rs6000.h (TARGET_NO_LWSYNC): Define.
[gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
11 by the Free Software Foundation; either version 2, or (at your
12 option) any later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the
21 Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 /* Note that some other tm.h files include this one and then override
25 many of the definitions. */
26
27 /* Definitions for the object file format. These are set at
28 compile-time. */
29
30 #define OBJECT_XCOFF 1
31 #define OBJECT_ELF 2
32 #define OBJECT_PEF 3
33 #define OBJECT_MACHO 4
34
35 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
36 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
37 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
38 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
39
40 #ifndef TARGET_AIX
41 #define TARGET_AIX 0
42 #endif
43
44 /* Control whether function entry points use a "dot" symbol when
45 ABI_AIX. */
46 #define DOT_SYMBOLS 1
47
48 /* Default string to use for cpu if not specified. */
49 #ifndef TARGET_CPU_DEFAULT
50 #define TARGET_CPU_DEFAULT ((char *)0)
51 #endif
52
53 /* If configured for PPC405, support PPC405CR Erratum77. */
54 #ifdef CONFIG_PPC405CR
55 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
56 #else
57 #define PPC405_ERRATUM77 0
58 #endif
59
60 /* Common ASM definitions used by ASM_SPEC among the various targets
61 for handling -mcpu=xxx switches. */
62 #define ASM_CPU_SPEC \
63 "%{!mcpu*: \
64 %{mpower: %{!mpower2: -mpwr}} \
65 %{mpower2: -mpwrx} \
66 %{mpowerpc64*: -mppc64} \
67 %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
68 %{mno-power: %{!mpowerpc*: -mcom}} \
69 %{!mno-power: %{!mpower*: %(asm_default)}}} \
70 %{mcpu=common: -mcom} \
71 %{mcpu=cell: -mcell} \
72 %{mcpu=power: -mpwr} \
73 %{mcpu=power2: -mpwrx} \
74 %{mcpu=power3: -mppc64} \
75 %{mcpu=power4: -mpower4} \
76 %{mcpu=power5: -mpower4} \
77 %{mcpu=power5+: -mpower4} \
78 %{mcpu=power6: -mpower4 -maltivec} \
79 %{mcpu=power6x: -mpower4 -maltivec} \
80 %{mcpu=powerpc: -mppc} \
81 %{mcpu=rios: -mpwr} \
82 %{mcpu=rios1: -mpwr} \
83 %{mcpu=rios2: -mpwrx} \
84 %{mcpu=rsc: -mpwr} \
85 %{mcpu=rsc1: -mpwr} \
86 %{mcpu=rs64a: -mppc64} \
87 %{mcpu=401: -mppc} \
88 %{mcpu=403: -m403} \
89 %{mcpu=405: -m405} \
90 %{mcpu=405fp: -m405} \
91 %{mcpu=440: -m440} \
92 %{mcpu=440fp: -m440} \
93 %{mcpu=505: -mppc} \
94 %{mcpu=601: -m601} \
95 %{mcpu=602: -mppc} \
96 %{mcpu=603: -mppc} \
97 %{mcpu=603e: -mppc} \
98 %{mcpu=ec603e: -mppc} \
99 %{mcpu=604: -mppc} \
100 %{mcpu=604e: -mppc} \
101 %{mcpu=620: -mppc64} \
102 %{mcpu=630: -mppc64} \
103 %{mcpu=740: -mppc} \
104 %{mcpu=750: -mppc} \
105 %{mcpu=G3: -mppc} \
106 %{mcpu=7400: -mppc -maltivec} \
107 %{mcpu=7450: -mppc -maltivec} \
108 %{mcpu=G4: -mppc -maltivec} \
109 %{mcpu=801: -mppc} \
110 %{mcpu=821: -mppc} \
111 %{mcpu=823: -mppc} \
112 %{mcpu=860: -mppc} \
113 %{mcpu=970: -mpower4 -maltivec} \
114 %{mcpu=G5: -mpower4 -maltivec} \
115 %{mcpu=8540: -me500} \
116 %{maltivec: -maltivec} \
117 -many"
118
119 #define CPP_DEFAULT_SPEC ""
120
121 #define ASM_DEFAULT_SPEC ""
122
123 /* This macro defines names of additional specifications to put in the specs
124 that can be used in various specifications like CC1_SPEC. Its definition
125 is an initializer with a subgrouping for each command option.
126
127 Each subgrouping contains a string constant, that defines the
128 specification name, and a string constant that used by the GCC driver
129 program.
130
131 Do not define this macro if it does not need to do anything. */
132
133 #define SUBTARGET_EXTRA_SPECS
134
135 #define EXTRA_SPECS \
136 { "cpp_default", CPP_DEFAULT_SPEC }, \
137 { "asm_cpu", ASM_CPU_SPEC }, \
138 { "asm_default", ASM_DEFAULT_SPEC }, \
139 SUBTARGET_EXTRA_SPECS
140
141 /* Architecture type. */
142
143 /* Define TARGET_MFCRF if the target assembler does not support the
144 optional field operand for mfcr. */
145
146 #ifndef HAVE_AS_MFCRF
147 #undef TARGET_MFCRF
148 #define TARGET_MFCRF 0
149 #endif
150
151 /* Define TARGET_POPCNTB if the target assembler does not support the
152 popcount byte instruction. */
153
154 #ifndef HAVE_AS_POPCNTB
155 #undef TARGET_POPCNTB
156 #define TARGET_POPCNTB 0
157 #endif
158
159 /* Define TARGET_FPRND if the target assembler does not support the
160 fp rounding instructions. */
161
162 #ifndef HAVE_AS_FPRND
163 #undef TARGET_FPRND
164 #define TARGET_FPRND 0
165 #endif
166
167 /* Define TARGET_MFPGPR if the target assembler does not support the
168 mffpr and mftgpr instructions. */
169
170 #ifndef HAVE_AS_MFPGPR
171 #undef TARGET_MFPGPR
172 #define TARGET_MFPGPR 0
173 #endif
174
175 #ifndef TARGET_SECURE_PLT
176 #define TARGET_SECURE_PLT 0
177 #endif
178
179 #define TARGET_32BIT (! TARGET_64BIT)
180
181 #ifndef HAVE_AS_TLS
182 #define HAVE_AS_TLS 0
183 #endif
184
185 /* Return 1 for a symbol ref for a thread-local storage symbol. */
186 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
187 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
188
189 #ifdef IN_LIBGCC2
190 /* For libgcc2 we make sure this is a compile time constant */
191 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
192 #undef TARGET_POWERPC64
193 #define TARGET_POWERPC64 1
194 #else
195 #undef TARGET_POWERPC64
196 #define TARGET_POWERPC64 0
197 #endif
198 #else
199 /* The option machinery will define this. */
200 #endif
201
202 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
203
204 /* Processor type. Order must match cpu attribute in MD file. */
205 enum processor_type
206 {
207 PROCESSOR_RIOS1,
208 PROCESSOR_RIOS2,
209 PROCESSOR_RS64A,
210 PROCESSOR_MPCCORE,
211 PROCESSOR_PPC403,
212 PROCESSOR_PPC405,
213 PROCESSOR_PPC440,
214 PROCESSOR_PPC601,
215 PROCESSOR_PPC603,
216 PROCESSOR_PPC604,
217 PROCESSOR_PPC604e,
218 PROCESSOR_PPC620,
219 PROCESSOR_PPC630,
220 PROCESSOR_PPC750,
221 PROCESSOR_PPC7400,
222 PROCESSOR_PPC7450,
223 PROCESSOR_PPC8540,
224 PROCESSOR_POWER4,
225 PROCESSOR_POWER5,
226 PROCESSOR_POWER6,
227 PROCESSOR_CELL
228 };
229
230 extern enum processor_type rs6000_cpu;
231
232 /* Recast the processor type to the cpu attribute. */
233 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
234
235 /* Define generic processor types based upon current deployment. */
236 #define PROCESSOR_COMMON PROCESSOR_PPC601
237 #define PROCESSOR_POWER PROCESSOR_RIOS1
238 #define PROCESSOR_POWERPC PROCESSOR_PPC604
239 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
240
241 /* Define the default processor. This is overridden by other tm.h files. */
242 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
243 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
244
245 /* Specify the dialect of assembler to use. New mnemonics is dialect one
246 and the old mnemonics are dialect zero. */
247 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
248
249 /* Types of costly dependences. */
250 enum rs6000_dependence_cost
251 {
252 max_dep_latency = 1000,
253 no_dep_costly,
254 all_deps_costly,
255 true_store_to_load_dep_costly,
256 store_to_load_dep_costly
257 };
258
259 /* Types of nop insertion schemes in sched target hook sched_finish. */
260 enum rs6000_nop_insertion
261 {
262 sched_finish_regroup_exact = 1000,
263 sched_finish_pad_groups,
264 sched_finish_none
265 };
266
267 /* Dispatch group termination caused by an insn. */
268 enum group_termination
269 {
270 current_group,
271 previous_group
272 };
273
274 /* Support for a compile-time default CPU, et cetera. The rules are:
275 --with-cpu is ignored if -mcpu is specified.
276 --with-tune is ignored if -mtune is specified.
277 --with-float is ignored if -mhard-float or -msoft-float are
278 specified. */
279 #define OPTION_DEFAULT_SPECS \
280 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
281 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
282 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
283
284 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
285 struct rs6000_cpu_select
286 {
287 const char *string;
288 const char *name;
289 int set_tune_p;
290 int set_arch_p;
291 };
292
293 extern struct rs6000_cpu_select rs6000_select[];
294
295 /* Debug support */
296 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
297 extern int rs6000_debug_stack; /* debug stack applications */
298 extern int rs6000_debug_arg; /* debug argument handling */
299
300 #define TARGET_DEBUG_STACK rs6000_debug_stack
301 #define TARGET_DEBUG_ARG rs6000_debug_arg
302
303 extern const char *rs6000_traceback_name; /* Type of traceback table. */
304
305 /* These are separate from target_flags because we've run out of bits
306 there. */
307 extern int rs6000_long_double_type_size;
308 extern int rs6000_ieeequad;
309 extern int rs6000_altivec_abi;
310 extern int rs6000_spe_abi;
311 extern int rs6000_float_gprs;
312 extern int rs6000_alignment_flags;
313 extern const char *rs6000_sched_insert_nops_str;
314 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
315
316 /* Alignment options for fields in structures for sub-targets following
317 AIX-like ABI.
318 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
319 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
320
321 Override the macro definitions when compiling libobjc to avoid undefined
322 reference to rs6000_alignment_flags due to library's use of GCC alignment
323 macros which use the macros below. */
324
325 #ifndef IN_TARGET_LIBS
326 #define MASK_ALIGN_POWER 0x00000000
327 #define MASK_ALIGN_NATURAL 0x00000001
328 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
329 #else
330 #define TARGET_ALIGN_NATURAL 0
331 #endif
332
333 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
334 #define TARGET_IEEEQUAD rs6000_ieeequad
335 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
336
337 #define TARGET_SPE_ABI 0
338 #define TARGET_SPE 0
339 #define TARGET_E500 0
340 #define TARGET_ISEL 0
341 #define TARGET_FPRS 1
342 #define TARGET_E500_SINGLE 0
343 #define TARGET_E500_DOUBLE 0
344
345 /* E500 processors only support plain "sync", not lwsync. */
346 #define TARGET_NO_LWSYNC TARGET_E500
347
348 /* Sometimes certain combinations of command options do not make sense
349 on a particular target machine. You can define a macro
350 `OVERRIDE_OPTIONS' to take account of this. This macro, if
351 defined, is executed once just after all the command options have
352 been parsed.
353
354 Do not use this macro to turn on various extra optimizations for
355 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
356
357 On the RS/6000 this is used to define the target cpu type. */
358
359 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
360
361 /* Define this to change the optimizations performed by default. */
362 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
363
364 /* Show we can debug even without a frame pointer. */
365 #define CAN_DEBUG_WITHOUT_FP
366
367 /* Target pragma. */
368 #define REGISTER_TARGET_PRAGMAS() do { \
369 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
370 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
371 } while (0)
372
373 /* Target #defines. */
374 #define TARGET_CPU_CPP_BUILTINS() \
375 rs6000_cpu_cpp_builtins (pfile)
376
377 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
378 we're compiling for. Some configurations may need to override it. */
379 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
380 do \
381 { \
382 if (BYTES_BIG_ENDIAN) \
383 { \
384 builtin_define ("__BIG_ENDIAN__"); \
385 builtin_define ("_BIG_ENDIAN"); \
386 builtin_assert ("machine=bigendian"); \
387 } \
388 else \
389 { \
390 builtin_define ("__LITTLE_ENDIAN__"); \
391 builtin_define ("_LITTLE_ENDIAN"); \
392 builtin_assert ("machine=littleendian"); \
393 } \
394 } \
395 while (0)
396 \f
397 /* Target machine storage layout. */
398
399 /* Define this macro if it is advisable to hold scalars in registers
400 in a wider mode than that declared by the program. In such cases,
401 the value is constrained to be within the bounds of the declared
402 type, but kept valid in the wider mode. The signedness of the
403 extension may differ from that of the type. */
404
405 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
406 if (GET_MODE_CLASS (MODE) == MODE_INT \
407 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
408 (MODE) = TARGET_32BIT ? SImode : DImode;
409
410 /* Define this if most significant bit is lowest numbered
411 in instructions that operate on numbered bit-fields. */
412 /* That is true on RS/6000. */
413 #define BITS_BIG_ENDIAN 1
414
415 /* Define this if most significant byte of a word is the lowest numbered. */
416 /* That is true on RS/6000. */
417 #define BYTES_BIG_ENDIAN 1
418
419 /* Define this if most significant word of a multiword number is lowest
420 numbered.
421
422 For RS/6000 we can decide arbitrarily since there are no machine
423 instructions for them. Might as well be consistent with bits and bytes. */
424 #define WORDS_BIG_ENDIAN 1
425
426 #define MAX_BITS_PER_WORD 64
427
428 /* Width of a word, in units (bytes). */
429 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
430 #ifdef IN_LIBGCC2
431 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
432 #else
433 #define MIN_UNITS_PER_WORD 4
434 #endif
435 #define UNITS_PER_FP_WORD 8
436 #define UNITS_PER_ALTIVEC_WORD 16
437 #define UNITS_PER_SPE_WORD 8
438
439 /* Type used for ptrdiff_t, as a string used in a declaration. */
440 #define PTRDIFF_TYPE "int"
441
442 /* Type used for size_t, as a string used in a declaration. */
443 #define SIZE_TYPE "long unsigned int"
444
445 /* Type used for wchar_t, as a string used in a declaration. */
446 #define WCHAR_TYPE "short unsigned int"
447
448 /* Width of wchar_t in bits. */
449 #define WCHAR_TYPE_SIZE 16
450
451 /* A C expression for the size in bits of the type `short' on the
452 target machine. If you don't define this, the default is half a
453 word. (If this would be less than one storage unit, it is
454 rounded up to one unit.) */
455 #define SHORT_TYPE_SIZE 16
456
457 /* A C expression for the size in bits of the type `int' on the
458 target machine. If you don't define this, the default is one
459 word. */
460 #define INT_TYPE_SIZE 32
461
462 /* A C expression for the size in bits of the type `long' on the
463 target machine. If you don't define this, the default is one
464 word. */
465 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
466
467 /* A C expression for the size in bits of the type `long long' on the
468 target machine. If you don't define this, the default is two
469 words. */
470 #define LONG_LONG_TYPE_SIZE 64
471
472 /* A C expression for the size in bits of the type `float' on the
473 target machine. If you don't define this, the default is one
474 word. */
475 #define FLOAT_TYPE_SIZE 32
476
477 /* A C expression for the size in bits of the type `double' on the
478 target machine. If you don't define this, the default is two
479 words. */
480 #define DOUBLE_TYPE_SIZE 64
481
482 /* A C expression for the size in bits of the type `long double' on
483 the target machine. If you don't define this, the default is two
484 words. */
485 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
486
487 /* Define this to set long double type size to use in libgcc2.c, which can
488 not depend on target_flags. */
489 #ifdef __LONG_DOUBLE_128__
490 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
491 #else
492 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
493 #endif
494
495 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
496 #define WIDEST_HARDWARE_FP_SIZE 64
497
498 /* Width in bits of a pointer.
499 See also the macro `Pmode' defined below. */
500 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
501
502 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
503 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
504
505 /* Boundary (in *bits*) on which stack pointer should be aligned. */
506 #define STACK_BOUNDARY \
507 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
508
509 /* Allocation boundary (in *bits*) for the code of a function. */
510 #define FUNCTION_BOUNDARY 32
511
512 /* No data type wants to be aligned rounder than this. */
513 #define BIGGEST_ALIGNMENT 128
514
515 /* A C expression to compute the alignment for a variables in the
516 local store. TYPE is the data type, and ALIGN is the alignment
517 that the object would ordinarily have. */
518 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
519 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
520 (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 : \
521 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE \
522 && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) ? 64 : ALIGN)
523
524 /* Alignment of field after `int : 0' in a structure. */
525 #define EMPTY_FIELD_BOUNDARY 32
526
527 /* Every structure's size must be a multiple of this. */
528 #define STRUCTURE_SIZE_BOUNDARY 8
529
530 /* Return 1 if a structure or array containing FIELD should be
531 accessed using `BLKMODE'.
532
533 For the SPE, simd types are V2SI, and gcc can be tempted to put the
534 entire thing in a DI and use subregs to access the internals.
535 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
536 back-end. Because a single GPR can hold a V2SI, but not a DI, the
537 best thing to do is set structs to BLKmode and avoid Severe Tire
538 Damage.
539
540 On e500 v2, DF and DI modes suffer from the same anomaly. DF can
541 fit into 1, whereas DI still needs two. */
542 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
543 ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
544 || (TARGET_E500_DOUBLE && (MODE) == DFmode))
545
546 /* A bit-field declared as `int' forces `int' alignment for the struct. */
547 #define PCC_BITFIELD_TYPE_MATTERS 1
548
549 /* Make strings word-aligned so strcpy from constants will be faster.
550 Make vector constants quadword aligned. */
551 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
552 (TREE_CODE (EXP) == STRING_CST \
553 && (ALIGN) < BITS_PER_WORD \
554 ? BITS_PER_WORD \
555 : (ALIGN))
556
557 /* Make arrays of chars word-aligned for the same reasons.
558 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
559 64 bits. */
560 #define DATA_ALIGNMENT(TYPE, ALIGN) \
561 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
562 : (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 \
563 : TREE_CODE (TYPE) == ARRAY_TYPE \
564 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
565 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
566
567 /* Nonzero if move instructions will actually fail to work
568 when given unaligned data. */
569 #define STRICT_ALIGNMENT 0
570
571 /* Define this macro to be the value 1 if unaligned accesses have a cost
572 many times greater than aligned accesses, for example if they are
573 emulated in a trap handler. */
574 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
575 (STRICT_ALIGNMENT \
576 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
577 || (MODE) == DImode) \
578 && (ALIGN) < 32))
579 \f
580 /* Standard register usage. */
581
582 /* Number of actual hardware registers.
583 The hardware registers are assigned numbers for the compiler
584 from 0 to just below FIRST_PSEUDO_REGISTER.
585 All registers that the compiler knows about must be given numbers,
586 even those that are not normally considered general registers.
587
588 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
589 an MQ register, a count register, a link register, and 8 condition
590 register fields, which we view here as separate registers. AltiVec
591 adds 32 vector registers and a VRsave register.
592
593 In addition, the difference between the frame and argument pointers is
594 a function of the number of registers saved, so we need to have a
595 register for AP that will later be eliminated in favor of SP or FP.
596 This is a normal register, but it is fixed.
597
598 We also create a pseudo register for float/int conversions, that will
599 really represent the memory location used. It is represented here as
600 a register, in order to work around problems in allocating stack storage
601 in inline functions.
602
603 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
604 pointer, which is eventually eliminated in favor of SP or FP. */
605
606 #define FIRST_PSEUDO_REGISTER 114
607
608 /* This must be included for pre gcc 3.0 glibc compatibility. */
609 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
610
611 /* Add 32 dwarf columns for synthetic SPE registers. */
612 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
613
614 /* The SPE has an additional 32 synthetic registers, with DWARF debug
615 info numbering for these registers starting at 1200. While eh_frame
616 register numbering need not be the same as the debug info numbering,
617 we choose to number these regs for eh_frame at 1200 too. This allows
618 future versions of the rs6000 backend to add hard registers and
619 continue to use the gcc hard register numbering for eh_frame. If the
620 extra SPE registers in eh_frame were numbered starting from the
621 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
622 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
623 avoid invalidating older SPE eh_frame info.
624
625 We must map them here to avoid huge unwinder tables mostly consisting
626 of unused space. */
627 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
628 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
629
630 /* Use standard DWARF numbering for DWARF debugging information. */
631 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
632
633 /* Use gcc hard register numbering for eh_frame. */
634 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
635
636 /* Map register numbers held in the call frame info that gcc has
637 collected using DWARF_FRAME_REGNUM to those that should be output in
638 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
639 for .eh_frame, but use the numbers mandated by the various ABIs for
640 .debug_frame. rs6000_emit_prologue has translated any combination of
641 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
642 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
643 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
644 ((FOR_EH) ? (REGNO) \
645 : (REGNO) == CR2_REGNO ? 64 \
646 : DBX_REGISTER_NUMBER (REGNO))
647
648 /* 1 for registers that have pervasive standard uses
649 and are not available for the register allocator.
650
651 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
652 as a local register; for all other OS's r2 is the TOC pointer.
653
654 cr5 is not supposed to be used.
655
656 On System V implementations, r13 is fixed and not available for use. */
657
658 #define FIXED_REGISTERS \
659 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
660 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
661 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
662 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
663 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
664 /* AltiVec registers. */ \
665 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
666 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
667 1, 1 \
668 , 1, 1, 1 \
669 }
670
671 /* 1 for registers not available across function calls.
672 These must include the FIXED_REGISTERS and also any
673 registers that can be used without being saved.
674 The latter must include the registers where values are returned
675 and the register where structure-value addresses are passed.
676 Aside from that, you can include as many other registers as you like. */
677
678 #define CALL_USED_REGISTERS \
679 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
680 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
681 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
682 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
683 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
684 /* AltiVec registers. */ \
685 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
686 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
687 1, 1 \
688 , 1, 1, 1 \
689 }
690
691 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
692 the entire set of `FIXED_REGISTERS' be included.
693 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
694 This macro is optional. If not specified, it defaults to the value
695 of `CALL_USED_REGISTERS'. */
696
697 #define CALL_REALLY_USED_REGISTERS \
698 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
699 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
700 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
701 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
702 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
703 /* AltiVec registers. */ \
704 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
705 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
706 0, 0 \
707 , 0, 0, 0 \
708 }
709
710 #define MQ_REGNO 64
711 #define CR0_REGNO 68
712 #define CR1_REGNO 69
713 #define CR2_REGNO 70
714 #define CR3_REGNO 71
715 #define CR4_REGNO 72
716 #define MAX_CR_REGNO 75
717 #define XER_REGNO 76
718 #define FIRST_ALTIVEC_REGNO 77
719 #define LAST_ALTIVEC_REGNO 108
720 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
721 #define VRSAVE_REGNO 109
722 #define VSCR_REGNO 110
723 #define SPE_ACC_REGNO 111
724 #define SPEFSCR_REGNO 112
725
726 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
727 #define FIRST_SAVED_FP_REGNO (14+32)
728 #define FIRST_SAVED_GP_REGNO 13
729
730 /* List the order in which to allocate registers. Each register must be
731 listed once, even those in FIXED_REGISTERS.
732
733 We allocate in the following order:
734 fp0 (not saved or used for anything)
735 fp13 - fp2 (not saved; incoming fp arg registers)
736 fp1 (not saved; return value)
737 fp31 - fp14 (saved; order given to save least number)
738 cr7, cr6 (not saved or special)
739 cr1 (not saved, but used for FP operations)
740 cr0 (not saved, but used for arithmetic operations)
741 cr4, cr3, cr2 (saved)
742 r0 (not saved; cannot be base reg)
743 r9 (not saved; best for TImode)
744 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
745 r3 (not saved; return value register)
746 r31 - r13 (saved; order given to save least number)
747 r12 (not saved; if used for DImode or DFmode would use r13)
748 mq (not saved; best to use it if we can)
749 ctr (not saved; when we have the choice ctr is better)
750 lr (saved)
751 cr5, r1, r2, ap, xer (fixed)
752 v0 - v1 (not saved or used for anything)
753 v13 - v3 (not saved; incoming vector arg registers)
754 v2 (not saved; incoming vector arg reg; return value)
755 v19 - v14 (not saved or used for anything)
756 v31 - v20 (saved; order given to save least number)
757 vrsave, vscr (fixed)
758 spe_acc, spefscr (fixed)
759 sfp (fixed)
760 */
761
762 #if FIXED_R2 == 1
763 #define MAYBE_R2_AVAILABLE
764 #define MAYBE_R2_FIXED 2,
765 #else
766 #define MAYBE_R2_AVAILABLE 2,
767 #define MAYBE_R2_FIXED
768 #endif
769
770 #define REG_ALLOC_ORDER \
771 {32, \
772 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
773 33, \
774 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
775 50, 49, 48, 47, 46, \
776 75, 74, 69, 68, 72, 71, 70, \
777 0, MAYBE_R2_AVAILABLE \
778 9, 11, 10, 8, 7, 6, 5, 4, \
779 3, \
780 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
781 18, 17, 16, 15, 14, 13, 12, \
782 64, 66, 65, \
783 73, 1, MAYBE_R2_FIXED 67, 76, \
784 /* AltiVec registers. */ \
785 77, 78, \
786 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
787 79, \
788 96, 95, 94, 93, 92, 91, \
789 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
790 109, 110, \
791 111, 112, 113 \
792 }
793
794 /* True if register is floating-point. */
795 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
796
797 /* True if register is a condition register. */
798 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
799
800 /* True if register is a condition register, but not cr0. */
801 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
802
803 /* True if register is an integer register. */
804 #define INT_REGNO_P(N) \
805 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
806
807 /* SPE SIMD registers are just the GPRs. */
808 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
809
810 /* True if register is the XER register. */
811 #define XER_REGNO_P(N) ((N) == XER_REGNO)
812
813 /* True if register is an AltiVec register. */
814 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
815
816 /* Return number of consecutive hard regs needed starting at reg REGNO
817 to hold something of mode MODE. */
818
819 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
820
821 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
822 ((TARGET_32BIT && TARGET_POWERPC64 \
823 && (GET_MODE_SIZE (MODE) > 4) \
824 && INT_REGNO_P (REGNO)) ? 1 : 0)
825
826 #define ALTIVEC_VECTOR_MODE(MODE) \
827 ((MODE) == V16QImode \
828 || (MODE) == V8HImode \
829 || (MODE) == V4SFmode \
830 || (MODE) == V4SImode)
831
832 #define SPE_VECTOR_MODE(MODE) \
833 ((MODE) == V4HImode \
834 || (MODE) == V2SFmode \
835 || (MODE) == V1DImode \
836 || (MODE) == V2SImode)
837
838 #define UNITS_PER_SIMD_WORD \
839 (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD \
840 : (TARGET_SPE ? UNITS_PER_SPE_WORD : UNITS_PER_WORD))
841
842 /* Value is TRUE if hard register REGNO can hold a value of
843 machine-mode MODE. */
844 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
845 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
846
847 /* Value is 1 if it is a good idea to tie two pseudo registers
848 when one has mode MODE1 and one has mode MODE2.
849 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
850 for any hard reg, then this must be 0 for correct output. */
851 #define MODES_TIEABLE_P(MODE1, MODE2) \
852 (SCALAR_FLOAT_MODE_P (MODE1) \
853 ? SCALAR_FLOAT_MODE_P (MODE2) \
854 : SCALAR_FLOAT_MODE_P (MODE2) \
855 ? SCALAR_FLOAT_MODE_P (MODE1) \
856 : GET_MODE_CLASS (MODE1) == MODE_CC \
857 ? GET_MODE_CLASS (MODE2) == MODE_CC \
858 : GET_MODE_CLASS (MODE2) == MODE_CC \
859 ? GET_MODE_CLASS (MODE1) == MODE_CC \
860 : SPE_VECTOR_MODE (MODE1) \
861 ? SPE_VECTOR_MODE (MODE2) \
862 : SPE_VECTOR_MODE (MODE2) \
863 ? SPE_VECTOR_MODE (MODE1) \
864 : ALTIVEC_VECTOR_MODE (MODE1) \
865 ? ALTIVEC_VECTOR_MODE (MODE2) \
866 : ALTIVEC_VECTOR_MODE (MODE2) \
867 ? ALTIVEC_VECTOR_MODE (MODE1) \
868 : 1)
869
870 /* Post-reload, we can't use any new AltiVec registers, as we already
871 emitted the vrsave mask. */
872
873 #define HARD_REGNO_RENAME_OK(SRC, DST) \
874 (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
875
876 /* A C expression returning the cost of moving data from a register of class
877 CLASS1 to one of CLASS2. */
878
879 #define REGISTER_MOVE_COST rs6000_register_move_cost
880
881 /* A C expressions returning the cost of moving data of MODE from a register to
882 or from memory. */
883
884 #define MEMORY_MOVE_COST rs6000_memory_move_cost
885
886 /* Specify the cost of a branch insn; roughly the number of extra insns that
887 should be added to avoid a branch.
888
889 Set this to 3 on the RS/6000 since that is roughly the average cost of an
890 unscheduled conditional branch. */
891
892 #define BRANCH_COST 3
893
894 /* Override BRANCH_COST heuristic which empirically produces worse
895 performance for removing short circuiting from the logical ops. */
896
897 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
898
899 /* A fixed register used at prologue and epilogue generation to fix
900 addressing modes. The SPE needs heavy addressing fixes at the last
901 minute, and it's best to save a register for it.
902
903 AltiVec also needs fixes, but we've gotten around using r11, which
904 is actually wrong because when use_backchain_to_restore_sp is true,
905 we end up clobbering r11.
906
907 The AltiVec case needs to be fixed. Dunno if we should break ABI
908 compatibility and reserve a register for it as well.. */
909
910 #define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
911
912 /* Define this macro to change register usage conditional on target
913 flags. */
914
915 #define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
916
917 /* Specify the registers used for certain standard purposes.
918 The values of these macros are register numbers. */
919
920 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
921 /* #define PC_REGNUM */
922
923 /* Register to use for pushing function arguments. */
924 #define STACK_POINTER_REGNUM 1
925
926 /* Base register for access to local variables of the function. */
927 #define HARD_FRAME_POINTER_REGNUM 31
928
929 /* Base register for access to local variables of the function. */
930 #define FRAME_POINTER_REGNUM 113
931
932 /* Value should be nonzero if functions must have frame pointers.
933 Zero means the frame pointer need not be set up (and parms
934 may be accessed via the stack pointer) in functions that seem suitable.
935 This is computed in `reload', in reload1.c. */
936 #define FRAME_POINTER_REQUIRED 0
937
938 /* Base register for access to arguments of the function. */
939 #define ARG_POINTER_REGNUM 67
940
941 /* Place to put static chain when calling a function that requires it. */
942 #define STATIC_CHAIN_REGNUM 11
943
944 /* Link register number. */
945 #define LINK_REGISTER_REGNUM 65
946
947 /* Count register number. */
948 #define COUNT_REGISTER_REGNUM 66
949 \f
950 /* Define the classes of registers for register constraints in the
951 machine description. Also define ranges of constants.
952
953 One of the classes must always be named ALL_REGS and include all hard regs.
954 If there is more than one class, another class must be named NO_REGS
955 and contain no registers.
956
957 The name GENERAL_REGS must be the name of a class (or an alias for
958 another name such as ALL_REGS). This is the class of registers
959 that is allowed by "g" or "r" in a register constraint.
960 Also, registers outside this class are allocated only when
961 instructions express preferences for them.
962
963 The classes must be numbered in nondecreasing order; that is,
964 a larger-numbered class must never be contained completely
965 in a smaller-numbered class.
966
967 For any two classes, it is very desirable that there be another
968 class that represents their union. */
969
970 /* The RS/6000 has three types of registers, fixed-point, floating-point,
971 and condition registers, plus three special registers, MQ, CTR, and the
972 link register. AltiVec adds a vector register class.
973
974 However, r0 is special in that it cannot be used as a base register.
975 So make a class for registers valid as base registers.
976
977 Also, cr0 is the only condition code register that can be used in
978 arithmetic insns, so make a separate class for it. */
979
980 enum reg_class
981 {
982 NO_REGS,
983 BASE_REGS,
984 GENERAL_REGS,
985 FLOAT_REGS,
986 ALTIVEC_REGS,
987 VRSAVE_REGS,
988 VSCR_REGS,
989 SPE_ACC_REGS,
990 SPEFSCR_REGS,
991 NON_SPECIAL_REGS,
992 MQ_REGS,
993 LINK_REGS,
994 CTR_REGS,
995 LINK_OR_CTR_REGS,
996 SPECIAL_REGS,
997 SPEC_OR_GEN_REGS,
998 CR0_REGS,
999 CR_REGS,
1000 NON_FLOAT_REGS,
1001 XER_REGS,
1002 ALL_REGS,
1003 LIM_REG_CLASSES
1004 };
1005
1006 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1007
1008 /* Give names of register classes as strings for dump file. */
1009
1010 #define REG_CLASS_NAMES \
1011 { \
1012 "NO_REGS", \
1013 "BASE_REGS", \
1014 "GENERAL_REGS", \
1015 "FLOAT_REGS", \
1016 "ALTIVEC_REGS", \
1017 "VRSAVE_REGS", \
1018 "VSCR_REGS", \
1019 "SPE_ACC_REGS", \
1020 "SPEFSCR_REGS", \
1021 "NON_SPECIAL_REGS", \
1022 "MQ_REGS", \
1023 "LINK_REGS", \
1024 "CTR_REGS", \
1025 "LINK_OR_CTR_REGS", \
1026 "SPECIAL_REGS", \
1027 "SPEC_OR_GEN_REGS", \
1028 "CR0_REGS", \
1029 "CR_REGS", \
1030 "NON_FLOAT_REGS", \
1031 "XER_REGS", \
1032 "ALL_REGS" \
1033 }
1034
1035 /* Define which registers fit in which classes.
1036 This is an initializer for a vector of HARD_REG_SET
1037 of length N_REG_CLASSES. */
1038
1039 #define REG_CLASS_CONTENTS \
1040 { \
1041 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1042 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1043 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
1044 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1045 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1046 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1047 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1048 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1049 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1050 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1051 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1052 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1053 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1054 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1055 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1056 { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1057 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1058 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1059 { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */ \
1060 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1061 { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \
1062 }
1063
1064 /* The same information, inverted:
1065 Return the class number of the smallest class containing
1066 reg number REGNO. This could be a conditional expression
1067 or could index an array. */
1068
1069 #define REGNO_REG_CLASS(REGNO) \
1070 ((REGNO) == 0 ? GENERAL_REGS \
1071 : (REGNO) < 32 ? BASE_REGS \
1072 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1073 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1074 : (REGNO) == CR0_REGNO ? CR0_REGS \
1075 : CR_REGNO_P (REGNO) ? CR_REGS \
1076 : (REGNO) == MQ_REGNO ? MQ_REGS \
1077 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1078 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1079 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1080 : (REGNO) == XER_REGNO ? XER_REGS \
1081 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1082 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1083 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1084 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1085 : (REGNO) == FRAME_POINTER_REGNUM ? BASE_REGS \
1086 : NO_REGS)
1087
1088 /* The class value for index registers, and the one for base regs. */
1089 #define INDEX_REG_CLASS GENERAL_REGS
1090 #define BASE_REG_CLASS BASE_REGS
1091
1092 /* Given an rtx X being reloaded into a reg required to be
1093 in class CLASS, return the class of reg to actually use.
1094 In general this is just CLASS; but on some machines
1095 in some cases it is preferable to use a more restrictive class.
1096
1097 On the RS/6000, we have to return NO_REGS when we want to reload a
1098 floating-point CONST_DOUBLE to force it to be copied to memory.
1099
1100 We also don't want to reload integer values into floating-point
1101 registers if we can at all help it. In fact, this can
1102 cause reload to die, if it tries to generate a reload of CTR
1103 into a FP register and discovers it doesn't have the memory location
1104 required.
1105
1106 ??? Would it be a good idea to have reload do the converse, that is
1107 try to reload floating modes into FP registers if possible?
1108 */
1109
1110 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1111 ((CONSTANT_P (X) \
1112 && reg_classes_intersect_p ((CLASS), FLOAT_REGS)) \
1113 ? NO_REGS \
1114 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1115 && (CLASS) == NON_SPECIAL_REGS) \
1116 ? GENERAL_REGS \
1117 : (CLASS))
1118
1119 /* Return the register class of a scratch register needed to copy IN into
1120 or out of a register in CLASS in MODE. If it can be done directly,
1121 NO_REGS is returned. */
1122
1123 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1124 rs6000_secondary_reload_class (CLASS, MODE, IN)
1125
1126 /* If we are copying between FP or AltiVec registers and anything
1127 else, we need a memory location. The exception is when we are
1128 targeting ppc64 and the move to/from fpr to gpr instructions
1129 are available.*/
1130
1131 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1132 ((CLASS1) != (CLASS2) && (((CLASS1) == FLOAT_REGS \
1133 && (!TARGET_MFPGPR || !TARGET_POWERPC64 \
1134 || ((MODE != DFmode) && (MODE != DImode)))) \
1135 || ((CLASS2) == FLOAT_REGS \
1136 && (!TARGET_MFPGPR || !TARGET_POWERPC64 \
1137 || ((MODE != DFmode) && (MODE != DImode)))) \
1138 || (CLASS1) == ALTIVEC_REGS \
1139 || (CLASS2) == ALTIVEC_REGS))
1140
1141 /* Return the maximum number of consecutive registers
1142 needed to represent mode MODE in a register of class CLASS.
1143
1144 On RS/6000, this is the size of MODE in words,
1145 except in the FP regs, where a single reg is enough for two words. */
1146 #define CLASS_MAX_NREGS(CLASS, MODE) \
1147 (((CLASS) == FLOAT_REGS) \
1148 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1149 : (TARGET_E500_DOUBLE && (CLASS) == GENERAL_REGS && (MODE) == DFmode) \
1150 ? 1 \
1151 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1152
1153 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1154
1155 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1156 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1157 ? ((GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8 \
1158 || TARGET_IEEEQUAD) \
1159 && reg_classes_intersect_p (FLOAT_REGS, CLASS)) \
1160 : (((TARGET_E500_DOUBLE \
1161 && ((((TO) == DFmode) + ((FROM) == DFmode)) == 1 \
1162 || (((TO) == DImode) + ((FROM) == DImode)) == 1)) \
1163 || (TARGET_SPE \
1164 && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1)) \
1165 && reg_classes_intersect_p (GENERAL_REGS, CLASS)))
1166
1167 /* Stack layout; function entry, exit and calling. */
1168
1169 /* Enumeration to give which calling sequence to use. */
1170 enum rs6000_abi {
1171 ABI_NONE,
1172 ABI_AIX, /* IBM's AIX */
1173 ABI_V4, /* System V.4/eabi */
1174 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1175 };
1176
1177 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1178
1179 /* Define this if pushing a word on the stack
1180 makes the stack pointer a smaller address. */
1181 #define STACK_GROWS_DOWNWARD
1182
1183 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1184 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1185
1186 /* Define this to nonzero if the nominal address of the stack frame
1187 is at the high-address end of the local variables;
1188 that is, each additional local variable allocated
1189 goes at a more negative offset in the frame.
1190
1191 On the RS/6000, we grow upwards, from the area after the outgoing
1192 arguments. */
1193 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1194
1195 /* Size of the outgoing register save area */
1196 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1197 || DEFAULT_ABI == ABI_DARWIN) \
1198 ? (TARGET_64BIT ? 64 : 32) \
1199 : 0)
1200
1201 /* Size of the fixed area on the stack */
1202 #define RS6000_SAVE_AREA \
1203 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1204 << (TARGET_64BIT ? 1 : 0))
1205
1206 /* MEM representing address to save the TOC register */
1207 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1208 plus_constant (stack_pointer_rtx, \
1209 (TARGET_32BIT ? 20 : 40)))
1210
1211 /* Align an address */
1212 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1213
1214 /* Offset within stack frame to start allocating local variables at.
1215 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1216 first local allocated. Otherwise, it is the offset to the BEGINNING
1217 of the first local allocated.
1218
1219 On the RS/6000, the frame pointer is the same as the stack pointer,
1220 except for dynamic allocations. So we start after the fixed area and
1221 outgoing parameter area. */
1222
1223 #define STARTING_FRAME_OFFSET \
1224 (FRAME_GROWS_DOWNWARD \
1225 ? 0 \
1226 : (RS6000_ALIGN (current_function_outgoing_args_size, \
1227 TARGET_ALTIVEC ? 16 : 8) \
1228 + RS6000_SAVE_AREA))
1229
1230 /* Offset from the stack pointer register to an item dynamically
1231 allocated on the stack, e.g., by `alloca'.
1232
1233 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1234 length of the outgoing arguments. The default is correct for most
1235 machines. See `function.c' for details. */
1236 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1237 (RS6000_ALIGN (current_function_outgoing_args_size, \
1238 TARGET_ALTIVEC ? 16 : 8) \
1239 + (STACK_POINTER_OFFSET))
1240
1241 /* If we generate an insn to push BYTES bytes,
1242 this says how many the stack pointer really advances by.
1243 On RS/6000, don't define this because there are no push insns. */
1244 /* #define PUSH_ROUNDING(BYTES) */
1245
1246 /* Offset of first parameter from the argument pointer register value.
1247 On the RS/6000, we define the argument pointer to the start of the fixed
1248 area. */
1249 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1250
1251 /* Offset from the argument pointer register value to the top of
1252 stack. This is different from FIRST_PARM_OFFSET because of the
1253 register save area. */
1254 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1255
1256 /* Define this if stack space is still allocated for a parameter passed
1257 in a register. The value is the number of bytes allocated to this
1258 area. */
1259 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1260
1261 /* Define this if the above stack space is to be considered part of the
1262 space allocated by the caller. */
1263 #define OUTGOING_REG_PARM_STACK_SPACE
1264
1265 /* This is the difference between the logical top of stack and the actual sp.
1266
1267 For the RS/6000, sp points past the fixed area. */
1268 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1269
1270 /* Define this if the maximum size of all the outgoing args is to be
1271 accumulated and pushed during the prologue. The amount can be
1272 found in the variable current_function_outgoing_args_size. */
1273 #define ACCUMULATE_OUTGOING_ARGS 1
1274
1275 /* Value is the number of bytes of arguments automatically
1276 popped when returning from a subroutine call.
1277 FUNDECL is the declaration node of the function (as a tree),
1278 FUNTYPE is the data type of the function (as a tree),
1279 or for a library call it is an identifier node for the subroutine name.
1280 SIZE is the number of bytes of arguments passed on the stack. */
1281
1282 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1283
1284 /* Define how to find the value returned by a function.
1285 VALTYPE is the data type of the value (as a tree).
1286 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1287 otherwise, FUNC is 0. */
1288
1289 #define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1290
1291 /* Define how to find the value returned by a library function
1292 assuming the value has mode MODE. */
1293
1294 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1295
1296 /* DRAFT_V4_STRUCT_RET defaults off. */
1297 #define DRAFT_V4_STRUCT_RET 0
1298
1299 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1300 #define DEFAULT_PCC_STRUCT_RETURN 0
1301
1302 /* Mode of stack savearea.
1303 FUNCTION is VOIDmode because calling convention maintains SP.
1304 BLOCK needs Pmode for SP.
1305 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1306 #define STACK_SAVEAREA_MODE(LEVEL) \
1307 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1308 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1309
1310 /* Minimum and maximum general purpose registers used to hold arguments. */
1311 #define GP_ARG_MIN_REG 3
1312 #define GP_ARG_MAX_REG 10
1313 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1314
1315 /* Minimum and maximum floating point registers used to hold arguments. */
1316 #define FP_ARG_MIN_REG 33
1317 #define FP_ARG_AIX_MAX_REG 45
1318 #define FP_ARG_V4_MAX_REG 40
1319 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1320 || DEFAULT_ABI == ABI_DARWIN) \
1321 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1322 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1323
1324 /* Minimum and maximum AltiVec registers used to hold arguments. */
1325 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1326 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1327 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1328
1329 /* Return registers */
1330 #define GP_ARG_RETURN GP_ARG_MIN_REG
1331 #define FP_ARG_RETURN FP_ARG_MIN_REG
1332 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1333
1334 /* Flags for the call/call_value rtl operations set up by function_arg */
1335 #define CALL_NORMAL 0x00000000 /* no special processing */
1336 /* Bits in 0x00000001 are unused. */
1337 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1338 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1339 #define CALL_LONG 0x00000008 /* always call indirect */
1340 #define CALL_LIBCALL 0x00000010 /* libcall */
1341
1342 /* We don't have prologue and epilogue functions to save/restore
1343 everything for most ABIs. */
1344 #define WORLD_SAVE_P(INFO) 0
1345
1346 /* 1 if N is a possible register number for a function value
1347 as seen by the caller.
1348
1349 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1350 #define FUNCTION_VALUE_REGNO_P(N) \
1351 ((N) == GP_ARG_RETURN \
1352 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
1353 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1354
1355 /* 1 if N is a possible register number for function argument passing.
1356 On RS/6000, these are r3-r10 and fp1-fp13.
1357 On AltiVec, v2 - v13 are used for passing vectors. */
1358 #define FUNCTION_ARG_REGNO_P(N) \
1359 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1360 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1361 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1362 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1363 && TARGET_HARD_FLOAT && TARGET_FPRS))
1364 \f
1365 /* Define a data type for recording info about an argument list
1366 during the scan of that argument list. This data type should
1367 hold all necessary information about the function itself
1368 and about the args processed so far, enough to enable macros
1369 such as FUNCTION_ARG to determine where the next arg should go.
1370
1371 On the RS/6000, this is a structure. The first element is the number of
1372 total argument words, the second is used to store the next
1373 floating-point register number, and the third says how many more args we
1374 have prototype types for.
1375
1376 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1377 the next available GP register, `fregno' is the next available FP
1378 register, and `words' is the number of words used on the stack.
1379
1380 The varargs/stdarg support requires that this structure's size
1381 be a multiple of sizeof(int). */
1382
1383 typedef struct rs6000_args
1384 {
1385 int words; /* # words used for passing GP registers */
1386 int fregno; /* next available FP register */
1387 int vregno; /* next available AltiVec register */
1388 int nargs_prototype; /* # args left in the current prototype */
1389 int prototype; /* Whether a prototype was defined */
1390 int stdarg; /* Whether function is a stdarg function. */
1391 int call_cookie; /* Do special things for this call */
1392 int sysv_gregno; /* next available GP register */
1393 int intoffset; /* running offset in struct (darwin64) */
1394 int use_stack; /* any part of struct on stack (darwin64) */
1395 int named; /* false for varargs params */
1396 } CUMULATIVE_ARGS;
1397
1398 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1399 for a call to a function whose data type is FNTYPE.
1400 For a library call, FNTYPE is 0. */
1401
1402 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1403 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1404
1405 /* Similar, but when scanning the definition of a procedure. We always
1406 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1407
1408 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1409 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1410
1411 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1412
1413 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1414 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1415
1416 /* Update the data in CUM to advance over an argument
1417 of mode MODE and data type TYPE.
1418 (TYPE is null for libcalls where that information may not be available.) */
1419
1420 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1421 function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1422
1423 /* Determine where to put an argument to a function.
1424 Value is zero to push the argument on the stack,
1425 or a hard register in which to store the argument.
1426
1427 MODE is the argument's machine mode.
1428 TYPE is the data type of the argument (as a tree).
1429 This is null for libcalls where that information may
1430 not be available.
1431 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1432 the preceding args and about the function being called.
1433 NAMED is nonzero if this argument is a named parameter
1434 (otherwise it is an extra parameter matching an ellipsis).
1435
1436 On RS/6000 the first eight words of non-FP are normally in registers
1437 and the rest are pushed. The first 13 FP args are in registers.
1438
1439 If this is floating-point and no prototype is specified, we use
1440 both an FP and integer register (or possibly FP reg and stack). Library
1441 functions (when TYPE is zero) always have the proper types for args,
1442 so we can pass the FP value just in one register. emit_library_function
1443 doesn't support EXPR_LIST anyway. */
1444
1445 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1446 function_arg (&CUM, MODE, TYPE, NAMED)
1447
1448 /* If defined, a C expression which determines whether, and in which
1449 direction, to pad out an argument with extra space. The value
1450 should be of type `enum direction': either `upward' to pad above
1451 the argument, `downward' to pad below, or `none' to inhibit
1452 padding. */
1453
1454 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1455
1456 /* If defined, a C expression that gives the alignment boundary, in bits,
1457 of an argument with the specified mode and type. If it is not defined,
1458 PARM_BOUNDARY is used for all arguments. */
1459
1460 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1461 function_arg_boundary (MODE, TYPE)
1462
1463 /* Implement `va_start' for varargs and stdarg. */
1464 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1465 rs6000_va_start (valist, nextarg)
1466
1467 #define PAD_VARARGS_DOWN \
1468 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1469
1470 /* Output assembler code to FILE to increment profiler label # LABELNO
1471 for profiling a function entry. */
1472
1473 #define FUNCTION_PROFILER(FILE, LABELNO) \
1474 output_function_profiler ((FILE), (LABELNO));
1475
1476 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1477 the stack pointer does not matter. No definition is equivalent to
1478 always zero.
1479
1480 On the RS/6000, this is nonzero because we can restore the stack from
1481 its backpointer, which we maintain. */
1482 #define EXIT_IGNORE_STACK 1
1483
1484 /* Define this macro as a C expression that is nonzero for registers
1485 that are used by the epilogue or the return' pattern. The stack
1486 and frame pointer registers are already be assumed to be used as
1487 needed. */
1488
1489 #define EPILOGUE_USES(REGNO) \
1490 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
1491 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1492 || (current_function_calls_eh_return \
1493 && TARGET_AIX \
1494 && (REGNO) == 2))
1495
1496 \f
1497 /* TRAMPOLINE_TEMPLATE deleted */
1498
1499 /* Length in units of the trampoline for entering a nested function. */
1500
1501 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1502
1503 /* Emit RTL insns to initialize the variable parts of a trampoline.
1504 FNADDR is an RTX for the address of the function's pure code.
1505 CXT is an RTX for the static chain value for the function. */
1506
1507 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1508 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1509 \f
1510 /* Definitions for __builtin_return_address and __builtin_frame_address.
1511 __builtin_return_address (0) should give link register (65), enable
1512 this. */
1513 /* This should be uncommented, so that the link register is used, but
1514 currently this would result in unmatched insns and spilling fixed
1515 registers so we'll leave it for another day. When these problems are
1516 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1517 (mrs) */
1518 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1519
1520 /* Number of bytes into the frame return addresses can be found. See
1521 rs6000_stack_info in rs6000.c for more information on how the different
1522 abi's store the return address. */
1523 #define RETURN_ADDRESS_OFFSET \
1524 ((DEFAULT_ABI == ABI_AIX \
1525 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1526 (DEFAULT_ABI == ABI_V4) ? 4 : \
1527 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1528
1529 /* The current return address is in link register (65). The return address
1530 of anything farther back is accessed normally at an offset of 8 from the
1531 frame pointer. */
1532 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1533 (rs6000_return_addr (COUNT, FRAME))
1534
1535 \f
1536 /* Definitions for register eliminations.
1537
1538 We have two registers that can be eliminated on the RS/6000. First, the
1539 frame pointer register can often be eliminated in favor of the stack
1540 pointer register. Secondly, the argument pointer register can always be
1541 eliminated; it is replaced with either the stack or frame pointer.
1542
1543 In addition, we use the elimination mechanism to see if r30 is needed
1544 Initially we assume that it isn't. If it is, we spill it. This is done
1545 by making it an eliminable register. We replace it with itself so that
1546 if it isn't needed, then existing uses won't be modified. */
1547
1548 /* This is an array of structures. Each structure initializes one pair
1549 of eliminable registers. The "from" register number is given first,
1550 followed by "to". Eliminations of the same "from" register are listed
1551 in order of preference. */
1552 #define ELIMINABLE_REGS \
1553 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1554 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1555 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1556 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1557 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1558 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1559
1560 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1561 Frame pointer elimination is automatically handled.
1562
1563 For the RS/6000, if frame pointer elimination is being done, we would like
1564 to convert ap into fp, not sp.
1565
1566 We need r30 if -mminimal-toc was specified, and there are constant pool
1567 references. */
1568
1569 #define CAN_ELIMINATE(FROM, TO) \
1570 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1571 ? ! frame_pointer_needed \
1572 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1573 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1574 : 1)
1575
1576 /* Define the offset between two registers, one to be eliminated, and the other
1577 its replacement, at the start of a routine. */
1578 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1579 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1580 \f
1581 /* Addressing modes, and classification of registers for them. */
1582
1583 #define HAVE_PRE_DECREMENT 1
1584 #define HAVE_PRE_INCREMENT 1
1585
1586 /* Macros to check register numbers against specific register classes. */
1587
1588 /* These assume that REGNO is a hard or pseudo reg number.
1589 They give nonzero only if REGNO is a hard reg of the suitable class
1590 or a pseudo reg currently allocated to a suitable hard reg.
1591 Since they use reg_renumber, they are safe only once reg_renumber
1592 has been allocated, which happens in local-alloc.c. */
1593
1594 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1595 ((REGNO) < FIRST_PSEUDO_REGISTER \
1596 ? (REGNO) <= 31 || (REGNO) == 67 \
1597 || (REGNO) == FRAME_POINTER_REGNUM \
1598 : (reg_renumber[REGNO] >= 0 \
1599 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1600 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1601
1602 #define REGNO_OK_FOR_BASE_P(REGNO) \
1603 ((REGNO) < FIRST_PSEUDO_REGISTER \
1604 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1605 || (REGNO) == FRAME_POINTER_REGNUM \
1606 : (reg_renumber[REGNO] > 0 \
1607 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1608 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1609 \f
1610 /* Maximum number of registers that can appear in a valid memory address. */
1611
1612 #define MAX_REGS_PER_ADDRESS 2
1613
1614 /* Recognize any constant value that is a valid address. */
1615
1616 #define CONSTANT_ADDRESS_P(X) \
1617 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1618 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1619 || GET_CODE (X) == HIGH)
1620
1621 /* Nonzero if the constant value X is a legitimate general operand.
1622 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1623
1624 On the RS/6000, all integer constants are acceptable, most won't be valid
1625 for particular insns, though. Only easy FP constants are
1626 acceptable. */
1627
1628 #define LEGITIMATE_CONSTANT_P(X) \
1629 (((GET_CODE (X) != CONST_DOUBLE \
1630 && GET_CODE (X) != CONST_VECTOR) \
1631 || GET_MODE (X) == VOIDmode \
1632 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1633 || easy_fp_constant (X, GET_MODE (X)) \
1634 || easy_vector_constant (X, GET_MODE (X))) \
1635 && !rs6000_tls_referenced_p (X))
1636
1637 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1638 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1639 && EASY_VECTOR_15((n) >> 1) \
1640 && ((n) & 1) == 0)
1641
1642 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1643 and check its validity for a certain class.
1644 We have two alternate definitions for each of them.
1645 The usual definition accepts all pseudo regs; the other rejects
1646 them unless they have been allocated suitable hard regs.
1647 The symbol REG_OK_STRICT causes the latter definition to be used.
1648
1649 Most source files want to accept pseudo regs in the hope that
1650 they will get allocated to the class that the insn wants them to be in.
1651 Source files for reload pass need to be strict.
1652 After reload, it makes no difference, since pseudo regs have
1653 been eliminated by then. */
1654
1655 #ifdef REG_OK_STRICT
1656 # define REG_OK_STRICT_FLAG 1
1657 #else
1658 # define REG_OK_STRICT_FLAG 0
1659 #endif
1660
1661 /* Nonzero if X is a hard reg that can be used as an index
1662 or if it is a pseudo reg in the non-strict case. */
1663 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1664 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1665 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1666
1667 /* Nonzero if X is a hard reg that can be used as a base reg
1668 or if it is a pseudo reg in the non-strict case. */
1669 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1670 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1671 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1672
1673 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1674 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
1675 \f
1676 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1677 that is a valid memory address for an instruction.
1678 The MODE argument is the machine mode for the MEM expression
1679 that wants to use this address.
1680
1681 On the RS/6000, there are four valid addresses: a SYMBOL_REF that
1682 refers to a constant pool entry of an address (or the sum of it
1683 plus a constant), a short (16-bit signed) constant plus a register,
1684 the sum of two registers, or a register indirect, possibly with an
1685 auto-increment. For DFmode and DImode with a constant plus register,
1686 we must ensure that both words are addressable or PowerPC64 with offset
1687 word aligned.
1688
1689 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1690 32-bit DImode, TImode), indexed addressing cannot be used because
1691 adjacent memory cells are accessed by adding word-sized offsets
1692 during assembly output. */
1693
1694 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1695 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
1696 goto ADDR; \
1697 }
1698 \f
1699 /* Try machine-dependent ways of modifying an illegitimate address
1700 to be legitimate. If we find one, return the new, valid address.
1701 This macro is used in only one place: `memory_address' in explow.c.
1702
1703 OLDX is the address as it was before break_out_memory_refs was called.
1704 In some cases it is useful to look at this to decide what needs to be done.
1705
1706 MODE and WIN are passed so that this macro can use
1707 GO_IF_LEGITIMATE_ADDRESS.
1708
1709 It is always safe for this macro to do nothing. It exists to recognize
1710 opportunities to optimize the output.
1711
1712 On RS/6000, first check for the sum of a register with a constant
1713 integer that is out of range. If so, generate code to add the
1714 constant with the low-order 16 bits masked to the register and force
1715 this result into another register (this can be done with `cau').
1716 Then generate an address of REG+(CONST&0xffff), allowing for the
1717 possibility of bit 16 being a one.
1718
1719 Then check for the sum of a register and something not constant, try to
1720 load the other things into a register and return the sum. */
1721
1722 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1723 { rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
1724 if (result != NULL_RTX) \
1725 { \
1726 (X) = result; \
1727 goto WIN; \
1728 } \
1729 }
1730
1731 /* Try a machine-dependent way of reloading an illegitimate address
1732 operand. If we find one, push the reload and jump to WIN. This
1733 macro is used in only one place: `find_reloads_address' in reload.c.
1734
1735 Implemented on rs6000 by rs6000_legitimize_reload_address.
1736 Note that (X) is evaluated twice; this is safe in current usage. */
1737
1738 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1739 do { \
1740 int win; \
1741 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
1742 (int)(TYPE), (IND_LEVELS), &win); \
1743 if ( win ) \
1744 goto WIN; \
1745 } while (0)
1746
1747 /* Go to LABEL if ADDR (a legitimate address expression)
1748 has an effect that depends on the machine mode it is used for. */
1749
1750 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1751 do { \
1752 if (rs6000_mode_dependent_address (ADDR)) \
1753 goto LABEL; \
1754 } while (0)
1755 \f
1756 /* The register number of the register used to address a table of
1757 static data addresses in memory. In some cases this register is
1758 defined by a processor's "application binary interface" (ABI).
1759 When this macro is defined, RTL is generated for this register
1760 once, as with the stack pointer and frame pointer registers. If
1761 this macro is not defined, it is up to the machine-dependent files
1762 to allocate such a register (if necessary). */
1763
1764 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1765 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1766
1767 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1768
1769 /* Define this macro if the register defined by
1770 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1771 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1772
1773 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1774
1775 /* A C expression that is nonzero if X is a legitimate immediate
1776 operand on the target machine when generating position independent
1777 code. You can assume that X satisfies `CONSTANT_P', so you need
1778 not check this. You can also assume FLAG_PIC is true, so you need
1779 not check it either. You need not define this macro if all
1780 constants (including `SYMBOL_REF') can be immediate operands when
1781 generating position independent code. */
1782
1783 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1784 \f
1785 /* Define this if some processing needs to be done immediately before
1786 emitting code for an insn. */
1787
1788 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1789
1790 /* Specify the machine mode that this machine uses
1791 for the index in the tablejump instruction. */
1792 #define CASE_VECTOR_MODE SImode
1793
1794 /* Define as C expression which evaluates to nonzero if the tablejump
1795 instruction expects the table to contain offsets from the address of the
1796 table.
1797 Do not define this if the table should contain absolute addresses. */
1798 #define CASE_VECTOR_PC_RELATIVE 1
1799
1800 /* Define this as 1 if `char' should by default be signed; else as 0. */
1801 #define DEFAULT_SIGNED_CHAR 0
1802
1803 /* This flag, if defined, says the same insns that convert to a signed fixnum
1804 also convert validly to an unsigned one. */
1805
1806 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1807
1808 /* An integer expression for the size in bits of the largest integer machine
1809 mode that should actually be used. */
1810
1811 /* Allow pairs of registers to be used, which is the intent of the default. */
1812 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1813
1814 /* Max number of bytes we can move from memory to memory
1815 in one reasonably fast instruction. */
1816 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1817 #define MAX_MOVE_MAX 8
1818
1819 /* Nonzero if access to memory by bytes is no faster than for words.
1820 Also nonzero if doing byte operations (specifically shifts) in registers
1821 is undesirable. */
1822 #define SLOW_BYTE_ACCESS 1
1823
1824 /* Define if operations between registers always perform the operation
1825 on the full register even if a narrower mode is specified. */
1826 #define WORD_REGISTER_OPERATIONS
1827
1828 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1829 will either zero-extend or sign-extend. The value of this macro should
1830 be the code that says which one of the two operations is implicitly
1831 done, UNKNOWN if none. */
1832 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1833
1834 /* Define if loading short immediate values into registers sign extends. */
1835 #define SHORT_IMMEDIATES_SIGN_EXTEND
1836 \f
1837 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1838 is done just by pretending it is already truncated. */
1839 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1840
1841 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1842 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1843 ((VALUE) = ((MODE) == SImode ? 32 : 64))
1844
1845 /* The CTZ patterns return -1 for input of zero. */
1846 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
1847
1848 /* Specify the machine mode that pointers have.
1849 After generation of rtl, the compiler makes no further distinction
1850 between pointers and any other objects of this machine mode. */
1851 #define Pmode (TARGET_32BIT ? SImode : DImode)
1852
1853 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1854 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1855
1856 /* Mode of a function address in a call instruction (for indexing purposes).
1857 Doesn't matter on RS/6000. */
1858 #define FUNCTION_MODE SImode
1859
1860 /* Define this if addresses of constant functions
1861 shouldn't be put through pseudo regs where they can be cse'd.
1862 Desirable on machines where ordinary constants are expensive
1863 but a CALL with constant address is cheap. */
1864 #define NO_FUNCTION_CSE
1865
1866 /* Define this to be nonzero if shift instructions ignore all but the low-order
1867 few bits.
1868
1869 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1870 have been dropped from the PowerPC architecture. */
1871
1872 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
1873
1874 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1875 should be adjusted to reflect any required changes. This macro is used when
1876 there is some systematic length adjustment required that would be difficult
1877 to express in the length attribute. */
1878
1879 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1880
1881 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1882 COMPARE, return the mode to be used for the comparison. For
1883 floating-point, CCFPmode should be used. CCUNSmode should be used
1884 for unsigned comparisons. CCEQmode should be used when we are
1885 doing an inequality comparison on the result of a
1886 comparison. CCmode should be used in all other cases. */
1887
1888 #define SELECT_CC_MODE(OP,X,Y) \
1889 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1890 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1891 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1892 ? CCEQmode : CCmode))
1893
1894 /* Can the condition code MODE be safely reversed? This is safe in
1895 all cases on this port, because at present it doesn't use the
1896 trapping FP comparisons (fcmpo). */
1897 #define REVERSIBLE_CC_MODE(MODE) 1
1898
1899 /* Given a condition code and a mode, return the inverse condition. */
1900 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1901
1902 /* Define the information needed to generate branch and scc insns. This is
1903 stored from the compare operation. */
1904
1905 extern GTY(()) rtx rs6000_compare_op0;
1906 extern GTY(()) rtx rs6000_compare_op1;
1907 extern int rs6000_compare_fp_p;
1908 \f
1909 /* Control the assembler format that we output. */
1910
1911 /* A C string constant describing how to begin a comment in the target
1912 assembler language. The compiler assumes that the comment will end at
1913 the end of the line. */
1914 #define ASM_COMMENT_START " #"
1915
1916 /* Flag to say the TOC is initialized */
1917 extern int toc_initialized;
1918
1919 /* Macro to output a special constant pool entry. Go to WIN if we output
1920 it. Otherwise, it is written the usual way.
1921
1922 On the RS/6000, toc entries are handled this way. */
1923
1924 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1925 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1926 { \
1927 output_toc (FILE, X, LABELNO, MODE); \
1928 goto WIN; \
1929 } \
1930 }
1931
1932 #ifdef HAVE_GAS_WEAK
1933 #define RS6000_WEAK 1
1934 #else
1935 #define RS6000_WEAK 0
1936 #endif
1937
1938 #if RS6000_WEAK
1939 /* Used in lieu of ASM_WEAKEN_LABEL. */
1940 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1941 do \
1942 { \
1943 fputs ("\t.weak\t", (FILE)); \
1944 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1945 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1946 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1947 { \
1948 if (TARGET_XCOFF) \
1949 fputs ("[DS]", (FILE)); \
1950 fputs ("\n\t.weak\t.", (FILE)); \
1951 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1952 } \
1953 fputc ('\n', (FILE)); \
1954 if (VAL) \
1955 { \
1956 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
1957 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1958 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1959 { \
1960 fputs ("\t.set\t.", (FILE)); \
1961 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1962 fputs (",.", (FILE)); \
1963 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
1964 fputc ('\n', (FILE)); \
1965 } \
1966 } \
1967 } \
1968 while (0)
1969 #endif
1970
1971 #if HAVE_GAS_WEAKREF
1972 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
1973 do \
1974 { \
1975 fputs ("\t.weakref\t", (FILE)); \
1976 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1977 fputs (", ", (FILE)); \
1978 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1979 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1980 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1981 { \
1982 fputs ("\n\t.weakref\t.", (FILE)); \
1983 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1984 fputs (", .", (FILE)); \
1985 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1986 } \
1987 fputc ('\n', (FILE)); \
1988 } while (0)
1989 #endif
1990
1991 /* This implements the `alias' attribute. */
1992 #undef ASM_OUTPUT_DEF_FROM_DECLS
1993 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
1994 do \
1995 { \
1996 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
1997 const char *name = IDENTIFIER_POINTER (TARGET); \
1998 if (TREE_CODE (DECL) == FUNCTION_DECL \
1999 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2000 { \
2001 if (TREE_PUBLIC (DECL)) \
2002 { \
2003 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2004 { \
2005 fputs ("\t.globl\t.", FILE); \
2006 RS6000_OUTPUT_BASENAME (FILE, alias); \
2007 putc ('\n', FILE); \
2008 } \
2009 } \
2010 else if (TARGET_XCOFF) \
2011 { \
2012 fputs ("\t.lglobl\t.", FILE); \
2013 RS6000_OUTPUT_BASENAME (FILE, alias); \
2014 putc ('\n', FILE); \
2015 } \
2016 fputs ("\t.set\t.", FILE); \
2017 RS6000_OUTPUT_BASENAME (FILE, alias); \
2018 fputs (",.", FILE); \
2019 RS6000_OUTPUT_BASENAME (FILE, name); \
2020 fputc ('\n', FILE); \
2021 } \
2022 ASM_OUTPUT_DEF (FILE, alias, name); \
2023 } \
2024 while (0)
2025
2026 #define TARGET_ASM_FILE_START rs6000_file_start
2027
2028 /* Output to assembler file text saying following lines
2029 may contain character constants, extra white space, comments, etc. */
2030
2031 #define ASM_APP_ON ""
2032
2033 /* Output to assembler file text saying following lines
2034 no longer contain unusual constructs. */
2035
2036 #define ASM_APP_OFF ""
2037
2038 /* How to refer to registers in assembler output.
2039 This sequence is indexed by compiler's hard-register-number (see above). */
2040
2041 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2042
2043 #define REGISTER_NAMES \
2044 { \
2045 &rs6000_reg_names[ 0][0], /* r0 */ \
2046 &rs6000_reg_names[ 1][0], /* r1 */ \
2047 &rs6000_reg_names[ 2][0], /* r2 */ \
2048 &rs6000_reg_names[ 3][0], /* r3 */ \
2049 &rs6000_reg_names[ 4][0], /* r4 */ \
2050 &rs6000_reg_names[ 5][0], /* r5 */ \
2051 &rs6000_reg_names[ 6][0], /* r6 */ \
2052 &rs6000_reg_names[ 7][0], /* r7 */ \
2053 &rs6000_reg_names[ 8][0], /* r8 */ \
2054 &rs6000_reg_names[ 9][0], /* r9 */ \
2055 &rs6000_reg_names[10][0], /* r10 */ \
2056 &rs6000_reg_names[11][0], /* r11 */ \
2057 &rs6000_reg_names[12][0], /* r12 */ \
2058 &rs6000_reg_names[13][0], /* r13 */ \
2059 &rs6000_reg_names[14][0], /* r14 */ \
2060 &rs6000_reg_names[15][0], /* r15 */ \
2061 &rs6000_reg_names[16][0], /* r16 */ \
2062 &rs6000_reg_names[17][0], /* r17 */ \
2063 &rs6000_reg_names[18][0], /* r18 */ \
2064 &rs6000_reg_names[19][0], /* r19 */ \
2065 &rs6000_reg_names[20][0], /* r20 */ \
2066 &rs6000_reg_names[21][0], /* r21 */ \
2067 &rs6000_reg_names[22][0], /* r22 */ \
2068 &rs6000_reg_names[23][0], /* r23 */ \
2069 &rs6000_reg_names[24][0], /* r24 */ \
2070 &rs6000_reg_names[25][0], /* r25 */ \
2071 &rs6000_reg_names[26][0], /* r26 */ \
2072 &rs6000_reg_names[27][0], /* r27 */ \
2073 &rs6000_reg_names[28][0], /* r28 */ \
2074 &rs6000_reg_names[29][0], /* r29 */ \
2075 &rs6000_reg_names[30][0], /* r30 */ \
2076 &rs6000_reg_names[31][0], /* r31 */ \
2077 \
2078 &rs6000_reg_names[32][0], /* fr0 */ \
2079 &rs6000_reg_names[33][0], /* fr1 */ \
2080 &rs6000_reg_names[34][0], /* fr2 */ \
2081 &rs6000_reg_names[35][0], /* fr3 */ \
2082 &rs6000_reg_names[36][0], /* fr4 */ \
2083 &rs6000_reg_names[37][0], /* fr5 */ \
2084 &rs6000_reg_names[38][0], /* fr6 */ \
2085 &rs6000_reg_names[39][0], /* fr7 */ \
2086 &rs6000_reg_names[40][0], /* fr8 */ \
2087 &rs6000_reg_names[41][0], /* fr9 */ \
2088 &rs6000_reg_names[42][0], /* fr10 */ \
2089 &rs6000_reg_names[43][0], /* fr11 */ \
2090 &rs6000_reg_names[44][0], /* fr12 */ \
2091 &rs6000_reg_names[45][0], /* fr13 */ \
2092 &rs6000_reg_names[46][0], /* fr14 */ \
2093 &rs6000_reg_names[47][0], /* fr15 */ \
2094 &rs6000_reg_names[48][0], /* fr16 */ \
2095 &rs6000_reg_names[49][0], /* fr17 */ \
2096 &rs6000_reg_names[50][0], /* fr18 */ \
2097 &rs6000_reg_names[51][0], /* fr19 */ \
2098 &rs6000_reg_names[52][0], /* fr20 */ \
2099 &rs6000_reg_names[53][0], /* fr21 */ \
2100 &rs6000_reg_names[54][0], /* fr22 */ \
2101 &rs6000_reg_names[55][0], /* fr23 */ \
2102 &rs6000_reg_names[56][0], /* fr24 */ \
2103 &rs6000_reg_names[57][0], /* fr25 */ \
2104 &rs6000_reg_names[58][0], /* fr26 */ \
2105 &rs6000_reg_names[59][0], /* fr27 */ \
2106 &rs6000_reg_names[60][0], /* fr28 */ \
2107 &rs6000_reg_names[61][0], /* fr29 */ \
2108 &rs6000_reg_names[62][0], /* fr30 */ \
2109 &rs6000_reg_names[63][0], /* fr31 */ \
2110 \
2111 &rs6000_reg_names[64][0], /* mq */ \
2112 &rs6000_reg_names[65][0], /* lr */ \
2113 &rs6000_reg_names[66][0], /* ctr */ \
2114 &rs6000_reg_names[67][0], /* ap */ \
2115 \
2116 &rs6000_reg_names[68][0], /* cr0 */ \
2117 &rs6000_reg_names[69][0], /* cr1 */ \
2118 &rs6000_reg_names[70][0], /* cr2 */ \
2119 &rs6000_reg_names[71][0], /* cr3 */ \
2120 &rs6000_reg_names[72][0], /* cr4 */ \
2121 &rs6000_reg_names[73][0], /* cr5 */ \
2122 &rs6000_reg_names[74][0], /* cr6 */ \
2123 &rs6000_reg_names[75][0], /* cr7 */ \
2124 \
2125 &rs6000_reg_names[76][0], /* xer */ \
2126 \
2127 &rs6000_reg_names[77][0], /* v0 */ \
2128 &rs6000_reg_names[78][0], /* v1 */ \
2129 &rs6000_reg_names[79][0], /* v2 */ \
2130 &rs6000_reg_names[80][0], /* v3 */ \
2131 &rs6000_reg_names[81][0], /* v4 */ \
2132 &rs6000_reg_names[82][0], /* v5 */ \
2133 &rs6000_reg_names[83][0], /* v6 */ \
2134 &rs6000_reg_names[84][0], /* v7 */ \
2135 &rs6000_reg_names[85][0], /* v8 */ \
2136 &rs6000_reg_names[86][0], /* v9 */ \
2137 &rs6000_reg_names[87][0], /* v10 */ \
2138 &rs6000_reg_names[88][0], /* v11 */ \
2139 &rs6000_reg_names[89][0], /* v12 */ \
2140 &rs6000_reg_names[90][0], /* v13 */ \
2141 &rs6000_reg_names[91][0], /* v14 */ \
2142 &rs6000_reg_names[92][0], /* v15 */ \
2143 &rs6000_reg_names[93][0], /* v16 */ \
2144 &rs6000_reg_names[94][0], /* v17 */ \
2145 &rs6000_reg_names[95][0], /* v18 */ \
2146 &rs6000_reg_names[96][0], /* v19 */ \
2147 &rs6000_reg_names[97][0], /* v20 */ \
2148 &rs6000_reg_names[98][0], /* v21 */ \
2149 &rs6000_reg_names[99][0], /* v22 */ \
2150 &rs6000_reg_names[100][0], /* v23 */ \
2151 &rs6000_reg_names[101][0], /* v24 */ \
2152 &rs6000_reg_names[102][0], /* v25 */ \
2153 &rs6000_reg_names[103][0], /* v26 */ \
2154 &rs6000_reg_names[104][0], /* v27 */ \
2155 &rs6000_reg_names[105][0], /* v28 */ \
2156 &rs6000_reg_names[106][0], /* v29 */ \
2157 &rs6000_reg_names[107][0], /* v30 */ \
2158 &rs6000_reg_names[108][0], /* v31 */ \
2159 &rs6000_reg_names[109][0], /* vrsave */ \
2160 &rs6000_reg_names[110][0], /* vscr */ \
2161 &rs6000_reg_names[111][0], /* spe_acc */ \
2162 &rs6000_reg_names[112][0], /* spefscr */ \
2163 &rs6000_reg_names[113][0], /* sfp */ \
2164 }
2165
2166 /* Table of additional register names to use in user input. */
2167
2168 #define ADDITIONAL_REGISTER_NAMES \
2169 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2170 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2171 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2172 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2173 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2174 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2175 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2176 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2177 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2178 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2179 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2180 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2181 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2182 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2183 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2184 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2185 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2186 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2187 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2188 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2189 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2190 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2191 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2192 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2193 {"vrsave", 109}, {"vscr", 110}, \
2194 {"spe_acc", 111}, {"spefscr", 112}, \
2195 /* no additional names for: mq, lr, ctr, ap */ \
2196 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2197 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2198 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2199
2200 /* Text to write out after a CALL that may be replaced by glue code by
2201 the loader. This depends on the AIX version. */
2202 #define RS6000_CALL_GLUE "cror 31,31,31"
2203
2204 /* This is how to output an element of a case-vector that is relative. */
2205
2206 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2207 do { char buf[100]; \
2208 fputs ("\t.long ", FILE); \
2209 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2210 assemble_name (FILE, buf); \
2211 putc ('-', FILE); \
2212 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2213 assemble_name (FILE, buf); \
2214 putc ('\n', FILE); \
2215 } while (0)
2216
2217 /* This is how to output an assembler line
2218 that says to advance the location counter
2219 to a multiple of 2**LOG bytes. */
2220
2221 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2222 if ((LOG) != 0) \
2223 fprintf (FILE, "\t.align %d\n", (LOG))
2224
2225 /* Pick up the return address upon entry to a procedure. Used for
2226 dwarf2 unwind information. This also enables the table driven
2227 mechanism. */
2228
2229 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2230 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2231
2232 /* Describe how we implement __builtin_eh_return. */
2233 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2234 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2235
2236 /* Print operand X (an rtx) in assembler syntax to file FILE.
2237 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2238 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2239
2240 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2241
2242 /* Define which CODE values are valid. */
2243
2244 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2245 ((CODE) == '.' || (CODE) == '&')
2246
2247 /* Print a memory address as an operand to reference that memory location. */
2248
2249 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2250
2251 /* uncomment for disabling the corresponding default options */
2252 /* #define MACHINE_no_sched_interblock */
2253 /* #define MACHINE_no_sched_speculative */
2254 /* #define MACHINE_no_sched_speculative_load */
2255
2256 /* General flags. */
2257 extern int flag_pic;
2258 extern int optimize;
2259 extern int flag_expensive_optimizations;
2260 extern int frame_pointer_needed;
2261
2262 enum rs6000_builtins
2263 {
2264 /* AltiVec builtins. */
2265 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2266 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2267 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2268 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2269 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2270 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2271 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2272 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2273 ALTIVEC_BUILTIN_VADDUBM,
2274 ALTIVEC_BUILTIN_VADDUHM,
2275 ALTIVEC_BUILTIN_VADDUWM,
2276 ALTIVEC_BUILTIN_VADDFP,
2277 ALTIVEC_BUILTIN_VADDCUW,
2278 ALTIVEC_BUILTIN_VADDUBS,
2279 ALTIVEC_BUILTIN_VADDSBS,
2280 ALTIVEC_BUILTIN_VADDUHS,
2281 ALTIVEC_BUILTIN_VADDSHS,
2282 ALTIVEC_BUILTIN_VADDUWS,
2283 ALTIVEC_BUILTIN_VADDSWS,
2284 ALTIVEC_BUILTIN_VAND,
2285 ALTIVEC_BUILTIN_VANDC,
2286 ALTIVEC_BUILTIN_VAVGUB,
2287 ALTIVEC_BUILTIN_VAVGSB,
2288 ALTIVEC_BUILTIN_VAVGUH,
2289 ALTIVEC_BUILTIN_VAVGSH,
2290 ALTIVEC_BUILTIN_VAVGUW,
2291 ALTIVEC_BUILTIN_VAVGSW,
2292 ALTIVEC_BUILTIN_VCFUX,
2293 ALTIVEC_BUILTIN_VCFSX,
2294 ALTIVEC_BUILTIN_VCTSXS,
2295 ALTIVEC_BUILTIN_VCTUXS,
2296 ALTIVEC_BUILTIN_VCMPBFP,
2297 ALTIVEC_BUILTIN_VCMPEQUB,
2298 ALTIVEC_BUILTIN_VCMPEQUH,
2299 ALTIVEC_BUILTIN_VCMPEQUW,
2300 ALTIVEC_BUILTIN_VCMPEQFP,
2301 ALTIVEC_BUILTIN_VCMPGEFP,
2302 ALTIVEC_BUILTIN_VCMPGTUB,
2303 ALTIVEC_BUILTIN_VCMPGTSB,
2304 ALTIVEC_BUILTIN_VCMPGTUH,
2305 ALTIVEC_BUILTIN_VCMPGTSH,
2306 ALTIVEC_BUILTIN_VCMPGTUW,
2307 ALTIVEC_BUILTIN_VCMPGTSW,
2308 ALTIVEC_BUILTIN_VCMPGTFP,
2309 ALTIVEC_BUILTIN_VEXPTEFP,
2310 ALTIVEC_BUILTIN_VLOGEFP,
2311 ALTIVEC_BUILTIN_VMADDFP,
2312 ALTIVEC_BUILTIN_VMAXUB,
2313 ALTIVEC_BUILTIN_VMAXSB,
2314 ALTIVEC_BUILTIN_VMAXUH,
2315 ALTIVEC_BUILTIN_VMAXSH,
2316 ALTIVEC_BUILTIN_VMAXUW,
2317 ALTIVEC_BUILTIN_VMAXSW,
2318 ALTIVEC_BUILTIN_VMAXFP,
2319 ALTIVEC_BUILTIN_VMHADDSHS,
2320 ALTIVEC_BUILTIN_VMHRADDSHS,
2321 ALTIVEC_BUILTIN_VMLADDUHM,
2322 ALTIVEC_BUILTIN_VMRGHB,
2323 ALTIVEC_BUILTIN_VMRGHH,
2324 ALTIVEC_BUILTIN_VMRGHW,
2325 ALTIVEC_BUILTIN_VMRGLB,
2326 ALTIVEC_BUILTIN_VMRGLH,
2327 ALTIVEC_BUILTIN_VMRGLW,
2328 ALTIVEC_BUILTIN_VMSUMUBM,
2329 ALTIVEC_BUILTIN_VMSUMMBM,
2330 ALTIVEC_BUILTIN_VMSUMUHM,
2331 ALTIVEC_BUILTIN_VMSUMSHM,
2332 ALTIVEC_BUILTIN_VMSUMUHS,
2333 ALTIVEC_BUILTIN_VMSUMSHS,
2334 ALTIVEC_BUILTIN_VMINUB,
2335 ALTIVEC_BUILTIN_VMINSB,
2336 ALTIVEC_BUILTIN_VMINUH,
2337 ALTIVEC_BUILTIN_VMINSH,
2338 ALTIVEC_BUILTIN_VMINUW,
2339 ALTIVEC_BUILTIN_VMINSW,
2340 ALTIVEC_BUILTIN_VMINFP,
2341 ALTIVEC_BUILTIN_VMULEUB,
2342 ALTIVEC_BUILTIN_VMULESB,
2343 ALTIVEC_BUILTIN_VMULEUH,
2344 ALTIVEC_BUILTIN_VMULESH,
2345 ALTIVEC_BUILTIN_VMULOUB,
2346 ALTIVEC_BUILTIN_VMULOSB,
2347 ALTIVEC_BUILTIN_VMULOUH,
2348 ALTIVEC_BUILTIN_VMULOSH,
2349 ALTIVEC_BUILTIN_VNMSUBFP,
2350 ALTIVEC_BUILTIN_VNOR,
2351 ALTIVEC_BUILTIN_VOR,
2352 ALTIVEC_BUILTIN_VSEL_4SI,
2353 ALTIVEC_BUILTIN_VSEL_4SF,
2354 ALTIVEC_BUILTIN_VSEL_8HI,
2355 ALTIVEC_BUILTIN_VSEL_16QI,
2356 ALTIVEC_BUILTIN_VPERM_4SI,
2357 ALTIVEC_BUILTIN_VPERM_4SF,
2358 ALTIVEC_BUILTIN_VPERM_8HI,
2359 ALTIVEC_BUILTIN_VPERM_16QI,
2360 ALTIVEC_BUILTIN_VPKUHUM,
2361 ALTIVEC_BUILTIN_VPKUWUM,
2362 ALTIVEC_BUILTIN_VPKPX,
2363 ALTIVEC_BUILTIN_VPKUHSS,
2364 ALTIVEC_BUILTIN_VPKSHSS,
2365 ALTIVEC_BUILTIN_VPKUWSS,
2366 ALTIVEC_BUILTIN_VPKSWSS,
2367 ALTIVEC_BUILTIN_VPKUHUS,
2368 ALTIVEC_BUILTIN_VPKSHUS,
2369 ALTIVEC_BUILTIN_VPKUWUS,
2370 ALTIVEC_BUILTIN_VPKSWUS,
2371 ALTIVEC_BUILTIN_VREFP,
2372 ALTIVEC_BUILTIN_VRFIM,
2373 ALTIVEC_BUILTIN_VRFIN,
2374 ALTIVEC_BUILTIN_VRFIP,
2375 ALTIVEC_BUILTIN_VRFIZ,
2376 ALTIVEC_BUILTIN_VRLB,
2377 ALTIVEC_BUILTIN_VRLH,
2378 ALTIVEC_BUILTIN_VRLW,
2379 ALTIVEC_BUILTIN_VRSQRTEFP,
2380 ALTIVEC_BUILTIN_VSLB,
2381 ALTIVEC_BUILTIN_VSLH,
2382 ALTIVEC_BUILTIN_VSLW,
2383 ALTIVEC_BUILTIN_VSL,
2384 ALTIVEC_BUILTIN_VSLO,
2385 ALTIVEC_BUILTIN_VSPLTB,
2386 ALTIVEC_BUILTIN_VSPLTH,
2387 ALTIVEC_BUILTIN_VSPLTW,
2388 ALTIVEC_BUILTIN_VSPLTISB,
2389 ALTIVEC_BUILTIN_VSPLTISH,
2390 ALTIVEC_BUILTIN_VSPLTISW,
2391 ALTIVEC_BUILTIN_VSRB,
2392 ALTIVEC_BUILTIN_VSRH,
2393 ALTIVEC_BUILTIN_VSRW,
2394 ALTIVEC_BUILTIN_VSRAB,
2395 ALTIVEC_BUILTIN_VSRAH,
2396 ALTIVEC_BUILTIN_VSRAW,
2397 ALTIVEC_BUILTIN_VSR,
2398 ALTIVEC_BUILTIN_VSRO,
2399 ALTIVEC_BUILTIN_VSUBUBM,
2400 ALTIVEC_BUILTIN_VSUBUHM,
2401 ALTIVEC_BUILTIN_VSUBUWM,
2402 ALTIVEC_BUILTIN_VSUBFP,
2403 ALTIVEC_BUILTIN_VSUBCUW,
2404 ALTIVEC_BUILTIN_VSUBUBS,
2405 ALTIVEC_BUILTIN_VSUBSBS,
2406 ALTIVEC_BUILTIN_VSUBUHS,
2407 ALTIVEC_BUILTIN_VSUBSHS,
2408 ALTIVEC_BUILTIN_VSUBUWS,
2409 ALTIVEC_BUILTIN_VSUBSWS,
2410 ALTIVEC_BUILTIN_VSUM4UBS,
2411 ALTIVEC_BUILTIN_VSUM4SBS,
2412 ALTIVEC_BUILTIN_VSUM4SHS,
2413 ALTIVEC_BUILTIN_VSUM2SWS,
2414 ALTIVEC_BUILTIN_VSUMSWS,
2415 ALTIVEC_BUILTIN_VXOR,
2416 ALTIVEC_BUILTIN_VSLDOI_16QI,
2417 ALTIVEC_BUILTIN_VSLDOI_8HI,
2418 ALTIVEC_BUILTIN_VSLDOI_4SI,
2419 ALTIVEC_BUILTIN_VSLDOI_4SF,
2420 ALTIVEC_BUILTIN_VUPKHSB,
2421 ALTIVEC_BUILTIN_VUPKHPX,
2422 ALTIVEC_BUILTIN_VUPKHSH,
2423 ALTIVEC_BUILTIN_VUPKLSB,
2424 ALTIVEC_BUILTIN_VUPKLPX,
2425 ALTIVEC_BUILTIN_VUPKLSH,
2426 ALTIVEC_BUILTIN_MTVSCR,
2427 ALTIVEC_BUILTIN_MFVSCR,
2428 ALTIVEC_BUILTIN_DSSALL,
2429 ALTIVEC_BUILTIN_DSS,
2430 ALTIVEC_BUILTIN_LVSL,
2431 ALTIVEC_BUILTIN_LVSR,
2432 ALTIVEC_BUILTIN_DSTT,
2433 ALTIVEC_BUILTIN_DSTST,
2434 ALTIVEC_BUILTIN_DSTSTT,
2435 ALTIVEC_BUILTIN_DST,
2436 ALTIVEC_BUILTIN_LVEBX,
2437 ALTIVEC_BUILTIN_LVEHX,
2438 ALTIVEC_BUILTIN_LVEWX,
2439 ALTIVEC_BUILTIN_LVXL,
2440 ALTIVEC_BUILTIN_LVX,
2441 ALTIVEC_BUILTIN_STVX,
2442 ALTIVEC_BUILTIN_STVEBX,
2443 ALTIVEC_BUILTIN_STVEHX,
2444 ALTIVEC_BUILTIN_STVEWX,
2445 ALTIVEC_BUILTIN_STVXL,
2446 ALTIVEC_BUILTIN_VCMPBFP_P,
2447 ALTIVEC_BUILTIN_VCMPEQFP_P,
2448 ALTIVEC_BUILTIN_VCMPEQUB_P,
2449 ALTIVEC_BUILTIN_VCMPEQUH_P,
2450 ALTIVEC_BUILTIN_VCMPEQUW_P,
2451 ALTIVEC_BUILTIN_VCMPGEFP_P,
2452 ALTIVEC_BUILTIN_VCMPGTFP_P,
2453 ALTIVEC_BUILTIN_VCMPGTSB_P,
2454 ALTIVEC_BUILTIN_VCMPGTSH_P,
2455 ALTIVEC_BUILTIN_VCMPGTSW_P,
2456 ALTIVEC_BUILTIN_VCMPGTUB_P,
2457 ALTIVEC_BUILTIN_VCMPGTUH_P,
2458 ALTIVEC_BUILTIN_VCMPGTUW_P,
2459 ALTIVEC_BUILTIN_ABSS_V4SI,
2460 ALTIVEC_BUILTIN_ABSS_V8HI,
2461 ALTIVEC_BUILTIN_ABSS_V16QI,
2462 ALTIVEC_BUILTIN_ABS_V4SI,
2463 ALTIVEC_BUILTIN_ABS_V4SF,
2464 ALTIVEC_BUILTIN_ABS_V8HI,
2465 ALTIVEC_BUILTIN_ABS_V16QI,
2466 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
2467 ALTIVEC_BUILTIN_MASK_FOR_STORE,
2468 ALTIVEC_BUILTIN_VEC_INIT_V4SI,
2469 ALTIVEC_BUILTIN_VEC_INIT_V8HI,
2470 ALTIVEC_BUILTIN_VEC_INIT_V16QI,
2471 ALTIVEC_BUILTIN_VEC_INIT_V4SF,
2472 ALTIVEC_BUILTIN_VEC_SET_V4SI,
2473 ALTIVEC_BUILTIN_VEC_SET_V8HI,
2474 ALTIVEC_BUILTIN_VEC_SET_V16QI,
2475 ALTIVEC_BUILTIN_VEC_SET_V4SF,
2476 ALTIVEC_BUILTIN_VEC_EXT_V4SI,
2477 ALTIVEC_BUILTIN_VEC_EXT_V8HI,
2478 ALTIVEC_BUILTIN_VEC_EXT_V16QI,
2479 ALTIVEC_BUILTIN_VEC_EXT_V4SF,
2480
2481 /* Altivec overloaded builtins. */
2482 ALTIVEC_BUILTIN_VCMPEQ_P,
2483 ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P,
2484 ALTIVEC_BUILTIN_VCMPGT_P,
2485 ALTIVEC_BUILTIN_VCMPGE_P,
2486 ALTIVEC_BUILTIN_VEC_ABS,
2487 ALTIVEC_BUILTIN_VEC_ABSS,
2488 ALTIVEC_BUILTIN_VEC_ADD,
2489 ALTIVEC_BUILTIN_VEC_ADDC,
2490 ALTIVEC_BUILTIN_VEC_ADDS,
2491 ALTIVEC_BUILTIN_VEC_AND,
2492 ALTIVEC_BUILTIN_VEC_ANDC,
2493 ALTIVEC_BUILTIN_VEC_AVG,
2494 ALTIVEC_BUILTIN_VEC_CEIL,
2495 ALTIVEC_BUILTIN_VEC_CMPB,
2496 ALTIVEC_BUILTIN_VEC_CMPEQ,
2497 ALTIVEC_BUILTIN_VEC_CMPEQUB,
2498 ALTIVEC_BUILTIN_VEC_CMPEQUH,
2499 ALTIVEC_BUILTIN_VEC_CMPEQUW,
2500 ALTIVEC_BUILTIN_VEC_CMPGE,
2501 ALTIVEC_BUILTIN_VEC_CMPGT,
2502 ALTIVEC_BUILTIN_VEC_CMPLE,
2503 ALTIVEC_BUILTIN_VEC_CMPLT,
2504 ALTIVEC_BUILTIN_VEC_CTF,
2505 ALTIVEC_BUILTIN_VEC_CTS,
2506 ALTIVEC_BUILTIN_VEC_CTU,
2507 ALTIVEC_BUILTIN_VEC_DST,
2508 ALTIVEC_BUILTIN_VEC_DSTST,
2509 ALTIVEC_BUILTIN_VEC_DSTSTT,
2510 ALTIVEC_BUILTIN_VEC_DSTT,
2511 ALTIVEC_BUILTIN_VEC_EXPTE,
2512 ALTIVEC_BUILTIN_VEC_FLOOR,
2513 ALTIVEC_BUILTIN_VEC_LD,
2514 ALTIVEC_BUILTIN_VEC_LDE,
2515 ALTIVEC_BUILTIN_VEC_LDL,
2516 ALTIVEC_BUILTIN_VEC_LOGE,
2517 ALTIVEC_BUILTIN_VEC_LVEBX,
2518 ALTIVEC_BUILTIN_VEC_LVEHX,
2519 ALTIVEC_BUILTIN_VEC_LVEWX,
2520 ALTIVEC_BUILTIN_VEC_LVSL,
2521 ALTIVEC_BUILTIN_VEC_LVSR,
2522 ALTIVEC_BUILTIN_VEC_MADD,
2523 ALTIVEC_BUILTIN_VEC_MADDS,
2524 ALTIVEC_BUILTIN_VEC_MAX,
2525 ALTIVEC_BUILTIN_VEC_MERGEH,
2526 ALTIVEC_BUILTIN_VEC_MERGEL,
2527 ALTIVEC_BUILTIN_VEC_MIN,
2528 ALTIVEC_BUILTIN_VEC_MLADD,
2529 ALTIVEC_BUILTIN_VEC_MPERM,
2530 ALTIVEC_BUILTIN_VEC_MRADDS,
2531 ALTIVEC_BUILTIN_VEC_MRGHB,
2532 ALTIVEC_BUILTIN_VEC_MRGHH,
2533 ALTIVEC_BUILTIN_VEC_MRGHW,
2534 ALTIVEC_BUILTIN_VEC_MRGLB,
2535 ALTIVEC_BUILTIN_VEC_MRGLH,
2536 ALTIVEC_BUILTIN_VEC_MRGLW,
2537 ALTIVEC_BUILTIN_VEC_MSUM,
2538 ALTIVEC_BUILTIN_VEC_MSUMS,
2539 ALTIVEC_BUILTIN_VEC_MTVSCR,
2540 ALTIVEC_BUILTIN_VEC_MULE,
2541 ALTIVEC_BUILTIN_VEC_MULO,
2542 ALTIVEC_BUILTIN_VEC_NMSUB,
2543 ALTIVEC_BUILTIN_VEC_NOR,
2544 ALTIVEC_BUILTIN_VEC_OR,
2545 ALTIVEC_BUILTIN_VEC_PACK,
2546 ALTIVEC_BUILTIN_VEC_PACKPX,
2547 ALTIVEC_BUILTIN_VEC_PACKS,
2548 ALTIVEC_BUILTIN_VEC_PACKSU,
2549 ALTIVEC_BUILTIN_VEC_PERM,
2550 ALTIVEC_BUILTIN_VEC_RE,
2551 ALTIVEC_BUILTIN_VEC_RL,
2552 ALTIVEC_BUILTIN_VEC_ROUND,
2553 ALTIVEC_BUILTIN_VEC_RSQRTE,
2554 ALTIVEC_BUILTIN_VEC_SEL,
2555 ALTIVEC_BUILTIN_VEC_SL,
2556 ALTIVEC_BUILTIN_VEC_SLD,
2557 ALTIVEC_BUILTIN_VEC_SLL,
2558 ALTIVEC_BUILTIN_VEC_SLO,
2559 ALTIVEC_BUILTIN_VEC_SPLAT,
2560 ALTIVEC_BUILTIN_VEC_SPLAT_S16,
2561 ALTIVEC_BUILTIN_VEC_SPLAT_S32,
2562 ALTIVEC_BUILTIN_VEC_SPLAT_S8,
2563 ALTIVEC_BUILTIN_VEC_SPLAT_U16,
2564 ALTIVEC_BUILTIN_VEC_SPLAT_U32,
2565 ALTIVEC_BUILTIN_VEC_SPLAT_U8,
2566 ALTIVEC_BUILTIN_VEC_SPLTB,
2567 ALTIVEC_BUILTIN_VEC_SPLTH,
2568 ALTIVEC_BUILTIN_VEC_SPLTW,
2569 ALTIVEC_BUILTIN_VEC_SR,
2570 ALTIVEC_BUILTIN_VEC_SRA,
2571 ALTIVEC_BUILTIN_VEC_SRL,
2572 ALTIVEC_BUILTIN_VEC_SRO,
2573 ALTIVEC_BUILTIN_VEC_ST,
2574 ALTIVEC_BUILTIN_VEC_STE,
2575 ALTIVEC_BUILTIN_VEC_STL,
2576 ALTIVEC_BUILTIN_VEC_STVEBX,
2577 ALTIVEC_BUILTIN_VEC_STVEHX,
2578 ALTIVEC_BUILTIN_VEC_STVEWX,
2579 ALTIVEC_BUILTIN_VEC_SUB,
2580 ALTIVEC_BUILTIN_VEC_SUBC,
2581 ALTIVEC_BUILTIN_VEC_SUBS,
2582 ALTIVEC_BUILTIN_VEC_SUM2S,
2583 ALTIVEC_BUILTIN_VEC_SUM4S,
2584 ALTIVEC_BUILTIN_VEC_SUMS,
2585 ALTIVEC_BUILTIN_VEC_TRUNC,
2586 ALTIVEC_BUILTIN_VEC_UNPACKH,
2587 ALTIVEC_BUILTIN_VEC_UNPACKL,
2588 ALTIVEC_BUILTIN_VEC_VADDFP,
2589 ALTIVEC_BUILTIN_VEC_VADDSBS,
2590 ALTIVEC_BUILTIN_VEC_VADDSHS,
2591 ALTIVEC_BUILTIN_VEC_VADDSWS,
2592 ALTIVEC_BUILTIN_VEC_VADDUBM,
2593 ALTIVEC_BUILTIN_VEC_VADDUBS,
2594 ALTIVEC_BUILTIN_VEC_VADDUHM,
2595 ALTIVEC_BUILTIN_VEC_VADDUHS,
2596 ALTIVEC_BUILTIN_VEC_VADDUWM,
2597 ALTIVEC_BUILTIN_VEC_VADDUWS,
2598 ALTIVEC_BUILTIN_VEC_VAVGSB,
2599 ALTIVEC_BUILTIN_VEC_VAVGSH,
2600 ALTIVEC_BUILTIN_VEC_VAVGSW,
2601 ALTIVEC_BUILTIN_VEC_VAVGUB,
2602 ALTIVEC_BUILTIN_VEC_VAVGUH,
2603 ALTIVEC_BUILTIN_VEC_VAVGUW,
2604 ALTIVEC_BUILTIN_VEC_VCFSX,
2605 ALTIVEC_BUILTIN_VEC_VCFUX,
2606 ALTIVEC_BUILTIN_VEC_VCMPEQFP,
2607 ALTIVEC_BUILTIN_VEC_VCMPEQUB,
2608 ALTIVEC_BUILTIN_VEC_VCMPEQUH,
2609 ALTIVEC_BUILTIN_VEC_VCMPEQUW,
2610 ALTIVEC_BUILTIN_VEC_VCMPGTFP,
2611 ALTIVEC_BUILTIN_VEC_VCMPGTSB,
2612 ALTIVEC_BUILTIN_VEC_VCMPGTSH,
2613 ALTIVEC_BUILTIN_VEC_VCMPGTSW,
2614 ALTIVEC_BUILTIN_VEC_VCMPGTUB,
2615 ALTIVEC_BUILTIN_VEC_VCMPGTUH,
2616 ALTIVEC_BUILTIN_VEC_VCMPGTUW,
2617 ALTIVEC_BUILTIN_VEC_VMAXFP,
2618 ALTIVEC_BUILTIN_VEC_VMAXSB,
2619 ALTIVEC_BUILTIN_VEC_VMAXSH,
2620 ALTIVEC_BUILTIN_VEC_VMAXSW,
2621 ALTIVEC_BUILTIN_VEC_VMAXUB,
2622 ALTIVEC_BUILTIN_VEC_VMAXUH,
2623 ALTIVEC_BUILTIN_VEC_VMAXUW,
2624 ALTIVEC_BUILTIN_VEC_VMINFP,
2625 ALTIVEC_BUILTIN_VEC_VMINSB,
2626 ALTIVEC_BUILTIN_VEC_VMINSH,
2627 ALTIVEC_BUILTIN_VEC_VMINSW,
2628 ALTIVEC_BUILTIN_VEC_VMINUB,
2629 ALTIVEC_BUILTIN_VEC_VMINUH,
2630 ALTIVEC_BUILTIN_VEC_VMINUW,
2631 ALTIVEC_BUILTIN_VEC_VMRGHB,
2632 ALTIVEC_BUILTIN_VEC_VMRGHH,
2633 ALTIVEC_BUILTIN_VEC_VMRGHW,
2634 ALTIVEC_BUILTIN_VEC_VMRGLB,
2635 ALTIVEC_BUILTIN_VEC_VMRGLH,
2636 ALTIVEC_BUILTIN_VEC_VMRGLW,
2637 ALTIVEC_BUILTIN_VEC_VMSUMMBM,
2638 ALTIVEC_BUILTIN_VEC_VMSUMSHM,
2639 ALTIVEC_BUILTIN_VEC_VMSUMSHS,
2640 ALTIVEC_BUILTIN_VEC_VMSUMUBM,
2641 ALTIVEC_BUILTIN_VEC_VMSUMUHM,
2642 ALTIVEC_BUILTIN_VEC_VMSUMUHS,
2643 ALTIVEC_BUILTIN_VEC_VMULESB,
2644 ALTIVEC_BUILTIN_VEC_VMULESH,
2645 ALTIVEC_BUILTIN_VEC_VMULEUB,
2646 ALTIVEC_BUILTIN_VEC_VMULEUH,
2647 ALTIVEC_BUILTIN_VEC_VMULOSB,
2648 ALTIVEC_BUILTIN_VEC_VMULOSH,
2649 ALTIVEC_BUILTIN_VEC_VMULOUB,
2650 ALTIVEC_BUILTIN_VEC_VMULOUH,
2651 ALTIVEC_BUILTIN_VEC_VPKSHSS,
2652 ALTIVEC_BUILTIN_VEC_VPKSHUS,
2653 ALTIVEC_BUILTIN_VEC_VPKSWSS,
2654 ALTIVEC_BUILTIN_VEC_VPKSWUS,
2655 ALTIVEC_BUILTIN_VEC_VPKUHUM,
2656 ALTIVEC_BUILTIN_VEC_VPKUHUS,
2657 ALTIVEC_BUILTIN_VEC_VPKUWUM,
2658 ALTIVEC_BUILTIN_VEC_VPKUWUS,
2659 ALTIVEC_BUILTIN_VEC_VRLB,
2660 ALTIVEC_BUILTIN_VEC_VRLH,
2661 ALTIVEC_BUILTIN_VEC_VRLW,
2662 ALTIVEC_BUILTIN_VEC_VSLB,
2663 ALTIVEC_BUILTIN_VEC_VSLH,
2664 ALTIVEC_BUILTIN_VEC_VSLW,
2665 ALTIVEC_BUILTIN_VEC_VSPLTB,
2666 ALTIVEC_BUILTIN_VEC_VSPLTH,
2667 ALTIVEC_BUILTIN_VEC_VSPLTW,
2668 ALTIVEC_BUILTIN_VEC_VSRAB,
2669 ALTIVEC_BUILTIN_VEC_VSRAH,
2670 ALTIVEC_BUILTIN_VEC_VSRAW,
2671 ALTIVEC_BUILTIN_VEC_VSRB,
2672 ALTIVEC_BUILTIN_VEC_VSRH,
2673 ALTIVEC_BUILTIN_VEC_VSRW,
2674 ALTIVEC_BUILTIN_VEC_VSUBFP,
2675 ALTIVEC_BUILTIN_VEC_VSUBSBS,
2676 ALTIVEC_BUILTIN_VEC_VSUBSHS,
2677 ALTIVEC_BUILTIN_VEC_VSUBSWS,
2678 ALTIVEC_BUILTIN_VEC_VSUBUBM,
2679 ALTIVEC_BUILTIN_VEC_VSUBUBS,
2680 ALTIVEC_BUILTIN_VEC_VSUBUHM,
2681 ALTIVEC_BUILTIN_VEC_VSUBUHS,
2682 ALTIVEC_BUILTIN_VEC_VSUBUWM,
2683 ALTIVEC_BUILTIN_VEC_VSUBUWS,
2684 ALTIVEC_BUILTIN_VEC_VSUM4SBS,
2685 ALTIVEC_BUILTIN_VEC_VSUM4SHS,
2686 ALTIVEC_BUILTIN_VEC_VSUM4UBS,
2687 ALTIVEC_BUILTIN_VEC_VUPKHPX,
2688 ALTIVEC_BUILTIN_VEC_VUPKHSB,
2689 ALTIVEC_BUILTIN_VEC_VUPKHSH,
2690 ALTIVEC_BUILTIN_VEC_VUPKLPX,
2691 ALTIVEC_BUILTIN_VEC_VUPKLSB,
2692 ALTIVEC_BUILTIN_VEC_VUPKLSH,
2693 ALTIVEC_BUILTIN_VEC_XOR,
2694 ALTIVEC_BUILTIN_VEC_STEP,
2695 ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_STEP,
2696
2697 /* SPE builtins. */
2698 SPE_BUILTIN_EVADDW,
2699 SPE_BUILTIN_EVAND,
2700 SPE_BUILTIN_EVANDC,
2701 SPE_BUILTIN_EVDIVWS,
2702 SPE_BUILTIN_EVDIVWU,
2703 SPE_BUILTIN_EVEQV,
2704 SPE_BUILTIN_EVFSADD,
2705 SPE_BUILTIN_EVFSDIV,
2706 SPE_BUILTIN_EVFSMUL,
2707 SPE_BUILTIN_EVFSSUB,
2708 SPE_BUILTIN_EVLDDX,
2709 SPE_BUILTIN_EVLDHX,
2710 SPE_BUILTIN_EVLDWX,
2711 SPE_BUILTIN_EVLHHESPLATX,
2712 SPE_BUILTIN_EVLHHOSSPLATX,
2713 SPE_BUILTIN_EVLHHOUSPLATX,
2714 SPE_BUILTIN_EVLWHEX,
2715 SPE_BUILTIN_EVLWHOSX,
2716 SPE_BUILTIN_EVLWHOUX,
2717 SPE_BUILTIN_EVLWHSPLATX,
2718 SPE_BUILTIN_EVLWWSPLATX,
2719 SPE_BUILTIN_EVMERGEHI,
2720 SPE_BUILTIN_EVMERGEHILO,
2721 SPE_BUILTIN_EVMERGELO,
2722 SPE_BUILTIN_EVMERGELOHI,
2723 SPE_BUILTIN_EVMHEGSMFAA,
2724 SPE_BUILTIN_EVMHEGSMFAN,
2725 SPE_BUILTIN_EVMHEGSMIAA,
2726 SPE_BUILTIN_EVMHEGSMIAN,
2727 SPE_BUILTIN_EVMHEGUMIAA,
2728 SPE_BUILTIN_EVMHEGUMIAN,
2729 SPE_BUILTIN_EVMHESMF,
2730 SPE_BUILTIN_EVMHESMFA,
2731 SPE_BUILTIN_EVMHESMFAAW,
2732 SPE_BUILTIN_EVMHESMFANW,
2733 SPE_BUILTIN_EVMHESMI,
2734 SPE_BUILTIN_EVMHESMIA,
2735 SPE_BUILTIN_EVMHESMIAAW,
2736 SPE_BUILTIN_EVMHESMIANW,
2737 SPE_BUILTIN_EVMHESSF,
2738 SPE_BUILTIN_EVMHESSFA,
2739 SPE_BUILTIN_EVMHESSFAAW,
2740 SPE_BUILTIN_EVMHESSFANW,
2741 SPE_BUILTIN_EVMHESSIAAW,
2742 SPE_BUILTIN_EVMHESSIANW,
2743 SPE_BUILTIN_EVMHEUMI,
2744 SPE_BUILTIN_EVMHEUMIA,
2745 SPE_BUILTIN_EVMHEUMIAAW,
2746 SPE_BUILTIN_EVMHEUMIANW,
2747 SPE_BUILTIN_EVMHEUSIAAW,
2748 SPE_BUILTIN_EVMHEUSIANW,
2749 SPE_BUILTIN_EVMHOGSMFAA,
2750 SPE_BUILTIN_EVMHOGSMFAN,
2751 SPE_BUILTIN_EVMHOGSMIAA,
2752 SPE_BUILTIN_EVMHOGSMIAN,
2753 SPE_BUILTIN_EVMHOGUMIAA,
2754 SPE_BUILTIN_EVMHOGUMIAN,
2755 SPE_BUILTIN_EVMHOSMF,
2756 SPE_BUILTIN_EVMHOSMFA,
2757 SPE_BUILTIN_EVMHOSMFAAW,
2758 SPE_BUILTIN_EVMHOSMFANW,
2759 SPE_BUILTIN_EVMHOSMI,
2760 SPE_BUILTIN_EVMHOSMIA,
2761 SPE_BUILTIN_EVMHOSMIAAW,
2762 SPE_BUILTIN_EVMHOSMIANW,
2763 SPE_BUILTIN_EVMHOSSF,
2764 SPE_BUILTIN_EVMHOSSFA,
2765 SPE_BUILTIN_EVMHOSSFAAW,
2766 SPE_BUILTIN_EVMHOSSFANW,
2767 SPE_BUILTIN_EVMHOSSIAAW,
2768 SPE_BUILTIN_EVMHOSSIANW,
2769 SPE_BUILTIN_EVMHOUMI,
2770 SPE_BUILTIN_EVMHOUMIA,
2771 SPE_BUILTIN_EVMHOUMIAAW,
2772 SPE_BUILTIN_EVMHOUMIANW,
2773 SPE_BUILTIN_EVMHOUSIAAW,
2774 SPE_BUILTIN_EVMHOUSIANW,
2775 SPE_BUILTIN_EVMWHSMF,
2776 SPE_BUILTIN_EVMWHSMFA,
2777 SPE_BUILTIN_EVMWHSMI,
2778 SPE_BUILTIN_EVMWHSMIA,
2779 SPE_BUILTIN_EVMWHSSF,
2780 SPE_BUILTIN_EVMWHSSFA,
2781 SPE_BUILTIN_EVMWHUMI,
2782 SPE_BUILTIN_EVMWHUMIA,
2783 SPE_BUILTIN_EVMWLSMIAAW,
2784 SPE_BUILTIN_EVMWLSMIANW,
2785 SPE_BUILTIN_EVMWLSSIAAW,
2786 SPE_BUILTIN_EVMWLSSIANW,
2787 SPE_BUILTIN_EVMWLUMI,
2788 SPE_BUILTIN_EVMWLUMIA,
2789 SPE_BUILTIN_EVMWLUMIAAW,
2790 SPE_BUILTIN_EVMWLUMIANW,
2791 SPE_BUILTIN_EVMWLUSIAAW,
2792 SPE_BUILTIN_EVMWLUSIANW,
2793 SPE_BUILTIN_EVMWSMF,
2794 SPE_BUILTIN_EVMWSMFA,
2795 SPE_BUILTIN_EVMWSMFAA,
2796 SPE_BUILTIN_EVMWSMFAN,
2797 SPE_BUILTIN_EVMWSMI,
2798 SPE_BUILTIN_EVMWSMIA,
2799 SPE_BUILTIN_EVMWSMIAA,
2800 SPE_BUILTIN_EVMWSMIAN,
2801 SPE_BUILTIN_EVMWHSSFAA,
2802 SPE_BUILTIN_EVMWSSF,
2803 SPE_BUILTIN_EVMWSSFA,
2804 SPE_BUILTIN_EVMWSSFAA,
2805 SPE_BUILTIN_EVMWSSFAN,
2806 SPE_BUILTIN_EVMWUMI,
2807 SPE_BUILTIN_EVMWUMIA,
2808 SPE_BUILTIN_EVMWUMIAA,
2809 SPE_BUILTIN_EVMWUMIAN,
2810 SPE_BUILTIN_EVNAND,
2811 SPE_BUILTIN_EVNOR,
2812 SPE_BUILTIN_EVOR,
2813 SPE_BUILTIN_EVORC,
2814 SPE_BUILTIN_EVRLW,
2815 SPE_BUILTIN_EVSLW,
2816 SPE_BUILTIN_EVSRWS,
2817 SPE_BUILTIN_EVSRWU,
2818 SPE_BUILTIN_EVSTDDX,
2819 SPE_BUILTIN_EVSTDHX,
2820 SPE_BUILTIN_EVSTDWX,
2821 SPE_BUILTIN_EVSTWHEX,
2822 SPE_BUILTIN_EVSTWHOX,
2823 SPE_BUILTIN_EVSTWWEX,
2824 SPE_BUILTIN_EVSTWWOX,
2825 SPE_BUILTIN_EVSUBFW,
2826 SPE_BUILTIN_EVXOR,
2827 SPE_BUILTIN_EVABS,
2828 SPE_BUILTIN_EVADDSMIAAW,
2829 SPE_BUILTIN_EVADDSSIAAW,
2830 SPE_BUILTIN_EVADDUMIAAW,
2831 SPE_BUILTIN_EVADDUSIAAW,
2832 SPE_BUILTIN_EVCNTLSW,
2833 SPE_BUILTIN_EVCNTLZW,
2834 SPE_BUILTIN_EVEXTSB,
2835 SPE_BUILTIN_EVEXTSH,
2836 SPE_BUILTIN_EVFSABS,
2837 SPE_BUILTIN_EVFSCFSF,
2838 SPE_BUILTIN_EVFSCFSI,
2839 SPE_BUILTIN_EVFSCFUF,
2840 SPE_BUILTIN_EVFSCFUI,
2841 SPE_BUILTIN_EVFSCTSF,
2842 SPE_BUILTIN_EVFSCTSI,
2843 SPE_BUILTIN_EVFSCTSIZ,
2844 SPE_BUILTIN_EVFSCTUF,
2845 SPE_BUILTIN_EVFSCTUI,
2846 SPE_BUILTIN_EVFSCTUIZ,
2847 SPE_BUILTIN_EVFSNABS,
2848 SPE_BUILTIN_EVFSNEG,
2849 SPE_BUILTIN_EVMRA,
2850 SPE_BUILTIN_EVNEG,
2851 SPE_BUILTIN_EVRNDW,
2852 SPE_BUILTIN_EVSUBFSMIAAW,
2853 SPE_BUILTIN_EVSUBFSSIAAW,
2854 SPE_BUILTIN_EVSUBFUMIAAW,
2855 SPE_BUILTIN_EVSUBFUSIAAW,
2856 SPE_BUILTIN_EVADDIW,
2857 SPE_BUILTIN_EVLDD,
2858 SPE_BUILTIN_EVLDH,
2859 SPE_BUILTIN_EVLDW,
2860 SPE_BUILTIN_EVLHHESPLAT,
2861 SPE_BUILTIN_EVLHHOSSPLAT,
2862 SPE_BUILTIN_EVLHHOUSPLAT,
2863 SPE_BUILTIN_EVLWHE,
2864 SPE_BUILTIN_EVLWHOS,
2865 SPE_BUILTIN_EVLWHOU,
2866 SPE_BUILTIN_EVLWHSPLAT,
2867 SPE_BUILTIN_EVLWWSPLAT,
2868 SPE_BUILTIN_EVRLWI,
2869 SPE_BUILTIN_EVSLWI,
2870 SPE_BUILTIN_EVSRWIS,
2871 SPE_BUILTIN_EVSRWIU,
2872 SPE_BUILTIN_EVSTDD,
2873 SPE_BUILTIN_EVSTDH,
2874 SPE_BUILTIN_EVSTDW,
2875 SPE_BUILTIN_EVSTWHE,
2876 SPE_BUILTIN_EVSTWHO,
2877 SPE_BUILTIN_EVSTWWE,
2878 SPE_BUILTIN_EVSTWWO,
2879 SPE_BUILTIN_EVSUBIFW,
2880
2881 /* Compares. */
2882 SPE_BUILTIN_EVCMPEQ,
2883 SPE_BUILTIN_EVCMPGTS,
2884 SPE_BUILTIN_EVCMPGTU,
2885 SPE_BUILTIN_EVCMPLTS,
2886 SPE_BUILTIN_EVCMPLTU,
2887 SPE_BUILTIN_EVFSCMPEQ,
2888 SPE_BUILTIN_EVFSCMPGT,
2889 SPE_BUILTIN_EVFSCMPLT,
2890 SPE_BUILTIN_EVFSTSTEQ,
2891 SPE_BUILTIN_EVFSTSTGT,
2892 SPE_BUILTIN_EVFSTSTLT,
2893
2894 /* EVSEL compares. */
2895 SPE_BUILTIN_EVSEL_CMPEQ,
2896 SPE_BUILTIN_EVSEL_CMPGTS,
2897 SPE_BUILTIN_EVSEL_CMPGTU,
2898 SPE_BUILTIN_EVSEL_CMPLTS,
2899 SPE_BUILTIN_EVSEL_CMPLTU,
2900 SPE_BUILTIN_EVSEL_FSCMPEQ,
2901 SPE_BUILTIN_EVSEL_FSCMPGT,
2902 SPE_BUILTIN_EVSEL_FSCMPLT,
2903 SPE_BUILTIN_EVSEL_FSTSTEQ,
2904 SPE_BUILTIN_EVSEL_FSTSTGT,
2905 SPE_BUILTIN_EVSEL_FSTSTLT,
2906
2907 SPE_BUILTIN_EVSPLATFI,
2908 SPE_BUILTIN_EVSPLATI,
2909 SPE_BUILTIN_EVMWHSSMAA,
2910 SPE_BUILTIN_EVMWHSMFAA,
2911 SPE_BUILTIN_EVMWHSMIAA,
2912 SPE_BUILTIN_EVMWHUSIAA,
2913 SPE_BUILTIN_EVMWHUMIAA,
2914 SPE_BUILTIN_EVMWHSSFAN,
2915 SPE_BUILTIN_EVMWHSSIAN,
2916 SPE_BUILTIN_EVMWHSMFAN,
2917 SPE_BUILTIN_EVMWHSMIAN,
2918 SPE_BUILTIN_EVMWHUSIAN,
2919 SPE_BUILTIN_EVMWHUMIAN,
2920 SPE_BUILTIN_EVMWHGSSFAA,
2921 SPE_BUILTIN_EVMWHGSMFAA,
2922 SPE_BUILTIN_EVMWHGSMIAA,
2923 SPE_BUILTIN_EVMWHGUMIAA,
2924 SPE_BUILTIN_EVMWHGSSFAN,
2925 SPE_BUILTIN_EVMWHGSMFAN,
2926 SPE_BUILTIN_EVMWHGSMIAN,
2927 SPE_BUILTIN_EVMWHGUMIAN,
2928 SPE_BUILTIN_MTSPEFSCR,
2929 SPE_BUILTIN_MFSPEFSCR,
2930 SPE_BUILTIN_BRINC,
2931
2932 RS6000_BUILTIN_COUNT
2933 };
2934
2935 enum rs6000_builtin_type_index
2936 {
2937 RS6000_BTI_NOT_OPAQUE,
2938 RS6000_BTI_opaque_V2SI,
2939 RS6000_BTI_opaque_V2SF,
2940 RS6000_BTI_opaque_p_V2SI,
2941 RS6000_BTI_opaque_V4SI,
2942 RS6000_BTI_V16QI,
2943 RS6000_BTI_V2SI,
2944 RS6000_BTI_V2SF,
2945 RS6000_BTI_V4HI,
2946 RS6000_BTI_V4SI,
2947 RS6000_BTI_V4SF,
2948 RS6000_BTI_V8HI,
2949 RS6000_BTI_unsigned_V16QI,
2950 RS6000_BTI_unsigned_V8HI,
2951 RS6000_BTI_unsigned_V4SI,
2952 RS6000_BTI_bool_char, /* __bool char */
2953 RS6000_BTI_bool_short, /* __bool short */
2954 RS6000_BTI_bool_int, /* __bool int */
2955 RS6000_BTI_pixel, /* __pixel */
2956 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2957 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2958 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2959 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2960 RS6000_BTI_long, /* long_integer_type_node */
2961 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2962 RS6000_BTI_INTQI, /* intQI_type_node */
2963 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2964 RS6000_BTI_INTHI, /* intHI_type_node */
2965 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2966 RS6000_BTI_INTSI, /* intSI_type_node */
2967 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2968 RS6000_BTI_float, /* float_type_node */
2969 RS6000_BTI_void, /* void_type_node */
2970 RS6000_BTI_MAX
2971 };
2972
2973
2974 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2975 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2976 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2977 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2978 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2979 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2980 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2981 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2982 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2983 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2984 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2985 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2986 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2987 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2988 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2989 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2990 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2991 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2992 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2993 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2994 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2995 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2996
2997 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2998 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2999 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
3000 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
3001 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
3002 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
3003 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
3004 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
3005 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
3006 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
3007
3008 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
3009 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
3010