# Fix misspellings in comments.
[gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Note that some other tm.h files include this one and then override
23 many of the definitions that relate to assembler syntax. */
24
25
26 /* Names to predefine in the preprocessor for this target machine. */
27
28 #define CPP_PREDEFINES "-D_IBMR2 -D_AIX"
29
30 /* Print subsidiary information on the compiler version in use. */
31 #define TARGET_VERSION ;
32
33 /* Tell the assembler to assume that all undefined names are external.
34
35 Don't do this until the fixed IBM assembler is more generally available.
36 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
37 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
38 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
39 will no longer be needed. */
40
41 /* #define ASM_SPEC "-u" */
42
43 /* Define the options for the binder: Start text at 512, align all segments
44 to 512 bytes, and warn if there is text relocation.
45
46 The -bhalt:4 option supposedly changes the level at which ld will abort,
47 but it also suppresses warnings about multiply defined symbols and is
48 used by the AIX cc command. So we use it here.
49
50 -bnodelcsect undoes a poor choice of default relating to multiply-defined
51 csects. See AIX documentation for more information about this. */
52
53 #define LINK_SPEC "-T512 -H512 -btextro -bhalt:4 -bnodelcsect\
54 %{static:-bnso -bI:/lib/syscalls.exp}"
55
56 /* Profiled library versions are used by linking with special directories. */
57 #define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
58 %{p:-L/lib/profiled -L/usr/lib/profiled} %{g*:-lg} -lc"
59
60 /* gcc must do the search itself to find libgcc.a, not use -l. */
61 #define LINK_LIBGCC_SPECIAL_1
62
63 /* Don't turn -B into -L if the argument specifies a relative file name. */
64 #define RELATIVE_PREFIX_NOT_LINKDIR
65
66 /* Run-time compilation parameters selecting different hardware subsets. */
67
68 /* Flag to allow putting fp constants in the TOC; can be turned off when
69 the TOC overflows. */
70
71 #define TARGET_FP_IN_TOC (target_flags & 1)
72
73 extern int target_flags;
74
75 /* Macro to define tables used to set the flags.
76 This is a list in braces of pairs in braces,
77 each pair being { "NAME", VALUE }
78 where VALUE is the bits to set or minus the bits to clear.
79 An empty string NAME is used to identify the default VALUE. */
80
81 #define TARGET_SWITCHES \
82 {{"fp-in-toc", 1}, \
83 {"no-fp-in-toc", -1}, \
84 { "", TARGET_DEFAULT}}
85
86 #define TARGET_DEFAULT 1
87
88 /* On the RS/6000, we turn on various flags if optimization is selected. */
89
90 #define OPTIMIZATION_OPTIONS(LEVEL) \
91 { \
92 if ((LEVEL) > 0) \
93 { \
94 flag_force_mem = 1; \
95 flag_omit_frame_pointer = 1; \
96 } \
97 }
98
99 /* Define this to modify the options specified by the user. */
100
101 #define OVERRIDE_OPTIONS \
102 { \
103 profile_block_flag = 0; \
104 }
105 \f
106 /* target machine storage layout */
107
108 /* Define this macro if it is advisable to hold scalars in registers
109 in a wider mode than that declared by the program. In such cases,
110 the value is constrained to be within the bounds of the declared
111 type, but kept valid in the wider mode. The signedness of the
112 extension may differ from that of the type. */
113
114 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
115 if (GET_MODE_CLASS (MODE) == MODE_INT \
116 && GET_MODE_SIZE (MODE) < 4) \
117 (MODE) == SImode;
118
119 /* Define this if most significant bit is lowest numbered
120 in instructions that operate on numbered bit-fields. */
121 /* That is true on RS/6000. */
122 #define BITS_BIG_ENDIAN 1
123
124 /* Define this if most significant byte of a word is the lowest numbered. */
125 /* That is true on RS/6000. */
126 #define BYTES_BIG_ENDIAN 1
127
128 /* Define this if most significant word of a multiword number is lowest
129 numbered.
130
131 For RS/6000 we can decide arbitrarily since there are no machine
132 instructions for them. Might as well be consistent with bits and bytes. */
133 #define WORDS_BIG_ENDIAN 1
134
135 /* number of bits in an addressable storage unit */
136 #define BITS_PER_UNIT 8
137
138 /* Width in bits of a "word", which is the contents of a machine register.
139 Note that this is not necessarily the width of data type `int';
140 if using 16-bit ints on a 68000, this would still be 32.
141 But on a machine with 16-bit registers, this would be 16. */
142 #define BITS_PER_WORD 32
143
144 /* Width of a word, in units (bytes). */
145 #define UNITS_PER_WORD 4
146
147 /* Type used for ptrdiff_t, as a string used in a declaration. */
148 #define PTRDIFF_TYPE "int"
149
150 /* Type used for wchar_t, as a string used in a declaration. */
151 #define WCHAR_TYPE "short unsigned int"
152
153 /* Width of wchar_t in bits. */
154 #define WCHAR_TYPE_SIZE 16
155
156 /* Width in bits of a pointer.
157 See also the macro `Pmode' defined below. */
158 #define POINTER_SIZE 32
159
160 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
161 #define PARM_BOUNDARY 32
162
163 /* Boundary (in *bits*) on which stack pointer should be aligned. */
164 #define STACK_BOUNDARY 64
165
166 /* Allocation boundary (in *bits*) for the code of a function. */
167 #define FUNCTION_BOUNDARY 32
168
169 /* No data type wants to be aligned rounder than this. */
170 #define BIGGEST_ALIGNMENT 32
171
172 /* Alignment of field after `int : 0' in a structure. */
173 #define EMPTY_FIELD_BOUNDARY 32
174
175 /* Every structure's size must be a multiple of this. */
176 #define STRUCTURE_SIZE_BOUNDARY 8
177
178 /* A bitfield declared as `int' forces `int' alignment for the struct. */
179 #define PCC_BITFIELD_TYPE_MATTERS 1
180
181 /* Make strings word-aligned so strcpy from constants will be faster. */
182 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
183 (TREE_CODE (EXP) == STRING_CST \
184 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
185
186 /* Make arrays of chars word-aligned for the same reasons. */
187 #define DATA_ALIGNMENT(TYPE, ALIGN) \
188 (TREE_CODE (TYPE) == ARRAY_TYPE \
189 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
190 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
191
192 /* Non-zero if move instructions will actually fail to work
193 when given unaligned data. */
194 #define STRICT_ALIGNMENT 0
195 \f
196 /* Standard register usage. */
197
198 /* Number of actual hardware registers.
199 The hardware registers are assigned numbers for the compiler
200 from 0 to just below FIRST_PSEUDO_REGISTER.
201 All registers that the compiler knows about must be given numbers,
202 even those that are not normally considered general registers.
203
204 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
205 an MQ register, a count register, a link register, and 8 condition
206 register fields, which we view here as separate registers.
207
208 In addition, the difference between the frame and argument pointers is
209 a function of the number of registers saved, so we need to have a
210 register for AP that will later be eliminated in favor of SP or FP.
211 This is a normal register, but it is fixed. */
212
213 #define FIRST_PSEUDO_REGISTER 76
214
215 /* 1 for registers that have pervasive standard uses
216 and are not available for the register allocator.
217
218 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
219
220 cr5 is not supposed to be used. */
221
222 #define FIXED_REGISTERS \
223 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
224 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
225 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
226 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
227 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0}
228
229 /* 1 for registers not available across function calls.
230 These must include the FIXED_REGISTERS and also any
231 registers that can be used without being saved.
232 The latter must include the registers where values are returned
233 and the register where structure-value addresses are passed.
234 Aside from that, you can include as many other registers as you like. */
235
236 #define CALL_USED_REGISTERS \
237 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, \
238 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
239 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
240 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
241 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1}
242
243 /* List the order in which to allocate registers. Each register must be
244 listed once, even those in FIXED_REGISTERS.
245
246 We allocate in the following order:
247 fp0 (not saved or used for anything)
248 fp13 - fp2 (not saved; incoming fp arg registers)
249 fp1 (not saved; return value)
250 fp31 - fp14 (saved; order given to save least number)
251 cr1, cr6, cr7 (not saved or special)
252 cr0 (not saved, but used for arithmetic operations)
253 cr2, cr3, cr4 (saved)
254 r0 (not saved; cannot be base reg)
255 r9 (not saved; best for TImode)
256 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
257 r3 (not saved; return value register)
258 r31 - r13 (saved; order given to save least number)
259 r12 (not saved; if used for DImode or DFmode would use r13)
260 mq (not saved; best to use it if we can)
261 ctr (not saved; when we have the choice ctr is better)
262 lr (saved)
263 cr5, r1, r2, ap (fixed) */
264
265 #define REG_ALLOC_ORDER \
266 {32, \
267 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
268 33, \
269 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
270 50, 49, 48, 47, 46, \
271 69, 74, 75, 68, 70, 71, 72, \
272 0, \
273 9, 11, 10, 8, 7, 6, 5, 4, \
274 3, \
275 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
276 18, 17, 16, 15, 14, 13, 12, \
277 64, 66, 65, \
278 73, 1, 2, 67}
279
280 /* True if register is floating-point. */
281 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
282
283 /* True if register is a condition register. */
284 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
285
286 /* True if register is an integer register. */
287 #define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
288
289 /* Return number of consecutive hard regs needed starting at reg REGNO
290 to hold something of mode MODE.
291 This is ordinarily the length in words of a value of mode MODE
292 but can be less for certain modes in special long registers.
293
294 On RS/6000, ordinary registers hold 32 bits worth;
295 a single floating point register holds 64 bits worth. */
296
297 #define HARD_REGNO_NREGS(REGNO, MODE) \
298 (FP_REGNO_P (REGNO) \
299 ? ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \
300 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
301
302 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
303 On RS/6000, the cpu registers can hold any mode but the float registers
304 can hold only floating modes and CR register can only hold CC modes. We
305 cannot put DImode or TImode anywhere except general register and they
306 must be able to fit within the register set. */
307
308 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
309 (FP_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_FLOAT \
310 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
311 : ! INT_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_INT \
312 : 1)
313
314 /* Value is 1 if it is a good idea to tie two pseudo registers
315 when one has mode MODE1 and one has mode MODE2.
316 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
317 for any hard reg, then this must be 0 for correct output. */
318 #define MODES_TIEABLE_P(MODE1, MODE2) \
319 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
320 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
321 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
322 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
323 : GET_MODE_CLASS (MODE1) == MODE_CC \
324 ? GET_MODE_CLASS (MODE2) == MODE_CC \
325 : GET_MODE_CLASS (MODE2) == MODE_CC \
326 ? GET_MODE_CLASS (MODE1) == MODE_CC \
327 : 1)
328
329 /* A C expression returning the cost of moving data from a register of class
330 CLASS1 to one of CLASS2.
331
332 On the RS/6000, copying between floating-point and fixed-point
333 registers is expensive. */
334
335 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
336 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
337 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
338 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
339 : 2)
340
341 /* A C expressions returning the cost of moving data of MODE from a register to
342 or from memory.
343
344 On the RS/6000, bump this up a bit. */
345
346 #define MEMORY_MOVE_COST(MODE) 6
347
348 /* Specify the cost of a branch insn; roughly the number of extra insns that
349 should be added to avoid a branch.
350
351 Set this to 3 on the RS/6000 since that is roughly the average cost of an
352 unscheduled conditional branch. */
353
354 #define BRANCH_COST 3
355
356 /* Specify the registers used for certain standard purposes.
357 The values of these macros are register numbers. */
358
359 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
360 /* #define PC_REGNUM */
361
362 /* Register to use for pushing function arguments. */
363 #define STACK_POINTER_REGNUM 1
364
365 /* Base register for access to local variables of the function. */
366 #define FRAME_POINTER_REGNUM 31
367
368 /* Value should be nonzero if functions must have frame pointers.
369 Zero means the frame pointer need not be set up (and parms
370 may be accessed via the stack pointer) in functions that seem suitable.
371 This is computed in `reload', in reload1.c. */
372 #define FRAME_POINTER_REQUIRED 0
373
374 /* Base register for access to arguments of the function. */
375 #define ARG_POINTER_REGNUM 67
376
377 /* Place to put static chain when calling a function that requires it. */
378 #define STATIC_CHAIN_REGNUM 11
379
380 /* Place that structure value return address is placed.
381
382 On the RS/6000, it is passed as an extra parameter. */
383 #define STRUCT_VALUE 0
384 \f
385 /* Define the classes of registers for register constraints in the
386 machine description. Also define ranges of constants.
387
388 One of the classes must always be named ALL_REGS and include all hard regs.
389 If there is more than one class, another class must be named NO_REGS
390 and contain no registers.
391
392 The name GENERAL_REGS must be the name of a class (or an alias for
393 another name such as ALL_REGS). This is the class of registers
394 that is allowed by "g" or "r" in a register constraint.
395 Also, registers outside this class are allocated only when
396 instructions express preferences for them.
397
398 The classes must be numbered in nondecreasing order; that is,
399 a larger-numbered class must never be contained completely
400 in a smaller-numbered class.
401
402 For any two classes, it is very desirable that there be another
403 class that represents their union. */
404
405 /* The RS/6000 has three types of registers, fixed-point, floating-point,
406 and condition registers, plus three special registers, MQ, CTR, and the
407 link register.
408
409 However, r0 is special in that it cannot be used as a base register.
410 So make a class for registers valid as base registers.
411
412 Also, cr0 is the only condition code register that can be used in
413 arithmetic insns, so make a separate class for it. */
414
415 enum reg_class { NO_REGS, BASE_REGS, GENERAL_REGS, FLOAT_REGS,
416 NON_SPECIAL_REGS, MQ_REGS, LINK_REGS, CTR_REGS, LINK_OR_CTR_REGS,
417 SPECIAL_REGS, SPEC_OR_GEN_REGS, CR0_REGS, CR_REGS, NON_FLOAT_REGS,
418 ALL_REGS, LIM_REG_CLASSES };
419
420 #define N_REG_CLASSES (int) LIM_REG_CLASSES
421
422 /* Give names of register classes as strings for dump file. */
423
424 #define REG_CLASS_NAMES \
425 { "NO_REGS", "BASE_REGS", "GENERAL_REGS", "FLOAT_REGS", \
426 "NON_SPECIAL_REGS", "MQ_REGS", "LINK_REGS", "CTR_REGS", \
427 "LINK_OR_CTR_REGS", "SPECIAL_REGS", "SPEC_OR_GEN_REGS", \
428 "CR0_REGS", "CR_REGS", "NON_FLOAT_REGS", "ALL_REGS" }
429
430 /* Define which registers fit in which classes.
431 This is an initializer for a vector of HARD_REG_SET
432 of length N_REG_CLASSES. */
433
434 #define REG_CLASS_CONTENTS \
435 { {0, 0, 0}, {0xfffffffe, 0, 8}, {~0, 0, 8}, \
436 {0, ~0, 0}, {~0, ~0, 8}, {0, 0, 1}, {0, 0, 2}, \
437 {0, 0, 4}, {0, 0, 6}, {0, 0, 7}, {~0, 0, 15}, \
438 {0, 0, 16}, {0, 0, 0xff0}, {~0, 0, 0xffff}, \
439 {~0, ~0, 0xffff} }
440
441 /* The same information, inverted:
442 Return the class number of the smallest class containing
443 reg number REGNO. This could be a conditional expression
444 or could index an array. */
445
446 #define REGNO_REG_CLASS(REGNO) \
447 ((REGNO) == 0 ? GENERAL_REGS \
448 : (REGNO) < 32 ? BASE_REGS \
449 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
450 : (REGNO) == 68 ? CR0_REGS \
451 : CR_REGNO_P (REGNO) ? CR_REGS \
452 : (REGNO) == 64 ? MQ_REGS \
453 : (REGNO) == 65 ? LINK_REGS \
454 : (REGNO) == 66 ? CTR_REGS \
455 : (REGNO) == 67 ? BASE_REGS \
456 : NO_REGS)
457
458 /* The class value for index registers, and the one for base regs. */
459 #define INDEX_REG_CLASS GENERAL_REGS
460 #define BASE_REG_CLASS BASE_REGS
461
462 /* Get reg_class from a letter such as appears in the machine description. */
463
464 #define REG_CLASS_FROM_LETTER(C) \
465 ((C) == 'f' ? FLOAT_REGS \
466 : (C) == 'b' ? BASE_REGS \
467 : (C) == 'h' ? SPECIAL_REGS \
468 : (C) == 'q' ? MQ_REGS \
469 : (C) == 'c' ? CTR_REGS \
470 : (C) == 'l' ? LINK_REGS \
471 : (C) == 'x' ? CR0_REGS \
472 : (C) == 'y' ? CR_REGS \
473 : NO_REGS)
474
475 /* The letters I, J, K, L, M, N, and P in a register constraint string
476 can be used to stand for particular ranges of immediate operands.
477 This macro defines what the ranges are.
478 C is the letter, and VALUE is a constant value.
479 Return 1 if VALUE is in the range specified by C.
480
481 `I' is signed 16-bit constants
482 `J' is a constant with only the high-order 16 bits non-zero
483 `K' is a constant with only the low-order 16 bits non-zero
484 `L' is a constant that can be placed into a mask operand
485 `M' is a constant that is greater than 31
486 `N' is a constant that is an exact power of two
487 `O' is the constant zero
488 `P' is a constant whose negation is a signed 16-bit constant */
489
490 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
491 ( (C) == 'I' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
492 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
493 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
494 : (C) == 'L' ? mask_constant (VALUE) \
495 : (C) == 'M' ? (VALUE) > 31 \
496 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
497 : (C) == 'O' ? (VALUE) == 0 \
498 : (C) == 'P' ? (unsigned) ((- (VALUE)) + 0x8000) < 0x1000 \
499 : 0)
500
501 /* Similar, but for floating constants, and defining letters G and H.
502 Here VALUE is the CONST_DOUBLE rtx itself.
503
504 We flag for special constants when we can copy the constant into
505 a general register in two insns for DF and one insn for SF. */
506
507 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
508 ((C) == 'G' ? easy_fp_constant (VALUE, GET_MODE (VALUE)) : 0)
509
510 /* Optional extra constraints for this machine.
511
512 For the RS/6000, `Q' means that this is a memory operand that is just
513 an offset from a register. */
514
515 #define EXTRA_CONSTRAINT(OP, C) \
516 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
517 : 0)
518
519 /* Given an rtx X being reloaded into a reg required to be
520 in class CLASS, return the class of reg to actually use.
521 In general this is just CLASS; but on some machines
522 in some cases it is preferable to use a more restrictive class.
523
524 On the RS/6000, we have to return NO_REGS when we want to reload a
525 floating-point CONST_DOUBLE to force it to be copied to memory. */
526
527 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
528 ((GET_CODE (X) == CONST_DOUBLE \
529 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
530 ? NO_REGS : (CLASS))
531
532 /* Return the register class of a scratch register needed to copy IN into
533 or out of a register in CLASS in MODE. If it can be done directly,
534 NO_REGS is returned. */
535
536 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
537 secondary_reload_class (CLASS, MODE, IN)
538
539 /* Return the maximum number of consecutive registers
540 needed to represent mode MODE in a register of class CLASS.
541
542 On RS/6000, this is the size of MODE in words,
543 except in the FP regs, where a single reg is enough for two words. */
544 #define CLASS_MAX_NREGS(CLASS, MODE) \
545 ((CLASS) == FLOAT_REGS \
546 ? ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \
547 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
548 \f
549 /* Stack layout; function entry, exit and calling. */
550
551 /* Define this if pushing a word on the stack
552 makes the stack pointer a smaller address. */
553 #define STACK_GROWS_DOWNWARD
554
555 /* Define this if the nominal address of the stack frame
556 is at the high-address end of the local variables;
557 that is, each additional local variable allocated
558 goes at a more negative offset in the frame.
559
560 On the RS/6000, we grow upwards, from the area after the outgoing
561 arguments. */
562 /* #define FRAME_GROWS_DOWNWARD */
563
564 /* Offset within stack frame to start allocating local variables at.
565 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
566 first local allocated. Otherwise, it is the offset to the BEGINNING
567 of the first local allocated.
568
569 On the RS/6000, the frame pointer is the same as the stack pointer,
570 except for dynamic allocations. So we start after the fixed area and
571 outgoing parameter area. */
572
573 #define STARTING_FRAME_OFFSET (current_function_outgoing_args_size + 24)
574
575 /* If we generate an insn to push BYTES bytes,
576 this says how many the stack pointer really advances by.
577 On RS/6000, don't define this because there are no push insns. */
578 /* #define PUSH_ROUNDING(BYTES) */
579
580 /* Offset of first parameter from the argument pointer register value.
581 On the RS/6000, we define the argument pointer to the start of the fixed
582 area. */
583 #define FIRST_PARM_OFFSET(FNDECL) 24
584
585 /* Define this if stack space is still allocated for a parameter passed
586 in a register. The value is the number of bytes allocated to this
587 area. */
588 #define REG_PARM_STACK_SPACE(FNDECL) 32
589
590 /* Define this if the above stack space is to be considered part of the
591 space allocated by the caller. */
592 #define OUTGOING_REG_PARM_STACK_SPACE
593
594 /* This is the difference between the logical top of stack and the actual sp.
595
596 For the RS/6000, sp points past the fixed area. */
597 #define STACK_POINTER_OFFSET 24
598
599 /* Define this if the maximum size of all the outgoing args is to be
600 accumulated and pushed during the prologue. The amount can be
601 found in the variable current_function_outgoing_args_size. */
602 #define ACCUMULATE_OUTGOING_ARGS
603
604 /* Value is the number of bytes of arguments automatically
605 popped when returning from a subroutine call.
606 FUNTYPE is the data type of the function (as a tree),
607 or for a library call it is an identifier node for the subroutine name.
608 SIZE is the number of bytes of arguments passed on the stack. */
609
610 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
611
612 /* Define how to find the value returned by a function.
613 VALTYPE is the data type of the value (as a tree).
614 If the precise function being called is known, FUNC is its FUNCTION_DECL;
615 otherwise, FUNC is 0.
616
617 On RS/6000 an integer value is in r3 and a floating-point value is in
618 fp1. */
619
620 #define FUNCTION_VALUE(VALTYPE, FUNC) \
621 gen_rtx (REG, TYPE_MODE (VALTYPE), \
622 TREE_CODE (VALTYPE) == REAL_TYPE ? 33 : 3)
623
624 /* Define how to find the value returned by a library function
625 assuming the value has mode MODE. */
626
627 #define LIBCALL_VALUE(MODE) \
628 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT ? 33 : 3)
629
630 /* The definition of this macro implies that there are cases where
631 a scalar value cannot be returned in registers.
632
633 For the RS/6000, any structure or union type is returned in memory. */
634
635 #define RETURN_IN_MEMORY(TYPE) \
636 (TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE (TYPE) == UNION_TYPE)
637
638 /* 1 if N is a possible register number for a function value
639 as seen by the caller.
640
641 On RS/6000, this is r3 and fp1. */
642
643 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 3 || ((N) == 33))
644
645 /* 1 if N is a possible register number for function argument passing.
646 On RS/6000, these are r3-r10 and fp1-fp13. */
647
648 #define FUNCTION_ARG_REGNO_P(N) \
649 (((N) <= 10 && (N) >= 3) || ((N) >= 33 && (N) <= 45))
650 \f
651 /* Define a data type for recording info about an argument list
652 during the scan of that argument list. This data type should
653 hold all necessary information about the function itself
654 and about the args processed so far, enough to enable macros
655 such as FUNCTION_ARG to determine where the next arg should go.
656
657 On the RS/6000, this is a structure. The first element is the number of
658 total argument words, the second is used to store the next
659 floating-point register number, and the third says how many more args we
660 have prototype types for. */
661
662 struct rs6000_args {int words, fregno, nargs_prototype; };
663 #define CUMULATIVE_ARGS struct rs6000_args
664
665 /* Define intermediate macro to compute the size (in registers) of an argument
666 for the RS/6000. */
667
668 #define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
669 (! (NAMED) ? 0 \
670 : (MODE) != BLKmode \
671 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
672 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
673
674 /* Initialize a variable CUM of type CUMULATIVE_ARGS
675 for a call to a function whose data type is FNTYPE.
676 For a library call, FNTYPE is 0. */
677
678 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
679 (CUM).words = 0, \
680 (CUM).fregno = 33, \
681 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
682 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
683 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
684 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
685 : 0)
686
687 /* Similar, but when scanning the definition of a procedure. We always
688 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
689
690 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
691 (CUM).words = 0, \
692 (CUM).fregno = 33, \
693 (CUM).nargs_prototype = 1000
694
695 /* Update the data in CUM to advance over an argument
696 of mode MODE and data type TYPE.
697 (TYPE is null for libcalls where that information may not be available.) */
698
699 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
700 { (CUM).nargs_prototype--; \
701 if (NAMED) \
702 { \
703 (CUM).words += RS6000_ARG_SIZE (MODE, TYPE, NAMED); \
704 if (GET_MODE_CLASS (MODE) == MODE_FLOAT) \
705 (CUM).fregno++; \
706 } \
707 }
708
709 /* Non-zero if we can use a floating-point register to pass this arg. */
710 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
711 (GET_MODE_CLASS (MODE) == MODE_FLOAT && (CUM).fregno < 46)
712
713 /* Determine where to put an argument to a function.
714 Value is zero to push the argument on the stack,
715 or a hard register in which to store the argument.
716
717 MODE is the argument's machine mode.
718 TYPE is the data type of the argument (as a tree).
719 This is null for libcalls where that information may
720 not be available.
721 CUM is a variable of type CUMULATIVE_ARGS which gives info about
722 the preceding args and about the function being called.
723 NAMED is nonzero if this argument is a named parameter
724 (otherwise it is an extra parameter matching an ellipsis).
725
726 On RS/6000 the first eight words of non-FP are normally in registers
727 and the rest are pushed. The first 13 FP args are in registers.
728
729 If this is floating-point and no prototype is specified, we use
730 both an FP and integer register (or possibly FP reg and stack). Library
731 functions (when TYPE is zero) always have the proper types for args,
732 so we can pass the FP value just in one register. emit_library_function
733 doesn't support EXPR_LIST anyway. */
734
735 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
736 (! (NAMED) ? 0 \
737 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
738 : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) \
739 ? ((CUM).nargs_prototype > 0 || (TYPE) == 0 \
740 ? gen_rtx (REG, MODE, (CUM).fregno) \
741 : ((CUM).words < 8 \
742 ? gen_rtx (EXPR_LIST, VOIDmode, \
743 gen_rtx (REG, (MODE), 3 + (CUM).words), \
744 gen_rtx (REG, (MODE), (CUM).fregno)) \
745 : gen_rtx (EXPR_LIST, VOIDmode, 0, \
746 gen_rtx (REG, (MODE), (CUM).fregno)))) \
747 : (CUM).words < 8 ? gen_rtx(REG, (MODE), 3 + (CUM).words) : 0)
748
749 /* For an arg passed partly in registers and partly in memory,
750 this is the number of registers used.
751 For args passed entirely in registers or entirely in memory, zero. */
752
753 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
754 (! (NAMED) ? 0 \
755 : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) && (CUM).nargs_prototype >= 0 ? 0 \
756 : (((CUM).words < 8 \
757 && 8 < ((CUM).words + RS6000_ARG_SIZE (MODE, TYPE, NAMED))) \
758 ? 8 - (CUM).words : 0))
759
760 /* Perform any needed actions needed for a function that is receiving a
761 variable number of arguments.
762
763 CUM is as above.
764
765 MODE and TYPE are the mode and type of the current parameter.
766
767 PRETEND_SIZE is a variable that should be set to the amount of stack
768 that must be pushed by the prolog to pretend that our caller pushed
769 it.
770
771 Normally, this macro will push all remaining incoming registers on the
772 stack and set PRETEND_SIZE to the length of the registers pushed. */
773
774 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
775 { if ((CUM).words < 8) \
776 { \
777 int first_reg_offset = (CUM).words; \
778 \
779 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
780 first_reg_offset += RS6000_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
781 \
782 if (first_reg_offset > 8) \
783 first_reg_offset = 8; \
784 \
785 if (! (NO_RTL) && first_reg_offset != 8) \
786 move_block_from_reg \
787 (3 + first_reg_offset, \
788 gen_rtx (MEM, BLKmode, \
789 plus_constant (virtual_incoming_args_rtx, \
790 first_reg_offset * 4)), \
791 8 - first_reg_offset); \
792 PRETEND_SIZE = (8 - first_reg_offset) * UNITS_PER_WORD; \
793 } \
794 }
795
796 /* This macro generates the assembly code for function entry.
797 FILE is a stdio stream to output the code to.
798 SIZE is an int: how many units of temporary storage to allocate.
799 Refer to the array `regs_ever_live' to determine which registers
800 to save; `regs_ever_live[I]' is nonzero if register number I
801 is ever used in the function. This macro is responsible for
802 knowing which registers should not be saved even if used. */
803
804 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
805
806 /* Output assembler code to FILE to increment profiler label # LABELNO
807 for profiling a function entry. */
808
809 #define FUNCTION_PROFILER(FILE, LABELNO) \
810 output_function_profiler ((FILE), (LABELNO));
811
812 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
813 the stack pointer does not matter. No definition is equivalent to
814 always zero.
815
816 On the RS/6000, this is non-zero because we can restore the stack from
817 its backpointer, which we maintain. */
818 #define EXIT_IGNORE_STACK 1
819
820 /* This macro generates the assembly code for function exit,
821 on machines that need it. If FUNCTION_EPILOGUE is not defined
822 then individual return instructions are generated for each
823 return statement. Args are same as for FUNCTION_PROLOGUE.
824
825 The function epilogue should not depend on the current stack pointer!
826 It should use the frame pointer only. This is mandatory because
827 of alloca; we also take advantage of it to omit stack adjustments
828 before returning. */
829
830 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
831 \f
832 /* Output assembler code for a block containing the constant parts
833 of a trampoline, leaving space for the variable parts.
834
835 The trampoline should set the static chain pointer to value placed
836 into the trampoline and should branch to the specified routine.
837
838 On the RS/6000, this is not code at all, but merely a data area,
839 since that is the way all functions are called. The first word is
840 the address of the function, the second word is the TOC pointer (r2),
841 and the third word is the static chain value. */
842
843 #define TRAMPOLINE_TEMPLATE(FILE) { fprintf (FILE, "\t.long 0, 0, 0\n"); }
844
845 /* Length in units of the trampoline for entering a nested function. */
846
847 #define TRAMPOLINE_SIZE 12
848
849 /* Emit RTL insns to initialize the variable parts of a trampoline.
850 FNADDR is an RTX for the address of the function's pure code.
851 CXT is an RTX for the static chain value for the function. */
852
853 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
854 { \
855 emit_move_insn (gen_rtx (MEM, SImode, \
856 memory_address (SImode, (ADDR))), \
857 gen_rtx (MEM, SImode, \
858 memory_address (SImode, (FNADDR)))); \
859 emit_move_insn (gen_rtx (MEM, SImode, \
860 memory_address (SImode, \
861 plus_constant ((ADDR), 4))), \
862 gen_rtx (MEM, SImode, \
863 memory_address (SImode, \
864 plus_constant ((FNADDR), 4)))); \
865 emit_move_insn (gen_rtx (MEM, SImode, \
866 memory_address (SImode, \
867 plus_constant ((ADDR), 8))), \
868 force_reg (SImode, (CXT))); \
869 }
870 \f
871 /* Definitions for register eliminations.
872
873 We have two registers that can be eliminated on the RS/6000. First, the
874 frame pointer register can often be eliminated in favor of the stack
875 pointer register. Secondly, the argument pointer register can always be
876 eliminated; it is replaced with either the stack or frame pointer. */
877
878 /* This is an array of structures. Each structure initializes one pair
879 of eliminable registers. The "from" register number is given first,
880 followed by "to". Eliminations of the same "from" register are listed
881 in order of preference. */
882 #define ELIMINABLE_REGS \
883 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
884 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
885 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM} }
886
887 /* Given FROM and TO register numbers, say whether this elimination is allowed.
888 Frame pointer elimination is automatically handled.
889
890 For the RS/6000, if frame pointer elimination is being done, we would like
891 to convert ap into fp, not sp. */
892
893 #define CAN_ELIMINATE(FROM, TO) \
894 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
895 ? ! frame_pointer_needed \
896 : 1)
897
898 /* Define the offset between two registers, one to be eliminated, and the other
899 its replacement, at the start of a routine. */
900 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
901 { \
902 int total_stack_size = (rs6000_sa_size () + get_frame_size () \
903 + current_function_outgoing_args_size); \
904 \
905 total_stack_size = (total_stack_size + 7) & ~7; \
906 \
907 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
908 { \
909 if (rs6000_pushes_stack ()) \
910 (OFFSET) = 0; \
911 else \
912 (OFFSET) = - total_stack_size; \
913 } \
914 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
915 (OFFSET) = total_stack_size; \
916 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
917 { \
918 if (rs6000_pushes_stack ()) \
919 (OFFSET) = total_stack_size; \
920 else \
921 (OFFSET) = 0; \
922 } \
923 else \
924 abort (); \
925 }
926 \f
927 /* Addressing modes, and classification of registers for them. */
928
929 /* #define HAVE_POST_INCREMENT */
930 /* #define HAVE_POST_DECREMENT */
931
932 #define HAVE_PRE_DECREMENT
933 #define HAVE_PRE_INCREMENT
934
935 /* Macros to check register numbers against specific register classes. */
936
937 /* These assume that REGNO is a hard or pseudo reg number.
938 They give nonzero only if REGNO is a hard reg of the suitable class
939 or a pseudo reg currently allocated to a suitable hard reg.
940 Since they use reg_renumber, they are safe only once reg_renumber
941 has been allocated, which happens in local-alloc.c. */
942
943 #define REGNO_OK_FOR_INDEX_P(REGNO) \
944 ((REGNO) < FIRST_PSEUDO_REGISTER \
945 ? (REGNO) <= 31 || (REGNO) == 67 \
946 : (reg_renumber[REGNO] >= 0 \
947 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
948
949 #define REGNO_OK_FOR_BASE_P(REGNO) \
950 ((REGNO) < FIRST_PSEUDO_REGISTER \
951 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
952 : (reg_renumber[REGNO] > 0 \
953 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
954 \f
955 /* Maximum number of registers that can appear in a valid memory address. */
956
957 #define MAX_REGS_PER_ADDRESS 2
958
959 /* Recognize any constant value that is a valid address. */
960
961 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
962
963 /* Nonzero if the constant value X is a legitimate general operand.
964 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
965
966 On the RS/6000, all integer constants are acceptable, most won't be valid
967 for particular insns, though. Only easy FP constants are
968 acceptable. */
969
970 #define LEGITIMATE_CONSTANT_P(X) \
971 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
972 || easy_fp_constant (X, GET_MODE (X)))
973
974 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
975 and check its validity for a certain class.
976 We have two alternate definitions for each of them.
977 The usual definition accepts all pseudo regs; the other rejects
978 them unless they have been allocated suitable hard regs.
979 The symbol REG_OK_STRICT causes the latter definition to be used.
980
981 Most source files want to accept pseudo regs in the hope that
982 they will get allocated to the class that the insn wants them to be in.
983 Source files for reload pass need to be strict.
984 After reload, it makes no difference, since pseudo regs have
985 been eliminated by then. */
986
987 #ifndef REG_OK_STRICT
988
989 /* Nonzero if X is a hard reg that can be used as an index
990 or if it is a pseudo reg. */
991 #define REG_OK_FOR_INDEX_P(X) \
992 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
993
994 /* Nonzero if X is a hard reg that can be used as a base reg
995 or if it is a pseudo reg. */
996 #define REG_OK_FOR_BASE_P(X) \
997 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
998
999 #else
1000
1001 /* Nonzero if X is a hard reg that can be used as an index. */
1002 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1003 /* Nonzero if X is a hard reg that can be used as a base reg. */
1004 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1005
1006 #endif
1007 \f
1008 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1009 that is a valid memory address for an instruction.
1010 The MODE argument is the machine mode for the MEM expression
1011 that wants to use this address.
1012
1013 On the RS/6000, there are four valid address: a SYMBOL_REF that
1014 refers to a constant pool entry of an address (or the sum of it
1015 plus a constant), a short (16-bit signed) constant plus a register,
1016 the sum of two registers, or a register indirect, possibly with an
1017 auto-increment. For DFmode and DImode with an constant plus register,
1018 we must ensure that both words are addressable. */
1019
1020 #define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
1021 (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X) \
1022 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1023
1024 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1025 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
1026 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1027 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1028 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1029
1030 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1031 (GET_CODE (X) == CONST_INT \
1032 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1033
1034 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1035 (GET_CODE (X) == PLUS \
1036 && GET_CODE (XEXP (X, 0)) == REG \
1037 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1038 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1039 && (((MODE) != DFmode && (MODE) != DImode) \
1040 || LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))
1041
1042 #define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1043 (GET_CODE (X) == PLUS \
1044 && GET_CODE (XEXP (X, 0)) == REG \
1045 && GET_CODE (XEXP (X, 1)) == REG \
1046 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1047 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1048 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1049 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1050
1051 #define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1052 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1053
1054 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1055 { if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1056 goto ADDR; \
1057 if (GET_CODE (X) == PRE_INC \
1058 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1059 goto ADDR; \
1060 if (GET_CODE (X) == PRE_DEC \
1061 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1062 goto ADDR; \
1063 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1064 goto ADDR; \
1065 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1066 goto ADDR; \
1067 if ((MODE) != DImode && (MODE) != TImode \
1068 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1069 goto ADDR; \
1070 }
1071 \f
1072 /* Try machine-dependent ways of modifying an illegitimate address
1073 to be legitimate. If we find one, return the new, valid address.
1074 This macro is used in only one place: `memory_address' in explow.c.
1075
1076 OLDX is the address as it was before break_out_memory_refs was called.
1077 In some cases it is useful to look at this to decide what needs to be done.
1078
1079 MODE and WIN are passed so that this macro can use
1080 GO_IF_LEGITIMATE_ADDRESS.
1081
1082 It is always safe for this macro to do nothing. It exists to recognize
1083 opportunities to optimize the output.
1084
1085 On RS/6000, first check for the sum of a register with a constant
1086 integer that is out of range. If so, generate code to add the
1087 constant with the low-order 16 bits masked to the register and force
1088 this result into another register (this can be done with `cau').
1089 Then generate an address of REG+(CONST&0xffff), allowing for the
1090 possibility of bit 16 being a one.
1091
1092 Then check for the sum of a register and something not constant, try to
1093 load the other things into a register and return the sum. */
1094
1095 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1096 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1097 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1098 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1099 { int high_int, low_int; \
1100 high_int = INTVAL (XEXP (X, 1)) >> 16; \
1101 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1102 if (low_int & 0x8000) \
1103 high_int += 1, low_int |= 0xffff0000; \
1104 (X) = gen_rtx (PLUS, SImode, \
1105 force_operand \
1106 (gen_rtx (PLUS, SImode, XEXP (X, 0), \
1107 gen_rtx (CONST_INT, VOIDmode, \
1108 high_int << 16)), 0),\
1109 gen_rtx (CONST_INT, VOIDmode, low_int)); \
1110 goto WIN; \
1111 } \
1112 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1113 && GET_CODE (XEXP (X, 1)) != CONST_INT \
1114 && (MODE) != DImode && (MODE) != TImode) \
1115 { \
1116 (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
1117 force_reg (SImode, force_operand (XEXP (X, 1), 0))); \
1118 goto WIN; \
1119 } \
1120 }
1121
1122 /* Go to LABEL if ADDR (a legitimate address expression)
1123 has an effect that depends on the machine mode it is used for.
1124
1125 On the RS/6000 this is true if the address is valid with a zero offset
1126 but not with an offset of four (this means it cannot be used as an
1127 address for DImode or DFmode) or is a pre-increment or decrement. Since
1128 we know it is valid, we just check for an address that is not valid with
1129 an offset of four. */
1130
1131 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1132 { if (GET_CODE (ADDR) == PLUS \
1133 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
1134 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1135 goto LABEL; \
1136 if (GET_CODE (ADDR) == PRE_INC) \
1137 goto LABEL; \
1138 if (GET_CODE (ADDR) == PRE_DEC) \
1139 goto LABEL; \
1140 }
1141 \f
1142 /* Define this if some processing needs to be done immediately before
1143 emitting code for an insn. */
1144
1145 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1146
1147 /* Specify the machine mode that this machine uses
1148 for the index in the tablejump instruction. */
1149 #define CASE_VECTOR_MODE SImode
1150
1151 /* Define this if the tablejump instruction expects the table
1152 to contain offsets from the address of the table.
1153 Do not define this if the table should contain absolute addresses. */
1154 #define CASE_VECTOR_PC_RELATIVE
1155
1156 /* Specify the tree operation to be used to convert reals to integers. */
1157 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1158
1159 /* This is the kind of divide that is easiest to do in the general case. */
1160 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1161
1162 /* Define this as 1 if `char' should by default be signed; else as 0. */
1163 #define DEFAULT_SIGNED_CHAR 0
1164
1165 /* This flag, if defined, says the same insns that convert to a signed fixnum
1166 also convert validly to an unsigned one. */
1167
1168 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1169
1170 /* Max number of bytes we can move from memory to memory
1171 in one reasonably fast instruction. */
1172 #define MOVE_MAX 16
1173
1174 /* Nonzero if access to memory by bytes is no faster than for words.
1175 Also non-zero if doing byte operations (specifically shifts) in registers
1176 is undesirable. */
1177 #define SLOW_BYTE_ACCESS 1
1178
1179 /* Define if normal loads of shorter-than-word items from memory clears
1180 the rest of the bigs in the register. */
1181 #define BYTE_LOADS_ZERO_EXTEND
1182 \f
1183 /* The RS/6000 uses the XCOFF format. */
1184
1185 #define XCOFF_DEBUGGING_INFO
1186
1187 /* Define if the object format being used is COFF or a superset. */
1188 #define OBJECT_FORMAT_COFF
1189
1190 /* This is the only version of nm that collect2 can work with. */
1191 #define REAL_NM_FILE_NAME "/usr/ucb/nm"
1192
1193 /* We don't have GAS for the RS/6000 yet, so don't write out special
1194 .stabs in cc1plus. */
1195
1196 #define FASCIST_ASSEMBLER
1197
1198 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1199 is done just by pretending it is already truncated. */
1200 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1201
1202 /* Specify the machine mode that pointers have.
1203 After generation of rtl, the compiler makes no further distinction
1204 between pointers and any other objects of this machine mode. */
1205 #define Pmode SImode
1206
1207 /* Mode of a function address in a call instruction (for indexing purposes).
1208
1209 Doesn't matter on RS/6000. */
1210 #define FUNCTION_MODE SImode
1211
1212 /* Define this if addresses of constant functions
1213 shouldn't be put through pseudo regs where they can be cse'd.
1214 Desirable on machines where ordinary constants are expensive
1215 but a CALL with constant address is cheap. */
1216 #define NO_FUNCTION_CSE
1217
1218 /* Define this if shift instructions ignore all but the low-order
1219 few bits. */
1220 #define SHIFT_COUNT_TRUNCATED
1221
1222 /* Use atexit for static constructors/destructors, instead of defining
1223 our own exit function. */
1224 #define HAVE_ATEXIT
1225
1226 /* Compute the cost of computing a constant rtl expression RTX
1227 whose rtx-code is CODE. The body of this macro is a portion
1228 of a switch statement. If the code is computed here,
1229 return it with a return statement. Otherwise, break from the switch.
1230
1231 On the RS/6000, if it is legal in the insn, it is free. So this
1232 always returns 0. */
1233
1234 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1235 case CONST_INT: \
1236 case CONST: \
1237 case LABEL_REF: \
1238 case SYMBOL_REF: \
1239 case CONST_DOUBLE: \
1240 return 0;
1241
1242 /* Provide the costs of a rtl expression. This is in the body of a
1243 switch on CODE. */
1244
1245 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1246 case MULT: \
1247 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
1248 ? COSTS_N_INSNS (5) \
1249 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
1250 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
1251 case DIV: \
1252 case MOD: \
1253 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1254 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
1255 return COSTS_N_INSNS (2); \
1256 /* otherwise fall through to normal divide. */ \
1257 case UDIV: \
1258 case UMOD: \
1259 return COSTS_N_INSNS (19); \
1260 case MEM: \
1261 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
1262 return 5;
1263
1264 /* Compute the cost of an address. This is meant to approximate the size
1265 and/or execution delay of an insn using that address. If the cost is
1266 approximated by the RTL complexity, including CONST_COSTS above, as
1267 is usually the case for CISC machines, this macro should not be defined.
1268 For aggressively RISCy machines, only one insn format is allowed, so
1269 this macro should be a constant. The value of this macro only matters
1270 for valid addresses.
1271
1272 For the RS/6000, everything is cost 0. */
1273
1274 #define ADDRESS_COST(RTX) 0
1275
1276 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1277 should be adjusted to reflect any required changes. This macro is used when
1278 there is some systematic length adjustment required that would be difficult
1279 to express in the length attribute. */
1280
1281 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1282
1283 /* Add any extra modes needed to represent the condition code.
1284
1285 For the RS/6000, we need separate modes when unsigned (logical) comparisons
1286 are being done and we need a separate mode for floating-point. We also
1287 use a mode for the case when we are comparing the results of two
1288 comparisons. */
1289
1290 #define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
1291
1292 /* Define the names for the modes specified above. */
1293 #define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
1294
1295 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1296 return the mode to be used for the comparison. For floating-point, CCFPmode
1297 should be used. CCUNSmode should be used for unsigned comparisons.
1298 CCEQmode should be used when we are doing an inequality comparison on
1299 the result of a comparison. CCmode should be used in all other cases. */
1300
1301 #define SELECT_CC_MODE(OP,X,Y) \
1302 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
1303 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1304 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
1305 ? CCEQmode : CCmode))
1306
1307 /* Define the information needed to generate branch and scc insns. This is
1308 stored from the compare operation. Note that we can't use "rtx" here
1309 since it hasn't been defined! */
1310
1311 extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
1312 extern int rs6000_compare_fp_p;
1313
1314 /* Set to non-zero by "fix" operation to indicate that itrunc and
1315 uitrunc must be defined. */
1316
1317 extern int rs6000_trunc_used;
1318 \f
1319 /* Control the assembler format that we output. */
1320
1321 /* Output at beginning of assembler file.
1322
1323 Initialize the section names for the RS/6000 at this point.
1324
1325 We want to go into the TOC section so at least one .toc will be emitted.
1326 Also, in order to output proper .bs/.es pairs, we need at least one static
1327 [RW] section emitted.
1328
1329 We then switch back to text to force the gcc2_compiled. label and the space
1330 allocated after it (when profiling) into the text section.
1331
1332 Finally, declare mcount when profiling to make the assembler happy. */
1333
1334 #define ASM_FILE_START(FILE) \
1335 { \
1336 rs6000_gen_section_name (&xcoff_bss_section_name, \
1337 main_input_filename, ".bss_"); \
1338 rs6000_gen_section_name (&xcoff_private_data_section_name, \
1339 main_input_filename, ".rw_"); \
1340 rs6000_gen_section_name (&xcoff_read_only_section_name, \
1341 main_input_filename, ".ro_"); \
1342 \
1343 toc_section (); \
1344 if (write_symbols != NO_DEBUG) \
1345 private_data_section (); \
1346 text_section (); \
1347 if (profile_flag) \
1348 fprintf (FILE, "\t.extern .mcount\n"); \
1349 }
1350
1351 /* Output at end of assembler file.
1352
1353 On the RS/6000, referencing data should automatically pull in text. */
1354
1355 #define ASM_FILE_END(FILE) \
1356 { \
1357 text_section (); \
1358 fprintf (FILE, "_section_.text:\n"); \
1359 data_section (); \
1360 fprintf (FILE, "\t.long _section_.text\n"); \
1361 }
1362
1363 /* We define this to prevent the name mangler from putting dollar signs into
1364 function names. */
1365
1366 #define NO_DOLLAR_IN_LABEL
1367
1368 /* We define this to 0 so that gcc will never accept a dollar sign in a
1369 variable name. This is needed because the AIX assembler will not accept
1370 dollar signs. */
1371
1372 #define DOLLARS_IN_IDENTIFIERS 0
1373
1374 /* Implicit library calls should use memcpy, not bcopy, etc. */
1375
1376 #define TARGET_MEM_FUNCTIONS
1377
1378 /* Define the extra sections we need. We define three: one is the read-only
1379 data section which is used for constants. This is a csect whose name is
1380 derived from the name of the input file. The second is for initialized
1381 global variables. This is a csect whose name is that of the variable.
1382 The third is the TOC. */
1383
1384 #define EXTRA_SECTIONS \
1385 read_only_data, private_data, read_only_private_data, toc, bss
1386
1387 /* Define the name of our readonly data section. */
1388
1389 #define READONLY_DATA_SECTION read_only_data_section
1390
1391 /* Indicate that jump tables go in the text section. */
1392
1393 #define JUMP_TABLES_IN_TEXT_SECTION
1394
1395 /* Define the routines to implement these extra sections. */
1396
1397 #define EXTRA_SECTION_FUNCTIONS \
1398 \
1399 void \
1400 read_only_data_section () \
1401 { \
1402 if (in_section != read_only_data) \
1403 { \
1404 fprintf (asm_out_file, "\t.csect %s[RO]\n", \
1405 xcoff_read_only_section_name); \
1406 in_section = read_only_data; \
1407 } \
1408 } \
1409 \
1410 void \
1411 private_data_section () \
1412 { \
1413 if (in_section != private_data) \
1414 { \
1415 fprintf (asm_out_file, "\t.csect %s[RW]\n", \
1416 xcoff_private_data_section_name); \
1417 \
1418 in_section = private_data; \
1419 } \
1420 } \
1421 \
1422 void \
1423 read_only_private_data_section () \
1424 { \
1425 if (in_section != read_only_private_data) \
1426 { \
1427 fprintf (asm_out_file, "\t.csect %s[RO]\n", \
1428 xcoff_private_data_section_name); \
1429 in_section = read_only_private_data; \
1430 } \
1431 } \
1432 \
1433 void \
1434 toc_section () \
1435 { \
1436 if (in_section != toc) \
1437 fprintf (asm_out_file, "\t.toc\n"); \
1438 \
1439 in_section = toc; \
1440 }
1441
1442 /* This macro produces the initial definition of a function name.
1443 On the RS/6000, we need to place an extra '.' in the function name and
1444 output the function descriptor.
1445
1446 The csect for the function will have already been created by the
1447 `text_section' call previously done. We do have to go back to that
1448 csect, however. */
1449
1450 /* ??? What do the 16 and 044 in the .function line really mean? */
1451
1452 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1453 { if (TREE_PUBLIC (DECL)) \
1454 { \
1455 fprintf (FILE, "\t.globl ."); \
1456 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1457 fprintf (FILE, "\n"); \
1458 } \
1459 else if (write_symbols == XCOFF_DEBUG) \
1460 { \
1461 fprintf (FILE, "\t.lglobl ."); \
1462 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1463 fprintf (FILE, "\n"); \
1464 } \
1465 fprintf (FILE, "\t.csect "); \
1466 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1467 fprintf (FILE, "[DS]\n"); \
1468 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1469 fprintf (FILE, ":\n"); \
1470 fprintf (FILE, "\t.long ."); \
1471 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1472 fprintf (FILE, ", TOC[tc0], 0\n"); \
1473 fprintf (FILE, "\t.csect [PR]\n."); \
1474 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1475 fprintf (FILE, ":\n"); \
1476 if (write_symbols == XCOFF_DEBUG) \
1477 xcoffout_declare_function (FILE, DECL, NAME); \
1478 }
1479
1480 /* Return non-zero if this entry is to be written into the constant pool
1481 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
1482 containing one of them. If -mfp-in-toc (the default), we also do
1483 this for floating-point constants. We actually can only do this
1484 if the FP formats of the target and host machines are the same, but
1485 we can't check that since not every file that uses
1486 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
1487
1488 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
1489 (GET_CODE (X) == SYMBOL_REF \
1490 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1491 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
1492 || GET_CODE (X) == LABEL_REF \
1493 || (TARGET_FP_IN_TOC && GET_CODE (X) == CONST_DOUBLE \
1494 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1495 && BITS_PER_WORD == HOST_BITS_PER_INT))
1496
1497 /* Select section for constant in constant pool.
1498
1499 On RS/6000, all constants are in the private read-only data area.
1500 However, if this is being placed in the TOC it must be output as a
1501 toc entry. */
1502
1503 #define SELECT_RTX_SECTION(MODE, X) \
1504 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
1505 toc_section (); \
1506 else \
1507 read_only_private_data_section (); \
1508 }
1509
1510 /* Macro to output a special constant pool entry. Go to WIN if we output
1511 it. Otherwise, it is written the usual way.
1512
1513 On the RS/6000, toc entries are handled this way. */
1514
1515 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1516 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
1517 { \
1518 output_toc (FILE, X, LABELNO); \
1519 goto WIN; \
1520 } \
1521 }
1522
1523 /* Select the section for an initialized data object.
1524
1525 On the RS/6000, we have a special section for all variables except those
1526 that are static. */
1527
1528 #define SELECT_SECTION(EXP,RELOC) \
1529 { \
1530 if ((TREE_READONLY (EXP) \
1531 || (TREE_CODE (EXP) == STRING_CST \
1532 && !flag_writable_strings)) \
1533 && ! TREE_THIS_VOLATILE (EXP) \
1534 && ! (RELOC)) \
1535 { \
1536 if (TREE_PUBLIC (EXP)) \
1537 read_only_data_section (); \
1538 else \
1539 read_only_private_data_section (); \
1540 } \
1541 else \
1542 { \
1543 if (TREE_PUBLIC (EXP)) \
1544 data_section (); \
1545 else \
1546 private_data_section (); \
1547 } \
1548 }
1549
1550 /* This outputs NAME to FILE up to the first null or '['. */
1551
1552 #define RS6000_OUTPUT_BASENAME(FILE, NAME) \
1553 if ((NAME)[0] == '*') \
1554 assemble_name (FILE, NAME); \
1555 else \
1556 { \
1557 char *_p; \
1558 for (_p = (NAME); *_p && *_p != '['; _p++) \
1559 fputc (*_p, FILE); \
1560 }
1561
1562 /* Output something to declare an external symbol to the assembler. Most
1563 assemblers don't need this.
1564
1565 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
1566 name. Normally we write this out along with the name. In the few cases
1567 where we can't, it gets stripped off. */
1568
1569 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1570 { rtx _symref = XEXP (DECL_RTL (DECL), 0); \
1571 if ((TREE_CODE (DECL) == VAR_DECL \
1572 || TREE_CODE (DECL) == FUNCTION_DECL) \
1573 && (NAME)[0] != '*' \
1574 && (NAME)[strlen (NAME) - 1] != ']') \
1575 { \
1576 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
1577 strcpy (_name, XSTR (_symref, 0)); \
1578 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
1579 XSTR (_symref, 0) = _name; \
1580 } \
1581 fprintf (FILE, "\t.extern "); \
1582 assemble_name (FILE, XSTR (_symref, 0)); \
1583 if (TREE_CODE (DECL) == FUNCTION_DECL) \
1584 { \
1585 fprintf (FILE, "\n\t.extern ."); \
1586 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
1587 } \
1588 fprintf (FILE, "\n"); \
1589 }
1590
1591 /* Similar, but for libcall. We only have to worry about the function name,
1592 not that of the descriptor. */
1593
1594 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
1595 { fprintf (FILE, "\t.extern ."); \
1596 assemble_name (FILE, XSTR (FUN, 0)); \
1597 fprintf (FILE, "\n"); \
1598 }
1599
1600 /* Output to assembler file text saying following lines
1601 may contain character constants, extra white space, comments, etc. */
1602
1603 #define ASM_APP_ON ""
1604
1605 /* Output to assembler file text saying following lines
1606 no longer contain unusual constructs. */
1607
1608 #define ASM_APP_OFF ""
1609
1610 /* Output before instructions. */
1611
1612 #define TEXT_SECTION_ASM_OP ".csect [PR]"
1613
1614 /* Output before writable data. */
1615
1616 #define DATA_SECTION_ASM_OP ".csect .data[RW]"
1617
1618 /* How to refer to registers in assembler output.
1619 This sequence is indexed by compiler's hard-register-number (see above). */
1620
1621 #define REGISTER_NAMES \
1622 {"0", "1", "2", "3", "4", "5", "6", "7", \
1623 "8", "9", "10", "11", "12", "13", "14", "15", \
1624 "16", "17", "18", "19", "20", "21", "22", "23", \
1625 "24", "25", "26", "27", "28", "29", "30", "31", \
1626 "0", "1", "2", "3", "4", "5", "6", "7", \
1627 "8", "9", "10", "11", "12", "13", "14", "15", \
1628 "16", "17", "18", "19", "20", "21", "22", "23", \
1629 "24", "25", "26", "27", "28", "29", "30", "31", \
1630 "mq", "lr", "ctr", "ap", \
1631 "0", "1", "2", "3", "4", "5", "6", "7" }
1632
1633 /* Table of additional register names to use in user input. */
1634
1635 #define ADDITIONAL_REGISTER_NAMES \
1636 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
1637 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
1638 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
1639 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
1640 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
1641 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
1642 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
1643 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
1644 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
1645 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
1646 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
1647 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
1648 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
1649 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
1650 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
1651 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
1652 /* no additional names for: mq, lr, ctr, ap */ \
1653 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
1654 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
1655 "cc", 68 }
1656
1657 /* How to renumber registers for dbx and gdb. */
1658
1659 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1660
1661 /* This is how to output the definition of a user-level label named NAME,
1662 such as the label on a static function or variable NAME. */
1663
1664 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1665 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
1666
1667 /* This is how to output a command to make the user-level label named NAME
1668 defined for reference from other files. */
1669
1670 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1671 do { fputs ("\t.globl ", FILE); \
1672 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
1673
1674 /* This is how to output a reference to a user-level label named NAME.
1675 `assemble_name' uses this. */
1676
1677 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1678 fprintf (FILE, NAME)
1679
1680 /* This is how to output an internal numbered label where
1681 PREFIX is the class of label and NUM is the number within the class. */
1682
1683 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1684 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
1685
1686 /* This is how to output a label for a jump table. Arguments are the same as
1687 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1688 passed. */
1689
1690 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1691 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1692
1693 /* This is how to store into the string LABEL
1694 the symbol_ref name of an internal numbered label where
1695 PREFIX is the class of label and NUM is the number within the class.
1696 This is suitable for output with `assemble_name'. */
1697
1698 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1699 sprintf (LABEL, "%s..%d", PREFIX, NUM)
1700
1701 /* This is how to output an assembler line defining a `double' constant. */
1702
1703 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1704 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1705
1706 /* This is how to output an assembler line defining a `float' constant. */
1707
1708 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1709 fprintf (FILE, "\t.float 0d%.20e\n", (VALUE))
1710
1711 /* This is how to output an assembler line defining an `int' constant. */
1712
1713 #define ASM_OUTPUT_INT(FILE,VALUE) \
1714 ( fprintf (FILE, "\t.long "), \
1715 output_addr_const (FILE, (VALUE)), \
1716 fprintf (FILE, "\n"))
1717
1718 /* Likewise for `char' and `short' constants. */
1719
1720 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1721 ( fprintf (FILE, "\t.short "), \
1722 output_addr_const (FILE, (VALUE)), \
1723 fprintf (FILE, "\n"))
1724
1725 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1726 ( fprintf (FILE, "\t.byte "), \
1727 output_addr_const (FILE, (VALUE)), \
1728 fprintf (FILE, "\n"))
1729
1730 /* This is how to output an assembler line for a numeric constant byte. */
1731
1732 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1733 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1734
1735 /* This is how to output an assembler line to define N characters starting
1736 at P to FILE. */
1737
1738 #define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
1739
1740 /* This is how to output code to push a register on the stack.
1741 It need not be very fast code. */
1742
1743 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1744 fprintf (FILE, "\tstu %s,-4(r1)\n", reg_names[REGNO]);
1745
1746 /* This is how to output an insn to pop a register from the stack.
1747 It need not be very fast code. */
1748
1749 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1750 fprintf (FILE, "\tl %s,0(r1)\n\tai r1,r1,4\n", reg_names[REGNO])
1751
1752 /* This is how to output an element of a case-vector that is absolute.
1753 (RS/6000 does not use such vectors, but we must define this macro
1754 anyway.) */
1755
1756 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1757 fprintf (FILE, "\t.long L..%d\n", VALUE)
1758
1759 /* This is how to output an element of a case-vector that is relative. */
1760
1761 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1762 fprintf (FILE, "\t.long L..%d-L..%d\n", VALUE, REL)
1763
1764 /* This is how to output an assembler line
1765 that says to advance the location counter
1766 to a multiple of 2**LOG bytes. */
1767
1768 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1769 if ((LOG) != 0) \
1770 fprintf (FILE, "\t.align %d\n", (LOG))
1771
1772 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1773 fprintf (FILE, "\t.space %d\n", (SIZE))
1774
1775 /* This says how to output an assembler line
1776 to define a global common symbol. */
1777
1778 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1779 do { fputs (".comm ", (FILE)); \
1780 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1781 fprintf ((FILE), ",%d\n", (SIZE)); } while (0)
1782
1783 /* This says how to output an assembler line
1784 to define a local common symbol. */
1785
1786 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1787 do { fputs (".lcomm ", (FILE)); \
1788 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1789 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
1790 } while (0)
1791
1792 /* Store in OUTPUT a string (made with alloca) containing
1793 an assembler-name for a local static variable named NAME.
1794 LABELNO is an integer which is different for each call. */
1795
1796 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1797 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1798 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1799
1800 /* Define the parentheses used to group arithmetic operations
1801 in assembler code. */
1802
1803 #define ASM_OPEN_PAREN "("
1804 #define ASM_CLOSE_PAREN ")"
1805
1806 /* Define results of standard character escape sequences. */
1807 #define TARGET_BELL 007
1808 #define TARGET_BS 010
1809 #define TARGET_TAB 011
1810 #define TARGET_NEWLINE 012
1811 #define TARGET_VT 013
1812 #define TARGET_FF 014
1813 #define TARGET_CR 015
1814
1815 /* Print operand X (an rtx) in assembler syntax to file FILE.
1816 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1817 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1818
1819 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1820
1821 /* Define which CODE values are valid. */
1822
1823 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1824
1825 /* Print a memory address as an operand to reference that memory location. */
1826
1827 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1828
1829 /* Define the codes that are matched by predicates in rs6000.c. */
1830
1831 #define PREDICATE_CODES \
1832 {"short_cint_operand", {CONST_INT}}, \
1833 {"u_short_cint_operand", {CONST_INT}}, \
1834 {"non_short_cint_operand", {CONST_INT}}, \
1835 {"gpc_reg_operand", {SUBREG, REG}}, \
1836 {"cc_reg_operand", {SUBREG, REG}}, \
1837 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
1838 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
1839 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
1840 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1841 {"easy_fp_constant", {CONST_DOUBLE}}, \
1842 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
1843 {"fp_reg_or_mem_operand", {SUBREG, MEM, REG}}, \
1844 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
1845 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1846 {"non_add_cint_operand", {CONST_INT}}, \
1847 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1848 {"non_and_cint_operand", {CONST_INT}}, \
1849 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
1850 {"non_logical_cint_operand", {CONST_INT}}, \
1851 {"mask_operand", {CONST_INT}}, \
1852 {"call_operand", {SYMBOL_REF, REG}}, \
1853 {"input_operand", {SUBREG, MEM, REG, CONST_INT}}, \
1854 {"branch_comparison_operation", {EQ, NE, LE, LT, GE, \
1855 LT, LEU, LTU, GEU, GTU}}, \
1856 {"scc_comparison_operation", {EQ, NE, LE, LT, GE, \
1857 LT, LEU, LTU, GEU, GTU}},