25483 || interesting_frame_related_regno (REGNO (SET_SRC (set))))
25484 RTX_FRAME_RELATED_P (set) = 1;
25485 }
25486 RTX_FRAME_RELATED_P (insn) = 1;
25487 return insn;
25488 }
25489
25490 /* We expect that 'pat' is either a SET or a PARALLEL containing
25491 SETs (and possibly other stuff). In a PARALLEL, all the SETs
25492 are important so they all have to be marked RTX_FRAME_RELATED_P.
25493 Call simplify_replace_rtx on the SETs rather than the whole insn
25494 so as to leave the other stuff alone (for example USE of r12). */
25495
25496 set_used_flags (pat);
25497 if (GET_CODE (pat) == SET)
25498 {
25499 if (repl)
25500 pat = simplify_replace_rtx (pat, reg, repl);
25501 if (reg2)
25502 pat = simplify_replace_rtx (pat, reg2, repl2);
25503 }
25504 else if (GET_CODE (pat) == PARALLEL)
25505 {
25506 pat = shallow_copy_rtx (pat);
25507 XVEC (pat, 0) = shallow_copy_rtvec (XVEC (pat, 0));
25508
25509 for (int i = 0; i < XVECLEN (pat, 0); i++)
25510 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
25511 {
25512 rtx set = XVECEXP (pat, 0, i);
25513
25514 if (repl)
25515 set = simplify_replace_rtx (set, reg, repl);
25516 if (reg2)
25517 set = simplify_replace_rtx (set, reg2, repl2);
25518 XVECEXP (pat, 0, i) = set;
25519
25520 if (!REG_P (SET_SRC (set))
25521 || interesting_frame_related_regno (REGNO (SET_SRC (set))))
25522 RTX_FRAME_RELATED_P (set) = 1;
25523 }
25524 }
25525 else
25526 gcc_unreachable ();
25527
25528 RTX_FRAME_RELATED_P (insn) = 1;
25529 add_reg_note (insn, REG_FRAME_RELATED_EXPR, copy_rtx_if_shared (pat));
25530
25531 return insn;
25532 }
25533
25534 /* Returns an insn that has a vrsave set operation with the
25535 appropriate CLOBBERs. */
25536
25537 static rtx
25538 generate_set_vrsave (rtx reg, rs6000_stack_t *info, int epiloguep)
25539 {
25540 int nclobs, i;
25541 rtx insn, clobs[TOTAL_ALTIVEC_REGS + 1];
25542 rtx vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
25543
25544 clobs[0]
25545 = gen_rtx_SET (vrsave,
25546 gen_rtx_UNSPEC_VOLATILE (SImode,
25547 gen_rtvec (2, reg, vrsave),
25548 UNSPECV_SET_VRSAVE));
25549
25550 nclobs = 1;
25551
25552 /* We need to clobber the registers in the mask so the scheduler
25553 does not move sets to VRSAVE before sets of AltiVec registers.
25554
25555 However, if the function receives nonlocal gotos, reload will set
25556 all call saved registers live. We will end up with:
25557
25558 (set (reg 999) (mem))
25559 (parallel [ (set (reg vrsave) (unspec blah))
25560 (clobber (reg 999))])
25561
25562 The clobber will cause the store into reg 999 to be dead, and
25563 flow will attempt to delete an epilogue insn. In this case, we
25564 need an unspec use/set of the register. */
25565
25566 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
25567 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
25568 {
25569 if (!epiloguep || call_used_regs [i])
25570 clobs[nclobs++] = gen_rtx_CLOBBER (VOIDmode,
25571 gen_rtx_REG (V4SImode, i));
25572 else
25573 {
25574 rtx reg = gen_rtx_REG (V4SImode, i);
25575
25576 clobs[nclobs++]
25577 = gen_rtx_SET (reg,
25578 gen_rtx_UNSPEC (V4SImode,
25579 gen_rtvec (1, reg), 27));
25580 }
25581 }
25582
25583 insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nclobs));
25584
25585 for (i = 0; i < nclobs; ++i)
25586 XVECEXP (insn, 0, i) = clobs[i];
25587
25588 return insn;
25589 }
25590
25591 static rtx
25592 gen_frame_set (rtx reg, rtx frame_reg, int offset, bool store)
25593 {
25594 rtx addr, mem;
25595
25596 addr = gen_rtx_PLUS (Pmode, frame_reg, GEN_INT (offset));
25597 mem = gen_frame_mem (GET_MODE (reg), addr);
25598 return gen_rtx_SET (store ? mem : reg, store ? reg : mem);
25599 }
25600
25601 static rtx
25602 gen_frame_load (rtx reg, rtx frame_reg, int offset)
25603 {
25604 return gen_frame_set (reg, frame_reg, offset, false);
25605 }
25606
25607 static rtx
25608 gen_frame_store (rtx reg, rtx frame_reg, int offset)
25609 {
25610 return gen_frame_set (reg, frame_reg, offset, true);
25611 }
25612
25613 /* Save a register into the frame, and emit RTX_FRAME_RELATED_P notes.
25614 Save REGNO into [FRAME_REG + OFFSET] in mode MODE. */
25615
25616 static rtx_insn *
25617 emit_frame_save (rtx frame_reg, machine_mode mode,
25618 unsigned int regno, int offset, HOST_WIDE_INT frame_reg_to_sp)
25619 {
25620 rtx reg;
25621
25622 /* Some cases that need register indexed addressing. */
25623 gcc_checking_assert (!(TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
25624 || (TARGET_VSX && ALTIVEC_OR_VSX_VECTOR_MODE (mode)));
25625
25626 reg = gen_rtx_REG (mode, regno);
25627 rtx_insn *insn = emit_insn (gen_frame_store (reg, frame_reg, offset));
25628 return rs6000_frame_related (insn, frame_reg, frame_reg_to_sp,
25629 NULL_RTX, NULL_RTX);
25630 }
25631
25632 /* Emit an offset memory reference suitable for a frame store, while
25633 converting to a valid addressing mode. */
25634
25635 static rtx
25636 gen_frame_mem_offset (machine_mode mode, rtx reg, int offset)
25637 {
25638 return gen_frame_mem (mode, gen_rtx_PLUS (Pmode, reg, GEN_INT (offset)));
25639 }
25640
25641 #ifndef TARGET_FIX_AND_CONTINUE
25642 #define TARGET_FIX_AND_CONTINUE 0
25643 #endif
25644
25645 /* It's really GPR 13 or 14, FPR 14 and VR 20. We need the smallest. */
25646 #define FIRST_SAVRES_REGISTER FIRST_SAVED_GP_REGNO
25647 #define LAST_SAVRES_REGISTER 31
25648 #define N_SAVRES_REGISTERS (LAST_SAVRES_REGISTER - FIRST_SAVRES_REGISTER + 1)
25649
25650 enum {
25651 SAVRES_LR = 0x1,
25652 SAVRES_SAVE = 0x2,
25653 SAVRES_REG = 0x0c,
25654 SAVRES_GPR = 0,
25655 SAVRES_FPR = 4,
25656 SAVRES_VR = 8
25657 };
25658
25659 static GTY(()) rtx savres_routine_syms[N_SAVRES_REGISTERS][12];
25660
25661 /* Temporary holding space for an out-of-line register save/restore
25662 routine name. */
25663 static char savres_routine_name[30];
25664
25665 /* Return the name for an out-of-line register save/restore routine.
25666 We are saving/restoring GPRs if GPR is true. */
25667
25668 static char *
25669 rs6000_savres_routine_name (int regno, int sel)
25670 {
25671 const char *prefix = "";
25672 const char *suffix = "";
25673
25674 /* Different targets are supposed to define
25675 {SAVE,RESTORE}_FP_{PREFIX,SUFFIX} with the idea that the needed
25676 routine name could be defined with:
25677
25678 sprintf (name, "%s%d%s", SAVE_FP_PREFIX, regno, SAVE_FP_SUFFIX)
25679
25680 This is a nice idea in practice, but in reality, things are
25681 complicated in several ways:
25682
25683 - ELF targets have save/restore routines for GPRs.
25684
25685 - PPC64 ELF targets have routines for save/restore of GPRs that
25686 differ in what they do with the link register, so having a set
25687 prefix doesn't work. (We only use one of the save routines at
25688 the moment, though.)
25689
25690 - PPC32 elf targets have "exit" versions of the restore routines
25691 that restore the link register and can save some extra space.
25692 These require an extra suffix. (There are also "tail" versions
25693 of the restore routines and "GOT" versions of the save routines,
25694 but we don't generate those at present. Same problems apply,
25695 though.)
25696
25697 We deal with all this by synthesizing our own prefix/suffix and
25698 using that for the simple sprintf call shown above. */
25699 if (DEFAULT_ABI == ABI_V4)
25700 {
25701 if (TARGET_64BIT)
25702 goto aix_names;
25703
25704 if ((sel & SAVRES_REG) == SAVRES_GPR)
25705 prefix = (sel & SAVRES_SAVE) ? "_savegpr_" : "_restgpr_";
25706 else if ((sel & SAVRES_REG) == SAVRES_FPR)
25707 prefix = (sel & SAVRES_SAVE) ? "_savefpr_" : "_restfpr_";
25708 else if ((sel & SAVRES_REG) == SAVRES_VR)
25709 prefix = (sel & SAVRES_SAVE) ? "_savevr_" : "_restvr_";
25710 else
25711 abort ();
25712
25713 if ((sel & SAVRES_LR))
25714 suffix = "_x";
25715 }
25716 else if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
25717 {
25718 #if !defined (POWERPC_LINUX) && !defined (POWERPC_FREEBSD)
25719 /* No out-of-line save/restore routines for GPRs on AIX. */
25720 gcc_assert (!TARGET_AIX || (sel & SAVRES_REG) != SAVRES_GPR);
25721 #endif
25722
25723 aix_names:
25724 if ((sel & SAVRES_REG) == SAVRES_GPR)
25725 prefix = ((sel & SAVRES_SAVE)
25726 ? ((sel & SAVRES_LR) ? "_savegpr0_" : "_savegpr1_")
25727 : ((sel & SAVRES_LR) ? "_restgpr0_" : "_restgpr1_"));
25728 else if ((sel & SAVRES_REG) == SAVRES_FPR)
25729 {
25730 #if defined (POWERPC_LINUX) || defined (POWERPC_FREEBSD)
25731 if ((sel & SAVRES_LR))
25732 prefix = ((sel & SAVRES_SAVE) ? "_savefpr_" : "_restfpr_");
25733 else
25734 #endif
25735 {
25736 prefix = (sel & SAVRES_SAVE) ? SAVE_FP_PREFIX : RESTORE_FP_PREFIX;
25737 suffix = (sel & SAVRES_SAVE) ? SAVE_FP_SUFFIX : RESTORE_FP_SUFFIX;
25738 }
25739 }
25740 else if ((sel & SAVRES_REG) == SAVRES_VR)
25741 prefix = (sel & SAVRES_SAVE) ? "_savevr_" : "_restvr_";
25742 else
25743 abort ();
25744 }
25745
25746 if (DEFAULT_ABI == ABI_DARWIN)
25747 {
25748 /* The Darwin approach is (slightly) different, in order to be
25749 compatible with code generated by the system toolchain. There is a
25750 single symbol for the start of save sequence, and the code here
25751 embeds an offset into that code on the basis of the first register
25752 to be saved. */
25753 prefix = (sel & SAVRES_SAVE) ? "save" : "rest" ;
25754 if ((sel & SAVRES_REG) == SAVRES_GPR)
25755 sprintf (savres_routine_name, "*%sGPR%s%s%.0d ; %s r%d-r31", prefix,
25756 ((sel & SAVRES_LR) ? "x" : ""), (regno == 13 ? "" : "+"),
25757 (regno - 13) * 4, prefix, regno);
25758 else if ((sel & SAVRES_REG) == SAVRES_FPR)
25759 sprintf (savres_routine_name, "*%sFP%s%.0d ; %s f%d-f31", prefix,
25760 (regno == 14 ? "" : "+"), (regno - 14) * 4, prefix, regno);
25761 else if ((sel & SAVRES_REG) == SAVRES_VR)
25762 sprintf (savres_routine_name, "*%sVEC%s%.0d ; %s v%d-v31", prefix,
25763 (regno == 20 ? "" : "+"), (regno - 20) * 8, prefix, regno);
25764 else
25765 abort ();
25766 }
25767 else
25768 sprintf (savres_routine_name, "%s%d%s", prefix, regno, suffix);
25769
25770 return savres_routine_name;
25771 }
25772
25773 /* Return an RTL SYMBOL_REF for an out-of-line register save/restore routine.
25774 We are saving/restoring GPRs if GPR is true. */
25775
25776 static rtx
25777 rs6000_savres_routine_sym (rs6000_stack_t *info, int sel)
25778 {
25779 int regno = ((sel & SAVRES_REG) == SAVRES_GPR
25780 ? info->first_gp_reg_save
25781 : (sel & SAVRES_REG) == SAVRES_FPR
25782 ? info->first_fp_reg_save - 32
25783 : (sel & SAVRES_REG) == SAVRES_VR
25784 ? info->first_altivec_reg_save - FIRST_ALTIVEC_REGNO
25785 : -1);
25786 rtx sym;
25787 int select = sel;
25788
25789 /* Don't generate bogus routine names. */
25790 gcc_assert (FIRST_SAVRES_REGISTER <= regno
25791 && regno <= LAST_SAVRES_REGISTER
25792 && select >= 0 && select <= 12);
25793
25794 sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select];
25795
25796 if (sym == NULL)
25797 {
25798 char *name;
25799
25800 name = rs6000_savres_routine_name (regno, sel);
25801
25802 sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select]
25803 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
25804 SYMBOL_REF_FLAGS (sym) |= SYMBOL_FLAG_FUNCTION;
25805 }
25806
25807 return sym;
25808 }
25809
25810 /* Emit a sequence of insns, including a stack tie if needed, for
25811 resetting the stack pointer. If UPDT_REGNO is not 1, then don't
25812 reset the stack pointer, but move the base of the frame into
25813 reg UPDT_REGNO for use by out-of-line register restore routines. */
25814
25815 static rtx
25816 rs6000_emit_stack_reset (rtx frame_reg_rtx, HOST_WIDE_INT frame_off,
25817 unsigned updt_regno)
25818 {
25819 /* If there is nothing to do, don't do anything. */
25820 if (frame_off == 0 && REGNO (frame_reg_rtx) == updt_regno)
25821 return NULL_RTX;
25822
25823 rtx updt_reg_rtx = gen_rtx_REG (Pmode, updt_regno);
25824
25825 /* This blockage is needed so that sched doesn't decide to move
25826 the sp change before the register restores. */
25827 if (DEFAULT_ABI == ABI_V4)
25828 return emit_insn (gen_stack_restore_tie (updt_reg_rtx, frame_reg_rtx,
25829 GEN_INT (frame_off)));
25830
25831 /* If we are restoring registers out-of-line, we will be using the
25832 "exit" variants of the restore routines, which will reset the
25833 stack for us. But we do need to point updt_reg into the
25834 right place for those routines. */
25835 if (frame_off != 0)
25836 return emit_insn (gen_add3_insn (updt_reg_rtx,
25837 frame_reg_rtx, GEN_INT (frame_off)));
25838 else
25839 return emit_move_insn (updt_reg_rtx, frame_reg_rtx);
25840
25841 return NULL_RTX;
25842 }
25843
25844 /* Return the register number used as a pointer by out-of-line
25845 save/restore functions. */
25846
25847 static inline unsigned
25848 ptr_regno_for_savres (int sel)
25849 {
25850 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
25851 return (sel & SAVRES_REG) == SAVRES_FPR || (sel & SAVRES_LR) ? 1 : 12;
25852 return DEFAULT_ABI == ABI_DARWIN && (sel & SAVRES_REG) == SAVRES_FPR ? 1 : 11;
25853 }
25854
25855 /* Construct a parallel rtx describing the effect of a call to an
25856 out-of-line register save/restore routine, and emit the insn
25857 or jump_insn as appropriate. */
25858
25859 static rtx_insn *
25860 rs6000_emit_savres_rtx (rs6000_stack_t *info,
25861 rtx frame_reg_rtx, int save_area_offset, int lr_offset,
25862 machine_mode reg_mode, int sel)
25863 {
25864 int i;
25865 int offset, start_reg, end_reg, n_regs, use_reg;
25866 int reg_size = GET_MODE_SIZE (reg_mode);
25867 rtx sym;
25868 rtvec p;
25869 rtx par;
25870 rtx_insn *insn;
25871
25872 offset = 0;
25873 start_reg = ((sel & SAVRES_REG) == SAVRES_GPR
25874 ? info->first_gp_reg_save
25875 : (sel & SAVRES_REG) == SAVRES_FPR
25876 ? info->first_fp_reg_save
25877 : (sel & SAVRES_REG) == SAVRES_VR
25878 ? info->first_altivec_reg_save
25879 : -1);
25880 end_reg = ((sel & SAVRES_REG) == SAVRES_GPR
25881 ? 32
25882 : (sel & SAVRES_REG) == SAVRES_FPR
25883 ? 64
25884 : (sel & SAVRES_REG) == SAVRES_VR
25885 ? LAST_ALTIVEC_REGNO + 1
25886 : -1);
25887 n_regs = end_reg - start_reg;
25888 p = rtvec_alloc (3 + ((sel & SAVRES_LR) ? 1 : 0)
25889 + ((sel & SAVRES_REG) == SAVRES_VR ? 1 : 0)
25890 + n_regs);
25891
25892 if (!(sel & SAVRES_SAVE) && (sel & SAVRES_LR))
25893 RTVEC_ELT (p, offset++) = ret_rtx;
25894
25895 RTVEC_ELT (p, offset++)
25896 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNO));
25897
25898 sym = rs6000_savres_routine_sym (info, sel);
25899 RTVEC_ELT (p, offset++) = gen_rtx_USE (VOIDmode, sym);
25900
25901 use_reg = ptr_regno_for_savres (sel);
25902 if ((sel & SAVRES_REG) == SAVRES_VR)
25903 {
25904 /* Vector regs are saved/restored using [reg+reg] addressing. */
25905 RTVEC_ELT (p, offset++)
25906 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, use_reg));
25907 RTVEC_ELT (p, offset++)
25908 = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 0));
25909 }
25910 else
25911 RTVEC_ELT (p, offset++)
25912 = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, use_reg));
25913
25914 for (i = 0; i < end_reg - start_reg; i++)
25915 RTVEC_ELT (p, i + offset)
25916 = gen_frame_set (gen_rtx_REG (reg_mode, start_reg + i),
25917 frame_reg_rtx, save_area_offset + reg_size * i,
25918 (sel & SAVRES_SAVE) != 0);
25919
25920 if ((sel & SAVRES_SAVE) && (sel & SAVRES_LR))
25921 RTVEC_ELT (p, i + offset)
25922 = gen_frame_store (gen_rtx_REG (Pmode, 0), frame_reg_rtx, lr_offset);
25923
25924 par = gen_rtx_PARALLEL (VOIDmode, p);
25925
25926 if (!(sel & SAVRES_SAVE) && (sel & SAVRES_LR))
25927 {
25928 insn = emit_jump_insn (par);
25929 JUMP_LABEL (insn) = ret_rtx;
25930 }
25931 else
25932 insn = emit_insn (par);
25933 return insn;
25934 }
25935
25936 /* Emit prologue code to store CR fields that need to be saved into REG. This
25937 function should only be called when moving the non-volatile CRs to REG, it
25938 is not a general purpose routine to move the entire set of CRs to REG.
25939 Specifically, gen_prologue_movesi_from_cr() does not contain uses of the
25940 volatile CRs. */
25941
25942 static void
25943 rs6000_emit_prologue_move_from_cr (rtx reg)
25944 {
25945 /* Only the ELFv2 ABI allows storing only selected fields. */
25946 if (DEFAULT_ABI == ABI_ELFv2 && TARGET_MFCRF)
25947 {
25948 int i, cr_reg[8], count = 0;
25949
25950 /* Collect CR fields that must be saved. */
25951 for (i = 0; i < 8; i++)
25952 if (save_reg_p (CR0_REGNO + i))
25953 cr_reg[count++] = i;
25954
25955 /* If it's just a single one, use mfcrf. */
25956 if (count == 1)
25957 {
25958 rtvec p = rtvec_alloc (1);
25959 rtvec r = rtvec_alloc (2);
25960 RTVEC_ELT (r, 0) = gen_rtx_REG (CCmode, CR0_REGNO + cr_reg[0]);
25961 RTVEC_ELT (r, 1) = GEN_INT (1 << (7 - cr_reg[0]));
25962 RTVEC_ELT (p, 0)
25963 = gen_rtx_SET (reg,
25964 gen_rtx_UNSPEC (SImode, r, UNSPEC_MOVESI_FROM_CR));
25965
25966 emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
25967 return;
25968 }
25969
25970 /* ??? It might be better to handle count == 2 / 3 cases here
25971 as well, using logical operations to combine the values. */
25972 }
25973
25974 emit_insn (gen_prologue_movesi_from_cr (reg));
25975 }
25976
25977 /* Return whether the split-stack arg pointer (r12) is used. */
25978
25979 static bool
25980 split_stack_arg_pointer_used_p (void)
25981 {
25982 /* If the pseudo holding the arg pointer is no longer a pseudo,
25983 then the arg pointer is used. */
25984 if (cfun->machine->split_stack_arg_pointer != NULL_RTX
25985 && (!REG_P (cfun->machine->split_stack_arg_pointer)
25986 || (REGNO (cfun->machine->split_stack_arg_pointer)
25987 < FIRST_PSEUDO_REGISTER)))
25988 return true;
25989
25990 /* Unfortunately we also need to do some code scanning, since
25991 r12 may have been substituted for the pseudo. */
25992 rtx_insn *insn;
25993 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
25994 FOR_BB_INSNS (bb, insn)
25995 if (NONDEBUG_INSN_P (insn))
25996 {
25997 /* A call destroys r12. */
25998 if (CALL_P (insn))
25999 return false;
26000
26001 df_ref use;
26002 FOR_EACH_INSN_USE (use, insn)
26003 {
26004 rtx x = DF_REF_REG (use);
26005 if (REG_P (x) && REGNO (x) == 12)
26006 return true;
26007 }
26008 df_ref def;
26009 FOR_EACH_INSN_DEF (def, insn)
26010 {
26011 rtx x = DF_REF_REG (def);
26012 if (REG_P (x) && REGNO (x) == 12)
26013 return false;
26014 }
26015 }
26016 return bitmap_bit_p (DF_LR_OUT (bb), 12);
26017 }
26018
26019 /* Return whether we need to emit an ELFv2 global entry point prologue. */
26020
26021 static bool
26022 rs6000_global_entry_point_needed_p (void)
26023 {
26024 /* Only needed for the ELFv2 ABI. */
26025 if (DEFAULT_ABI != ABI_ELFv2)
26026 return false;
26027
26028 /* With -msingle-pic-base, we assume the whole program shares the same
26029 TOC, so no global entry point prologues are needed anywhere. */
26030 if (TARGET_SINGLE_PIC_BASE)
26031 return false;
26032
26033 /* Ensure we have a global entry point for thunks. ??? We could
26034 avoid that if the target routine doesn't need a global entry point,
26035 but we do not know whether this is the case at this point. */
26036 if (cfun->is_thunk)
26037 return true;
26038
26039 /* For regular functions, rs6000_emit_prologue sets this flag if the
26040 routine ever uses the TOC pointer. */
26041 return cfun->machine->r2_setup_needed;
26042 }
26043
26044 /* Implement TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS. */
26045 static sbitmap
26046 rs6000_get_separate_components (void)
26047 {
26048 rs6000_stack_t *info = rs6000_stack_info ();
26049
26050 if (WORLD_SAVE_P (info))
26051 return NULL;
26052
26053 gcc_assert (!(info->savres_strategy & SAVE_MULTIPLE)
26054 && !(info->savres_strategy & REST_MULTIPLE));
26055
26056 /* Component 0 is the save/restore of LR (done via GPR0).
26057 Component 2 is the save of the TOC (GPR2).
26058 Components 13..31 are the save/restore of GPR13..GPR31.
26059 Components 46..63 are the save/restore of FPR14..FPR31. */
26060
26061 cfun->machine->n_components = 64;
26062
26063 sbitmap components = sbitmap_alloc (cfun->machine->n_components);
26064 bitmap_clear (components);
26065
26066 int reg_size = TARGET_32BIT ? 4 : 8;
26067 int fp_reg_size = 8;
26068
26069 /* The GPRs we need saved to the frame. */
26070 if ((info->savres_strategy & SAVE_INLINE_GPRS)
26071 && (info->savres_strategy & REST_INLINE_GPRS))
26072 {
26073 int offset = info->gp_save_offset;
26074 if (info->push_p)
26075 offset += info->total_size;
26076
26077 for (unsigned regno = info->first_gp_reg_save; regno < 32; regno++)
26078 {
26079 if (IN_RANGE (offset, -0x8000, 0x7fff)
26080 && save_reg_p (regno))
26081 bitmap_set_bit (components, regno);
26082
26083 offset += reg_size;
26084 }
26085 }
26086
26087 /* Don't mess with the hard frame pointer. */
26088 if (frame_pointer_needed)
26089 bitmap_clear_bit (components, HARD_FRAME_POINTER_REGNUM);
26090
26091 /* Don't mess with the fixed TOC register. */
26092 if ((TARGET_TOC && TARGET_MINIMAL_TOC)
26093 || (flag_pic == 1 && DEFAULT_ABI == ABI_V4)
26094 || (flag_pic && DEFAULT_ABI == ABI_DARWIN))
26095 bitmap_clear_bit (components, RS6000_PIC_OFFSET_TABLE_REGNUM);
26096
26097 /* The FPRs we need saved to the frame. */
26098 if ((info->savres_strategy & SAVE_INLINE_FPRS)
26099 && (info->savres_strategy & REST_INLINE_FPRS))
26100 {
26101 int offset = info->fp_save_offset;
26102 if (info->push_p)
26103 offset += info->total_size;
26104
26105 for (unsigned regno = info->first_fp_reg_save; regno < 64; regno++)
26106 {
26107 if (IN_RANGE (offset, -0x8000, 0x7fff) && save_reg_p (regno))
26108 bitmap_set_bit (components, regno);
26109
26110 offset += fp_reg_size;
26111 }
26112 }
26113
26114 /* Optimize LR save and restore if we can. This is component 0. Any
26115 out-of-line register save/restore routines need LR. */
26116 if (info->lr_save_p
26117 && !(flag_pic && (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN))
26118 && (info->savres_strategy & SAVE_INLINE_GPRS)
26119 && (info->savres_strategy & REST_INLINE_GPRS)
26120 && (info->savres_strategy & SAVE_INLINE_FPRS)
26121 && (info->savres_strategy & REST_INLINE_FPRS)
26122 && (info->savres_strategy & SAVE_INLINE_VRS)
26123 && (info->savres_strategy & REST_INLINE_VRS))
26124 {
26125 int offset = info->lr_save_offset;
26126 if (info->push_p)
26127 offset += info->total_size;
26128 if (IN_RANGE (offset, -0x8000, 0x7fff))
26129 bitmap_set_bit (components, 0);
26130 }
26131
26132 /* Optimize saving the TOC. This is component 2. */
26133 if (cfun->machine->save_toc_in_prologue)
26134 bitmap_set_bit (components, 2);
26135
26136 return components;
26137 }
26138
26139 /* Implement TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB. */
26140 static sbitmap
26141 rs6000_components_for_bb (basic_block bb)
26142 {
26143 rs6000_stack_t *info = rs6000_stack_info ();
26144
26145 bitmap in = DF_LIVE_IN (bb);
26146 bitmap gen = &DF_LIVE_BB_INFO (bb)->gen;
26147 bitmap kill = &DF_LIVE_BB_INFO (bb)->kill;
26148
26149 sbitmap components = sbitmap_alloc (cfun->machine->n_components);
26150 bitmap_clear (components);
26151
26152 /* A register is used in a bb if it is in the IN, GEN, or KILL sets. */
26153
26154 /* GPRs. */
26155 for (unsigned regno = info->first_gp_reg_save; regno < 32; regno++)
26156 if (bitmap_bit_p (in, regno)
26157 || bitmap_bit_p (gen, regno)
26158 || bitmap_bit_p (kill, regno))
26159 bitmap_set_bit (components, regno);
26160
26161 /* FPRs. */
26162 for (unsigned regno = info->first_fp_reg_save; regno < 64; regno++)
26163 if (bitmap_bit_p (in, regno)
26164 || bitmap_bit_p (gen, regno)
26165 || bitmap_bit_p (kill, regno))
26166 bitmap_set_bit (components, regno);
26167
26168 /* The link register. */
26169 if (bitmap_bit_p (in, LR_REGNO)
26170 || bitmap_bit_p (gen, LR_REGNO)
26171 || bitmap_bit_p (kill, LR_REGNO))
26172 bitmap_set_bit (components, 0);
26173
26174 /* The TOC save. */
26175 if (bitmap_bit_p (in, TOC_REGNUM)
26176 || bitmap_bit_p (gen, TOC_REGNUM)
26177 || bitmap_bit_p (kill, TOC_REGNUM))
26178 bitmap_set_bit (components, 2);
26179
26180 return components;
26181 }
26182
26183 /* Implement TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS. */
26184 static void
26185 rs6000_disqualify_components (sbitmap components, edge e,
26186 sbitmap edge_components, bool /*is_prologue*/)
26187 {
26188 /* Our LR pro/epilogue code moves LR via R0, so R0 had better not be
26189 live where we want to place that code. */
26190 if (bitmap_bit_p (edge_components, 0)
26191 && bitmap_bit_p (DF_LIVE_IN (e->dest), 0))
26192 {
26193 if (dump_file)
26194 fprintf (dump_file, "Disqualifying LR because GPR0 is live "
26195 "on entry to bb %d\n", e->dest->index);
26196 bitmap_clear_bit (components, 0);
26197 }
26198 }
26199
26200 /* Implement TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS. */
26201 static void
26202 rs6000_emit_prologue_components (sbitmap components)
26203 {
26204 rs6000_stack_t *info = rs6000_stack_info ();
26205 rtx ptr_reg = gen_rtx_REG (Pmode, frame_pointer_needed
26206 ? HARD_FRAME_POINTER_REGNUM
26207 : STACK_POINTER_REGNUM);
26208
26209 machine_mode reg_mode = Pmode;
26210 int reg_size = TARGET_32BIT ? 4 : 8;
26211 machine_mode fp_reg_mode = TARGET_HARD_FLOAT ? DFmode : SFmode;
26212 int fp_reg_size = 8;
26213
26214 /* Prologue for LR. */
26215 if (bitmap_bit_p (components, 0))
26216 {
26217 rtx lr = gen_rtx_REG (reg_mode, LR_REGNO);
26218 rtx reg = gen_rtx_REG (reg_mode, 0);
26219 rtx_insn *insn = emit_move_insn (reg, lr);
26220 RTX_FRAME_RELATED_P (insn) = 1;
26221 add_reg_note (insn, REG_CFA_REGISTER, gen_rtx_SET (reg, lr));
26222
26223 int offset = info->lr_save_offset;
26224 if (info->push_p)
26225 offset += info->total_size;
26226
26227 insn = emit_insn (gen_frame_store (reg, ptr_reg, offset));
26228 RTX_FRAME_RELATED_P (insn) = 1;
26229 rtx mem = copy_rtx (SET_DEST (single_set (insn)));
26230 add_reg_note (insn, REG_CFA_OFFSET, gen_rtx_SET (mem, lr));
26231 }
26232
26233 /* Prologue for TOC. */
26234 if (bitmap_bit_p (components, 2))
26235 {
26236 rtx reg = gen_rtx_REG (reg_mode, TOC_REGNUM);
26237 rtx sp_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
26238 emit_insn (gen_frame_store (reg, sp_reg, RS6000_TOC_SAVE_SLOT));
26239 }
26240
26241 /* Prologue for the GPRs. */
26242 int offset = info->gp_save_offset;
26243 if (info->push_p)
26244 offset += info->total_size;
26245
26246 for (int i = info->first_gp_reg_save; i < 32; i++)
26247 {
26248 if (bitmap_bit_p (components, i))
26249 {
26250 rtx reg = gen_rtx_REG (reg_mode, i);
26251 rtx_insn *insn = emit_insn (gen_frame_store (reg, ptr_reg, offset));
26252 RTX_FRAME_RELATED_P (insn) = 1;
26253 rtx set = copy_rtx (single_set (insn));
26254 add_reg_note (insn, REG_CFA_OFFSET, set);
26255 }
26256
26257 offset += reg_size;
26258 }
26259
26260 /* Prologue for the FPRs. */
26261 offset = info->fp_save_offset;
26262 if (info->push_p)
26263 offset += info->total_size;
26264
26265 for (int i = info->first_fp_reg_save; i < 64; i++)
26266 {
26267 if (bitmap_bit_p (components, i))
26268 {
26269 rtx reg = gen_rtx_REG (fp_reg_mode, i);
26270 rtx_insn *insn = emit_insn (gen_frame_store (reg, ptr_reg, offset));
26271 RTX_FRAME_RELATED_P (insn) = 1;
26272 rtx set = copy_rtx (single_set (insn));
26273 add_reg_note (insn, REG_CFA_OFFSET, set);
26274 }
26275
26276 offset += fp_reg_size;
26277 }
26278 }
26279
26280 /* Implement TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS. */
26281 static void
26282 rs6000_emit_epilogue_components (sbitmap components)
26283 {
26284 rs6000_stack_t *info = rs6000_stack_info ();
26285 rtx ptr_reg = gen_rtx_REG (Pmode, frame_pointer_needed
26286 ? HARD_FRAME_POINTER_REGNUM
26287 : STACK_POINTER_REGNUM);
26288
26289 machine_mode reg_mode = Pmode;
26290 int reg_size = TARGET_32BIT ? 4 : 8;
26291
26292 machine_mode fp_reg_mode = TARGET_HARD_FLOAT ? DFmode : SFmode;
26293 int fp_reg_size = 8;
26294
26295 /* Epilogue for the FPRs. */
26296 int offset = info->fp_save_offset;
26297 if (info->push_p)
26298 offset += info->total_size;
26299
26300 for (int i = info->first_fp_reg_save; i < 64; i++)
26301 {
26302 if (bitmap_bit_p (components, i))
26303 {
26304 rtx reg = gen_rtx_REG (fp_reg_mode, i);
26305 rtx_insn *insn = emit_insn (gen_frame_load (reg, ptr_reg, offset));
26306 RTX_FRAME_RELATED_P (insn) = 1;
26307 add_reg_note (insn, REG_CFA_RESTORE, reg);
26308 }
26309
26310 offset += fp_reg_size;
26311 }
26312
26313 /* Epilogue for the GPRs. */
26314 offset = info->gp_save_offset;
26315 if (info->push_p)
26316 offset += info->total_size;
26317
26318 for (int i = info->first_gp_reg_save; i < 32; i++)
26319 {
26320 if (bitmap_bit_p (components, i))
26321 {
26322 rtx reg = gen_rtx_REG (reg_mode, i);
26323 rtx_insn *insn = emit_insn (gen_frame_load (reg, ptr_reg, offset));
26324 RTX_FRAME_RELATED_P (insn) = 1;
26325 add_reg_note (insn, REG_CFA_RESTORE, reg);
26326 }
26327
26328 offset += reg_size;
26329 }
26330
26331 /* Epilogue for LR. */
26332 if (bitmap_bit_p (components, 0))
26333 {
26334 int offset = info->lr_save_offset;
26335 if (info->push_p)
26336 offset += info->total_size;
26337
26338 rtx reg = gen_rtx_REG (reg_mode, 0);
26339 rtx_insn *insn = emit_insn (gen_frame_load (reg, ptr_reg, offset));
26340
26341 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
26342 insn = emit_move_insn (lr, reg);
26343 RTX_FRAME_RELATED_P (insn) = 1;
26344 add_reg_note (insn, REG_CFA_RESTORE, lr);
26345 }
26346 }
26347
26348 /* Implement TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS. */
26349 static void
26350 rs6000_set_handled_components (sbitmap components)
26351 {
26352 rs6000_stack_t *info = rs6000_stack_info ();
26353
26354 for (int i = info->first_gp_reg_save; i < 32; i++)
26355 if (bitmap_bit_p (components, i))
26356 cfun->machine->gpr_is_wrapped_separately[i] = true;
26357
26358 for (int i = info->first_fp_reg_save; i < 64; i++)
26359 if (bitmap_bit_p (components, i))
26360 cfun->machine->fpr_is_wrapped_separately[i - 32] = true;
26361
26362 if (bitmap_bit_p (components, 0))
26363 cfun->machine->lr_is_wrapped_separately = true;
26364
26365 if (bitmap_bit_p (components, 2))
26366 cfun->machine->toc_is_wrapped_separately = true;
26367 }
26368
26369 /* VRSAVE is a bit vector representing which AltiVec registers
26370 are used. The OS uses this to determine which vector
26371 registers to save on a context switch. We need to save
26372 VRSAVE on the stack frame, add whatever AltiVec registers we
26373 used in this function, and do the corresponding magic in the
26374 epilogue. */
26375 static void
26376 emit_vrsave_prologue (rs6000_stack_t *info, int save_regno,
26377 HOST_WIDE_INT frame_off, rtx frame_reg_rtx)
26378 {
26379 /* Get VRSAVE into a GPR. */
26380 rtx reg = gen_rtx_REG (SImode, save_regno);
26381 rtx vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
26382 if (TARGET_MACHO)
26383 emit_insn (gen_get_vrsave_internal (reg));
26384 else
26385 emit_insn (gen_rtx_SET (reg, vrsave));
26386
26387 /* Save VRSAVE. */
26388 int offset = info->vrsave_save_offset + frame_off;
26389 emit_insn (gen_frame_store (reg, frame_reg_rtx, offset));
26390
26391 /* Include the registers in the mask. */
26392 emit_insn (gen_iorsi3 (reg, reg, GEN_INT (info->vrsave_mask)));
26393
26394 emit_insn (generate_set_vrsave (reg, info, 0));
26395 }
26396
26397 /* Set up the arg pointer (r12) for -fsplit-stack code. If __morestack was
26398 called, it left the arg pointer to the old stack in r29. Otherwise, the
26399 arg pointer is the top of the current frame. */
26400 static void
26401 emit_split_stack_prologue (rs6000_stack_t *info, rtx_insn *sp_adjust,
26402 HOST_WIDE_INT frame_off, rtx frame_reg_rtx)
26403 {
26404 cfun->machine->split_stack_argp_used = true;
26405
26406 if (sp_adjust)
26407 {
26408 rtx r12 = gen_rtx_REG (Pmode, 12);
26409 rtx sp_reg_rtx = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
26410 rtx set_r12 = gen_rtx_SET (r12, sp_reg_rtx);
26411 emit_insn_before (set_r12, sp_adjust);
26412 }
26413 else if (frame_off != 0 || REGNO (frame_reg_rtx) != 12)
26414 {
26415 rtx r12 = gen_rtx_REG (Pmode, 12);
26416 if (frame_off == 0)
26417 emit_move_insn (r12, frame_reg_rtx);
26418 else
26419 emit_insn (gen_add3_insn (r12, frame_reg_rtx, GEN_INT (frame_off)));
26420 }
26421
26422 if (info->push_p)
26423 {
26424 rtx r12 = gen_rtx_REG (Pmode, 12);
26425 rtx r29 = gen_rtx_REG (Pmode, 29);
26426 rtx cr7 = gen_rtx_REG (CCUNSmode, CR7_REGNO);
26427 rtx not_more = gen_label_rtx ();
26428 rtx jump;
26429
26430 jump = gen_rtx_IF_THEN_ELSE (VOIDmode,
26431 gen_rtx_GEU (VOIDmode, cr7, const0_rtx),
26432 gen_rtx_LABEL_REF (VOIDmode, not_more),
26433 pc_rtx);
26434 jump = emit_jump_insn (gen_rtx_SET (pc_rtx, jump));
26435 JUMP_LABEL (jump) = not_more;
26436 LABEL_NUSES (not_more) += 1;
26437 emit_move_insn (r12, r29);
26438 emit_label (not_more);
26439 }
26440 }
26441
26442 /* Emit function prologue as insns. */
26443
26444 void
26445 rs6000_emit_prologue (void)
26446 {
26447 rs6000_stack_t *info = rs6000_stack_info ();
26448 machine_mode reg_mode = Pmode;
26449 int reg_size = TARGET_32BIT ? 4 : 8;
26450 machine_mode fp_reg_mode = TARGET_HARD_FLOAT ? DFmode : SFmode;
26451 int fp_reg_size = 8;
26452 rtx sp_reg_rtx = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
26453 rtx frame_reg_rtx = sp_reg_rtx;
26454 unsigned int cr_save_regno;
26455 rtx cr_save_rtx = NULL_RTX;
26456 rtx_insn *insn;
26457 int strategy;
26458 int using_static_chain_p = (cfun->static_chain_decl != NULL_TREE
26459 && df_regs_ever_live_p (STATIC_CHAIN_REGNUM)
26460 && call_used_regs[STATIC_CHAIN_REGNUM]);
26461 int using_split_stack = (flag_split_stack
26462 && (lookup_attribute ("no_split_stack",
26463 DECL_ATTRIBUTES (cfun->decl))
26464 == NULL));
26465
26466 /* Offset to top of frame for frame_reg and sp respectively. */
26467 HOST_WIDE_INT frame_off = 0;
26468 HOST_WIDE_INT sp_off = 0;
26469 /* sp_adjust is the stack adjusting instruction, tracked so that the
26470 insn setting up the split-stack arg pointer can be emitted just
26471 prior to it, when r12 is not used here for other purposes. */
26472 rtx_insn *sp_adjust = 0;
26473
26474 #if CHECKING_P
26475 /* Track and check usage of r0, r11, r12. */
26476 int reg_inuse = using_static_chain_p ? 1 << 11 : 0;
26477 #define START_USE(R) do \
26478 { \
26479 gcc_assert ((reg_inuse & (1 << (R))) == 0); \
26480 reg_inuse |= 1 << (R); \
26481 } while (0)
26482 #define END_USE(R) do \
26483 { \
26484 gcc_assert ((reg_inuse & (1 << (R))) != 0); \
26485 reg_inuse &= ~(1 << (R)); \
26486 } while (0)
26487 #define NOT_INUSE(R) do \
26488 { \
26489 gcc_assert ((reg_inuse & (1 << (R))) == 0); \
26490 } while (0)
26491 #else
26492 #define START_USE(R) do {} while (0)
26493 #define END_USE(R) do {} while (0)
26494 #define NOT_INUSE(R) do {} while (0)
26495 #endif
26496
26497 if (DEFAULT_ABI == ABI_ELFv2
26498 && !TARGET_SINGLE_PIC_BASE)
26499 {
26500 cfun->machine->r2_setup_needed = df_regs_ever_live_p (TOC_REGNUM);
26501
26502 /* With -mminimal-toc we may generate an extra use of r2 below. */
26503 if (TARGET_TOC && TARGET_MINIMAL_TOC
26504 && !constant_pool_empty_p ())
26505 cfun->machine->r2_setup_needed = true;
26506 }
26507
26508
26509 if (flag_stack_usage_info)
26510 current_function_static_stack_size = info->total_size;
26511
26512 if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
26513 {
26514 HOST_WIDE_INT size = info->total_size;
26515
26516 if (crtl->is_leaf && !cfun->calls_alloca)
26517 {
26518 if (size > PROBE_INTERVAL && size > get_stack_check_protect ())
26519 rs6000_emit_probe_stack_range (get_stack_check_protect (),
26520 size - get_stack_check_protect ());
26521 }
26522 else if (size > 0)
26523 rs6000_emit_probe_stack_range (get_stack_check_protect (), size);
26524 }
26525
26526 if (TARGET_FIX_AND_CONTINUE)
26527 {
26528 /* gdb on darwin arranges to forward a function from the old
26529 address by modifying the first 5 instructions of the function
26530 to branch to the overriding function. This is necessary to
26531 permit function pointers that point to the old function to
26532 actually forward to the new function. */
26533 emit_insn (gen_nop ());
26534 emit_insn (gen_nop ());
26535 emit_insn (gen_nop ());
26536 emit_insn (gen_nop ());
26537 emit_insn (gen_nop ());
26538 }
26539
26540 /* Handle world saves specially here. */
26541 if (WORLD_SAVE_P (info))
26542 {
26543 int i, j, sz;
26544 rtx treg;
26545 rtvec p;
26546 rtx reg0;
26547
26548 /* save_world expects lr in r0. */
26549 reg0 = gen_rtx_REG (Pmode, 0);
26550 if (info->lr_save_p)
26551 {
26552 insn = emit_move_insn (reg0,
26553 gen_rtx_REG (Pmode, LR_REGNO));
26554 RTX_FRAME_RELATED_P (insn) = 1;
26555 }
26556
26557 /* The SAVE_WORLD and RESTORE_WORLD routines make a number of
26558 assumptions about the offsets of various bits of the stack
26559 frame. */
26560 gcc_assert (info->gp_save_offset == -220
26561 && info->fp_save_offset == -144
26562 && info->lr_save_offset == 8
26563 && info->cr_save_offset == 4
26564 && info->push_p
26565 && info->lr_save_p
26566 && (!crtl->calls_eh_return
26567 || info->ehrd_offset == -432)
26568 && info->vrsave_save_offset == -224
26569 && info->altivec_save_offset == -416);
26570
26571 treg = gen_rtx_REG (SImode, 11);
26572 emit_move_insn (treg, GEN_INT (-info->total_size));
26573
26574 /* SAVE_WORLD takes the caller's LR in R0 and the frame size
26575 in R11. It also clobbers R12, so beware! */
26576
26577 /* Preserve CR2 for save_world prologues */
26578 sz = 5;
26579 sz += 32 - info->first_gp_reg_save;
26580 sz += 64 - info->first_fp_reg_save;
26581 sz += LAST_ALTIVEC_REGNO - info->first_altivec_reg_save + 1;
26582 p = rtvec_alloc (sz);
26583 j = 0;
26584 RTVEC_ELT (p, j++) = gen_rtx_CLOBBER (VOIDmode,
26585 gen_rtx_REG (SImode,
26586 LR_REGNO));
26587 RTVEC_ELT (p, j++) = gen_rtx_USE (VOIDmode,
26588 gen_rtx_SYMBOL_REF (Pmode,
26589 "*save_world"));
26590 /* We do floats first so that the instruction pattern matches
26591 properly. */
26592 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
26593 RTVEC_ELT (p, j++)
26594 = gen_frame_store (gen_rtx_REG (TARGET_HARD_FLOAT ? DFmode : SFmode,
26595 info->first_fp_reg_save + i),
26596 frame_reg_rtx,
26597 info->fp_save_offset + frame_off + 8 * i);
26598 for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
26599 RTVEC_ELT (p, j++)
26600 = gen_frame_store (gen_rtx_REG (V4SImode,
26601 info->first_altivec_reg_save + i),
26602 frame_reg_rtx,
26603 info->altivec_save_offset + frame_off + 16 * i);
26604 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
26605 RTVEC_ELT (p, j++)
26606 = gen_frame_store (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
26607 frame_reg_rtx,
26608 info->gp_save_offset + frame_off + reg_size * i);
26609
26610 /* CR register traditionally saved as CR2. */
26611 RTVEC_ELT (p, j++)
26612 = gen_frame_store (gen_rtx_REG (SImode, CR2_REGNO),
26613 frame_reg_rtx, info->cr_save_offset + frame_off);
26614 /* Explain about use of R0. */
26615 if (info->lr_save_p)
26616 RTVEC_ELT (p, j++)
26617 = gen_frame_store (reg0,
26618 frame_reg_rtx, info->lr_save_offset + frame_off);
26619 /* Explain what happens to the stack pointer. */
26620 {
26621 rtx newval = gen_rtx_PLUS (Pmode, sp_reg_rtx, treg);
26622 RTVEC_ELT (p, j++) = gen_rtx_SET (sp_reg_rtx, newval);
26623 }
26624
26625 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
26626 rs6000_frame_related (insn, frame_reg_rtx, sp_off - frame_off,
26627 treg, GEN_INT (-info->total_size));
26628 sp_off = frame_off = info->total_size;
26629 }
26630
26631 strategy = info->savres_strategy;
26632
26633 /* For V.4, update stack before we do any saving and set back pointer. */
26634 if (! WORLD_SAVE_P (info)
26635 && info->push_p
26636 && (DEFAULT_ABI == ABI_V4
26637 || crtl->calls_eh_return))
26638 {
26639 bool need_r11 = (!(strategy & SAVE_INLINE_FPRS)
26640 || !(strategy & SAVE_INLINE_GPRS)
26641 || !(strategy & SAVE_INLINE_VRS));
26642 int ptr_regno = -1;
26643 rtx ptr_reg = NULL_RTX;
26644 int ptr_off = 0;
26645
26646 if (info->total_size < 32767)
26647 frame_off = info->total_size;
26648 else if (need_r11)
26649 ptr_regno = 11;
26650 else if (info->cr_save_p
26651 || info->lr_save_p
26652 || info->first_fp_reg_save < 64
26653 || info->first_gp_reg_save < 32
26654 || info->altivec_size != 0
26655 || info->vrsave_size != 0
26656 || crtl->calls_eh_return)
26657 ptr_regno = 12;
26658 else
26659 {
26660 /* The prologue won't be saving any regs so there is no need
26661 to set up a frame register to access any frame save area.
26662 We also won't be using frame_off anywhere below, but set
26663 the correct value anyway to protect against future
26664 changes to this function. */
26665 frame_off = info->total_size;
26666 }
26667 if (ptr_regno != -1)
26668 {
26669 /* Set up the frame offset to that needed by the first
26670 out-of-line save function. */
26671 START_USE (ptr_regno);
26672 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
26673 frame_reg_rtx = ptr_reg;
26674 if (!(strategy & SAVE_INLINE_FPRS) && info->fp_size != 0)
26675 gcc_checking_assert (info->fp_save_offset + info->fp_size == 0);
26676 else if (!(strategy & SAVE_INLINE_GPRS) && info->first_gp_reg_save < 32)
26677 ptr_off = info->gp_save_offset + info->gp_size;
26678 else if (!(strategy & SAVE_INLINE_VRS) && info->altivec_size != 0)
26679 ptr_off = info->altivec_save_offset + info->altivec_size;
26680 frame_off = -ptr_off;
26681 }
26682 sp_adjust = rs6000_emit_allocate_stack (info->total_size,
26683 ptr_reg, ptr_off);
26684 if (REGNO (frame_reg_rtx) == 12)
26685 sp_adjust = 0;
26686 sp_off = info->total_size;
26687 if (frame_reg_rtx != sp_reg_rtx)
26688 rs6000_emit_stack_tie (frame_reg_rtx, false);
26689 }
26690
26691 /* If we use the link register, get it into r0. */
26692 if (!WORLD_SAVE_P (info) && info->lr_save_p
26693 && !cfun->machine->lr_is_wrapped_separately)
26694 {
26695 rtx addr, reg, mem;
26696
26697 reg = gen_rtx_REG (Pmode, 0);
26698 START_USE (0);
26699 insn = emit_move_insn (reg, gen_rtx_REG (Pmode, LR_REGNO));
26700 RTX_FRAME_RELATED_P (insn) = 1;
26701
26702 if (!(strategy & (SAVE_NOINLINE_GPRS_SAVES_LR
26703 | SAVE_NOINLINE_FPRS_SAVES_LR)))
26704 {
26705 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
26706 GEN_INT (info->lr_save_offset + frame_off));
26707 mem = gen_rtx_MEM (Pmode, addr);
26708 /* This should not be of rs6000_sr_alias_set, because of
26709 __builtin_return_address. */
26710
26711 insn = emit_move_insn (mem, reg);
26712 rs6000_frame_related (insn, frame_reg_rtx, sp_off - frame_off,
26713 NULL_RTX, NULL_RTX);
26714 END_USE (0);
26715 }
26716 }
26717
26718 /* If we need to save CR, put it into r12 or r11. Choose r12 except when
26719 r12 will be needed by out-of-line gpr save. */
26720 cr_save_regno = ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
26721 && !(strategy & (SAVE_INLINE_GPRS
26722 | SAVE_NOINLINE_GPRS_SAVES_LR))
26723 ? 11 : 12);
26724 if (!WORLD_SAVE_P (info)
26725 && info->cr_save_p
26726 && REGNO (frame_reg_rtx) != cr_save_regno
26727 && !(using_static_chain_p && cr_save_regno == 11)
26728 && !(using_split_stack && cr_save_regno == 12 && sp_adjust))
26729 {
26730 cr_save_rtx = gen_rtx_REG (SImode, cr_save_regno);
26731 START_USE (cr_save_regno);
26732 rs6000_emit_prologue_move_from_cr (cr_save_rtx);
26733 }
26734
26735 /* Do any required saving of fpr's. If only one or two to save, do
26736 it ourselves. Otherwise, call function. */
26737 if (!WORLD_SAVE_P (info) && (strategy & SAVE_INLINE_FPRS))
26738 {
26739 int offset = info->fp_save_offset + frame_off;
26740 for (int i = info->first_fp_reg_save; i < 64; i++)
26741 {
26742 if (save_reg_p (i)
26743 && !cfun->machine->fpr_is_wrapped_separately[i - 32])
26744 emit_frame_save (frame_reg_rtx, fp_reg_mode, i, offset,
26745 sp_off - frame_off);
26746
26747 offset += fp_reg_size;
26748 }
26749 }
26750 else if (!WORLD_SAVE_P (info) && info->first_fp_reg_save != 64)
26751 {
26752 bool lr = (strategy & SAVE_NOINLINE_FPRS_SAVES_LR) != 0;
26753 int sel = SAVRES_SAVE | SAVRES_FPR | (lr ? SAVRES_LR : 0);
26754 unsigned ptr_regno = ptr_regno_for_savres (sel);
26755 rtx ptr_reg = frame_reg_rtx;
26756
26757 if (REGNO (frame_reg_rtx) == ptr_regno)
26758 gcc_checking_assert (frame_off == 0);
26759 else
26760 {
26761 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
26762 NOT_INUSE (ptr_regno);
26763 emit_insn (gen_add3_insn (ptr_reg,
26764 frame_reg_rtx, GEN_INT (frame_off)));
26765 }
26766 insn = rs6000_emit_savres_rtx (info, ptr_reg,
26767 info->fp_save_offset,
26768 info->lr_save_offset,
26769 DFmode, sel);
26770 rs6000_frame_related (insn, ptr_reg, sp_off,
26771 NULL_RTX, NULL_RTX);
26772 if (lr)
26773 END_USE (0);
26774 }
26775
26776 /* Save GPRs. This is done as a PARALLEL if we are using
26777 the store-multiple instructions. */
26778 if (!WORLD_SAVE_P (info) && !(strategy & SAVE_INLINE_GPRS))
26779 {
26780 bool lr = (strategy & SAVE_NOINLINE_GPRS_SAVES_LR) != 0;
26781 int sel = SAVRES_SAVE | SAVRES_GPR | (lr ? SAVRES_LR : 0);
26782 unsigned ptr_regno = ptr_regno_for_savres (sel);
26783 rtx ptr_reg = frame_reg_rtx;
26784 bool ptr_set_up = REGNO (ptr_reg) == ptr_regno;
26785 int end_save = info->gp_save_offset + info->gp_size;
26786 int ptr_off;
26787
26788 if (ptr_regno == 12)
26789 sp_adjust = 0;
26790 if (!ptr_set_up)
26791 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
26792
26793 /* Need to adjust r11 (r12) if we saved any FPRs. */
26794 if (end_save + frame_off != 0)
26795 {
26796 rtx offset = GEN_INT (end_save + frame_off);
26797
26798 if (ptr_set_up)
26799 frame_off = -end_save;
26800 else
26801 NOT_INUSE (ptr_regno);
26802 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx, offset));
26803 }
26804 else if (!ptr_set_up)
26805 {
26806 NOT_INUSE (ptr_regno);
26807 emit_move_insn (ptr_reg, frame_reg_rtx);
26808 }
26809 ptr_off = -end_save;
26810 insn = rs6000_emit_savres_rtx (info, ptr_reg,
26811 info->gp_save_offset + ptr_off,
26812 info->lr_save_offset + ptr_off,
26813 reg_mode, sel);
26814 rs6000_frame_related (insn, ptr_reg, sp_off - ptr_off,
26815 NULL_RTX, NULL_RTX);
26816 if (lr)
26817 END_USE (0);
26818 }
26819 else if (!WORLD_SAVE_P (info) && (strategy & SAVE_MULTIPLE))
26820 {
26821 rtvec p;
26822 int i;
26823 p = rtvec_alloc (32 - info->first_gp_reg_save);
26824 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
26825 RTVEC_ELT (p, i)
26826 = gen_frame_store (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
26827 frame_reg_rtx,
26828 info->gp_save_offset + frame_off + reg_size * i);
26829 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
26830 rs6000_frame_related (insn, frame_reg_rtx, sp_off - frame_off,
26831 NULL_RTX, NULL_RTX);
26832 }
26833 else if (!WORLD_SAVE_P (info))
26834 {
26835 int offset = info->gp_save_offset + frame_off;
26836 for (int i = info->first_gp_reg_save; i < 32; i++)
26837 {
26838 if (save_reg_p (i)
26839 && !cfun->machine->gpr_is_wrapped_separately[i])
26840 emit_frame_save (frame_reg_rtx, reg_mode, i, offset,
26841 sp_off - frame_off);
26842
26843 offset += reg_size;
26844 }
26845 }
26846
26847 if (crtl->calls_eh_return)
26848 {
26849 unsigned int i;
26850 rtvec p;
26851
26852 for (i = 0; ; ++i)
26853 {
26854 unsigned int regno = EH_RETURN_DATA_REGNO (i);
26855 if (regno == INVALID_REGNUM)
26856 break;
26857 }
26858
26859 p = rtvec_alloc (i);
26860
26861 for (i = 0; ; ++i)
26862 {
26863 unsigned int regno = EH_RETURN_DATA_REGNO (i);
26864 if (regno == INVALID_REGNUM)
26865 break;
26866
26867 rtx set
26868 = gen_frame_store (gen_rtx_REG (reg_mode, regno),
26869 sp_reg_rtx,
26870 info->ehrd_offset + sp_off + reg_size * (int) i);
26871 RTVEC_ELT (p, i) = set;
26872 RTX_FRAME_RELATED_P (set) = 1;
26873 }
26874
26875 insn = emit_insn (gen_blockage ());
26876 RTX_FRAME_RELATED_P (insn) = 1;
26877 add_reg_note (insn, REG_FRAME_RELATED_EXPR, gen_rtx_PARALLEL (VOIDmode, p));
26878 }
26879
26880 /* In AIX ABI we need to make sure r2 is really saved. */
26881 if (TARGET_AIX && crtl->calls_eh_return)
26882 {
26883 rtx tmp_reg, tmp_reg_si, hi, lo, compare_result, toc_save_done, jump;
26884 rtx join_insn, note;
26885 rtx_insn *save_insn;
26886 long toc_restore_insn;
26887
26888 tmp_reg = gen_rtx_REG (Pmode, 11);
26889 tmp_reg_si = gen_rtx_REG (SImode, 11);
26890 if (using_static_chain_p)
26891 {
26892 START_USE (0);
26893 emit_move_insn (gen_rtx_REG (Pmode, 0), tmp_reg);
26894 }
26895 else
26896 START_USE (11);
26897 emit_move_insn (tmp_reg, gen_rtx_REG (Pmode, LR_REGNO));
26898 /* Peek at instruction to which this function returns. If it's
26899 restoring r2, then we know we've already saved r2. We can't
26900 unconditionally save r2 because the value we have will already
26901 be updated if we arrived at this function via a plt call or
26902 toc adjusting stub. */
26903 emit_move_insn (tmp_reg_si, gen_rtx_MEM (SImode, tmp_reg));
26904 toc_restore_insn = ((TARGET_32BIT ? 0x80410000 : 0xE8410000)
26905 + RS6000_TOC_SAVE_SLOT);
26906 hi = gen_int_mode (toc_restore_insn & ~0xffff, SImode);
26907 emit_insn (gen_xorsi3 (tmp_reg_si, tmp_reg_si, hi));
26908 compare_result = gen_rtx_REG (CCUNSmode, CR0_REGNO);
26909 validate_condition_mode (EQ, CCUNSmode);
26910 lo = gen_int_mode (toc_restore_insn & 0xffff, SImode);
26911 emit_insn (gen_rtx_SET (compare_result,
26912 gen_rtx_COMPARE (CCUNSmode, tmp_reg_si, lo)));
26913 toc_save_done = gen_label_rtx ();
26914 jump = gen_rtx_IF_THEN_ELSE (VOIDmode,
26915 gen_rtx_EQ (VOIDmode, compare_result,
26916 const0_rtx),
26917 gen_rtx_LABEL_REF (VOIDmode, toc_save_done),
26918 pc_rtx);
26919 jump = emit_jump_insn (gen_rtx_SET (pc_rtx, jump));
26920 JUMP_LABEL (jump) = toc_save_done;
26921 LABEL_NUSES (toc_save_done) += 1;
26922
26923 save_insn = emit_frame_save (frame_reg_rtx, reg_mode,
26924 TOC_REGNUM, frame_off + RS6000_TOC_SAVE_SLOT,
26925 sp_off - frame_off);
26926
26927 emit_label (toc_save_done);
26928
26929 /* ??? If we leave SAVE_INSN as marked as saving R2, then we'll
26930 have a CFG that has different saves along different paths.
26931 Move the note to a dummy blockage insn, which describes that
26932 R2 is unconditionally saved after the label. */
26933 /* ??? An alternate representation might be a special insn pattern
26934 containing both the branch and the store. That might let the
26935 code that minimizes the number of DW_CFA_advance opcodes better
26936 freedom in placing the annotations. */
26937 note = find_reg_note (save_insn, REG_FRAME_RELATED_EXPR, NULL);
26938 if (note)
26939 remove_note (save_insn, note);
26940 else
26941 note = alloc_reg_note (REG_FRAME_RELATED_EXPR,
26942 copy_rtx (PATTERN (save_insn)), NULL_RTX);
26943 RTX_FRAME_RELATED_P (save_insn) = 0;
26944
26945 join_insn = emit_insn (gen_blockage ());
26946 REG_NOTES (join_insn) = note;
26947 RTX_FRAME_RELATED_P (join_insn) = 1;
26948
26949 if (using_static_chain_p)
26950 {
26951 emit_move_insn (tmp_reg, gen_rtx_REG (Pmode, 0));
26952 END_USE (0);
26953 }
26954 else
26955 END_USE (11);
26956 }
26957
26958 /* Save CR if we use any that must be preserved. */
26959 if (!WORLD_SAVE_P (info) && info->cr_save_p)
26960 {
26961 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
26962 GEN_INT (info->cr_save_offset + frame_off));
26963 rtx mem = gen_frame_mem (SImode, addr);
26964
26965 /* If we didn't copy cr before, do so now using r0. */
26966 if (cr_save_rtx == NULL_RTX)
26967 {
26968 START_USE (0);
26969 cr_save_rtx = gen_rtx_REG (SImode, 0);
26970 rs6000_emit_prologue_move_from_cr (cr_save_rtx);
26971 }
26972
26973 /* Saving CR requires a two-instruction sequence: one instruction
26974 to move the CR to a general-purpose register, and a second
26975 instruction that stores the GPR to memory.
26976
26977 We do not emit any DWARF CFI records for the first of these,
26978 because we cannot properly represent the fact that CR is saved in
26979 a register. One reason is that we cannot express that multiple
26980 CR fields are saved; another reason is that on 64-bit, the size
26981 of the CR register in DWARF (4 bytes) differs from the size of
26982 a general-purpose register.
26983
26984 This means if any intervening instruction were to clobber one of
26985 the call-saved CR fields, we'd have incorrect CFI. To prevent
26986 this from happening, we mark the store to memory as a use of
26987 those CR fields, which prevents any such instruction from being
26988 scheduled in between the two instructions. */
26989 rtx crsave_v[9];
26990 int n_crsave = 0;
26991 int i;
26992
26993 crsave_v[n_crsave++] = gen_rtx_SET (mem, cr_save_rtx);
26994 for (i = 0; i < 8; i++)
26995 if (save_reg_p (CR0_REGNO + i))
26996 crsave_v[n_crsave++]
26997 = gen_rtx_USE (VOIDmode, gen_rtx_REG (CCmode, CR0_REGNO + i));
26998
26999 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode,
27000 gen_rtvec_v (n_crsave, crsave_v)));
27001 END_USE (REGNO (cr_save_rtx));
27002
27003 /* Now, there's no way that dwarf2out_frame_debug_expr is going to
27004 understand '(unspec:SI [(reg:CC 68) ...] UNSPEC_MOVESI_FROM_CR)',
27005 so we need to construct a frame expression manually. */
27006 RTX_FRAME_RELATED_P (insn) = 1;
27007
27008 /* Update address to be stack-pointer relative, like
27009 rs6000_frame_related would do. */
27010 addr = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM),
27011 GEN_INT (info->cr_save_offset + sp_off));
27012 mem = gen_frame_mem (SImode, addr);
27013
27014 if (DEFAULT_ABI == ABI_ELFv2)
27015 {
27016 /* In the ELFv2 ABI we generate separate CFI records for each
27017 CR field that was actually saved. They all point to the
27018 same 32-bit stack slot. */
27019 rtx crframe[8];
27020 int n_crframe = 0;
27021
27022 for (i = 0; i < 8; i++)
27023 if (save_reg_p (CR0_REGNO + i))
27024 {
27025 crframe[n_crframe]
27026 = gen_rtx_SET (mem, gen_rtx_REG (SImode, CR0_REGNO + i));
27027
27028 RTX_FRAME_RELATED_P (crframe[n_crframe]) = 1;
27029 n_crframe++;
27030 }
27031
27032 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
27033 gen_rtx_PARALLEL (VOIDmode,
27034 gen_rtvec_v (n_crframe, crframe)));
27035 }
27036 else
27037 {
27038 /* In other ABIs, by convention, we use a single CR regnum to
27039 represent the fact that all call-saved CR fields are saved.
27040 We use CR2_REGNO to be compatible with gcc-2.95 on Linux. */
27041 rtx set = gen_rtx_SET (mem, gen_rtx_REG (SImode, CR2_REGNO));
27042 add_reg_note (insn, REG_FRAME_RELATED_EXPR, set);
27043 }
27044 }
27045
27046 /* In the ELFv2 ABI we need to save all call-saved CR fields into
27047 *separate* slots if the routine calls __builtin_eh_return, so
27048 that they can be independently restored by the unwinder. */
27049 if (DEFAULT_ABI == ABI_ELFv2 && crtl->calls_eh_return)
27050 {
27051 int i, cr_off = info->ehcr_offset;
27052 rtx crsave;
27053
27054 /* ??? We might get better performance by using multiple mfocrf
27055 instructions. */
27056 crsave = gen_rtx_REG (SImode, 0);
27057 emit_insn (gen_prologue_movesi_from_cr (crsave));
27058
27059 for (i = 0; i < 8; i++)
27060 if (!call_used_regs[CR0_REGNO + i])
27061 {
27062 rtvec p = rtvec_alloc (2);
27063 RTVEC_ELT (p, 0)
27064 = gen_frame_store (crsave, frame_reg_rtx, cr_off + frame_off);
27065 RTVEC_ELT (p, 1)
27066 = gen_rtx_USE (VOIDmode, gen_rtx_REG (CCmode, CR0_REGNO + i));
27067
27068 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
27069
27070 RTX_FRAME_RELATED_P (insn) = 1;
27071 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
27072 gen_frame_store (gen_rtx_REG (SImode, CR0_REGNO + i),
27073 sp_reg_rtx, cr_off + sp_off));
27074
27075 cr_off += reg_size;
27076 }
27077 }
27078
27079 /* If we are emitting stack probes, but allocate no stack, then
27080 just note that in the dump file. */
27081 if (flag_stack_clash_protection
27082 && dump_file
27083 && !info->push_p)
27084 dump_stack_clash_frame_info (NO_PROBE_NO_FRAME, false);
27085
27086 /* Update stack and set back pointer unless this is V.4,
27087 for which it was done previously. */
27088 if (!WORLD_SAVE_P (info) && info->push_p
27089 && !(DEFAULT_ABI == ABI_V4 || crtl->calls_eh_return))
27090 {
27091 rtx ptr_reg = NULL;
27092 int ptr_off = 0;
27093
27094 /* If saving altivec regs we need to be able to address all save
27095 locations using a 16-bit offset. */
27096 if ((strategy & SAVE_INLINE_VRS) == 0
27097 || (info->altivec_size != 0
27098 && (info->altivec_save_offset + info->altivec_size - 16
27099 + info->total_size - frame_off) > 32767)
27100 || (info->vrsave_size != 0
27101 && (info->vrsave_save_offset
27102 + info->total_size - frame_off) > 32767))
27103 {
27104 int sel = SAVRES_SAVE | SAVRES_VR;
27105 unsigned ptr_regno = ptr_regno_for_savres (sel);
27106
27107 if (using_static_chain_p
27108 && ptr_regno == STATIC_CHAIN_REGNUM)
27109 ptr_regno = 12;
27110 if (REGNO (frame_reg_rtx) != ptr_regno)
27111 START_USE (ptr_regno);
27112 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
27113 frame_reg_rtx = ptr_reg;
27114 ptr_off = info->altivec_save_offset + info->altivec_size;
27115 frame_off = -ptr_off;
27116 }
27117 else if (REGNO (frame_reg_rtx) == 1)
27118 frame_off = info->total_size;
27119 sp_adjust = rs6000_emit_allocate_stack (info->total_size,
27120 ptr_reg, ptr_off);
27121 if (REGNO (frame_reg_rtx) == 12)
27122 sp_adjust = 0;
27123 sp_off = info->total_size;
27124 if (frame_reg_rtx != sp_reg_rtx)
27125 rs6000_emit_stack_tie (frame_reg_rtx, false);
27126 }
27127
27128 /* Set frame pointer, if needed. */
27129 if (frame_pointer_needed)
27130 {
27131 insn = emit_move_insn (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
27132 sp_reg_rtx);
27133 RTX_FRAME_RELATED_P (insn) = 1;
27134 }
27135
27136 /* Save AltiVec registers if needed. Save here because the red zone does
27137 not always include AltiVec registers. */
27138 if (!WORLD_SAVE_P (info)
27139 && info->altivec_size != 0 && (strategy & SAVE_INLINE_VRS) == 0)
27140 {
27141 int end_save = info->altivec_save_offset + info->altivec_size;
27142 int ptr_off;
27143 /* Oddly, the vector save/restore functions point r0 at the end
27144 of the save area, then use r11 or r12 to load offsets for
27145 [reg+reg] addressing. */
27146 rtx ptr_reg = gen_rtx_REG (Pmode, 0);
27147 int scratch_regno = ptr_regno_for_savres (SAVRES_SAVE | SAVRES_VR);
27148 rtx scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
27149
27150 gcc_checking_assert (scratch_regno == 11 || scratch_regno == 12);
27151 NOT_INUSE (0);
27152 if (scratch_regno == 12)
27153 sp_adjust = 0;
27154 if (end_save + frame_off != 0)
27155 {
27156 rtx offset = GEN_INT (end_save + frame_off);
27157
27158 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx, offset));
27159 }
27160 else
27161 emit_move_insn (ptr_reg, frame_reg_rtx);
27162
27163 ptr_off = -end_save;
27164 insn = rs6000_emit_savres_rtx (info, scratch_reg,
27165 info->altivec_save_offset + ptr_off,
27166 0, V4SImode, SAVRES_SAVE | SAVRES_VR);
27167 rs6000_frame_related (insn, scratch_reg, sp_off - ptr_off,
27168 NULL_RTX, NULL_RTX);
27169 if (REGNO (frame_reg_rtx) == REGNO (scratch_reg))
27170 {
27171 /* The oddity mentioned above clobbered our frame reg. */
27172 emit_move_insn (frame_reg_rtx, ptr_reg);
27173 frame_off = ptr_off;
27174 }
27175 }
27176 else if (!WORLD_SAVE_P (info)
27177 && info->altivec_size != 0)
27178 {
27179 int i;
27180
27181 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
27182 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
27183 {
27184 rtx areg, savereg, mem;
27185 HOST_WIDE_INT offset;
27186
27187 offset = (info->altivec_save_offset + frame_off
27188 + 16 * (i - info->first_altivec_reg_save));
27189
27190 savereg = gen_rtx_REG (V4SImode, i);
27191
27192 if (TARGET_P9_VECTOR && quad_address_offset_p (offset))
27193 {
27194 mem = gen_frame_mem (V4SImode,
27195 gen_rtx_PLUS (Pmode, frame_reg_rtx,
27196 GEN_INT (offset)));
27197 insn = emit_insn (gen_rtx_SET (mem, savereg));
27198 areg = NULL_RTX;
27199 }
27200 else
27201 {
27202 NOT_INUSE (0);
27203 areg = gen_rtx_REG (Pmode, 0);
27204 emit_move_insn (areg, GEN_INT (offset));
27205
27206 /* AltiVec addressing mode is [reg+reg]. */
27207 mem = gen_frame_mem (V4SImode,
27208 gen_rtx_PLUS (Pmode, frame_reg_rtx, areg));
27209
27210 /* Rather than emitting a generic move, force use of the stvx
27211 instruction, which we always want on ISA 2.07 (power8) systems.
27212 In particular we don't want xxpermdi/stxvd2x for little
27213 endian. */
27214 insn = emit_insn (gen_altivec_stvx_v4si_internal (mem, savereg));
27215 }
27216
27217 rs6000_frame_related (insn, frame_reg_rtx, sp_off - frame_off,
27218 areg, GEN_INT (offset));
27219 }
27220 }
27221
27222 /* VRSAVE is a bit vector representing which AltiVec registers
27223 are used. The OS uses this to determine which vector
27224 registers to save on a context switch. We need to save
27225 VRSAVE on the stack frame, add whatever AltiVec registers we
27226 used in this function, and do the corresponding magic in the
27227 epilogue. */
27228
27229 if (!WORLD_SAVE_P (info) && info->vrsave_size != 0)
27230 {
27231 /* Get VRSAVE into a GPR. Note that ABI_V4 and ABI_DARWIN might
27232 be using r12 as frame_reg_rtx and r11 as the static chain
27233 pointer for nested functions. */
27234 int save_regno = 12;
27235 if ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
27236 && !using_static_chain_p)
27237 save_regno = 11;
27238 else if (using_split_stack || REGNO (frame_reg_rtx) == 12)
27239 {
27240 save_regno = 11;
27241 if (using_static_chain_p)
27242 save_regno = 0;
27243 }
27244 NOT_INUSE (save_regno);
27245
27246 emit_vrsave_prologue (info, save_regno, frame_off, frame_reg_rtx);
27247 }
27248
27249 /* If we are using RS6000_PIC_OFFSET_TABLE_REGNUM, we need to set it up. */
27250 if (!TARGET_SINGLE_PIC_BASE
27251 && ((TARGET_TOC && TARGET_MINIMAL_TOC
27252 && !constant_pool_empty_p ())
27253 || (DEFAULT_ABI == ABI_V4
27254 && (flag_pic == 1 || (flag_pic && TARGET_SECURE_PLT))
27255 && df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM))))
27256 {
27257 /* If emit_load_toc_table will use the link register, we need to save
27258 it. We use R12 for this purpose because emit_load_toc_table
27259 can use register 0. This allows us to use a plain 'blr' to return
27260 from the procedure more often. */
27261 int save_LR_around_toc_setup = (TARGET_ELF
27262 && DEFAULT_ABI == ABI_V4
27263 && flag_pic
27264 && ! info->lr_save_p
27265 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0);
27266 if (save_LR_around_toc_setup)
27267 {
27268 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
27269 rtx tmp = gen_rtx_REG (Pmode, 12);
27270
27271 sp_adjust = 0;
27272 insn = emit_move_insn (tmp, lr);
27273 RTX_FRAME_RELATED_P (insn) = 1;
27274
27275 rs6000_emit_load_toc_table (TRUE);
27276
27277 insn = emit_move_insn (lr, tmp);
27278 add_reg_note (insn, REG_CFA_RESTORE, lr);
27279 RTX_FRAME_RELATED_P (insn) = 1;
27280 }
27281 else
27282 rs6000_emit_load_toc_table (TRUE);
27283 }
27284
27285 #if TARGET_MACHO
27286 if (!TARGET_SINGLE_PIC_BASE
27287 && DEFAULT_ABI == ABI_DARWIN
27288 && flag_pic && crtl->uses_pic_offset_table)
27289 {
27290 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
27291 rtx src = gen_rtx_SYMBOL_REF (Pmode, MACHOPIC_FUNCTION_BASE_NAME);
27292
27293 /* Save and restore LR locally around this call (in R0). */
27294 if (!info->lr_save_p)
27295 emit_move_insn (gen_rtx_REG (Pmode, 0), lr);
27296
27297 emit_insn (gen_load_macho_picbase (src));
27298
27299 emit_move_insn (gen_rtx_REG (Pmode,
27300 RS6000_PIC_OFFSET_TABLE_REGNUM),
27301 lr);
27302
27303 if (!info->lr_save_p)
27304 emit_move_insn (lr, gen_rtx_REG (Pmode, 0));
27305 }
27306 #endif
27307
27308 /* If we need to, save the TOC register after doing the stack setup.
27309 Do not emit eh frame info for this save. The unwinder wants info,
27310 conceptually attached to instructions in this function, about
27311 register values in the caller of this function. This R2 may have
27312 already been changed from the value in the caller.
27313 We don't attempt to write accurate DWARF EH frame info for R2
27314 because code emitted by gcc for a (non-pointer) function call
27315 doesn't save and restore R2. Instead, R2 is managed out-of-line
27316 by a linker generated plt call stub when the function resides in
27317 a shared library. This behavior is costly to describe in DWARF,
27318 both in terms of the size of DWARF info and the time taken in the
27319 unwinder to interpret it. R2 changes, apart from the
27320 calls_eh_return case earlier in this function, are handled by
27321 linux-unwind.h frob_update_context. */
27322 if (rs6000_save_toc_in_prologue_p ()
27323 && !cfun->machine->toc_is_wrapped_separately)
27324 {
27325 rtx reg = gen_rtx_REG (reg_mode, TOC_REGNUM);
27326 emit_insn (gen_frame_store (reg, sp_reg_rtx, RS6000_TOC_SAVE_SLOT));
27327 }
27328
27329 /* Set up the arg pointer (r12) for -fsplit-stack code. */
27330 if (using_split_stack && split_stack_arg_pointer_used_p ())
27331 emit_split_stack_prologue (info, sp_adjust, frame_off, frame_reg_rtx);
27332 }
27333
27334 /* Output .extern statements for the save/restore routines we use. */
27335
27336 static void
27337 rs6000_output_savres_externs (FILE *file)
27338 {
27339 rs6000_stack_t *info = rs6000_stack_info ();
27340
27341 if (TARGET_DEBUG_STACK)
27342 debug_stack_info (info);
27343
27344 /* Write .extern for any function we will call to save and restore
27345 fp values. */
27346 if (info->first_fp_reg_save < 64
27347 && !TARGET_MACHO
27348 && !TARGET_ELF)
27349 {
27350 char *name;
27351 int regno = info->first_fp_reg_save - 32;
27352
27353 if ((info->savres_strategy & SAVE_INLINE_FPRS) == 0)
27354 {
27355 bool lr = (info->savres_strategy & SAVE_NOINLINE_FPRS_SAVES_LR) != 0;
27356 int sel = SAVRES_SAVE | SAVRES_FPR | (lr ? SAVRES_LR : 0);
27357 name = rs6000_savres_routine_name (regno, sel);
27358 fprintf (file, "\t.extern %s\n", name);
27359 }
27360 if ((info->savres_strategy & REST_INLINE_FPRS) == 0)
27361 {
27362 bool lr = (info->savres_strategy
27363 & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR) == 0;
27364 int sel = SAVRES_FPR | (lr ? SAVRES_LR : 0);
27365 name = rs6000_savres_routine_name (regno, sel);
27366 fprintf (file, "\t.extern %s\n", name);
27367 }
27368 }
27369 }
27370
27371 /* Write function prologue. */
27372
27373 static void
27374 rs6000_output_function_prologue (FILE *file)
27375 {
27376 if (!cfun->is_thunk)
27377 rs6000_output_savres_externs (file);
27378
27379 /* ELFv2 ABI r2 setup code and local entry point. This must follow
27380 immediately after the global entry point label. */
27381 if (rs6000_global_entry_point_needed_p ())
27382 {
27383 const char *name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
27384
27385 (*targetm.asm_out.internal_label) (file, "LCF", rs6000_pic_labelno);
27386
27387 if (TARGET_CMODEL != CMODEL_LARGE)
27388 {
27389 /* In the small and medium code models, we assume the TOC is less
27390 2 GB away from the text section, so it can be computed via the
27391 following two-instruction sequence. */
27392 char buf[256];
27393
27394 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
27395 fprintf (file, "0:\taddis 2,12,.TOC.-");
27396 assemble_name (file, buf);
27397 fprintf (file, "@ha\n");
27398 fprintf (file, "\taddi 2,2,.TOC.-");
27399 assemble_name (file, buf);
27400 fprintf (file, "@l\n");
27401 }
27402 else
27403 {
27404 /* In the large code model, we allow arbitrary offsets between the
27405 TOC and the text section, so we have to load the offset from
27406 memory. The data field is emitted directly before the global
27407 entry point in rs6000_elf_declare_function_name. */
27408 char buf[256];
27409
27410 #ifdef HAVE_AS_ENTRY_MARKERS
27411 /* If supported by the linker, emit a marker relocation. If the
27412 total code size of the final executable or shared library
27413 happens to fit into 2 GB after all, the linker will replace
27414 this code sequence with the sequence for the small or medium
27415 code model. */
27416 fprintf (file, "\t.reloc .,R_PPC64_ENTRY\n");
27417 #endif
27418 fprintf (file, "\tld 2,");
27419 ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno);
27420 assemble_name (file, buf);
27421 fprintf (file, "-");
27422 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
27423 assemble_name (file, buf);
27424 fprintf (file, "(12)\n");
27425 fprintf (file, "\tadd 2,2,12\n");
27426 }
27427
27428 fputs ("\t.localentry\t", file);
27429 assemble_name (file, name);
27430 fputs (",.-", file);
27431 assemble_name (file, name);
27432 fputs ("\n", file);
27433 }
27434
27435 /* Output -mprofile-kernel code. This needs to be done here instead of
27436 in output_function_profile since it must go after the ELFv2 ABI
27437 local entry point. */
27438 if (TARGET_PROFILE_KERNEL && crtl->profile)
27439 {
27440 gcc_assert (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2);
27441 gcc_assert (!TARGET_32BIT);
27442
27443 asm_fprintf (file, "\tmflr %s\n", reg_names[0]);
27444
27445 /* In the ELFv2 ABI we have no compiler stack word. It must be
27446 the resposibility of _mcount to preserve the static chain
27447 register if required. */
27448 if (DEFAULT_ABI != ABI_ELFv2
27449 && cfun->static_chain_decl != NULL)
27450 {
27451 asm_fprintf (file, "\tstd %s,24(%s)\n",
27452 reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
27453 fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
27454 asm_fprintf (file, "\tld %s,24(%s)\n",
27455 reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
27456 }
27457 else
27458 fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
27459 }
27460
27461 rs6000_pic_labelno++;
27462 }
27463
27464 /* -mprofile-kernel code calls mcount before the function prolog,
27465 so a profiled leaf function should stay a leaf function. */
27466 static bool
27467 rs6000_keep_leaf_when_profiled ()
27468 {
27469 return TARGET_PROFILE_KERNEL;
27470 }
27471
27472 /* Non-zero if vmx regs are restored before the frame pop, zero if
27473 we restore after the pop when possible. */
27474 #define ALWAYS_RESTORE_ALTIVEC_BEFORE_POP 0
27475
27476 /* Restoring cr is a two step process: loading a reg from the frame
27477 save, then moving the reg to cr. For ABI_V4 we must let the
27478 unwinder know that the stack location is no longer valid at or
27479 before the stack deallocation, but we can't emit a cfa_restore for
27480 cr at the stack deallocation like we do for other registers.
27481 The trouble is that it is possible for the move to cr to be
27482 scheduled after the stack deallocation. So say exactly where cr
27483 is located on each of the two insns. */
27484
27485 static rtx
27486 load_cr_save (int regno, rtx frame_reg_rtx, int offset, bool exit_func)
27487 {
27488 rtx mem = gen_frame_mem_offset (SImode, frame_reg_rtx, offset);
27489 rtx reg = gen_rtx_REG (SImode, regno);
27490 rtx_insn *insn = emit_move_insn (reg, mem);
27491
27492 if (!exit_func && DEFAULT_ABI == ABI_V4)
27493 {
27494 rtx cr = gen_rtx_REG (SImode, CR2_REGNO);
27495 rtx set = gen_rtx_SET (reg, cr);
27496
27497 add_reg_note (insn, REG_CFA_REGISTER, set);
27498 RTX_FRAME_RELATED_P (insn) = 1;
27499 }
27500 return reg;
27501 }
27502
27503 /* Reload CR from REG. */
27504
27505 static void
27506 restore_saved_cr (rtx reg, int using_mfcr_multiple, bool exit_func)
27507 {
27508 int count = 0;
27509 int i;
27510
27511 if (using_mfcr_multiple)
27512 {
27513 for (i = 0; i < 8; i++)
27514 if (save_reg_p (CR0_REGNO + i))
27515 count++;
27516 gcc_assert (count);
27517 }
27518
27519 if (using_mfcr_multiple && count > 1)
27520 {
27521 rtx_insn *insn;
27522 rtvec p;
27523 int ndx;
27524
27525 p = rtvec_alloc (count);
27526
27527 ndx = 0;
27528 for (i = 0; i < 8; i++)
27529 if (save_reg_p (CR0_REGNO + i))
27530 {
27531 rtvec r = rtvec_alloc (2);
27532 RTVEC_ELT (r, 0) = reg;
27533 RTVEC_ELT (r, 1) = GEN_INT (1 << (7-i));
27534 RTVEC_ELT (p, ndx) =
27535 gen_rtx_SET (gen_rtx_REG (CCmode, CR0_REGNO + i),
27536 gen_rtx_UNSPEC (CCmode, r, UNSPEC_MOVESI_TO_CR));
27537 ndx++;
27538 }
27539 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
27540 gcc_assert (ndx == count);
27541
27542 /* For the ELFv2 ABI we generate a CFA_RESTORE for each
27543 CR field separately. */
27544 if (!exit_func && DEFAULT_ABI == ABI_ELFv2 && flag_shrink_wrap)
27545 {
27546 for (i = 0; i < 8; i++)
27547 if (save_reg_p (CR0_REGNO + i))
27548 add_reg_note (insn, REG_CFA_RESTORE,
27549 gen_rtx_REG (SImode, CR0_REGNO + i));
27550
27551 RTX_FRAME_RELATED_P (insn) = 1;
27552 }
27553 }
27554 else
27555 for (i = 0; i < 8; i++)
27556 if (save_reg_p (CR0_REGNO + i))
27557 {
27558 rtx insn = emit_insn (gen_movsi_to_cr_one
27559 (gen_rtx_REG (CCmode, CR0_REGNO + i), reg));
27560
27561 /* For the ELFv2 ABI we generate a CFA_RESTORE for each
27562 CR field separately, attached to the insn that in fact
27563 restores this particular CR field. */
27564 if (!exit_func && DEFAULT_ABI == ABI_ELFv2 && flag_shrink_wrap)
27565 {
27566 add_reg_note (insn, REG_CFA_RESTORE,
27567 gen_rtx_REG (SImode, CR0_REGNO + i));
27568
27569 RTX_FRAME_RELATED_P (insn) = 1;
27570 }
27571 }
27572
27573 /* For other ABIs, we just generate a single CFA_RESTORE for CR2. */
27574 if (!exit_func && DEFAULT_ABI != ABI_ELFv2
27575 && (DEFAULT_ABI == ABI_V4 || flag_shrink_wrap))
27576 {
27577 rtx_insn *insn = get_last_insn ();
27578 rtx cr = gen_rtx_REG (SImode, CR2_REGNO);
27579
27580 add_reg_note (insn, REG_CFA_RESTORE, cr);
27581 RTX_FRAME_RELATED_P (insn) = 1;
27582 }
27583 }
27584
27585 /* Like cr, the move to lr instruction can be scheduled after the
27586 stack deallocation, but unlike cr, its stack frame save is still
27587 valid. So we only need to emit the cfa_restore on the correct
27588 instruction. */
27589
27590 static void
27591 load_lr_save (int regno, rtx frame_reg_rtx, int offset)
27592 {
27593 rtx mem = gen_frame_mem_offset (Pmode, frame_reg_rtx, offset);
27594 rtx reg = gen_rtx_REG (Pmode, regno);
27595
27596 emit_move_insn (reg, mem);
27597 }
27598
27599 static void
27600 restore_saved_lr (int regno, bool exit_func)
27601 {
27602 rtx reg = gen_rtx_REG (Pmode, regno);
27603 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
27604 rtx_insn *insn = emit_move_insn (lr, reg);
27605
27606 if (!exit_func && flag_shrink_wrap)
27607 {
27608 add_reg_note (insn, REG_CFA_RESTORE, lr);
27609 RTX_FRAME_RELATED_P (insn) = 1;
27610 }
27611 }
27612
27613 static rtx
27614 add_crlr_cfa_restore (const rs6000_stack_t *info, rtx cfa_restores)
27615 {
27616 if (DEFAULT_ABI == ABI_ELFv2)
27617 {
27618 int i;
27619 for (i = 0; i < 8; i++)
27620 if (save_reg_p (CR0_REGNO + i))
27621 {
27622 rtx cr = gen_rtx_REG (SImode, CR0_REGNO + i);
27623 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, cr,
27624 cfa_restores);
27625 }
27626 }
27627 else if (info->cr_save_p)
27628 cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
27629 gen_rtx_REG (SImode, CR2_REGNO),
27630 cfa_restores);
27631
27632 if (info->lr_save_p)
27633 cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
27634 gen_rtx_REG (Pmode, LR_REGNO),
27635 cfa_restores);
27636 return cfa_restores;
27637 }
27638
27639 /* Return true if OFFSET from stack pointer can be clobbered by signals.
27640 V.4 doesn't have any stack cushion, AIX ABIs have 220 or 288 bytes
27641 below stack pointer not cloberred by signals. */
27642
27643 static inline bool
27644 offset_below_red_zone_p (HOST_WIDE_INT offset)
27645 {
27646 return offset < (DEFAULT_ABI == ABI_V4
27647 ? 0
27648 : TARGET_32BIT ? -220 : -288);
27649 }
27650
27651 /* Append CFA_RESTORES to any existing REG_NOTES on the last insn. */
27652
27653 static void
27654 emit_cfa_restores (rtx cfa_restores)
27655 {
27656 rtx_insn *insn = get_last_insn ();
27657 rtx *loc = &REG_NOTES (insn);
27658
27659 while (*loc)
27660 loc = &XEXP (*loc, 1);
27661 *loc = cfa_restores;
27662 RTX_FRAME_RELATED_P (insn) = 1;
27663 }
27664
27665 /* Emit function epilogue as insns. */
27666
27667 void
27668 rs6000_emit_epilogue (int sibcall)
27669 {
27670 rs6000_stack_t *info;
27671 int restoring_GPRs_inline;
27672 int restoring_FPRs_inline;
27673 int using_load_multiple;
27674 int using_mtcr_multiple;
27675 int use_backchain_to_restore_sp;
27676 int restore_lr;
27677 int strategy;
27678 HOST_WIDE_INT frame_off = 0;
27679 rtx sp_reg_rtx = gen_rtx_REG (Pmode, 1);
27680 rtx frame_reg_rtx = sp_reg_rtx;
27681 rtx cfa_restores = NULL_RTX;
27682 rtx insn;
27683 rtx cr_save_reg = NULL_RTX;
27684 machine_mode reg_mode = Pmode;
27685 int reg_size = TARGET_32BIT ? 4 : 8;
27686 machine_mode fp_reg_mode = TARGET_HARD_FLOAT ? DFmode : SFmode;
27687 int fp_reg_size = 8;
27688 int i;
27689 bool exit_func;
27690 unsigned ptr_regno;
27691
27692 info = rs6000_stack_info ();
27693
27694 strategy = info->savres_strategy;
27695 using_load_multiple = strategy & REST_MULTIPLE;
27696 restoring_FPRs_inline = sibcall || (strategy & REST_INLINE_FPRS);
27697 restoring_GPRs_inline = sibcall || (strategy & REST_INLINE_GPRS);
27698 using_mtcr_multiple = (rs6000_tune == PROCESSOR_PPC601
27699 || rs6000_tune == PROCESSOR_PPC603
27700 || rs6000_tune == PROCESSOR_PPC750
27701 || optimize_size);
27702 /* Restore via the backchain when we have a large frame, since this
27703 is more efficient than an addis, addi pair. The second condition
27704 here will not trigger at the moment; We don't actually need a
27705 frame pointer for alloca, but the generic parts of the compiler
27706 give us one anyway. */
27707 use_backchain_to_restore_sp = (info->total_size + (info->lr_save_p
27708 ? info->lr_save_offset
27709 : 0) > 32767
27710 || (cfun->calls_alloca
27711 && !frame_pointer_needed));
27712 restore_lr = (info->lr_save_p
27713 && (restoring_FPRs_inline
27714 || (strategy & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR))
27715 && (restoring_GPRs_inline
27716 || info->first_fp_reg_save < 64)
27717 && !cfun->machine->lr_is_wrapped_separately);
27718
27719
27720 if (WORLD_SAVE_P (info))
27721 {
27722 int i, j;
27723 char rname[30];
27724 const char *alloc_rname;
27725 rtvec p;
27726
27727 /* eh_rest_world_r10 will return to the location saved in the LR
27728 stack slot (which is not likely to be our caller.)
27729 Input: R10 -- stack adjustment. Clobbers R0, R11, R12, R7, R8.
27730 rest_world is similar, except any R10 parameter is ignored.
27731 The exception-handling stuff that was here in 2.95 is no
27732 longer necessary. */
27733
27734 p = rtvec_alloc (9
27735 + 32 - info->first_gp_reg_save
27736 + LAST_ALTIVEC_REGNO + 1 - info->first_altivec_reg_save
27737 + 63 + 1 - info->first_fp_reg_save);
27738
27739 strcpy (rname, ((crtl->calls_eh_return) ?
27740 "*eh_rest_world_r10" : "*rest_world"));
27741 alloc_rname = ggc_strdup (rname);
27742
27743 j = 0;
27744 RTVEC_ELT (p, j++) = ret_rtx;
27745 RTVEC_ELT (p, j++)
27746 = gen_rtx_USE (VOIDmode, gen_rtx_SYMBOL_REF (Pmode, alloc_rname));
27747 /* The instruction pattern requires a clobber here;
27748 it is shared with the restVEC helper. */
27749 RTVEC_ELT (p, j++)
27750 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 11));
27751
27752 {
27753 /* CR register traditionally saved as CR2. */
27754 rtx reg = gen_rtx_REG (SImode, CR2_REGNO);
27755 RTVEC_ELT (p, j++)
27756 = gen_frame_load (reg, frame_reg_rtx, info->cr_save_offset);
27757 if (flag_shrink_wrap)
27758 {
27759 cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
27760 gen_rtx_REG (Pmode, LR_REGNO),
27761 cfa_restores);
27762 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
27763 }
27764 }
27765
27766 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
27767 {
27768 rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
27769 RTVEC_ELT (p, j++)
27770 = gen_frame_load (reg,
27771 frame_reg_rtx, info->gp_save_offset + reg_size * i);
27772 if (flag_shrink_wrap
27773 && save_reg_p (info->first_gp_reg_save + i))
27774 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
27775 }
27776 for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
27777 {
27778 rtx reg = gen_rtx_REG (V4SImode, info->first_altivec_reg_save + i);
27779 RTVEC_ELT (p, j++)
27780 = gen_frame_load (reg,
27781 frame_reg_rtx, info->altivec_save_offset + 16 * i);
27782 if (flag_shrink_wrap
27783 && save_reg_p (info->first_altivec_reg_save + i))
27784 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
27785 }
27786 for (i = 0; info->first_fp_reg_save + i <= 63; i++)
27787 {
27788 rtx reg = gen_rtx_REG (TARGET_HARD_FLOAT ? DFmode : SFmode,
27789 info->first_fp_reg_save + i);
27790 RTVEC_ELT (p, j++)
27791 = gen_frame_load (reg, frame_reg_rtx, info->fp_save_offset + 8 * i);
27792 if (flag_shrink_wrap
27793 && save_reg_p (info->first_fp_reg_save + i))
27794 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
27795 }
27796 RTVEC_ELT (p, j++)
27797 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 0));
27798 RTVEC_ELT (p, j++)
27799 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 12));
27800 RTVEC_ELT (p, j++)
27801 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 7));
27802 RTVEC_ELT (p, j++)
27803 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 8));
27804 RTVEC_ELT (p, j++)
27805 = gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, 10));
27806 insn = emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
27807
27808 if (flag_shrink_wrap)
27809 {
27810 REG_NOTES (insn) = cfa_restores;
27811 add_reg_note (insn, REG_CFA_DEF_CFA, sp_reg_rtx);
27812 RTX_FRAME_RELATED_P (insn) = 1;
27813 }
27814 return;
27815 }
27816
27817 /* frame_reg_rtx + frame_off points to the top of this stack frame. */
27818 if (info->push_p)
27819 frame_off = info->total_size;
27820
27821 /* Restore AltiVec registers if we must do so before adjusting the
27822 stack. */
27823 if (info->altivec_size != 0
27824 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
27825 || (DEFAULT_ABI != ABI_V4
27826 && offset_below_red_zone_p (info->altivec_save_offset))))
27827 {
27828 int i;
27829 int scratch_regno = ptr_regno_for_savres (SAVRES_VR);
27830
27831 gcc_checking_assert (scratch_regno == 11 || scratch_regno == 12);
27832 if (use_backchain_to_restore_sp)
27833 {
27834 int frame_regno = 11;
27835
27836 if ((strategy & REST_INLINE_VRS) == 0)
27837 {
27838 /* Of r11 and r12, select the one not clobbered by an
27839 out-of-line restore function for the frame register. */
27840 frame_regno = 11 + 12 - scratch_regno;
27841 }
27842 frame_reg_rtx = gen_rtx_REG (Pmode, frame_regno);
27843 emit_move_insn (frame_reg_rtx,
27844 gen_rtx_MEM (Pmode, sp_reg_rtx));
27845 frame_off = 0;
27846 }
27847 else if (frame_pointer_needed)
27848 frame_reg_rtx = hard_frame_pointer_rtx;
27849
27850 if ((strategy & REST_INLINE_VRS) == 0)
27851 {
27852 int end_save = info->altivec_save_offset + info->altivec_size;
27853 int ptr_off;
27854 rtx ptr_reg = gen_rtx_REG (Pmode, 0);
27855 rtx scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
27856
27857 if (end_save + frame_off != 0)
27858 {
27859 rtx offset = GEN_INT (end_save + frame_off);
27860
27861 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx, offset));
27862 }
27863 else
27864 emit_move_insn (ptr_reg, frame_reg_rtx);
27865
27866 ptr_off = -end_save;
27867 insn = rs6000_emit_savres_rtx (info, scratch_reg,
27868 info->altivec_save_offset + ptr_off,
27869 0, V4SImode, SAVRES_VR);
27870 }
27871 else
27872 {
27873 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
27874 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
27875 {
27876 rtx addr, areg, mem, insn;
27877 rtx reg = gen_rtx_REG (V4SImode, i);
27878 HOST_WIDE_INT offset
27879 = (info->altivec_save_offset + frame_off
27880 + 16 * (i - info->first_altivec_reg_save));
27881
27882 if (TARGET_P9_VECTOR && quad_address_offset_p (offset))
27883 {
27884 mem = gen_frame_mem (V4SImode,
27885 gen_rtx_PLUS (Pmode, frame_reg_rtx,
27886 GEN_INT (offset)));
27887 insn = gen_rtx_SET (reg, mem);
27888 }
27889 else
27890 {
27891 areg = gen_rtx_REG (Pmode, 0);
27892 emit_move_insn (areg, GEN_INT (offset));
27893
27894 /* AltiVec addressing mode is [reg+reg]. */
27895 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
27896 mem = gen_frame_mem (V4SImode, addr);
27897
27898 /* Rather than emitting a generic move, force use of the
27899 lvx instruction, which we always want. In particular we
27900 don't want lxvd2x/xxpermdi for little endian. */
27901 insn = gen_altivec_lvx_v4si_internal (reg, mem);
27902 }
27903
27904 (void) emit_insn (insn);
27905 }
27906 }
27907
27908 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
27909 if (((strategy & REST_INLINE_VRS) == 0
27910 || (info->vrsave_mask & ALTIVEC_REG_BIT (i)) != 0)
27911 && (flag_shrink_wrap
27912 || (offset_below_red_zone_p
27913 (info->altivec_save_offset
27914 + 16 * (i - info->first_altivec_reg_save))))
27915 && save_reg_p (i))
27916 {
27917 rtx reg = gen_rtx_REG (V4SImode, i);
27918 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
27919 }
27920 }
27921
27922 /* Restore VRSAVE if we must do so before adjusting the stack. */
27923 if (info->vrsave_size != 0
27924 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
27925 || (DEFAULT_ABI != ABI_V4
27926 && offset_below_red_zone_p (info->vrsave_save_offset))))
27927 {
27928 rtx reg;
27929
27930 if (frame_reg_rtx == sp_reg_rtx)
27931 {
27932 if (use_backchain_to_restore_sp)
27933 {
27934 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
27935 emit_move_insn (frame_reg_rtx,
27936 gen_rtx_MEM (Pmode, sp_reg_rtx));
27937 frame_off = 0;
27938 }
27939 else if (frame_pointer_needed)
27940 frame_reg_rtx = hard_frame_pointer_rtx;
27941 }
27942
27943 reg = gen_rtx_REG (SImode, 12);
27944 emit_insn (gen_frame_load (reg, frame_reg_rtx,
27945 info->vrsave_save_offset + frame_off));
27946
27947 emit_insn (generate_set_vrsave (reg, info, 1));
27948 }
27949
27950 insn = NULL_RTX;
27951 /* If we have a large stack frame, restore the old stack pointer
27952 using the backchain. */
27953 if (use_backchain_to_restore_sp)
27954 {
27955 if (frame_reg_rtx == sp_reg_rtx)
27956 {
27957 /* Under V.4, don't reset the stack pointer until after we're done
27958 loading the saved registers. */
27959 if (DEFAULT_ABI == ABI_V4)
27960 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
27961
27962 insn = emit_move_insn (frame_reg_rtx,
27963 gen_rtx_MEM (Pmode, sp_reg_rtx));
27964 frame_off = 0;
27965 }
27966 else if (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
27967 && DEFAULT_ABI == ABI_V4)
27968 /* frame_reg_rtx has been set up by the altivec restore. */
27969 ;
27970 else
27971 {
27972 insn = emit_move_insn (sp_reg_rtx, frame_reg_rtx);
27973 frame_reg_rtx = sp_reg_rtx;
27974 }
27975 }
27976 /* If we have a frame pointer, we can restore the old stack pointer
27977 from it. */
27978 else if (frame_pointer_needed)
27979 {
27980 frame_reg_rtx = sp_reg_rtx;
27981 if (DEFAULT_ABI == ABI_V4)
27982 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
27983 /* Prevent reordering memory accesses against stack pointer restore. */
27984 else if (cfun->calls_alloca
27985 || offset_below_red_zone_p (-info->total_size))
27986 rs6000_emit_stack_tie (frame_reg_rtx, true);
27987
27988 insn = emit_insn (gen_add3_insn (frame_reg_rtx, hard_frame_pointer_rtx,
27989 GEN_INT (info->total_size)));
27990 frame_off = 0;
27991 }
27992 else if (info->push_p
27993 && DEFAULT_ABI != ABI_V4
27994 && !crtl->calls_eh_return)
27995 {
27996 /* Prevent reordering memory accesses against stack pointer restore. */
27997 if (cfun->calls_alloca
27998 || offset_below_red_zone_p (-info->total_size))
27999 rs6000_emit_stack_tie (frame_reg_rtx, false);
28000 insn = emit_insn (gen_add3_insn (sp_reg_rtx, sp_reg_rtx,
28001 GEN_INT (info->total_size)));
28002 frame_off = 0;
28003 }
28004 if (insn && frame_reg_rtx == sp_reg_rtx)
28005 {
28006 if (cfa_restores)
28007 {
28008 REG_NOTES (insn) = cfa_restores;
28009 cfa_restores = NULL_RTX;
28010 }
28011 add_reg_note (insn, REG_CFA_DEF_CFA, sp_reg_rtx);
28012 RTX_FRAME_RELATED_P (insn) = 1;
28013 }
28014
28015 /* Restore AltiVec registers if we have not done so already. */
28016 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
28017 && info->altivec_size != 0
28018 && (DEFAULT_ABI == ABI_V4
28019 || !offset_below_red_zone_p (info->altivec_save_offset)))
28020 {
28021 int i;
28022
28023 if ((strategy & REST_INLINE_VRS) == 0)
28024 {
28025 int end_save = info->altivec_save_offset + info->altivec_size;
28026 int ptr_off;
28027 rtx ptr_reg = gen_rtx_REG (Pmode, 0);
28028 int scratch_regno = ptr_regno_for_savres (SAVRES_VR);
28029 rtx scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
28030
28031 if (end_save + frame_off != 0)
28032 {
28033 rtx offset = GEN_INT (end_save + frame_off);
28034
28035 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx, offset));
28036 }
28037 else
28038 emit_move_insn (ptr_reg, frame_reg_rtx);
28039
28040 ptr_off = -end_save;
28041 insn = rs6000_emit_savres_rtx (info, scratch_reg,
28042 info->altivec_save_offset + ptr_off,
28043 0, V4SImode, SAVRES_VR);
28044 if (REGNO (frame_reg_rtx) == REGNO (scratch_reg))
28045 {
28046 /* Frame reg was clobbered by out-of-line save. Restore it
28047 from ptr_reg, and if we are calling out-of-line gpr or
28048 fpr restore set up the correct pointer and offset. */
28049 unsigned newptr_regno = 1;
28050 if (!restoring_GPRs_inline)
28051 {
28052 bool lr = info->gp_save_offset + info->gp_size == 0;
28053 int sel = SAVRES_GPR | (lr ? SAVRES_LR : 0);
28054 newptr_regno = ptr_regno_for_savres (sel);
28055 end_save = info->gp_save_offset + info->gp_size;
28056 }
28057 else if (!restoring_FPRs_inline)
28058 {
28059 bool lr = !(strategy & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR);
28060 int sel = SAVRES_FPR | (lr ? SAVRES_LR : 0);
28061 newptr_regno = ptr_regno_for_savres (sel);
28062 end_save = info->fp_save_offset + info->fp_size;
28063 }
28064
28065 if (newptr_regno != 1 && REGNO (frame_reg_rtx) != newptr_regno)
28066 frame_reg_rtx = gen_rtx_REG (Pmode, newptr_regno);
28067
28068 if (end_save + ptr_off != 0)
28069 {
28070 rtx offset = GEN_INT (end_save + ptr_off);
28071
28072 frame_off = -end_save;
28073 if (TARGET_32BIT)
28074 emit_insn (gen_addsi3_carry (frame_reg_rtx,
28075 ptr_reg, offset));
28076 else
28077 emit_insn (gen_adddi3_carry (frame_reg_rtx,
28078 ptr_reg, offset));
28079 }
28080 else
28081 {
28082 frame_off = ptr_off;
28083 emit_move_insn (frame_reg_rtx, ptr_reg);
28084 }
28085 }
28086 }
28087 else
28088 {
28089 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
28090 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
28091 {
28092 rtx addr, areg, mem, insn;
28093 rtx reg = gen_rtx_REG (V4SImode, i);
28094 HOST_WIDE_INT offset
28095 = (info->altivec_save_offset + frame_off
28096 + 16 * (i - info->first_altivec_reg_save));
28097
28098 if (TARGET_P9_VECTOR && quad_address_offset_p (offset))
28099 {
28100 mem = gen_frame_mem (V4SImode,
28101 gen_rtx_PLUS (Pmode, frame_reg_rtx,
28102 GEN_INT (offset)));
28103 insn = gen_rtx_SET (reg, mem);
28104 }
28105 else
28106 {
28107 areg = gen_rtx_REG (Pmode, 0);
28108 emit_move_insn (areg, GEN_INT (offset));
28109
28110 /* AltiVec addressing mode is [reg+reg]. */
28111 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
28112 mem = gen_frame_mem (V4SImode, addr);
28113
28114 /* Rather than emitting a generic move, force use of the
28115 lvx instruction, which we always want. In particular we
28116 don't want lxvd2x/xxpermdi for little endian. */
28117 insn = gen_altivec_lvx_v4si_internal (reg, mem);
28118 }
28119
28120 (void) emit_insn (insn);
28121 }
28122 }
28123
28124 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
28125 if (((strategy & REST_INLINE_VRS) == 0
28126 || (info->vrsave_mask & ALTIVEC_REG_BIT (i)) != 0)
28127 && (DEFAULT_ABI == ABI_V4 || flag_shrink_wrap)
28128 && save_reg_p (i))
28129 {
28130 rtx reg = gen_rtx_REG (V4SImode, i);
28131 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28132 }
28133 }
28134
28135 /* Restore VRSAVE if we have not done so already. */
28136 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
28137 && info->vrsave_size != 0
28138 && (DEFAULT_ABI == ABI_V4
28139 || !offset_below_red_zone_p (info->vrsave_save_offset)))
28140 {
28141 rtx reg;
28142
28143 reg = gen_rtx_REG (SImode, 12);
28144 emit_insn (gen_frame_load (reg, frame_reg_rtx,
28145 info->vrsave_save_offset + frame_off));
28146
28147 emit_insn (generate_set_vrsave (reg, info, 1));
28148 }
28149
28150 /* If we exit by an out-of-line restore function on ABI_V4 then that
28151 function will deallocate the stack, so we don't need to worry
28152 about the unwinder restoring cr from an invalid stack frame
28153 location. */
28154 exit_func = (!restoring_FPRs_inline
28155 || (!restoring_GPRs_inline
28156 && info->first_fp_reg_save == 64));
28157
28158 /* In the ELFv2 ABI we need to restore all call-saved CR fields from
28159 *separate* slots if the routine calls __builtin_eh_return, so
28160 that they can be independently restored by the unwinder. */
28161 if (DEFAULT_ABI == ABI_ELFv2 && crtl->calls_eh_return)
28162 {
28163 int i, cr_off = info->ehcr_offset;
28164
28165 for (i = 0; i < 8; i++)
28166 if (!call_used_regs[CR0_REGNO + i])
28167 {
28168 rtx reg = gen_rtx_REG (SImode, 0);
28169 emit_insn (gen_frame_load (reg, frame_reg_rtx,
28170 cr_off + frame_off));
28171
28172 insn = emit_insn (gen_movsi_to_cr_one
28173 (gen_rtx_REG (CCmode, CR0_REGNO + i), reg));
28174
28175 if (!exit_func && flag_shrink_wrap)
28176 {
28177 add_reg_note (insn, REG_CFA_RESTORE,
28178 gen_rtx_REG (SImode, CR0_REGNO + i));
28179
28180 RTX_FRAME_RELATED_P (insn) = 1;
28181 }
28182
28183 cr_off += reg_size;
28184 }
28185 }
28186
28187 /* Get the old lr if we saved it. If we are restoring registers
28188 out-of-line, then the out-of-line routines can do this for us. */
28189 if (restore_lr && restoring_GPRs_inline)
28190 load_lr_save (0, frame_reg_rtx, info->lr_save_offset + frame_off);
28191
28192 /* Get the old cr if we saved it. */
28193 if (info->cr_save_p)
28194 {
28195 unsigned cr_save_regno = 12;
28196
28197 if (!restoring_GPRs_inline)
28198 {
28199 /* Ensure we don't use the register used by the out-of-line
28200 gpr register restore below. */
28201 bool lr = info->gp_save_offset + info->gp_size == 0;
28202 int sel = SAVRES_GPR | (lr ? SAVRES_LR : 0);
28203 int gpr_ptr_regno = ptr_regno_for_savres (sel);
28204
28205 if (gpr_ptr_regno == 12)
28206 cr_save_regno = 11;
28207 gcc_checking_assert (REGNO (frame_reg_rtx) != cr_save_regno);
28208 }
28209 else if (REGNO (frame_reg_rtx) == 12)
28210 cr_save_regno = 11;
28211
28212 cr_save_reg = load_cr_save (cr_save_regno, frame_reg_rtx,
28213 info->cr_save_offset + frame_off,
28214 exit_func);
28215 }
28216
28217 /* Set LR here to try to overlap restores below. */
28218 if (restore_lr && restoring_GPRs_inline)
28219 restore_saved_lr (0, exit_func);
28220
28221 /* Load exception handler data registers, if needed. */
28222 if (crtl->calls_eh_return)
28223 {
28224 unsigned int i, regno;
28225
28226 if (TARGET_AIX)
28227 {
28228 rtx reg = gen_rtx_REG (reg_mode, 2);
28229 emit_insn (gen_frame_load (reg, frame_reg_rtx,
28230 frame_off + RS6000_TOC_SAVE_SLOT));
28231 }
28232
28233 for (i = 0; ; ++i)
28234 {
28235 rtx mem;
28236
28237 regno = EH_RETURN_DATA_REGNO (i);
28238 if (regno == INVALID_REGNUM)
28239 break;
28240
28241 mem = gen_frame_mem_offset (reg_mode, frame_reg_rtx,
28242 info->ehrd_offset + frame_off
28243 + reg_size * (int) i);
28244
28245 emit_move_insn (gen_rtx_REG (reg_mode, regno), mem);
28246 }
28247 }
28248
28249 /* Restore GPRs. This is done as a PARALLEL if we are using
28250 the load-multiple instructions. */
28251 if (!restoring_GPRs_inline)
28252 {
28253 /* We are jumping to an out-of-line function. */
28254 rtx ptr_reg;
28255 int end_save = info->gp_save_offset + info->gp_size;
28256 bool can_use_exit = end_save == 0;
28257 int sel = SAVRES_GPR | (can_use_exit ? SAVRES_LR : 0);
28258 int ptr_off;
28259
28260 /* Emit stack reset code if we need it. */
28261 ptr_regno = ptr_regno_for_savres (sel);
28262 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
28263 if (can_use_exit)
28264 rs6000_emit_stack_reset (frame_reg_rtx, frame_off, ptr_regno);
28265 else if (end_save + frame_off != 0)
28266 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx,
28267 GEN_INT (end_save + frame_off)));
28268 else if (REGNO (frame_reg_rtx) != ptr_regno)
28269 emit_move_insn (ptr_reg, frame_reg_rtx);
28270 if (REGNO (frame_reg_rtx) == ptr_regno)
28271 frame_off = -end_save;
28272
28273 if (can_use_exit && info->cr_save_p)
28274 restore_saved_cr (cr_save_reg, using_mtcr_multiple, true);
28275
28276 ptr_off = -end_save;
28277 rs6000_emit_savres_rtx (info, ptr_reg,
28278 info->gp_save_offset + ptr_off,
28279 info->lr_save_offset + ptr_off,
28280 reg_mode, sel);
28281 }
28282 else if (using_load_multiple)
28283 {
28284 rtvec p;
28285 p = rtvec_alloc (32 - info->first_gp_reg_save);
28286 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
28287 RTVEC_ELT (p, i)
28288 = gen_frame_load (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
28289 frame_reg_rtx,
28290 info->gp_save_offset + frame_off + reg_size * i);
28291 emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
28292 }
28293 else
28294 {
28295 int offset = info->gp_save_offset + frame_off;
28296 for (i = info->first_gp_reg_save; i < 32; i++)
28297 {
28298 if (save_reg_p (i)
28299 && !cfun->machine->gpr_is_wrapped_separately[i])
28300 {
28301 rtx reg = gen_rtx_REG (reg_mode, i);
28302 emit_insn (gen_frame_load (reg, frame_reg_rtx, offset));
28303 }
28304
28305 offset += reg_size;
28306 }
28307 }
28308
28309 if (DEFAULT_ABI == ABI_V4 || flag_shrink_wrap)
28310 {
28311 /* If the frame pointer was used then we can't delay emitting
28312 a REG_CFA_DEF_CFA note. This must happen on the insn that
28313 restores the frame pointer, r31. We may have already emitted
28314 a REG_CFA_DEF_CFA note, but that's OK; A duplicate is
28315 discarded by dwarf2cfi.c/dwarf2out.c, and in any case would
28316 be harmless if emitted. */
28317 if (frame_pointer_needed)
28318 {
28319 insn = get_last_insn ();
28320 add_reg_note (insn, REG_CFA_DEF_CFA,
28321 plus_constant (Pmode, frame_reg_rtx, frame_off));
28322 RTX_FRAME_RELATED_P (insn) = 1;
28323 }
28324
28325 /* Set up cfa_restores. We always need these when
28326 shrink-wrapping. If not shrink-wrapping then we only need
28327 the cfa_restore when the stack location is no longer valid.
28328 The cfa_restores must be emitted on or before the insn that
28329 invalidates the stack, and of course must not be emitted
28330 before the insn that actually does the restore. The latter
28331 is why it is a bad idea to emit the cfa_restores as a group
28332 on the last instruction here that actually does a restore:
28333 That insn may be reordered with respect to others doing
28334 restores. */
28335 if (flag_shrink_wrap
28336 && !restoring_GPRs_inline
28337 && info->first_fp_reg_save == 64)
28338 cfa_restores = add_crlr_cfa_restore (info, cfa_restores);
28339
28340 for (i = info->first_gp_reg_save; i < 32; i++)
28341 if (save_reg_p (i)
28342 && !cfun->machine->gpr_is_wrapped_separately[i])
28343 {
28344 rtx reg = gen_rtx_REG (reg_mode, i);
28345 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28346 }
28347 }
28348
28349 if (!restoring_GPRs_inline
28350 && info->first_fp_reg_save == 64)
28351 {
28352 /* We are jumping to an out-of-line function. */
28353 if (cfa_restores)
28354 emit_cfa_restores (cfa_restores);
28355 return;
28356 }
28357
28358 if (restore_lr && !restoring_GPRs_inline)
28359 {
28360 load_lr_save (0, frame_reg_rtx, info->lr_save_offset + frame_off);
28361 restore_saved_lr (0, exit_func);
28362 }
28363
28364 /* Restore fpr's if we need to do it without calling a function. */
28365 if (restoring_FPRs_inline)
28366 {
28367 int offset = info->fp_save_offset + frame_off;
28368 for (i = info->first_fp_reg_save; i < 64; i++)
28369 {
28370 if (save_reg_p (i)
28371 && !cfun->machine->fpr_is_wrapped_separately[i - 32])
28372 {
28373 rtx reg = gen_rtx_REG (fp_reg_mode, i);
28374 emit_insn (gen_frame_load (reg, frame_reg_rtx, offset));
28375 if (DEFAULT_ABI == ABI_V4 || flag_shrink_wrap)
28376 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
28377 cfa_restores);
28378 }
28379
28380 offset += fp_reg_size;
28381 }
28382 }
28383
28384 /* If we saved cr, restore it here. Just those that were used. */
28385 if (info->cr_save_p)
28386 restore_saved_cr (cr_save_reg, using_mtcr_multiple, exit_func);
28387
28388 /* If this is V.4, unwind the stack pointer after all of the loads
28389 have been done, or set up r11 if we are restoring fp out of line. */
28390 ptr_regno = 1;
28391 if (!restoring_FPRs_inline)
28392 {
28393 bool lr = (strategy & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR) == 0;
28394 int sel = SAVRES_FPR | (lr ? SAVRES_LR : 0);
28395 ptr_regno = ptr_regno_for_savres (sel);
28396 }
28397
28398 insn = rs6000_emit_stack_reset (frame_reg_rtx, frame_off, ptr_regno);
28399 if (REGNO (frame_reg_rtx) == ptr_regno)
28400 frame_off = 0;
28401
28402 if (insn && restoring_FPRs_inline)
28403 {
28404 if (cfa_restores)
28405 {
28406 REG_NOTES (insn) = cfa_restores;
28407 cfa_restores = NULL_RTX;
28408 }
28409 add_reg_note (insn, REG_CFA_DEF_CFA, sp_reg_rtx);
28410 RTX_FRAME_RELATED_P (insn) = 1;
28411 }
28412
28413 if (crtl->calls_eh_return)
28414 {
28415 rtx sa = EH_RETURN_STACKADJ_RTX;
28416 emit_insn (gen_add3_insn (sp_reg_rtx, sp_reg_rtx, sa));
28417 }
28418
28419 if (!sibcall && restoring_FPRs_inline)
28420 {
28421 if (cfa_restores)
28422 {
28423 /* We can't hang the cfa_restores off a simple return,
28424 since the shrink-wrap code sometimes uses an existing
28425 return. This means there might be a path from
28426 pre-prologue code to this return, and dwarf2cfi code
28427 wants the eh_frame unwinder state to be the same on
28428 all paths to any point. So we need to emit the
28429 cfa_restores before the return. For -m64 we really
28430 don't need epilogue cfa_restores at all, except for
28431 this irritating dwarf2cfi with shrink-wrap
28432 requirement; The stack red-zone means eh_frame info
28433 from the prologue telling the unwinder to restore
28434 from the stack is perfectly good right to the end of
28435 the function. */
28436 emit_insn (gen_blockage ());
28437 emit_cfa_restores (cfa_restores);
28438 cfa_restores = NULL_RTX;
28439 }
28440
28441 emit_jump_insn (targetm.gen_simple_return ());
28442 }
28443
28444 if (!sibcall && !restoring_FPRs_inline)
28445 {
28446 bool lr = (strategy & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR) == 0;
28447 rtvec p = rtvec_alloc (3 + !!lr + 64 - info->first_fp_reg_save);
28448 int elt = 0;
28449 RTVEC_ELT (p, elt++) = ret_rtx;
28450 if (lr)
28451 RTVEC_ELT (p, elt++)
28452 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNO));
28453
28454 /* We have to restore more than two FP registers, so branch to the
28455 restore function. It will return to our caller. */
28456 int i;
28457 int reg;
28458 rtx sym;
28459
28460 if (flag_shrink_wrap)
28461 cfa_restores = add_crlr_cfa_restore (info, cfa_restores);
28462
28463 sym = rs6000_savres_routine_sym (info, SAVRES_FPR | (lr ? SAVRES_LR : 0));
28464 RTVEC_ELT (p, elt++) = gen_rtx_USE (VOIDmode, sym);
28465 reg = (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)? 1 : 11;
28466 RTVEC_ELT (p, elt++) = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, reg));
28467
28468 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
28469 {
28470 rtx reg = gen_rtx_REG (DFmode, info->first_fp_reg_save + i);
28471
28472 RTVEC_ELT (p, elt++)
28473 = gen_frame_load (reg, sp_reg_rtx, info->fp_save_offset + 8 * i);
28474 if (flag_shrink_wrap
28475 && save_reg_p (info->first_fp_reg_save + i))
28476 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28477 }
28478
28479 emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
28480 }
28481
28482 if (cfa_restores)
28483 {
28484 if (sibcall)
28485 /* Ensure the cfa_restores are hung off an insn that won't
28486 be reordered above other restores. */
28487 emit_insn (gen_blockage ());
28488
28489 emit_cfa_restores (cfa_restores);
28490 }
28491 }
28492
28493 /* Write function epilogue. */
28494
28495 static void
28496 rs6000_output_function_epilogue (FILE *file)
28497 {
28498 #if TARGET_MACHO
28499 macho_branch_islands ();
28500
28501 {
28502 rtx_insn *insn = get_last_insn ();
28503 rtx_insn *deleted_debug_label = NULL;
28504
28505 /* Mach-O doesn't support labels at the end of objects, so if
28506 it looks like we might want one, take special action.
28507
28508 First, collect any sequence of deleted debug labels. */
28509 while (insn
28510 && NOTE_P (insn)
28511 && NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL)
28512 {
28513 /* Don't insert a nop for NOTE_INSN_DELETED_DEBUG_LABEL
28514 notes only, instead set their CODE_LABEL_NUMBER to -1,
28515 otherwise there would be code generation differences
28516 in between -g and -g0. */
28517 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL)
28518 deleted_debug_label = insn;
28519 insn = PREV_INSN (insn);
28520 }
28521
28522 /* Second, if we have:
28523 label:
28524 barrier
28525 then this needs to be detected, so skip past the barrier. */
28526
28527 if (insn && BARRIER_P (insn))
28528 insn = PREV_INSN (insn);
28529
28530 /* Up to now we've only seen notes or barriers. */
28531 if (insn)
28532 {
28533 if (LABEL_P (insn)
28534 || (NOTE_P (insn)
28535 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))
28536 /* Trailing label: <barrier>. */
28537 fputs ("\tnop\n", file);
28538 else
28539 {
28540 /* Lastly, see if we have a completely empty function body. */
28541 while (insn && ! INSN_P (insn))
28542 insn = PREV_INSN (insn);
28543 /* If we don't find any insns, we've got an empty function body;
28544 I.e. completely empty - without a return or branch. This is
28545 taken as the case where a function body has been removed
28546 because it contains an inline __builtin_unreachable(). GCC
28547 states that reaching __builtin_unreachable() means UB so we're
28548 not obliged to do anything special; however, we want
28549 non-zero-sized function bodies. To meet this, and help the
28550 user out, let's trap the case. */
28551 if (insn == NULL)
28552 fputs ("\ttrap\n", file);
28553 }
28554 }
28555 else if (deleted_debug_label)
28556 for (insn = deleted_debug_label; insn; insn = NEXT_INSN (insn))
28557 if (NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL)
28558 CODE_LABEL_NUMBER (insn) = -1;
28559 }
28560 #endif
28561
28562 /* Output a traceback table here. See /usr/include/sys/debug.h for info
28563 on its format.
28564
28565 We don't output a traceback table if -finhibit-size-directive was
28566 used. The documentation for -finhibit-size-directive reads
28567 ``don't output a @code{.size} assembler directive, or anything
28568 else that would cause trouble if the function is split in the
28569 middle, and the two halves are placed at locations far apart in
28570 memory.'' The traceback table has this property, since it
28571 includes the offset from the start of the function to the
28572 traceback table itself.
28573
28574 System V.4 Powerpc's (and the embedded ABI derived from it) use a
28575 different traceback table. */
28576 if ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
28577 && ! flag_inhibit_size_directive
28578 && rs6000_traceback != traceback_none && !cfun->is_thunk)
28579 {
28580 const char *fname = NULL;
28581 const char *language_string = lang_hooks.name;
28582 int fixed_parms = 0, float_parms = 0, parm_info = 0;
28583 int i;
28584 int optional_tbtab;
28585 rs6000_stack_t *info = rs6000_stack_info ();
28586
28587 if (rs6000_traceback == traceback_full)
28588 optional_tbtab = 1;
28589 else if (rs6000_traceback == traceback_part)
28590 optional_tbtab = 0;
28591 else
28592 optional_tbtab = !optimize_size && !TARGET_ELF;
28593
28594 if (optional_tbtab)
28595 {
28596 fname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
28597 while (*fname == '.') /* V.4 encodes . in the name */
28598 fname++;
28599
28600 /* Need label immediately before tbtab, so we can compute
28601 its offset from the function start. */
28602 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
28603 ASM_OUTPUT_LABEL (file, fname);
28604 }
28605
28606 /* The .tbtab pseudo-op can only be used for the first eight
28607 expressions, since it can't handle the possibly variable
28608 length fields that follow. However, if you omit the optional
28609 fields, the assembler outputs zeros for all optional fields
28610 anyways, giving each variable length field is minimum length
28611 (as defined in sys/debug.h). Thus we can not use the .tbtab
28612 pseudo-op at all. */
28613
28614 /* An all-zero word flags the start of the tbtab, for debuggers
28615 that have to find it by searching forward from the entry
28616 point or from the current pc. */
28617 fputs ("\t.long 0\n", file);
28618
28619 /* Tbtab format type. Use format type 0. */
28620 fputs ("\t.byte 0,", file);
28621
28622 /* Language type. Unfortunately, there does not seem to be any
28623 official way to discover the language being compiled, so we
28624 use language_string.
28625 C is 0. Fortran is 1. Ada is 3. C++ is 9.
28626 Java is 13. Objective-C is 14. Objective-C++ isn't assigned
28627 a number, so for now use 9. LTO, Go, D, and JIT aren't assigned
28628 numbers either, so for now use 0. */
28629 if (lang_GNU_C ()
28630 || ! strcmp (language_string, "GNU GIMPLE")
28631 || ! strcmp (language_string, "GNU Go")
28632 || ! strcmp (language_string, "GNU D")
28633 || ! strcmp (language_string, "libgccjit"))
28634 i = 0;
28635 else if (! strcmp (language_string, "GNU F77")
28636 || lang_GNU_Fortran ())
28637 i = 1;
28638 else if (! strcmp (language_string, "GNU Ada"))
28639 i = 3;
28640 else if (lang_GNU_CXX ()
28641 || ! strcmp (language_string, "GNU Objective-C++"))
28642 i = 9;
28643 else if (! strcmp (language_string, "GNU Java"))
28644 i = 13;
28645 else if (! strcmp (language_string, "GNU Objective-C"))
28646 i = 14;
28647 else
28648 gcc_unreachable ();
28649 fprintf (file, "%d,", i);
28650
28651 /* 8 single bit fields: global linkage (not set for C extern linkage,
28652 apparently a PL/I convention?), out-of-line epilogue/prologue, offset
28653 from start of procedure stored in tbtab, internal function, function
28654 has controlled storage, function has no toc, function uses fp,
28655 function logs/aborts fp operations. */
28656 /* Assume that fp operations are used if any fp reg must be saved. */
28657 fprintf (file, "%d,",
28658 (optional_tbtab << 5) | ((info->first_fp_reg_save != 64) << 1));
28659
28660 /* 6 bitfields: function is interrupt handler, name present in
28661 proc table, function calls alloca, on condition directives
28662 (controls stack walks, 3 bits), saves condition reg, saves
28663 link reg. */
28664 /* The `function calls alloca' bit seems to be set whenever reg 31 is
28665 set up as a frame pointer, even when there is no alloca call. */
28666 fprintf (file, "%d,",
28667 ((optional_tbtab << 6)
28668 | ((optional_tbtab & frame_pointer_needed) << 5)
28669 | (info->cr_save_p << 1)
28670 | (info->lr_save_p)));
28671
28672 /* 3 bitfields: saves backchain, fixup code, number of fpr saved
28673 (6 bits). */
28674 fprintf (file, "%d,",
28675 (info->push_p << 7) | (64 - info->first_fp_reg_save));
28676
28677 /* 2 bitfields: spare bits (2 bits), number of gpr saved (6 bits). */
28678 fprintf (file, "%d,", (32 - first_reg_to_save ()));
28679
28680 if (optional_tbtab)
28681 {
28682 /* Compute the parameter info from the function decl argument
28683 list. */
28684 tree decl;
28685 int next_parm_info_bit = 31;
28686
28687 for (decl = DECL_ARGUMENTS (current_function_decl);
28688 decl; decl = DECL_CHAIN (decl))
28689 {
28690 rtx parameter = DECL_INCOMING_RTL (decl);
28691 machine_mode mode = GET_MODE (parameter);
28692
28693 if (GET_CODE (parameter) == REG)
28694 {
28695 if (SCALAR_FLOAT_MODE_P (mode))
28696 {
28697 int bits;
28698
28699 float_parms++;
28700
28701 switch (mode)
28702 {
28703 case E_SFmode:
28704 case E_SDmode:
28705 bits = 0x2;
28706 break;
28707
28708 case E_DFmode:
28709 case E_DDmode:
28710 case E_TFmode:
28711 case E_TDmode:
28712 case E_IFmode:
28713 case E_KFmode:
28714 bits = 0x3;
28715 break;
28716
28717 default:
28718 gcc_unreachable ();
28719 }
28720
28721 /* If only one bit will fit, don't or in this entry. */
28722 if (next_parm_info_bit > 0)
28723 parm_info |= (bits << (next_parm_info_bit - 1));
28724 next_parm_info_bit -= 2;
28725 }
28726 else
28727 {
28728 fixed_parms += ((GET_MODE_SIZE (mode)
28729 + (UNITS_PER_WORD - 1))
28730 / UNITS_PER_WORD);
28731 next_parm_info_bit -= 1;
28732 }
28733 }
28734 }
28735 }
28736
28737 /* Number of fixed point parameters. */
28738 /* This is actually the number of words of fixed point parameters; thus
28739 an 8 byte struct counts as 2; and thus the maximum value is 8. */
28740 fprintf (file, "%d,", fixed_parms);
28741
28742 /* 2 bitfields: number of floating point parameters (7 bits), parameters
28743 all on stack. */
28744 /* This is actually the number of fp registers that hold parameters;
28745 and thus the maximum value is 13. */
28746 /* Set parameters on stack bit if parameters are not in their original
28747 registers, regardless of whether they are on the stack? Xlc
28748 seems to set the bit when not optimizing. */
28749 fprintf (file, "%d\n", ((float_parms << 1) | (! optimize)));
28750
28751 if (optional_tbtab)
28752 {
28753 /* Optional fields follow. Some are variable length. */
28754
28755 /* Parameter types, left adjusted bit fields: 0 fixed, 10 single
28756 float, 11 double float. */
28757 /* There is an entry for each parameter in a register, in the order
28758 that they occur in the parameter list. Any intervening arguments
28759 on the stack are ignored. If the list overflows a long (max
28760 possible length 34 bits) then completely leave off all elements
28761 that don't fit. */
28762 /* Only emit this long if there was at least one parameter. */
28763 if (fixed_parms || float_parms)
28764 fprintf (file, "\t.long %d\n", parm_info);
28765
28766 /* Offset from start of code to tb table. */
28767 fputs ("\t.long ", file);
28768 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
28769 RS6000_OUTPUT_BASENAME (file, fname);
28770 putc ('-', file);
28771 rs6000_output_function_entry (file, fname);
28772 putc ('\n', file);
28773
28774 /* Interrupt handler mask. */
28775 /* Omit this long, since we never set the interrupt handler bit
28776 above. */
28777
28778 /* Number of CTL (controlled storage) anchors. */
28779 /* Omit this long, since the has_ctl bit is never set above. */
28780
28781 /* Displacement into stack of each CTL anchor. */
28782 /* Omit this list of longs, because there are no CTL anchors. */
28783
28784 /* Length of function name. */
28785 if (*fname == '*')
28786 ++fname;
28787 fprintf (file, "\t.short %d\n", (int) strlen (fname));
28788
28789 /* Function name. */
28790 assemble_string (fname, strlen (fname));
28791
28792 /* Register for alloca automatic storage; this is always reg 31.
28793 Only emit this if the alloca bit was set above. */
28794 if (frame_pointer_needed)
28795 fputs ("\t.byte 31\n", file);
28796
28797 fputs ("\t.align 2\n", file);
28798 }
28799 }
28800
28801 /* Arrange to define .LCTOC1 label, if not already done. */
28802 if (need_toc_init)
28803 {
28804 need_toc_init = 0;
28805 if (!toc_initialized)
28806 {
28807 switch_to_section (toc_section);
28808 switch_to_section (current_function_section ());
28809 }
28810 }
28811 }
28812
28813 /* -fsplit-stack support. */
28814
28815 /* A SYMBOL_REF for __morestack. */
28816 static GTY(()) rtx morestack_ref;
28817
28818 static rtx
28819 gen_add3_const (rtx rt, rtx ra, long c)
28820 {
28821 if (TARGET_64BIT)
28822 return gen_adddi3 (rt, ra, GEN_INT (c));
28823 else
28824 return gen_addsi3 (rt, ra, GEN_INT (c));
28825 }
28826
28827 /* Emit -fsplit-stack prologue, which goes before the regular function
28828 prologue (at local entry point in the case of ELFv2). */
28829
28830 void
28831 rs6000_expand_split_stack_prologue (void)
28832 {
28833 rs6000_stack_t *info = rs6000_stack_info ();
28834 unsigned HOST_WIDE_INT allocate;
28835 long alloc_hi, alloc_lo;
28836 rtx r0, r1, r12, lr, ok_label, compare, jump, call_fusage;
28837 rtx_insn *insn;
28838
28839 gcc_assert (flag_split_stack && reload_completed);
28840
28841 if (!info->push_p)
28842 return;
28843
28844 if (global_regs[29])
28845 {
28846 error ("%qs uses register r29", "-fsplit-stack");
28847 inform (DECL_SOURCE_LOCATION (global_regs_decl[29]),
28848 "conflicts with %qD", global_regs_decl[29]);
28849 }
28850
28851 allocate = info->total_size;
28852 if (allocate > (unsigned HOST_WIDE_INT) 1 << 31)
28853 {
28854 sorry ("Stack frame larger than 2G is not supported for -fsplit-stack");
28855 return;
28856 }
28857 if (morestack_ref == NULL_RTX)
28858 {
28859 morestack_ref = gen_rtx_SYMBOL_REF (Pmode, "__morestack");
28860 SYMBOL_REF_FLAGS (morestack_ref) |= (SYMBOL_FLAG_LOCAL
28861 | SYMBOL_FLAG_FUNCTION);
28862 }
28863
28864 r0 = gen_rtx_REG (Pmode, 0);
28865 r1 = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
28866 r12 = gen_rtx_REG (Pmode, 12);
28867 emit_insn (gen_load_split_stack_limit (r0));
28868 /* Always emit two insns here to calculate the requested stack,
28869 so that the linker can edit them when adjusting size for calling
28870 non-split-stack code. */
28871 alloc_hi = (-allocate + 0x8000) & ~0xffffL;
28872 alloc_lo = -allocate - alloc_hi;
28873 if (alloc_hi != 0)
28874 {
28875 emit_insn (gen_add3_const (r12, r1, alloc_hi));
28876 if (alloc_lo != 0)
28877 emit_insn (gen_add3_const (r12, r12, alloc_lo));
28878 else
28879 emit_insn (gen_nop ());
28880 }
28881 else
28882 {
28883 emit_insn (gen_add3_const (r12, r1, alloc_lo));
28884 emit_insn (gen_nop ());
28885 }
28886
28887 compare = gen_rtx_REG (CCUNSmode, CR7_REGNO);
28888 emit_insn (gen_rtx_SET (compare, gen_rtx_COMPARE (CCUNSmode, r12, r0)));
28889 ok_label = gen_label_rtx ();
28890 jump = gen_rtx_IF_THEN_ELSE (VOIDmode,
28891 gen_rtx_GEU (VOIDmode, compare, const0_rtx),
28892 gen_rtx_LABEL_REF (VOIDmode, ok_label),
28893 pc_rtx);
28894 insn = emit_jump_insn (gen_rtx_SET (pc_rtx, jump));
28895 JUMP_LABEL (insn) = ok_label;
28896 /* Mark the jump as very likely to be taken. */
28897 add_reg_br_prob_note (insn, profile_probability::very_likely ());
28898
28899 lr = gen_rtx_REG (Pmode, LR_REGNO);
28900 insn = emit_move_insn (r0, lr);
28901 RTX_FRAME_RELATED_P (insn) = 1;
28902 insn = emit_insn (gen_frame_store (r0, r1, info->lr_save_offset));
28903 RTX_FRAME_RELATED_P (insn) = 1;
28904
28905 insn = emit_call_insn (gen_call (gen_rtx_MEM (SImode, morestack_ref),
28906 const0_rtx, const0_rtx));
28907 call_fusage = NULL_RTX;
28908 use_reg (&call_fusage, r12);
28909 /* Say the call uses r0, even though it doesn't, to stop regrename
28910 from twiddling with the insns saving lr, trashing args for cfun.
28911 The insns restoring lr are similarly protected by making
28912 split_stack_return use r0. */
28913 use_reg (&call_fusage, r0);
28914 add_function_usage_to (insn, call_fusage);
28915 /* Indicate that this function can't jump to non-local gotos. */
28916 make_reg_eh_region_note_nothrow_nononlocal (insn);
28917 emit_insn (gen_frame_load (r0, r1, info->lr_save_offset));
28918 insn = emit_move_insn (lr, r0);
28919 add_reg_note (insn, REG_CFA_RESTORE, lr);
28920 RTX_FRAME_RELATED_P (insn) = 1;
28921 emit_insn (gen_split_stack_return ());
28922
28923 emit_label (ok_label);
28924 LABEL_NUSES (ok_label) = 1;
28925 }
28926
28927 /* Return the internal arg pointer used for function incoming
28928 arguments. When -fsplit-stack, the arg pointer is r12 so we need
28929 to copy it to a pseudo in order for it to be preserved over calls
28930 and suchlike. We'd really like to use a pseudo here for the
28931 internal arg pointer but data-flow analysis is not prepared to
28932 accept pseudos as live at the beginning of a function. */
28933
28934 static rtx
28935 rs6000_internal_arg_pointer (void)
28936 {
28937 if (flag_split_stack
28938 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
28939 == NULL))
28940
28941 {
28942 if (cfun->machine->split_stack_arg_pointer == NULL_RTX)
28943 {
28944 rtx pat;
28945
28946 cfun->machine->split_stack_arg_pointer = gen_reg_rtx (Pmode);
28947 REG_POINTER (cfun->machine->split_stack_arg_pointer) = 1;
28948
28949 /* Put the pseudo initialization right after the note at the
28950 beginning of the function. */
28951 pat = gen_rtx_SET (cfun->machine->split_stack_arg_pointer,
28952 gen_rtx_REG (Pmode, 12));
28953 push_topmost_sequence ();
28954 emit_insn_after (pat, get_insns ());
28955 pop_topmost_sequence ();
28956 }
28957 rtx ret = plus_constant (Pmode, cfun->machine->split_stack_arg_pointer,
28958 FIRST_PARM_OFFSET (current_function_decl));
28959 return copy_to_reg (ret);
28960 }
28961 return virtual_incoming_args_rtx;
28962 }
28963
28964 /* We may have to tell the dataflow pass that the split stack prologue
28965 is initializing a register. */
28966
28967 static void
28968 rs6000_live_on_entry (bitmap regs)
28969 {
28970 if (flag_split_stack)
28971 bitmap_set_bit (regs, 12);
28972 }
28973
28974 /* Emit -fsplit-stack dynamic stack allocation space check. */
28975
28976 void
28977 rs6000_split_stack_space_check (rtx size, rtx label)
28978 {
28979 rtx sp = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
28980 rtx limit = gen_reg_rtx (Pmode);
28981 rtx requested = gen_reg_rtx (Pmode);
28982 rtx cmp = gen_reg_rtx (CCUNSmode);
28983 rtx jump;
28984
28985 emit_insn (gen_load_split_stack_limit (limit));
28986 if (CONST_INT_P (size))
28987 emit_insn (gen_add3_insn (requested, sp, GEN_INT (-INTVAL (size))));
28988 else
28989 {
28990 size = force_reg (Pmode, size);
28991 emit_move_insn (requested, gen_rtx_MINUS (Pmode, sp, size));
28992 }
28993 emit_insn (gen_rtx_SET (cmp, gen_rtx_COMPARE (CCUNSmode, requested, limit)));
28994 jump = gen_rtx_IF_THEN_ELSE (VOIDmode,
28995 gen_rtx_GEU (VOIDmode, cmp, const0_rtx),
28996 gen_rtx_LABEL_REF (VOIDmode, label),
28997 pc_rtx);
28998 jump = emit_jump_insn (gen_rtx_SET (pc_rtx, jump));
28999 JUMP_LABEL (jump) = label;
29000 }
29001 \f
29002 /* A C compound statement that outputs the assembler code for a thunk
29003 function, used to implement C++ virtual function calls with
29004 multiple inheritance. The thunk acts as a wrapper around a virtual
29005 function, adjusting the implicit object parameter before handing
29006 control off to the real function.
29007
29008 First, emit code to add the integer DELTA to the location that
29009 contains the incoming first argument. Assume that this argument
29010 contains a pointer, and is the one used to pass the `this' pointer
29011 in C++. This is the incoming argument *before* the function
29012 prologue, e.g. `%o0' on a sparc. The addition must preserve the
29013 values of all other incoming arguments.
29014
29015 After the addition, emit code to jump to FUNCTION, which is a
29016 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does
29017 not touch the return address. Hence returning from FUNCTION will
29018 return to whoever called the current `thunk'.
29019
29020 The effect must be as if FUNCTION had been called directly with the
29021 adjusted first argument. This macro is responsible for emitting
29022 all of the code for a thunk function; output_function_prologue()
29023 and output_function_epilogue() are not invoked.
29024
29025 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already
29026 been extracted from it.) It might possibly be useful on some
29027 targets, but probably not.
29028
29029 If you do not define this macro, the target-independent code in the
29030 C++ frontend will generate a less efficient heavyweight thunk that
29031 calls FUNCTION instead of jumping to it. The generic approach does
29032 not support varargs. */
29033
29034 static void
29035 rs6000_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
29036 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
29037 tree function)
29038 {
29039 rtx this_rtx, funexp;
29040 rtx_insn *insn;
29041
29042 reload_completed = 1;
29043 epilogue_completed = 1;
29044
29045 /* Mark the end of the (empty) prologue. */
29046 emit_note (NOTE_INSN_PROLOGUE_END);
29047
29048 /* Find the "this" pointer. If the function returns a structure,
29049 the structure return pointer is in r3. */
29050 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
29051 this_rtx = gen_rtx_REG (Pmode, 4);
29052 else
29053 this_rtx = gen_rtx_REG (Pmode, 3);
29054
29055 /* Apply the constant offset, if required. */
29056 if (delta)
29057 emit_insn (gen_add3_insn (this_rtx, this_rtx, GEN_INT (delta)));
29058
29059 /* Apply the offset from the vtable, if required. */
29060 if (vcall_offset)
29061 {
29062 rtx vcall_offset_rtx = GEN_INT (vcall_offset);
29063 rtx tmp = gen_rtx_REG (Pmode, 12);
29064
29065 emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx));
29066 if (((unsigned HOST_WIDE_INT) vcall_offset) + 0x8000 >= 0x10000)
29067 {
29068 emit_insn (gen_add3_insn (tmp, tmp, vcall_offset_rtx));
29069 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
29070 }
29071 else
29072 {
29073 rtx loc = gen_rtx_PLUS (Pmode, tmp, vcall_offset_rtx);
29074
29075 emit_move_insn (tmp, gen_rtx_MEM (Pmode, loc));
29076 }
29077 emit_insn (gen_add3_insn (this_rtx, this_rtx, tmp));
29078 }
29079
29080 /* Generate a tail call to the target function. */
29081 if (!TREE_USED (function))
29082 {
29083 assemble_external (function);
29084 TREE_USED (function) = 1;
29085 }
29086 funexp = XEXP (DECL_RTL (function), 0);
29087 funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
29088
29089 #if TARGET_MACHO
29090 if (MACHOPIC_INDIRECT)
29091 funexp = machopic_indirect_call_target (funexp);
29092 #endif
29093
29094 /* gen_sibcall expects reload to convert scratch pseudo to LR so we must
29095 generate sibcall RTL explicitly. */
29096 insn = emit_call_insn (
29097 gen_rtx_PARALLEL (VOIDmode,
29098 gen_rtvec (3,
29099 gen_rtx_CALL (VOIDmode,
29100 funexp, const0_rtx),
29101 gen_rtx_USE (VOIDmode, const0_rtx),
29102 simple_return_rtx)));
29103 SIBLING_CALL_P (insn) = 1;
29104 emit_barrier ();
29105
29106 /* Run just enough of rest_of_compilation to get the insns emitted.
29107 There's not really enough bulk here to make other passes such as
29108 instruction scheduling worth while. Note that use_thunk calls
29109 assemble_start_function and assemble_end_function. */
29110 insn = get_insns ();
29111 shorten_branches (insn);
29112 final_start_function (insn, file, 1);
29113 final (insn, file, 1);
29114 final_end_function ();
29115
29116 reload_completed = 0;
29117 epilogue_completed = 0;
29118 }
29119 \f
29120 /* A quick summary of the various types of 'constant-pool tables'
29121 under PowerPC:
29122
29123 Target Flags Name One table per
29124 AIX (none) AIX TOC object file
29125 AIX -mfull-toc AIX TOC object file
29126 AIX -mminimal-toc AIX minimal TOC translation unit
29127 SVR4/EABI (none) SVR4 SDATA object file
29128 SVR4/EABI -fpic SVR4 pic object file
29129 SVR4/EABI -fPIC SVR4 PIC translation unit
29130 SVR4/EABI -mrelocatable EABI TOC function
29131 SVR4/EABI -maix AIX TOC object file
29132 SVR4/EABI -maix -mminimal-toc
29133 AIX minimal TOC translation unit
29134
29135 Name Reg. Set by entries contains:
29136 made by addrs? fp? sum?
29137
29138 AIX TOC 2 crt0 as Y option option
29139 AIX minimal TOC 30 prolog gcc Y Y option
29140 SVR4 SDATA 13 crt0 gcc N Y N
29141 SVR4 pic 30 prolog ld Y not yet N
29142 SVR4 PIC 30 prolog gcc Y option option
29143 EABI TOC 30 prolog gcc Y option option
29144
29145 */
29146
29147 /* Hash functions for the hash table. */
29148
29149 static unsigned
29150 rs6000_hash_constant (rtx k)
29151 {
29152 enum rtx_code code = GET_CODE (k);
29153 machine_mode mode = GET_MODE (k);
29154 unsigned result = (code << 3) ^ mode;
29155 const char *format;
29156 int flen, fidx;
29157
29158 format = GET_RTX_FORMAT (code);
29159 flen = strlen (format);
29160 fidx = 0;
29161
29162 switch (code)
29163 {
29164 case LABEL_REF:
29165 return result * 1231 + (unsigned) INSN_UID (XEXP (k, 0));
29166
29167 case CONST_WIDE_INT:
29168 {
29169 int i;
29170 flen = CONST_WIDE_INT_NUNITS (k);
29171 for (i = 0; i < flen; i++)
29172 result = result * 613 + CONST_WIDE_INT_ELT (k, i);
29173 return result;
29174 }
29175
29176 case CONST_DOUBLE:
29177 if (mode != VOIDmode)
29178 return real_hash (CONST_DOUBLE_REAL_VALUE (k)) * result;
29179 flen = 2;
29180 break;
29181
29182 case CODE_LABEL:
29183 fidx = 3;
29184 break;
29185
29186 default:
29187 break;
29188 }
29189
29190 for (; fidx < flen; fidx++)
29191 switch (format[fidx])
29192 {
29193 case 's':
29194 {
29195 unsigned i, len;
29196 const char *str = XSTR (k, fidx);
29197 len = strlen (str);
29198 result = result * 613 + len;
29199 for (i = 0; i < len; i++)
29200 result = result * 613 + (unsigned) str[i];
29201 break;
29202 }
29203 case 'u':
29204 case 'e':
29205 result = result * 1231 + rs6000_hash_constant (XEXP (k, fidx));
29206 break;
29207 case 'i':
29208 case 'n':
29209 result = result * 613 + (unsigned) XINT (k, fidx);
29210 break;
29211 case 'w':
29212 if (sizeof (unsigned) >= sizeof (HOST_WIDE_INT))
29213 result = result * 613 + (unsigned) XWINT (k, fidx);
29214 else
29215 {
29216 size_t i;
29217 for (i = 0; i < sizeof (HOST_WIDE_INT) / sizeof (unsigned); i++)
29218 result = result * 613 + (unsigned) (XWINT (k, fidx)
29219 >> CHAR_BIT * i);
29220 }
29221 break;
29222 case '0':
29223 break;
29224 default:
29225 gcc_unreachable ();
29226 }
29227
29228 return result;
29229 }
29230
29231 hashval_t
29232 toc_hasher::hash (toc_hash_struct *thc)
29233 {
29234 return rs6000_hash_constant (thc->key) ^ thc->key_mode;
29235 }
29236
29237 /* Compare H1 and H2 for equivalence. */
29238
29239 bool
29240 toc_hasher::equal (toc_hash_struct *h1, toc_hash_struct *h2)
29241 {
29242 rtx r1 = h1->key;
29243 rtx r2 = h2->key;
29244
29245 if (h1->key_mode != h2->key_mode)
29246 return 0;
29247
29248 return rtx_equal_p (r1, r2);
29249 }
29250
29251 /* These are the names given by the C++ front-end to vtables, and
29252 vtable-like objects. Ideally, this logic should not be here;
29253 instead, there should be some programmatic way of inquiring as
29254 to whether or not an object is a vtable. */
29255
29256 #define VTABLE_NAME_P(NAME) \
29257 (strncmp ("_vt.", name, strlen ("_vt.")) == 0 \
29258 || strncmp ("_ZTV", name, strlen ("_ZTV")) == 0 \
29259 || strncmp ("_ZTT", name, strlen ("_ZTT")) == 0 \
29260 || strncmp ("_ZTI", name, strlen ("_ZTI")) == 0 \
29261 || strncmp ("_ZTC", name, strlen ("_ZTC")) == 0)
29262
29263 #ifdef NO_DOLLAR_IN_LABEL
29264 /* Return a GGC-allocated character string translating dollar signs in
29265 input NAME to underscores. Used by XCOFF ASM_OUTPUT_LABELREF. */
29266
29267 const char *
29268 rs6000_xcoff_strip_dollar (const char *name)
29269 {
29270 char *strip, *p;
29271 const char *q;
29272 size_t len;
29273
29274 q = (const char *) strchr (name, '$');
29275
29276 if (q == 0 || q == name)
29277 return name;
29278
29279 len = strlen (name);
29280 strip = XALLOCAVEC (char, len + 1);
29281 strcpy (strip, name);
29282 p = strip + (q - name);
29283 while (p)
29284 {
29285 *p = '_';
29286 p = strchr (p + 1, '$');
29287 }
29288
29289 return ggc_alloc_string (strip, len);
29290 }
29291 #endif
29292
29293 void
29294 rs6000_output_symbol_ref (FILE *file, rtx x)
29295 {
29296 const char *name = XSTR (x, 0);
29297
29298 /* Currently C++ toc references to vtables can be emitted before it
29299 is decided whether the vtable is public or private. If this is
29300 the case, then the linker will eventually complain that there is
29301 a reference to an unknown section. Thus, for vtables only,
29302 we emit the TOC reference to reference the identifier and not the
29303 symbol. */
29304 if (VTABLE_NAME_P (name))
29305 {
29306 RS6000_OUTPUT_BASENAME (file, name);
29307 }
29308 else
29309 assemble_name (file, name);
29310 }
29311
29312 /* Output a TOC entry. We derive the entry name from what is being
29313 written. */
29314
29315 void
29316 output_toc (FILE *file, rtx x, int labelno, machine_mode mode)
29317 {
29318 char buf[256];
29319 const char *name = buf;
29320 rtx base = x;
29321 HOST_WIDE_INT offset = 0;
29322
29323 gcc_assert (!TARGET_NO_TOC);
29324
29325 /* When the linker won't eliminate them, don't output duplicate
29326 TOC entries (this happens on AIX if there is any kind of TOC,
29327 and on SVR4 under -fPIC or -mrelocatable). Don't do this for
29328 CODE_LABELs. */
29329 if (TARGET_TOC && GET_CODE (x) != LABEL_REF)
29330 {
29331 struct toc_hash_struct *h;
29332
29333 /* Create toc_hash_table. This can't be done at TARGET_OPTION_OVERRIDE
29334 time because GGC is not initialized at that point. */
29335 if (toc_hash_table == NULL)
29336 toc_hash_table = hash_table<toc_hasher>::create_ggc (1021);
29337
29338 h = ggc_alloc<toc_hash_struct> ();
29339 h->key = x;
29340 h->key_mode = mode;
29341 h->labelno = labelno;
29342
29343 toc_hash_struct **found = toc_hash_table->find_slot (h, INSERT);
29344 if (*found == NULL)
29345 *found = h;
29346 else /* This is indeed a duplicate.
29347 Set this label equal to that label. */
29348 {
29349 fputs ("\t.set ", file);
29350 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
29351 fprintf (file, "%d,", labelno);
29352 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
29353 fprintf (file, "%d\n", ((*found)->labelno));
29354
29355 #ifdef HAVE_AS_TLS
29356 if (TARGET_XCOFF && GET_CODE (x) == SYMBOL_REF
29357 && (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_GLOBAL_DYNAMIC
29358 || SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC))
29359 {
29360 fputs ("\t.set ", file);
29361 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LCM");
29362 fprintf (file, "%d,", labelno);
29363 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LCM");
29364 fprintf (file, "%d\n", ((*found)->labelno));
29365 }
29366 #endif
29367 return;
29368 }
29369 }
29370
29371 /* If we're going to put a double constant in the TOC, make sure it's
29372 aligned properly when strict alignment is on. */
29373 if ((CONST_DOUBLE_P (x) || CONST_WIDE_INT_P (x))
29374 && STRICT_ALIGNMENT
29375 && GET_MODE_BITSIZE (mode) >= 64
29376 && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) {
29377 ASM_OUTPUT_ALIGN (file, 3);
29378 }
29379
29380 (*targetm.asm_out.internal_label) (file, "LC", labelno);
29381
29382 /* Handle FP constants specially. Note that if we have a minimal
29383 TOC, things we put here aren't actually in the TOC, so we can allow
29384 FP constants. */
29385 if (GET_CODE (x) == CONST_DOUBLE &&
29386 (GET_MODE (x) == TFmode || GET_MODE (x) == TDmode
29387 || GET_MODE (x) == IFmode || GET_MODE (x) == KFmode))
29388 {
29389 long k[4];
29390
29391 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
29392 REAL_VALUE_TO_TARGET_DECIMAL128 (*CONST_DOUBLE_REAL_VALUE (x), k);
29393 else
29394 REAL_VALUE_TO_TARGET_LONG_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), k);
29395
29396 if (TARGET_64BIT)
29397 {
29398 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29399 fputs (DOUBLE_INT_ASM_OP, file);
29400 else
29401 fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
29402 k[0] & 0xffffffff, k[1] & 0xffffffff,
29403 k[2] & 0xffffffff, k[3] & 0xffffffff);
29404 fprintf (file, "0x%lx%08lx,0x%lx%08lx\n",
29405 k[WORDS_BIG_ENDIAN ? 0 : 1] & 0xffffffff,
29406 k[WORDS_BIG_ENDIAN ? 1 : 0] & 0xffffffff,
29407 k[WORDS_BIG_ENDIAN ? 2 : 3] & 0xffffffff,
29408 k[WORDS_BIG_ENDIAN ? 3 : 2] & 0xffffffff);
29409 return;
29410 }
29411 else
29412 {
29413 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29414 fputs ("\t.long ", file);
29415 else
29416 fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
29417 k[0] & 0xffffffff, k[1] & 0xffffffff,
29418 k[2] & 0xffffffff, k[3] & 0xffffffff);
29419 fprintf (file, "0x%lx,0x%lx,0x%lx,0x%lx\n",
29420 k[0] & 0xffffffff, k[1] & 0xffffffff,
29421 k[2] & 0xffffffff, k[3] & 0xffffffff);
29422 return;
29423 }
29424 }
29425 else if (GET_CODE (x) == CONST_DOUBLE &&
29426 (GET_MODE (x) == DFmode || GET_MODE (x) == DDmode))
29427 {
29428 long k[2];
29429
29430 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
29431 REAL_VALUE_TO_TARGET_DECIMAL64 (*CONST_DOUBLE_REAL_VALUE (x), k);
29432 else
29433 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), k);
29434
29435 if (TARGET_64BIT)
29436 {
29437 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29438 fputs (DOUBLE_INT_ASM_OP, file);
29439 else
29440 fprintf (file, "\t.tc FD_%lx_%lx[TC],",
29441 k[0] & 0xffffffff, k[1] & 0xffffffff);
29442 fprintf (file, "0x%lx%08lx\n",
29443 k[WORDS_BIG_ENDIAN ? 0 : 1] & 0xffffffff,
29444 k[WORDS_BIG_ENDIAN ? 1 : 0] & 0xffffffff);
29445 return;
29446 }
29447 else
29448 {
29449 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29450 fputs ("\t.long ", file);
29451 else
29452 fprintf (file, "\t.tc FD_%lx_%lx[TC],",
29453 k[0] & 0xffffffff, k[1] & 0xffffffff);
29454 fprintf (file, "0x%lx,0x%lx\n",
29455 k[0] & 0xffffffff, k[1] & 0xffffffff);
29456 return;
29457 }
29458 }
29459 else if (GET_CODE (x) == CONST_DOUBLE &&
29460 (GET_MODE (x) == SFmode || GET_MODE (x) == SDmode))
29461 {
29462 long l;
29463
29464 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
29465 REAL_VALUE_TO_TARGET_DECIMAL32 (*CONST_DOUBLE_REAL_VALUE (x), l);
29466 else
29467 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l);
29468
29469 if (TARGET_64BIT)
29470 {
29471 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29472 fputs (DOUBLE_INT_ASM_OP, file);
29473 else
29474 fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
29475 if (WORDS_BIG_ENDIAN)
29476 fprintf (file, "0x%lx00000000\n", l & 0xffffffff);
29477 else
29478 fprintf (file, "0x%lx\n", l & 0xffffffff);
29479 return;
29480 }
29481 else
29482 {
29483 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29484 fputs ("\t.long ", file);
29485 else
29486 fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
29487 fprintf (file, "0x%lx\n", l & 0xffffffff);
29488 return;
29489 }
29490 }
29491 else if (GET_MODE (x) == VOIDmode && GET_CODE (x) == CONST_INT)
29492 {
29493 unsigned HOST_WIDE_INT low;
29494 HOST_WIDE_INT high;
29495
29496 low = INTVAL (x) & 0xffffffff;
29497 high = (HOST_WIDE_INT) INTVAL (x) >> 32;
29498
29499 /* TOC entries are always Pmode-sized, so when big-endian
29500 smaller integer constants in the TOC need to be padded.
29501 (This is still a win over putting the constants in
29502 a separate constant pool, because then we'd have
29503 to have both a TOC entry _and_ the actual constant.)
29504
29505 For a 32-bit target, CONST_INT values are loaded and shifted
29506 entirely within `low' and can be stored in one TOC entry. */
29507
29508 /* It would be easy to make this work, but it doesn't now. */
29509 gcc_assert (!TARGET_64BIT || POINTER_SIZE >= GET_MODE_BITSIZE (mode));
29510
29511 if (WORDS_BIG_ENDIAN && POINTER_SIZE > GET_MODE_BITSIZE (mode))
29512 {
29513 low |= high << 32;
29514 low <<= POINTER_SIZE - GET_MODE_BITSIZE (mode);
29515 high = (HOST_WIDE_INT) low >> 32;
29516 low &= 0xffffffff;
29517 }
29518
29519 if (TARGET_64BIT)
29520 {
29521 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29522 fputs (DOUBLE_INT_ASM_OP, file);
29523 else
29524 fprintf (file, "\t.tc ID_%lx_%lx[TC],",
29525 (long) high & 0xffffffff, (long) low & 0xffffffff);
29526 fprintf (file, "0x%lx%08lx\n",
29527 (long) high & 0xffffffff, (long) low & 0xffffffff);
29528 return;
29529 }
29530 else
29531 {
29532 if (POINTER_SIZE < GET_MODE_BITSIZE (mode))
29533 {
29534 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29535 fputs ("\t.long ", file);
29536 else
29537 fprintf (file, "\t.tc ID_%lx_%lx[TC],",
29538 (long) high & 0xffffffff, (long) low & 0xffffffff);
29539 fprintf (file, "0x%lx,0x%lx\n",
29540 (long) high & 0xffffffff, (long) low & 0xffffffff);
29541 }
29542 else
29543 {
29544 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29545 fputs ("\t.long ", file);
29546 else
29547 fprintf (file, "\t.tc IS_%lx[TC],", (long) low & 0xffffffff);
29548 fprintf (file, "0x%lx\n", (long) low & 0xffffffff);
29549 }
29550 return;
29551 }
29552 }
29553
29554 if (GET_CODE (x) == CONST)
29555 {
29556 gcc_assert (GET_CODE (XEXP (x, 0)) == PLUS
29557 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT);
29558
29559 base = XEXP (XEXP (x, 0), 0);
29560 offset = INTVAL (XEXP (XEXP (x, 0), 1));
29561 }
29562
29563 switch (GET_CODE (base))
29564 {
29565 case SYMBOL_REF:
29566 name = XSTR (base, 0);
29567 break;
29568
29569 case LABEL_REF:
29570 ASM_GENERATE_INTERNAL_LABEL (buf, "L",
29571 CODE_LABEL_NUMBER (XEXP (base, 0)));
29572 break;
29573
29574 case CODE_LABEL:
29575 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (base));
29576 break;
29577
29578 default:
29579 gcc_unreachable ();
29580 }
29581
29582 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29583 fputs (TARGET_32BIT ? "\t.long " : DOUBLE_INT_ASM_OP, file);
29584 else
29585 {
29586 fputs ("\t.tc ", file);
29587 RS6000_OUTPUT_BASENAME (file, name);
29588
29589 if (offset < 0)
29590 fprintf (file, ".N" HOST_WIDE_INT_PRINT_UNSIGNED, - offset);
29591 else if (offset)
29592 fprintf (file, ".P" HOST_WIDE_INT_PRINT_UNSIGNED, offset);
29593
29594 /* Mark large TOC symbols on AIX with [TE] so they are mapped
29595 after other TOC symbols, reducing overflow of small TOC access
29596 to [TC] symbols. */
29597 fputs (TARGET_XCOFF && TARGET_CMODEL != CMODEL_SMALL
29598 ? "[TE]," : "[TC],", file);
29599 }
29600
29601 /* Currently C++ toc references to vtables can be emitted before it
29602 is decided whether the vtable is public or private. If this is
29603 the case, then the linker will eventually complain that there is
29604 a TOC reference to an unknown section. Thus, for vtables only,
29605 we emit the TOC reference to reference the symbol and not the
29606 section. */
29607 if (VTABLE_NAME_P (name))
29608 {
29609 RS6000_OUTPUT_BASENAME (file, name);
29610 if (offset < 0)
29611 fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset);
29612 else if (offset > 0)
29613 fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
29614 }
29615 else
29616 output_addr_const (file, x);
29617
29618 #if HAVE_AS_TLS
29619 if (TARGET_XCOFF && GET_CODE (base) == SYMBOL_REF)
29620 {
29621 switch (SYMBOL_REF_TLS_MODEL (base))
29622 {
29623 case 0:
29624 break;
29625 case TLS_MODEL_LOCAL_EXEC:
29626 fputs ("@le", file);
29627 break;
29628 case TLS_MODEL_INITIAL_EXEC:
29629 fputs ("@ie", file);
29630 break;
29631 /* Use global-dynamic for local-dynamic. */
29632 case TLS_MODEL_GLOBAL_DYNAMIC:
29633 case TLS_MODEL_LOCAL_DYNAMIC:
29634 putc ('\n', file);
29635 (*targetm.asm_out.internal_label) (file, "LCM", labelno);
29636 fputs ("\t.tc .", file);
29637 RS6000_OUTPUT_BASENAME (file, name);
29638 fputs ("[TC],", file);
29639 output_addr_const (file, x);
29640 fputs ("@m", file);
29641 break;
29642 default:
29643 gcc_unreachable ();
29644 }
29645 }
29646 #endif
29647
29648 putc ('\n', file);
29649 }
29650 \f
29651 /* Output an assembler pseudo-op to write an ASCII string of N characters
29652 starting at P to FILE.
29653
29654 On the RS/6000, we have to do this using the .byte operation and
29655 write out special characters outside the quoted string.
29656 Also, the assembler is broken; very long strings are truncated,
29657 so we must artificially break them up early. */
29658
29659 void
29660 output_ascii (FILE *file, const char *p, int n)
29661 {
29662 char c;
29663 int i, count_string;
29664 const char *for_string = "\t.byte \"";
29665 const char *for_decimal = "\t.byte ";
29666 const char *to_close = NULL;
29667
29668 count_string = 0;
29669 for (i = 0; i < n; i++)
29670 {
29671 c = *p++;
29672 if (c >= ' ' && c < 0177)
29673 {
29674 if (for_string)
29675 fputs (for_string, file);
29676 putc (c, file);
29677
29678 /* Write two quotes to get one. */
29679 if (c == '"')
29680 {
29681 putc (c, file);
29682 ++count_string;
29683 }
29684
29685 for_string = NULL;
29686 for_decimal = "\"\n\t.byte ";
29687 to_close = "\"\n";
29688 ++count_string;
29689
29690 if (count_string >= 512)
29691 {
29692 fputs (to_close, file);
29693
29694 for_string = "\t.byte \"";
29695 for_decimal = "\t.byte ";
29696 to_close = NULL;
29697 count_string = 0;
29698 }
29699 }
29700 else
29701 {
29702 if (for_decimal)
29703 fputs (for_decimal, file);
29704 fprintf (file, "%d", c);
29705
29706 for_string = "\n\t.byte \"";
29707 for_decimal = ", ";
29708 to_close = "\n";
29709 count_string = 0;
29710 }
29711 }
29712
29713 /* Now close the string if we have written one. Then end the line. */
29714 if (to_close)
29715 fputs (to_close, file);
29716 }
29717 \f
29718 /* Generate a unique section name for FILENAME for a section type
29719 represented by SECTION_DESC. Output goes into BUF.
29720
29721 SECTION_DESC can be any string, as long as it is different for each
29722 possible section type.
29723
29724 We name the section in the same manner as xlc. The name begins with an
29725 underscore followed by the filename (after stripping any leading directory
29726 names) with the last period replaced by the string SECTION_DESC. If
29727 FILENAME does not contain a period, SECTION_DESC is appended to the end of
29728 the name. */
29729
29730 void
29731 rs6000_gen_section_name (char **buf, const char *filename,
29732 const char *section_desc)
29733 {
29734 const char *q, *after_last_slash, *last_period = 0;
29735 char *p;
29736 int len;
29737
29738 after_last_slash = filename;
29739 for (q = filename; *q; q++)
29740 {
29741 if (*q == '/')
29742 after_last_slash = q + 1;
29743 else if (*q == '.')
29744 last_period = q;
29745 }
29746
29747 len = strlen (after_last_slash) + strlen (section_desc) + 2;
29748 *buf = (char *) xmalloc (len);
29749
29750 p = *buf;
29751 *p++ = '_';
29752
29753 for (q = after_last_slash; *q; q++)
29754 {
29755 if (q == last_period)
29756 {
29757 strcpy (p, section_desc);
29758 p += strlen (section_desc);
29759 break;
29760 }
29761
29762 else if (ISALNUM (*q))
29763 *p++ = *q;
29764 }
29765
29766 if (last_period == 0)
29767 strcpy (p, section_desc);
29768 else
29769 *p = '\0';
29770 }
29771 \f
29772 /* Emit profile function. */
29773
29774 void
29775 output_profile_hook (int labelno ATTRIBUTE_UNUSED)
29776 {
29777 /* Non-standard profiling for kernels, which just saves LR then calls
29778 _mcount without worrying about arg saves. The idea is to change
29779 the function prologue as little as possible as it isn't easy to
29780 account for arg save/restore code added just for _mcount. */
29781 if (TARGET_PROFILE_KERNEL)
29782 return;
29783
29784 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
29785 {
29786 #ifndef NO_PROFILE_COUNTERS
29787 # define NO_PROFILE_COUNTERS 0
29788 #endif
29789 if (NO_PROFILE_COUNTERS)
29790 emit_library_call (init_one_libfunc (RS6000_MCOUNT),
29791 LCT_NORMAL, VOIDmode);
29792 else
29793 {
29794 char buf[30];
29795 const char *label_name;
29796 rtx fun;
29797
29798 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
29799 label_name = ggc_strdup ((*targetm.strip_name_encoding) (buf));
29800 fun = gen_rtx_SYMBOL_REF (Pmode, label_name);
29801
29802 emit_library_call (init_one_libfunc (RS6000_MCOUNT),
29803 LCT_NORMAL, VOIDmode, fun, Pmode);
29804 }
29805 }
29806 else if (DEFAULT_ABI == ABI_DARWIN)
29807 {
29808 const char *mcount_name = RS6000_MCOUNT;
29809 int caller_addr_regno = LR_REGNO;
29810
29811 /* Be conservative and always set this, at least for now. */
29812 crtl->uses_pic_offset_table = 1;
29813
29814 #if TARGET_MACHO
29815 /* For PIC code, set up a stub and collect the caller's address
29816 from r0, which is where the prologue puts it. */
29817 if (MACHOPIC_INDIRECT
29818 && crtl->uses_pic_offset_table)
29819 caller_addr_regno = 0;
29820 #endif
29821 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mcount_name),
29822 LCT_NORMAL, VOIDmode,
29823 gen_rtx_REG (Pmode, caller_addr_regno), Pmode);
29824 }
29825 }
29826
29827 /* Write function profiler code. */
29828
29829 void
29830 output_function_profiler (FILE *file, int labelno)
29831 {
29832 char buf[100];
29833
29834 switch (DEFAULT_ABI)
29835 {
29836 default:
29837 gcc_unreachable ();
29838
29839 case ABI_V4:
29840 if (!TARGET_32BIT)
29841 {
29842 warning (0, "no profiling of 64-bit code for this ABI");
29843 return;
29844 }
29845 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
29846 fprintf (file, "\tmflr %s\n", reg_names[0]);
29847 if (NO_PROFILE_COUNTERS)
29848 {
29849 asm_fprintf (file, "\tstw %s,4(%s)\n",
29850 reg_names[0], reg_names[1]);
29851 }
29852 else if (TARGET_SECURE_PLT && flag_pic)
29853 {
29854 if (TARGET_LINK_STACK)
29855 {
29856 char name[32];
29857 get_ppc476_thunk_name (name);
29858 asm_fprintf (file, "\tbl %s\n", name);
29859 }
29860 else
29861 asm_fprintf (file, "\tbcl 20,31,1f\n1:\n");
29862 asm_fprintf (file, "\tstw %s,4(%s)\n",
29863 reg_names[0], reg_names[1]);
29864 asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
29865 asm_fprintf (file, "\taddis %s,%s,",
29866 reg_names[12], reg_names[12]);
29867 assemble_name (file, buf);
29868 asm_fprintf (file, "-1b@ha\n\tla %s,", reg_names[0]);
29869 assemble_name (file, buf);
29870 asm_fprintf (file, "-1b@l(%s)\n", reg_names[12]);
29871 }
29872 else if (flag_pic == 1)
29873 {
29874 fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file);
29875 asm_fprintf (file, "\tstw %s,4(%s)\n",
29876 reg_names[0], reg_names[1]);
29877 asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
29878 asm_fprintf (file, "\tlwz %s,", reg_names[0]);
29879 assemble_name (file, buf);
29880 asm_fprintf (file, "@got(%s)\n", reg_names[12]);
29881 }
29882 else if (flag_pic > 1)
29883 {
29884 asm_fprintf (file, "\tstw %s,4(%s)\n",
29885 reg_names[0], reg_names[1]);
29886 /* Now, we need to get the address of the label. */
29887 if (TARGET_LINK_STACK)
29888 {
29889 char name[32];
29890 get_ppc476_thunk_name (name);
29891 asm_fprintf (file, "\tbl %s\n\tb 1f\n\t.long ", name);
29892 assemble_name (file, buf);
29893 fputs ("-.\n1:", file);
29894 asm_fprintf (file, "\tmflr %s\n", reg_names[11]);
29895 asm_fprintf (file, "\taddi %s,%s,4\n",
29896 reg_names[11], reg_names[11]);
29897 }
29898 else
29899 {
29900 fputs ("\tbcl 20,31,1f\n\t.long ", file);
29901 assemble_name (file, buf);
29902 fputs ("-.\n1:", file);
29903 asm_fprintf (file, "\tmflr %s\n", reg_names[11]);
29904 }
29905 asm_fprintf (file, "\tlwz %s,0(%s)\n",
29906 reg_names[0], reg_names[11]);
29907 asm_fprintf (file, "\tadd %s,%s,%s\n",
29908 reg_names[0], reg_names[0], reg_names[11]);
29909 }
29910 else
29911 {
29912 asm_fprintf (file, "\tlis %s,", reg_names[12]);
29913 assemble_name (file, buf);
29914 fputs ("@ha\n", file);
29915 asm_fprintf (file, "\tstw %s,4(%s)\n",
29916 reg_names[0], reg_names[1]);
29917 asm_fprintf (file, "\tla %s,", reg_names[0]);
29918 assemble_name (file, buf);
29919 asm_fprintf (file, "@l(%s)\n", reg_names[12]);
29920 }
29921
29922 /* ABI_V4 saves the static chain reg with ASM_OUTPUT_REG_PUSH. */
29923 fprintf (file, "\tbl %s%s\n",
29924 RS6000_MCOUNT, flag_pic ? "@plt" : "");
29925 break;
29926
29927 case ABI_AIX:
29928 case ABI_ELFv2:
29929 case ABI_DARWIN:
29930 /* Don't do anything, done in output_profile_hook (). */
29931 break;
29932 }
29933 }
29934
29935 \f
29936
29937 /* The following variable value is the last issued insn. */
29938
29939 static rtx_insn *last_scheduled_insn;
29940
29941 /* The following variable helps to balance issuing of load and
29942 store instructions */
29943
29944 static int load_store_pendulum;
29945
29946 /* The following variable helps pair divide insns during scheduling. */
29947 static int divide_cnt;
29948 /* The following variable helps pair and alternate vector and vector load
29949 insns during scheduling. */
29950 static int vec_pairing;
29951
29952
29953 /* Power4 load update and store update instructions are cracked into a
29954 load or store and an integer insn which are executed in the same cycle.
29955 Branches have their own dispatch slot which does not count against the
29956 GCC issue rate, but it changes the program flow so there are no other
29957 instructions to issue in this cycle. */
29958
29959 static int
29960 rs6000_variable_issue_1 (rtx_insn *insn, int more)
29961 {
29962 last_scheduled_insn = insn;
29963 if (GET_CODE (PATTERN (insn)) == USE
29964 || GET_CODE (PATTERN (insn)) == CLOBBER)
29965 {
29966 cached_can_issue_more = more;
29967 return cached_can_issue_more;
29968 }
29969
29970 if (insn_terminates_group_p (insn, current_group))
29971 {
29972 cached_can_issue_more = 0;
29973 return cached_can_issue_more;
29974 }
29975
29976 /* If no reservation, but reach here */
29977 if (recog_memoized (insn) < 0)
29978 return more;
29979
29980 if (rs6000_sched_groups)
29981 {
29982 if (is_microcoded_insn (insn))
29983 cached_can_issue_more = 0;
29984 else if (is_cracked_insn (insn))
29985 cached_can_issue_more = more > 2 ? more - 2 : 0;
29986 else
29987 cached_can_issue_more = more - 1;
29988
29989 return cached_can_issue_more;
29990 }
29991
29992 if (rs6000_tune == PROCESSOR_CELL && is_nonpipeline_insn (insn))
29993 return 0;
29994
29995 cached_can_issue_more = more - 1;
29996 return cached_can_issue_more;
29997 }
29998
29999 static int
30000 rs6000_variable_issue (FILE *stream, int verbose, rtx_insn *insn, int more)
30001 {
30002 int r = rs6000_variable_issue_1 (insn, more);
30003 if (verbose)
30004 fprintf (stream, "// rs6000_variable_issue (more = %d) = %d\n", more, r);
30005 return r;
30006 }
30007
30008 /* Adjust the cost of a scheduling dependency. Return the new cost of
30009 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
30010
30011 static int
30012 rs6000_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn, int cost,
30013 unsigned int)
30014 {
30015 enum attr_type attr_type;
30016
30017 if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
30018 return cost;
30019
30020 switch (dep_type)
30021 {
30022 case REG_DEP_TRUE:
30023 {
30024 /* Data dependency; DEP_INSN writes a register that INSN reads
30025 some cycles later. */
30026
30027 /* Separate a load from a narrower, dependent store. */
30028 if ((rs6000_sched_groups || rs6000_tune == PROCESSOR_POWER9)
30029 && GET_CODE (PATTERN (insn)) == SET
30030 && GET_CODE (PATTERN (dep_insn)) == SET
30031 && GET_CODE (XEXP (PATTERN (insn), 1)) == MEM
30032 && GET_CODE (XEXP (PATTERN (dep_insn), 0)) == MEM
30033 && (GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (insn), 1)))
30034 > GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (dep_insn), 0)))))
30035 return cost + 14;
30036
30037 attr_type = get_attr_type (insn);
30038
30039 switch (attr_type)
30040 {
30041 case TYPE_JMPREG:
30042 /* Tell the first scheduling pass about the latency between
30043 a mtctr and bctr (and mtlr and br/blr). The first
30044 scheduling pass will not know about this latency since
30045 the mtctr instruction, which has the latency associated
30046 to it, will be generated by reload. */
30047 return 4;
30048 case TYPE_BRANCH:
30049 /* Leave some extra cycles between a compare and its
30050 dependent branch, to inhibit expensive mispredicts. */
30051 if ((rs6000_tune == PROCESSOR_PPC603
30052 || rs6000_tune == PROCESSOR_PPC604
30053 || rs6000_tune == PROCESSOR_PPC604e
30054 || rs6000_tune == PROCESSOR_PPC620
30055 || rs6000_tune == PROCESSOR_PPC630
30056 || rs6000_tune == PROCESSOR_PPC750
30057 || rs6000_tune == PROCESSOR_PPC7400
30058 || rs6000_tune == PROCESSOR_PPC7450
30059 || rs6000_tune == PROCESSOR_PPCE5500
30060 || rs6000_tune == PROCESSOR_PPCE6500
30061 || rs6000_tune == PROCESSOR_POWER4
30062 || rs6000_tune == PROCESSOR_POWER5
30063 || rs6000_tune == PROCESSOR_POWER7
30064 || rs6000_tune == PROCESSOR_POWER8
30065 || rs6000_tune == PROCESSOR_POWER9
30066 || rs6000_tune == PROCESSOR_CELL)
30067 && recog_memoized (dep_insn)
30068 && (INSN_CODE (dep_insn) >= 0))
30069
30070 switch (get_attr_type (dep_insn))
30071 {
30072 case TYPE_CMP:
30073 case TYPE_FPCOMPARE:
30074 case TYPE_CR_LOGICAL:
30075 return cost + 2;
30076 case TYPE_EXTS:
30077 case TYPE_MUL:
30078 if (get_attr_dot (dep_insn) == DOT_YES)
30079 return cost + 2;
30080 else
30081 break;
30082 case TYPE_SHIFT:
30083 if (get_attr_dot (dep_insn) == DOT_YES
30084 && get_attr_var_shift (dep_insn) == VAR_SHIFT_NO)
30085 return cost + 2;
30086 else
30087 break;
30088 default:
30089 break;
30090 }
30091 break;
30092
30093 case TYPE_STORE:
30094 case TYPE_FPSTORE:
30095 if ((rs6000_tune == PROCESSOR_POWER6)
30096 && recog_memoized (dep_insn)
30097 && (INSN_CODE (dep_insn) >= 0))
30098 {
30099
30100 if (GET_CODE (PATTERN (insn)) != SET)
30101 /* If this happens, we have to extend this to schedule
30102 optimally. Return default for now. */
30103 return cost;
30104
30105 /* Adjust the cost for the case where the value written
30106 by a fixed point operation is used as the address
30107 gen value on a store. */
30108 switch (get_attr_type (dep_insn))
30109 {
30110 case TYPE_LOAD:
30111 case TYPE_CNTLZ:
30112 {
30113 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30114 return get_attr_sign_extend (dep_insn)
30115 == SIGN_EXTEND_YES ? 6 : 4;
30116 break;
30117 }
30118 case TYPE_SHIFT:
30119 {
30120 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30121 return get_attr_var_shift (dep_insn) == VAR_SHIFT_YES ?
30122 6 : 3;
30123 break;
30124 }
30125 case TYPE_INTEGER:
30126 case TYPE_ADD:
30127 case TYPE_LOGICAL:
30128 case TYPE_EXTS:
30129 case TYPE_INSERT:
30130 {
30131 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30132 return 3;
30133 break;
30134 }
30135 case TYPE_STORE:
30136 case TYPE_FPLOAD:
30137 case TYPE_FPSTORE:
30138 {
30139 if (get_attr_update (dep_insn) == UPDATE_YES
30140 && ! rs6000_store_data_bypass_p (dep_insn, insn))
30141 return 3;
30142 break;
30143 }
30144 case TYPE_MUL:
30145 {
30146 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30147 return 17;
30148 break;
30149 }
30150 case TYPE_DIV:
30151 {
30152 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30153 return get_attr_size (dep_insn) == SIZE_32 ? 45 : 57;
30154 break;
30155 }
30156 default:
30157 break;
30158 }
30159 }
30160 break;
30161
30162 case TYPE_LOAD:
30163 if ((rs6000_tune == PROCESSOR_POWER6)
30164 && recog_memoized (dep_insn)
30165 && (INSN_CODE (dep_insn) >= 0))
30166 {
30167
30168 /* Adjust the cost for the case where the value written
30169 by a fixed point instruction is used within the address
30170 gen portion of a subsequent load(u)(x) */
30171 switch (get_attr_type (dep_insn))
30172 {
30173 case TYPE_LOAD:
30174 case TYPE_CNTLZ:
30175 {
30176 if (set_to_load_agen (dep_insn, insn))
30177 return get_attr_sign_extend (dep_insn)
30178 == SIGN_EXTEND_YES ? 6 : 4;
30179 break;
30180 }
30181 case TYPE_SHIFT:
30182 {
30183 if (set_to_load_agen (dep_insn, insn))
30184 return get_attr_var_shift (dep_insn) == VAR_SHIFT_YES ?
30185 6 : 3;
30186 break;
30187 }
30188 case TYPE_INTEGER:
30189 case TYPE_ADD:
30190 case TYPE_LOGICAL:
30191 case TYPE_EXTS:
30192 case TYPE_INSERT:
30193 {
30194 if (set_to_load_agen (dep_insn, insn))
30195 return 3;
30196 break;
30197 }
30198 case TYPE_STORE:
30199 case TYPE_FPLOAD:
30200 case TYPE_FPSTORE:
30201 {
30202 if (get_attr_update (dep_insn) == UPDATE_YES
30203 && set_to_load_agen (dep_insn, insn))
30204 return 3;
30205 break;
30206 }
30207 case TYPE_MUL:
30208 {
30209 if (set_to_load_agen (dep_insn, insn))
30210 return 17;
30211 break;
30212 }
30213 case TYPE_DIV:
30214 {
30215 if (set_to_load_agen (dep_insn, insn))
30216 return get_attr_size (dep_insn) == SIZE_32 ? 45 : 57;
30217 break;
30218 }
30219 default:
30220 break;
30221 }
30222 }
30223 break;
30224
30225 case TYPE_FPLOAD:
30226 if ((rs6000_tune == PROCESSOR_POWER6)
30227 && get_attr_update (insn) == UPDATE_NO
30228 && recog_memoized (dep_insn)
30229 && (INSN_CODE (dep_insn) >= 0)
30230 && (get_attr_type (dep_insn) == TYPE_MFFGPR))
30231 return 2;
30232
30233 default:
30234 break;
30235 }
30236
30237 /* Fall out to return default cost. */
30238 }
30239 break;
30240
30241 case REG_DEP_OUTPUT:
30242 /* Output dependency; DEP_INSN writes a register that INSN writes some
30243 cycles later. */
30244 if ((rs6000_tune == PROCESSOR_POWER6)
30245 && recog_memoized (dep_insn)
30246 && (INSN_CODE (dep_insn) >= 0))
30247 {
30248 attr_type = get_attr_type (insn);
30249
30250 switch (attr_type)
30251 {
30252 case TYPE_FP:
30253 case TYPE_FPSIMPLE:
30254 if (get_attr_type (dep_insn) == TYPE_FP
30255 || get_attr_type (dep_insn) == TYPE_FPSIMPLE)
30256 return 1;
30257 break;
30258 case TYPE_FPLOAD:
30259 if (get_attr_update (insn) == UPDATE_NO
30260 && get_attr_type (dep_insn) == TYPE_MFFGPR)
30261 return 2;
30262 break;
30263 default:
30264 break;
30265 }
30266 }
30267 /* Fall through, no cost for output dependency. */
30268 /* FALLTHRU */
30269
30270 case REG_DEP_ANTI:
30271 /* Anti dependency; DEP_INSN reads a register that INSN writes some
30272 cycles later. */
30273 return 0;
30274
30275 default:
30276 gcc_unreachable ();
30277 }
30278
30279 return cost;
30280 }
30281
30282 /* Debug version of rs6000_adjust_cost. */
30283
30284 static int
30285 rs6000_debug_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn,
30286 int cost, unsigned int dw)
30287 {
30288 int ret = rs6000_adjust_cost (insn, dep_type, dep_insn, cost, dw);
30289
30290 if (ret != cost)
30291 {
30292 const char *dep;
30293
30294 switch (dep_type)
30295 {
30296 default: dep = "unknown depencency"; break;
30297 case REG_DEP_TRUE: dep = "data dependency"; break;
30298 case REG_DEP_OUTPUT: dep = "output dependency"; break;
30299 case REG_DEP_ANTI: dep = "anti depencency"; break;
30300 }
30301
30302 fprintf (stderr,
30303 "\nrs6000_adjust_cost, final cost = %d, orig cost = %d, "
30304 "%s, insn:\n", ret, cost, dep);
30305
30306 debug_rtx (insn);
30307 }
30308
30309 return ret;
30310 }
30311
30312 /* The function returns a true if INSN is microcoded.
30313 Return false otherwise. */
30314
30315 static bool
30316 is_microcoded_insn (rtx_insn *insn)
30317 {
30318 if (!insn || !NONDEBUG_INSN_P (insn)
30319 || GET_CODE (PATTERN (insn)) == USE
30320 || GET_CODE (PATTERN (insn)) == CLOBBER)
30321 return false;
30322
30323 if (rs6000_tune == PROCESSOR_CELL)
30324 return get_attr_cell_micro (insn) == CELL_MICRO_ALWAYS;
30325
30326 if (rs6000_sched_groups
30327 && (rs6000_tune == PROCESSOR_POWER4 || rs6000_tune == PROCESSOR_POWER5))
30328 {
30329 enum attr_type type = get_attr_type (insn);
30330 if ((type == TYPE_LOAD
30331 && get_attr_update (insn) == UPDATE_YES
30332 && get_attr_sign_extend (insn) == SIGN_EXTEND_YES)
30333 || ((type == TYPE_LOAD || type == TYPE_STORE)
30334 && get_attr_update (insn) == UPDATE_YES
30335 && get_attr_indexed (insn) == INDEXED_YES)
30336 || type == TYPE_MFCR)
30337 return true;
30338 }
30339
30340 return false;
30341 }
30342
30343 /* The function returns true if INSN is cracked into 2 instructions
30344 by the processor (and therefore occupies 2 issue slots). */
30345
30346 static bool
30347 is_cracked_insn (rtx_insn *insn)
30348 {
30349 if (!insn || !NONDEBUG_INSN_P (insn)
30350 || GET_CODE (PATTERN (insn)) == USE
30351 || GET_CODE (PATTERN (insn)) == CLOBBER)
30352 return false;
30353
30354 if (rs6000_sched_groups
30355 && (rs6000_tune == PROCESSOR_POWER4 || rs6000_tune == PROCESSOR_POWER5))
30356 {
30357 enum attr_type type = get_attr_type (insn);
30358 if ((type == TYPE_LOAD
30359 && get_attr_sign_extend (insn) == SIGN_EXTEND_YES
30360 && get_attr_update (insn) == UPDATE_NO)
30361 || (type == TYPE_LOAD
30362 && get_attr_sign_extend (insn) == SIGN_EXTEND_NO
30363 && get_attr_update (insn) == UPDATE_YES
30364 && get_attr_indexed (insn) == INDEXED_NO)
30365 || (type == TYPE_STORE
30366 && get_attr_update (insn) == UPDATE_YES
30367 && get_attr_indexed (insn) == INDEXED_NO)
30368 || ((type == TYPE_FPLOAD || type == TYPE_FPSTORE)
30369 && get_attr_update (insn) == UPDATE_YES)
30370 || (type == TYPE_CR_LOGICAL
30371 && get_attr_cr_logical_3op (insn) == CR_LOGICAL_3OP_YES)
30372 || (type == TYPE_EXTS
30373 && get_attr_dot (insn) == DOT_YES)
30374 || (type == TYPE_SHIFT
30375 && get_attr_dot (insn) == DOT_YES
30376 && get_attr_var_shift (insn) == VAR_SHIFT_NO)
30377 || (type == TYPE_MUL
30378 && get_attr_dot (insn) == DOT_YES)
30379 || type == TYPE_DIV
30380 || (type == TYPE_INSERT
30381 && get_attr_size (insn) == SIZE_32))
30382 return true;
30383 }
30384
30385 return false;
30386 }
30387
30388 /* The function returns true if INSN can be issued only from
30389 the branch slot. */
30390
30391 static bool
30392 is_branch_slot_insn (rtx_insn *insn)
30393 {
30394 if (!insn || !NONDEBUG_INSN_P (insn)
30395 || GET_CODE (PATTERN (insn)) == USE
30396 || GET_CODE (PATTERN (insn)) == CLOBBER)
30397 return false;
30398
30399 if (rs6000_sched_groups)
30400 {
30401 enum attr_type type = get_attr_type (insn);
30402 if (type == TYPE_BRANCH || type == TYPE_JMPREG)
30403 return true;
30404 return false;
30405 }
30406
30407 return false;
30408 }
30409
30410 /* The function returns true if out_inst sets a value that is
30411 used in the address generation computation of in_insn */
30412 static bool
30413 set_to_load_agen (rtx_insn *out_insn, rtx_insn *in_insn)
30414 {
30415 rtx out_set, in_set;
30416
30417 /* For performance reasons, only handle the simple case where
30418 both loads are a single_set. */
30419 out_set = single_set (out_insn);
30420 if (out_set)
30421 {
30422 in_set = single_set (in_insn);
30423 if (in_set)
30424 return reg_mentioned_p (SET_DEST (out_set), SET_SRC (in_set));
30425 }
30426
30427 return false;
30428 }
30429
30430 /* Try to determine base/offset/size parts of the given MEM.
30431 Return true if successful, false if all the values couldn't
30432 be determined.
30433
30434 This function only looks for REG or REG+CONST address forms.
30435 REG+REG address form will return false. */
30436
30437 static bool
30438 get_memref_parts (rtx mem, rtx *base, HOST_WIDE_INT *offset,
30439 HOST_WIDE_INT *size)
30440 {
30441 rtx addr_rtx;
30442 if MEM_SIZE_KNOWN_P (mem)
30443 *size = MEM_SIZE (mem);
30444 else
30445 return false;
30446
30447 addr_rtx = (XEXP (mem, 0));
30448 if (GET_CODE (addr_rtx) == PRE_MODIFY)
30449 addr_rtx = XEXP (addr_rtx, 1);
30450
30451 *offset = 0;
30452 while (GET_CODE (addr_rtx) == PLUS
30453 && CONST_INT_P (XEXP (addr_rtx, 1)))
30454 {
30455 *offset += INTVAL (XEXP (addr_rtx, 1));
30456 addr_rtx = XEXP (addr_rtx, 0);
30457 }
30458 if (!REG_P (addr_rtx))
30459 return false;
30460
30461 *base = addr_rtx;
30462 return true;
30463 }
30464
30465 /* The function returns true if the target storage location of
30466 mem1 is adjacent to the target storage location of mem2 */
30467 /* Return 1 if memory locations are adjacent. */
30468
30469 static bool
30470 adjacent_mem_locations (rtx mem1, rtx mem2)
30471 {
30472 rtx reg1, reg2;
30473 HOST_WIDE_INT off1, size1, off2, size2;
30474
30475 if (get_memref_parts (mem1, &reg1, &off1, &size1)
30476 && get_memref_parts (mem2, &reg2, &off2, &size2))
30477 return ((REGNO (reg1) == REGNO (reg2))
30478 && ((off1 + size1 == off2)
30479 || (off2 + size2 == off1)));
30480
30481 return false;
30482 }
30483
30484 /* This function returns true if it can be determined that the two MEM
30485 locations overlap by at least 1 byte based on base reg/offset/size. */
30486
30487 static bool
30488 mem_locations_overlap (rtx mem1, rtx mem2)
30489 {
30490 rtx reg1, reg2;
30491 HOST_WIDE_INT off1, size1, off2, size2;
30492
30493 if (get_memref_parts (mem1, &reg1, &off1, &size1)
30494 && get_memref_parts (mem2, &reg2, &off2, &size2))
30495 return ((REGNO (reg1) == REGNO (reg2))
30496 && (((off1 <= off2) && (off1 + size1 > off2))
30497 || ((off2 <= off1) && (off2 + size2 > off1))));
30498
30499 return false;
30500 }
30501
30502 /* A C statement (sans semicolon) to update the integer scheduling
30503 priority INSN_PRIORITY (INSN). Increase the priority to execute the
30504 INSN earlier, reduce the priority to execute INSN later. Do not
30505 define this macro if you do not need to adjust the scheduling
30506 priorities of insns. */
30507
30508 static int
30509 rs6000_adjust_priority (rtx_insn *insn ATTRIBUTE_UNUSED, int priority)
30510 {
30511 rtx load_mem, str_mem;
30512 /* On machines (like the 750) which have asymmetric integer units,
30513 where one integer unit can do multiply and divides and the other
30514 can't, reduce the priority of multiply/divide so it is scheduled
30515 before other integer operations. */
30516
30517 #if 0
30518 if (! INSN_P (insn))
30519 return priority;
30520
30521 if (GET_CODE (PATTERN (insn)) == USE)
30522 return priority;
30523
30524 switch (rs6000_tune) {
30525 case PROCESSOR_PPC750:
30526 switch (get_attr_type (insn))
30527 {
30528 default:
30529 break;
30530
30531 case TYPE_MUL:
30532 case TYPE_DIV:
30533 fprintf (stderr, "priority was %#x (%d) before adjustment\n",
30534 priority, priority);
30535 if (priority >= 0 && priority < 0x01000000)
30536 priority >>= 3;
30537 break;
30538 }
30539 }
30540 #endif
30541
30542 if (insn_must_be_first_in_group (insn)
30543 && reload_completed
30544 && current_sched_info->sched_max_insns_priority
30545 && rs6000_sched_restricted_insns_priority)
30546 {
30547
30548 /* Prioritize insns that can be dispatched only in the first
30549 dispatch slot. */
30550 if (rs6000_sched_restricted_insns_priority == 1)
30551 /* Attach highest priority to insn. This means that in
30552 haifa-sched.c:ready_sort(), dispatch-slot restriction considerations
30553 precede 'priority' (critical path) considerations. */
30554 return current_sched_info->sched_max_insns_priority;
30555 else if (rs6000_sched_restricted_insns_priority == 2)
30556 /* Increase priority of insn by a minimal amount. This means that in
30557 haifa-sched.c:ready_sort(), only 'priority' (critical path)
30558 considerations precede dispatch-slot restriction considerations. */
30559 return (priority + 1);
30560 }
30561
30562 if (rs6000_tune == PROCESSOR_POWER6
30563 && ((load_store_pendulum == -2 && is_load_insn (insn, &load_mem))
30564 || (load_store_pendulum == 2 && is_store_insn (insn, &str_mem))))
30565 /* Attach highest priority to insn if the scheduler has just issued two
30566 stores and this instruction is a load, or two loads and this instruction
30567 is a store. Power6 wants loads and stores scheduled alternately
30568 when possible */
30569 return current_sched_info->sched_max_insns_priority;
30570
30571 return priority;
30572 }
30573
30574 /* Return true if the instruction is nonpipelined on the Cell. */
30575 static bool
30576 is_nonpipeline_insn (rtx_insn *insn)
30577 {
30578 enum attr_type type;
30579 if (!insn || !NONDEBUG_INSN_P (insn)
30580 || GET_CODE (PATTERN (insn)) == USE
30581 || GET_CODE (PATTERN (insn)) == CLOBBER)
30582 return false;
30583
30584 type = get_attr_type (insn);
30585 if (type == TYPE_MUL
30586 || type == TYPE_DIV
30587 || type == TYPE_SDIV
30588 || type == TYPE_DDIV
30589 || type == TYPE_SSQRT
30590 || type == TYPE_DSQRT
30591 || type == TYPE_MFCR
30592 || type == TYPE_MFCRF
30593 || type == TYPE_MFJMPR)
30594 {
30595 return true;
30596 }
30597 return false;
30598 }
30599
30600
30601 /* Return how many instructions the machine can issue per cycle. */
30602
30603 static int
30604 rs6000_issue_rate (void)
30605 {
30606 /* Unless scheduling for register pressure, use issue rate of 1 for
30607 first scheduling pass to decrease degradation. */
30608 if (!reload_completed && !flag_sched_pressure)
30609 return 1;
30610
30611 switch (rs6000_tune) {
30612 case PROCESSOR_RS64A:
30613 case PROCESSOR_PPC601: /* ? */
30614 case PROCESSOR_PPC7450:
30615 return 3;
30616 case PROCESSOR_PPC440:
30617 case PROCESSOR_PPC603:
30618 case PROCESSOR_PPC750:
30619 case PROCESSOR_PPC7400:
30620 case PROCESSOR_PPC8540:
30621 case PROCESSOR_PPC8548:
30622 case PROCESSOR_CELL:
30623 case PROCESSOR_PPCE300C2:
30624 case PROCESSOR_PPCE300C3:
30625 case PROCESSOR_PPCE500MC:
30626 case PROCESSOR_PPCE500MC64:
30627 case PROCESSOR_PPCE5500:
30628 case PROCESSOR_PPCE6500:
30629 case PROCESSOR_TITAN:
30630 return 2;
30631 case PROCESSOR_PPC476:
30632 case PROCESSOR_PPC604:
30633 case PROCESSOR_PPC604e:
30634 case PROCESSOR_PPC620:
30635 case PROCESSOR_PPC630:
30636 return 4;
30637 case PROCESSOR_POWER4:
30638 case PROCESSOR_POWER5:
30639 case PROCESSOR_POWER6:
30640 case PROCESSOR_POWER7:
30641 return 5;
30642 case PROCESSOR_POWER8:
30643 return 7;
30644 case PROCESSOR_POWER9:
30645 return 6;
30646 default:
30647 return 1;
30648 }
30649 }
30650
30651 /* Return how many instructions to look ahead for better insn
30652 scheduling. */
30653
30654 static int
30655 rs6000_use_sched_lookahead (void)
30656 {
30657 switch (rs6000_tune)
30658 {
30659 case PROCESSOR_PPC8540:
30660 case PROCESSOR_PPC8548:
30661 return 4;
30662
30663 case PROCESSOR_CELL:
30664 return (reload_completed ? 8 : 0);
30665
30666 default:
30667 return 0;
30668 }
30669 }
30670
30671 /* We are choosing insn from the ready queue. Return zero if INSN can be
30672 chosen. */
30673 static int
30674 rs6000_use_sched_lookahead_guard (rtx_insn *insn, int ready_index)
30675 {
30676 if (ready_index == 0)
30677 return 0;
30678
30679 if (rs6000_tune != PROCESSOR_CELL)
30680 return 0;
30681
30682 gcc_assert (insn != NULL_RTX && INSN_P (insn));
30683
30684 if (!reload_completed
30685 || is_nonpipeline_insn (insn)
30686 || is_microcoded_insn (insn))
30687 return 1;
30688
30689 return 0;
30690 }
30691
30692 /* Determine if PAT refers to memory. If so, set MEM_REF to the MEM rtx
30693 and return true. */
30694
30695 static bool
30696 find_mem_ref (rtx pat, rtx *mem_ref)
30697 {
30698 const char * fmt;
30699 int i, j;
30700
30701 /* stack_tie does not produce any real memory traffic. */
30702 if (tie_operand (pat, VOIDmode))
30703 return false;
30704
30705 if (GET_CODE (pat) == MEM)
30706 {
30707 *mem_ref = pat;
30708 return true;
30709 }
30710
30711 /* Recursively process the pattern. */
30712 fmt = GET_RTX_FORMAT (GET_CODE (pat));
30713
30714 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
30715 {
30716 if (fmt[i] == 'e')
30717 {
30718 if (find_mem_ref (XEXP (pat, i), mem_ref))
30719 return true;
30720 }
30721 else if (fmt[i] == 'E')
30722 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
30723 {
30724 if (find_mem_ref (XVECEXP (pat, i, j), mem_ref))
30725 return true;
30726 }
30727 }
30728
30729 return false;
30730 }
30731
30732 /* Determine if PAT is a PATTERN of a load insn. */
30733
30734 static bool
30735 is_load_insn1 (rtx pat, rtx *load_mem)
30736 {
30737 if (!pat || pat == NULL_RTX)
30738 return false;
30739
30740 if (GET_CODE (pat) == SET)
30741 return find_mem_ref (SET_SRC (pat), load_mem);
30742
30743 if (GET_CODE (pat) == PARALLEL)
30744 {
30745 int i;
30746
30747 for (i = 0; i < XVECLEN (pat, 0); i++)
30748 if (is_load_insn1 (XVECEXP (pat, 0, i), load_mem))
30749 return true;
30750 }
30751
30752 return false;
30753 }
30754
30755 /* Determine if INSN loads from memory. */
30756
30757 static bool
30758 is_load_insn (rtx insn, rtx *load_mem)
30759 {
30760 if (!insn || !INSN_P (insn))
30761 return false;
30762
30763 if (CALL_P (insn))
30764 return false;
30765
30766 return is_load_insn1 (PATTERN (insn), load_mem);
30767 }
30768
30769 /* Determine if PAT is a PATTERN of a store insn. */
30770
30771 static bool
30772 is_store_insn1 (rtx pat, rtx *str_mem)
30773 {
30774 if (!pat || pat == NULL_RTX)
30775 return false;
30776
30777 if (GET_CODE (pat) == SET)
30778 return find_mem_ref (SET_DEST (pat), str_mem);
30779
30780 if (GET_CODE (pat) == PARALLEL)
30781 {
30782 int i;
30783
30784 for (i = 0; i < XVECLEN (pat, 0); i++)
30785 if (is_store_insn1 (XVECEXP (pat, 0, i), str_mem))
30786 return true;
30787 }
30788
30789 return false;
30790 }
30791
30792 /* Determine if INSN stores to memory. */
30793
30794 static bool
30795 is_store_insn (rtx insn, rtx *str_mem)
30796 {
30797 if (!insn || !INSN_P (insn))
30798 return false;
30799
30800 return is_store_insn1 (PATTERN (insn), str_mem);
30801 }
30802
30803 /* Return whether TYPE is a Power9 pairable vector instruction type. */
30804
30805 static bool
30806 is_power9_pairable_vec_type (enum attr_type type)
30807 {
30808 switch (type)
30809 {
30810 case TYPE_VECSIMPLE:
30811 case TYPE_VECCOMPLEX:
30812 case TYPE_VECDIV:
30813 case TYPE_VECCMP:
30814 case TYPE_VECPERM:
30815 case TYPE_VECFLOAT:
30816 case TYPE_VECFDIV:
30817 case TYPE_VECDOUBLE:
30818 return true;
30819 default:
30820 break;
30821 }
30822 return false;
30823 }
30824
30825 /* Returns whether the dependence between INSN and NEXT is considered
30826 costly by the given target. */
30827
30828 static bool
30829 rs6000_is_costly_dependence (dep_t dep, int cost, int distance)
30830 {
30831 rtx insn;
30832 rtx next;
30833 rtx load_mem, str_mem;
30834
30835 /* If the flag is not enabled - no dependence is considered costly;
30836 allow all dependent insns in the same group.
30837 This is the most aggressive option. */
30838 if (rs6000_sched_costly_dep == no_dep_costly)
30839 return false;
30840
30841 /* If the flag is set to 1 - a dependence is always considered costly;
30842 do not allow dependent instructions in the same group.
30843 This is the most conservative option. */
30844 if (rs6000_sched_costly_dep == all_deps_costly)
30845 return true;
30846
30847 insn = DEP_PRO (dep);
30848 next = DEP_CON (dep);
30849
30850 if (rs6000_sched_costly_dep == store_to_load_dep_costly
30851 && is_load_insn (next, &load_mem)
30852 && is_store_insn (insn, &str_mem))
30853 /* Prevent load after store in the same group. */
30854 return true;
30855
30856 if (rs6000_sched_costly_dep == true_store_to_load_dep_costly
30857 && is_load_insn (next, &load_mem)
30858 && is_store_insn (insn, &str_mem)
30859 && DEP_TYPE (dep) == REG_DEP_TRUE
30860 && mem_locations_overlap(str_mem, load_mem))
30861 /* Prevent load after store in the same group if it is a true
30862 dependence. */
30863 return true;
30864
30865 /* The flag is set to X; dependences with latency >= X are considered costly,
30866 and will not be scheduled in the same group. */
30867 if (rs6000_sched_costly_dep <= max_dep_latency
30868 && ((cost - distance) >= (int)rs6000_sched_costly_dep))
30869 return true;
30870
30871 return false;
30872 }
30873
30874 /* Return the next insn after INSN that is found before TAIL is reached,
30875 skipping any "non-active" insns - insns that will not actually occupy
30876 an issue slot. Return NULL_RTX if such an insn is not found. */
30877
30878 static rtx_insn *
30879 get_next_active_insn (rtx_insn *insn, rtx_insn *tail)
30880 {
30881 if (insn == NULL_RTX || insn == tail)
30882 return NULL;
30883
30884 while (1)
30885 {
30886 insn = NEXT_INSN (insn);
30887 if (insn == NULL_RTX || insn == tail)
30888 return NULL;
30889
30890 if (CALL_P (insn)
30891 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
30892 || (NONJUMP_INSN_P (insn)
30893 && GET_CODE (PATTERN (insn)) != USE
30894 && GET_CODE (PATTERN (insn)) != CLOBBER
30895 && INSN_CODE (insn) != CODE_FOR_stack_tie))
30896 break;
30897 }
30898 return insn;
30899 }
30900
30901 /* Do Power9 specific sched_reorder2 reordering of ready list. */
30902
30903 static int
30904 power9_sched_reorder2 (rtx_insn **ready, int lastpos)
30905 {
30906 int pos;
30907 int i;
30908 rtx_insn *tmp;
30909 enum attr_type type, type2;
30910
30911 type = get_attr_type (last_scheduled_insn);
30912
30913 /* Try to issue fixed point divides back-to-back in pairs so they will be
30914 routed to separate execution units and execute in parallel. */
30915 if (type == TYPE_DIV && divide_cnt == 0)
30916 {
30917 /* First divide has been scheduled. */
30918 divide_cnt = 1;
30919
30920 /* Scan the ready list looking for another divide, if found move it
30921 to the end of the list so it is chosen next. */
30922 pos = lastpos;
30923 while (pos >= 0)
30924 {
30925 if (recog_memoized (ready[pos]) >= 0
30926 && get_attr_type (ready[pos]) == TYPE_DIV)
30927 {
30928 tmp = ready[pos];
30929 for (i = pos; i < lastpos; i++)
30930 ready[i] = ready[i + 1];
30931 ready[lastpos] = tmp;
30932 break;
30933 }
30934 pos--;
30935 }
30936 }
30937 else
30938 {
30939 /* Last insn was the 2nd divide or not a divide, reset the counter. */
30940 divide_cnt = 0;
30941
30942 /* The best dispatch throughput for vector and vector load insns can be
30943 achieved by interleaving a vector and vector load such that they'll
30944 dispatch to the same superslice. If this pairing cannot be achieved
30945 then it is best to pair vector insns together and vector load insns
30946 together.
30947
30948 To aid in this pairing, vec_pairing maintains the current state with
30949 the following values:
30950
30951 0 : Initial state, no vecload/vector pairing has been started.
30952
30953 1 : A vecload or vector insn has been issued and a candidate for
30954 pairing has been found and moved to the end of the ready
30955 list. */
30956 if (type == TYPE_VECLOAD)
30957 {
30958 /* Issued a vecload. */
30959 if (vec_pairing == 0)
30960 {
30961 int vecload_pos = -1;
30962 /* We issued a single vecload, look for a vector insn to pair it
30963 with. If one isn't found, try to pair another vecload. */
30964 pos = lastpos;
30965 while (pos >= 0)
30966 {
30967 if (recog_memoized (ready[pos]) >= 0)
30968 {
30969 type2 = get_attr_type (ready[pos]);
30970 if (is_power9_pairable_vec_type (type2))
30971 {
30972 /* Found a vector insn to pair with, move it to the
30973 end of the ready list so it is scheduled next. */
30974 tmp = ready[pos];
30975 for (i = pos; i < lastpos; i++)
30976 ready[i] = ready[i + 1];
30977 ready[lastpos] = tmp;
30978 vec_pairing = 1;
30979 return cached_can_issue_more;
30980 }
30981 else if (type2 == TYPE_VECLOAD && vecload_pos == -1)
30982 /* Remember position of first vecload seen. */
30983 vecload_pos = pos;
30984 }
30985 pos--;
30986 }
30987 if (vecload_pos >= 0)
30988 {
30989 /* Didn't find a vector to pair with but did find a vecload,
30990 move it to the end of the ready list. */
30991 tmp = ready[vecload_pos];
30992 for (i = vecload_pos; i < lastpos; i++)
30993 ready[i] = ready[i + 1];
30994 ready[lastpos] = tmp;
30995 vec_pairing = 1;
30996 return cached_can_issue_more;
30997 }
30998 }
30999 }
31000 else if (is_power9_pairable_vec_type (type))
31001 {
31002 /* Issued a vector operation. */
31003 if (vec_pairing == 0)
31004 {
31005 int vec_pos = -1;
31006 /* We issued a single vector insn, look for a vecload to pair it
31007 with. If one isn't found, try to pair another vector. */
31008 pos = lastpos;
31009 while (pos >= 0)
31010 {
31011 if (recog_memoized (ready[pos]) >= 0)
31012 {
31013 type2 = get_attr_type (ready[pos]);
31014 if (type2 == TYPE_VECLOAD)
31015 {
31016 /* Found a vecload insn to pair with, move it to the
31017 end of the ready list so it is scheduled next. */
31018 tmp = ready[pos];
31019 for (i = pos; i < lastpos; i++)
31020 ready[i] = ready[i + 1];
31021 ready[lastpos] = tmp;
31022 vec_pairing = 1;
31023 return cached_can_issue_more;
31024 }
31025 else if (is_power9_pairable_vec_type (type2)
31026 && vec_pos == -1)
31027 /* Remember position of first vector insn seen. */
31028 vec_pos = pos;
31029 }
31030 pos--;
31031 }
31032 if (vec_pos >= 0)
31033 {
31034 /* Didn't find a vecload to pair with but did find a vector
31035 insn, move it to the end of the ready list. */
31036 tmp = ready[vec_pos];
31037 for (i = vec_pos; i < lastpos; i++)
31038 ready[i] = ready[i + 1];
31039 ready[lastpos] = tmp;
31040 vec_pairing = 1;
31041 return cached_can_issue_more;
31042 }
31043 }
31044 }
31045
31046 /* We've either finished a vec/vecload pair, couldn't find an insn to
31047 continue the current pair, or the last insn had nothing to do with
31048 with pairing. In any case, reset the state. */
31049 vec_pairing = 0;
31050 }
31051
31052 return cached_can_issue_more;
31053 }
31054
31055 /* We are about to begin issuing insns for this clock cycle. */
31056
31057 static int
31058 rs6000_sched_reorder (FILE *dump ATTRIBUTE_UNUSED, int sched_verbose,
31059 rtx_insn **ready ATTRIBUTE_UNUSED,
31060 int *pn_ready ATTRIBUTE_UNUSED,
31061 int clock_var ATTRIBUTE_UNUSED)
31062 {
31063 int n_ready = *pn_ready;
31064
31065 if (sched_verbose)
31066 fprintf (dump, "// rs6000_sched_reorder :\n");
31067
31068 /* Reorder the ready list, if the second to last ready insn
31069 is a nonepipeline insn. */
31070 if (rs6000_tune == PROCESSOR_CELL && n_ready > 1)
31071 {
31072 if (is_nonpipeline_insn (ready[n_ready - 1])
31073 && (recog_memoized (ready[n_ready - 2]) > 0))
31074 /* Simply swap first two insns. */
31075 std::swap (ready[n_ready - 1], ready[n_ready - 2]);
31076 }
31077
31078 if (rs6000_tune == PROCESSOR_POWER6)
31079 load_store_pendulum = 0;
31080
31081 return rs6000_issue_rate ();
31082 }
31083
31084 /* Like rs6000_sched_reorder, but called after issuing each insn. */
31085
31086 static int
31087 rs6000_sched_reorder2 (FILE *dump, int sched_verbose, rtx_insn **ready,
31088 int *pn_ready, int clock_var ATTRIBUTE_UNUSED)
31089 {
31090 if (sched_verbose)
31091 fprintf (dump, "// rs6000_sched_reorder2 :\n");
31092
31093 /* For Power6, we need to handle some special cases to try and keep the
31094 store queue from overflowing and triggering expensive flushes.
31095
31096 This code monitors how load and store instructions are being issued
31097 and skews the ready list one way or the other to increase the likelihood
31098 that a desired instruction is issued at the proper time.
31099
31100 A couple of things are done. First, we maintain a "load_store_pendulum"
31101 to track the current state of load/store issue.
31102
31103 - If the pendulum is at zero, then no loads or stores have been
31104 issued in the current cycle so we do nothing.
31105
31106 - If the pendulum is 1, then a single load has been issued in this
31107 cycle and we attempt to locate another load in the ready list to
31108 issue with it.
31109
31110 - If the pendulum is -2, then two stores have already been
31111 issued in this cycle, so we increase the priority of the first load
31112 in the ready list to increase it's likelihood of being chosen first
31113 in the next cycle.
31114
31115 - If the pendulum is -1, then a single store has been issued in this
31116 cycle and we attempt to locate another store in the ready list to
31117 issue with it, preferring a store to an adjacent memory location to
31118 facilitate store pairing in the store queue.
31119
31120 - If the pendulum is 2, then two loads have already been
31121 issued in this cycle, so we increase the priority of the first store
31122 in the ready list to increase it's likelihood of being chosen first
31123 in the next cycle.
31124
31125 - If the pendulum < -2 or > 2, then do nothing.
31126
31127 Note: This code covers the most common scenarios. There exist non
31128 load/store instructions which make use of the LSU and which
31129 would need to be accounted for to strictly model the behavior
31130 of the machine. Those instructions are currently unaccounted
31131 for to help minimize compile time overhead of this code.
31132 */
31133 if (rs6000_tune == PROCESSOR_POWER6 && last_scheduled_insn)
31134 {
31135 int pos;
31136 int i;
31137 rtx_insn *tmp;
31138 rtx load_mem, str_mem;
31139
31140 if (is_store_insn (last_scheduled_insn, &str_mem))
31141 /* Issuing a store, swing the load_store_pendulum to the left */
31142 load_store_pendulum--;
31143 else if (is_load_insn (last_scheduled_insn, &load_mem))
31144 /* Issuing a load, swing the load_store_pendulum to the right */
31145 load_store_pendulum++;
31146 else
31147 return cached_can_issue_more;
31148
31149 /* If the pendulum is balanced, or there is only one instruction on
31150 the ready list, then all is well, so return. */
31151 if ((load_store_pendulum == 0) || (*pn_ready <= 1))
31152 return cached_can_issue_more;
31153
31154 if (load_store_pendulum == 1)
31155 {
31156 /* A load has been issued in this cycle. Scan the ready list
31157 for another load to issue with it */
31158 pos = *pn_ready-1;
31159
31160 while (pos >= 0)
31161 {
31162 if (is_load_insn (ready[pos], &load_mem))
31163 {
31164 /* Found a load. Move it to the head of the ready list,
31165 and adjust it's priority so that it is more likely to
31166 stay there */
31167 tmp = ready[pos];
31168 for (i=pos; i<*pn_ready-1; i++)
31169 ready[i] = ready[i + 1];
31170 ready[*pn_ready-1] = tmp;
31171
31172 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
31173 INSN_PRIORITY (tmp)++;
31174 break;
31175 }
31176 pos--;
31177 }
31178 }
31179 else if (load_store_pendulum == -2)
31180 {
31181 /* Two stores have been issued in this cycle. Increase the
31182 priority of the first load in the ready list to favor it for
31183 issuing in the next cycle. */
31184 pos = *pn_ready-1;
31185
31186 while (pos >= 0)
31187 {
31188 if (is_load_insn (ready[pos], &load_mem)
31189 && !sel_sched_p ()
31190 && INSN_PRIORITY_KNOWN (ready[pos]))
31191 {
31192 INSN_PRIORITY (ready[pos])++;
31193
31194 /* Adjust the pendulum to account for the fact that a load
31195 was found and increased in priority. This is to prevent
31196 increasing the priority of multiple loads */
31197 load_store_pendulum--;
31198
31199 break;
31200 }
31201 pos--;
31202 }
31203 }
31204 else if (load_store_pendulum == -1)
31205 {
31206 /* A store has been issued in this cycle. Scan the ready list for
31207 another store to issue with it, preferring a store to an adjacent
31208 memory location */
31209 int first_store_pos = -1;
31210
31211 pos = *pn_ready-1;
31212
31213 while (pos >= 0)
31214 {
31215 if (is_store_insn (ready[pos], &str_mem))
31216 {
31217 rtx str_mem2;
31218 /* Maintain the index of the first store found on the
31219 list */
31220 if (first_store_pos == -1)
31221 first_store_pos = pos;
31222
31223 if (is_store_insn (last_scheduled_insn, &str_mem2)
31224 && adjacent_mem_locations (str_mem, str_mem2))
31225 {
31226 /* Found an adjacent store. Move it to the head of the
31227 ready list, and adjust it's priority so that it is
31228 more likely to stay there */
31229 tmp = ready[pos];
31230 for (i=pos; i<*pn_ready-1; i++)
31231 ready[i] = ready[i + 1];
31232 ready[*pn_ready-1] = tmp;
31233
31234 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
31235 INSN_PRIORITY (tmp)++;
31236
31237 first_store_pos = -1;
31238
31239 break;
31240 };
31241 }
31242 pos--;
31243 }
31244
31245 if (first_store_pos >= 0)
31246 {
31247 /* An adjacent store wasn't found, but a non-adjacent store was,
31248 so move the non-adjacent store to the front of the ready
31249 list, and adjust its priority so that it is more likely to
31250 stay there. */
31251 tmp = ready[first_store_pos];
31252 for (i=first_store_pos; i<*pn_ready-1; i++)
31253 ready[i] = ready[i + 1];
31254 ready[*pn_ready-1] = tmp;
31255 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
31256 INSN_PRIORITY (tmp)++;
31257 }
31258 }
31259 else if (load_store_pendulum == 2)
31260 {
31261 /* Two loads have been issued in this cycle. Increase the priority
31262 of the first store in the ready list to favor it for issuing in
31263 the next cycle. */
31264 pos = *pn_ready-1;
31265
31266 while (pos >= 0)
31267 {
31268 if (is_store_insn (ready[pos], &str_mem)
31269 && !sel_sched_p ()
31270 && INSN_PRIORITY_KNOWN (ready[pos]))
31271 {
31272 INSN_PRIORITY (ready[pos])++;
31273
31274 /* Adjust the pendulum to account for the fact that a store
31275 was found and increased in priority. This is to prevent
31276 increasing the priority of multiple stores */
31277 load_store_pendulum++;
31278
31279 break;
31280 }
31281 pos--;
31282 }
31283 }
31284 }
31285
31286 /* Do Power9 dependent reordering if necessary. */
31287 if (rs6000_tune == PROCESSOR_POWER9 && last_scheduled_insn
31288 && recog_memoized (last_scheduled_insn) >= 0)
31289 return power9_sched_reorder2 (ready, *pn_ready - 1);
31290
31291 return cached_can_issue_more;
31292 }
31293
31294 /* Return whether the presence of INSN causes a dispatch group termination
31295 of group WHICH_GROUP.
31296
31297 If WHICH_GROUP == current_group, this function will return true if INSN
31298 causes the termination of the current group (i.e, the dispatch group to
31299 which INSN belongs). This means that INSN will be the last insn in the
31300 group it belongs to.
31301
31302 If WHICH_GROUP == previous_group, this function will return true if INSN
31303 causes the termination of the previous group (i.e, the dispatch group that
31304 precedes the group to which INSN belongs). This means that INSN will be
31305 the first insn in the group it belongs to). */
31306
31307 static bool
31308 insn_terminates_group_p (rtx_insn *insn, enum group_termination which_group)
31309 {
31310 bool first, last;
31311
31312 if (! insn)
31313 return false;
31314
31315 first = insn_must_be_first_in_group (insn);
31316 last = insn_must_be_last_in_group (insn);
31317
31318 if (first && last)
31319 return true;
31320
31321 if (which_group == current_group)
31322 return last;
31323 else if (which_group == previous_group)
31324 return first;
31325
31326 return false;
31327 }
31328
31329
31330 static bool
31331 insn_must_be_first_in_group (rtx_insn *insn)
31332 {
31333 enum attr_type type;
31334
31335 if (!insn
31336 || NOTE_P (insn)
31337 || DEBUG_INSN_P (insn)
31338 || GET_CODE (PATTERN (insn)) == USE
31339 || GET_CODE (PATTERN (insn)) == CLOBBER)
31340 return false;
31341
31342 switch (rs6000_tune)
31343 {
31344 case PROCESSOR_POWER5:
31345 if (is_cracked_insn (insn))
31346 return true;
31347 /* FALLTHRU */
31348 case PROCESSOR_POWER4:
31349 if (is_microcoded_insn (insn))
31350 return true;
31351
31352 if (!rs6000_sched_groups)
31353 return false;
31354
31355 type = get_attr_type (insn);
31356
31357 switch (type)
31358 {
31359 case TYPE_MFCR:
31360 case TYPE_MFCRF:
31361 case TYPE_MTCR:
31362 case TYPE_CR_LOGICAL:
31363 case TYPE_MTJMPR:
31364 case TYPE_MFJMPR:
31365 case TYPE_DIV:
31366 case TYPE_LOAD_L:
31367 case TYPE_STORE_C:
31368 case TYPE_ISYNC:
31369 case TYPE_SYNC:
31370 return true;
31371 default:
31372 break;
31373 }
31374 break;
31375 case PROCESSOR_POWER6:
31376 type = get_attr_type (insn);
31377
31378 switch (type)
31379 {
31380 case TYPE_EXTS:
31381 case TYPE_CNTLZ:
31382 case TYPE_TRAP:
31383 case TYPE_MUL:
31384 case TYPE_INSERT:
31385 case TYPE_FPCOMPARE:
31386 case TYPE_MFCR:
31387 case TYPE_MTCR:
31388 case TYPE_MFJMPR:
31389 case TYPE_MTJMPR:
31390 case TYPE_ISYNC:
31391 case TYPE_SYNC:
31392 case TYPE_LOAD_L:
31393 case TYPE_STORE_C:
31394 return true;
31395 case TYPE_SHIFT:
31396 if (get_attr_dot (insn) == DOT_NO
31397 || get_attr_var_shift (insn) == VAR_SHIFT_NO)
31398 return true;
31399 else
31400 break;
31401 case TYPE_DIV:
31402 if (get_attr_size (insn) == SIZE_32)
31403 return true;
31404 else
31405 break;
31406 case TYPE_LOAD:
31407 case TYPE_STORE:
31408 case TYPE_FPLOAD:
31409 case TYPE_FPSTORE:
31410 if (get_attr_update (insn) == UPDATE_YES)
31411 return true;
31412 else
31413 break;
31414 default:
31415 break;
31416 }
31417 break;
31418 case PROCESSOR_POWER7:
31419 type = get_attr_type (insn);
31420
31421 switch (type)
31422 {
31423 case TYPE_CR_LOGICAL:
31424 case TYPE_MFCR:
31425 case TYPE_MFCRF:
31426 case TYPE_MTCR:
31427 case TYPE_DIV:
31428 case TYPE_ISYNC:
31429 case TYPE_LOAD_L:
31430 case TYPE_STORE_C:
31431 case TYPE_MFJMPR:
31432 case TYPE_MTJMPR:
31433 return true;
31434 case TYPE_MUL:
31435 case TYPE_SHIFT:
31436 case TYPE_EXTS:
31437 if (get_attr_dot (insn) == DOT_YES)
31438 return true;
31439 else
31440 break;
31441 case TYPE_LOAD:
31442 if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
31443 || get_attr_update (insn) == UPDATE_YES)
31444 return true;
31445 else
31446 break;
31447 case TYPE_STORE:
31448 case TYPE_FPLOAD:
31449 case TYPE_FPSTORE:
31450 if (get_attr_update (insn) == UPDATE_YES)
31451 return true;
31452 else
31453 break;
31454 default:
31455 break;
31456 }
31457 break;
31458 case PROCESSOR_POWER8:
31459 type = get_attr_type (insn);
31460
31461 switch (type)
31462 {
31463 case TYPE_CR_LOGICAL:
31464 case TYPE_MFCR:
31465 case TYPE_MFCRF:
31466 case TYPE_MTCR:
31467 case TYPE_SYNC:
31468 case TYPE_ISYNC:
31469 case TYPE_LOAD_L:
31470 case TYPE_STORE_C:
31471 case TYPE_VECSTORE:
31472 case TYPE_MFJMPR:
31473 case TYPE_MTJMPR:
31474 return true;
31475 case TYPE_SHIFT:
31476 case TYPE_EXTS:
31477 case TYPE_MUL:
31478 if (get_attr_dot (insn) == DOT_YES)
31479 return true;
31480 else
31481 break;
31482 case TYPE_LOAD:
31483 if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
31484 || get_attr_update (insn) == UPDATE_YES)
31485 return true;
31486 else
31487 break;
31488 case TYPE_STORE:
31489 if (get_attr_update (insn) == UPDATE_YES
31490 && get_attr_indexed (insn) == INDEXED_YES)
31491 return true;
31492 else
31493 break;
31494 default:
31495 break;
31496 }
31497 break;
31498 default:
31499 break;
31500 }
31501
31502 return false;
31503 }
31504
31505 static bool
31506 insn_must_be_last_in_group (rtx_insn *insn)
31507 {
31508 enum attr_type type;
31509
31510 if (!insn
31511 || NOTE_P (insn)
31512 || DEBUG_INSN_P (insn)
31513 || GET_CODE (PATTERN (insn)) == USE
31514 || GET_CODE (PATTERN (insn)) == CLOBBER)
31515 return false;
31516
31517 switch (rs6000_tune) {
31518 case PROCESSOR_POWER4:
31519 case PROCESSOR_POWER5:
31520 if (is_microcoded_insn (insn))
31521 return true;
31522
31523 if (is_branch_slot_insn (insn))
31524 return true;
31525
31526 break;
31527 case PROCESSOR_POWER6:
31528 type = get_attr_type (insn);
31529
31530 switch (type)
31531 {
31532 case TYPE_EXTS:
31533 case TYPE_CNTLZ:
31534 case TYPE_TRAP:
31535 case TYPE_MUL:
31536 case TYPE_FPCOMPARE:
31537 case TYPE_MFCR:
31538 case TYPE_MTCR:
31539 case TYPE_MFJMPR:
31540 case TYPE_MTJMPR:
31541 case TYPE_ISYNC:
31542 case TYPE_SYNC:
31543 case TYPE_LOAD_L:
31544 case TYPE_STORE_C:
31545 return true;
31546 case TYPE_SHIFT:
31547 if (get_attr_dot (insn) == DOT_NO
31548 || get_attr_var_shift (insn) == VAR_SHIFT_NO)
31549 return true;
31550 else
31551 break;
31552 case TYPE_DIV:
31553 if (get_attr_size (insn) == SIZE_32)
31554 return true;
31555 else
31556 break;
31557 default:
31558 break;
31559 }
31560 break;
31561 case PROCESSOR_POWER7:
31562 type = get_attr_type (insn);
31563
31564 switch (type)
31565 {
31566 case TYPE_ISYNC:
31567 case TYPE_SYNC:
31568 case TYPE_LOAD_L:
31569 case TYPE_STORE_C:
31570 return true;
31571 case TYPE_LOAD:
31572 if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
31573 && get_attr_update (insn) == UPDATE_YES)
31574 return true;
31575 else
31576 break;
31577 case TYPE_STORE:
31578 if (get_attr_update (insn) == UPDATE_YES
31579 && get_attr_indexed (insn) == INDEXED_YES)
31580 return true;
31581 else
31582 break;
31583 default:
31584 break;
31585 }
31586 break;
31587 case PROCESSOR_POWER8:
31588 type = get_attr_type (insn);
31589
31590 switch (type)
31591 {
31592 case TYPE_MFCR:
31593 case TYPE_MTCR:
31594 case TYPE_ISYNC:
31595 case TYPE_SYNC:
31596 case TYPE_LOAD_L:
31597 case TYPE_STORE_C:
31598 return true;
31599 case TYPE_LOAD:
31600 if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
31601 && get_attr_update (insn) == UPDATE_YES)
31602 return true;
31603 else
31604 break;
31605 case TYPE_STORE:
31606 if (get_attr_update (insn) == UPDATE_YES
31607 && get_attr_indexed (insn) == INDEXED_YES)
31608 return true;
31609 else
31610 break;
31611 default:
31612 break;
31613 }
31614 break;
31615 default:
31616 break;
31617 }
31618
31619 return false;
31620 }
31621
31622 /* Return true if it is recommended to keep NEXT_INSN "far" (in a separate
31623 dispatch group) from the insns in GROUP_INSNS. Return false otherwise. */
31624
31625 static bool
31626 is_costly_group (rtx *group_insns, rtx next_insn)
31627 {
31628 int i;
31629 int issue_rate = rs6000_issue_rate ();
31630
31631 for (i = 0; i < issue_rate; i++)
31632 {
31633 sd_iterator_def sd_it;
31634 dep_t dep;
31635 rtx insn = group_insns[i];
31636
31637 if (!insn)
31638 continue;
31639
31640 FOR_EACH_DEP (insn, SD_LIST_RES_FORW, sd_it, dep)
31641 {
31642 rtx next = DEP_CON (dep);
31643
31644 if (next == next_insn
31645 && rs6000_is_costly_dependence (dep, dep_cost (dep), 0))
31646 return true;
31647 }
31648 }
31649
31650 return false;
31651 }
31652
31653 /* Utility of the function redefine_groups.
31654 Check if it is too costly to schedule NEXT_INSN together with GROUP_INSNS
31655 in the same dispatch group. If so, insert nops before NEXT_INSN, in order
31656 to keep it "far" (in a separate group) from GROUP_INSNS, following
31657 one of the following schemes, depending on the value of the flag
31658 -minsert_sched_nops = X:
31659 (1) X == sched_finish_regroup_exact: insert exactly as many nops as needed
31660 in order to force NEXT_INSN into a separate group.
31661 (2) X < sched_finish_regroup_exact: insert exactly X nops.
31662 GROUP_END, CAN_ISSUE_MORE and GROUP_COUNT record the state after nop
31663 insertion (has a group just ended, how many vacant issue slots remain in the
31664 last group, and how many dispatch groups were encountered so far). */
31665
31666 static int
31667 force_new_group (int sched_verbose, FILE *dump, rtx *group_insns,
31668 rtx_insn *next_insn, bool *group_end, int can_issue_more,
31669 int *group_count)
31670 {
31671 rtx nop;
31672 bool force;
31673 int issue_rate = rs6000_issue_rate ();
31674 bool end = *group_end;
31675 int i;
31676
31677 if (next_insn == NULL_RTX || DEBUG_INSN_P (next_insn))
31678 return can_issue_more;
31679
31680 if (rs6000_sched_insert_nops > sched_finish_regroup_exact)
31681 return can_issue_more;
31682
31683 force = is_costly_group (group_insns, next_insn);
31684 if (!force)
31685 return can_issue_more;
31686
31687 if (sched_verbose > 6)
31688 fprintf (dump,"force: group count = %d, can_issue_more = %d\n",
31689 *group_count ,can_issue_more);
31690
31691 if (rs6000_sched_insert_nops == sched_finish_regroup_exact)
31692 {
31693 if (*group_end)
31694 can_issue_more = 0;
31695
31696 /* Since only a branch can be issued in the last issue_slot, it is
31697 sufficient to insert 'can_issue_more - 1' nops if next_insn is not
31698 a branch. If next_insn is a branch, we insert 'can_issue_more' nops;
31699 in this case the last nop will start a new group and the branch
31700 will be forced to the new group. */
31701 if (can_issue_more && !is_branch_slot_insn (next_insn))
31702 can_issue_more--;
31703
31704 /* Do we have a special group ending nop? */
31705 if (rs6000_tune == PROCESSOR_POWER6 || rs6000_tune == PROCESSOR_POWER7
31706 || rs6000_tune == PROCESSOR_POWER8)
31707 {
31708 nop = gen_group_ending_nop ();
31709 emit_insn_before (nop, next_insn);
31710 can_issue_more = 0;
31711 }
31712 else
31713 while (can_issue_more > 0)
31714 {
31715 nop = gen_nop ();
31716 emit_insn_before (nop, next_insn);
31717 can_issue_more--;
31718 }
31719
31720 *group_end = true;
31721 return 0;
31722 }
31723
31724 if (rs6000_sched_insert_nops < sched_finish_regroup_exact)
31725 {
31726 int n_nops = rs6000_sched_insert_nops;
31727
31728 /* Nops can't be issued from the branch slot, so the effective
31729 issue_rate for nops is 'issue_rate - 1'. */
31730 if (can_issue_more == 0)
31731 can_issue_more = issue_rate;
31732 can_issue_more--;
31733 if (can_issue_more == 0)
31734 {
31735 can_issue_more = issue_rate - 1;
31736 (*group_count)++;
31737 end = true;
31738 for (i = 0; i < issue_rate; i++)
31739 {
31740 group_insns[i] = 0;
31741 }
31742 }
31743
31744 while (n_nops > 0)
31745 {
31746 nop = gen_nop ();
31747 emit_insn_before (nop, next_insn);
31748 if (can_issue_more == issue_rate - 1) /* new group begins */
31749 end = false;
31750 can_issue_more--;
31751 if (can_issue_more == 0)
31752 {
31753 can_issue_more = issue_rate - 1;
31754 (*group_count)++;
31755 end = true;
31756 for (i = 0; i < issue_rate; i++)
31757 {
31758 group_insns[i] = 0;
31759 }
31760 }
31761 n_nops--;
31762 }
31763
31764 /* Scale back relative to 'issue_rate' (instead of 'issue_rate - 1'). */
31765 can_issue_more++;
31766
31767 /* Is next_insn going to start a new group? */
31768 *group_end
31769 = (end
31770 || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
31771 || (can_issue_more <= 2 && is_cracked_insn (next_insn))
31772 || (can_issue_more < issue_rate &&
31773 insn_terminates_group_p (next_insn, previous_group)));
31774 if (*group_end && end)
31775 (*group_count)--;
31776
31777 if (sched_verbose > 6)
31778 fprintf (dump, "done force: group count = %d, can_issue_more = %d\n",
31779 *group_count, can_issue_more);
31780 return can_issue_more;
31781 }
31782
31783 return can_issue_more;
31784 }
31785
31786 /* This function tries to synch the dispatch groups that the compiler "sees"
31787 with the dispatch groups that the processor dispatcher is expected to
31788 form in practice. It tries to achieve this synchronization by forcing the
31789 estimated processor grouping on the compiler (as opposed to the function
31790 'pad_goups' which tries to force the scheduler's grouping on the processor).
31791
31792 The function scans the insn sequence between PREV_HEAD_INSN and TAIL and
31793 examines the (estimated) dispatch groups that will be formed by the processor
31794 dispatcher. It marks these group boundaries to reflect the estimated
31795 processor grouping, overriding the grouping that the scheduler had marked.
31796 Depending on the value of the flag '-minsert-sched-nops' this function can
31797 force certain insns into separate groups or force a certain distance between
31798 them by inserting nops, for example, if there exists a "costly dependence"
31799 between the insns.
31800
31801 The function estimates the group boundaries that the processor will form as
31802 follows: It keeps track of how many vacant issue slots are available after
31803 each insn. A subsequent insn will start a new group if one of the following
31804 4 cases applies:
31805 - no more vacant issue slots remain in the current dispatch group.
31806 - only the last issue slot, which is the branch slot, is vacant, but the next
31807 insn is not a branch.
31808 - only the last 2 or less issue slots, including the branch slot, are vacant,
31809 which means that a cracked insn (which occupies two issue slots) can't be
31810 issued in this group.
31811 - less than 'issue_rate' slots are vacant, and the next insn always needs to
31812 start a new group. */
31813
31814 static int
31815 redefine_groups (FILE *dump, int sched_verbose, rtx_insn *prev_head_insn,
31816 rtx_insn *tail)
31817 {
31818 rtx_insn *insn, *next_insn;
31819 int issue_rate;
31820 int can_issue_more;
31821 int slot, i;
31822 bool group_end;
31823 int group_count = 0;
31824 rtx *group_insns;
31825
31826 /* Initialize. */
31827 issue_rate = rs6000_issue_rate ();
31828 group_insns = XALLOCAVEC (rtx, issue_rate);
31829 for (i = 0; i < issue_rate; i++)
31830 {
31831 group_insns[i] = 0;
31832 }
31833 can_issue_more = issue_rate;
31834 slot = 0;
31835 insn = get_next_active_insn (prev_head_insn, tail);
31836 group_end = false;
31837
31838 while (insn != NULL_RTX)
31839 {
31840 slot = (issue_rate - can_issue_more);
31841 group_insns[slot] = insn;
31842 can_issue_more =
31843 rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
31844 if (insn_terminates_group_p (insn, current_group))
31845 can_issue_more = 0;
31846
31847 next_insn = get_next_active_insn (insn, tail);
31848 if (next_insn == NULL_RTX)
31849 return group_count + 1;
31850
31851 /* Is next_insn going to start a new group? */
31852 group_end
31853 = (can_issue_more == 0
31854 || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
31855 || (can_issue_more <= 2 && is_cracked_insn (next_insn))
31856 || (can_issue_more < issue_rate &&
31857 insn_terminates_group_p (next_insn, previous_group)));
31858
31859 can_issue_more = force_new_group (sched_verbose, dump, group_insns,
31860 next_insn, &group_end, can_issue_more,
31861 &group_count);
31862
31863 if (group_end)
31864 {
31865 group_count++;
31866 can_issue_more = 0;
31867 for (i = 0; i < issue_rate; i++)
31868 {
31869 group_insns[i] = 0;
31870 }
31871 }
31872
31873 if (GET_MODE (next_insn) == TImode && can_issue_more)
31874 PUT_MODE (next_insn, VOIDmode);
31875 else if (!can_issue_more && GET_MODE (next_insn) != TImode)
31876 PUT_MODE (next_insn, TImode);
31877
31878 insn = next_insn;
31879 if (can_issue_more == 0)
31880 can_issue_more = issue_rate;
31881 } /* while */
31882
31883 return group_count;
31884 }
31885
31886 /* Scan the insn sequence between PREV_HEAD_INSN and TAIL and examine the
31887 dispatch group boundaries that the scheduler had marked. Pad with nops
31888 any dispatch groups which have vacant issue slots, in order to force the
31889 scheduler's grouping on the processor dispatcher. The function
31890 returns the number of dispatch groups found. */
31891
31892 static int
31893 pad_groups (FILE *dump, int sched_verbose, rtx_insn *prev_head_insn,
31894 rtx_insn *tail)
31895 {
31896 rtx_insn *insn, *next_insn;
31897 rtx nop;
31898 int issue_rate;
31899 int can_issue_more;
31900 int group_end;
31901 int group_count = 0;
31902
31903 /* Initialize issue_rate. */
31904 issue_rate = rs6000_issue_rate ();
31905 can_issue_more = issue_rate;
31906
31907 insn = get_next_active_insn (prev_head_insn, tail);
31908 next_insn = get_next_active_insn (insn, tail);
31909
31910 while (insn != NULL_RTX)
31911 {
31912 can_issue_more =
31913 rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
31914
31915 group_end = (next_insn == NULL_RTX || GET_MODE (next_insn) == TImode);
31916
31917 if (next_insn == NULL_RTX)
31918 break;
31919
31920 if (group_end)
31921 {
31922 /* If the scheduler had marked group termination at this location
31923 (between insn and next_insn), and neither insn nor next_insn will
31924 force group termination, pad the group with nops to force group
31925 termination. */
31926 if (can_issue_more
31927 && (rs6000_sched_insert_nops == sched_finish_pad_groups)
31928 && !insn_terminates_group_p (insn, current_group)
31929 && !insn_terminates_group_p (next_insn, previous_group))
31930 {
31931 if (!is_branch_slot_insn (next_insn))
31932 can_issue_more--;
31933
31934 while (can_issue_more)
31935 {
31936 nop = gen_nop ();
31937 emit_insn_before (nop, next_insn);
31938 can_issue_more--;
31939 }
31940 }
31941
31942 can_issue_more = issue_rate;
31943 group_count++;
31944 }
31945
31946 insn = next_insn;
31947 next_insn = get_next_active_insn (insn, tail);
31948 }
31949
31950 return group_count;
31951 }
31952
31953 /* We're beginning a new block. Initialize data structures as necessary. */
31954
31955 static void
31956 rs6000_sched_init (FILE *dump ATTRIBUTE_UNUSED,
31957 int sched_verbose ATTRIBUTE_UNUSED,
31958 int max_ready ATTRIBUTE_UNUSED)
31959 {
31960 last_scheduled_insn = NULL;
31961 load_store_pendulum = 0;
31962 divide_cnt = 0;
31963 vec_pairing = 0;
31964 }
31965
31966 /* The following function is called at the end of scheduling BB.
31967 After reload, it inserts nops at insn group bundling. */
31968
31969 static void
31970 rs6000_sched_finish (FILE *dump, int sched_verbose)
31971 {
31972 int n_groups;
31973
31974 if (sched_verbose)
31975 fprintf (dump, "=== Finishing schedule.\n");
31976
31977 if (reload_completed && rs6000_sched_groups)
31978 {
31979 /* Do not run sched_finish hook when selective scheduling enabled. */
31980 if (sel_sched_p ())
31981 return;
31982
31983 if (rs6000_sched_insert_nops == sched_finish_none)
31984 return;
31985
31986 if (rs6000_sched_insert_nops == sched_finish_pad_groups)
31987 n_groups = pad_groups (dump, sched_verbose,
31988 current_sched_info->prev_head,
31989 current_sched_info->next_tail);
31990 else
31991 n_groups = redefine_groups (dump, sched_verbose,
31992 current_sched_info->prev_head,
31993 current_sched_info->next_tail);
31994
31995 if (sched_verbose >= 6)
31996 {
31997 fprintf (dump, "ngroups = %d\n", n_groups);
31998 print_rtl (dump, current_sched_info->prev_head);
31999 fprintf (dump, "Done finish_sched\n");
32000 }
32001 }
32002 }
32003
32004 struct rs6000_sched_context
32005 {
32006 short cached_can_issue_more;
32007 rtx_insn *last_scheduled_insn;
32008 int load_store_pendulum;
32009 int divide_cnt;
32010 int vec_pairing;
32011 };
32012
32013 typedef struct rs6000_sched_context rs6000_sched_context_def;
32014 typedef rs6000_sched_context_def *rs6000_sched_context_t;
32015
32016 /* Allocate store for new scheduling context. */
32017 static void *
32018 rs6000_alloc_sched_context (void)
32019 {
32020 return xmalloc (sizeof (rs6000_sched_context_def));
32021 }
32022
32023 /* If CLEAN_P is true then initializes _SC with clean data,
32024 and from the global context otherwise. */
32025 static void
32026 rs6000_init_sched_context (void *_sc, bool clean_p)
32027 {
32028 rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;
32029
32030 if (clean_p)
32031 {
32032 sc->cached_can_issue_more = 0;
32033 sc->last_scheduled_insn = NULL;
32034 sc->load_store_pendulum = 0;
32035 sc->divide_cnt = 0;
32036 sc->vec_pairing = 0;
32037 }
32038 else
32039 {
32040 sc->cached_can_issue_more = cached_can_issue_more;
32041 sc->last_scheduled_insn = last_scheduled_insn;
32042 sc->load_store_pendulum = load_store_pendulum;
32043 sc->divide_cnt = divide_cnt;
32044 sc->vec_pairing = vec_pairing;
32045 }
32046 }
32047
32048 /* Sets the global scheduling context to the one pointed to by _SC. */
32049 static void
32050 rs6000_set_sched_context (void *_sc)
32051 {
32052 rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;
32053
32054 gcc_assert (sc != NULL);
32055
32056 cached_can_issue_more = sc->cached_can_issue_more;
32057 last_scheduled_insn = sc->last_scheduled_insn;
32058 load_store_pendulum = sc->load_store_pendulum;
32059 divide_cnt = sc->divide_cnt;
32060 vec_pairing = sc->vec_pairing;
32061 }
32062
32063 /* Free _SC. */
32064 static void
32065 rs6000_free_sched_context (void *_sc)
32066 {
32067 gcc_assert (_sc != NULL);
32068
32069 free (_sc);
32070 }
32071
32072 static bool
32073 rs6000_sched_can_speculate_insn (rtx_insn *insn)
32074 {
32075 switch (get_attr_type (insn))
32076 {
32077 case TYPE_DIV:
32078 case TYPE_SDIV:
32079 case TYPE_DDIV:
32080 case TYPE_VECDIV:
32081 case TYPE_SSQRT:
32082 case TYPE_DSQRT:
32083 return false;
32084
32085 default:
32086 return true;
32087 }
32088 }
32089 \f
32090 /* Length in units of the trampoline for entering a nested function. */
32091
32092 int
32093 rs6000_trampoline_size (void)
32094 {
32095 int ret = 0;
32096
32097 switch (DEFAULT_ABI)
32098 {
32099 default:
32100 gcc_unreachable ();
32101
32102 case ABI_AIX:
32103 ret = (TARGET_32BIT) ? 12 : 24;
32104 break;
32105
32106 case ABI_ELFv2:
32107 gcc_assert (!TARGET_32BIT);
32108 ret = 32;
32109 break;
32110
32111 case ABI_DARWIN:
32112 case ABI_V4:
32113 ret = (TARGET_32BIT) ? 40 : 48;
32114 break;
32115 }
32116
32117 return ret;
32118 }
32119
32120 /* Emit RTL insns to initialize the variable parts of a trampoline.
32121 FNADDR is an RTX for the address of the function's pure code.
32122 CXT is an RTX for the static chain value for the function. */
32123
32124 static void
32125 rs6000_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
32126 {
32127 int regsize = (TARGET_32BIT) ? 4 : 8;
32128 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
32129 rtx ctx_reg = force_reg (Pmode, cxt);
32130 rtx addr = force_reg (Pmode, XEXP (m_tramp, 0));
32131
32132 switch (DEFAULT_ABI)
32133 {
32134 default:
32135 gcc_unreachable ();
32136
32137 /* Under AIX, just build the 3 word function descriptor */
32138 case ABI_AIX:
32139 {
32140 rtx fnmem, fn_reg, toc_reg;
32141
32142 if (!TARGET_POINTERS_TO_NESTED_FUNCTIONS)
32143 error ("you cannot take the address of a nested function if you use "
32144 "the %qs option", "-mno-pointers-to-nested-functions");
32145
32146 fnmem = gen_const_mem (Pmode, force_reg (Pmode, fnaddr));
32147 fn_reg = gen_reg_rtx (Pmode);
32148 toc_reg = gen_reg_rtx (Pmode);
32149
32150 /* Macro to shorten the code expansions below. */
32151 # define MEM_PLUS(MEM, OFFSET) adjust_address (MEM, Pmode, OFFSET)
32152
32153 m_tramp = replace_equiv_address (m_tramp, addr);
32154
32155 emit_move_insn (fn_reg, MEM_PLUS (fnmem, 0));
32156 emit_move_insn (toc_reg, MEM_PLUS (fnmem, regsize));
32157 emit_move_insn (MEM_PLUS (m_tramp, 0), fn_reg);
32158 emit_move_insn (MEM_PLUS (m_tramp, regsize), toc_reg);
32159 emit_move_insn (MEM_PLUS (m_tramp, 2*regsize), ctx_reg);
32160
32161 # undef MEM_PLUS
32162 }
32163 break;
32164
32165 /* Under V.4/eabi/darwin, __trampoline_setup does the real work. */
32166 case ABI_ELFv2:
32167 case ABI_DARWIN:
32168 case ABI_V4:
32169 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__trampoline_setup"),
32170 LCT_NORMAL, VOIDmode,
32171 addr, Pmode,
32172 GEN_INT (rs6000_trampoline_size ()), SImode,
32173 fnaddr, Pmode,
32174 ctx_reg, Pmode);
32175 break;
32176 }
32177 }
32178
32179 \f
32180 /* Returns TRUE iff the target attribute indicated by ATTR_ID takes a plain
32181 identifier as an argument, so the front end shouldn't look it up. */
32182
32183 static bool
32184 rs6000_attribute_takes_identifier_p (const_tree attr_id)
32185 {
32186 return is_attribute_p ("altivec", attr_id);
32187 }
32188
32189 /* Handle the "altivec" attribute. The attribute may have
32190 arguments as follows:
32191
32192 __attribute__((altivec(vector__)))
32193 __attribute__((altivec(pixel__))) (always followed by 'unsigned short')
32194 __attribute__((altivec(bool__))) (always followed by 'unsigned')
32195
32196 and may appear more than once (e.g., 'vector bool char') in a
32197 given declaration. */
32198
32199 static tree
32200 rs6000_handle_altivec_attribute (tree *node,
32201 tree name ATTRIBUTE_UNUSED,
32202 tree args,
32203 int flags ATTRIBUTE_UNUSED,
32204 bool *no_add_attrs)
32205 {
32206 tree type = *node, result = NULL_TREE;
32207 machine_mode mode;
32208 int unsigned_p;
32209 char altivec_type
32210 = ((args && TREE_CODE (args) == TREE_LIST && TREE_VALUE (args)
32211 && TREE_CODE (TREE_VALUE (args)) == IDENTIFIER_NODE)
32212 ? *IDENTIFIER_POINTER (TREE_VALUE (args))
32213 : '?');
32214
32215 while (POINTER_TYPE_P (type)
32216 || TREE_CODE (type) == FUNCTION_TYPE
32217 || TREE_CODE (type) == METHOD_TYPE
32218 || TREE_CODE (type) == ARRAY_TYPE)
32219 type = TREE_TYPE (type);
32220
32221 mode = TYPE_MODE (type);
32222
32223 /* Check for invalid AltiVec type qualifiers. */
32224 if (type == long_double_type_node)
32225 error ("use of %<long double%> in AltiVec types is invalid");
32226 else if (type == boolean_type_node)
32227 error ("use of boolean types in AltiVec types is invalid");
32228 else if (TREE_CODE (type) == COMPLEX_TYPE)
32229 error ("use of %<complex%> in AltiVec types is invalid");
32230 else if (DECIMAL_FLOAT_MODE_P (mode))
32231 error ("use of decimal floating point types in AltiVec types is invalid");
32232 else if (!TARGET_VSX)
32233 {
32234 if (type == long_unsigned_type_node || type == long_integer_type_node)
32235 {
32236 if (TARGET_64BIT)
32237 error ("use of %<long%> in AltiVec types is invalid for "
32238 "64-bit code without %qs", "-mvsx");
32239 else if (rs6000_warn_altivec_long)
32240 warning (0, "use of %<long%> in AltiVec types is deprecated; "
32241 "use %<int%>");
32242 }
32243 else if (type == long_long_unsigned_type_node
32244 || type == long_long_integer_type_node)
32245 error ("use of %<long long%> in AltiVec types is invalid without %qs",
32246 "-mvsx");
32247 else if (type == double_type_node)
32248 error ("use of %<double%> in AltiVec types is invalid without %qs",
32249 "-mvsx");
32250 }
32251
32252 switch (altivec_type)
32253 {
32254 case 'v':
32255 unsigned_p = TYPE_UNSIGNED (type);
32256 switch (mode)
32257 {
32258 case E_TImode:
32259 result = (unsigned_p ? unsigned_V1TI_type_node : V1TI_type_node);
32260 break;
32261 case E_DImode:
32262 result = (unsigned_p ? unsigned_V2DI_type_node : V2DI_type_node);
32263 break;
32264 case E_SImode:
32265 result = (unsigned_p ? unsigned_V4SI_type_node : V4SI_type_node);
32266 break;
32267 case E_HImode:
32268 result = (unsigned_p ? unsigned_V8HI_type_node : V8HI_type_node);
32269 break;
32270 case E_QImode:
32271 result = (unsigned_p ? unsigned_V16QI_type_node : V16QI_type_node);
32272 break;
32273 case E_SFmode: result = V4SF_type_node; break;
32274 case E_DFmode: result = V2DF_type_node; break;
32275 /* If the user says 'vector int bool', we may be handed the 'bool'
32276 attribute _before_ the 'vector' attribute, and so select the
32277 proper type in the 'b' case below. */
32278 case E_V4SImode: case E_V8HImode: case E_V16QImode: case E_V4SFmode:
32279 case E_V2DImode: case E_V2DFmode:
32280 result = type;
32281 default: break;
32282 }
32283 break;
32284 case 'b':
32285 switch (mode)
32286 {
32287 case E_DImode: case E_V2DImode: result = bool_V2DI_type_node; break;
32288 case E_SImode: case E_V4SImode: result = bool_V4SI_type_node; break;
32289 case E_HImode: case E_V8HImode: result = bool_V8HI_type_node; break;
32290 case E_QImode: case E_V16QImode: result = bool_V16QI_type_node;
32291 default: break;
32292 }
32293 break;
32294 case 'p':
32295 switch (mode)
32296 {
32297 case E_V8HImode: result = pixel_V8HI_type_node;
32298 default: break;
32299 }
32300 default: break;
32301 }
32302
32303 /* Propagate qualifiers attached to the element type
32304 onto the vector type. */
32305 if (result && result != type && TYPE_QUALS (type))
32306 result = build_qualified_type (result, TYPE_QUALS (type));
32307
32308 *no_add_attrs = true; /* No need to hang on to the attribute. */
32309
32310 if (result)
32311 *node = lang_hooks.types.reconstruct_complex_type (*node, result);
32312
32313 return NULL_TREE;
32314 }
32315
32316 /* AltiVec defines five built-in scalar types that serve as vector
32317 elements; we must teach the compiler how to mangle them. The 128-bit
32318 floating point mangling is target-specific as well. */
32319
32320 static const char *
32321 rs6000_mangle_type (const_tree type)
32322 {
32323 type = TYPE_MAIN_VARIANT (type);
32324
32325 if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE
32326 && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
32327 return NULL;
32328
32329 if (type == bool_char_type_node) return "U6__boolc";
32330 if (type == bool_short_type_node) return "U6__bools";
32331 if (type == pixel_type_node) return "u7__pixel";
32332 if (type == bool_int_type_node) return "U6__booli";
32333 if (type == bool_long_long_type_node) return "U6__boolx";
32334
32335 if (SCALAR_FLOAT_TYPE_P (type) && FLOAT128_IBM_P (TYPE_MODE (type)))
32336 return "g";
32337 if (SCALAR_FLOAT_TYPE_P (type) && FLOAT128_IEEE_P (TYPE_MODE (type)))
32338 return ieee128_mangling_gcc_8_1 ? "U10__float128" : "u9__ieee128";
32339
32340 /* For all other types, use the default mangling. */
32341 return NULL;
32342 }
32343
32344 /* Handle a "longcall" or "shortcall" attribute; arguments as in
32345 struct attribute_spec.handler. */
32346
32347 static tree
32348 rs6000_handle_longcall_attribute (tree *node, tree name,
32349 tree args ATTRIBUTE_UNUSED,
32350 int flags ATTRIBUTE_UNUSED,
32351 bool *no_add_attrs)
32352 {
32353 if (TREE_CODE (*node) != FUNCTION_TYPE
32354 && TREE_CODE (*node) != FIELD_DECL
32355 && TREE_CODE (*node) != TYPE_DECL)
32356 {
32357 warning (OPT_Wattributes, "%qE attribute only applies to functions",
32358 name);
32359 *no_add_attrs = true;
32360 }
32361
32362 return NULL_TREE;
32363 }
32364
32365 /* Set longcall attributes on all functions declared when
32366 rs6000_default_long_calls is true. */
32367 static void
32368 rs6000_set_default_type_attributes (tree type)
32369 {
32370 if (rs6000_default_long_calls
32371 && (TREE_CODE (type) == FUNCTION_TYPE
32372 || TREE_CODE (type) == METHOD_TYPE))
32373 TYPE_ATTRIBUTES (type) = tree_cons (get_identifier ("longcall"),
32374 NULL_TREE,
32375 TYPE_ATTRIBUTES (type));
32376
32377 #if TARGET_MACHO
32378 darwin_set_default_type_attributes (type);
32379 #endif
32380 }
32381
32382 /* Return a reference suitable for calling a function with the
32383 longcall attribute. */
32384
32385 rtx
32386 rs6000_longcall_ref (rtx call_ref)
32387 {
32388 const char *call_name;
32389 tree node;
32390
32391 if (GET_CODE (call_ref) != SYMBOL_REF)
32392 return call_ref;
32393
32394 /* System V adds '.' to the internal name, so skip them. */
32395 call_name = XSTR (call_ref, 0);
32396 if (*call_name == '.')
32397 {
32398 while (*call_name == '.')
32399 call_name++;
32400
32401 node = get_identifier (call_name);
32402 call_ref = gen_rtx_SYMBOL_REF (VOIDmode, IDENTIFIER_POINTER (node));
32403 }
32404
32405 return force_reg (Pmode, call_ref);
32406 }
32407 \f
32408 #ifndef TARGET_USE_MS_BITFIELD_LAYOUT
32409 #define TARGET_USE_MS_BITFIELD_LAYOUT 0
32410 #endif
32411
32412 /* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in
32413 struct attribute_spec.handler. */
32414 static tree
32415 rs6000_handle_struct_attribute (tree *node, tree name,
32416 tree args ATTRIBUTE_UNUSED,
32417 int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
32418 {
32419 tree *type = NULL;
32420 if (DECL_P (*node))
32421 {
32422 if (TREE_CODE (*node) == TYPE_DECL)
32423 type = &TREE_TYPE (*node);
32424 }
32425 else
32426 type = node;
32427
32428 if (!(type && (TREE_CODE (*type) == RECORD_TYPE
32429 || TREE_CODE (*type) == UNION_TYPE)))
32430 {
32431 warning (OPT_Wattributes, "%qE attribute ignored", name);
32432 *no_add_attrs = true;
32433 }
32434
32435 else if ((is_attribute_p ("ms_struct", name)
32436 && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type)))
32437 || ((is_attribute_p ("gcc_struct", name)
32438 && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type)))))
32439 {
32440 warning (OPT_Wattributes, "%qE incompatible attribute ignored",
32441 name);
32442 *no_add_attrs = true;
32443 }
32444
32445 return NULL_TREE;
32446 }
32447
32448 static bool
32449 rs6000_ms_bitfield_layout_p (const_tree record_type)
32450 {
32451 return (TARGET_USE_MS_BITFIELD_LAYOUT &&
32452 !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type)))
32453 || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type));
32454 }
32455 \f
32456 #ifdef USING_ELFOS_H
32457
32458 /* A get_unnamed_section callback, used for switching to toc_section. */
32459
32460 static void
32461 rs6000_elf_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED)
32462 {
32463 if ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
32464 && TARGET_MINIMAL_TOC)
32465 {
32466 if (!toc_initialized)
32467 {
32468 fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
32469 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
32470 (*targetm.asm_out.internal_label) (asm_out_file, "LCTOC", 0);
32471 fprintf (asm_out_file, "\t.tc ");
32472 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1[TC],");
32473 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
32474 fprintf (asm_out_file, "\n");
32475
32476 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
32477 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
32478 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
32479 fprintf (asm_out_file, " = .+32768\n");
32480 toc_initialized = 1;
32481 }
32482 else
32483 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
32484 }
32485 else if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
32486 {
32487 fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
32488 if (!toc_initialized)
32489 {
32490 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
32491 toc_initialized = 1;
32492 }
32493 }
32494 else
32495 {
32496 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
32497 if (!toc_initialized)
32498 {
32499 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
32500 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
32501 fprintf (asm_out_file, " = .+32768\n");
32502 toc_initialized = 1;
32503 }
32504 }
32505 }
32506
32507 /* Implement TARGET_ASM_INIT_SECTIONS. */
32508
32509 static void
32510 rs6000_elf_asm_init_sections (void)
32511 {
32512 toc_section
32513 = get_unnamed_section (0, rs6000_elf_output_toc_section_asm_op, NULL);
32514
32515 sdata2_section
32516 = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
32517 SDATA2_SECTION_ASM_OP);
32518 }
32519
32520 /* Implement TARGET_SELECT_RTX_SECTION. */
32521
32522 static section *
32523 rs6000_elf_select_rtx_section (machine_mode mode, rtx x,
32524 unsigned HOST_WIDE_INT align)
32525 {
32526 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
32527 return toc_section;
32528 else
32529 return default_elf_select_rtx_section (mode, x, align);
32530 }
32531 \f
32532 /* For a SYMBOL_REF, set generic flags and then perform some
32533 target-specific processing.
32534
32535 When the AIX ABI is requested on a non-AIX system, replace the
32536 function name with the real name (with a leading .) rather than the
32537 function descriptor name. This saves a lot of overriding code to
32538 read the prefixes. */
32539
32540 static void rs6000_elf_encode_section_info (tree, rtx, int) ATTRIBUTE_UNUSED;
32541 static void
32542 rs6000_elf_encode_section_info (tree decl, rtx rtl, int first)
32543 {
32544 default_encode_section_info (decl, rtl, first);
32545
32546 if (first
32547 && TREE_CODE (decl) == FUNCTION_DECL
32548 && !TARGET_AIX
32549 && DEFAULT_ABI == ABI_AIX)
32550 {
32551 rtx sym_ref = XEXP (rtl, 0);
32552 size_t len = strlen (XSTR (sym_ref, 0));
32553 char *str = XALLOCAVEC (char, len + 2);
32554 str[0] = '.';
32555 memcpy (str + 1, XSTR (sym_ref, 0), len + 1);
32556 XSTR (sym_ref, 0) = ggc_alloc_string (str, len + 1);
32557 }
32558 }
32559
32560 static inline bool
32561 compare_section_name (const char *section, const char *templ)
32562 {
32563 int len;
32564
32565 len = strlen (templ);
32566 return (strncmp (section, templ, len) == 0
32567 && (section[len] == 0 || section[len] == '.'));
32568 }
32569
32570 bool
32571 rs6000_elf_in_small_data_p (const_tree decl)
32572 {
32573 if (rs6000_sdata == SDATA_NONE)
32574 return false;
32575
32576 /* We want to merge strings, so we never consider them small data. */
32577 if (TREE_CODE (decl) == STRING_CST)
32578 return false;
32579
32580 /* Functions are never in the small data area. */
32581 if (TREE_CODE (decl) == FUNCTION_DECL)
32582 return false;
32583
32584 if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl))
32585 {
32586 const char *section = DECL_SECTION_NAME (decl);
32587 if (compare_section_name (section, ".sdata")
32588 || compare_section_name (section, ".sdata2")
32589 || compare_section_name (section, ".gnu.linkonce.s")
32590 || compare_section_name (section, ".sbss")
32591 || compare_section_name (section, ".sbss2")
32592 || compare_section_name (section, ".gnu.linkonce.sb")
32593 || strcmp (section, ".PPC.EMB.sdata0") == 0
32594 || strcmp (section, ".PPC.EMB.sbss0") == 0)
32595 return true;
32596 }
32597 else
32598 {
32599 /* If we are told not to put readonly data in sdata, then don't. */
32600 if (TREE_READONLY (decl) && rs6000_sdata != SDATA_EABI
32601 && !rs6000_readonly_in_sdata)
32602 return false;
32603
32604 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
32605
32606 if (size > 0
32607 && size <= g_switch_value
32608 /* If it's not public, and we're not going to reference it there,
32609 there's no need to put it in the small data section. */
32610 && (rs6000_sdata != SDATA_DATA || TREE_PUBLIC (decl)))
32611 return true;
32612 }
32613
32614 return false;
32615 }
32616
32617 #endif /* USING_ELFOS_H */
32618 \f
32619 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. */
32620
32621 static bool
32622 rs6000_use_blocks_for_constant_p (machine_mode mode, const_rtx x)
32623 {
32624 return !ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode);
32625 }
32626
32627 /* Do not place thread-local symbols refs in the object blocks. */
32628
32629 static bool
32630 rs6000_use_blocks_for_decl_p (const_tree decl)
32631 {
32632 return !DECL_THREAD_LOCAL_P (decl);
32633 }
32634 \f
32635 /* Return a REG that occurs in ADDR with coefficient 1.
32636 ADDR can be effectively incremented by incrementing REG.
32637
32638 r0 is special and we must not select it as an address
32639 register by this routine since our caller will try to
32640 increment the returned register via an "la" instruction. */
32641
32642 rtx
32643 find_addr_reg (rtx addr)
32644 {
32645 while (GET_CODE (addr) == PLUS)
32646 {
32647 if (GET_CODE (XEXP (addr, 0)) == REG
32648 && REGNO (XEXP (addr, 0)) != 0)
32649 addr = XEXP (addr, 0);
32650 else if (GET_CODE (XEXP (addr, 1)) == REG
32651 && REGNO (XEXP (addr, 1)) != 0)
32652 addr = XEXP (addr, 1);
32653 else if (CONSTANT_P (XEXP (addr, 0)))
32654 addr = XEXP (addr, 1);
32655 else if (CONSTANT_P (XEXP (addr, 1)))
32656 addr = XEXP (addr, 0);
32657 else
32658 gcc_unreachable ();
32659 }
32660 gcc_assert (GET_CODE (addr) == REG && REGNO (addr) != 0);
32661 return addr;
32662 }
32663
32664 void
32665 rs6000_fatal_bad_address (rtx op)
32666 {
32667 fatal_insn ("bad address", op);
32668 }
32669
32670 #if TARGET_MACHO
32671
32672 typedef struct branch_island_d {
32673 tree function_name;
32674 tree label_name;
32675 int line_number;
32676 } branch_island;
32677
32678
32679 static vec<branch_island, va_gc> *branch_islands;
32680
32681 /* Remember to generate a branch island for far calls to the given
32682 function. */
32683
32684 static void
32685 add_compiler_branch_island (tree label_name, tree function_name,
32686 int line_number)
32687 {
32688 branch_island bi = {function_name, label_name, line_number};
32689 vec_safe_push (branch_islands, bi);
32690 }
32691
32692 /* Generate far-jump branch islands for everything recorded in
32693 branch_islands. Invoked immediately after the last instruction of
32694 the epilogue has been emitted; the branch islands must be appended
32695 to, and contiguous with, the function body. Mach-O stubs are
32696 generated in machopic_output_stub(). */
32697
32698 static void
32699 macho_branch_islands (void)
32700 {
32701 char tmp_buf[512];
32702
32703 while (!vec_safe_is_empty (branch_islands))
32704 {
32705 branch_island *bi = &branch_islands->last ();
32706 const char *label = IDENTIFIER_POINTER (bi->label_name);
32707 const char *name = IDENTIFIER_POINTER (bi->function_name);
32708 char name_buf[512];
32709 /* Cheap copy of the details from the Darwin ASM_OUTPUT_LABELREF(). */
32710 if (name[0] == '*' || name[0] == '&')
32711 strcpy (name_buf, name+1);
32712 else
32713 {
32714 name_buf[0] = '_';
32715 strcpy (name_buf+1, name);
32716 }
32717 strcpy (tmp_buf, "\n");
32718 strcat (tmp_buf, label);
32719 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
32720 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
32721 dbxout_stabd (N_SLINE, bi->line_number);
32722 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
32723 if (flag_pic)
32724 {
32725 if (TARGET_LINK_STACK)
32726 {
32727 char name[32];
32728 get_ppc476_thunk_name (name);
32729 strcat (tmp_buf, ":\n\tmflr r0\n\tbl ");
32730 strcat (tmp_buf, name);
32731 strcat (tmp_buf, "\n");
32732 strcat (tmp_buf, label);
32733 strcat (tmp_buf, "_pic:\n\tmflr r11\n");
32734 }
32735 else
32736 {
32737 strcat (tmp_buf, ":\n\tmflr r0\n\tbcl 20,31,");
32738 strcat (tmp_buf, label);
32739 strcat (tmp_buf, "_pic\n");
32740 strcat (tmp_buf, label);
32741 strcat (tmp_buf, "_pic:\n\tmflr r11\n");
32742 }
32743
32744 strcat (tmp_buf, "\taddis r11,r11,ha16(");
32745 strcat (tmp_buf, name_buf);
32746 strcat (tmp_buf, " - ");
32747 strcat (tmp_buf, label);
32748 strcat (tmp_buf, "_pic)\n");
32749
32750 strcat (tmp_buf, "\tmtlr r0\n");
32751
32752 strcat (tmp_buf, "\taddi r12,r11,lo16(");
32753 strcat (tmp_buf, name_buf);
32754 strcat (tmp_buf, " - ");
32755 strcat (tmp_buf, label);
32756 strcat (tmp_buf, "_pic)\n");
32757
32758 strcat (tmp_buf, "\tmtctr r12\n\tbctr\n");
32759 }
32760 else
32761 {
32762 strcat (tmp_buf, ":\nlis r12,hi16(");
32763 strcat (tmp_buf, name_buf);
32764 strcat (tmp_buf, ")\n\tori r12,r12,lo16(");
32765 strcat (tmp_buf, name_buf);
32766 strcat (tmp_buf, ")\n\tmtctr r12\n\tbctr");
32767 }
32768 output_asm_insn (tmp_buf, 0);
32769 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
32770 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
32771 dbxout_stabd (N_SLINE, bi->line_number);
32772 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
32773 branch_islands->pop ();
32774 }
32775 }
32776
32777 /* NO_PREVIOUS_DEF checks in the link list whether the function name is
32778 already there or not. */
32779
32780 static int
32781 no_previous_def (tree function_name)
32782 {
32783 branch_island *bi;
32784 unsigned ix;
32785
32786 FOR_EACH_VEC_SAFE_ELT (branch_islands, ix, bi)
32787 if (function_name == bi->function_name)
32788 return 0;
32789 return 1;
32790 }
32791
32792 /* GET_PREV_LABEL gets the label name from the previous definition of
32793 the function. */
32794
32795 static tree
32796 get_prev_label (tree function_name)
32797 {
32798 branch_island *bi;
32799 unsigned ix;
32800
32801 FOR_EACH_VEC_SAFE_ELT (branch_islands, ix, bi)
32802 if (function_name == bi->function_name)
32803 return bi->label_name;
32804 return NULL_TREE;
32805 }
32806
32807 /* INSN is either a function call or a millicode call. It may have an
32808 unconditional jump in its delay slot.
32809
32810 CALL_DEST is the routine we are calling. */
32811
32812 char *
32813 output_call (rtx_insn *insn, rtx *operands, int dest_operand_number,
32814 int cookie_operand_number)
32815 {
32816 static char buf[256];
32817 if (darwin_emit_branch_islands
32818 && GET_CODE (operands[dest_operand_number]) == SYMBOL_REF
32819 && (INTVAL (operands[cookie_operand_number]) & CALL_LONG))
32820 {
32821 tree labelname;
32822 tree funname = get_identifier (XSTR (operands[dest_operand_number], 0));
32823
32824 if (no_previous_def (funname))
32825 {
32826 rtx label_rtx = gen_label_rtx ();
32827 char *label_buf, temp_buf[256];
32828 ASM_GENERATE_INTERNAL_LABEL (temp_buf, "L",
32829 CODE_LABEL_NUMBER (label_rtx));
32830 label_buf = temp_buf[0] == '*' ? temp_buf + 1 : temp_buf;
32831 labelname = get_identifier (label_buf);
32832 add_compiler_branch_island (labelname, funname, insn_line (insn));
32833 }
32834 else
32835 labelname = get_prev_label (funname);
32836
32837 /* "jbsr foo, L42" is Mach-O for "Link as 'bl foo' if a 'bl'
32838 instruction will reach 'foo', otherwise link as 'bl L42'".
32839 "L42" should be a 'branch island', that will do a far jump to
32840 'foo'. Branch islands are generated in
32841 macho_branch_islands(). */
32842 sprintf (buf, "jbsr %%z%d,%.246s",
32843 dest_operand_number, IDENTIFIER_POINTER (labelname));
32844 }
32845 else
32846 sprintf (buf, "bl %%z%d", dest_operand_number);
32847 return buf;
32848 }
32849
32850 /* Generate PIC and indirect symbol stubs. */
32851
32852 void
32853 machopic_output_stub (FILE *file, const char *symb, const char *stub)
32854 {
32855 unsigned int length;
32856 char *symbol_name, *lazy_ptr_name;
32857 char *local_label_0;
32858 static int label = 0;
32859
32860 /* Lose our funky encoding stuff so it doesn't contaminate the stub. */
32861 symb = (*targetm.strip_name_encoding) (symb);
32862
32863
32864 length = strlen (symb);
32865 symbol_name = XALLOCAVEC (char, length + 32);
32866 GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length);
32867
32868 lazy_ptr_name = XALLOCAVEC (char, length + 32);
32869 GEN_LAZY_PTR_NAME_FOR_SYMBOL (lazy_ptr_name, symb, length);
32870
32871 if (flag_pic == 2)
32872 switch_to_section (darwin_sections[machopic_picsymbol_stub1_section]);
32873 else
32874 switch_to_section (darwin_sections[machopic_symbol_stub1_section]);
32875
32876 if (flag_pic == 2)
32877 {
32878 fprintf (file, "\t.align 5\n");
32879
32880 fprintf (file, "%s:\n", stub);
32881 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
32882
32883 label++;
32884 local_label_0 = XALLOCAVEC (char, sizeof ("\"L00000000000$spb\""));
32885 sprintf (local_label_0, "\"L%011d$spb\"", label);
32886
32887 fprintf (file, "\tmflr r0\n");
32888 if (TARGET_LINK_STACK)
32889 {
32890 char name[32];
32891 get_ppc476_thunk_name (name);
32892 fprintf (file, "\tbl %s\n", name);
32893 fprintf (file, "%s:\n\tmflr r11\n", local_label_0);
32894 }
32895 else
32896 {
32897 fprintf (file, "\tbcl 20,31,%s\n", local_label_0);
32898 fprintf (file, "%s:\n\tmflr r11\n", local_label_0);
32899 }
32900 fprintf (file, "\taddis r11,r11,ha16(%s-%s)\n",
32901 lazy_ptr_name, local_label_0);
32902 fprintf (file, "\tmtlr r0\n");
32903 fprintf (file, "\t%s r12,lo16(%s-%s)(r11)\n",
32904 (TARGET_64BIT ? "ldu" : "lwzu"),
32905 lazy_ptr_name, local_label_0);
32906 fprintf (file, "\tmtctr r12\n");
32907 fprintf (file, "\tbctr\n");
32908 }
32909 else
32910 {
32911 fprintf (file, "\t.align 4\n");
32912
32913 fprintf (file, "%s:\n", stub);
32914 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
32915
32916 fprintf (file, "\tlis r11,ha16(%s)\n", lazy_ptr_name);
32917 fprintf (file, "\t%s r12,lo16(%s)(r11)\n",
32918 (TARGET_64BIT ? "ldu" : "lwzu"),
32919 lazy_ptr_name);
32920 fprintf (file, "\tmtctr r12\n");
32921 fprintf (file, "\tbctr\n");
32922 }
32923
32924 switch_to_section (darwin_sections[machopic_lazy_symbol_ptr_section]);
32925 fprintf (file, "%s:\n", lazy_ptr_name);
32926 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
32927 fprintf (file, "%sdyld_stub_binding_helper\n",
32928 (TARGET_64BIT ? DOUBLE_INT_ASM_OP : "\t.long\t"));
32929 }
32930
32931 /* Legitimize PIC addresses. If the address is already
32932 position-independent, we return ORIG. Newly generated
32933 position-independent addresses go into a reg. This is REG if non
32934 zero, otherwise we allocate register(s) as necessary. */
32935
32936 #define SMALL_INT(X) ((UINTVAL (X) + 0x8000) < 0x10000)
32937
32938 rtx
32939 rs6000_machopic_legitimize_pic_address (rtx orig, machine_mode mode,
32940 rtx reg)
32941 {
32942 rtx base, offset;
32943
32944 if (reg == NULL && !reload_completed)
32945 reg = gen_reg_rtx (Pmode);
32946
32947 if (GET_CODE (orig) == CONST)
32948 {
32949 rtx reg_temp;
32950
32951 if (GET_CODE (XEXP (orig, 0)) == PLUS
32952 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
32953 return orig;
32954
32955 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
32956
32957 /* Use a different reg for the intermediate value, as
32958 it will be marked UNCHANGING. */
32959 reg_temp = !can_create_pseudo_p () ? reg : gen_reg_rtx (Pmode);
32960 base = rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 0),
32961 Pmode, reg_temp);
32962 offset =
32963 rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 1),
32964 Pmode, reg);
32965
32966 if (GET_CODE (offset) == CONST_INT)
32967 {
32968 if (SMALL_INT (offset))
32969 return plus_constant (Pmode, base, INTVAL (offset));
32970 else if (!reload_completed)
32971 offset = force_reg (Pmode, offset);
32972 else
32973 {
32974 rtx mem = force_const_mem (Pmode, orig);
32975 return machopic_legitimize_pic_address (mem, Pmode, reg);
32976 }
32977 }
32978 return gen_rtx_PLUS (Pmode, base, offset);
32979 }
32980
32981 /* Fall back on generic machopic code. */
32982 return machopic_legitimize_pic_address (orig, mode, reg);
32983 }
32984
32985 /* Output a .machine directive for the Darwin assembler, and call
32986 the generic start_file routine. */
32987
32988 static void
32989 rs6000_darwin_file_start (void)
32990 {
32991 static const struct
32992 {
32993 const char *arg;
32994 const char *name;
32995 HOST_WIDE_INT if_set;
32996 } mapping[] = {
32997 { "ppc64", "ppc64", MASK_64BIT },
32998 { "970", "ppc970", MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64 },
32999 { "power4", "ppc970", 0 },
33000 { "G5", "ppc970", 0 },
33001 { "7450", "ppc7450", 0 },
33002 { "7400", "ppc7400", MASK_ALTIVEC },
33003 { "G4", "ppc7400", 0 },
33004 { "750", "ppc750", 0 },
33005 { "740", "ppc750", 0 },
33006 { "G3", "ppc750", 0 },
33007 { "604e", "ppc604e", 0 },
33008 { "604", "ppc604", 0 },
33009 { "603e", "ppc603", 0 },
33010 { "603", "ppc603", 0 },
33011 { "601", "ppc601", 0 },
33012 { NULL, "ppc", 0 } };
33013 const char *cpu_id = "";
33014 size_t i;
33015
33016 rs6000_file_start ();
33017 darwin_file_start ();
33018
33019 /* Determine the argument to -mcpu=. Default to G3 if not specified. */
33020
33021 if (rs6000_default_cpu != 0 && rs6000_default_cpu[0] != '\0')
33022 cpu_id = rs6000_default_cpu;
33023
33024 if (global_options_set.x_rs6000_cpu_index)
33025 cpu_id = processor_target_table[rs6000_cpu_index].name;
33026
33027 /* Look through the mapping array. Pick the first name that either
33028 matches the argument, has a bit set in IF_SET that is also set
33029 in the target flags, or has a NULL name. */
33030
33031 i = 0;
33032 while (mapping[i].arg != NULL
33033 && strcmp (mapping[i].arg, cpu_id) != 0
33034 && (mapping[i].if_set & rs6000_isa_flags) == 0)
33035 i++;
33036
33037 fprintf (asm_out_file, "\t.machine %s\n", mapping[i].name);
33038 }
33039
33040 #endif /* TARGET_MACHO */
33041
33042 #if TARGET_ELF
33043 static int
33044 rs6000_elf_reloc_rw_mask (void)
33045 {
33046 if (flag_pic)
33047 return 3;
33048 else if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
33049 return 2;
33050 else
33051 return 0;
33052 }
33053
33054 /* Record an element in the table of global constructors. SYMBOL is
33055 a SYMBOL_REF of the function to be called; PRIORITY is a number
33056 between 0 and MAX_INIT_PRIORITY.
33057
33058 This differs from default_named_section_asm_out_constructor in
33059 that we have special handling for -mrelocatable. */
33060
33061 static void rs6000_elf_asm_out_constructor (rtx, int) ATTRIBUTE_UNUSED;
33062 static void
33063 rs6000_elf_asm_out_constructor (rtx symbol, int priority)
33064 {
33065 const char *section = ".ctors";
33066 char buf[18];
33067
33068 if (priority != DEFAULT_INIT_PRIORITY)
33069 {
33070 sprintf (buf, ".ctors.%.5u",
33071 /* Invert the numbering so the linker puts us in the proper
33072 order; constructors are run from right to left, and the
33073 linker sorts in increasing order. */
33074 MAX_INIT_PRIORITY - priority);
33075 section = buf;
33076 }
33077
33078 switch_to_section (get_section (section, SECTION_WRITE, NULL));
33079 assemble_align (POINTER_SIZE);
33080
33081 if (DEFAULT_ABI == ABI_V4
33082 && (TARGET_RELOCATABLE || flag_pic > 1))
33083 {
33084 fputs ("\t.long (", asm_out_file);
33085 output_addr_const (asm_out_file, symbol);
33086 fputs (")@fixup\n", asm_out_file);
33087 }
33088 else
33089 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
33090 }
33091
33092 static void rs6000_elf_asm_out_destructor (rtx, int) ATTRIBUTE_UNUSED;
33093 static void
33094 rs6000_elf_asm_out_destructor (rtx symbol, int priority)
33095 {
33096 const char *section = ".dtors";
33097 char buf[18];
33098
33099 if (priority != DEFAULT_INIT_PRIORITY)
33100 {
33101 sprintf (buf, ".dtors.%.5u",
33102 /* Invert the numbering so the linker puts us in the proper
33103 order; constructors are run from right to left, and the
33104 linker sorts in increasing order. */
33105 MAX_INIT_PRIORITY - priority);
33106 section = buf;
33107 }
33108
33109 switch_to_section (get_section (section, SECTION_WRITE, NULL));
33110 assemble_align (POINTER_SIZE);
33111
33112 if (DEFAULT_ABI == ABI_V4
33113 && (TARGET_RELOCATABLE || flag_pic > 1))
33114 {
33115 fputs ("\t.long (", asm_out_file);
33116 output_addr_const (asm_out_file, symbol);
33117 fputs (")@fixup\n", asm_out_file);
33118 }
33119 else
33120 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
33121 }
33122
33123 void
33124 rs6000_elf_declare_function_name (FILE *file, const char *name, tree decl)
33125 {
33126 if (TARGET_64BIT && DEFAULT_ABI != ABI_ELFv2)
33127 {
33128 fputs ("\t.section\t\".opd\",\"aw\"\n\t.align 3\n", file);
33129 ASM_OUTPUT_LABEL (file, name);
33130 fputs (DOUBLE_INT_ASM_OP, file);
33131 rs6000_output_function_entry (file, name);
33132 fputs (",.TOC.@tocbase,0\n\t.previous\n", file);
33133 if (DOT_SYMBOLS)
33134 {
33135 fputs ("\t.size\t", file);
33136 assemble_name (file, name);
33137 fputs (",24\n\t.type\t.", file);
33138 assemble_name (file, name);
33139 fputs (",@function\n", file);
33140 if (TREE_PUBLIC (decl) && ! DECL_WEAK (decl))
33141 {
33142 fputs ("\t.globl\t.", file);
33143 assemble_name (file, name);
33144 putc ('\n', file);
33145 }
33146 }
33147 else
33148 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
33149 ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
33150 rs6000_output_function_entry (file, name);
33151 fputs (":\n", file);
33152 return;
33153 }
33154
33155 int uses_toc;
33156 if (DEFAULT_ABI == ABI_V4
33157 && (TARGET_RELOCATABLE || flag_pic > 1)
33158 && !TARGET_SECURE_PLT
33159 && (!constant_pool_empty_p () || crtl->profile)
33160 && (uses_toc = uses_TOC ()))
33161 {
33162 char buf[256];
33163
33164 if (uses_toc == 2)
33165 switch_to_other_text_partition ();
33166 (*targetm.asm_out.internal_label) (file, "LCL", rs6000_pic_labelno);
33167
33168 fprintf (file, "\t.long ");
33169 assemble_name (file, toc_label_name);
33170 need_toc_init = 1;
33171 putc ('-', file);
33172 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
33173 assemble_name (file, buf);
33174 putc ('\n', file);
33175 if (uses_toc == 2)
33176 switch_to_other_text_partition ();
33177 }
33178
33179 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
33180 ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
33181
33182 if (TARGET_CMODEL == CMODEL_LARGE && rs6000_global_entry_point_needed_p ())
33183 {
33184 char buf[256];
33185
33186 (*targetm.asm_out.internal_label) (file, "LCL", rs6000_pic_labelno);
33187
33188 fprintf (file, "\t.quad .TOC.-");
33189 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
33190 assemble_name (file, buf);
33191 putc ('\n', file);
33192 }
33193
33194 if (DEFAULT_ABI == ABI_AIX)
33195 {
33196 const char *desc_name, *orig_name;
33197
33198 orig_name = (*targetm.strip_name_encoding) (name);
33199 desc_name = orig_name;
33200 while (*desc_name == '.')
33201 desc_name++;
33202
33203 if (TREE_PUBLIC (decl))
33204 fprintf (file, "\t.globl %s\n", desc_name);
33205
33206 fprintf (file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
33207 fprintf (file, "%s:\n", desc_name);
33208 fprintf (file, "\t.long %s\n", orig_name);
33209 fputs ("\t.long _GLOBAL_OFFSET_TABLE_\n", file);
33210 fputs ("\t.long 0\n", file);
33211 fprintf (file, "\t.previous\n");
33212 }
33213 ASM_OUTPUT_LABEL (file, name);
33214 }
33215
33216 static void rs6000_elf_file_end (void) ATTRIBUTE_UNUSED;
33217 static void
33218 rs6000_elf_file_end (void)
33219 {
33220 #ifdef HAVE_AS_GNU_ATTRIBUTE
33221 /* ??? The value emitted depends on options active at file end.
33222 Assume anyone using #pragma or attributes that might change
33223 options knows what they are doing. */
33224 if ((TARGET_64BIT || DEFAULT_ABI == ABI_V4)
33225 && rs6000_passes_float)
33226 {
33227 int fp;
33228
33229 if (TARGET_HARD_FLOAT)
33230 fp = 1;
33231 else
33232 fp = 2;
33233 if (rs6000_passes_long_double)
33234 {
33235 if (!TARGET_LONG_DOUBLE_128)
33236 fp |= 2 * 4;
33237 else if (TARGET_IEEEQUAD)
33238 fp |= 3 * 4;
33239 else
33240 fp |= 1 * 4;
33241 }
33242 fprintf (asm_out_file, "\t.gnu_attribute 4, %d\n", fp);
33243 }
33244 if (TARGET_32BIT && DEFAULT_ABI == ABI_V4)
33245 {
33246 if (rs6000_passes_vector)
33247 fprintf (asm_out_file, "\t.gnu_attribute 8, %d\n",
33248 (TARGET_ALTIVEC_ABI ? 2 : 1));
33249 if (rs6000_returns_struct)
33250 fprintf (asm_out_file, "\t.gnu_attribute 12, %d\n",
33251 aix_struct_return ? 2 : 1);
33252 }
33253 #endif
33254 #if defined (POWERPC_LINUX) || defined (POWERPC_FREEBSD)
33255 if (TARGET_32BIT || DEFAULT_ABI == ABI_ELFv2)
33256 file_end_indicate_exec_stack ();
33257 #endif
33258
33259 if (flag_split_stack)
33260 file_end_indicate_split_stack ();
33261
33262 if (cpu_builtin_p)
33263 {
33264 /* We have expanded a CPU builtin, so we need to emit a reference to
33265 the special symbol that LIBC uses to declare it supports the
33266 AT_PLATFORM and AT_HWCAP/AT_HWCAP2 in the TCB feature. */
33267 switch_to_section (data_section);
33268 fprintf (asm_out_file, "\t.align %u\n", TARGET_32BIT ? 2 : 3);
33269 fprintf (asm_out_file, "\t%s %s\n",
33270 TARGET_32BIT ? ".long" : ".quad", tcb_verification_symbol);
33271 }
33272 }
33273 #endif
33274
33275 #if TARGET_XCOFF
33276
33277 #ifndef HAVE_XCOFF_DWARF_EXTRAS
33278 #define HAVE_XCOFF_DWARF_EXTRAS 0
33279 #endif
33280
33281 static enum unwind_info_type
33282 rs6000_xcoff_debug_unwind_info (void)
33283 {
33284 return UI_NONE;
33285 }
33286
33287 static void
33288 rs6000_xcoff_asm_output_anchor (rtx symbol)
33289 {
33290 char buffer[100];
33291
33292 sprintf (buffer, "$ + " HOST_WIDE_INT_PRINT_DEC,
33293 SYMBOL_REF_BLOCK_OFFSET (symbol));
33294 fprintf (asm_out_file, "%s", SET_ASM_OP);
33295 RS6000_OUTPUT_BASENAME (asm_out_file, XSTR (symbol, 0));
33296 fprintf (asm_out_file, ",");
33297 RS6000_OUTPUT_BASENAME (asm_out_file, buffer);
33298 fprintf (asm_out_file, "\n");
33299 }
33300
33301 static void
33302 rs6000_xcoff_asm_globalize_label (FILE *stream, const char *name)
33303 {
33304 fputs (GLOBAL_ASM_OP, stream);
33305 RS6000_OUTPUT_BASENAME (stream, name);
33306 putc ('\n', stream);
33307 }
33308
33309 /* A get_unnamed_decl callback, used for read-only sections. PTR
33310 points to the section string variable. */
33311
33312 static void
33313 rs6000_xcoff_output_readonly_section_asm_op (const void *directive)
33314 {
33315 fprintf (asm_out_file, "\t.csect %s[RO],%s\n",
33316 *(const char *const *) directive,
33317 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
33318 }
33319
33320 /* Likewise for read-write sections. */
33321
33322 static void
33323 rs6000_xcoff_output_readwrite_section_asm_op (const void *directive)
33324 {
33325 fprintf (asm_out_file, "\t.csect %s[RW],%s\n",
33326 *(const char *const *) directive,
33327 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
33328 }
33329
33330 static void
33331 rs6000_xcoff_output_tls_section_asm_op (const void *directive)
33332 {
33333 fprintf (asm_out_file, "\t.csect %s[TL],%s\n",
33334 *(const char *const *) directive,
33335 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
33336 }
33337
33338 /* A get_unnamed_section callback, used for switching to toc_section. */
33339
33340 static void
33341 rs6000_xcoff_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED)
33342 {
33343 if (TARGET_MINIMAL_TOC)
33344 {
33345 /* toc_section is always selected at least once from
33346 rs6000_xcoff_file_start, so this is guaranteed to
33347 always be defined once and only once in each file. */
33348 if (!toc_initialized)
33349 {
33350 fputs ("\t.toc\nLCTOC..1:\n", asm_out_file);
33351 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file);
33352 toc_initialized = 1;
33353 }
33354 fprintf (asm_out_file, "\t.csect toc_table[RW]%s\n",
33355 (TARGET_32BIT ? "" : ",3"));
33356 }
33357 else
33358 fputs ("\t.toc\n", asm_out_file);
33359 }
33360
33361 /* Implement TARGET_ASM_INIT_SECTIONS. */
33362
33363 static void
33364 rs6000_xcoff_asm_init_sections (void)
33365 {
33366 read_only_data_section
33367 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
33368 &xcoff_read_only_section_name);
33369
33370 private_data_section
33371 = get_unnamed_section (SECTION_WRITE,
33372 rs6000_xcoff_output_readwrite_section_asm_op,
33373 &xcoff_private_data_section_name);
33374
33375 tls_data_section
33376 = get_unnamed_section (SECTION_TLS,
33377 rs6000_xcoff_output_tls_section_asm_op,
33378 &xcoff_tls_data_section_name);
33379
33380 tls_private_data_section
33381 = get_unnamed_section (SECTION_TLS,
33382 rs6000_xcoff_output_tls_section_asm_op,
33383 &xcoff_private_data_section_name);
33384
33385 read_only_private_data_section
33386 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
33387 &xcoff_private_data_section_name);
33388
33389 toc_section
33390 = get_unnamed_section (0, rs6000_xcoff_output_toc_section_asm_op, NULL);
33391
33392 readonly_data_section = read_only_data_section;
33393 }
33394
33395 static int
33396 rs6000_xcoff_reloc_rw_mask (void)
33397 {
33398 return 3;
33399 }
33400
33401 static void
33402 rs6000_xcoff_asm_named_section (const char *name, unsigned int flags,
33403 tree decl ATTRIBUTE_UNUSED)
33404 {
33405 int smclass;
33406 static const char * const suffix[5] = { "PR", "RO", "RW", "TL", "XO" };
33407
33408 if (flags & SECTION_EXCLUDE)
33409 smclass = 4;
33410 else if (flags & SECTION_DEBUG)
33411 {
33412 fprintf (asm_out_file, "\t.dwsect %s\n", name);
33413 return;
33414 }
33415 else if (flags & SECTION_CODE)
33416 smclass = 0;
33417 else if (flags & SECTION_TLS)
33418 smclass = 3;
33419 else if (flags & SECTION_WRITE)
33420 smclass = 2;
33421 else
33422 smclass = 1;
33423
33424 fprintf (asm_out_file, "\t.csect %s%s[%s],%u\n",
33425 (flags & SECTION_CODE) ? "." : "",
33426 name, suffix[smclass], flags & SECTION_ENTSIZE);
33427 }
33428
33429 #define IN_NAMED_SECTION(DECL) \
33430 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
33431 && DECL_SECTION_NAME (DECL) != NULL)
33432
33433 static section *
33434 rs6000_xcoff_select_section (tree decl, int reloc,
33435 unsigned HOST_WIDE_INT align)
33436 {
33437 /* Place variables with alignment stricter than BIGGEST_ALIGNMENT into
33438 named section. */
33439 if (align > BIGGEST_ALIGNMENT)
33440 {
33441 resolve_unique_section (decl, reloc, true);
33442 if (IN_NAMED_SECTION (decl))
33443 return get_named_section (decl, NULL, reloc);
33444 }
33445
33446 if (decl_readonly_section (decl, reloc))
33447 {
33448 if (TREE_PUBLIC (decl))
33449 return read_only_data_section;
33450 else
33451 return read_only_private_data_section;
33452 }
33453 else
33454 {
33455 #if HAVE_AS_TLS
33456 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL_P (decl))
33457 {
33458 if (TREE_PUBLIC (decl))
33459 return tls_data_section;
33460 else if (bss_initializer_p (decl))
33461 {
33462 /* Convert to COMMON to emit in BSS. */
33463 DECL_COMMON (decl) = 1;
33464 return tls_comm_section;
33465 }
33466 else
33467 return tls_private_data_section;
33468 }
33469 else
33470 #endif
33471 if (TREE_PUBLIC (decl))
33472 return data_section;
33473 else
33474 return private_data_section;
33475 }
33476 }
33477
33478 static void
33479 rs6000_xcoff_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
33480 {
33481 const char *name;
33482
33483 /* Use select_section for private data and uninitialized data with
33484 alignment <= BIGGEST_ALIGNMENT. */
33485 if (!TREE_PUBLIC (decl)
33486 || DECL_COMMON (decl)
33487 || (DECL_INITIAL (decl) == NULL_TREE
33488 && DECL_ALIGN (decl) <= BIGGEST_ALIGNMENT)
33489 || DECL_INITIAL (decl) == error_mark_node
33490 || (flag_zero_initialized_in_bss
33491 && initializer_zerop (DECL_INITIAL (decl))))
33492 return;
33493
33494 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
33495 name = (*targetm.strip_name_encoding) (name);
33496 set_decl_section_name (decl, name);
33497 }
33498
33499 /* Select section for constant in constant pool.
33500
33501 On RS/6000, all constants are in the private read-only data area.
33502 However, if this is being placed in the TOC it must be output as a
33503 toc entry. */
33504
33505 static section *
33506 rs6000_xcoff_select_rtx_section (machine_mode mode, rtx x,
33507 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
33508 {
33509 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
33510 return toc_section;
33511 else
33512 return read_only_private_data_section;
33513 }
33514
33515 /* Remove any trailing [DS] or the like from the symbol name. */
33516
33517 static const char *
33518 rs6000_xcoff_strip_name_encoding (const char *name)
33519 {
33520 size_t len;
33521 if (*name == '*')
33522 name++;
33523 len = strlen (name);
33524 if (name[len - 1] == ']')
33525 return ggc_alloc_string (name, len - 4);
33526 else
33527 return name;
33528 }
33529
33530 /* Section attributes. AIX is always PIC. */
33531
33532 static unsigned int
33533 rs6000_xcoff_section_type_flags (tree decl, const char *name, int reloc)
33534 {
33535 unsigned int align;
33536 unsigned int flags = default_section_type_flags (decl, name, reloc);
33537
33538 /* Align to at least UNIT size. */
33539 if ((flags & SECTION_CODE) != 0 || !decl || !DECL_P (decl))
33540 align = MIN_UNITS_PER_WORD;
33541 else
33542 /* Increase alignment of large objects if not already stricter. */
33543 align = MAX ((DECL_ALIGN (decl) / BITS_PER_UNIT),
33544 int_size_in_bytes (TREE_TYPE (decl)) > MIN_UNITS_PER_WORD
33545 ? UNITS_PER_FP_WORD : MIN_UNITS_PER_WORD);
33546
33547 return flags | (exact_log2 (align) & SECTION_ENTSIZE);
33548 }
33549
33550 /* Output at beginning of assembler file.
33551
33552 Initialize the section names for the RS/6000 at this point.
33553
33554 Specify filename, including full path, to assembler.
33555
33556 We want to go into the TOC section so at least one .toc will be emitted.
33557 Also, in order to output proper .bs/.es pairs, we need at least one static
33558 [RW] section emitted.
33559
33560 Finally, declare mcount when profiling to make the assembler happy. */
33561
33562 static void
33563 rs6000_xcoff_file_start (void)
33564 {
33565 rs6000_gen_section_name (&xcoff_bss_section_name,
33566 main_input_filename, ".bss_");
33567 rs6000_gen_section_name (&xcoff_private_data_section_name,
33568 main_input_filename, ".rw_");
33569 rs6000_gen_section_name (&xcoff_read_only_section_name,
33570 main_input_filename, ".ro_");
33571 rs6000_gen_section_name (&xcoff_tls_data_section_name,
33572 main_input_filename, ".tls_");
33573 rs6000_gen_section_name (&xcoff_tbss_section_name,
33574 main_input_filename, ".tbss_[UL]");
33575
33576 fputs ("\t.file\t", asm_out_file);
33577 output_quoted_string (asm_out_file, main_input_filename);
33578 fputc ('\n', asm_out_file);
33579 if (write_symbols != NO_DEBUG)
33580 switch_to_section (private_data_section);
33581 switch_to_section (toc_section);
33582 switch_to_section (text_section);
33583 if (profile_flag)
33584 fprintf (asm_out_file, "\t.extern %s\n", RS6000_MCOUNT);
33585 rs6000_file_start ();
33586 }
33587
33588 /* Output at end of assembler file.
33589 On the RS/6000, referencing data should automatically pull in text. */
33590
33591 static void
33592 rs6000_xcoff_file_end (void)
33593 {
33594 switch_to_section (text_section);
33595 fputs ("_section_.text:\n", asm_out_file);
33596 switch_to_section (data_section);
33597 fputs (TARGET_32BIT
33598 ? "\t.long _section_.text\n" : "\t.llong _section_.text\n",
33599 asm_out_file);
33600 }
33601
33602 struct declare_alias_data
33603 {
33604 FILE *file;
33605 bool function_descriptor;
33606 };
33607
33608 /* Declare alias N. A helper function for for_node_and_aliases. */
33609
33610 static bool
33611 rs6000_declare_alias (struct symtab_node *n, void *d)
33612 {
33613 struct declare_alias_data *data = (struct declare_alias_data *)d;
33614 /* Main symbol is output specially, because varasm machinery does part of
33615 the job for us - we do not need to declare .globl/lglobs and such. */
33616 if (!n->alias || n->weakref)
33617 return false;
33618
33619 if (lookup_attribute ("ifunc", DECL_ATTRIBUTES (n->decl)))
33620 return false;
33621
33622 /* Prevent assemble_alias from trying to use .set pseudo operation
33623 that does not behave as expected by the middle-end. */
33624 TREE_ASM_WRITTEN (n->decl) = true;
33625
33626 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (n->decl));
33627 char *buffer = (char *) alloca (strlen (name) + 2);
33628 char *p;
33629 int dollar_inside = 0;
33630
33631 strcpy (buffer, name);
33632 p = strchr (buffer, '$');
33633 while (p) {
33634 *p = '_';
33635 dollar_inside++;
33636 p = strchr (p + 1, '$');
33637 }
33638 if (TREE_PUBLIC (n->decl))
33639 {
33640 if (!RS6000_WEAK || !DECL_WEAK (n->decl))
33641 {
33642 if (dollar_inside) {
33643 if (data->function_descriptor)
33644 fprintf(data->file, "\t.rename .%s,\".%s\"\n", buffer, name);
33645 fprintf(data->file, "\t.rename %s,\"%s\"\n", buffer, name);
33646 }
33647 if (data->function_descriptor)
33648 {
33649 fputs ("\t.globl .", data->file);
33650 RS6000_OUTPUT_BASENAME (data->file, buffer);
33651 putc ('\n', data->file);
33652 }
33653 fputs ("\t.globl ", data->file);
33654 RS6000_OUTPUT_BASENAME (data->file, buffer);
33655 putc ('\n', data->file);
33656 }
33657 #ifdef ASM_WEAKEN_DECL
33658 else if (DECL_WEAK (n->decl) && !data->function_descriptor)
33659 ASM_WEAKEN_DECL (data->file, n->decl, name, NULL);
33660 #endif
33661 }
33662 else
33663 {
33664 if (dollar_inside)
33665 {
33666 if (data->function_descriptor)
33667 fprintf(data->file, "\t.rename .%s,\".%s\"\n", buffer, name);
33668 fprintf(data->file, "\t.rename %s,\"%s\"\n", buffer, name);
33669 }
33670 if (data->function_descriptor)
33671 {
33672 fputs ("\t.lglobl .", data->file);
33673 RS6000_OUTPUT_BASENAME (data->file, buffer);
33674 putc ('\n', data->file);
33675 }
33676 fputs ("\t.lglobl ", data->file);
33677 RS6000_OUTPUT_BASENAME (data->file, buffer);
33678 putc ('\n', data->file);
33679 }
33680 if (data->function_descriptor)
33681 fputs (".", data->file);
33682 RS6000_OUTPUT_BASENAME (data->file, buffer);
33683 fputs (":\n", data->file);
33684 return false;
33685 }
33686
33687
33688 #ifdef HAVE_GAS_HIDDEN
33689 /* Helper function to calculate visibility of a DECL
33690 and return the value as a const string. */
33691
33692 static const char *
33693 rs6000_xcoff_visibility (tree decl)
33694 {
33695 static const char * const visibility_types[] = {
33696 "", ",protected", ",hidden", ",internal"
33697 };
33698
33699 enum symbol_visibility vis = DECL_VISIBILITY (decl);
33700 return visibility_types[vis];
33701 }
33702 #endif
33703
33704
33705 /* This macro produces the initial definition of a function name.
33706 On the RS/6000, we need to place an extra '.' in the function name and
33707 output the function descriptor.
33708 Dollar signs are converted to underscores.
33709
33710 The csect for the function will have already been created when
33711 text_section was selected. We do have to go back to that csect, however.
33712
33713 The third and fourth parameters to the .function pseudo-op (16 and 044)
33714 are placeholders which no longer have any use.
33715
33716 Because AIX assembler's .set command has unexpected semantics, we output
33717 all aliases as alternative labels in front of the definition. */
33718
33719 void
33720 rs6000_xcoff_declare_function_name (FILE *file, const char *name, tree decl)
33721 {
33722 char *buffer = (char *) alloca (strlen (name) + 1);
33723 char *p;
33724 int dollar_inside = 0;
33725 struct declare_alias_data data = {file, false};
33726
33727 strcpy (buffer, name);
33728 p = strchr (buffer, '$');
33729 while (p) {
33730 *p = '_';
33731 dollar_inside++;
33732 p = strchr (p + 1, '$');
33733 }
33734 if (TREE_PUBLIC (decl))
33735 {
33736 if (!RS6000_WEAK || !DECL_WEAK (decl))
33737 {
33738 if (dollar_inside) {
33739 fprintf(file, "\t.rename .%s,\".%s\"\n", buffer, name);
33740 fprintf(file, "\t.rename %s,\"%s\"\n", buffer, name);
33741 }
33742 fputs ("\t.globl .", file);
33743 RS6000_OUTPUT_BASENAME (file, buffer);
33744 #ifdef HAVE_GAS_HIDDEN
33745 fputs (rs6000_xcoff_visibility (decl), file);
33746 #endif
33747 putc ('\n', file);
33748 }
33749 }
33750 else
33751 {
33752 if (dollar_inside) {
33753 fprintf(file, "\t.rename .%s,\".%s\"\n", buffer, name);
33754 fprintf(file, "\t.rename %s,\"%s\"\n", buffer, name);
33755 }
33756 fputs ("\t.lglobl .", file);
33757 RS6000_OUTPUT_BASENAME (file, buffer);
33758 putc ('\n', file);
33759 }
33760 fputs ("\t.csect ", file);
33761 RS6000_OUTPUT_BASENAME (file, buffer);
33762 fputs (TARGET_32BIT ? "[DS]\n" : "[DS],3\n", file);
33763 RS6000_OUTPUT_BASENAME (file, buffer);
33764 fputs (":\n", file);
33765 symtab_node::get (decl)->call_for_symbol_and_aliases (rs6000_declare_alias,
33766 &data, true);
33767 fputs (TARGET_32BIT ? "\t.long ." : "\t.llong .", file);
33768 RS6000_OUTPUT_BASENAME (file, buffer);
33769 fputs (", TOC[tc0], 0\n", file);
33770 in_section = NULL;
33771 switch_to_section (function_section (decl));
33772 putc ('.', file);
33773 RS6000_OUTPUT_BASENAME (file, buffer);
33774 fputs (":\n", file);
33775 data.function_descriptor = true;
33776 symtab_node::get (decl)->call_for_symbol_and_aliases (rs6000_declare_alias,
33777 &data, true);
33778 if (!DECL_IGNORED_P (decl))
33779 {
33780 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
33781 xcoffout_declare_function (file, decl, buffer);
33782 else if (write_symbols == DWARF2_DEBUG)
33783 {
33784 name = (*targetm.strip_name_encoding) (name);
33785 fprintf (file, "\t.function .%s,.%s,2,0\n", name, name);
33786 }
33787 }
33788 return;
33789 }
33790
33791
33792 /* Output assembly language to globalize a symbol from a DECL,
33793 possibly with visibility. */
33794
33795 void
33796 rs6000_xcoff_asm_globalize_decl_name (FILE *stream, tree decl)
33797 {
33798 const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
33799 fputs (GLOBAL_ASM_OP, stream);
33800 RS6000_OUTPUT_BASENAME (stream, name);
33801 #ifdef HAVE_GAS_HIDDEN
33802 fputs (rs6000_xcoff_visibility (decl), stream);
33803 #endif
33804 putc ('\n', stream);
33805 }
33806
33807 /* Output assembly language to define a symbol as COMMON from a DECL,
33808 possibly with visibility. */
33809
33810 void
33811 rs6000_xcoff_asm_output_aligned_decl_common (FILE *stream,
33812 tree decl ATTRIBUTE_UNUSED,
33813 const char *name,
33814 unsigned HOST_WIDE_INT size,
33815 unsigned HOST_WIDE_INT align)
33816 {
33817 unsigned HOST_WIDE_INT align2 = 2;
33818
33819 if (align > 32)
33820 align2 = floor_log2 (align / BITS_PER_UNIT);
33821 else if (size > 4)
33822 align2 = 3;
33823
33824 fputs (COMMON_ASM_OP, stream);
33825 RS6000_OUTPUT_BASENAME (stream, name);
33826
33827 fprintf (stream,
33828 "," HOST_WIDE_INT_PRINT_UNSIGNED "," HOST_WIDE_INT_PRINT_UNSIGNED,
33829 size, align2);
33830
33831 #ifdef HAVE_GAS_HIDDEN
33832 if (decl != NULL)
33833 fputs (rs6000_xcoff_visibility (decl), stream);
33834 #endif
33835 putc ('\n', stream);
33836 }
33837
33838 /* This macro produces the initial definition of a object (variable) name.
33839 Because AIX assembler's .set command has unexpected semantics, we output
33840 all aliases as alternative labels in front of the definition. */
33841
33842 void
33843 rs6000_xcoff_declare_object_name (FILE *file, const char *name, tree decl)
33844 {
33845 struct declare_alias_data data = {file, false};
33846 RS6000_OUTPUT_BASENAME (file, name);
33847 fputs (":\n", file);
33848 symtab_node::get_create (decl)->call_for_symbol_and_aliases (rs6000_declare_alias,
33849 &data, true);
33850 }
33851
33852 /* Overide the default 'SYMBOL-.' syntax with AIX compatible 'SYMBOL-$'. */
33853
33854 void
33855 rs6000_asm_output_dwarf_pcrel (FILE *file, int size, const char *label)
33856 {
33857 fputs (integer_asm_op (size, FALSE), file);
33858 assemble_name (file, label);
33859 fputs ("-$", file);
33860 }
33861
33862 /* Output a symbol offset relative to the dbase for the current object.
33863 We use __gcc_unwind_dbase as an arbitrary base for dbase and assume
33864 signed offsets.
33865
33866 __gcc_unwind_dbase is embedded in all executables/libraries through
33867 libgcc/config/rs6000/crtdbase.S. */
33868
33869 void
33870 rs6000_asm_output_dwarf_datarel (FILE *file, int size, const char *label)
33871 {
33872 fputs (integer_asm_op (size, FALSE), file);
33873 assemble_name (file, label);
33874 fputs("-__gcc_unwind_dbase", file);
33875 }
33876
33877 #ifdef HAVE_AS_TLS
33878 static void
33879 rs6000_xcoff_encode_section_info (tree decl, rtx rtl, int first)
33880 {
33881 rtx symbol;
33882 int flags;
33883 const char *symname;
33884
33885 default_encode_section_info (decl, rtl, first);
33886
33887 /* Careful not to prod global register variables. */
33888 if (!MEM_P (rtl))
33889 return;
33890 symbol = XEXP (rtl, 0);
33891 if (GET_CODE (symbol) != SYMBOL_REF)
33892 return;
33893
33894 flags = SYMBOL_REF_FLAGS (symbol);
33895
33896 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL_P (decl))
33897 flags &= ~SYMBOL_FLAG_HAS_BLOCK_INFO;
33898
33899 SYMBOL_REF_FLAGS (symbol) = flags;
33900
33901 /* Append mapping class to extern decls. */
33902 symname = XSTR (symbol, 0);
33903 if (decl /* sync condition with assemble_external () */
33904 && DECL_P (decl) && DECL_EXTERNAL (decl) && TREE_PUBLIC (decl)
33905 && ((TREE_CODE (decl) == VAR_DECL && !DECL_THREAD_LOCAL_P (decl))
33906 || TREE_CODE (decl) == FUNCTION_DECL)
33907 && symname[strlen (symname) - 1] != ']')
33908 {
33909 char *newname = (char *) alloca (strlen (symname) + 5);
33910 strcpy (newname, symname);
33911 strcat (newname, (TREE_CODE (decl) == FUNCTION_DECL
33912 ? "[DS]" : "[UA]"));
33913 XSTR (symbol, 0) = ggc_strdup (newname);
33914 }
33915 }
33916 #endif /* HAVE_AS_TLS */
33917 #endif /* TARGET_XCOFF */
33918
33919 void
33920 rs6000_asm_weaken_decl (FILE *stream, tree decl,
33921 const char *name, const char *val)
33922 {
33923 fputs ("\t.weak\t", stream);
33924 RS6000_OUTPUT_BASENAME (stream, name);
33925 if (decl && TREE_CODE (decl) == FUNCTION_DECL
33926 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)
33927 {
33928 if (TARGET_XCOFF)
33929 fputs ("[DS]", stream);
33930 #if TARGET_XCOFF && HAVE_GAS_HIDDEN
33931 if (TARGET_XCOFF)
33932 fputs (rs6000_xcoff_visibility (decl), stream);
33933 #endif
33934 fputs ("\n\t.weak\t.", stream);
33935 RS6000_OUTPUT_BASENAME (stream, name);
33936 }
33937 #if TARGET_XCOFF && HAVE_GAS_HIDDEN
33938 if (TARGET_XCOFF)
33939 fputs (rs6000_xcoff_visibility (decl), stream);
33940 #endif
33941 fputc ('\n', stream);
33942 if (val)
33943 {
33944 #ifdef ASM_OUTPUT_DEF
33945 ASM_OUTPUT_DEF (stream, name, val);
33946 #endif
33947 if (decl && TREE_CODE (decl) == FUNCTION_DECL
33948 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)
33949 {
33950 fputs ("\t.set\t.", stream);
33951 RS6000_OUTPUT_BASENAME (stream, name);
33952 fputs (",.", stream);
33953 RS6000_OUTPUT_BASENAME (stream, val);
33954 fputc ('\n', stream);
33955 }
33956 }
33957 }
33958
33959
33960 /* Return true if INSN should not be copied. */
33961
33962 static bool
33963 rs6000_cannot_copy_insn_p (rtx_insn *insn)
33964 {
33965 return recog_memoized (insn) >= 0
33966 && get_attr_cannot_copy (insn);
33967 }
33968
33969 /* Compute a (partial) cost for rtx X. Return true if the complete
33970 cost has been computed, and false if subexpressions should be
33971 scanned. In either case, *TOTAL contains the cost result. */
33972
33973 static bool
33974 rs6000_rtx_costs (rtx x, machine_mode mode, int outer_code,
33975 int opno ATTRIBUTE_UNUSED, int *total, bool speed)
33976 {
33977 int code = GET_CODE (x);
33978
33979 switch (code)
33980 {
33981 /* On the RS/6000, if it is valid in the insn, it is free. */
33982 case CONST_INT:
33983 if (((outer_code == SET
33984 || outer_code == PLUS
33985 || outer_code == MINUS)
33986 && (satisfies_constraint_I (x)
33987 || satisfies_constraint_L (x)))
33988 || (outer_code == AND
33989 && (satisfies_constraint_K (x)
33990 || (mode == SImode
33991 ? satisfies_constraint_L (x)
33992 : satisfies_constraint_J (x))))
33993 || ((outer_code == IOR || outer_code == XOR)
33994 && (satisfies_constraint_K (x)
33995 || (mode == SImode
33996 ? satisfies_constraint_L (x)
33997 : satisfies_constraint_J (x))))
33998 || outer_code == ASHIFT
33999 || outer_code == ASHIFTRT
34000 || outer_code == LSHIFTRT
34001 || outer_code == ROTATE
34002 || outer_code == ROTATERT
34003 || outer_code == ZERO_EXTRACT
34004 || (outer_code == MULT
34005 && satisfies_constraint_I (x))
34006 || ((outer_code == DIV || outer_code == UDIV
34007 || outer_code == MOD || outer_code == UMOD)
34008 && exact_log2 (INTVAL (x)) >= 0)
34009 || (outer_code == COMPARE
34010 && (satisfies_constraint_I (x)
34011 || satisfies_constraint_K (x)))
34012 || ((outer_code == EQ || outer_code == NE)
34013 && (satisfies_constraint_I (x)
34014 || satisfies_constraint_K (x)
34015 || (mode == SImode
34016 ? satisfies_constraint_L (x)
34017 : satisfies_constraint_J (x))))
34018 || (outer_code == GTU
34019 && satisfies_constraint_I (x))
34020 || (outer_code == LTU
34021 && satisfies_constraint_P (x)))
34022 {
34023 *total = 0;
34024 return true;
34025 }
34026 else if ((outer_code == PLUS
34027 && reg_or_add_cint_operand (x, VOIDmode))
34028 || (outer_code == MINUS
34029 && reg_or_sub_cint_operand (x, VOIDmode))
34030 || ((outer_code == SET
34031 || outer_code == IOR
34032 || outer_code == XOR)
34033 && (INTVAL (x)
34034 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) == 0))
34035 {
34036 *total = COSTS_N_INSNS (1);
34037 return true;
34038 }
34039 /* FALLTHRU */
34040
34041 case CONST_DOUBLE:
34042 case CONST_WIDE_INT:
34043 case CONST:
34044 case HIGH:
34045 case SYMBOL_REF:
34046 *total = !speed ? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (2);
34047 return true;
34048
34049 case MEM:
34050 /* When optimizing for size, MEM should be slightly more expensive
34051 than generating address, e.g., (plus (reg) (const)).
34052 L1 cache latency is about two instructions. */
34053 *total = !speed ? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (2);
34054 if (rs6000_slow_unaligned_access (mode, MEM_ALIGN (x)))
34055 *total += COSTS_N_INSNS (100);
34056 return true;
34057
34058 case LABEL_REF:
34059 *total = 0;
34060 return true;
34061
34062 case PLUS:
34063 case MINUS:
34064 if (FLOAT_MODE_P (mode))
34065 *total = rs6000_cost->fp;
34066 else
34067 *total = COSTS_N_INSNS (1);
34068 return false;
34069
34070 case MULT:
34071 if (GET_CODE (XEXP (x, 1)) == CONST_INT
34072 && satisfies_constraint_I (XEXP (x, 1)))
34073 {
34074 if (INTVAL (XEXP (x, 1)) >= -256
34075 && INTVAL (XEXP (x, 1)) <= 255)
34076 *total = rs6000_cost->mulsi_const9;
34077 else
34078 *total = rs6000_cost->mulsi_const;
34079 }
34080 else if (mode == SFmode)
34081 *total = rs6000_cost->fp;
34082 else if (FLOAT_MODE_P (mode))
34083 *total = rs6000_cost->dmul;
34084 else if (mode == DImode)
34085 *total = rs6000_cost->muldi;
34086 else
34087 *total = rs6000_cost->mulsi;
34088 return false;
34089
34090 case FMA:
34091 if (mode == SFmode)
34092 *total = rs6000_cost->fp;
34093 else
34094 *total = rs6000_cost->dmul;
34095 break;
34096
34097 case DIV:
34098 case MOD:
34099 if (FLOAT_MODE_P (mode))
34100 {
34101 *total = mode == DFmode ? rs6000_cost->ddiv
34102 : rs6000_cost->sdiv;
34103 return false;
34104 }
34105 /* FALLTHRU */
34106
34107 case UDIV:
34108 case UMOD:
34109 if (GET_CODE (XEXP (x, 1)) == CONST_INT
34110 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
34111 {
34112 if (code == DIV || code == MOD)
34113 /* Shift, addze */
34114 *total = COSTS_N_INSNS (2);
34115 else
34116 /* Shift */
34117 *total = COSTS_N_INSNS (1);
34118 }
34119 else
34120 {
34121 if (GET_MODE (XEXP (x, 1)) == DImode)
34122 *total = rs6000_cost->divdi;
34123 else
34124 *total = rs6000_cost->divsi;
34125 }
34126 /* Add in shift and subtract for MOD unless we have a mod instruction. */
34127 if (!TARGET_MODULO && (code == MOD || code == UMOD))
34128 *total += COSTS_N_INSNS (2);
34129 return false;
34130
34131 case CTZ:
34132 *total = COSTS_N_INSNS (TARGET_CTZ ? 1 : 4);
34133 return false;
34134
34135 case FFS:
34136 *total = COSTS_N_INSNS (4);
34137 return false;
34138
34139 case POPCOUNT:
34140 *total = COSTS_N_INSNS (TARGET_POPCNTD ? 1 : 6);
34141 return false;
34142
34143 case PARITY:
34144 *total = COSTS_N_INSNS (TARGET_CMPB ? 2 : 6);
34145 return false;
34146
34147 case NOT:
34148 if (outer_code == AND || outer_code == IOR || outer_code == XOR)
34149 *total = 0;
34150 else
34151 *total = COSTS_N_INSNS (1);
34152 return false;
34153
34154 case AND:
34155 if (CONST_INT_P (XEXP (x, 1)))
34156 {
34157 rtx left = XEXP (x, 0);
34158 rtx_code left_code = GET_CODE (left);
34159
34160 /* rotate-and-mask: 1 insn. */
34161 if ((left_code == ROTATE
34162 || left_code == ASHIFT
34163 || left_code == LSHIFTRT)
34164 && rs6000_is_valid_shift_mask (XEXP (x, 1), left, mode))
34165 {
34166 *total = rtx_cost (XEXP (left, 0), mode, left_code, 0, speed);
34167 if (!CONST_INT_P (XEXP (left, 1)))
34168 *total += rtx_cost (XEXP (left, 1), SImode, left_code, 1, speed);
34169 *total += COSTS_N_INSNS (1);
34170 return true;
34171 }
34172
34173 /* rotate-and-mask (no rotate), andi., andis.: 1 insn. */
34174 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
34175 if (rs6000_is_valid_and_mask (XEXP (x, 1), mode)
34176 || (val & 0xffff) == val
34177 || (val & 0xffff0000) == val
34178 || ((val & 0xffff) == 0 && mode == SImode))
34179 {
34180 *total = rtx_cost (left, mode, AND, 0, speed);
34181 *total += COSTS_N_INSNS (1);
34182 return true;
34183 }
34184
34185 /* 2 insns. */
34186 if (rs6000_is_valid_2insn_and (XEXP (x, 1), mode))
34187 {
34188 *total = rtx_cost (left, mode, AND, 0, speed);
34189 *total += COSTS_N_INSNS (2);
34190 return true;
34191 }
34192 }
34193
34194 *total = COSTS_N_INSNS (1);
34195 return false;
34196
34197 case IOR:
34198 /* FIXME */
34199 *total = COSTS_N_INSNS (1);
34200 return true;
34201
34202 case CLZ:
34203 case XOR:
34204 case ZERO_EXTRACT:
34205 *total = COSTS_N_INSNS (1);
34206 return false;
34207
34208 case ASHIFT:
34209 /* The EXTSWSLI instruction is a combined instruction. Don't count both
34210 the sign extend and shift separately within the insn. */
34211 if (TARGET_EXTSWSLI && mode == DImode
34212 && GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
34213 && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode)
34214 {
34215 *total = 0;
34216 return false;
34217 }
34218 /* fall through */
34219
34220 case ASHIFTRT:
34221 case LSHIFTRT:
34222 case ROTATE:
34223 case ROTATERT:
34224 /* Handle mul_highpart. */
34225 if (outer_code == TRUNCATE
34226 && GET_CODE (XEXP (x, 0)) == MULT)
34227 {
34228 if (mode == DImode)
34229 *total = rs6000_cost->muldi;
34230 else
34231 *total = rs6000_cost->mulsi;
34232 return true;
34233 }
34234 else if (outer_code == AND)
34235 *total = 0;
34236 else
34237 *total = COSTS_N_INSNS (1);
34238 return false;
34239
34240 case SIGN_EXTEND:
34241 case ZERO_EXTEND:
34242 if (GET_CODE (XEXP (x, 0)) == MEM)
34243 *total = 0;
34244 else
34245 *total = COSTS_N_INSNS (1);
34246 return false;
34247
34248 case COMPARE:
34249 case NEG:
34250 case ABS:
34251 if (!FLOAT_MODE_P (mode))
34252 {
34253 *total = COSTS_N_INSNS (1);
34254 return false;
34255 }
34256 /* FALLTHRU */
34257
34258 case FLOAT:
34259 case UNSIGNED_FLOAT:
34260 case FIX:
34261 case UNSIGNED_FIX:
34262 case FLOAT_TRUNCATE:
34263 *total = rs6000_cost->fp;
34264 return false;
34265
34266 case FLOAT_EXTEND:
34267 if (mode == DFmode)
34268 *total = rs6000_cost->sfdf_convert;
34269 else
34270 *total = rs6000_cost->fp;
34271 return false;
34272
34273 case UNSPEC:
34274 switch (XINT (x, 1))
34275 {
34276 case UNSPEC_FRSP:
34277 *total = rs6000_cost->fp;
34278 return true;
34279
34280 default:
34281 break;
34282 }
34283 break;
34284
34285 case CALL:
34286 case IF_THEN_ELSE:
34287 if (!speed)
34288 {
34289 *total = COSTS_N_INSNS (1);
34290 return true;
34291 }
34292 else if (FLOAT_MODE_P (mode) && TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT)
34293 {
34294 *total = rs6000_cost->fp;
34295 return false;
34296 }
34297 break;
34298
34299 case NE:
34300 case EQ:
34301 case GTU:
34302 case LTU:
34303 /* Carry bit requires mode == Pmode.
34304 NEG or PLUS already counted so only add one. */
34305 if (mode == Pmode
34306 && (outer_code == NEG || outer_code == PLUS))
34307 {
34308 *total = COSTS_N_INSNS (1);
34309 return true;
34310 }
34311 /* FALLTHRU */
34312
34313 case GT:
34314 case LT:
34315 case UNORDERED:
34316 if (outer_code == SET)
34317 {
34318 if (XEXP (x, 1) == const0_rtx)
34319 {
34320 *total = COSTS_N_INSNS (2);
34321 return true;
34322 }
34323 else
34324 {
34325 *total = COSTS_N_INSNS (3);
34326 return false;
34327 }
34328 }
34329 /* CC COMPARE. */
34330 if (outer_code == COMPARE)
34331 {
34332 *total = 0;
34333 return true;
34334 }
34335 break;
34336
34337 default:
34338 break;
34339 }
34340
34341 return false;
34342 }
34343
34344 /* Debug form of r6000_rtx_costs that is selected if -mdebug=cost. */
34345
34346 static bool
34347 rs6000_debug_rtx_costs (rtx x, machine_mode mode, int outer_code,
34348 int opno, int *total, bool speed)
34349 {
34350 bool ret = rs6000_rtx_costs (x, mode, outer_code, opno, total, speed);
34351
34352 fprintf (stderr,
34353 "\nrs6000_rtx_costs, return = %s, mode = %s, outer_code = %s, "
34354 "opno = %d, total = %d, speed = %s, x:\n",
34355 ret ? "complete" : "scan inner",
34356 GET_MODE_NAME (mode),
34357 GET_RTX_NAME (outer_code),
34358 opno,
34359 *total,
34360 speed ? "true" : "false");
34361
34362 debug_rtx (x);
34363
34364 return ret;
34365 }
34366
34367 static int
34368 rs6000_insn_cost (rtx_insn *insn, bool speed)
34369 {
34370 if (recog_memoized (insn) < 0)
34371 return 0;
34372
34373 if (!speed)
34374 return get_attr_length (insn);
34375
34376 int cost = get_attr_cost (insn);
34377 if (cost > 0)
34378 return cost;
34379
34380 int n = get_attr_length (insn) / 4;
34381 enum attr_type type = get_attr_type (insn);
34382
34383 switch (type)
34384 {
34385 case TYPE_LOAD:
34386 case TYPE_FPLOAD:
34387 case TYPE_VECLOAD:
34388 cost = COSTS_N_INSNS (n + 1);
34389 break;
34390
34391 case TYPE_MUL:
34392 switch (get_attr_size (insn))
34393 {
34394 case SIZE_8:
34395 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->mulsi_const9;
34396 break;
34397 case SIZE_16:
34398 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->mulsi_const;
34399 break;
34400 case SIZE_32:
34401 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->mulsi;
34402 break;
34403 case SIZE_64:
34404 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->muldi;
34405 break;
34406 default:
34407 gcc_unreachable ();
34408 }
34409 break;
34410 case TYPE_DIV:
34411 switch (get_attr_size (insn))
34412 {
34413 case SIZE_32:
34414 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->divsi;
34415 break;
34416 case SIZE_64:
34417 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->divdi;
34418 break;
34419 default:
34420 gcc_unreachable ();
34421 }
34422 break;
34423
34424 case TYPE_FP:
34425 cost = n * rs6000_cost->fp;
34426 break;
34427 case TYPE_DMUL:
34428 cost = n * rs6000_cost->dmul;
34429 break;
34430 case TYPE_SDIV:
34431 cost = n * rs6000_cost->sdiv;
34432 break;
34433 case TYPE_DDIV:
34434 cost = n * rs6000_cost->ddiv;
34435 break;
34436
34437 case TYPE_SYNC:
34438 case TYPE_LOAD_L:
34439 case TYPE_MFCR:
34440 case TYPE_MFCRF:
34441 cost = COSTS_N_INSNS (n + 2);
34442 break;
34443
34444 default:
34445 cost = COSTS_N_INSNS (n);
34446 }
34447
34448 return cost;
34449 }
34450
34451 /* Debug form of ADDRESS_COST that is selected if -mdebug=cost. */
34452
34453 static int
34454 rs6000_debug_address_cost (rtx x, machine_mode mode,
34455 addr_space_t as, bool speed)
34456 {
34457 int ret = TARGET_ADDRESS_COST (x, mode, as, speed);
34458
34459 fprintf (stderr, "\nrs6000_address_cost, return = %d, speed = %s, x:\n",
34460 ret, speed ? "true" : "false");
34461 debug_rtx (x);
34462
34463 return ret;
34464 }
34465
34466
34467 /* A C expression returning the cost of moving data from a register of class
34468 CLASS1 to one of CLASS2. */
34469
34470 static int
34471 rs6000_register_move_cost (machine_mode mode,
34472 reg_class_t from, reg_class_t to)
34473 {
34474 int ret;
34475
34476 if (TARGET_DEBUG_COST)
34477 dbg_cost_ctrl++;
34478
34479 /* Moves from/to GENERAL_REGS. */
34480 if (reg_classes_intersect_p (to, GENERAL_REGS)
34481 || reg_classes_intersect_p (from, GENERAL_REGS))
34482 {
34483 reg_class_t rclass = from;
34484
34485 if (! reg_classes_intersect_p (to, GENERAL_REGS))
34486 rclass = to;
34487
34488 if (rclass == FLOAT_REGS || rclass == ALTIVEC_REGS || rclass == VSX_REGS)
34489 ret = (rs6000_memory_move_cost (mode, rclass, false)
34490 + rs6000_memory_move_cost (mode, GENERAL_REGS, false));
34491
34492 /* It's more expensive to move CR_REGS than CR0_REGS because of the
34493 shift. */
34494 else if (rclass == CR_REGS)
34495 ret = 4;
34496
34497 /* For those processors that have slow LR/CTR moves, make them more
34498 expensive than memory in order to bias spills to memory .*/
34499 else if ((rs6000_tune == PROCESSOR_POWER6
34500 || rs6000_tune == PROCESSOR_POWER7
34501 || rs6000_tune == PROCESSOR_POWER8
34502 || rs6000_tune == PROCESSOR_POWER9)
34503 && reg_classes_intersect_p (rclass, LINK_OR_CTR_REGS))
34504 ret = 6 * hard_regno_nregs (0, mode);
34505
34506 else
34507 /* A move will cost one instruction per GPR moved. */
34508 ret = 2 * hard_regno_nregs (0, mode);
34509 }
34510
34511 /* If we have VSX, we can easily move between FPR or Altivec registers. */
34512 else if (VECTOR_MEM_VSX_P (mode)
34513 && reg_classes_intersect_p (to, VSX_REGS)
34514 && reg_classes_intersect_p (from, VSX_REGS))
34515 ret = 2 * hard_regno_nregs (FIRST_FPR_REGNO, mode);
34516
34517 /* Moving between two similar registers is just one instruction. */
34518 else if (reg_classes_intersect_p (to, from))
34519 ret = (FLOAT128_2REG_P (mode)) ? 4 : 2;
34520
34521 /* Everything else has to go through GENERAL_REGS. */
34522 else
34523 ret = (rs6000_register_move_cost (mode, GENERAL_REGS, to)
34524 + rs6000_register_move_cost (mode, from, GENERAL_REGS));
34525
34526 if (TARGET_DEBUG_COST)
34527 {
34528 if (dbg_cost_ctrl == 1)
34529 fprintf (stderr,
34530 "rs6000_register_move_cost:, ret=%d, mode=%s, from=%s, to=%s\n",
34531 ret, GET_MODE_NAME (mode), reg_class_names[from],
34532 reg_class_names[to]);
34533 dbg_cost_ctrl--;
34534 }
34535
34536 return ret;
34537 }
34538
34539 /* A C expressions returning the cost of moving data of MODE from a register to
34540 or from memory. */
34541
34542 static int
34543 rs6000_memory_move_cost (machine_mode mode, reg_class_t rclass,
34544 bool in ATTRIBUTE_UNUSED)
34545 {
34546 int ret;
34547
34548 if (TARGET_DEBUG_COST)
34549 dbg_cost_ctrl++;
34550
34551 if (reg_classes_intersect_p (rclass, GENERAL_REGS))
34552 ret = 4 * hard_regno_nregs (0, mode);
34553 else if ((reg_classes_intersect_p (rclass, FLOAT_REGS)
34554 || reg_classes_intersect_p (rclass, VSX_REGS)))
34555 ret = 4 * hard_regno_nregs (32, mode);
34556 else if (reg_classes_intersect_p (rclass, ALTIVEC_REGS))
34557 ret = 4 * hard_regno_nregs (FIRST_ALTIVEC_REGNO, mode);
34558 else
34559 ret = 4 + rs6000_register_move_cost (mode, rclass, GENERAL_REGS);
34560
34561 if (TARGET_DEBUG_COST)
34562 {
34563 if (dbg_cost_ctrl == 1)
34564 fprintf (stderr,
34565 "rs6000_memory_move_cost: ret=%d, mode=%s, rclass=%s, in=%d\n",
34566 ret, GET_MODE_NAME (mode), reg_class_names[rclass], in);
34567 dbg_cost_ctrl--;
34568 }
34569
34570 return ret;
34571 }
34572
34573 /* Returns a code for a target-specific builtin that implements
34574 reciprocal of the function, or NULL_TREE if not available. */
34575
34576 static tree
34577 rs6000_builtin_reciprocal (tree fndecl)
34578 {
34579 switch (DECL_FUNCTION_CODE (fndecl))
34580 {
34581 case VSX_BUILTIN_XVSQRTDP:
34582 if (!RS6000_RECIP_AUTO_RSQRTE_P (V2DFmode))
34583 return NULL_TREE;
34584
34585 return rs6000_builtin_decls[VSX_BUILTIN_RSQRT_2DF];
34586
34587 case VSX_BUILTIN_XVSQRTSP:
34588 if (!RS6000_RECIP_AUTO_RSQRTE_P (V4SFmode))
34589 return NULL_TREE;
34590
34591 return rs6000_builtin_decls[VSX_BUILTIN_RSQRT_4SF];
34592
34593 default:
34594 return NULL_TREE;
34595 }
34596 }
34597
34598 /* Load up a constant. If the mode is a vector mode, splat the value across
34599 all of the vector elements. */
34600
34601 static rtx
34602 rs6000_load_constant_and_splat (machine_mode mode, REAL_VALUE_TYPE dconst)
34603 {
34604 rtx reg;
34605
34606 if (mode == SFmode || mode == DFmode)
34607 {
34608 rtx d = const_double_from_real_value (dconst, mode);
34609 reg = force_reg (mode, d);
34610 }
34611 else if (mode == V4SFmode)
34612 {
34613 rtx d = const_double_from_real_value (dconst, SFmode);
34614 rtvec v = gen_rtvec (4, d, d, d, d);
34615 reg = gen_reg_rtx (mode);
34616 rs6000_expand_vector_init (reg, gen_rtx_PARALLEL (mode, v));
34617 }
34618 else if (mode == V2DFmode)
34619 {
34620 rtx d = const_double_from_real_value (dconst, DFmode);
34621 rtvec v = gen_rtvec (2, d, d);
34622 reg = gen_reg_rtx (mode);
34623 rs6000_expand_vector_init (reg, gen_rtx_PARALLEL (mode, v));
34624 }
34625 else
34626 gcc_unreachable ();
34627
34628 return reg;
34629 }
34630
34631 /* Generate an FMA instruction. */
34632
34633 static void
34634 rs6000_emit_madd (rtx target, rtx m1, rtx m2, rtx a)
34635 {
34636 machine_mode mode = GET_MODE (target);
34637 rtx dst;
34638
34639 dst = expand_ternary_op (mode, fma_optab, m1, m2, a, target, 0);
34640 gcc_assert (dst != NULL);
34641
34642 if (dst != target)
34643 emit_move_insn (target, dst);
34644 }
34645
34646 /* Generate a FNMSUB instruction: dst = -fma(m1, m2, -a). */
34647
34648 static void
34649 rs6000_emit_nmsub (rtx dst, rtx m1, rtx m2, rtx a)
34650 {
34651 machine_mode mode = GET_MODE (dst);
34652 rtx r;
34653
34654 /* This is a tad more complicated, since the fnma_optab is for
34655 a different expression: fma(-m1, m2, a), which is the same
34656 thing except in the case of signed zeros.
34657
34658 Fortunately we know that if FMA is supported that FNMSUB is
34659 also supported in the ISA. Just expand it directly. */
34660
34661 gcc_assert (optab_handler (fma_optab, mode) != CODE_FOR_nothing);
34662
34663 r = gen_rtx_NEG (mode, a);
34664 r = gen_rtx_FMA (mode, m1, m2, r);
34665 r = gen_rtx_NEG (mode, r);
34666 emit_insn (gen_rtx_SET (dst, r));
34667 }
34668
34669 /* Newton-Raphson approximation of floating point divide DST = N/D. If NOTE_P,
34670 add a reg_note saying that this was a division. Support both scalar and
34671 vector divide. Assumes no trapping math and finite arguments. */
34672
34673 void
34674 rs6000_emit_swdiv (rtx dst, rtx n, rtx d, bool note_p)
34675 {
34676 machine_mode mode = GET_MODE (dst);
34677 rtx one, x0, e0, x1, xprev, eprev, xnext, enext, u, v;
34678 int i;
34679
34680 /* Low precision estimates guarantee 5 bits of accuracy. High
34681 precision estimates guarantee 14 bits of accuracy. SFmode
34682 requires 23 bits of accuracy. DFmode requires 52 bits of
34683 accuracy. Each pass at least doubles the accuracy, leading
34684 to the following. */
34685 int passes = (TARGET_RECIP_PRECISION) ? 1 : 3;
34686 if (mode == DFmode || mode == V2DFmode)
34687 passes++;
34688
34689 enum insn_code code = optab_handler (smul_optab, mode);
34690 insn_gen_fn gen_mul = GEN_FCN (code);
34691
34692 gcc_assert (code != CODE_FOR_nothing);
34693
34694 one = rs6000_load_constant_and_splat (mode, dconst1);
34695
34696 /* x0 = 1./d estimate */
34697 x0 = gen_reg_rtx (mode);
34698 emit_insn (gen_rtx_SET (x0, gen_rtx_UNSPEC (mode, gen_rtvec (1, d),
34699 UNSPEC_FRES)));
34700
34701 /* Each iteration but the last calculates x_(i+1) = x_i * (2 - d * x_i). */
34702 if (passes > 1) {
34703
34704 /* e0 = 1. - d * x0 */
34705 e0 = gen_reg_rtx (mode);
34706 rs6000_emit_nmsub (e0, d, x0, one);
34707
34708 /* x1 = x0 + e0 * x0 */
34709 x1 = gen_reg_rtx (mode);
34710 rs6000_emit_madd (x1, e0, x0, x0);
34711
34712 for (i = 0, xprev = x1, eprev = e0; i < passes - 2;
34713 ++i, xprev = xnext, eprev = enext) {
34714
34715 /* enext = eprev * eprev */
34716 enext = gen_reg_rtx (mode);
34717 emit_insn (gen_mul (enext, eprev, eprev));
34718
34719 /* xnext = xprev + enext * xprev */
34720 xnext = gen_reg_rtx (mode);
34721 rs6000_emit_madd (xnext, enext, xprev, xprev);
34722 }
34723
34724 } else
34725 xprev = x0;
34726
34727 /* The last iteration calculates x_(i+1) = n * x_i * (2 - d * x_i). */
34728
34729 /* u = n * xprev */
34730 u = gen_reg_rtx (mode);
34731 emit_insn (gen_mul (u, n, xprev));
34732
34733 /* v = n - (d * u) */
34734 v = gen_reg_rtx (mode);
34735 rs6000_emit_nmsub (v, d, u, n);
34736
34737 /* dst = (v * xprev) + u */
34738 rs6000_emit_madd (dst, v, xprev, u);
34739
34740 if (note_p)
34741 add_reg_note (get_last_insn (), REG_EQUAL, gen_rtx_DIV (mode, n, d));
34742 }
34743
34744 /* Goldschmidt's Algorithm for single/double-precision floating point
34745 sqrt and rsqrt. Assumes no trapping math and finite arguments. */
34746
34747 void
34748 rs6000_emit_swsqrt (rtx dst, rtx src, bool recip)
34749 {
34750 machine_mode mode = GET_MODE (src);
34751 rtx e = gen_reg_rtx (mode);
34752 rtx g = gen_reg_rtx (mode);
34753 rtx h = gen_reg_rtx (mode);
34754
34755 /* Low precision estimates guarantee 5 bits of accuracy. High
34756 precision estimates guarantee 14 bits of accuracy. SFmode
34757 requires 23 bits of accuracy. DFmode requires 52 bits of
34758 accuracy. Each pass at least doubles the accuracy, leading
34759 to the following. */
34760 int passes = (TARGET_RECIP_PRECISION) ? 1 : 3;
34761 if (mode == DFmode || mode == V2DFmode)
34762 passes++;
34763
34764 int i;
34765 rtx mhalf;
34766 enum insn_code code = optab_handler (smul_optab, mode);
34767 insn_gen_fn gen_mul = GEN_FCN (code);
34768
34769 gcc_assert (code != CODE_FOR_nothing);
34770
34771 mhalf = rs6000_load_constant_and_splat (mode, dconsthalf);
34772
34773 /* e = rsqrt estimate */
34774 emit_insn (gen_rtx_SET (e, gen_rtx_UNSPEC (mode, gen_rtvec (1, src),
34775 UNSPEC_RSQRT)));
34776
34777 /* If (src == 0.0) filter infinity to prevent NaN for sqrt(0.0). */
34778 if (!recip)
34779 {
34780 rtx zero = force_reg (mode, CONST0_RTX (mode));
34781
34782 if (mode == SFmode)
34783 {
34784 rtx target = emit_conditional_move (e, GT, src, zero, mode,
34785 e, zero, mode, 0);
34786 if (target != e)
34787 emit_move_insn (e, target);
34788 }
34789 else
34790 {
34791 rtx cond = gen_rtx_GT (VOIDmode, e, zero);
34792 rs6000_emit_vector_cond_expr (e, e, zero, cond, src, zero);
34793 }
34794 }
34795
34796 /* g = sqrt estimate. */
34797 emit_insn (gen_mul (g, e, src));
34798 /* h = 1/(2*sqrt) estimate. */
34799 emit_insn (gen_mul (h, e, mhalf));
34800
34801 if (recip)
34802 {
34803 if (passes == 1)
34804 {
34805 rtx t = gen_reg_rtx (mode);
34806 rs6000_emit_nmsub (t, g, h, mhalf);
34807 /* Apply correction directly to 1/rsqrt estimate. */
34808 rs6000_emit_madd (dst, e, t, e);
34809 }
34810 else
34811 {
34812 for (i = 0; i < passes; i++)
34813 {
34814 rtx t1 = gen_reg_rtx (mode);
34815 rtx g1 = gen_reg_rtx (mode);
34816 rtx h1 = gen_reg_rtx (mode);
34817
34818 rs6000_emit_nmsub (t1, g, h, mhalf);
34819 rs6000_emit_madd (g1, g, t1, g);
34820 rs6000_emit_madd (h1, h, t1, h);
34821
34822 g = g1;
34823 h = h1;
34824 }
34825 /* Multiply by 2 for 1/rsqrt. */
34826 emit_insn (gen_add3_insn (dst, h, h));
34827 }
34828 }
34829 else
34830 {
34831 rtx t = gen_reg_rtx (mode);
34832 rs6000_emit_nmsub (t, g, h, mhalf);
34833 rs6000_emit_madd (dst, g, t, g);
34834 }
34835
34836 return;
34837 }
34838
34839 /* Emit popcount intrinsic on TARGET_POPCNTB (Power5) and TARGET_POPCNTD
34840 (Power7) targets. DST is the target, and SRC is the argument operand. */
34841
34842 void
34843 rs6000_emit_popcount (rtx dst, rtx src)
34844 {
34845 machine_mode mode = GET_MODE (dst);
34846 rtx tmp1, tmp2;
34847
34848 /* Use the PPC ISA 2.06 popcnt{w,d} instruction if we can. */
34849 if (TARGET_POPCNTD)
34850 {
34851 if (mode == SImode)
34852 emit_insn (gen_popcntdsi2 (dst, src));
34853 else
34854 emit_insn (gen_popcntddi2 (dst, src));
34855 return;
34856 }
34857
34858 tmp1 = gen_reg_rtx (mode);
34859
34860 if (mode == SImode)
34861 {
34862 emit_insn (gen_popcntbsi2 (tmp1, src));
34863 tmp2 = expand_mult (SImode, tmp1, GEN_INT (0x01010101),
34864 NULL_RTX, 0);
34865 tmp2 = force_reg (SImode, tmp2);
34866 emit_insn (gen_lshrsi3 (dst, tmp2, GEN_INT (24)));
34867 }
34868 else
34869 {
34870 emit_insn (gen_popcntbdi2 (tmp1, src));
34871 tmp2 = expand_mult (DImode, tmp1,
34872 GEN_INT ((HOST_WIDE_INT)
34873 0x01010101 << 32 | 0x01010101),
34874 NULL_RTX, 0);
34875 tmp2 = force_reg (DImode, tmp2);
34876 emit_insn (gen_lshrdi3 (dst, tmp2, GEN_INT (56)));
34877 }
34878 }
34879
34880
34881 /* Emit parity intrinsic on TARGET_POPCNTB targets. DST is the
34882 target, and SRC is the argument operand. */
34883
34884 void
34885 rs6000_emit_parity (rtx dst, rtx src)
34886 {
34887 machine_mode mode = GET_MODE (dst);
34888 rtx tmp;
34889
34890 tmp = gen_reg_rtx (mode);
34891
34892 /* Use the PPC ISA 2.05 prtyw/prtyd instruction if we can. */
34893 if (TARGET_CMPB)
34894 {
34895 if (mode == SImode)
34896 {
34897 emit_insn (gen_popcntbsi2 (tmp, src));
34898 emit_insn (gen_paritysi2_cmpb (dst, tmp));
34899 }
34900 else
34901 {
34902 emit_insn (gen_popcntbdi2 (tmp, src));
34903 emit_insn (gen_paritydi2_cmpb (dst, tmp));
34904 }
34905 return;
34906 }
34907
34908 if (mode == SImode)
34909 {
34910 /* Is mult+shift >= shift+xor+shift+xor? */
34911 if (rs6000_cost->mulsi_const >= COSTS_N_INSNS (3))
34912 {
34913 rtx tmp1, tmp2, tmp3, tmp4;
34914
34915 tmp1 = gen_reg_rtx (SImode);
34916 emit_insn (gen_popcntbsi2 (tmp1, src));
34917
34918 tmp2 = gen_reg_rtx (SImode);
34919 emit_insn (gen_lshrsi3 (tmp2, tmp1, GEN_INT (16)));
34920 tmp3 = gen_reg_rtx (SImode);
34921 emit_insn (gen_xorsi3 (tmp3, tmp1, tmp2));
34922
34923 tmp4 = gen_reg_rtx (SImode);
34924 emit_insn (gen_lshrsi3 (tmp4, tmp3, GEN_INT (8)));
34925 emit_insn (gen_xorsi3 (tmp, tmp3, tmp4));
34926 }
34927 else
34928 rs6000_emit_popcount (tmp, src);
34929 emit_insn (gen_andsi3 (dst, tmp, const1_rtx));
34930 }
34931 else
34932 {
34933 /* Is mult+shift >= shift+xor+shift+xor+shift+xor? */
34934 if (rs6000_cost->muldi >= COSTS_N_INSNS (5))
34935 {
34936 rtx tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
34937
34938 tmp1 = gen_reg_rtx (DImode);
34939 emit_insn (gen_popcntbdi2 (tmp1, src));
34940
34941 tmp2 = gen_reg_rtx (DImode);
34942 emit_insn (gen_lshrdi3 (tmp2, tmp1, GEN_INT (32)));
34943 tmp3 = gen_reg_rtx (DImode);
34944 emit_insn (gen_xordi3 (tmp3, tmp1, tmp2));
34945
34946 tmp4 = gen_reg_rtx (DImode);
34947 emit_insn (gen_lshrdi3 (tmp4, tmp3, GEN_INT (16)));
34948 tmp5 = gen_reg_rtx (DImode);
34949 emit_insn (gen_xordi3 (tmp5, tmp3, tmp4));
34950
34951 tmp6 = gen_reg_rtx (DImode);
34952 emit_insn (gen_lshrdi3 (tmp6, tmp5, GEN_INT (8)));
34953 emit_insn (gen_xordi3 (tmp, tmp5, tmp6));
34954 }
34955 else
34956 rs6000_emit_popcount (tmp, src);
34957 emit_insn (gen_anddi3 (dst, tmp, const1_rtx));
34958 }
34959 }
34960
34961 /* Expand an Altivec constant permutation for little endian mode.
34962 OP0 and OP1 are the input vectors and TARGET is the output vector.
34963 SEL specifies the constant permutation vector.
34964
34965 There are two issues: First, the two input operands must be
34966 swapped so that together they form a double-wide array in LE
34967 order. Second, the vperm instruction has surprising behavior
34968 in LE mode: it interprets the elements of the source vectors
34969 in BE mode ("left to right") and interprets the elements of
34970 the destination vector in LE mode ("right to left"). To
34971 correct for this, we must subtract each element of the permute
34972 control vector from 31.
34973
34974 For example, suppose we want to concatenate vr10 = {0, 1, 2, 3}
34975 with vr11 = {4, 5, 6, 7} and extract {0, 2, 4, 6} using a vperm.
34976 We place {0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27} in vr12 to
34977 serve as the permute control vector. Then, in BE mode,
34978
34979 vperm 9,10,11,12
34980
34981 places the desired result in vr9. However, in LE mode the
34982 vector contents will be
34983
34984 vr10 = 00000003 00000002 00000001 00000000
34985 vr11 = 00000007 00000006 00000005 00000004
34986
34987 The result of the vperm using the same permute control vector is
34988
34989 vr9 = 05000000 07000000 01000000 03000000
34990
34991 That is, the leftmost 4 bytes of vr10 are interpreted as the
34992 source for the rightmost 4 bytes of vr9, and so on.
34993
34994 If we change the permute control vector to
34995
34996 vr12 = {31,20,29,28,23,22,21,20,15,14,13,12,7,6,5,4}
34997
34998 and issue
34999
35000 vperm 9,11,10,12
35001
35002 we get the desired
35003
35004 vr9 = 00000006 00000004 00000002 00000000. */
35005
35006 static void
35007 altivec_expand_vec_perm_const_le (rtx target, rtx op0, rtx op1,
35008 const vec_perm_indices &sel)
35009 {
35010 unsigned int i;
35011 rtx perm[16];
35012 rtx constv, unspec;
35013
35014 /* Unpack and adjust the constant selector. */
35015 for (i = 0; i < 16; ++i)
35016 {
35017 unsigned int elt = 31 - (sel[i] & 31);
35018 perm[i] = GEN_INT (elt);
35019 }
35020
35021 /* Expand to a permute, swapping the inputs and using the
35022 adjusted selector. */
35023 if (!REG_P (op0))
35024 op0 = force_reg (V16QImode, op0);
35025 if (!REG_P (op1))
35026 op1 = force_reg (V16QImode, op1);
35027
35028 constv = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, perm));
35029 constv = force_reg (V16QImode, constv);
35030 unspec = gen_rtx_UNSPEC (V16QImode, gen_rtvec (3, op1, op0, constv),
35031 UNSPEC_VPERM);
35032 if (!REG_P (target))
35033 {
35034 rtx tmp = gen_reg_rtx (V16QImode);
35035 emit_move_insn (tmp, unspec);
35036 unspec = tmp;
35037 }
35038
35039 emit_move_insn (target, unspec);
35040 }
35041
35042 /* Similarly to altivec_expand_vec_perm_const_le, we must adjust the
35043 permute control vector. But here it's not a constant, so we must
35044 generate a vector NAND or NOR to do the adjustment. */
35045
35046 void
35047 altivec_expand_vec_perm_le (rtx operands[4])
35048 {
35049 rtx notx, iorx, unspec;
35050 rtx target = operands[0];
35051 rtx op0 = operands[1];
35052 rtx op1 = operands[2];
35053 rtx sel = operands[3];
35054 rtx tmp = target;
35055 rtx norreg = gen_reg_rtx (V16QImode);
35056 machine_mode mode = GET_MODE (target);
35057
35058 /* Get everything in regs so the pattern matches. */
35059 if (!REG_P (op0))
35060 op0 = force_reg (mode, op0);
35061 if (!REG_P (op1))
35062 op1 = force_reg (mode, op1);
35063 if (!REG_P (sel))
35064 sel = force_reg (V16QImode, sel);
35065 if (!REG_P (target))
35066 tmp = gen_reg_rtx (mode);
35067
35068 if (TARGET_P9_VECTOR)
35069 {
35070 unspec = gen_rtx_UNSPEC (mode, gen_rtvec (3, op1, op0, sel),
35071 UNSPEC_VPERMR);
35072 }
35073 else
35074 {
35075 /* Invert the selector with a VNAND if available, else a VNOR.
35076 The VNAND is preferred for future fusion opportunities. */
35077 notx = gen_rtx_NOT (V16QImode, sel);
35078 iorx = (TARGET_P8_VECTOR
35079 ? gen_rtx_IOR (V16QImode, notx, notx)
35080 : gen_rtx_AND (V16QImode, notx, notx));
35081 emit_insn (gen_rtx_SET (norreg, iorx));
35082
35083 /* Permute with operands reversed and adjusted selector. */
35084 unspec = gen_rtx_UNSPEC (mode, gen_rtvec (3, op1, op0, norreg),
35085 UNSPEC_VPERM);
35086 }
35087
35088 /* Copy into target, possibly by way of a register. */
35089 if (!REG_P (target))
35090 {
35091 emit_move_insn (tmp, unspec);
35092 unspec = tmp;
35093 }
35094
35095 emit_move_insn (target, unspec);
35096 }
35097
35098 /* Expand an Altivec constant permutation. Return true if we match
35099 an efficient implementation; false to fall back to VPERM.
35100
35101 OP0 and OP1 are the input vectors and TARGET is the output vector.
35102 SEL specifies the constant permutation vector. */
35103
35104 static bool
35105 altivec_expand_vec_perm_const (rtx target, rtx op0, rtx op1,
35106 const vec_perm_indices &sel)
35107 {
35108 struct altivec_perm_insn {
35109 HOST_WIDE_INT mask;
35110 enum insn_code impl;
35111 unsigned char perm[16];
35112 };
35113 static const struct altivec_perm_insn patterns[] = {
35114 { OPTION_MASK_ALTIVEC, CODE_FOR_altivec_vpkuhum_direct,
35115 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
35116 { OPTION_MASK_ALTIVEC, CODE_FOR_altivec_vpkuwum_direct,
35117 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
35118 { OPTION_MASK_ALTIVEC,
35119 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrghb_direct
35120 : CODE_FOR_altivec_vmrglb_direct),
35121 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
35122 { OPTION_MASK_ALTIVEC,
35123 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrghh_direct
35124 : CODE_FOR_altivec_vmrglh_direct),
35125 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
35126 { OPTION_MASK_ALTIVEC,
35127 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrghw_direct
35128 : CODE_FOR_altivec_vmrglw_direct),
35129 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
35130 { OPTION_MASK_ALTIVEC,
35131 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrglb_direct
35132 : CODE_FOR_altivec_vmrghb_direct),
35133 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
35134 { OPTION_MASK_ALTIVEC,
35135 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrglh_direct
35136 : CODE_FOR_altivec_vmrghh_direct),
35137 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
35138 { OPTION_MASK_ALTIVEC,
35139 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrglw_direct
35140 : CODE_FOR_altivec_vmrghw_direct),
35141 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
35142 { OPTION_MASK_P8_VECTOR,
35143 (BYTES_BIG_ENDIAN ? CODE_FOR_p8_vmrgew_v4sf_direct
35144 : CODE_FOR_p8_vmrgow_v4sf_direct),
35145 { 0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27 } },
35146 { OPTION_MASK_P8_VECTOR,
35147 (BYTES_BIG_ENDIAN ? CODE_FOR_p8_vmrgow_v4sf_direct
35148 : CODE_FOR_p8_vmrgew_v4sf_direct),
35149 { 4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31 } }
35150 };
35151
35152 unsigned int i, j, elt, which;
35153 unsigned char perm[16];
35154 rtx x;
35155 bool one_vec;
35156
35157 /* Unpack the constant selector. */
35158 for (i = which = 0; i < 16; ++i)
35159 {
35160 elt = sel[i] & 31;
35161 which |= (elt < 16 ? 1 : 2);
35162 perm[i] = elt;
35163 }
35164
35165 /* Simplify the constant selector based on operands. */
35166 switch (which)
35167 {
35168 default:
35169 gcc_unreachable ();
35170
35171 case 3:
35172 one_vec = false;
35173 if (!rtx_equal_p (op0, op1))
35174 break;
35175 /* FALLTHRU */
35176
35177 case 2:
35178 for (i = 0; i < 16; ++i)
35179 perm[i] &= 15;
35180 op0 = op1;
35181 one_vec = true;
35182 break;
35183
35184 case 1:
35185 op1 = op0;
35186 one_vec = true;
35187 break;
35188 }
35189
35190 /* Look for splat patterns. */
35191 if (one_vec)
35192 {
35193 elt = perm[0];
35194
35195 for (i = 0; i < 16; ++i)
35196 if (perm[i] != elt)
35197 break;
35198 if (i == 16)
35199 {
35200 if (!BYTES_BIG_ENDIAN)
35201 elt = 15 - elt;
35202 emit_insn (gen_altivec_vspltb_direct (target, op0, GEN_INT (elt)));
35203 return true;
35204 }
35205
35206 if (elt % 2 == 0)
35207 {
35208 for (i = 0; i < 16; i += 2)
35209 if (perm[i] != elt || perm[i + 1] != elt + 1)
35210 break;
35211 if (i == 16)
35212 {
35213 int field = BYTES_BIG_ENDIAN ? elt / 2 : 7 - elt / 2;
35214 x = gen_reg_rtx (V8HImode);
35215 emit_insn (gen_altivec_vsplth_direct (x, gen_lowpart (V8HImode, op0),
35216 GEN_INT (field)));
35217 emit_move_insn (target, gen_lowpart (V16QImode, x));
35218 return true;
35219 }
35220 }
35221
35222 if (elt % 4 == 0)
35223 {
35224 for (i = 0; i < 16; i += 4)
35225 if (perm[i] != elt
35226 || perm[i + 1] != elt + 1
35227 || perm[i + 2] != elt + 2
35228 || perm[i + 3] != elt + 3)
35229 break;
35230 if (i == 16)
35231 {
35232 int field = BYTES_BIG_ENDIAN ? elt / 4 : 3 - elt / 4;
35233 x = gen_reg_rtx (V4SImode);
35234 emit_insn (gen_altivec_vspltw_direct (x, gen_lowpart (V4SImode, op0),
35235 GEN_INT (field)));
35236 emit_move_insn (target, gen_lowpart (V16QImode, x));
35237 return true;
35238 }
35239 }
35240 }
35241
35242 /* Look for merge and pack patterns. */
35243 for (j = 0; j < ARRAY_SIZE (patterns); ++j)
35244 {
35245 bool swapped;
35246
35247 if ((patterns[j].mask & rs6000_isa_flags) == 0)
35248 continue;
35249
35250 elt = patterns[j].perm[0];
35251 if (perm[0] == elt)
35252 swapped = false;
35253 else if (perm[0] == elt + 16)
35254 swapped = true;
35255 else
35256 continue;
35257 for (i = 1; i < 16; ++i)
35258 {
35259 elt = patterns[j].perm[i];
35260 if (swapped)
35261 elt = (elt >= 16 ? elt - 16 : elt + 16);
35262 else if (one_vec && elt >= 16)
35263 elt -= 16;
35264 if (perm[i] != elt)
35265 break;
35266 }
35267 if (i == 16)
35268 {
35269 enum insn_code icode = patterns[j].impl;
35270 machine_mode omode = insn_data[icode].operand[0].mode;
35271 machine_mode imode = insn_data[icode].operand[1].mode;
35272
35273 /* For little-endian, don't use vpkuwum and vpkuhum if the
35274 underlying vector type is not V4SI and V8HI, respectively.
35275 For example, using vpkuwum with a V8HI picks up the even
35276 halfwords (BE numbering) when the even halfwords (LE
35277 numbering) are what we need. */
35278 if (!BYTES_BIG_ENDIAN
35279 && icode == CODE_FOR_altivec_vpkuwum_direct
35280 && ((GET_CODE (op0) == REG
35281 && GET_MODE (op0) != V4SImode)
35282 || (GET_CODE (op0) == SUBREG
35283 && GET_MODE (XEXP (op0, 0)) != V4SImode)))
35284 continue;
35285 if (!BYTES_BIG_ENDIAN
35286 && icode == CODE_FOR_altivec_vpkuhum_direct
35287 && ((GET_CODE (op0) == REG
35288 && GET_MODE (op0) != V8HImode)
35289 || (GET_CODE (op0) == SUBREG
35290 && GET_MODE (XEXP (op0, 0)) != V8HImode)))
35291 continue;
35292
35293 /* For little-endian, the two input operands must be swapped
35294 (or swapped back) to ensure proper right-to-left numbering
35295 from 0 to 2N-1. */
35296 if (swapped ^ !BYTES_BIG_ENDIAN)
35297 std::swap (op0, op1);
35298 if (imode != V16QImode)
35299 {
35300 op0 = gen_lowpart (imode, op0);
35301 op1 = gen_lowpart (imode, op1);
35302 }
35303 if (omode == V16QImode)
35304 x = target;
35305 else
35306 x = gen_reg_rtx (omode);
35307 emit_insn (GEN_FCN (icode) (x, op0, op1));
35308 if (omode != V16QImode)
35309 emit_move_insn (target, gen_lowpart (V16QImode, x));
35310 return true;
35311 }
35312 }
35313
35314 if (!BYTES_BIG_ENDIAN)
35315 {
35316 altivec_expand_vec_perm_const_le (target, op0, op1, sel);
35317 return true;
35318 }
35319
35320 return false;
35321 }
35322
35323 /* Expand a VSX Permute Doubleword constant permutation.
35324 Return true if we match an efficient implementation. */
35325
35326 static bool
35327 rs6000_expand_vec_perm_const_1 (rtx target, rtx op0, rtx op1,
35328 unsigned char perm0, unsigned char perm1)
35329 {
35330 rtx x;
35331
35332 /* If both selectors come from the same operand, fold to single op. */
35333 if ((perm0 & 2) == (perm1 & 2))
35334 {
35335 if (perm0 & 2)
35336 op0 = op1;
35337 else
35338 op1 = op0;
35339 }
35340 /* If both operands are equal, fold to simpler permutation. */
35341 if (rtx_equal_p (op0, op1))
35342 {
35343 perm0 = perm0 & 1;
35344 perm1 = (perm1 & 1) + 2;
35345 }
35346 /* If the first selector comes from the second operand, swap. */
35347 else if (perm0 & 2)
35348 {
35349 if (perm1 & 2)
35350 return false;
35351 perm0 -= 2;
35352 perm1 += 2;
35353 std::swap (op0, op1);
35354 }
35355 /* If the second selector does not come from the second operand, fail. */
35356 else if ((perm1 & 2) == 0)
35357 return false;
35358
35359 /* Success! */
35360 if (target != NULL)
35361 {
35362 machine_mode vmode, dmode;
35363 rtvec v;
35364
35365 vmode = GET_MODE (target);
35366 gcc_assert (GET_MODE_NUNITS (vmode) == 2);
35367 dmode = mode_for_vector (GET_MODE_INNER (vmode), 4).require ();
35368 x = gen_rtx_VEC_CONCAT (dmode, op0, op1);
35369 v = gen_rtvec (2, GEN_INT (perm0), GEN_INT (perm1));
35370 x = gen_rtx_VEC_SELECT (vmode, x, gen_rtx_PARALLEL (VOIDmode, v));
35371 emit_insn (gen_rtx_SET (target, x));
35372 }
35373 return true;
35374 }
35375
35376 /* Implement TARGET_VECTORIZE_VEC_PERM_CONST. */
35377
35378 static bool
35379 rs6000_vectorize_vec_perm_const (machine_mode vmode, rtx target, rtx op0,
35380 rtx op1, const vec_perm_indices &sel)
35381 {
35382 bool testing_p = !target;
35383
35384 /* AltiVec (and thus VSX) can handle arbitrary permutations. */
35385 if (TARGET_ALTIVEC && testing_p)
35386 return true;
35387
35388 /* Check for ps_merge* or xxpermdi insns. */
35389 if ((vmode == V2DFmode || vmode == V2DImode) && VECTOR_MEM_VSX_P (vmode))
35390 {
35391 if (testing_p)
35392 {
35393 op0 = gen_raw_REG (vmode, LAST_VIRTUAL_REGISTER + 1);
35394 op1 = gen_raw_REG (vmode, LAST_VIRTUAL_REGISTER + 2);
35395 }
35396 if (rs6000_expand_vec_perm_const_1 (target, op0, op1, sel[0], sel[1]))
35397 return true;
35398 }
35399
35400 if (TARGET_ALTIVEC)
35401 {
35402 /* Force the target-independent code to lower to V16QImode. */
35403 if (vmode != V16QImode)
35404 return false;
35405 if (altivec_expand_vec_perm_const (target, op0, op1, sel))
35406 return true;
35407 }
35408
35409 return false;
35410 }
35411
35412 /* A subroutine for rs6000_expand_extract_even & rs6000_expand_interleave.
35413 OP0 and OP1 are the input vectors and TARGET is the output vector.
35414 PERM specifies the constant permutation vector. */
35415
35416 static void
35417 rs6000_do_expand_vec_perm (rtx target, rtx op0, rtx op1,
35418 machine_mode vmode, const vec_perm_builder &perm)
35419 {
35420 rtx x = expand_vec_perm_const (vmode, op0, op1, perm, BLKmode, target);
35421 if (x != target)
35422 emit_move_insn (target, x);
35423 }
35424
35425 /* Expand an extract even operation. */
35426
35427 void
35428 rs6000_expand_extract_even (rtx target, rtx op0, rtx op1)
35429 {
35430 machine_mode vmode = GET_MODE (target);
35431 unsigned i, nelt = GET_MODE_NUNITS (vmode);
35432 vec_perm_builder perm (nelt, nelt, 1);
35433
35434 for (i = 0; i < nelt; i++)
35435 perm.quick_push (i * 2);
35436
35437 rs6000_do_expand_vec_perm (target, op0, op1, vmode, perm);
35438 }
35439
35440 /* Expand a vector interleave operation. */
35441
35442 void
35443 rs6000_expand_interleave (rtx target, rtx op0, rtx op1, bool highp)
35444 {
35445 machine_mode vmode = GET_MODE (target);
35446 unsigned i, high, nelt = GET_MODE_NUNITS (vmode);
35447 vec_perm_builder perm (nelt, nelt, 1);
35448
35449 high = (highp ? 0 : nelt / 2);
35450 for (i = 0; i < nelt / 2; i++)
35451 {
35452 perm.quick_push (i + high);
35453 perm.quick_push (i + nelt + high);
35454 }
35455
35456 rs6000_do_expand_vec_perm (target, op0, op1, vmode, perm);
35457 }
35458
35459 /* Scale a V2DF vector SRC by two to the SCALE and place in TGT. */
35460 void
35461 rs6000_scale_v2df (rtx tgt, rtx src, int scale)
35462 {
35463 HOST_WIDE_INT hwi_scale (scale);
35464 REAL_VALUE_TYPE r_pow;
35465 rtvec v = rtvec_alloc (2);
35466 rtx elt;
35467 rtx scale_vec = gen_reg_rtx (V2DFmode);
35468 (void)real_powi (&r_pow, DFmode, &dconst2, hwi_scale);
35469 elt = const_double_from_real_value (r_pow, DFmode);
35470 RTVEC_ELT (v, 0) = elt;
35471 RTVEC_ELT (v, 1) = elt;
35472 rs6000_expand_vector_init (scale_vec, gen_rtx_PARALLEL (V2DFmode, v));
35473 emit_insn (gen_mulv2df3 (tgt, src, scale_vec));
35474 }
35475
35476 /* Return an RTX representing where to find the function value of a
35477 function returning MODE. */
35478 static rtx
35479 rs6000_complex_function_value (machine_mode mode)
35480 {
35481 unsigned int regno;
35482 rtx r1, r2;
35483 machine_mode inner = GET_MODE_INNER (mode);
35484 unsigned int inner_bytes = GET_MODE_UNIT_SIZE (mode);
35485
35486 if (TARGET_FLOAT128_TYPE
35487 && (mode == KCmode
35488 || (mode == TCmode && TARGET_IEEEQUAD)))
35489 regno = ALTIVEC_ARG_RETURN;
35490
35491 else if (FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT)
35492 regno = FP_ARG_RETURN;
35493
35494 else
35495 {
35496 regno = GP_ARG_RETURN;
35497
35498 /* 32-bit is OK since it'll go in r3/r4. */
35499 if (TARGET_32BIT && inner_bytes >= 4)
35500 return gen_rtx_REG (mode, regno);
35501 }
35502
35503 if (inner_bytes >= 8)
35504 return gen_rtx_REG (mode, regno);
35505
35506 r1 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno),
35507 const0_rtx);
35508 r2 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno + 1),
35509 GEN_INT (inner_bytes));
35510 return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r2));
35511 }
35512
35513 /* Return an rtx describing a return value of MODE as a PARALLEL
35514 in N_ELTS registers, each of mode ELT_MODE, starting at REGNO,
35515 stride REG_STRIDE. */
35516
35517 static rtx
35518 rs6000_parallel_return (machine_mode mode,
35519 int n_elts, machine_mode elt_mode,
35520 unsigned int regno, unsigned int reg_stride)
35521 {
35522 rtx par = gen_rtx_PARALLEL (mode, rtvec_alloc (n_elts));
35523
35524 int i;
35525 for (i = 0; i < n_elts; i++)
35526 {
35527 rtx r = gen_rtx_REG (elt_mode, regno);
35528 rtx off = GEN_INT (i * GET_MODE_SIZE (elt_mode));
35529 XVECEXP (par, 0, i) = gen_rtx_EXPR_LIST (VOIDmode, r, off);
35530 regno += reg_stride;
35531 }
35532
35533 return par;
35534 }
35535
35536 /* Target hook for TARGET_FUNCTION_VALUE.
35537
35538 An integer value is in r3 and a floating-point value is in fp1,
35539 unless -msoft-float. */
35540
35541 static rtx
35542 rs6000_function_value (const_tree valtype,
35543 const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
35544 bool outgoing ATTRIBUTE_UNUSED)
35545 {
35546 machine_mode mode;
35547 unsigned int regno;
35548 machine_mode elt_mode;
35549 int n_elts;
35550
35551 /* Special handling for structs in darwin64. */
35552 if (TARGET_MACHO
35553 && rs6000_darwin64_struct_check_p (TYPE_MODE (valtype), valtype))
35554 {
35555 CUMULATIVE_ARGS valcum;
35556 rtx valret;
35557
35558 valcum.words = 0;
35559 valcum.fregno = FP_ARG_MIN_REG;
35560 valcum.vregno = ALTIVEC_ARG_MIN_REG;
35561 /* Do a trial code generation as if this were going to be passed as
35562 an argument; if any part goes in memory, we return NULL. */
35563 valret = rs6000_darwin64_record_arg (&valcum, valtype, true, /* retval= */ true);
35564 if (valret)
35565 return valret;
35566 /* Otherwise fall through to standard ABI rules. */
35567 }
35568
35569 mode = TYPE_MODE (valtype);
35570
35571 /* The ELFv2 ABI returns homogeneous VFP aggregates in registers. */
35572 if (rs6000_discover_homogeneous_aggregate (mode, valtype, &elt_mode, &n_elts))
35573 {
35574 int first_reg, n_regs;
35575
35576 if (SCALAR_FLOAT_MODE_NOT_VECTOR_P (elt_mode))
35577 {
35578 /* _Decimal128 must use even/odd register pairs. */
35579 first_reg = (elt_mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
35580 n_regs = (GET_MODE_SIZE (elt_mode) + 7) >> 3;
35581 }
35582 else
35583 {
35584 first_reg = ALTIVEC_ARG_RETURN;
35585 n_regs = 1;
35586 }
35587
35588 return rs6000_parallel_return (mode, n_elts, elt_mode, first_reg, n_regs);
35589 }
35590
35591 /* Some return value types need be split in -mpowerpc64, 32bit ABI. */
35592 if (TARGET_32BIT && TARGET_POWERPC64)
35593 switch (mode)
35594 {
35595 default:
35596 break;
35597 case E_DImode:
35598 case E_SCmode:
35599 case E_DCmode:
35600 case E_TCmode:
35601 int count = GET_MODE_SIZE (mode) / 4;
35602 return rs6000_parallel_return (mode, count, SImode, GP_ARG_RETURN, 1);
35603 }
35604
35605 if ((INTEGRAL_TYPE_P (valtype)
35606 && GET_MODE_BITSIZE (mode) < (TARGET_32BIT ? 32 : 64))
35607 || POINTER_TYPE_P (valtype))
35608 mode = TARGET_32BIT ? SImode : DImode;
35609
35610 if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT)
35611 /* _Decimal128 must use an even/odd register pair. */
35612 regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
35613 else if (SCALAR_FLOAT_TYPE_P (valtype) && TARGET_HARD_FLOAT
35614 && !FLOAT128_VECTOR_P (mode))
35615 regno = FP_ARG_RETURN;
35616 else if (TREE_CODE (valtype) == COMPLEX_TYPE
35617 && targetm.calls.split_complex_arg)
35618 return rs6000_complex_function_value (mode);
35619 /* VSX is a superset of Altivec and adds V2DImode/V2DFmode. Since the same
35620 return register is used in both cases, and we won't see V2DImode/V2DFmode
35621 for pure altivec, combine the two cases. */
35622 else if ((TREE_CODE (valtype) == VECTOR_TYPE || FLOAT128_VECTOR_P (mode))
35623 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI
35624 && ALTIVEC_OR_VSX_VECTOR_MODE (mode))
35625 regno = ALTIVEC_ARG_RETURN;
35626 else
35627 regno = GP_ARG_RETURN;
35628
35629 return gen_rtx_REG (mode, regno);
35630 }
35631
35632 /* Define how to find the value returned by a library function
35633 assuming the value has mode MODE. */
35634 rtx
35635 rs6000_libcall_value (machine_mode mode)
35636 {
35637 unsigned int regno;
35638
35639 /* Long long return value need be split in -mpowerpc64, 32bit ABI. */
35640 if (TARGET_32BIT && TARGET_POWERPC64 && mode == DImode)
35641 return rs6000_parallel_return (mode, 2, SImode, GP_ARG_RETURN, 1);
35642
35643 if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT)
35644 /* _Decimal128 must use an even/odd register pair. */
35645 regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
35646 else if (SCALAR_FLOAT_MODE_NOT_VECTOR_P (mode) && TARGET_HARD_FLOAT)
35647 regno = FP_ARG_RETURN;
35648 /* VSX is a superset of Altivec and adds V2DImode/V2DFmode. Since the same
35649 return register is used in both cases, and we won't see V2DImode/V2DFmode
35650 for pure altivec, combine the two cases. */
35651 else if (ALTIVEC_OR_VSX_VECTOR_MODE (mode)
35652 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)
35653 regno = ALTIVEC_ARG_RETURN;
35654 else if (COMPLEX_MODE_P (mode) && targetm.calls.split_complex_arg)
35655 return rs6000_complex_function_value (mode);
35656 else
35657 regno = GP_ARG_RETURN;
35658
35659 return gen_rtx_REG (mode, regno);
35660 }
35661
35662 /* Compute register pressure classes. We implement the target hook to avoid
35663 IRA picking something like NON_SPECIAL_REGS as a pressure class, which can
35664 lead to incorrect estimates of number of available registers and therefor
35665 increased register pressure/spill. */
35666 static int
35667 rs6000_compute_pressure_classes (enum reg_class *pressure_classes)
35668 {
35669 int n;
35670
35671 n = 0;
35672 pressure_classes[n++] = GENERAL_REGS;
35673 if (TARGET_VSX)
35674 pressure_classes[n++] = VSX_REGS;
35675 else
35676 {
35677 if (TARGET_ALTIVEC)
35678 pressure_classes[n++] = ALTIVEC_REGS;
35679 if (TARGET_HARD_FLOAT)
35680 pressure_classes[n++] = FLOAT_REGS;
35681 }
35682 pressure_classes[n++] = CR_REGS;
35683 pressure_classes[n++] = SPECIAL_REGS;
35684
35685 return n;
35686 }
35687
35688 /* Given FROM and TO register numbers, say whether this elimination is allowed.
35689 Frame pointer elimination is automatically handled.
35690
35691 For the RS/6000, if frame pointer elimination is being done, we would like
35692 to convert ap into fp, not sp.
35693
35694 We need r30 if -mminimal-toc was specified, and there are constant pool
35695 references. */
35696
35697 static bool
35698 rs6000_can_eliminate (const int from, const int to)
35699 {
35700 return (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM
35701 ? ! frame_pointer_needed
35702 : from == RS6000_PIC_OFFSET_TABLE_REGNUM
35703 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC
35704 || constant_pool_empty_p ()
35705 : true);
35706 }
35707
35708 /* Define the offset between two registers, FROM to be eliminated and its
35709 replacement TO, at the start of a routine. */
35710 HOST_WIDE_INT
35711 rs6000_initial_elimination_offset (int from, int to)
35712 {
35713 rs6000_stack_t *info = rs6000_stack_info ();
35714 HOST_WIDE_INT offset;
35715
35716 if (from == HARD_FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
35717 offset = info->push_p ? 0 : -info->total_size;
35718 else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
35719 {
35720 offset = info->push_p ? 0 : -info->total_size;
35721 if (FRAME_GROWS_DOWNWARD)
35722 offset += info->fixed_size + info->vars_size + info->parm_size;
35723 }
35724 else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
35725 offset = FRAME_GROWS_DOWNWARD
35726 ? info->fixed_size + info->vars_size + info->parm_size
35727 : 0;
35728 else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
35729 offset = info->total_size;
35730 else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
35731 offset = info->push_p ? info->total_size : 0;
35732 else if (from == RS6000_PIC_OFFSET_TABLE_REGNUM)
35733 offset = 0;
35734 else
35735 gcc_unreachable ();
35736
35737 return offset;
35738 }
35739
35740 /* Fill in sizes of registers used by unwinder. */
35741
35742 static void
35743 rs6000_init_dwarf_reg_sizes_extra (tree address)
35744 {
35745 if (TARGET_MACHO && ! TARGET_ALTIVEC)
35746 {
35747 int i;
35748 machine_mode mode = TYPE_MODE (char_type_node);
35749 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, EXPAND_NORMAL);
35750 rtx mem = gen_rtx_MEM (BLKmode, addr);
35751 rtx value = gen_int_mode (16, mode);
35752
35753 /* On Darwin, libgcc may be built to run on both G3 and G4/5.
35754 The unwinder still needs to know the size of Altivec registers. */
35755
35756 for (i = FIRST_ALTIVEC_REGNO; i < LAST_ALTIVEC_REGNO+1; i++)
35757 {
35758 int column = DWARF_REG_TO_UNWIND_COLUMN
35759 (DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), true));
35760 HOST_WIDE_INT offset = column * GET_MODE_SIZE (mode);
35761
35762 emit_move_insn (adjust_address (mem, mode, offset), value);
35763 }
35764 }
35765 }
35766
35767 /* Map internal gcc register numbers to debug format register numbers.
35768 FORMAT specifies the type of debug register number to use:
35769 0 -- debug information, except for frame-related sections
35770 1 -- DWARF .debug_frame section
35771 2 -- DWARF .eh_frame section */
35772
35773 unsigned int
35774 rs6000_dbx_register_number (unsigned int regno, unsigned int format)
35775 {
35776 /* Except for the above, we use the internal number for non-DWARF
35777 debug information, and also for .eh_frame. */
35778 if ((format == 0 && write_symbols != DWARF2_DEBUG) || format == 2)
35779 return regno;
35780
35781 /* On some platforms, we use the standard DWARF register
35782 numbering for .debug_info and .debug_frame. */
35783 #ifdef RS6000_USE_DWARF_NUMBERING
35784 if (regno <= 63)
35785 return regno;
35786 if (regno == LR_REGNO)
35787 return 108;
35788 if (regno == CTR_REGNO)
35789 return 109;
35790 /* Special handling for CR for .debug_frame: rs6000_emit_prologue has
35791 translated any combination of CR2, CR3, CR4 saves to a save of CR2.
35792 The actual code emitted saves the whole of CR, so we map CR2_REGNO
35793 to the DWARF reg for CR. */
35794 if (format == 1 && regno == CR2_REGNO)
35795 return 64;
35796 if (CR_REGNO_P (regno))
35797 return regno - CR0_REGNO + 86;
35798 if (regno == CA_REGNO)
35799 return 101; /* XER */
35800 if (ALTIVEC_REGNO_P (regno))
35801 return regno - FIRST_ALTIVEC_REGNO + 1124;
35802 if (regno == VRSAVE_REGNO)
35803 return 356;
35804 if (regno == VSCR_REGNO)
35805 return 67;
35806 #endif
35807 return regno;
35808 }
35809
35810 /* target hook eh_return_filter_mode */
35811 static scalar_int_mode
35812 rs6000_eh_return_filter_mode (void)
35813 {
35814 return TARGET_32BIT ? SImode : word_mode;
35815 }
35816
35817 /* Target hook for translate_mode_attribute. */
35818 static machine_mode
35819 rs6000_translate_mode_attribute (machine_mode mode)
35820 {
35821 if ((FLOAT128_IEEE_P (mode)
35822 && ieee128_float_type_node == long_double_type_node)
35823 || (FLOAT128_IBM_P (mode)
35824 && ibm128_float_type_node == long_double_type_node))
35825 return COMPLEX_MODE_P (mode) ? E_TCmode : E_TFmode;
35826 return mode;
35827 }
35828
35829 /* Target hook for scalar_mode_supported_p. */
35830 static bool
35831 rs6000_scalar_mode_supported_p (scalar_mode mode)
35832 {
35833 /* -m32 does not support TImode. This is the default, from
35834 default_scalar_mode_supported_p. For -m32 -mpowerpc64 we want the
35835 same ABI as for -m32. But default_scalar_mode_supported_p allows
35836 integer modes of precision 2 * BITS_PER_WORD, which matches TImode
35837 for -mpowerpc64. */
35838 if (TARGET_32BIT && mode == TImode)
35839 return false;
35840
35841 if (DECIMAL_FLOAT_MODE_P (mode))
35842 return default_decimal_float_supported_p ();
35843 else if (TARGET_FLOAT128_TYPE && (mode == KFmode || mode == IFmode))
35844 return true;
35845 else
35846 return default_scalar_mode_supported_p (mode);
35847 }
35848
35849 /* Target hook for vector_mode_supported_p. */
35850 static bool
35851 rs6000_vector_mode_supported_p (machine_mode mode)
35852 {
35853 /* There is no vector form for IEEE 128-bit. If we return true for IEEE
35854 128-bit, the compiler might try to widen IEEE 128-bit to IBM
35855 double-double. */
35856 if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode) && !FLOAT128_IEEE_P (mode))
35857 return true;
35858
35859 else
35860 return false;
35861 }
35862
35863 /* Target hook for floatn_mode. */
35864 static opt_scalar_float_mode
35865 rs6000_floatn_mode (int n, bool extended)
35866 {
35867 if (extended)
35868 {
35869 switch (n)
35870 {
35871 case 32:
35872 return DFmode;
35873
35874 case 64:
35875 if (TARGET_FLOAT128_TYPE)
35876 return (FLOAT128_IEEE_P (TFmode)) ? TFmode : KFmode;
35877 else
35878 return opt_scalar_float_mode ();
35879
35880 case 128:
35881 return opt_scalar_float_mode ();
35882
35883 default:
35884 /* Those are the only valid _FloatNx types. */
35885 gcc_unreachable ();
35886 }
35887 }
35888 else
35889 {
35890 switch (n)
35891 {
35892 case 32:
35893 return SFmode;
35894
35895 case 64:
35896 return DFmode;
35897
35898 case 128:
35899 if (TARGET_FLOAT128_TYPE)
35900 return (FLOAT128_IEEE_P (TFmode)) ? TFmode : KFmode;
35901 else
35902 return opt_scalar_float_mode ();
35903
35904 default:
35905 return opt_scalar_float_mode ();
35906 }
35907 }
35908
35909 }
35910
35911 /* Target hook for c_mode_for_suffix. */
35912 static machine_mode
35913 rs6000_c_mode_for_suffix (char suffix)
35914 {
35915 if (TARGET_FLOAT128_TYPE)
35916 {
35917 if (suffix == 'q' || suffix == 'Q')
35918 return (FLOAT128_IEEE_P (TFmode)) ? TFmode : KFmode;
35919
35920 /* At the moment, we are not defining a suffix for IBM extended double.
35921 If/when the default for -mabi=ieeelongdouble is changed, and we want
35922 to support __ibm128 constants in legacy library code, we may need to
35923 re-evalaute this decision. Currently, c-lex.c only supports 'w' and
35924 'q' as machine dependent suffixes. The x86_64 port uses 'w' for
35925 __float80 constants. */
35926 }
35927
35928 return VOIDmode;
35929 }
35930
35931 /* Target hook for invalid_arg_for_unprototyped_fn. */
35932 static const char *
35933 invalid_arg_for_unprototyped_fn (const_tree typelist, const_tree funcdecl, const_tree val)
35934 {
35935 return (!rs6000_darwin64_abi
35936 && typelist == 0
35937 && TREE_CODE (TREE_TYPE (val)) == VECTOR_TYPE
35938 && (funcdecl == NULL_TREE
35939 || (TREE_CODE (funcdecl) == FUNCTION_DECL
35940 && DECL_BUILT_IN_CLASS (funcdecl) != BUILT_IN_MD)))
35941 ? N_("AltiVec argument passed to unprototyped function")
35942 : NULL;
35943 }
35944
35945 /* For TARGET_SECURE_PLT 32-bit PIC code we can save PIC register
35946 setup by using __stack_chk_fail_local hidden function instead of
35947 calling __stack_chk_fail directly. Otherwise it is better to call
35948 __stack_chk_fail directly. */
35949
35950 static tree ATTRIBUTE_UNUSED
35951 rs6000_stack_protect_fail (void)
35952 {
35953 return (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
35954 ? default_hidden_stack_protect_fail ()
35955 : default_external_stack_protect_fail ();
35956 }
35957
35958 /* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */
35959
35960 #if TARGET_ELF
35961 static unsigned HOST_WIDE_INT
35962 rs6000_asan_shadow_offset (void)
35963 {
35964 return (unsigned HOST_WIDE_INT) 1 << (TARGET_64BIT ? 41 : 29);
35965 }
35966 #endif
35967 \f
35968 /* Mask options that we want to support inside of attribute((target)) and
35969 #pragma GCC target operations. Note, we do not include things like
35970 64/32-bit, endianness, hard/soft floating point, etc. that would have
35971 different calling sequences. */
35972
35973 struct rs6000_opt_mask {
35974 const char *name; /* option name */
35975 HOST_WIDE_INT mask; /* mask to set */
35976 bool invert; /* invert sense of mask */
35977 bool valid_target; /* option is a target option */
35978 };
35979
35980 static struct rs6000_opt_mask const rs6000_opt_masks[] =
35981 {
35982 { "altivec", OPTION_MASK_ALTIVEC, false, true },
35983 { "cmpb", OPTION_MASK_CMPB, false, true },
35984 { "crypto", OPTION_MASK_CRYPTO, false, true },
35985 { "direct-move", OPTION_MASK_DIRECT_MOVE, false, true },
35986 { "dlmzb", OPTION_MASK_DLMZB, false, true },
35987 { "efficient-unaligned-vsx", OPTION_MASK_EFFICIENT_UNALIGNED_VSX,
35988 false, true },
35989 { "float128", OPTION_MASK_FLOAT128_KEYWORD, false, true },
35990 { "float128-hardware", OPTION_MASK_FLOAT128_HW, false, true },
35991 { "fprnd", OPTION_MASK_FPRND, false, true },
35992 { "hard-dfp", OPTION_MASK_DFP, false, true },
35993 { "htm", OPTION_MASK_HTM, false, true },
35994 { "isel", OPTION_MASK_ISEL, false, true },
35995 { "mfcrf", OPTION_MASK_MFCRF, false, true },
35996 { "mfpgpr", OPTION_MASK_MFPGPR, false, true },
35997 { "modulo", OPTION_MASK_MODULO, false, true },
35998 { "mulhw", OPTION_MASK_MULHW, false, true },
35999 { "multiple", OPTION_MASK_MULTIPLE, false, true },
36000 { "popcntb", OPTION_MASK_POPCNTB, false, true },
36001 { "popcntd", OPTION_MASK_POPCNTD, false, true },
36002 { "power8-fusion", OPTION_MASK_P8_FUSION, false, true },
36003 { "power8-fusion-sign", OPTION_MASK_P8_FUSION_SIGN, false, true },
36004 { "power8-vector", OPTION_MASK_P8_VECTOR, false, true },
36005 { "power9-fusion", OPTION_MASK_P9_FUSION, false, true },
36006 { "power9-minmax", OPTION_MASK_P9_MINMAX, false, true },
36007 { "power9-misc", OPTION_MASK_P9_MISC, false, true },
36008 { "power9-vector", OPTION_MASK_P9_VECTOR, false, true },
36009 { "powerpc-gfxopt", OPTION_MASK_PPC_GFXOPT, false, true },
36010 { "powerpc-gpopt", OPTION_MASK_PPC_GPOPT, false, true },
36011 { "quad-memory", OPTION_MASK_QUAD_MEMORY, false, true },
36012 { "quad-memory-atomic", OPTION_MASK_QUAD_MEMORY_ATOMIC, false, true },
36013 { "recip-precision", OPTION_MASK_RECIP_PRECISION, false, true },
36014 { "save-toc-indirect", OPTION_MASK_SAVE_TOC_INDIRECT, false, true },
36015 { "string", 0, false, true },
36016 { "update", OPTION_MASK_NO_UPDATE, true , true },
36017 { "vsx", OPTION_MASK_VSX, false, true },
36018 #ifdef OPTION_MASK_64BIT
36019 #if TARGET_AIX_OS
36020 { "aix64", OPTION_MASK_64BIT, false, false },
36021 { "aix32", OPTION_MASK_64BIT, true, false },
36022 #else
36023 { "64", OPTION_MASK_64BIT, false, false },
36024 { "32", OPTION_MASK_64BIT, true, false },
36025 #endif
36026 #endif
36027 #ifdef OPTION_MASK_EABI
36028 { "eabi", OPTION_MASK_EABI, false, false },
36029 #endif
36030 #ifdef OPTION_MASK_LITTLE_ENDIAN
36031 { "little", OPTION_MASK_LITTLE_ENDIAN, false, false },
36032 { "big", OPTION_MASK_LITTLE_ENDIAN, true, false },
36033 #endif
36034 #ifdef OPTION_MASK_RELOCATABLE
36035 { "relocatable", OPTION_MASK_RELOCATABLE, false, false },
36036 #endif
36037 #ifdef OPTION_MASK_STRICT_ALIGN
36038 { "strict-align", OPTION_MASK_STRICT_ALIGN, false, false },
36039 #endif
36040 { "soft-float", OPTION_MASK_SOFT_FLOAT, false, false },
36041 { "string", 0, false, false },
36042 };
36043
36044 /* Builtin mask mapping for printing the flags. */
36045 static struct rs6000_opt_mask const rs6000_builtin_mask_names[] =
36046 {
36047 { "altivec", RS6000_BTM_ALTIVEC, false, false },
36048 { "vsx", RS6000_BTM_VSX, false, false },
36049 { "fre", RS6000_BTM_FRE, false, false },
36050 { "fres", RS6000_BTM_FRES, false, false },
36051 { "frsqrte", RS6000_BTM_FRSQRTE, false, false },
36052 { "frsqrtes", RS6000_BTM_FRSQRTES, false, false },
36053 { "popcntd", RS6000_BTM_POPCNTD, false, false },
36054 { "cell", RS6000_BTM_CELL, false, false },
36055 { "power8-vector", RS6000_BTM_P8_VECTOR, false, false },
36056 { "power9-vector", RS6000_BTM_P9_VECTOR, false, false },
36057 { "power9-misc", RS6000_BTM_P9_MISC, false, false },
36058 { "crypto", RS6000_BTM_CRYPTO, false, false },
36059 { "htm", RS6000_BTM_HTM, false, false },
36060 { "hard-dfp", RS6000_BTM_DFP, false, false },
36061 { "hard-float", RS6000_BTM_HARD_FLOAT, false, false },
36062 { "long-double-128", RS6000_BTM_LDBL128, false, false },
36063 { "powerpc64", RS6000_BTM_POWERPC64, false, false },
36064 { "float128", RS6000_BTM_FLOAT128, false, false },
36065 { "float128-hw", RS6000_BTM_FLOAT128_HW,false, false },
36066 };
36067
36068 /* Option variables that we want to support inside attribute((target)) and
36069 #pragma GCC target operations. */
36070
36071 struct rs6000_opt_var {
36072 const char *name; /* option name */
36073 size_t global_offset; /* offset of the option in global_options. */
36074 size_t target_offset; /* offset of the option in target options. */
36075 };
36076
36077 static struct rs6000_opt_var const rs6000_opt_vars[] =
36078 {
36079 { "friz",
36080 offsetof (struct gcc_options, x_TARGET_FRIZ),
36081 offsetof (struct cl_target_option, x_TARGET_FRIZ), },
36082 { "avoid-indexed-addresses",
36083 offsetof (struct gcc_options, x_TARGET_AVOID_XFORM),
36084 offsetof (struct cl_target_option, x_TARGET_AVOID_XFORM) },
36085 { "longcall",
36086 offsetof (struct gcc_options, x_rs6000_default_long_calls),
36087 offsetof (struct cl_target_option, x_rs6000_default_long_calls), },
36088 { "optimize-swaps",
36089 offsetof (struct gcc_options, x_rs6000_optimize_swaps),
36090 offsetof (struct cl_target_option, x_rs6000_optimize_swaps), },
36091 { "allow-movmisalign",
36092 offsetof (struct gcc_options, x_TARGET_ALLOW_MOVMISALIGN),
36093 offsetof (struct cl_target_option, x_TARGET_ALLOW_MOVMISALIGN), },
36094 { "sched-groups",
36095 offsetof (struct gcc_options, x_TARGET_SCHED_GROUPS),
36096 offsetof (struct cl_target_option, x_TARGET_SCHED_GROUPS), },
36097 { "always-hint",
36098 offsetof (struct gcc_options, x_TARGET_ALWAYS_HINT),
36099 offsetof (struct cl_target_option, x_TARGET_ALWAYS_HINT), },
36100 { "align-branch-targets",
36101 offsetof (struct gcc_options, x_TARGET_ALIGN_BRANCH_TARGETS),
36102 offsetof (struct cl_target_option, x_TARGET_ALIGN_BRANCH_TARGETS), },
36103 { "tls-markers",
36104 offsetof (struct gcc_options, x_tls_markers),
36105 offsetof (struct cl_target_option, x_tls_markers), },
36106 { "sched-prolog",
36107 offsetof (struct gcc_options, x_TARGET_SCHED_PROLOG),
36108 offsetof (struct cl_target_option, x_TARGET_SCHED_PROLOG), },
36109 { "sched-epilog",
36110 offsetof (struct gcc_options, x_TARGET_SCHED_PROLOG),
36111 offsetof (struct cl_target_option, x_TARGET_SCHED_PROLOG), },
36112 { "speculate-indirect-jumps",
36113 offsetof (struct gcc_options, x_rs6000_speculate_indirect_jumps),
36114 offsetof (struct cl_target_option, x_rs6000_speculate_indirect_jumps), },
36115 };
36116
36117 /* Inner function to handle attribute((target("..."))) and #pragma GCC target
36118 parsing. Return true if there were no errors. */
36119
36120 static bool
36121 rs6000_inner_target_options (tree args, bool attr_p)
36122 {
36123 bool ret = true;
36124
36125 if (args == NULL_TREE)
36126 ;
36127
36128 else if (TREE_CODE (args) == STRING_CST)
36129 {
36130 char *p = ASTRDUP (TREE_STRING_POINTER (args));
36131 char *q;
36132
36133 while ((q = strtok (p, ",")) != NULL)
36134 {
36135 bool error_p = false;
36136 bool not_valid_p = false;
36137 const char *cpu_opt = NULL;
36138
36139 p = NULL;
36140 if (strncmp (q, "cpu=", 4) == 0)
36141 {
36142 int cpu_index = rs6000_cpu_name_lookup (q+4);
36143 if (cpu_index >= 0)
36144 rs6000_cpu_index = cpu_index;
36145 else
36146 {
36147 error_p = true;
36148 cpu_opt = q+4;
36149 }
36150 }
36151 else if (strncmp (q, "tune=", 5) == 0)
36152 {
36153 int tune_index = rs6000_cpu_name_lookup (q+5);
36154 if (tune_index >= 0)
36155 rs6000_tune_index = tune_index;
36156 else
36157 {
36158 error_p = true;
36159 cpu_opt = q+5;
36160 }
36161 }
36162 else
36163 {
36164 size_t i;
36165 bool invert = false;
36166 char *r = q;
36167
36168 error_p = true;
36169 if (strncmp (r, "no-", 3) == 0)
36170 {
36171 invert = true;
36172 r += 3;
36173 }
36174
36175 for (i = 0; i < ARRAY_SIZE (rs6000_opt_masks); i++)
36176 if (strcmp (r, rs6000_opt_masks[i].name) == 0)
36177 {
36178 HOST_WIDE_INT mask = rs6000_opt_masks[i].mask;
36179
36180 if (!rs6000_opt_masks[i].valid_target)
36181 not_valid_p = true;
36182 else
36183 {
36184 error_p = false;
36185 rs6000_isa_flags_explicit |= mask;
36186
36187 /* VSX needs altivec, so -mvsx automagically sets
36188 altivec and disables -mavoid-indexed-addresses. */
36189 if (!invert)
36190 {
36191 if (mask == OPTION_MASK_VSX)
36192 {
36193 mask |= OPTION_MASK_ALTIVEC;
36194 TARGET_AVOID_XFORM = 0;
36195 }
36196 }
36197
36198 if (rs6000_opt_masks[i].invert)
36199 invert = !invert;
36200
36201 if (invert)
36202 rs6000_isa_flags &= ~mask;
36203 else
36204 rs6000_isa_flags |= mask;
36205 }
36206 break;
36207 }
36208
36209 if (error_p && !not_valid_p)
36210 {
36211 for (i = 0; i < ARRAY_SIZE (rs6000_opt_vars); i++)
36212 if (strcmp (r, rs6000_opt_vars[i].name) == 0)
36213 {
36214 size_t j = rs6000_opt_vars[i].global_offset;
36215 *((int *) ((char *)&global_options + j)) = !invert;
36216 error_p = false;
36217 not_valid_p = false;
36218 break;
36219 }
36220 }
36221 }
36222
36223 if (error_p)
36224 {
36225 const char *eprefix, *esuffix;
36226
36227 ret = false;
36228 if (attr_p)
36229 {
36230 eprefix = "__attribute__((__target__(";
36231 esuffix = ")))";
36232 }
36233 else
36234 {
36235 eprefix = "#pragma GCC target ";
36236 esuffix = "";
36237 }
36238
36239 if (cpu_opt)
36240 error ("invalid cpu %qs for %s%qs%s", cpu_opt, eprefix,
36241 q, esuffix);
36242 else if (not_valid_p)
36243 error ("%s%qs%s is not allowed", eprefix, q, esuffix);
36244 else
36245 error ("%s%qs%s is invalid", eprefix, q, esuffix);
36246 }
36247 }
36248 }
36249
36250 else if (TREE_CODE (args) == TREE_LIST)
36251 {
36252 do
36253 {
36254 tree value = TREE_VALUE (args);
36255 if (value)
36256 {
36257 bool ret2 = rs6000_inner_target_options (value, attr_p);
36258 if (!ret2)
36259 ret = false;
36260 }
36261 args = TREE_CHAIN (args);
36262 }
36263 while (args != NULL_TREE);
36264 }
36265
36266 else
36267 {
36268 error ("attribute %<target%> argument not a string");
36269 return false;
36270 }
36271
36272 return ret;
36273 }
36274
36275 /* Print out the target options as a list for -mdebug=target. */
36276
36277 static void
36278 rs6000_debug_target_options (tree args, const char *prefix)
36279 {
36280 if (args == NULL_TREE)
36281 fprintf (stderr, "%s<NULL>", prefix);
36282
36283 else if (TREE_CODE (args) == STRING_CST)
36284 {
36285 char *p = ASTRDUP (TREE_STRING_POINTER (args));
36286 char *q;
36287
36288 while ((q = strtok (p, ",")) != NULL)
36289 {
36290 p = NULL;
36291 fprintf (stderr, "%s\"%s\"", prefix, q);
36292 prefix = ", ";
36293 }
36294 }
36295
36296 else if (TREE_CODE (args) == TREE_LIST)
36297 {
36298 do
36299 {
36300 tree value = TREE_VALUE (args);
36301 if (value)
36302 {
36303 rs6000_debug_target_options (value, prefix);
36304 prefix = ", ";
36305 }
36306 args = TREE_CHAIN (args);
36307 }
36308 while (args != NULL_TREE);
36309 }
36310
36311 else
36312 gcc_unreachable ();
36313
36314 return;
36315 }
36316
36317 \f
36318 /* Hook to validate attribute((target("..."))). */
36319
36320 static bool
36321 rs6000_valid_attribute_p (tree fndecl,
36322 tree ARG_UNUSED (name),
36323 tree args,
36324 int flags)
36325 {
36326 struct cl_target_option cur_target;
36327 bool ret;
36328 tree old_optimize;
36329 tree new_target, new_optimize;
36330 tree func_optimize;
36331
36332 gcc_assert ((fndecl != NULL_TREE) && (args != NULL_TREE));
36333
36334 if (TARGET_DEBUG_TARGET)
36335 {
36336 tree tname = DECL_NAME (fndecl);
36337 fprintf (stderr, "\n==================== rs6000_valid_attribute_p:\n");
36338 if (tname)
36339 fprintf (stderr, "function: %.*s\n",
36340 (int) IDENTIFIER_LENGTH (tname),
36341 IDENTIFIER_POINTER (tname));
36342 else
36343 fprintf (stderr, "function: unknown\n");
36344
36345 fprintf (stderr, "args:");
36346 rs6000_debug_target_options (args, " ");
36347 fprintf (stderr, "\n");
36348
36349 if (flags)
36350 fprintf (stderr, "flags: 0x%x\n", flags);
36351
36352 fprintf (stderr, "--------------------\n");
36353 }
36354
36355 /* attribute((target("default"))) does nothing, beyond
36356 affecting multi-versioning. */
36357 if (TREE_VALUE (args)
36358 && TREE_CODE (TREE_VALUE (args)) == STRING_CST
36359 && TREE_CHAIN (args) == NULL_TREE
36360 && strcmp (TREE_STRING_POINTER (TREE_VALUE (args)), "default") == 0)
36361 return true;
36362
36363 old_optimize = build_optimization_node (&global_options);
36364 func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);
36365
36366 /* If the function changed the optimization levels as well as setting target
36367 options, start with the optimizations specified. */
36368 if (func_optimize && func_optimize != old_optimize)
36369 cl_optimization_restore (&global_options,
36370 TREE_OPTIMIZATION (func_optimize));
36371
36372 /* The target attributes may also change some optimization flags, so update
36373 the optimization options if necessary. */
36374 cl_target_option_save (&cur_target, &global_options);
36375 rs6000_cpu_index = rs6000_tune_index = -1;
36376 ret = rs6000_inner_target_options (args, true);
36377
36378 /* Set up any additional state. */
36379 if (ret)
36380 {
36381 ret = rs6000_option_override_internal (false);
36382 new_target = build_target_option_node (&global_options);
36383 }
36384 else
36385 new_target = NULL;
36386
36387 new_optimize = build_optimization_node (&global_options);
36388
36389 if (!new_target)
36390 ret = false;
36391
36392 else if (fndecl)
36393 {
36394 DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target;
36395
36396 if (old_optimize != new_optimize)
36397 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize;
36398 }
36399
36400 cl_target_option_restore (&global_options, &cur_target);
36401
36402 if (old_optimize != new_optimize)
36403 cl_optimization_restore (&global_options,
36404 TREE_OPTIMIZATION (old_optimize));
36405
36406 return ret;
36407 }
36408
36409 \f
36410 /* Hook to validate the current #pragma GCC target and set the state, and
36411 update the macros based on what was changed. If ARGS is NULL, then
36412 POP_TARGET is used to reset the options. */
36413
36414 bool
36415 rs6000_pragma_target_parse (tree args, tree pop_target)
36416 {
36417 tree prev_tree = build_target_option_node (&global_options);
36418 tree cur_tree;
36419 struct cl_target_option *prev_opt, *cur_opt;
36420 HOST_WIDE_INT prev_flags, cur_flags, diff_flags;
36421 HOST_WIDE_INT prev_bumask, cur_bumask, diff_bumask;
36422
36423 if (TARGET_DEBUG_TARGET)
36424 {
36425 fprintf (stderr, "\n==================== rs6000_pragma_target_parse\n");
36426 fprintf (stderr, "args:");
36427 rs6000_debug_target_options (args, " ");
36428 fprintf (stderr, "\n");
36429
36430 if (pop_target)
36431 {
36432 fprintf (stderr, "pop_target:\n");
36433 debug_tree (pop_target);
36434 }
36435 else
36436 fprintf (stderr, "pop_target: <NULL>\n");
36437
36438 fprintf (stderr, "--------------------\n");
36439 }
36440
36441 if (! args)
36442 {
36443 cur_tree = ((pop_target)
36444 ? pop_target
36445 : target_option_default_node);
36446 cl_target_option_restore (&global_options,
36447 TREE_TARGET_OPTION (cur_tree));
36448 }
36449 else
36450 {
36451 rs6000_cpu_index = rs6000_tune_index = -1;
36452 if (!rs6000_inner_target_options (args, false)
36453 || !rs6000_option_override_internal (false)
36454 || (cur_tree = build_target_option_node (&global_options))
36455 == NULL_TREE)
36456 {
36457 if (TARGET_DEBUG_BUILTIN || TARGET_DEBUG_TARGET)
36458 fprintf (stderr, "invalid pragma\n");
36459
36460 return false;
36461 }
36462 }
36463
36464 target_option_current_node = cur_tree;
36465 rs6000_activate_target_options (target_option_current_node);
36466
36467 /* If we have the preprocessor linked in (i.e. C or C++ languages), possibly
36468 change the macros that are defined. */
36469 if (rs6000_target_modify_macros_ptr)
36470 {
36471 prev_opt = TREE_TARGET_OPTION (prev_tree);
36472 prev_bumask = prev_opt->x_rs6000_builtin_mask;
36473 prev_flags = prev_opt->x_rs6000_isa_flags;
36474
36475 cur_opt = TREE_TARGET_OPTION (cur_tree);
36476 cur_flags = cur_opt->x_rs6000_isa_flags;
36477 cur_bumask = cur_opt->x_rs6000_builtin_mask;
36478
36479 diff_bumask = (prev_bumask ^ cur_bumask);
36480 diff_flags = (prev_flags ^ cur_flags);
36481
36482 if ((diff_flags != 0) || (diff_bumask != 0))
36483 {
36484 /* Delete old macros. */
36485 rs6000_target_modify_macros_ptr (false,
36486 prev_flags & diff_flags,
36487 prev_bumask & diff_bumask);
36488
36489 /* Define new macros. */
36490 rs6000_target_modify_macros_ptr (true,
36491 cur_flags & diff_flags,
36492 cur_bumask & diff_bumask);
36493 }
36494 }
36495
36496 return true;
36497 }
36498
36499 \f
36500 /* Remember the last target of rs6000_set_current_function. */
36501 static GTY(()) tree rs6000_previous_fndecl;
36502
36503 /* Restore target's globals from NEW_TREE and invalidate the
36504 rs6000_previous_fndecl cache. */
36505
36506 void
36507 rs6000_activate_target_options (tree new_tree)
36508 {
36509 cl_target_option_restore (&global_options, TREE_TARGET_OPTION (new_tree));
36510 if (TREE_TARGET_GLOBALS (new_tree))
36511 restore_target_globals (TREE_TARGET_GLOBALS (new_tree));
36512 else if (new_tree == target_option_default_node)
36513 restore_target_globals (&default_target_globals);
36514 else
36515 TREE_TARGET_GLOBALS (new_tree) = save_target_globals_default_opts ();
36516 rs6000_previous_fndecl = NULL_TREE;
36517 }
36518
36519 /* Establish appropriate back-end context for processing the function
36520 FNDECL. The argument might be NULL to indicate processing at top
36521 level, outside of any function scope. */
36522 static void
36523 rs6000_set_current_function (tree fndecl)
36524 {
36525 if (TARGET_DEBUG_TARGET)
36526 {
36527 fprintf (stderr, "\n==================== rs6000_set_current_function");
36528
36529 if (fndecl)
36530 fprintf (stderr, ", fndecl %s (%p)",
36531 (DECL_NAME (fndecl)
36532 ? IDENTIFIER_POINTER (DECL_NAME (fndecl))
36533 : "<unknown>"), (void *)fndecl);
36534
36535 if (rs6000_previous_fndecl)
36536 fprintf (stderr, ", prev_fndecl (%p)", (void *)rs6000_previous_fndecl);
36537
36538 fprintf (stderr, "\n");
36539 }
36540
36541 /* Only change the context if the function changes. This hook is called
36542 several times in the course of compiling a function, and we don't want to
36543 slow things down too much or call target_reinit when it isn't safe. */
36544 if (fndecl == rs6000_previous_fndecl)
36545 return;
36546
36547 tree old_tree;
36548 if (rs6000_previous_fndecl == NULL_TREE)
36549 old_tree = target_option_current_node;
36550 else if (DECL_FUNCTION_SPECIFIC_TARGET (rs6000_previous_fndecl))
36551 old_tree = DECL_FUNCTION_SPECIFIC_TARGET (rs6000_previous_fndecl);
36552 else
36553 old_tree = target_option_default_node;
36554
36555 tree new_tree;
36556 if (fndecl == NULL_TREE)
36557 {
36558 if (old_tree != target_option_current_node)
36559 new_tree = target_option_current_node;
36560 else
36561 new_tree = NULL_TREE;
36562 }
36563 else
36564 {
36565 new_tree = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);
36566 if (new_tree == NULL_TREE)
36567 new_tree = target_option_default_node;
36568 }
36569
36570 if (TARGET_DEBUG_TARGET)
36571 {
36572 if (new_tree)
36573 {
36574 fprintf (stderr, "\nnew fndecl target specific options:\n");
36575 debug_tree (new_tree);
36576 }
36577
36578 if (old_tree)
36579 {
36580 fprintf (stderr, "\nold fndecl target specific options:\n");
36581 debug_tree (old_tree);
36582 }
36583
36584 if (old_tree != NULL_TREE || new_tree != NULL_TREE)
36585 fprintf (stderr, "--------------------\n");
36586 }
36587
36588 if (new_tree && old_tree != new_tree)
36589 rs6000_activate_target_options (new_tree);
36590
36591 if (fndecl)
36592 rs6000_previous_fndecl = fndecl;
36593 }
36594
36595 \f
36596 /* Save the current options */
36597
36598 static void
36599 rs6000_function_specific_save (struct cl_target_option *ptr,
36600 struct gcc_options *opts)
36601 {
36602 ptr->x_rs6000_isa_flags = opts->x_rs6000_isa_flags;
36603 ptr->x_rs6000_isa_flags_explicit = opts->x_rs6000_isa_flags_explicit;
36604 }
36605
36606 /* Restore the current options */
36607
36608 static void
36609 rs6000_function_specific_restore (struct gcc_options *opts,
36610 struct cl_target_option *ptr)
36611
36612 {
36613 opts->x_rs6000_isa_flags = ptr->x_rs6000_isa_flags;
36614 opts->x_rs6000_isa_flags_explicit = ptr->x_rs6000_isa_flags_explicit;
36615 (void) rs6000_option_override_internal (false);
36616 }
36617
36618 /* Print the current options */
36619
36620 static void
36621 rs6000_function_specific_print (FILE *file, int indent,
36622 struct cl_target_option *ptr)
36623 {
36624 rs6000_print_isa_options (file, indent, "Isa options set",
36625 ptr->x_rs6000_isa_flags);
36626
36627 rs6000_print_isa_options (file, indent, "Isa options explicit",
36628 ptr->x_rs6000_isa_flags_explicit);
36629 }
36630
36631 /* Helper function to print the current isa or misc options on a line. */
36632
36633 static void
36634 rs6000_print_options_internal (FILE *file,
36635 int indent,
36636 const char *string,
36637 HOST_WIDE_INT flags,
36638 const char *prefix,
36639 const struct rs6000_opt_mask *opts,
36640 size_t num_elements)
36641 {
36642 size_t i;
36643 size_t start_column = 0;
36644 size_t cur_column;
36645 size_t max_column = 120;
36646 size_t prefix_len = strlen (prefix);
36647 size_t comma_len = 0;
36648 const char *comma = "";
36649
36650 if (indent)
36651 start_column += fprintf (file, "%*s", indent, "");
36652
36653 if (!flags)
36654 {
36655 fprintf (stderr, DEBUG_FMT_S, string, "<none>");
36656 return;
36657 }
36658
36659 start_column += fprintf (stderr, DEBUG_FMT_WX, string, flags);
36660
36661 /* Print the various mask options. */
36662 cur_column = start_column;
36663 for (i = 0; i < num_elements; i++)
36664 {
36665 bool invert = opts[i].invert;
36666 const char *name = opts[i].name;
36667 const char *no_str = "";
36668 HOST_WIDE_INT mask = opts[i].mask;
36669 size_t len = comma_len + prefix_len + strlen (name);
36670
36671 if (!invert)
36672 {
36673 if ((flags & mask) == 0)
36674 {
36675 no_str = "no-";
36676 len += sizeof ("no-") - 1;
36677 }
36678
36679 flags &= ~mask;
36680 }
36681
36682 else
36683 {
36684 if ((flags & mask) != 0)
36685 {
36686 no_str = "no-";
36687 len += sizeof ("no-") - 1;
36688 }
36689
36690 flags |= mask;
36691 }
36692
36693 cur_column += len;
36694 if (cur_column > max_column)
36695 {
36696 fprintf (stderr, ", \\\n%*s", (int)start_column, "");
36697 cur_column = start_column + len;
36698 comma = "";
36699 }
36700
36701 fprintf (file, "%s%s%s%s", comma, prefix, no_str, name);
36702 comma = ", ";
36703 comma_len = sizeof (", ") - 1;
36704 }
36705
36706 fputs ("\n", file);
36707 }
36708
36709 /* Helper function to print the current isa options on a line. */
36710
36711 static void
36712 rs6000_print_isa_options (FILE *file, int indent, const char *string,
36713 HOST_WIDE_INT flags)
36714 {
36715 rs6000_print_options_internal (file, indent, string, flags, "-m",
36716 &rs6000_opt_masks[0],
36717 ARRAY_SIZE (rs6000_opt_masks));
36718 }
36719
36720 static void
36721 rs6000_print_builtin_options (FILE *file, int indent, const char *string,
36722 HOST_WIDE_INT flags)
36723 {
36724 rs6000_print_options_internal (file, indent, string, flags, "",
36725 &rs6000_builtin_mask_names[0],
36726 ARRAY_SIZE (rs6000_builtin_mask_names));
36727 }
36728
36729 /* If the user used -mno-vsx, we need turn off all of the implicit ISA 2.06,
36730 2.07, and 3.0 options that relate to the vector unit (-mdirect-move,
36731 -mupper-regs-df, etc.).
36732
36733 If the user used -mno-power8-vector, we need to turn off all of the implicit
36734 ISA 2.07 and 3.0 options that relate to the vector unit.
36735
36736 If the user used -mno-power9-vector, we need to turn off all of the implicit
36737 ISA 3.0 options that relate to the vector unit.
36738
36739 This function does not handle explicit options such as the user specifying
36740 -mdirect-move. These are handled in rs6000_option_override_internal, and
36741 the appropriate error is given if needed.
36742
36743 We return a mask of all of the implicit options that should not be enabled
36744 by default. */
36745
36746 static HOST_WIDE_INT
36747 rs6000_disable_incompatible_switches (void)
36748 {
36749 HOST_WIDE_INT ignore_masks = rs6000_isa_flags_explicit;
36750 size_t i, j;
36751
36752 static const struct {
36753 const HOST_WIDE_INT no_flag; /* flag explicitly turned off. */
36754 const HOST_WIDE_INT dep_flags; /* flags that depend on this option. */
36755 const char *const name; /* name of the switch. */
36756 } flags[] = {
36757 { OPTION_MASK_P9_VECTOR, OTHER_P9_VECTOR_MASKS, "power9-vector" },
36758 { OPTION_MASK_P8_VECTOR, OTHER_P8_VECTOR_MASKS, "power8-vector" },
36759 { OPTION_MASK_VSX, OTHER_VSX_VECTOR_MASKS, "vsx" },
36760 };
36761
36762 for (i = 0; i < ARRAY_SIZE (flags); i++)
36763 {
36764 HOST_WIDE_INT no_flag = flags[i].no_flag;
36765
36766 if ((rs6000_isa_flags & no_flag) == 0
36767 && (rs6000_isa_flags_explicit & no_flag) != 0)
36768 {
36769 HOST_WIDE_INT dep_flags = flags[i].dep_flags;
36770 HOST_WIDE_INT set_flags = (rs6000_isa_flags_explicit
36771 & rs6000_isa_flags
36772 & dep_flags);
36773
36774 if (set_flags)
36775 {
36776 for (j = 0; j < ARRAY_SIZE (rs6000_opt_masks); j++)
36777 if ((set_flags & rs6000_opt_masks[j].mask) != 0)
36778 {
36779 set_flags &= ~rs6000_opt_masks[j].mask;
36780 error ("%<-mno-%s%> turns off %<-m%s%>",
36781 flags[i].name,
36782 rs6000_opt_masks[j].name);
36783 }
36784
36785 gcc_assert (!set_flags);
36786 }
36787
36788 rs6000_isa_flags &= ~dep_flags;
36789 ignore_masks |= no_flag | dep_flags;
36790 }
36791 }
36792
36793 return ignore_masks;
36794 }
36795
36796 \f
36797 /* Helper function for printing the function name when debugging. */
36798
36799 static const char *
36800 get_decl_name (tree fn)
36801 {
36802 tree name;
36803
36804 if (!fn)
36805 return "<null>";
36806
36807 name = DECL_NAME (fn);
36808 if (!name)
36809 return "<no-name>";
36810
36811 return IDENTIFIER_POINTER (name);
36812 }
36813
36814 /* Return the clone id of the target we are compiling code for in a target
36815 clone. The clone id is ordered from 0 (default) to CLONE_MAX-1 and gives
36816 the priority list for the target clones (ordered from lowest to
36817 highest). */
36818
36819 static int
36820 rs6000_clone_priority (tree fndecl)
36821 {
36822 tree fn_opts = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);
36823 HOST_WIDE_INT isa_masks;
36824 int ret = CLONE_DEFAULT;
36825 tree attrs = lookup_attribute ("target", DECL_ATTRIBUTES (fndecl));
36826 const char *attrs_str = NULL;
36827
36828 attrs = TREE_VALUE (TREE_VALUE (attrs));
36829 attrs_str = TREE_STRING_POINTER (attrs);
36830
36831 /* Return priority zero for default function. Return the ISA needed for the
36832 function if it is not the default. */
36833 if (strcmp (attrs_str, "default") != 0)
36834 {
36835 if (fn_opts == NULL_TREE)
36836 fn_opts = target_option_default_node;
36837
36838 if (!fn_opts || !TREE_TARGET_OPTION (fn_opts))
36839 isa_masks = rs6000_isa_flags;
36840 else
36841 isa_masks = TREE_TARGET_OPTION (fn_opts)->x_rs6000_isa_flags;
36842
36843 for (ret = CLONE_MAX - 1; ret != 0; ret--)
36844 if ((rs6000_clone_map[ret].isa_mask & isa_masks) != 0)
36845 break;
36846 }
36847
36848 if (TARGET_DEBUG_TARGET)
36849 fprintf (stderr, "rs6000_get_function_version_priority (%s) => %d\n",
36850 get_decl_name (fndecl), ret);
36851
36852 return ret;
36853 }
36854
36855 /* This compares the priority of target features in function DECL1 and DECL2.
36856 It returns positive value if DECL1 is higher priority, negative value if
36857 DECL2 is higher priority and 0 if they are the same. Note, priorities are
36858 ordered from lowest (CLONE_DEFAULT) to highest (currently CLONE_ISA_3_0). */
36859
36860 static int
36861 rs6000_compare_version_priority (tree decl1, tree decl2)
36862 {
36863 int priority1 = rs6000_clone_priority (decl1);
36864 int priority2 = rs6000_clone_priority (decl2);
36865 int ret = priority1 - priority2;
36866
36867 if (TARGET_DEBUG_TARGET)
36868 fprintf (stderr, "rs6000_compare_version_priority (%s, %s) => %d\n",
36869 get_decl_name (decl1), get_decl_name (decl2), ret);
36870
36871 return ret;
36872 }
36873
36874 /* Make a dispatcher declaration for the multi-versioned function DECL.
36875 Calls to DECL function will be replaced with calls to the dispatcher
36876 by the front-end. Returns the decl of the dispatcher function. */
36877
36878 static tree
36879 rs6000_get_function_versions_dispatcher (void *decl)
36880 {
36881 tree fn = (tree) decl;
36882 struct cgraph_node *node = NULL;
36883 struct cgraph_node *default_node = NULL;
36884 struct cgraph_function_version_info *node_v = NULL;
36885 struct cgraph_function_version_info *first_v = NULL;
36886
36887 tree dispatch_decl = NULL;
36888
36889 struct cgraph_function_version_info *default_version_info = NULL;
36890 gcc_assert (fn != NULL && DECL_FUNCTION_VERSIONED (fn));
36891
36892 if (TARGET_DEBUG_TARGET)
36893 fprintf (stderr, "rs6000_get_function_versions_dispatcher (%s)\n",
36894 get_decl_name (fn));
36895
36896 node = cgraph_node::get (fn);
36897 gcc_assert (node != NULL);
36898
36899 node_v = node->function_version ();
36900 gcc_assert (node_v != NULL);
36901
36902 if (node_v->dispatcher_resolver != NULL)
36903 return node_v->dispatcher_resolver;
36904
36905 /* Find the default version and make it the first node. */
36906 first_v = node_v;
36907 /* Go to the beginning of the chain. */
36908 while (first_v->prev != NULL)
36909 first_v = first_v->prev;
36910
36911 default_version_info = first_v;
36912 while (default_version_info != NULL)
36913 {
36914 const tree decl2 = default_version_info->this_node->decl;
36915 if (is_function_default_version (decl2))
36916 break;
36917 default_version_info = default_version_info->next;
36918 }
36919
36920 /* If there is no default node, just return NULL. */
36921 if (default_version_info == NULL)
36922 return NULL;
36923
36924 /* Make default info the first node. */
36925 if (first_v != default_version_info)
36926 {
36927 default_version_info->prev->next = default_version_info->next;
36928 if (default_version_info->next)
36929 default_version_info->next->prev = default_version_info->prev;
36930 first_v->prev = default_version_info;
36931 default_version_info->next = first_v;
36932 default_version_info->prev = NULL;
36933 }
36934
36935 default_node = default_version_info->this_node;
36936
36937 #ifndef TARGET_LIBC_PROVIDES_HWCAP_IN_TCB
36938 error_at (DECL_SOURCE_LOCATION (default_node->decl),
36939 "target_clones attribute needs GLIBC (2.23 and newer) that "
36940 "exports hardware capability bits");
36941 #else
36942
36943 if (targetm.has_ifunc_p ())
36944 {
36945 struct cgraph_function_version_info *it_v = NULL;
36946 struct cgraph_node *dispatcher_node = NULL;
36947 struct cgraph_function_version_info *dispatcher_version_info = NULL;
36948
36949 /* Right now, the dispatching is done via ifunc. */
36950 dispatch_decl = make_dispatcher_decl (default_node->decl);
36951
36952 dispatcher_node = cgraph_node::get_create (dispatch_decl);
36953 gcc_assert (dispatcher_node != NULL);
36954 dispatcher_node->dispatcher_function = 1;
36955 dispatcher_version_info
36956 = dispatcher_node->insert_new_function_version ();
36957 dispatcher_version_info->next = default_version_info;
36958 dispatcher_node->definition = 1;
36959
36960 /* Set the dispatcher for all the versions. */
36961 it_v = default_version_info;
36962 while (it_v != NULL)
36963 {
36964 it_v->dispatcher_resolver = dispatch_decl;
36965 it_v = it_v->next;
36966 }
36967 }
36968 else
36969 {
36970 error_at (DECL_SOURCE_LOCATION (default_node->decl),
36971 "multiversioning needs ifunc which is not supported "
36972 "on this target");
36973 }
36974 #endif
36975
36976 return dispatch_decl;
36977 }
36978
36979 /* Make the resolver function decl to dispatch the versions of a multi-
36980 versioned function, DEFAULT_DECL. Create an empty basic block in the
36981 resolver and store the pointer in EMPTY_BB. Return the decl of the resolver
36982 function. */
36983
36984 static tree
36985 make_resolver_func (const tree default_decl,
36986 const tree dispatch_decl,
36987 basic_block *empty_bb)
36988 {
36989 /* Make the resolver function static. The resolver function returns
36990 void *. */
36991 tree decl_name = clone_function_name_numbered (default_decl, "resolver");
36992 const char *resolver_name = IDENTIFIER_POINTER (decl_name);
36993 tree type = build_function_type_list (ptr_type_node, NULL_TREE);
36994 tree decl = build_fn_decl (resolver_name, type);
36995 SET_DECL_ASSEMBLER_NAME (decl, decl_name);
36996
36997 DECL_NAME (decl) = decl_name;
36998 TREE_USED (decl) = 1;
36999 DECL_ARTIFICIAL (decl) = 1;
37000 DECL_IGNORED_P (decl) = 0;
37001 TREE_PUBLIC (decl) = 0;
37002 DECL_UNINLINABLE (decl) = 1;
37003
37004 /* Resolver is not external, body is generated. */
37005 DECL_EXTERNAL (decl) = 0;
37006 DECL_EXTERNAL (dispatch_decl) = 0;
37007
37008 DECL_CONTEXT (decl) = NULL_TREE;
37009 DECL_INITIAL (decl) = make_node (BLOCK);
37010 DECL_STATIC_CONSTRUCTOR (decl) = 0;
37011
37012 /* Build result decl and add to function_decl. */
37013 tree t = build_decl (UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, ptr_type_node);
37014 DECL_ARTIFICIAL (t) = 1;
37015 DECL_IGNORED_P (t) = 1;
37016 DECL_RESULT (decl) = t;
37017
37018 gimplify_function_tree (decl);
37019 push_cfun (DECL_STRUCT_FUNCTION (decl));
37020 *empty_bb = init_lowered_empty_function (decl, false,
37021 profile_count::uninitialized ());
37022
37023 cgraph_node::add_new_function (decl, true);
37024 symtab->call_cgraph_insertion_hooks (cgraph_node::get_create (decl));
37025
37026 pop_cfun ();
37027
37028 /* Mark dispatch_decl as "ifunc" with resolver as resolver_name. */
37029 DECL_ATTRIBUTES (dispatch_decl)
37030 = make_attribute ("ifunc", resolver_name, DECL_ATTRIBUTES (dispatch_decl));
37031
37032 cgraph_node::create_same_body_alias (dispatch_decl, decl);
37033
37034 return decl;
37035 }
37036
37037 /* This adds a condition to the basic_block NEW_BB in function FUNCTION_DECL to
37038 return a pointer to VERSION_DECL if we are running on a machine that
37039 supports the index CLONE_ISA hardware architecture bits. This function will
37040 be called during version dispatch to decide which function version to
37041 execute. It returns the basic block at the end, to which more conditions
37042 can be added. */
37043
37044 static basic_block
37045 add_condition_to_bb (tree function_decl, tree version_decl,
37046 int clone_isa, basic_block new_bb)
37047 {
37048 push_cfun (DECL_STRUCT_FUNCTION (function_decl));
37049
37050 gcc_assert (new_bb != NULL);
37051 gimple_seq gseq = bb_seq (new_bb);
37052
37053
37054 tree convert_expr = build1 (CONVERT_EXPR, ptr_type_node,
37055 build_fold_addr_expr (version_decl));
37056 tree result_var = create_tmp_var (ptr_type_node);
37057 gimple *convert_stmt = gimple_build_assign (result_var, convert_expr);
37058 gimple *return_stmt = gimple_build_return (result_var);
37059
37060 if (clone_isa == CLONE_DEFAULT)
37061 {
37062 gimple_seq_add_stmt (&gseq, convert_stmt);
37063 gimple_seq_add_stmt (&gseq, return_stmt);
37064 set_bb_seq (new_bb, gseq);
37065 gimple_set_bb (convert_stmt, new_bb);
37066 gimple_set_bb (return_stmt, new_bb);
37067 pop_cfun ();
37068 return new_bb;
37069 }
37070
37071 tree bool_zero = build_int_cst (bool_int_type_node, 0);
37072 tree cond_var = create_tmp_var (bool_int_type_node);
37073 tree predicate_decl = rs6000_builtin_decls [(int) RS6000_BUILTIN_CPU_SUPPORTS];
37074 const char *arg_str = rs6000_clone_map[clone_isa].name;
37075 tree predicate_arg = build_string_literal (strlen (arg_str) + 1, arg_str);
37076 gimple *call_cond_stmt = gimple_build_call (predicate_decl, 1, predicate_arg);
37077 gimple_call_set_lhs (call_cond_stmt, cond_var);
37078
37079 gimple_set_block (call_cond_stmt, DECL_INITIAL (function_decl));
37080 gimple_set_bb (call_cond_stmt, new_bb);
37081 gimple_seq_add_stmt (&gseq, call_cond_stmt);
37082
37083 gimple *if_else_stmt = gimple_build_cond (NE_EXPR, cond_var, bool_zero,
37084 NULL_TREE, NULL_TREE);
37085 gimple_set_block (if_else_stmt, DECL_INITIAL (function_decl));
37086 gimple_set_bb (if_else_stmt, new_bb);
37087 gimple_seq_add_stmt (&gseq, if_else_stmt);
37088
37089 gimple_seq_add_stmt (&gseq, convert_stmt);
37090 gimple_seq_add_stmt (&gseq, return_stmt);
37091 set_bb_seq (new_bb, gseq);
37092
37093 basic_block bb1 = new_bb;
37094 edge e12 = split_block (bb1, if_else_stmt);
37095 basic_block bb2 = e12->dest;
37096 e12->flags &= ~EDGE_FALLTHRU;
37097 e12->flags |= EDGE_TRUE_VALUE;
37098
37099 edge e23 = split_block (bb2, return_stmt);
37100 gimple_set_bb (convert_stmt, bb2);
37101 gimple_set_bb (return_stmt, bb2);
37102
37103 basic_block bb3 = e23->dest;
37104 make_edge (bb1, bb3, EDGE_FALSE_VALUE);
37105
37106 remove_edge (e23);
37107 make_edge (bb2, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
37108
37109 pop_cfun ();
37110 return bb3;
37111 }
37112
37113 /* This function generates the dispatch function for multi-versioned functions.
37114 DISPATCH_DECL is the function which will contain the dispatch logic.
37115 FNDECLS are the function choices for dispatch, and is a tree chain.
37116 EMPTY_BB is the basic block pointer in DISPATCH_DECL in which the dispatch
37117 code is generated. */
37118
37119 static int
37120 dispatch_function_versions (tree dispatch_decl,
37121 void *fndecls_p,
37122 basic_block *empty_bb)
37123 {
37124 int ix;
37125 tree ele;
37126 vec<tree> *fndecls;
37127 tree clones[CLONE_MAX];
37128
37129 if (TARGET_DEBUG_TARGET)
37130 fputs ("dispatch_function_versions, top\n", stderr);
37131
37132 gcc_assert (dispatch_decl != NULL
37133 && fndecls_p != NULL
37134 && empty_bb != NULL);
37135
37136 /* fndecls_p is actually a vector. */
37137 fndecls = static_cast<vec<tree> *> (fndecls_p);
37138
37139 /* At least one more version other than the default. */
37140 gcc_assert (fndecls->length () >= 2);
37141
37142 /* The first version in the vector is the default decl. */
37143 memset ((void *) clones, '\0', sizeof (clones));
37144 clones[CLONE_DEFAULT] = (*fndecls)[0];
37145
37146 /* On the PowerPC, we do not need to call __builtin_cpu_init, which is a NOP
37147 on the PowerPC (on the x86_64, it is not a NOP). The builtin function
37148 __builtin_cpu_support ensures that the TOC fields are setup by requiring a
37149 recent glibc. If we ever need to call __builtin_cpu_init, we would need
37150 to insert the code here to do the call. */
37151
37152 for (ix = 1; fndecls->iterate (ix, &ele); ++ix)
37153 {
37154 int priority = rs6000_clone_priority (ele);
37155 if (!clones[priority])
37156 clones[priority] = ele;
37157 }
37158
37159 for (ix = CLONE_MAX - 1; ix >= 0; ix--)
37160 if (clones[ix])
37161 {
37162 if (TARGET_DEBUG_TARGET)
37163 fprintf (stderr, "dispatch_function_versions, clone %d, %s\n",
37164 ix, get_decl_name (clones[ix]));
37165
37166 *empty_bb = add_condition_to_bb (dispatch_decl, clones[ix], ix,
37167 *empty_bb);
37168 }
37169
37170 return 0;
37171 }
37172
37173 /* Generate the dispatching code body to dispatch multi-versioned function
37174 DECL. The target hook is called to process the "target" attributes and
37175 provide the code to dispatch the right function at run-time. NODE points
37176 to the dispatcher decl whose body will be created. */
37177
37178 static tree
37179 rs6000_generate_version_dispatcher_body (void *node_p)
37180 {
37181 tree resolver;
37182 basic_block empty_bb;
37183 struct cgraph_node *node = (cgraph_node *) node_p;
37184 struct cgraph_function_version_info *ninfo = node->function_version ();
37185
37186 if (ninfo->dispatcher_resolver)
37187 return ninfo->dispatcher_resolver;
37188
37189 /* node is going to be an alias, so remove the finalized bit. */
37190 node->definition = false;
37191
37192 /* The first version in the chain corresponds to the default version. */
37193 ninfo->dispatcher_resolver = resolver
37194 = make_resolver_func (ninfo->next->this_node->decl, node->decl, &empty_bb);
37195
37196 if (TARGET_DEBUG_TARGET)
37197 fprintf (stderr, "rs6000_get_function_versions_dispatcher, %s\n",
37198 get_decl_name (resolver));
37199
37200 push_cfun (DECL_STRUCT_FUNCTION (resolver));
37201 auto_vec<tree, 2> fn_ver_vec;
37202
37203 for (struct cgraph_function_version_info *vinfo = ninfo->next;
37204 vinfo;
37205 vinfo = vinfo->next)
37206 {
37207 struct cgraph_node *version = vinfo->this_node;
37208 /* Check for virtual functions here again, as by this time it should
37209 have been determined if this function needs a vtable index or
37210 not. This happens for methods in derived classes that override
37211 virtual methods in base classes but are not explicitly marked as
37212 virtual. */
37213 if (DECL_VINDEX (version->decl))
37214 sorry ("Virtual function multiversioning not supported");
37215
37216 fn_ver_vec.safe_push (version->decl);
37217 }
37218
37219 dispatch_function_versions (resolver, &fn_ver_vec, &empty_bb);
37220 cgraph_edge::rebuild_edges ();
37221 pop_cfun ();
37222 return resolver;
37223 }
37224
37225 \f
37226 /* Hook to determine if one function can safely inline another. */
37227
37228 static bool
37229 rs6000_can_inline_p (tree caller, tree callee)
37230 {
37231 bool ret = false;
37232 tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller);
37233 tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee);
37234
37235 /* If callee has no option attributes, then it is ok to inline. */
37236 if (!callee_tree)
37237 ret = true;
37238
37239 /* If caller has no option attributes, but callee does then it is not ok to
37240 inline. */
37241 else if (!caller_tree)
37242 ret = false;
37243
37244 else
37245 {
37246 struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree);
37247 struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree);
37248
37249 /* Callee's options should a subset of the caller's, i.e. a vsx function
37250 can inline an altivec function but a non-vsx function can't inline a
37251 vsx function. */
37252 if ((caller_opts->x_rs6000_isa_flags & callee_opts->x_rs6000_isa_flags)
37253 == callee_opts->x_rs6000_isa_flags)
37254 ret = true;
37255 }
37256
37257 if (TARGET_DEBUG_TARGET)
37258 fprintf (stderr, "rs6000_can_inline_p:, caller %s, callee %s, %s inline\n",
37259 get_decl_name (caller), get_decl_name (callee),
37260 (ret ? "can" : "cannot"));
37261
37262 return ret;
37263 }
37264 \f
37265 /* Allocate a stack temp and fixup the address so it meets the particular
37266 memory requirements (either offetable or REG+REG addressing). */
37267
37268 rtx
37269 rs6000_allocate_stack_temp (machine_mode mode,
37270 bool offsettable_p,
37271 bool reg_reg_p)
37272 {
37273 rtx stack = assign_stack_temp (mode, GET_MODE_SIZE (mode));
37274 rtx addr = XEXP (stack, 0);
37275 int strict_p = reload_completed;
37276
37277 if (!legitimate_indirect_address_p (addr, strict_p))
37278 {
37279 if (offsettable_p
37280 && !rs6000_legitimate_offset_address_p (mode, addr, strict_p, true))
37281 stack = replace_equiv_address (stack, copy_addr_to_reg (addr));
37282
37283 else if (reg_reg_p && !legitimate_indexed_address_p (addr, strict_p))
37284 stack = replace_equiv_address (stack, copy_addr_to_reg (addr));
37285 }
37286
37287 return stack;
37288 }
37289
37290 /* Given a memory reference, if it is not a reg or reg+reg addressing,
37291 convert to such a form to deal with memory reference instructions
37292 like STFIWX and LDBRX that only take reg+reg addressing. */
37293
37294 rtx
37295 rs6000_force_indexed_or_indirect_mem (rtx x)
37296 {
37297 machine_mode mode = GET_MODE (x);
37298
37299 gcc_assert (MEM_P (x));
37300 if (can_create_pseudo_p () && !indexed_or_indirect_operand (x, mode))
37301 {
37302 rtx addr = XEXP (x, 0);
37303 if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
37304 {
37305 rtx reg = XEXP (addr, 0);
37306 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (x));
37307 rtx size_rtx = GEN_INT ((GET_CODE (addr) == PRE_DEC) ? -size : size);
37308 gcc_assert (REG_P (reg));
37309 emit_insn (gen_add3_insn (reg, reg, size_rtx));
37310 addr = reg;
37311 }
37312 else if (GET_CODE (addr) == PRE_MODIFY)
37313 {
37314 rtx reg = XEXP (addr, 0);
37315 rtx expr = XEXP (addr, 1);
37316 gcc_assert (REG_P (reg));
37317 gcc_assert (GET_CODE (expr) == PLUS);
37318 emit_insn (gen_add3_insn (reg, XEXP (expr, 0), XEXP (expr, 1)));
37319 addr = reg;
37320 }
37321
37322 x = replace_equiv_address (x, force_reg (Pmode, addr));
37323 }
37324
37325 return x;
37326 }
37327
37328 /* Implement TARGET_LEGITIMATE_CONSTANT_P.
37329
37330 On the RS/6000, all integer constants are acceptable, most won't be valid
37331 for particular insns, though. Only easy FP constants are acceptable. */
37332
37333 static bool
37334 rs6000_legitimate_constant_p (machine_mode mode, rtx x)
37335 {
37336 if (TARGET_ELF && tls_referenced_p (x))
37337 return false;
37338
37339 return ((GET_CODE (x) != CONST_DOUBLE && GET_CODE (x) != CONST_VECTOR)
37340 || GET_MODE (x) == VOIDmode
37341 || (TARGET_POWERPC64 && mode == DImode)
37342 || easy_fp_constant (x, mode)
37343 || easy_vector_constant (x, mode));
37344 }
37345
37346 \f
37347 /* Return TRUE iff the sequence ending in LAST sets the static chain. */
37348
37349 static bool
37350 chain_already_loaded (rtx_insn *last)
37351 {
37352 for (; last != NULL; last = PREV_INSN (last))
37353 {
37354 if (NONJUMP_INSN_P (last))
37355 {
37356 rtx patt = PATTERN (last);
37357
37358 if (GET_CODE (patt) == SET)
37359 {
37360 rtx lhs = XEXP (patt, 0);
37361
37362 if (REG_P (lhs) && REGNO (lhs) == STATIC_CHAIN_REGNUM)
37363 return true;
37364 }
37365 }
37366 }
37367 return false;
37368 }
37369
37370 /* Expand code to perform a call under the AIX or ELFv2 ABI. */
37371
37372 void
37373 rs6000_call_aix (rtx value, rtx func_desc, rtx flag, rtx cookie)
37374 {
37375 const bool direct_call_p
37376 = GET_CODE (func_desc) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (func_desc);
37377 rtx toc_reg = gen_rtx_REG (Pmode, TOC_REGNUM);
37378 rtx toc_load = NULL_RTX;
37379 rtx toc_restore = NULL_RTX;
37380 rtx func_addr;
37381 rtx abi_reg = NULL_RTX;
37382 rtx call[4];
37383 int n_call;
37384 rtx insn;
37385
37386 /* Handle longcall attributes. */
37387 if (INTVAL (cookie) & CALL_LONG)
37388 func_desc = rs6000_longcall_ref (func_desc);
37389
37390 /* Handle indirect calls. */
37391 if (GET_CODE (func_desc) != SYMBOL_REF
37392 || (DEFAULT_ABI == ABI_AIX && !SYMBOL_REF_FUNCTION_P (func_desc)))
37393 {
37394 /* Save the TOC into its reserved slot before the call,
37395 and prepare to restore it after the call. */
37396 rtx stack_ptr = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
37397 rtx stack_toc_offset = GEN_INT (RS6000_TOC_SAVE_SLOT);
37398 rtx stack_toc_mem = gen_frame_mem (Pmode,
37399 gen_rtx_PLUS (Pmode, stack_ptr,
37400 stack_toc_offset));
37401 rtx stack_toc_unspec = gen_rtx_UNSPEC (Pmode,
37402 gen_rtvec (1, stack_toc_offset),
37403 UNSPEC_TOCSLOT);
37404 toc_restore = gen_rtx_SET (toc_reg, stack_toc_unspec);
37405
37406 /* Can we optimize saving the TOC in the prologue or
37407 do we need to do it at every call? */
37408 if (TARGET_SAVE_TOC_INDIRECT && !cfun->calls_alloca)
37409 cfun->machine->save_toc_in_prologue = true;
37410 else
37411 {
37412 MEM_VOLATILE_P (stack_toc_mem) = 1;
37413 emit_move_insn (stack_toc_mem, toc_reg);
37414 }
37415
37416 if (DEFAULT_ABI == ABI_ELFv2)
37417 {
37418 /* A function pointer in the ELFv2 ABI is just a plain address, but
37419 the ABI requires it to be loaded into r12 before the call. */
37420 func_addr = gen_rtx_REG (Pmode, 12);
37421 emit_move_insn (func_addr, func_desc);
37422 abi_reg = func_addr;
37423 }
37424 else
37425 {
37426 /* A function pointer under AIX is a pointer to a data area whose
37427 first word contains the actual address of the function, whose
37428 second word contains a pointer to its TOC, and whose third word
37429 contains a value to place in the static chain register (r11).
37430 Note that if we load the static chain, our "trampoline" need
37431 not have any executable code. */
37432
37433 /* Load up address of the actual function. */
37434 func_desc = force_reg (Pmode, func_desc);
37435 func_addr = gen_reg_rtx (Pmode);
37436 emit_move_insn (func_addr, gen_rtx_MEM (Pmode, func_desc));
37437
37438 /* Prepare to load the TOC of the called function. Note that the
37439 TOC load must happen immediately before the actual call so
37440 that unwinding the TOC registers works correctly. See the
37441 comment in frob_update_context. */
37442 rtx func_toc_offset = GEN_INT (GET_MODE_SIZE (Pmode));
37443 rtx func_toc_mem = gen_rtx_MEM (Pmode,
37444 gen_rtx_PLUS (Pmode, func_desc,
37445 func_toc_offset));
37446 toc_load = gen_rtx_USE (VOIDmode, func_toc_mem);
37447
37448 /* If we have a static chain, load it up. But, if the call was
37449 originally direct, the 3rd word has not been written since no
37450 trampoline has been built, so we ought not to load it, lest we
37451 override a static chain value. */
37452 if (!direct_call_p
37453 && TARGET_POINTERS_TO_NESTED_FUNCTIONS
37454 && !chain_already_loaded (get_current_sequence ()->next->last))
37455 {
37456 rtx sc_reg = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
37457 rtx func_sc_offset = GEN_INT (2 * GET_MODE_SIZE (Pmode));
37458 rtx func_sc_mem = gen_rtx_MEM (Pmode,
37459 gen_rtx_PLUS (Pmode, func_desc,
37460 func_sc_offset));
37461 emit_move_insn (sc_reg, func_sc_mem);
37462 abi_reg = sc_reg;
37463 }
37464 }
37465 }
37466 else
37467 {
37468 /* Direct calls use the TOC: for local calls, the callee will
37469 assume the TOC register is set; for non-local calls, the
37470 PLT stub needs the TOC register. */
37471 abi_reg = toc_reg;
37472 func_addr = func_desc;
37473 }
37474
37475 /* Create the call. */
37476 call[0] = gen_rtx_CALL (VOIDmode, gen_rtx_MEM (SImode, func_addr), flag);
37477 if (value != NULL_RTX)
37478 call[0] = gen_rtx_SET (value, call[0]);
37479 n_call = 1;
37480
37481 if (toc_load)
37482 call[n_call++] = toc_load;
37483 if (toc_restore)
37484 call[n_call++] = toc_restore;
37485
37486 call[n_call++] = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNO));
37487
37488 insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (n_call, call));
37489 insn = emit_call_insn (insn);
37490
37491 /* Mention all registers defined by the ABI to hold information
37492 as uses in CALL_INSN_FUNCTION_USAGE. */
37493 if (abi_reg)
37494 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), abi_reg);
37495 }
37496
37497 /* Expand code to perform a sibling call under the AIX or ELFv2 ABI. */
37498
37499 void
37500 rs6000_sibcall_aix (rtx value, rtx func_desc, rtx flag, rtx cookie)
37501 {
37502 rtx call[2];
37503 rtx insn;
37504
37505 gcc_assert (INTVAL (cookie) == 0);
37506
37507 /* Create the call. */
37508 call[0] = gen_rtx_CALL (VOIDmode, gen_rtx_MEM (SImode, func_desc), flag);
37509 if (value != NULL_RTX)
37510 call[0] = gen_rtx_SET (value, call[0]);
37511
37512 call[1] = simple_return_rtx;
37513
37514 insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (2, call));
37515 insn = emit_call_insn (insn);
37516
37517 /* Note use of the TOC register. */
37518 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), gen_rtx_REG (Pmode, TOC_REGNUM));
37519 }
37520
37521 /* Return whether we need to always update the saved TOC pointer when we update
37522 the stack pointer. */
37523
37524 static bool
37525 rs6000_save_toc_in_prologue_p (void)
37526 {
37527 return (cfun && cfun->machine && cfun->machine->save_toc_in_prologue);
37528 }
37529
37530 #ifdef HAVE_GAS_HIDDEN
37531 # define USE_HIDDEN_LINKONCE 1
37532 #else
37533 # define USE_HIDDEN_LINKONCE 0
37534 #endif
37535
37536 /* Fills in the label name that should be used for a 476 link stack thunk. */
37537
37538 void
37539 get_ppc476_thunk_name (char name[32])
37540 {
37541 gcc_assert (TARGET_LINK_STACK);
37542
37543 if (USE_HIDDEN_LINKONCE)
37544 sprintf (name, "__ppc476.get_thunk");
37545 else
37546 ASM_GENERATE_INTERNAL_LABEL (name, "LPPC476_", 0);
37547 }
37548
37549 /* This function emits the simple thunk routine that is used to preserve
37550 the link stack on the 476 cpu. */
37551
37552 static void rs6000_code_end (void) ATTRIBUTE_UNUSED;
37553 static void
37554 rs6000_code_end (void)
37555 {
37556 char name[32];
37557 tree decl;
37558
37559 if (!TARGET_LINK_STACK)
37560 return;
37561
37562 get_ppc476_thunk_name (name);
37563
37564 decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name),
37565 build_function_type_list (void_type_node, NULL_TREE));
37566 DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
37567 NULL_TREE, void_type_node);
37568 TREE_PUBLIC (decl) = 1;
37569 TREE_STATIC (decl) = 1;
37570
37571 #if RS6000_WEAK
37572 if (USE_HIDDEN_LINKONCE && !TARGET_XCOFF)
37573 {
37574 cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl));
37575 targetm.asm_out.unique_section (decl, 0);
37576 switch_to_section (get_named_section (decl, NULL, 0));
37577 DECL_WEAK (decl) = 1;
37578 ASM_WEAKEN_DECL (asm_out_file, decl, name, 0);
37579 targetm.asm_out.globalize_label (asm_out_file, name);
37580 targetm.asm_out.assemble_visibility (decl, VISIBILITY_HIDDEN);
37581 ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl);
37582 }
37583 else
37584 #endif
37585 {
37586 switch_to_section (text_section);
37587 ASM_OUTPUT_LABEL (asm_out_file, name);
37588 }
37589
37590 DECL_INITIAL (decl) = make_node (BLOCK);
37591 current_function_decl = decl;
37592 allocate_struct_function (decl, false);
37593 init_function_start (decl);
37594 first_function_block_is_cold = false;
37595 /* Make sure unwind info is emitted for the thunk if needed. */
37596 final_start_function (emit_barrier (), asm_out_file, 1);
37597
37598 fputs ("\tblr\n", asm_out_file);
37599
37600 final_end_function ();
37601 init_insn_lengths ();
37602 free_after_compilation (cfun);
37603 set_cfun (NULL);
37604 current_function_decl = NULL;
37605 }
37606
37607 /* Add r30 to hard reg set if the prologue sets it up and it is not
37608 pic_offset_table_rtx. */
37609
37610 static void
37611 rs6000_set_up_by_prologue (struct hard_reg_set_container *set)
37612 {
37613 if (!TARGET_SINGLE_PIC_BASE
37614 && TARGET_TOC
37615 && TARGET_MINIMAL_TOC
37616 && !constant_pool_empty_p ())
37617 add_to_hard_reg_set (&set->set, Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
37618 if (cfun->machine->split_stack_argp_used)
37619 add_to_hard_reg_set (&set->set, Pmode, 12);
37620
37621 /* Make sure the hard reg set doesn't include r2, which was possibly added
37622 via PIC_OFFSET_TABLE_REGNUM. */
37623 if (TARGET_TOC)
37624 remove_from_hard_reg_set (&set->set, Pmode, TOC_REGNUM);
37625 }
37626
37627 \f
37628 /* Helper function for rs6000_split_logical to emit a logical instruction after
37629 spliting the operation to single GPR registers.
37630
37631 DEST is the destination register.
37632 OP1 and OP2 are the input source registers.
37633 CODE is the base operation (AND, IOR, XOR, NOT).
37634 MODE is the machine mode.
37635 If COMPLEMENT_FINAL_P is true, wrap the whole operation with NOT.
37636 If COMPLEMENT_OP1_P is true, wrap operand1 with NOT.
37637 If COMPLEMENT_OP2_P is true, wrap operand2 with NOT. */
37638
37639 static void
37640 rs6000_split_logical_inner (rtx dest,
37641 rtx op1,
37642 rtx op2,
37643 enum rtx_code code,
37644 machine_mode mode,
37645 bool complement_final_p,
37646 bool complement_op1_p,
37647 bool complement_op2_p)
37648 {
37649 rtx bool_rtx;
37650
37651 /* Optimize AND of 0/0xffffffff and IOR/XOR of 0. */
37652 if (op2 && GET_CODE (op2) == CONST_INT
37653 && (mode == SImode || (mode == DImode && TARGET_POWERPC64))
37654 && !complement_final_p && !complement_op1_p && !complement_op2_p)
37655 {
37656 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
37657 HOST_WIDE_INT value = INTVAL (op2) & mask;
37658
37659 /* Optimize AND of 0 to just set 0. Optimize AND of -1 to be a move. */
37660 if (code == AND)
37661 {
37662 if (value == 0)
37663 {
37664 emit_insn (gen_rtx_SET (dest, const0_rtx));
37665 return;
37666 }
37667
37668 else if (value == mask)
37669 {
37670 if (!rtx_equal_p (dest, op1))
37671 emit_insn (gen_rtx_SET (dest, op1));
37672 return;
37673 }
37674 }
37675
37676 /* Optimize IOR/XOR of 0 to be a simple move. Split large operations
37677 into separate ORI/ORIS or XORI/XORIS instrucitons. */
37678 else if (code == IOR || code == XOR)
37679 {
37680 if (value == 0)
37681 {
37682 if (!rtx_equal_p (dest, op1))
37683 emit_insn (gen_rtx_SET (dest, op1));
37684 return;
37685 }
37686 }
37687 }
37688
37689 if (code == AND && mode == SImode
37690 && !complement_final_p && !complement_op1_p && !complement_op2_p)
37691 {
37692 emit_insn (gen_andsi3 (dest, op1, op2));
37693 return;
37694 }
37695
37696 if (complement_op1_p)
37697 op1 = gen_rtx_NOT (mode, op1);
37698
37699 if (complement_op2_p)
37700 op2 = gen_rtx_NOT (mode, op2);
37701
37702 /* For canonical RTL, if only one arm is inverted it is the first. */
37703 if (!complement_op1_p && complement_op2_p)
37704 std::swap (op1, op2);
37705
37706 bool_rtx = ((code == NOT)
37707 ? gen_rtx_NOT (mode, op1)
37708 : gen_rtx_fmt_ee (code, mode, op1, op2));
37709
37710 if (complement_final_p)
37711 bool_rtx = gen_rtx_NOT (mode, bool_rtx);
37712
37713 emit_insn (gen_rtx_SET (dest, bool_rtx));
37714 }
37715
37716 /* Split a DImode AND/IOR/XOR with a constant on a 32-bit system. These
37717 operations are split immediately during RTL generation to allow for more
37718 optimizations of the AND/IOR/XOR.
37719
37720 OPERANDS is an array containing the destination and two input operands.
37721 CODE is the base operation (AND, IOR, XOR, NOT).
37722 MODE is the machine mode.
37723 If COMPLEMENT_FINAL_P is true, wrap the whole operation with NOT.
37724 If COMPLEMENT_OP1_P is true, wrap operand1 with NOT.
37725 If COMPLEMENT_OP2_P is true, wrap operand2 with NOT.
37726 CLOBBER_REG is either NULL or a scratch register of type CC to allow
37727 formation of the AND instructions. */
37728
37729 static void
37730 rs6000_split_logical_di (rtx operands[3],
37731 enum rtx_code code,
37732 bool complement_final_p,
37733 bool complement_op1_p,
37734 bool complement_op2_p)
37735 {
37736 const HOST_WIDE_INT lower_32bits = HOST_WIDE_INT_C(0xffffffff);
37737 const HOST_WIDE_INT upper_32bits = ~ lower_32bits;
37738 const HOST_WIDE_INT sign_bit = HOST_WIDE_INT_C(0x80000000);
37739 enum hi_lo { hi = 0, lo = 1 };
37740 rtx op0_hi_lo[2], op1_hi_lo[2], op2_hi_lo[2];
37741 size_t i;
37742
37743 op0_hi_lo[hi] = gen_highpart (SImode, operands[0]);
37744 op1_hi_lo[hi] = gen_highpart (SImode, operands[1]);
37745 op0_hi_lo[lo] = gen_lowpart (SImode, operands[0]);
37746 op1_hi_lo[lo] = gen_lowpart (SImode, operands[1]);
37747
37748 if (code == NOT)
37749 op2_hi_lo[hi] = op2_hi_lo[lo] = NULL_RTX;
37750 else
37751 {
37752 if (GET_CODE (operands[2]) != CONST_INT)
37753 {
37754 op2_hi_lo[hi] = gen_highpart_mode (SImode, DImode, operands[2]);
37755 op2_hi_lo[lo] = gen_lowpart (SImode, operands[2]);
37756 }
37757 else
37758 {
37759 HOST_WIDE_INT value = INTVAL (operands[2]);
37760 HOST_WIDE_INT value_hi_lo[2];
37761
37762 gcc_assert (!complement_final_p);
37763 gcc_assert (!complement_op1_p);
37764 gcc_assert (!complement_op2_p);
37765
37766 value_hi_lo[hi] = value >> 32;
37767 value_hi_lo[lo] = value & lower_32bits;
37768
37769 for (i = 0; i < 2; i++)
37770 {
37771 HOST_WIDE_INT sub_value = value_hi_lo[i];
37772
37773 if (sub_value & sign_bit)
37774 sub_value |= upper_32bits;
37775
37776 op2_hi_lo[i] = GEN_INT (sub_value);
37777
37778 /* If this is an AND instruction, check to see if we need to load
37779 the value in a register. */
37780 if (code == AND && sub_value != -1 && sub_value != 0
37781 && !and_operand (op2_hi_lo[i], SImode))
37782 op2_hi_lo[i] = force_reg (SImode, op2_hi_lo[i]);
37783 }
37784 }
37785 }
37786
37787 for (i = 0; i < 2; i++)
37788 {
37789 /* Split large IOR/XOR operations. */
37790 if ((code == IOR || code == XOR)
37791 && GET_CODE (op2_hi_lo[i]) == CONST_INT
37792 && !complement_final_p
37793 && !complement_op1_p
37794 && !complement_op2_p
37795 && !logical_const_operand (op2_hi_lo[i], SImode))
37796 {
37797 HOST_WIDE_INT value = INTVAL (op2_hi_lo[i]);
37798 HOST_WIDE_INT hi_16bits = value & HOST_WIDE_INT_C(0xffff0000);
37799 HOST_WIDE_INT lo_16bits = value & HOST_WIDE_INT_C(0x0000ffff);
37800 rtx tmp = gen_reg_rtx (SImode);
37801
37802 /* Make sure the constant is sign extended. */
37803 if ((hi_16bits & sign_bit) != 0)
37804 hi_16bits |= upper_32bits;
37805
37806 rs6000_split_logical_inner (tmp, op1_hi_lo[i], GEN_INT (hi_16bits),
37807 code, SImode, false, false, false);
37808
37809 rs6000_split_logical_inner (op0_hi_lo[i], tmp, GEN_INT (lo_16bits),
37810 code, SImode, false, false, false);
37811 }
37812 else
37813 rs6000_split_logical_inner (op0_hi_lo[i], op1_hi_lo[i], op2_hi_lo[i],
37814 code, SImode, complement_final_p,
37815 complement_op1_p, complement_op2_p);
37816 }
37817
37818 return;
37819 }
37820
37821 /* Split the insns that make up boolean operations operating on multiple GPR
37822 registers. The boolean MD patterns ensure that the inputs either are
37823 exactly the same as the output registers, or there is no overlap.
37824
37825 OPERANDS is an array containing the destination and two input operands.
37826 CODE is the base operation (AND, IOR, XOR, NOT).
37827 If COMPLEMENT_FINAL_P is true, wrap the whole operation with NOT.
37828 If COMPLEMENT_OP1_P is true, wrap operand1 with NOT.
37829 If COMPLEMENT_OP2_P is true, wrap operand2 with NOT. */
37830
37831 void
37832 rs6000_split_logical (rtx operands[3],
37833 enum rtx_code code,
37834 bool complement_final_p,
37835 bool complement_op1_p,
37836 bool complement_op2_p)
37837 {
37838 machine_mode mode = GET_MODE (operands[0]);
37839 machine_mode sub_mode;
37840 rtx op0, op1, op2;
37841 int sub_size, regno0, regno1, nregs, i;
37842
37843 /* If this is DImode, use the specialized version that can run before
37844 register allocation. */
37845 if (mode == DImode && !TARGET_POWERPC64)
37846 {
37847 rs6000_split_logical_di (operands, code, complement_final_p,
37848 complement_op1_p, complement_op2_p);
37849 return;
37850 }
37851
37852 op0 = operands[0];
37853 op1 = operands[1];
37854 op2 = (code == NOT) ? NULL_RTX : operands[2];
37855 sub_mode = (TARGET_POWERPC64) ? DImode : SImode;
37856 sub_size = GET_MODE_SIZE (sub_mode);
37857 regno0 = REGNO (op0);
37858 regno1 = REGNO (op1);
37859
37860 gcc_assert (reload_completed);
37861 gcc_assert (IN_RANGE (regno0, FIRST_GPR_REGNO, LAST_GPR_REGNO));
37862 gcc_assert (IN_RANGE (regno1, FIRST_GPR_REGNO, LAST_GPR_REGNO));
37863
37864 nregs = rs6000_hard_regno_nregs[(int)mode][regno0];
37865 gcc_assert (nregs > 1);
37866
37867 if (op2 && REG_P (op2))
37868 gcc_assert (IN_RANGE (REGNO (op2), FIRST_GPR_REGNO, LAST_GPR_REGNO));
37869
37870 for (i = 0; i < nregs; i++)
37871 {
37872 int offset = i * sub_size;
37873 rtx sub_op0 = simplify_subreg (sub_mode, op0, mode, offset);
37874 rtx sub_op1 = simplify_subreg (sub_mode, op1, mode, offset);
37875 rtx sub_op2 = ((code == NOT)
37876 ? NULL_RTX
37877 : simplify_subreg (sub_mode, op2, mode, offset));
37878
37879 rs6000_split_logical_inner (sub_op0, sub_op1, sub_op2, code, sub_mode,
37880 complement_final_p, complement_op1_p,
37881 complement_op2_p);
37882 }
37883
37884 return;
37885 }
37886
37887 \f
37888 /* Return true if the peephole2 can combine a load involving a combination of
37889 an addis instruction and a load with an offset that can be fused together on
37890 a power8. */
37891
37892 bool
37893 fusion_gpr_load_p (rtx addis_reg, /* register set via addis. */
37894 rtx addis_value, /* addis value. */
37895 rtx target, /* target register that is loaded. */
37896 rtx mem) /* bottom part of the memory addr. */
37897 {
37898 rtx addr;
37899 rtx base_reg;
37900
37901 /* Validate arguments. */
37902 if (!base_reg_operand (addis_reg, GET_MODE (addis_reg)))
37903 return false;
37904
37905 if (!base_reg_operand (target, GET_MODE (target)))
37906 return false;
37907
37908 if (!fusion_gpr_addis (addis_value, GET_MODE (addis_value)))
37909 return false;
37910
37911 /* Allow sign/zero extension. */
37912 if (GET_CODE (mem) == ZERO_EXTEND
37913 || (GET_CODE (mem) == SIGN_EXTEND && TARGET_P8_FUSION_SIGN))
37914 mem = XEXP (mem, 0);
37915
37916 if (!MEM_P (mem))
37917 return false;
37918
37919 if (!fusion_gpr_mem_load (mem, GET_MODE (mem)))
37920 return false;
37921
37922 addr = XEXP (mem, 0); /* either PLUS or LO_SUM. */
37923 if (GET_CODE (addr) != PLUS && GET_CODE (addr) != LO_SUM)
37924 return false;
37925
37926 /* Validate that the register used to load the high value is either the
37927 register being loaded, or we can safely replace its use.
37928
37929 This function is only called from the peephole2 pass and we assume that
37930 there are 2 instructions in the peephole (addis and load), so we want to
37931 check if the target register was not used in the memory address and the
37932 register to hold the addis result is dead after the peephole. */
37933 if (REGNO (addis_reg) != REGNO (target))
37934 {
37935 if (reg_mentioned_p (target, mem))
37936 return false;
37937
37938 if (!peep2_reg_dead_p (2, addis_reg))
37939 return false;
37940
37941 /* If the target register being loaded is the stack pointer, we must
37942 avoid loading any other value into it, even temporarily. */
37943 if (REG_P (target) && REGNO (target) == STACK_POINTER_REGNUM)
37944 return false;
37945 }
37946
37947 base_reg = XEXP (addr, 0);
37948 return REGNO (addis_reg) == REGNO (base_reg);
37949 }
37950
37951 /* During the peephole2 pass, adjust and expand the insns for a load fusion
37952 sequence. We adjust the addis register to use the target register. If the
37953 load sign extends, we adjust the code to do the zero extending load, and an
37954 explicit sign extension later since the fusion only covers zero extending
37955 loads.
37956
37957 The operands are:
37958 operands[0] register set with addis (to be replaced with target)
37959 operands[1] value set via addis
37960 operands[2] target register being loaded
37961 operands[3] D-form memory reference using operands[0]. */
37962
37963 void
37964 expand_fusion_gpr_load (rtx *operands)
37965 {
37966 rtx addis_value = operands[1];
37967 rtx target = operands[2];
37968 rtx orig_mem = operands[3];
37969 rtx new_addr, new_mem, orig_addr, offset;
37970 enum rtx_code plus_or_lo_sum;
37971 machine_mode target_mode = GET_MODE (target);
37972 machine_mode extend_mode = target_mode;
37973 machine_mode ptr_mode = Pmode;
37974 enum rtx_code extend = UNKNOWN;
37975
37976 if (GET_CODE (orig_mem) == ZERO_EXTEND
37977 || (TARGET_P8_FUSION_SIGN && GET_CODE (orig_mem) == SIGN_EXTEND))
37978 {
37979 extend = GET_CODE (orig_mem);
37980 orig_mem = XEXP (orig_mem, 0);
37981 target_mode = GET_MODE (orig_mem);
37982 }
37983
37984 gcc_assert (MEM_P (orig_mem));
37985
37986 orig_addr = XEXP (orig_mem, 0);
37987 plus_or_lo_sum = GET_CODE (orig_addr);
37988 gcc_assert (plus_or_lo_sum == PLUS || plus_or_lo_sum == LO_SUM);
37989
37990 offset = XEXP (orig_addr, 1);
37991 new_addr = gen_rtx_fmt_ee (plus_or_lo_sum, ptr_mode, addis_value, offset);
37992 new_mem = replace_equiv_address_nv (orig_mem, new_addr, false);
37993
37994 if (extend != UNKNOWN)
37995 new_mem = gen_rtx_fmt_e (ZERO_EXTEND, extend_mode, new_mem);
37996
37997 new_mem = gen_rtx_UNSPEC (extend_mode, gen_rtvec (1, new_mem),
37998 UNSPEC_FUSION_GPR);
37999 emit_insn (gen_rtx_SET (target, new_mem));
38000
38001 if (extend == SIGN_EXTEND)
38002 {
38003 int sub_off = ((BYTES_BIG_ENDIAN)
38004 ? GET_MODE_SIZE (extend_mode) - GET_MODE_SIZE (target_mode)
38005 : 0);
38006 rtx sign_reg
38007 = simplify_subreg (target_mode, target, extend_mode, sub_off);
38008
38009 emit_insn (gen_rtx_SET (target,
38010 gen_rtx_SIGN_EXTEND (extend_mode, sign_reg)));
38011 }
38012
38013 return;
38014 }
38015
38016 /* Emit the addis instruction that will be part of a fused instruction
38017 sequence. */
38018
38019 void
38020 emit_fusion_addis (rtx target, rtx addis_value)
38021 {
38022 rtx fuse_ops[10];
38023 const char *addis_str = NULL;
38024
38025 /* Emit the addis instruction. */
38026 fuse_ops[0] = target;
38027 if (satisfies_constraint_L (addis_value))
38028 {
38029 fuse_ops[1] = addis_value;
38030 addis_str = "lis %0,%v1";
38031 }
38032
38033 else if (GET_CODE (addis_value) == PLUS)
38034 {
38035 rtx op0 = XEXP (addis_value, 0);
38036 rtx op1 = XEXP (addis_value, 1);
38037
38038 if (REG_P (op0) && CONST_INT_P (op1)
38039 && satisfies_constraint_L (op1))
38040 {
38041 fuse_ops[1] = op0;
38042 fuse_ops[2] = op1;
38043 addis_str = "addis %0,%1,%v2";
38044 }
38045 }
38046
38047 else if (GET_CODE (addis_value) == HIGH)
38048 {
38049 rtx value = XEXP (addis_value, 0);
38050 if (GET_CODE (value) == UNSPEC && XINT (value, 1) == UNSPEC_TOCREL)
38051 {
38052 fuse_ops[1] = XVECEXP (value, 0, 0); /* symbol ref. */
38053 fuse_ops[2] = XVECEXP (value, 0, 1); /* TOC register. */
38054 if (TARGET_ELF)
38055 addis_str = "addis %0,%2,%1@toc@ha";
38056
38057 else if (TARGET_XCOFF)
38058 addis_str = "addis %0,%1@u(%2)";
38059
38060 else
38061 gcc_unreachable ();
38062 }
38063
38064 else if (GET_CODE (value) == PLUS)
38065 {
38066 rtx op0 = XEXP (value, 0);
38067 rtx op1 = XEXP (value, 1);
38068
38069 if (GET_CODE (op0) == UNSPEC
38070 && XINT (op0, 1) == UNSPEC_TOCREL
38071 && CONST_INT_P (op1))
38072 {
38073 fuse_ops[1] = XVECEXP (op0, 0, 0); /* symbol ref. */
38074 fuse_ops[2] = XVECEXP (op0, 0, 1); /* TOC register. */
38075 fuse_ops[3] = op1;
38076 if (TARGET_ELF)
38077 addis_str = "addis %0,%2,%1+%3@toc@ha";
38078
38079 else if (TARGET_XCOFF)
38080 addis_str = "addis %0,%1+%3@u(%2)";
38081
38082 else
38083 gcc_unreachable ();
38084 }
38085 }
38086
38087 else if (satisfies_constraint_L (value))
38088 {
38089 fuse_ops[1] = value;
38090 addis_str = "lis %0,%v1";
38091 }
38092
38093 else if (TARGET_ELF && !TARGET_POWERPC64 && CONSTANT_P (value))
38094 {
38095 fuse_ops[1] = value;
38096 addis_str = "lis %0,%1@ha";
38097 }
38098 }
38099
38100 if (!addis_str)
38101 fatal_insn ("Could not generate addis value for fusion", addis_value);
38102
38103 output_asm_insn (addis_str, fuse_ops);
38104 }
38105
38106 /* Emit a D-form load or store instruction that is the second instruction
38107 of a fusion sequence. */
38108
38109 void
38110 emit_fusion_load_store (rtx load_store_reg, rtx addis_reg, rtx offset,
38111 const char *insn_str)
38112 {
38113 rtx fuse_ops[10];
38114 char insn_template[80];
38115
38116 fuse_ops[0] = load_store_reg;
38117 fuse_ops[1] = addis_reg;
38118
38119 if (CONST_INT_P (offset) && satisfies_constraint_I (offset))
38120 {
38121 sprintf (insn_template, "%s %%0,%%2(%%1)", insn_str);
38122 fuse_ops[2] = offset;
38123 output_asm_insn (insn_template, fuse_ops);
38124 }
38125
38126 else if (GET_CODE (offset) == UNSPEC
38127 && XINT (offset, 1) == UNSPEC_TOCREL)
38128 {
38129 if (TARGET_ELF)
38130 sprintf (insn_template, "%s %%0,%%2@toc@l(%%1)", insn_str);
38131
38132 else if (TARGET_XCOFF)
38133 sprintf (insn_template, "%s %%0,%%2@l(%%1)", insn_str);
38134
38135 else
38136 gcc_unreachable ();
38137
38138 fuse_ops[2] = XVECEXP (offset, 0, 0);
38139 output_asm_insn (insn_template, fuse_ops);
38140 }
38141
38142 else if (GET_CODE (offset) == PLUS
38143 && GET_CODE (XEXP (offset, 0)) == UNSPEC
38144 && XINT (XEXP (offset, 0), 1) == UNSPEC_TOCREL
38145 && CONST_INT_P (XEXP (offset, 1)))
38146 {
38147 rtx tocrel_unspec = XEXP (offset, 0);
38148 if (TARGET_ELF)
38149 sprintf (insn_template, "%s %%0,%%2+%%3@toc@l(%%1)", insn_str);
38150
38151 else if (TARGET_XCOFF)
38152 sprintf (insn_template, "%s %%0,%%2+%%3@l(%%1)", insn_str);
38153
38154 else
38155 gcc_unreachable ();
38156
38157 fuse_ops[2] = XVECEXP (tocrel_unspec, 0, 0);
38158 fuse_ops[3] = XEXP (offset, 1);
38159 output_asm_insn (insn_template, fuse_ops);
38160 }
38161
38162 else if (TARGET_ELF && !TARGET_POWERPC64 && CONSTANT_P (offset))
38163 {
38164 sprintf (insn_template, "%s %%0,%%2@l(%%1)", insn_str);
38165
38166 fuse_ops[2] = offset;
38167 output_asm_insn (insn_template, fuse_ops);
38168 }
38169
38170 else
38171 fatal_insn ("Unable to generate load/store offset for fusion", offset);
38172
38173 return;
38174 }
38175
38176 /* Given an address, convert it into the addis and load offset parts. Addresses
38177 created during the peephole2 process look like:
38178 (lo_sum (high (unspec [(sym)] UNSPEC_TOCREL))
38179 (unspec [(...)] UNSPEC_TOCREL)) */
38180
38181 static void
38182 fusion_split_address (rtx addr, rtx *p_hi, rtx *p_lo)
38183 {
38184 rtx hi, lo;
38185
38186 if (GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM)
38187 {
38188 hi = XEXP (addr, 0);
38189 lo = XEXP (addr, 1);
38190 }
38191 else
38192 gcc_unreachable ();
38193
38194 *p_hi = hi;
38195 *p_lo = lo;
38196 }
38197
38198 /* Return a string to fuse an addis instruction with a gpr load to the same
38199 register that we loaded up the addis instruction. The address that is used
38200 is the logical address that was formed during peephole2:
38201 (lo_sum (high) (low-part))
38202
38203 The code is complicated, so we call output_asm_insn directly, and just
38204 return "". */
38205
38206 const char *
38207 emit_fusion_gpr_load (rtx target, rtx mem)
38208 {
38209 rtx addis_value;
38210 rtx addr;
38211 rtx load_offset;
38212 const char *load_str = NULL;
38213 machine_mode mode;
38214
38215 if (GET_CODE (mem) == ZERO_EXTEND)
38216 mem = XEXP (mem, 0);
38217
38218 gcc_assert (REG_P (target) && MEM_P (mem));
38219
38220 addr = XEXP (mem, 0);
38221 fusion_split_address (addr, &addis_value, &load_offset);
38222
38223 /* Now emit the load instruction to the same register. */
38224 mode = GET_MODE (mem);
38225 switch (mode)
38226 {
38227 case E_QImode:
38228 load_str = "lbz";
38229 break;
38230
38231 case E_HImode:
38232 load_str = "lhz";
38233 break;
38234
38235 case E_SImode:
38236 case E_SFmode:
38237 load_str = "lwz";
38238 break;
38239
38240 case E_DImode:
38241 case E_DFmode:
38242 gcc_assert (TARGET_POWERPC64);
38243 load_str = "ld";
38244 break;
38245
38246 default:
38247 fatal_insn ("Bad GPR fusion", gen_rtx_SET (target, mem));
38248 }
38249
38250 /* Emit the addis instruction. */
38251 emit_fusion_addis (target, addis_value);
38252
38253 /* Emit the D-form load instruction. */
38254 emit_fusion_load_store (target, target, load_offset, load_str);
38255
38256 return "";
38257 }
38258 \f
38259
38260 /* Return true if the peephole2 can combine a load/store involving a
38261 combination of an addis instruction and the memory operation. This was
38262 added to the ISA 3.0 (power9) hardware. */
38263
38264 bool
38265 fusion_p9_p (rtx addis_reg, /* register set via addis. */
38266 rtx addis_value, /* addis value. */
38267 rtx dest, /* destination (memory or register). */
38268 rtx src) /* source (register or memory). */
38269 {
38270 rtx addr, mem, offset;
38271 machine_mode mode = GET_MODE (src);
38272
38273 /* Validate arguments. */
38274 if (!base_reg_operand (addis_reg, GET_MODE (addis_reg)))
38275 return false;
38276
38277 if (!fusion_gpr_addis (addis_value, GET_MODE (addis_value)))
38278 return false;
38279
38280 /* Ignore extend operations that are part of the load. */
38281 if (GET_CODE (src) == FLOAT_EXTEND || GET_CODE (src) == ZERO_EXTEND)
38282 src = XEXP (src, 0);
38283
38284 /* Test for memory<-register or register<-memory. */
38285 if (fpr_reg_operand (src, mode) || int_reg_operand (src, mode))
38286 {
38287 if (!MEM_P (dest))
38288 return false;
38289
38290 mem = dest;
38291 }
38292
38293 else if (MEM_P (src))
38294 {
38295 if (!fpr_reg_operand (dest, mode) && !int_reg_operand (dest, mode))
38296 return false;
38297
38298 mem = src;
38299 }
38300
38301 else
38302 return false;
38303
38304 addr = XEXP (mem, 0); /* either PLUS or LO_SUM. */
38305 if (GET_CODE (addr) == PLUS)
38306 {
38307 if (!rtx_equal_p (addis_reg, XEXP (addr, 0)))
38308 return false;
38309
38310 return satisfies_constraint_I (XEXP (addr, 1));
38311 }
38312
38313 else if (GET_CODE (addr) == LO_SUM)
38314 {
38315 if (!rtx_equal_p (addis_reg, XEXP (addr, 0)))
38316 return false;
38317
38318 offset = XEXP (addr, 1);
38319 if (TARGET_XCOFF || (TARGET_ELF && TARGET_POWERPC64))
38320 return small_toc_ref (offset, GET_MODE (offset));
38321
38322 else if (TARGET_ELF && !TARGET_POWERPC64)
38323 return CONSTANT_P (offset);
38324 }
38325
38326 return false;
38327 }
38328
38329 /* During the peephole2 pass, adjust and expand the insns for an extended fusion
38330 load sequence.
38331
38332 The operands are:
38333 operands[0] register set with addis
38334 operands[1] value set via addis
38335 operands[2] target register being loaded
38336 operands[3] D-form memory reference using operands[0].
38337
38338 This is similar to the fusion introduced with power8, except it scales to
38339 both loads/stores and does not require the result register to be the same as
38340 the base register. At the moment, we only do this if register set with addis
38341 is dead. */
38342
38343 void
38344 expand_fusion_p9_load (rtx *operands)
38345 {
38346 rtx tmp_reg = operands[0];
38347 rtx addis_value = operands[1];
38348 rtx target = operands[2];
38349 rtx orig_mem = operands[3];
38350 rtx new_addr, new_mem, orig_addr, offset, set, clobber, insn;
38351 enum rtx_code plus_or_lo_sum;
38352 machine_mode target_mode = GET_MODE (target);
38353 machine_mode extend_mode = target_mode;
38354 machine_mode ptr_mode = Pmode;
38355 enum rtx_code extend = UNKNOWN;
38356
38357 if (GET_CODE (orig_mem) == FLOAT_EXTEND || GET_CODE (orig_mem) == ZERO_EXTEND)
38358 {
38359 extend = GET_CODE (orig_mem);
38360 orig_mem = XEXP (orig_mem, 0);
38361 target_mode = GET_MODE (orig_mem);
38362 }
38363
38364 gcc_assert (MEM_P (orig_mem));
38365
38366 orig_addr = XEXP (orig_mem, 0);
38367 plus_or_lo_sum = GET_CODE (orig_addr);
38368 gcc_assert (plus_or_lo_sum == PLUS || plus_or_lo_sum == LO_SUM);
38369
38370 offset = XEXP (orig_addr, 1);
38371 new_addr = gen_rtx_fmt_ee (plus_or_lo_sum, ptr_mode, addis_value, offset);
38372 new_mem = replace_equiv_address_nv (orig_mem, new_addr, false);
38373
38374 if (extend != UNKNOWN)
38375 new_mem = gen_rtx_fmt_e (extend, extend_mode, new_mem);
38376
38377 new_mem = gen_rtx_UNSPEC (extend_mode, gen_rtvec (1, new_mem),
38378 UNSPEC_FUSION_P9);
38379
38380 set = gen_rtx_SET (target, new_mem);
38381 clobber = gen_rtx_CLOBBER (VOIDmode, tmp_reg);
38382 insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber));
38383 emit_insn (insn);
38384
38385 return;
38386 }
38387
38388 /* During the peephole2 pass, adjust and expand the insns for an extended fusion
38389 store sequence.
38390
38391 The operands are:
38392 operands[0] register set with addis
38393 operands[1] value set via addis
38394 operands[2] target D-form memory being stored to
38395 operands[3] register being stored
38396
38397 This is similar to the fusion introduced with power8, except it scales to
38398 both loads/stores and does not require the result register to be the same as
38399 the base register. At the moment, we only do this if register set with addis
38400 is dead. */
38401
38402 void
38403 expand_fusion_p9_store (rtx *operands)
38404 {
38405 rtx tmp_reg = operands[0];
38406 rtx addis_value = operands[1];
38407 rtx orig_mem = operands[2];
38408 rtx src = operands[3];
38409 rtx new_addr, new_mem, orig_addr, offset, set, clobber, insn, new_src;
38410 enum rtx_code plus_or_lo_sum;
38411 machine_mode target_mode = GET_MODE (orig_mem);
38412 machine_mode ptr_mode = Pmode;
38413
38414 gcc_assert (MEM_P (orig_mem));
38415
38416 orig_addr = XEXP (orig_mem, 0);
38417 plus_or_lo_sum = GET_CODE (orig_addr);
38418 gcc_assert (plus_or_lo_sum == PLUS || plus_or_lo_sum == LO_SUM);
38419
38420 offset = XEXP (orig_addr, 1);
38421 new_addr = gen_rtx_fmt_ee (plus_or_lo_sum, ptr_mode, addis_value, offset);
38422 new_mem = replace_equiv_address_nv (orig_mem, new_addr, false);
38423
38424 new_src = gen_rtx_UNSPEC (target_mode, gen_rtvec (1, src),
38425 UNSPEC_FUSION_P9);
38426
38427 set = gen_rtx_SET (new_mem, new_src);
38428 clobber = gen_rtx_CLOBBER (VOIDmode, tmp_reg);
38429 insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber));
38430 emit_insn (insn);
38431
38432 return;
38433 }
38434
38435 /* Return a string to fuse an addis instruction with a load using extended
38436 fusion. The address that is used is the logical address that was formed
38437 during peephole2: (lo_sum (high) (low-part))
38438
38439 The code is complicated, so we call output_asm_insn directly, and just
38440 return "". */
38441
38442 const char *
38443 emit_fusion_p9_load (rtx reg, rtx mem, rtx tmp_reg)
38444 {
38445 machine_mode mode = GET_MODE (reg);
38446 rtx hi;
38447 rtx lo;
38448 rtx addr;
38449 const char *load_string;
38450 int r;
38451
38452 if (GET_CODE (mem) == FLOAT_EXTEND || GET_CODE (mem) == ZERO_EXTEND)
38453 {
38454 mem = XEXP (mem, 0);
38455 mode = GET_MODE (mem);
38456 }
38457
38458 if (GET_CODE (reg) == SUBREG)
38459 {
38460 gcc_assert (SUBREG_BYTE (reg) == 0);
38461 reg = SUBREG_REG (reg);
38462 }
38463
38464 if (!REG_P (reg))
38465 fatal_insn ("emit_fusion_p9_load, bad reg #1", reg);
38466
38467 r = REGNO (reg);
38468 if (FP_REGNO_P (r))
38469 {
38470 if (mode == SFmode)
38471 load_string = "lfs";
38472 else if (mode == DFmode || mode == DImode)
38473 load_string = "lfd";
38474 else
38475 gcc_unreachable ();
38476 }
38477 else if (ALTIVEC_REGNO_P (r) && TARGET_P9_VECTOR)
38478 {
38479 if (mode == SFmode)
38480 load_string = "lxssp";
38481 else if (mode == DFmode || mode == DImode)
38482 load_string = "lxsd";
38483 else
38484 gcc_unreachable ();
38485 }
38486 else if (INT_REGNO_P (r))
38487 {
38488 switch (mode)
38489 {
38490 case E_QImode:
38491 load_string = "lbz";
38492 break;
38493 case E_HImode:
38494 load_string = "lhz";
38495 break;
38496 case E_SImode:
38497 case E_SFmode:
38498 load_string = "lwz";
38499 break;
38500 case E_DImode:
38501 case E_DFmode:
38502 if (!TARGET_POWERPC64)
38503 gcc_unreachable ();
38504 load_string = "ld";
38505 break;
38506 default:
38507 gcc_unreachable ();
38508 }
38509 }
38510 else
38511 fatal_insn ("emit_fusion_p9_load, bad reg #2", reg);
38512
38513 if (!MEM_P (mem))
38514 fatal_insn ("emit_fusion_p9_load not MEM", mem);
38515
38516 addr = XEXP (mem, 0);
38517 fusion_split_address (addr, &hi, &lo);
38518
38519 /* Emit the addis instruction. */
38520 emit_fusion_addis (tmp_reg, hi);
38521
38522 /* Emit the D-form load instruction. */
38523 emit_fusion_load_store (reg, tmp_reg, lo, load_string);
38524
38525 return "";
38526 }
38527
38528 /* Return a string to fuse an addis instruction with a store using extended
38529 fusion. The address that is used is the logical address that was formed
38530 during peephole2: (lo_sum (high) (low-part))
38531
38532 The code is complicated, so we call output_asm_insn directly, and just
38533 return "". */
38534
38535 const char *
38536 emit_fusion_p9_store (rtx mem, rtx reg, rtx tmp_reg)
38537 {
38538 machine_mode mode = GET_MODE (reg);
38539 rtx hi;
38540 rtx lo;
38541 rtx addr;
38542 const char *store_string;
38543 int r;
38544
38545 if (GET_CODE (reg) == SUBREG)
38546 {
38547 gcc_assert (SUBREG_BYTE (reg) == 0);
38548 reg = SUBREG_REG (reg);
38549 }
38550
38551 if (!REG_P (reg))
38552 fatal_insn ("emit_fusion_p9_store, bad reg #1", reg);
38553
38554 r = REGNO (reg);
38555 if (FP_REGNO_P (r))
38556 {
38557 if (mode == SFmode)
38558 store_string = "stfs";
38559 else if (mode == DFmode)
38560 store_string = "stfd";
38561 else
38562 gcc_unreachable ();
38563 }
38564 else if (ALTIVEC_REGNO_P (r) && TARGET_P9_VECTOR)
38565 {
38566 if (mode == SFmode)
38567 store_string = "stxssp";
38568 else if (mode == DFmode || mode == DImode)
38569 store_string = "stxsd";
38570 else
38571 gcc_unreachable ();
38572 }
38573 else if (INT_REGNO_P (r))
38574 {
38575 switch (mode)
38576 {
38577 case E_QImode:
38578 store_string = "stb";
38579 break;
38580 case E_HImode:
38581 store_string = "sth";
38582 break;
38583 case E_SImode:
38584 case E_SFmode:
38585 store_string = "stw";
38586 break;
38587 case E_DImode:
38588 case E_DFmode:
38589 if (!TARGET_POWERPC64)
38590 gcc_unreachable ();
38591 store_string = "std";
38592 break;
38593 default:
38594 gcc_unreachable ();
38595 }
38596 }
38597 else
38598 fatal_insn ("emit_fusion_p9_store, bad reg #2", reg);
38599
38600 if (!MEM_P (mem))
38601 fatal_insn ("emit_fusion_p9_store not MEM", mem);
38602
38603 addr = XEXP (mem, 0);
38604 fusion_split_address (addr, &hi, &lo);
38605
38606 /* Emit the addis instruction. */
38607 emit_fusion_addis (tmp_reg, hi);
38608
38609 /* Emit the D-form load instruction. */
38610 emit_fusion_load_store (reg, tmp_reg, lo, store_string);
38611
38612 return "";
38613 }
38614
38615 #ifdef RS6000_GLIBC_ATOMIC_FENV
38616 /* Function declarations for rs6000_atomic_assign_expand_fenv. */
38617 static tree atomic_hold_decl, atomic_clear_decl, atomic_update_decl;
38618 #endif
38619
38620 /* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV hook. */
38621
38622 static void
38623 rs6000_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
38624 {
38625 if (!TARGET_HARD_FLOAT)
38626 {
38627 #ifdef RS6000_GLIBC_ATOMIC_FENV
38628 if (atomic_hold_decl == NULL_TREE)
38629 {
38630 atomic_hold_decl
38631 = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
38632 get_identifier ("__atomic_feholdexcept"),
38633 build_function_type_list (void_type_node,
38634 double_ptr_type_node,
38635 NULL_TREE));
38636 TREE_PUBLIC (atomic_hold_decl) = 1;
38637 DECL_EXTERNAL (atomic_hold_decl) = 1;
38638 }
38639
38640 if (atomic_clear_decl == NULL_TREE)
38641 {
38642 atomic_clear_decl
38643 = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
38644 get_identifier ("__atomic_feclearexcept"),
38645 build_function_type_list (void_type_node,
38646 NULL_TREE));
38647 TREE_PUBLIC (atomic_clear_decl) = 1;
38648 DECL_EXTERNAL (atomic_clear_decl) = 1;
38649 }
38650
38651 tree const_double = build_qualified_type (double_type_node,
38652 TYPE_QUAL_CONST);
38653 tree const_double_ptr = build_pointer_type (const_double);
38654 if (atomic_update_decl == NULL_TREE)
38655 {
38656 atomic_update_decl
38657 = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
38658 get_identifier ("__atomic_feupdateenv"),
38659 build_function_type_list (void_type_node,
38660 const_double_ptr,
38661 NULL_TREE));
38662 TREE_PUBLIC (atomic_update_decl) = 1;
38663 DECL_EXTERNAL (atomic_update_decl) = 1;
38664 }
38665
38666 tree fenv_var = create_tmp_var_raw (double_type_node);
38667 TREE_ADDRESSABLE (fenv_var) = 1;
38668 tree fenv_addr = build1 (ADDR_EXPR, double_ptr_type_node, fenv_var);
38669
38670 *hold = build_call_expr (atomic_hold_decl, 1, fenv_addr);
38671 *clear = build_call_expr (atomic_clear_decl, 0);
38672 *update = build_call_expr (atomic_update_decl, 1,
38673 fold_convert (const_double_ptr, fenv_addr));
38674 #endif
38675 return;
38676 }
38677
38678 tree mffs = rs6000_builtin_decls[RS6000_BUILTIN_MFFS];
38679 tree mtfsf = rs6000_builtin_decls[RS6000_BUILTIN_MTFSF];
38680 tree call_mffs = build_call_expr (mffs, 0);
38681
38682 /* Generates the equivalent of feholdexcept (&fenv_var)
38683
38684 *fenv_var = __builtin_mffs ();
38685 double fenv_hold;
38686 *(uint64_t*)&fenv_hold = *(uint64_t*)fenv_var & 0xffffffff00000007LL;
38687 __builtin_mtfsf (0xff, fenv_hold); */
38688
38689 /* Mask to clear everything except for the rounding modes and non-IEEE
38690 arithmetic flag. */
38691 const unsigned HOST_WIDE_INT hold_exception_mask =
38692 HOST_WIDE_INT_C (0xffffffff00000007);
38693
38694 tree fenv_var = create_tmp_var_raw (double_type_node);
38695
38696 tree hold_mffs = build2 (MODIFY_EXPR, void_type_node, fenv_var, call_mffs);
38697
38698 tree fenv_llu = build1 (VIEW_CONVERT_EXPR, uint64_type_node, fenv_var);
38699 tree fenv_llu_and = build2 (BIT_AND_EXPR, uint64_type_node, fenv_llu,
38700 build_int_cst (uint64_type_node,
38701 hold_exception_mask));
38702
38703 tree fenv_hold_mtfsf = build1 (VIEW_CONVERT_EXPR, double_type_node,
38704 fenv_llu_and);
38705
38706 tree hold_mtfsf = build_call_expr (mtfsf, 2,
38707 build_int_cst (unsigned_type_node, 0xff),
38708 fenv_hold_mtfsf);
38709
38710 *hold = build2 (COMPOUND_EXPR, void_type_node, hold_mffs, hold_mtfsf);
38711
38712 /* Generates the equivalent of feclearexcept (FE_ALL_EXCEPT):
38713
38714 double fenv_clear = __builtin_mffs ();
38715 *(uint64_t)&fenv_clear &= 0xffffffff00000000LL;
38716 __builtin_mtfsf (0xff, fenv_clear); */
38717
38718 /* Mask to clear everything except for the rounding modes and non-IEEE
38719 arithmetic flag. */
38720 const unsigned HOST_WIDE_INT clear_exception_mask =
38721 HOST_WIDE_INT_C (0xffffffff00000000);
38722
38723 tree fenv_clear = create_tmp_var_raw (double_type_node);
38724
38725 tree clear_mffs = build2 (MODIFY_EXPR, void_type_node, fenv_clear, call_mffs);
38726
38727 tree fenv_clean_llu = build1 (VIEW_CONVERT_EXPR, uint64_type_node, fenv_clear);
38728 tree fenv_clear_llu_and = build2 (BIT_AND_EXPR, uint64_type_node,
38729 fenv_clean_llu,
38730 build_int_cst (uint64_type_node,
38731 clear_exception_mask));
38732
38733 tree fenv_clear_mtfsf = build1 (VIEW_CONVERT_EXPR, double_type_node,
38734 fenv_clear_llu_and);
38735
38736 tree clear_mtfsf = build_call_expr (mtfsf, 2,
38737 build_int_cst (unsigned_type_node, 0xff),
38738 fenv_clear_mtfsf);
38739
38740 *clear = build2 (COMPOUND_EXPR, void_type_node, clear_mffs, clear_mtfsf);
38741
38742 /* Generates the equivalent of feupdateenv (&fenv_var)
38743
38744 double old_fenv = __builtin_mffs ();
38745 double fenv_update;
38746 *(uint64_t*)&fenv_update = (*(uint64_t*)&old & 0xffffffff1fffff00LL) |
38747 (*(uint64_t*)fenv_var 0x1ff80fff);
38748 __builtin_mtfsf (0xff, fenv_update); */
38749
38750 const unsigned HOST_WIDE_INT update_exception_mask =
38751 HOST_WIDE_INT_C (0xffffffff1fffff00);
38752 const unsigned HOST_WIDE_INT new_exception_mask =
38753 HOST_WIDE_INT_C (0x1ff80fff);
38754
38755 tree old_fenv = create_tmp_var_raw (double_type_node);
38756 tree update_mffs = build2 (MODIFY_EXPR, void_type_node, old_fenv, call_mffs);
38757
38758 tree old_llu = build1 (VIEW_CONVERT_EXPR, uint64_type_node, old_fenv);
38759 tree old_llu_and = build2 (BIT_AND_EXPR, uint64_type_node, old_llu,
38760 build_int_cst (uint64_type_node,
38761 update_exception_mask));
38762
38763 tree new_llu_and = build2 (BIT_AND_EXPR, uint64_type_node, fenv_llu,
38764 build_int_cst (uint64_type_node,
38765 new_exception_mask));
38766
38767 tree new_llu_mask = build2 (BIT_IOR_EXPR, uint64_type_node,
38768 old_llu_and, new_llu_and);
38769
38770 tree fenv_update_mtfsf = build1 (VIEW_CONVERT_EXPR, double_type_node,
38771 new_llu_mask);
38772
38773 tree update_mtfsf = build_call_expr (mtfsf, 2,
38774 build_int_cst (unsigned_type_node, 0xff),
38775 fenv_update_mtfsf);
38776
38777 *update = build2 (COMPOUND_EXPR, void_type_node, update_mffs, update_mtfsf);
38778 }
38779
38780 void
38781 rs6000_generate_float2_double_code (rtx dst, rtx src1, rtx src2)
38782 {
38783 rtx rtx_tmp0, rtx_tmp1, rtx_tmp2, rtx_tmp3;
38784
38785 rtx_tmp0 = gen_reg_rtx (V2DFmode);
38786 rtx_tmp1 = gen_reg_rtx (V2DFmode);
38787
38788 /* The destination of the vmrgew instruction layout is:
38789 rtx_tmp2[0] rtx_tmp3[0] rtx_tmp2[1] rtx_tmp3[0].
38790 Setup rtx_tmp0 and rtx_tmp1 to ensure the order of the elements after the
38791 vmrgew instruction will be correct. */
38792 if (BYTES_BIG_ENDIAN)
38793 {
38794 emit_insn (gen_vsx_xxpermdi_v2df_be (rtx_tmp0, src1, src2,
38795 GEN_INT (0)));
38796 emit_insn (gen_vsx_xxpermdi_v2df_be (rtx_tmp1, src1, src2,
38797 GEN_INT (3)));
38798 }
38799 else
38800 {
38801 emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp0, src1, src2, GEN_INT (3)));
38802 emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp1, src1, src2, GEN_INT (0)));
38803 }
38804
38805 rtx_tmp2 = gen_reg_rtx (V4SFmode);
38806 rtx_tmp3 = gen_reg_rtx (V4SFmode);
38807
38808 emit_insn (gen_vsx_xvcdpsp (rtx_tmp2, rtx_tmp0));
38809 emit_insn (gen_vsx_xvcdpsp (rtx_tmp3, rtx_tmp1));
38810
38811 if (BYTES_BIG_ENDIAN)
38812 emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp2, rtx_tmp3));
38813 else
38814 emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp3, rtx_tmp2));
38815 }
38816
38817 void
38818 rs6000_generate_float2_code (bool signed_convert, rtx dst, rtx src1, rtx src2)
38819 {
38820 rtx rtx_tmp0, rtx_tmp1, rtx_tmp2, rtx_tmp3;
38821
38822 rtx_tmp0 = gen_reg_rtx (V2DImode);
38823 rtx_tmp1 = gen_reg_rtx (V2DImode);
38824
38825 /* The destination of the vmrgew instruction layout is:
38826 rtx_tmp2[0] rtx_tmp3[0] rtx_tmp2[1] rtx_tmp3[0].
38827 Setup rtx_tmp0 and rtx_tmp1 to ensure the order of the elements after the
38828 vmrgew instruction will be correct. */
38829 if (BYTES_BIG_ENDIAN)
38830 {
38831 emit_insn (gen_vsx_xxpermdi_v2di_be (rtx_tmp0, src1, src2, GEN_INT (0)));
38832 emit_insn (gen_vsx_xxpermdi_v2di_be (rtx_tmp1, src1, src2, GEN_INT (3)));
38833 }
38834 else
38835 {
38836 emit_insn (gen_vsx_xxpermdi_v2di (rtx_tmp0, src1, src2, GEN_INT (3)));
38837 emit_insn (gen_vsx_xxpermdi_v2di (rtx_tmp1, src1, src2, GEN_INT (0)));
38838 }
38839
38840 rtx_tmp2 = gen_reg_rtx (V4SFmode);
38841 rtx_tmp3 = gen_reg_rtx (V4SFmode);
38842
38843 if (signed_convert)
38844 {
38845 emit_insn (gen_vsx_xvcvsxdsp (rtx_tmp2, rtx_tmp0));
38846 emit_insn (gen_vsx_xvcvsxdsp (rtx_tmp3, rtx_tmp1));
38847 }
38848 else
38849 {
38850 emit_insn (gen_vsx_xvcvuxdsp (rtx_tmp2, rtx_tmp0));
38851 emit_insn (gen_vsx_xvcvuxdsp (rtx_tmp3, rtx_tmp1));
38852 }
38853
38854 if (BYTES_BIG_ENDIAN)
38855 emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp2, rtx_tmp3));
38856 else
38857 emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp3, rtx_tmp2));
38858 }
38859
38860 void
38861 rs6000_generate_vsigned2_code (bool signed_convert, rtx dst, rtx src1,
38862 rtx src2)
38863 {
38864 rtx rtx_tmp0, rtx_tmp1, rtx_tmp2, rtx_tmp3;
38865
38866 rtx_tmp0 = gen_reg_rtx (V2DFmode);
38867 rtx_tmp1 = gen_reg_rtx (V2DFmode);
38868
38869 emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp0, src1, src2, GEN_INT (0)));
38870 emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp1, src1, src2, GEN_INT (3)));
38871
38872 rtx_tmp2 = gen_reg_rtx (V4SImode);
38873 rtx_tmp3 = gen_reg_rtx (V4SImode);
38874
38875 if (signed_convert)
38876 {
38877 emit_insn (gen_vsx_xvcvdpsxws (rtx_tmp2, rtx_tmp0));
38878 emit_insn (gen_vsx_xvcvdpsxws (rtx_tmp3, rtx_tmp1));
38879 }
38880 else
38881 {
38882 emit_insn (gen_vsx_xvcvdpuxws (rtx_tmp2, rtx_tmp0));
38883 emit_insn (gen_vsx_xvcvdpuxws (rtx_tmp3, rtx_tmp1));
38884 }
38885
38886 emit_insn (gen_p8_vmrgew_v4si (dst, rtx_tmp2, rtx_tmp3));
38887 }
38888
38889 /* Implement the TARGET_OPTAB_SUPPORTED_P hook. */
38890
38891 static bool
38892 rs6000_optab_supported_p (int op, machine_mode mode1, machine_mode,
38893 optimization_type opt_type)
38894 {
38895 switch (op)
38896 {
38897 case rsqrt_optab:
38898 return (opt_type == OPTIMIZE_FOR_SPEED
38899 && RS6000_RECIP_AUTO_RSQRTE_P (mode1));
38900
38901 default:
38902 return true;
38903 }
38904 }
38905
38906 /* Implement TARGET_CONSTANT_ALIGNMENT. */
38907
38908 static HOST_WIDE_INT
38909 rs6000_constant_alignment (const_tree exp, HOST_WIDE_INT align)
38910 {
38911 if (TREE_CODE (exp) == STRING_CST
38912 && (STRICT_ALIGNMENT || !optimize_size))
38913 return MAX (align, BITS_PER_WORD);
38914 return align;
38915 }
38916
38917 /* Implement TARGET_STARTING_FRAME_OFFSET. */
38918
38919 static HOST_WIDE_INT
38920 rs6000_starting_frame_offset (void)
38921 {
38922 if (FRAME_GROWS_DOWNWARD)
38923 return 0;
38924 return RS6000_STARTING_FRAME_OFFSET;
38925 }
38926 \f
38927
38928 /* Create an alias for a mangled name where we have changed the mangling (in
38929 GCC 8.1, we used U10__float128, and now we use u9__ieee128). This is called
38930 via the target hook TARGET_ASM_GLOBALIZE_DECL_NAME. */
38931
38932 #if TARGET_ELF && RS6000_WEAK
38933 static void
38934 rs6000_globalize_decl_name (FILE * stream, tree decl)
38935 {
38936 const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
38937
38938 targetm.asm_out.globalize_label (stream, name);
38939
38940 if (rs6000_passes_ieee128 && name[0] == '_' && name[1] == 'Z')
38941 {
38942 tree save_asm_name = DECL_ASSEMBLER_NAME (decl);
38943 const char *old_name;
38944
38945 ieee128_mangling_gcc_8_1 = true;
38946 lang_hooks.set_decl_assembler_name (decl);
38947 old_name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
38948 SET_DECL_ASSEMBLER_NAME (decl, save_asm_name);
38949 ieee128_mangling_gcc_8_1 = false;
38950
38951 if (strcmp (name, old_name) != 0)
38952 {
38953 fprintf (stream, "\t.weak %s\n", old_name);
38954 fprintf (stream, "\t.set %s,%s\n", old_name, name);
38955 }
38956 }
38957 }
38958 #endif
38959
38960 \f
38961 /* On 64-bit Linux and Freebsd systems, possibly switch the long double library
38962 function names from <foo>l to <foo>f128 if the default long double type is
38963 IEEE 128-bit. Typically, with the C and C++ languages, the standard math.h
38964 include file switches the names on systems that support long double as IEEE
38965 128-bit, but that doesn't work if the user uses __builtin_<foo>l directly.
38966 In the future, glibc will export names like __ieee128_sinf128 and we can
38967 switch to using those instead of using sinf128, which pollutes the user's
38968 namespace.
38969
38970 This will switch the names for Fortran math functions as well (which doesn't
38971 use math.h). However, Fortran needs other changes to the compiler and
38972 library before you can switch the real*16 type at compile time.
38973
38974 We use the TARGET_MANGLE_DECL_ASSEMBLER_NAME hook to change this name. We
38975 only do this if the default is that long double is IBM extended double, and
38976 the user asked for IEEE 128-bit. */
38977
38978 static tree
38979 rs6000_mangle_decl_assembler_name (tree decl, tree id)
38980 {
38981 if (!TARGET_IEEEQUAD_DEFAULT && TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128
38982 && TREE_CODE (decl) == FUNCTION_DECL && DECL_IS_BUILTIN (decl) )
38983 {
38984 size_t len = IDENTIFIER_LENGTH (id);
38985 const char *name = IDENTIFIER_POINTER (id);
38986
38987 if (name[len - 1] == 'l')
38988 {
38989 bool uses_ieee128_p = false;
38990 tree type = TREE_TYPE (decl);
38991 machine_mode ret_mode = TYPE_MODE (type);
38992
38993 /* See if the function returns a IEEE 128-bit floating point type or
38994 complex type. */
38995 if (ret_mode == TFmode || ret_mode == TCmode)
38996 uses_ieee128_p = true;
38997 else
38998 {
38999 function_args_iterator args_iter;
39000 tree arg;
39001
39002 /* See if the function passes a IEEE 128-bit floating point type
39003 or complex type. */
39004 FOREACH_FUNCTION_ARGS (type, arg, args_iter)
39005 {
39006 machine_mode arg_mode = TYPE_MODE (arg);
39007 if (arg_mode == TFmode || arg_mode == TCmode)
39008 {
39009 uses_ieee128_p = true;
39010 break;
39011 }
39012 }
39013 }
39014
39015 /* If we passed or returned an IEEE 128-bit floating point type,
39016 change the name. */
39017 if (uses_ieee128_p)
39018 {
39019 char *name2 = (char *) alloca (len + 4);
39020 memcpy (name2, name, len - 1);
39021 strcpy (name2 + len - 1, "f128");
39022 id = get_identifier (name2);
39023 }
39024 }
39025 }
39026
39027 return id;
39028 }
39029
39030 \f
39031 struct gcc_target targetm = TARGET_INITIALIZER;
39032
39033 #include "gt-rs6000.h"