Fix System V profiling.
[gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26
27 /* Names to predefine in the preprocessor for this target machine. */
28
29 #define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 \
30 -Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
31
32 /* Print subsidiary information on the compiler version in use. */
33 #define TARGET_VERSION ;
34
35 /* Default string to use for cpu if not specified. */
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT ((char *)0)
38 #endif
39
40 /* Tell the assembler to assume that all undefined names are external.
41
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
47
48 /* #define ASM_SPEC "-u %(asm_cpu)" */
49
50 /* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
52
53 #define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
54
55 /* Common CPP definitions used by CPP_SPEC amonst the various targets
56 for handling -mcpu=xxx switches. */
57 #define CPP_CPU_SPEC \
58 "%{!mcpu*: \
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
64 %{mcpu=common: -D_ARCH_COM} \
65 %{mcpu=power: -D_ARCH_PWR} \
66 %{mcpu=power2: -D_ARCH_PWR2} \
67 %{mcpu=powerpc: -D_ARCH_PPC} \
68 %{mcpu=rios: -D_ARCH_PWR} \
69 %{mcpu=rios1: -D_ARCH_PWR} \
70 %{mcpu=rios2: -D_ARCH_PWR2} \
71 %{mcpu=rsc: -D_ARCH_PWR} \
72 %{mcpu=rsc1: -D_ARCH_PWR} \
73 %{mcpu=403: -D_ARCH_PPC} \
74 %{mcpu=505: -D_ARCH_PPC} \
75 %{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
76 %{mcpu=602: -D_ARCH_PPC} \
77 %{mcpu=603: -D_ARCH_PPC} \
78 %{mcpu=603e: -D_ARCH_PPC} \
79 %{mcpu=604: -D_ARCH_PPC} \
80 %{mcpu=620: -D_ARCH_PPC} \
81 %{mcpu=821: -D_ARCH_PPC} \
82 %{mcpu=860: -D_ARCH_PPC}"
83
84 #ifndef CPP_DEFAULT_SPEC
85 #define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
86 #endif
87
88 #ifndef CPP_SYSV_SPEC
89 #define CPP_SYSV_SPEC ""
90 #endif
91
92 #ifndef CPP_ENDIAN_SPEC
93 #define CPP_ENDIAN_SPEC ""
94 #endif
95
96 #ifndef CPP_ENDIAN_DEFAULT_SPEC
97 #define CPP_ENDIAN_DEFAULT_SPEC ""
98 #endif
99
100 #ifndef CPP_SYSV_DEFAULT_SPEC
101 #define CPP_SYSV_DEFAULT_SPEC ""
102 #endif
103
104 /* Common ASM definitions used by ASM_SPEC amonst the various targets
105 for handling -mcpu=xxx switches. */
106 #define ASM_CPU_SPEC \
107 "%{!mcpu*: \
108 %{mpower: %{!mpower2: -mpwr}} \
109 %{mpower2: -mpwrx} \
110 %{mpowerpc*: -mppc} \
111 %{mno-power: %{!mpowerpc*: -mcom}} \
112 %{!mno-power: %{!mpower2: %(asm_default)}}} \
113 %{mcpu=common: -mcom} \
114 %{mcpu=power: -mpwr} \
115 %{mcpu=power2: -mpwrx} \
116 %{mcpu=powerpc: -mppc} \
117 %{mcpu=rios: -mpwr} \
118 %{mcpu=rios1: -mpwr} \
119 %{mcpu=rios2: -mpwrx} \
120 %{mcpu=rsc: -mpwr} \
121 %{mcpu=rsc1: -mpwr} \
122 %{mcpu=403: -mppc} \
123 %{mcpu=505: -mppc} \
124 %{mcpu=601: -m601} \
125 %{mcpu=602: -mppc} \
126 %{mcpu=603: -mppc} \
127 %{mcpu=603e: -mppc} \
128 %{mcpu=604: -mppc} \
129 %{mcpu=620: -mppc} \
130 %{mcpu=821: -mppc} \
131 %{mcpu=860: -mppc}"
132
133 #ifndef ASM_DEFAULT_SPEC
134 #define ASM_DEFAULT_SPEC ""
135 #endif
136
137 /* This macro defines names of additional specifications to put in the specs
138 that can be used in various specifications like CC1_SPEC. Its definition
139 is an initializer with a subgrouping for each command option.
140
141 Each subgrouping contains a string constant, that defines the
142 specification name, and a string constant that used by the GNU CC driver
143 program.
144
145 Do not define this macro if it does not need to do anything. */
146
147 #ifndef SUBTARGET_EXTRA_SPECS
148 #define SUBTARGET_EXTRA_SPECS
149 #endif
150
151 #define EXTRA_SPECS \
152 { "cpp_cpu", CPP_CPU_SPEC }, \
153 { "cpp_default", CPP_DEFAULT_SPEC }, \
154 { "cpp_sysv", CPP_SYSV_SPEC }, \
155 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
156 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
157 { "cpp_endian", CPP_ENDIAN_SPEC }, \
158 { "asm_cpu", ASM_CPU_SPEC }, \
159 { "asm_default", ASM_DEFAULT_SPEC }, \
160 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
161 { "link_libg", LINK_LIBG_SPEC }, \
162 SUBTARGET_EXTRA_SPECS
163
164 /* Default location of syscalls.exp under AIX */
165 #ifndef CROSS_COMPILE
166 #define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
167 #else
168 #define LINK_SYSCALLS_SPEC ""
169 #endif
170
171 /* Default location of libg.exp under AIX */
172 #ifndef CROSS_COMPILE
173 #define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
174 #else
175 #define LINK_LIBG_SPEC ""
176 #endif
177
178 /* Define the options for the binder: Start text at 512, align all segments
179 to 512 bytes, and warn if there is text relocation.
180
181 The -bhalt:4 option supposedly changes the level at which ld will abort,
182 but it also suppresses warnings about multiply defined symbols and is
183 used by the AIX cc command. So we use it here.
184
185 -bnodelcsect undoes a poor choice of default relating to multiply-defined
186 csects. See AIX documentation for more information about this.
187
188 -bM:SRE tells the linker that the output file is Shared REusable. Note
189 that to actually build a shared library you will also need to specify an
190 export list with the -Wl,-bE option. */
191
192 #define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
193 %{static:-bnso %(link_syscalls) } \
194 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
195
196 /* Profiled library versions are used by linking with special directories. */
197 #define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
198 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
199
200 /* gcc must do the search itself to find libgcc.a, not use -l. */
201 #define LIBGCC_SPEC "libgcc.a%s"
202
203 /* Don't turn -B into -L if the argument specifies a relative file name. */
204 #define RELATIVE_PREFIX_NOT_LINKDIR
205
206 /* Architecture type. */
207
208 extern int target_flags;
209
210 /* Use POWER architecture instructions and MQ register. */
211 #define MASK_POWER 0x00000001
212
213 /* Use POWER2 extensions to POWER architecture. */
214 #define MASK_POWER2 0x00000002
215
216 /* Use PowerPC architecture instructions. */
217 #define MASK_POWERPC 0x00000004
218
219 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
220 #define MASK_PPC_GPOPT 0x00000008
221
222 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
223 #define MASK_PPC_GFXOPT 0x00000010
224
225 /* Use PowerPC-64 architecture instructions. */
226 #define MASK_POWERPC64 0x00000020
227
228 /* Use revised mnemonic names defined for PowerPC architecture. */
229 #define MASK_NEW_MNEMONICS 0x00000040
230
231 /* Disable placing fp constants in the TOC; can be turned on when the
232 TOC overflows. */
233 #define MASK_NO_FP_IN_TOC 0x00000080
234
235 /* Disable placing symbol+offset constants in the TOC; can be turned on when
236 the TOC overflows. */
237 #define MASK_NO_SUM_IN_TOC 0x00000100
238
239 /* Output only one TOC entry per module. Normally linking fails if
240 there are more than 16K unique variables/constants in an executable. With
241 this option, linking fails only if there are more than 16K modules, or
242 if there are more than 16K unique variables/constant in a single module.
243
244 This is at the cost of having 2 extra loads and one extra store per
245 function, and one less allocatable register. */
246 #define MASK_MINIMAL_TOC 0x00000200
247
248 /* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
249 #define MASK_64BIT 0x00000400
250
251 /* Disable use of FPRs. */
252 #define MASK_SOFT_FLOAT 0x00000800
253
254 /* Enable load/store multiple, even on powerpc */
255 #define MASK_MULTIPLE 0x00001000
256 #define MASK_MULTIPLE_SET 0x00002000
257
258 /* Use string instructions for block moves */
259 #define MASK_STRING 0x00004000
260 #define MASK_STRING_SET 0x00008000
261
262 /* Disable update form of load/store */
263 #define MASK_NO_UPDATE 0x00010000
264
265 /* Disable fused multiply/add operations */
266 #define MASK_NO_FUSED_MADD 0x00020000
267
268 #define TARGET_POWER (target_flags & MASK_POWER)
269 #define TARGET_POWER2 (target_flags & MASK_POWER2)
270 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
271 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
272 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
273 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
274 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
275 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
276 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
277 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
278 #define TARGET_64BIT (target_flags & MASK_64BIT)
279 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
280 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
281 #define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
282 #define TARGET_STRING (target_flags & MASK_STRING)
283 #define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
284 #define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
285 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
286
287 #define TARGET_32BIT (! TARGET_64BIT)
288 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
289 #define TARGET_UPDATE (! TARGET_NO_UPDATE)
290 #define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
291
292 /* Pseudo target to indicate whether the object format is ELF
293 (to get around not having conditional compilation in the md file) */
294 #ifndef TARGET_ELF
295 #define TARGET_ELF 0
296 #endif
297
298 /* If this isn't V.4, don't support -mno-toc. */
299 #ifndef TARGET_NO_TOC
300 #define TARGET_NO_TOC 0
301 #define TARGET_TOC 1
302 #endif
303
304 /* Pseudo target to say whether this is Windows NT */
305 #ifndef TARGET_WINDOWS_NT
306 #define TARGET_WINDOWS_NT 0
307 #endif
308
309 /* Pseudo target to say whether this is MAC */
310 #ifndef TARGET_MACOS
311 #define TARGET_MACOS 0
312 #endif
313
314 /* Pseudo target to say whether this is AIX */
315 #ifndef TARGET_AIX
316 #if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
317 #define TARGET_AIX 0
318 #else
319 #define TARGET_AIX 1
320 #endif
321 #endif
322
323 #ifndef TARGET_XL_CALL
324 #define TARGET_XL_CALL 0
325 #endif
326
327 /* Run-time compilation parameters selecting different hardware subsets.
328
329 Macro to define tables used to set the flags.
330 This is a list in braces of pairs in braces,
331 each pair being { "NAME", VALUE }
332 where VALUE is the bits to set or minus the bits to clear.
333 An empty string NAME is used to identify the default VALUE. */
334
335 /* This is meant to be redefined in the host dependent files */
336 #ifndef SUBTARGET_SWITCHES
337 #define SUBTARGET_SWITCHES
338 #endif
339
340 #define TARGET_SWITCHES \
341 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
342 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
343 | MASK_POWER2)}, \
344 {"no-power2", - MASK_POWER2}, \
345 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
346 | MASK_STRING)}, \
347 {"powerpc", MASK_POWERPC}, \
348 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
349 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
350 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
351 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
352 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
353 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
354 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
355 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
356 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
357 | MASK_MINIMAL_TOC)}, \
358 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
359 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
360 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
361 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
362 {"minimal-toc", MASK_MINIMAL_TOC}, \
363 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
364 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
365 {"hard-float", - MASK_SOFT_FLOAT}, \
366 {"soft-float", MASK_SOFT_FLOAT}, \
367 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
368 {"no-multiple", - MASK_MULTIPLE}, \
369 {"no-multiple", MASK_MULTIPLE_SET}, \
370 {"string", MASK_STRING | MASK_STRING_SET}, \
371 {"no-string", - MASK_STRING}, \
372 {"no-string", MASK_STRING_SET}, \
373 {"update", - MASK_NO_UPDATE}, \
374 {"no-update", MASK_NO_UPDATE}, \
375 {"fused-madd", - MASK_NO_FUSED_MADD}, \
376 {"no-fused-madd", MASK_NO_FUSED_MADD}, \
377 SUBTARGET_SWITCHES \
378 {"", TARGET_DEFAULT}}
379
380 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
381
382 /* Processor type. */
383 enum processor_type
384 {PROCESSOR_RIOS1,
385 PROCESSOR_RIOS2,
386 PROCESSOR_MPCCORE,
387 PROCESSOR_PPC403,
388 PROCESSOR_PPC601,
389 PROCESSOR_PPC603,
390 PROCESSOR_PPC604,
391 PROCESSOR_PPC620};
392
393 extern enum processor_type rs6000_cpu;
394
395 /* Recast the processor type to the cpu attribute. */
396 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
397
398 /* Define generic processor types based upon current deployment. */
399 #define PROCESSOR_COMMON PROCESSOR_PPC601
400 #define PROCESSOR_POWER PROCESSOR_RIOS1
401 #define PROCESSOR_POWERPC PROCESSOR_PPC604
402
403 /* Define the default processor. This is overridden by other tm.h files. */
404 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
405
406 /* Specify the dialect of assembler to use. New mnemonics is dialect one
407 and the old mnemonics are dialect zero. */
408 #define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
409
410 /* This macro is similar to `TARGET_SWITCHES' but defines names of
411 command options that have values. Its definition is an
412 initializer with a subgrouping for each command option.
413
414 Each subgrouping contains a string constant, that defines the
415 fixed part of the option name, and the address of a variable.
416 The variable, type `char *', is set to the variable part of the
417 given option if the fixed part matches. The actual option name
418 is made by appending `-m' to the specified name.
419
420 Here is an example which defines `-mshort-data-NUMBER'. If the
421 given option is `-mshort-data-512', the variable `m88k_short_data'
422 will be set to the string `"512"'.
423
424 extern char *m88k_short_data;
425 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
426
427 /* This is meant to be overriden in target specific files. */
428 #ifndef SUBTARGET_OPTIONS
429 #define SUBTARGET_OPTIONS
430 #endif
431
432 #define TARGET_OPTIONS \
433 { \
434 {"cpu=", &rs6000_select[1].string}, \
435 {"tune=", &rs6000_select[2].string}, \
436 {"debug-", &rs6000_debug_name}, \
437 {"debug=", &rs6000_debug_name}, \
438 SUBTARGET_OPTIONS \
439 }
440
441 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
442 struct rs6000_cpu_select
443 {
444 char *string;
445 char *name;
446 int set_tune_p;
447 int set_arch_p;
448 };
449
450 extern struct rs6000_cpu_select rs6000_select[];
451
452 /* Debug support */
453 extern char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
454 extern int rs6000_debug_stack; /* debug stack applications */
455 extern int rs6000_debug_arg; /* debug argument handling */
456
457 #define TARGET_DEBUG_STACK rs6000_debug_stack
458 #define TARGET_DEBUG_ARG rs6000_debug_arg
459
460 /* Sometimes certain combinations of command options do not make sense
461 on a particular target machine. You can define a macro
462 `OVERRIDE_OPTIONS' to take account of this. This macro, if
463 defined, is executed once just after all the command options have
464 been parsed.
465
466 On the RS/6000 this is used to define the target cpu type. */
467
468 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
469
470 /* Show we can debug even without a frame pointer. */
471 #define CAN_DEBUG_WITHOUT_FP
472 \f
473 /* target machine storage layout */
474
475 /* Define to support cross compilation to an RS6000 target. */
476 #define REAL_ARITHMETIC
477
478 /* Define this macro if it is advisable to hold scalars in registers
479 in a wider mode than that declared by the program. In such cases,
480 the value is constrained to be within the bounds of the declared
481 type, but kept valid in the wider mode. The signedness of the
482 extension may differ from that of the type. */
483
484 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
485 if (GET_MODE_CLASS (MODE) == MODE_INT \
486 && GET_MODE_SIZE (MODE) < 4) \
487 (MODE) = SImode;
488
489 /* Define this if most significant bit is lowest numbered
490 in instructions that operate on numbered bit-fields. */
491 /* That is true on RS/6000. */
492 #define BITS_BIG_ENDIAN 1
493
494 /* Define this if most significant byte of a word is the lowest numbered. */
495 /* That is true on RS/6000. */
496 #define BYTES_BIG_ENDIAN 1
497
498 /* Define this if most significant word of a multiword number is lowest
499 numbered.
500
501 For RS/6000 we can decide arbitrarily since there are no machine
502 instructions for them. Might as well be consistent with bits and bytes. */
503 #define WORDS_BIG_ENDIAN 1
504
505 /* number of bits in an addressable storage unit */
506 #define BITS_PER_UNIT 8
507
508 /* Width in bits of a "word", which is the contents of a machine register.
509 Note that this is not necessarily the width of data type `int';
510 if using 16-bit ints on a 68000, this would still be 32.
511 But on a machine with 16-bit registers, this would be 16. */
512 #define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
513 #define MAX_BITS_PER_WORD 64
514
515 /* Width of a word, in units (bytes). */
516 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
517 #define MIN_UNITS_PER_WORD 4
518 #define UNITS_PER_FP_WORD 8
519
520 /* Type used for ptrdiff_t, as a string used in a declaration. */
521 #define PTRDIFF_TYPE "int"
522
523 /* Type used for wchar_t, as a string used in a declaration. */
524 #define WCHAR_TYPE "short unsigned int"
525
526 /* Width of wchar_t in bits. */
527 #define WCHAR_TYPE_SIZE 16
528
529 /* A C expression for the size in bits of the type `short' on the
530 target machine. If you don't define this, the default is half a
531 word. (If this would be less than one storage unit, it is
532 rounded up to one unit.) */
533 #define SHORT_TYPE_SIZE 16
534
535 /* A C expression for the size in bits of the type `int' on the
536 target machine. If you don't define this, the default is one
537 word. */
538 #define INT_TYPE_SIZE 32
539
540 /* A C expression for the size in bits of the type `long' on the
541 target machine. If you don't define this, the default is one
542 word. */
543 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
544 #define MAX_LONG_TYPE_SIZE 64
545
546 /* A C expression for the size in bits of the type `long long' on the
547 target machine. If you don't define this, the default is two
548 words. */
549 #define LONG_LONG_TYPE_SIZE 64
550
551 /* A C expression for the size in bits of the type `char' on the
552 target machine. If you don't define this, the default is one
553 quarter of a word. (If this would be less than one storage unit,
554 it is rounded up to one unit.) */
555 #define CHAR_TYPE_SIZE BITS_PER_UNIT
556
557 /* A C expression for the size in bits of the type `float' on the
558 target machine. If you don't define this, the default is one
559 word. */
560 #define FLOAT_TYPE_SIZE 32
561
562 /* A C expression for the size in bits of the type `double' on the
563 target machine. If you don't define this, the default is two
564 words. */
565 #define DOUBLE_TYPE_SIZE 64
566
567 /* A C expression for the size in bits of the type `long double' on
568 the target machine. If you don't define this, the default is two
569 words. */
570 #define LONG_DOUBLE_TYPE_SIZE 64
571
572 /* Width in bits of a pointer.
573 See also the macro `Pmode' defined below. */
574 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
575
576 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
577 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
578
579 /* Boundary (in *bits*) on which stack pointer should be aligned. */
580 #define STACK_BOUNDARY 64
581
582 /* Allocation boundary (in *bits*) for the code of a function. */
583 #define FUNCTION_BOUNDARY 32
584
585 /* No data type wants to be aligned rounder than this. */
586 #define BIGGEST_ALIGNMENT 64
587
588 /* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
589 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
590 (DECL_MODE (FIELD) != DFmode ? (COMPUTED) : MIN ((COMPUTED), 32))
591
592 /* Alignment of field after `int : 0' in a structure. */
593 #define EMPTY_FIELD_BOUNDARY 32
594
595 /* Every structure's size must be a multiple of this. */
596 #define STRUCTURE_SIZE_BOUNDARY 8
597
598 /* A bitfield declared as `int' forces `int' alignment for the struct. */
599 #define PCC_BITFIELD_TYPE_MATTERS 1
600
601 /* AIX increases natural record alignment to doubleword if the first
602 field is an FP double while the FP fields remain word aligned. */
603 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
604 ((TREE_CODE (STRUCT) == RECORD_TYPE \
605 || TREE_CODE (STRUCT) == UNION_TYPE \
606 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
607 && TYPE_FIELDS (STRUCT) != 0 \
608 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
609 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
610 : MAX ((COMPUTED), (SPECIFIED)))
611
612 /* Make strings word-aligned so strcpy from constants will be faster. */
613 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
614 (TREE_CODE (EXP) == STRING_CST \
615 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
616
617 /* Make arrays of chars word-aligned for the same reasons. */
618 #define DATA_ALIGNMENT(TYPE, ALIGN) \
619 (TREE_CODE (TYPE) == ARRAY_TYPE \
620 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
621 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
622
623 /* Non-zero if move instructions will actually fail to work
624 when given unaligned data. */
625 #define STRICT_ALIGNMENT 0
626 \f
627 /* Standard register usage. */
628
629 /* Number of actual hardware registers.
630 The hardware registers are assigned numbers for the compiler
631 from 0 to just below FIRST_PSEUDO_REGISTER.
632 All registers that the compiler knows about must be given numbers,
633 even those that are not normally considered general registers.
634
635 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
636 an MQ register, a count register, a link register, and 8 condition
637 register fields, which we view here as separate registers.
638
639 In addition, the difference between the frame and argument pointers is
640 a function of the number of registers saved, so we need to have a
641 register for AP that will later be eliminated in favor of SP or FP.
642 This is a normal register, but it is fixed.
643
644 We also create a pseudo register for float/int conversions, that will
645 really represent the memory location used. It is represented here as
646 a register, in order to work around problems in allocating stack storage
647 in inline functions. */
648
649 #define FIRST_PSEUDO_REGISTER 77
650
651 /* 1 for registers that have pervasive standard uses
652 and are not available for the register allocator.
653
654 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
655
656 cr5 is not supposed to be used.
657
658 On System V implementations, r13 is fixed and not available for use. */
659
660 #ifndef FIXED_R13
661 #define FIXED_R13 0
662 #endif
663
664 #define FIXED_REGISTERS \
665 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
666 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
667 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
668 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
669 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
670
671 /* 1 for registers not available across function calls.
672 These must include the FIXED_REGISTERS and also any
673 registers that can be used without being saved.
674 The latter must include the registers where values are returned
675 and the register where structure-value addresses are passed.
676 Aside from that, you can include as many other registers as you like. */
677
678 #define CALL_USED_REGISTERS \
679 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
680 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
681 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
682 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
683 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
684
685 /* List the order in which to allocate registers. Each register must be
686 listed once, even those in FIXED_REGISTERS.
687
688 We allocate in the following order:
689 fp0 (not saved or used for anything)
690 fp13 - fp2 (not saved; incoming fp arg registers)
691 fp1 (not saved; return value)
692 fp31 - fp14 (saved; order given to save least number)
693 cr1, cr6, cr7 (not saved or special)
694 cr0 (not saved, but used for arithmetic operations)
695 cr2, cr3, cr4 (saved)
696 r0 (not saved; cannot be base reg)
697 r9 (not saved; best for TImode)
698 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
699 r3 (not saved; return value register)
700 r31 - r13 (saved; order given to save least number)
701 r12 (not saved; if used for DImode or DFmode would use r13)
702 mq (not saved; best to use it if we can)
703 ctr (not saved; when we have the choice ctr is better)
704 lr (saved)
705 cr5, r1, r2, ap (fixed) */
706
707 #define REG_ALLOC_ORDER \
708 {32, \
709 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
710 33, \
711 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
712 50, 49, 48, 47, 46, \
713 69, 74, 75, 68, 70, 71, 72, \
714 0, \
715 9, 11, 10, 8, 7, 6, 5, 4, \
716 3, \
717 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
718 18, 17, 16, 15, 14, 13, 12, \
719 64, 66, 65, \
720 73, 1, 2, 67, 76}
721
722 /* True if register is floating-point. */
723 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
724
725 /* True if register is a condition register. */
726 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
727
728 /* True if register is an integer register. */
729 #define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
730
731 /* True if register is the temporary memory location used for int/float
732 conversion. */
733 #define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
734
735 /* Return number of consecutive hard regs needed starting at reg REGNO
736 to hold something of mode MODE.
737 This is ordinarily the length in words of a value of mode MODE
738 but can be less for certain modes in special long registers.
739
740 On RS/6000, ordinary registers hold 32 bits worth;
741 a single floating point register holds 64 bits worth. */
742
743 #define HARD_REGNO_NREGS(REGNO, MODE) \
744 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
745 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
746 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
747
748 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
749 For POWER and PowerPC, the GPRs can hold any mode, but the float
750 registers only can hold floating modes and DImode, and CR register only
751 can hold CC modes. We cannot put TImode anywhere except general
752 register and it must be able to fit within the register set. */
753
754 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
755 (FP_REGNO_P (REGNO) ? \
756 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
757 || (GET_MODE_CLASS (MODE) == MODE_INT \
758 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
759 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
760 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
761 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
762 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
763 : 1)
764
765 /* Value is 1 if it is a good idea to tie two pseudo registers
766 when one has mode MODE1 and one has mode MODE2.
767 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
768 for any hard reg, then this must be 0 for correct output. */
769 #define MODES_TIEABLE_P(MODE1, MODE2) \
770 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
771 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
772 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
773 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
774 : GET_MODE_CLASS (MODE1) == MODE_CC \
775 ? GET_MODE_CLASS (MODE2) == MODE_CC \
776 : GET_MODE_CLASS (MODE2) == MODE_CC \
777 ? GET_MODE_CLASS (MODE1) == MODE_CC \
778 : 1)
779
780 /* A C expression returning the cost of moving data from a register of class
781 CLASS1 to one of CLASS2.
782
783 On the RS/6000, copying between floating-point and fixed-point
784 registers is expensive. */
785
786 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
787 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
788 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
789 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
790 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
791 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
792 || (CLASS1) == LINK_OR_CTR_REGS) \
793 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
794 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
795 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
796 : 2)
797
798 /* A C expressions returning the cost of moving data of MODE from a register to
799 or from memory.
800
801 On the RS/6000, bump this up a bit. */
802
803 #define MEMORY_MOVE_COST(MODE) \
804 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
805 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
806 ? 3 : 2) \
807 + 4)
808
809 /* Specify the cost of a branch insn; roughly the number of extra insns that
810 should be added to avoid a branch.
811
812 Set this to 3 on the RS/6000 since that is roughly the average cost of an
813 unscheduled conditional branch. */
814
815 #define BRANCH_COST 3
816
817 /* A C statement (sans semicolon) to update the integer variable COST
818 based on the relationship between INSN that is dependent on
819 DEP_INSN through the dependence LINK. The default is to make no
820 adjustment to COST. On the RS/6000, ignore the cost of anti- and
821 output-dependencies. In fact, output dependencies on the CR do have
822 a cost, but it is probably not worthwhile to track it. */
823
824 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
825 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
826
827 /* Define this macro to change register usage conditional on target flags.
828 Set MQ register fixed (already call_used) if not POWER architecture
829 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
830 Conditionally disable FPRs. */
831
832 #define CONDITIONAL_REGISTER_USAGE \
833 { \
834 if (! TARGET_POWER) \
835 fixed_regs[64] = 1; \
836 if (TARGET_SOFT_FLOAT) \
837 for (i = 32; i < 64; i++) \
838 fixed_regs[i] = call_used_regs[i] = 1; \
839 }
840
841 /* Specify the registers used for certain standard purposes.
842 The values of these macros are register numbers. */
843
844 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
845 /* #define PC_REGNUM */
846
847 /* Register to use for pushing function arguments. */
848 #define STACK_POINTER_REGNUM 1
849
850 /* Base register for access to local variables of the function. */
851 #define FRAME_POINTER_REGNUM 31
852
853 /* Value should be nonzero if functions must have frame pointers.
854 Zero means the frame pointer need not be set up (and parms
855 may be accessed via the stack pointer) in functions that seem suitable.
856 This is computed in `reload', in reload1.c. */
857 #define FRAME_POINTER_REQUIRED 0
858
859 /* Base register for access to arguments of the function. */
860 #define ARG_POINTER_REGNUM 67
861
862 /* Place to put static chain when calling a function that requires it. */
863 #define STATIC_CHAIN_REGNUM 11
864
865 /* count register number for special purposes */
866 #define COUNT_REGISTER_REGNUM 66
867
868 /* Special register that represents memory, used for float/int conversions. */
869 #define FPMEM_REGNUM 76
870
871 /* Register to use as a placeholder for the GOT/allocated TOC register.
872 FINALIZE_PIC will change all uses of this register to a an appropriate
873 pseudo register when it adds the code to setup the GOT. We use r2
874 because it is a reserved register in all of the ABI's. */
875 #define GOT_TOC_REGNUM 2
876
877 /* Place that structure value return address is placed.
878
879 On the RS/6000, it is passed as an extra parameter. */
880 #define STRUCT_VALUE 0
881 \f
882 /* Define the classes of registers for register constraints in the
883 machine description. Also define ranges of constants.
884
885 One of the classes must always be named ALL_REGS and include all hard regs.
886 If there is more than one class, another class must be named NO_REGS
887 and contain no registers.
888
889 The name GENERAL_REGS must be the name of a class (or an alias for
890 another name such as ALL_REGS). This is the class of registers
891 that is allowed by "g" or "r" in a register constraint.
892 Also, registers outside this class are allocated only when
893 instructions express preferences for them.
894
895 The classes must be numbered in nondecreasing order; that is,
896 a larger-numbered class must never be contained completely
897 in a smaller-numbered class.
898
899 For any two classes, it is very desirable that there be another
900 class that represents their union. */
901
902 /* The RS/6000 has three types of registers, fixed-point, floating-point,
903 and condition registers, plus three special registers, MQ, CTR, and the
904 link register.
905
906 However, r0 is special in that it cannot be used as a base register.
907 So make a class for registers valid as base registers.
908
909 Also, cr0 is the only condition code register that can be used in
910 arithmetic insns, so make a separate class for it.
911
912 There is a special 'registrer' (76), which is not a register, but a
913 placeholder for memory allocated to convert between floating point and
914 integral types. This works around a problem where if we allocate memory
915 with allocate_stack_{local,temp} and the function is an inline function, the
916 memory allocated will clobber memory in the caller. So we use a special
917 register, and if that is used, we allocate stack space for it. */
918
919 enum reg_class
920 {
921 NO_REGS,
922 BASE_REGS,
923 GENERAL_REGS,
924 FLOAT_REGS,
925 NON_SPECIAL_REGS,
926 MQ_REGS,
927 LINK_REGS,
928 CTR_REGS,
929 LINK_OR_CTR_REGS,
930 SPECIAL_REGS,
931 SPEC_OR_GEN_REGS,
932 CR0_REGS,
933 CR_REGS,
934 NON_FLOAT_REGS,
935 FPMEM_REGS,
936 FLOAT_OR_FPMEM_REGS,
937 ALL_REGS,
938 LIM_REG_CLASSES
939 };
940
941 #define N_REG_CLASSES (int) LIM_REG_CLASSES
942
943 /* Give names of register classes as strings for dump file. */
944
945 #define REG_CLASS_NAMES \
946 { \
947 "NO_REGS", \
948 "BASE_REGS", \
949 "GENERAL_REGS", \
950 "FLOAT_REGS", \
951 "NON_SPECIAL_REGS", \
952 "MQ_REGS", \
953 "LINK_REGS", \
954 "CTR_REGS", \
955 "LINK_OR_CTR_REGS", \
956 "SPECIAL_REGS", \
957 "SPEC_OR_GEN_REGS", \
958 "CR0_REGS", \
959 "CR_REGS", \
960 "NON_FLOAT_REGS", \
961 "FPMEM_REGS", \
962 "FLOAT_OR_FPMEM_REGS", \
963 "ALL_REGS" \
964 }
965
966 /* Define which registers fit in which classes.
967 This is an initializer for a vector of HARD_REG_SET
968 of length N_REG_CLASSES. */
969
970 #define REG_CLASS_CONTENTS \
971 { \
972 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
973 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
974 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
975 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
976 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
977 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
978 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
979 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
980 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
981 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
982 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
983 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
984 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
985 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
986 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
987 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
988 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
989 }
990
991 /* The same information, inverted:
992 Return the class number of the smallest class containing
993 reg number REGNO. This could be a conditional expression
994 or could index an array. */
995
996 #define REGNO_REG_CLASS(REGNO) \
997 ((REGNO) == 0 ? GENERAL_REGS \
998 : (REGNO) < 32 ? BASE_REGS \
999 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1000 : (REGNO) == 68 ? CR0_REGS \
1001 : CR_REGNO_P (REGNO) ? CR_REGS \
1002 : (REGNO) == 64 ? MQ_REGS \
1003 : (REGNO) == 65 ? LINK_REGS \
1004 : (REGNO) == 66 ? CTR_REGS \
1005 : (REGNO) == 67 ? BASE_REGS \
1006 : (REGNO) == 76 ? FPMEM_REGS \
1007 : NO_REGS)
1008
1009 /* The class value for index registers, and the one for base regs. */
1010 #define INDEX_REG_CLASS GENERAL_REGS
1011 #define BASE_REG_CLASS BASE_REGS
1012
1013 /* Get reg_class from a letter such as appears in the machine description. */
1014
1015 #define REG_CLASS_FROM_LETTER(C) \
1016 ((C) == 'f' ? FLOAT_REGS \
1017 : (C) == 'b' ? BASE_REGS \
1018 : (C) == 'h' ? SPECIAL_REGS \
1019 : (C) == 'q' ? MQ_REGS \
1020 : (C) == 'c' ? CTR_REGS \
1021 : (C) == 'l' ? LINK_REGS \
1022 : (C) == 'x' ? CR0_REGS \
1023 : (C) == 'y' ? CR_REGS \
1024 : (C) == 'z' ? FPMEM_REGS \
1025 : NO_REGS)
1026
1027 /* The letters I, J, K, L, M, N, and P in a register constraint string
1028 can be used to stand for particular ranges of immediate operands.
1029 This macro defines what the ranges are.
1030 C is the letter, and VALUE is a constant value.
1031 Return 1 if VALUE is in the range specified by C.
1032
1033 `I' is signed 16-bit constants
1034 `J' is a constant with only the high-order 16 bits non-zero
1035 `K' is a constant with only the low-order 16 bits non-zero
1036 `L' is a constant that can be placed into a mask operand
1037 `M' is a constant that is greater than 31
1038 `N' is a constant that is an exact power of two
1039 `O' is the constant zero
1040 `P' is a constant whose negation is a signed 16-bit constant */
1041
1042 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1043 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1044 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
1045 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
1046 : (C) == 'L' ? mask_constant (VALUE) \
1047 : (C) == 'M' ? (VALUE) > 31 \
1048 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1049 : (C) == 'O' ? (VALUE) == 0 \
1050 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x1000 \
1051 : 0)
1052
1053 /* Similar, but for floating constants, and defining letters G and H.
1054 Here VALUE is the CONST_DOUBLE rtx itself.
1055
1056 We flag for special constants when we can copy the constant into
1057 a general register in two insns for DF/DI and one insn for SF.
1058
1059 'H' is used for DI/DF constants that take 3 insns. */
1060
1061 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1062 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1063 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1064 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1065 : 0)
1066
1067 /* Optional extra constraints for this machine.
1068
1069 'Q' means that is a memory operand that is just an offset from a reg.
1070 'R' is for AIX TOC entries.
1071 'S' is for Windows NT SYMBOL_REFs
1072 'T' is for Windows NT LABEL_REFs.
1073 'U' is for V.4 small data references. */
1074
1075 #define EXTRA_CONSTRAINT(OP, C) \
1076 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1077 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
1078 : (C) == 'S' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == SYMBOL_REF)\
1079 : (C) == 'T' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == LABEL_REF) \
1080 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1081 && small_data_operand (OP, GET_MODE (OP))) \
1082 : 0)
1083
1084 /* Given an rtx X being reloaded into a reg required to be
1085 in class CLASS, return the class of reg to actually use.
1086 In general this is just CLASS; but on some machines
1087 in some cases it is preferable to use a more restrictive class.
1088
1089 On the RS/6000, we have to return NO_REGS when we want to reload a
1090 floating-point CONST_DOUBLE to force it to be copied to memory. */
1091
1092 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1093 ((GET_CODE (X) == CONST_DOUBLE \
1094 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1095 ? NO_REGS : (CLASS))
1096
1097 /* Return the register class of a scratch register needed to copy IN into
1098 or out of a register in CLASS in MODE. If it can be done directly,
1099 NO_REGS is returned. */
1100
1101 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1102 secondary_reload_class (CLASS, MODE, IN)
1103
1104 /* If we are copying between FP registers and anything else, we need a memory
1105 location. */
1106
1107 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1108 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1109
1110 /* Return the maximum number of consecutive registers
1111 needed to represent mode MODE in a register of class CLASS.
1112
1113 On RS/6000, this is the size of MODE in words,
1114 except in the FP regs, where a single reg is enough for two words. */
1115 #define CLASS_MAX_NREGS(CLASS, MODE) \
1116 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1117 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
1118 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1119 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1120
1121 /* If defined, gives a class of registers that cannot be used as the
1122 operand of a SUBREG that changes the size of the object. */
1123
1124 #define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
1125 \f
1126 /* Stack layout; function entry, exit and calling. */
1127
1128 /* Enumeration to give which calling sequence to use. */
1129 enum rs6000_abi {
1130 ABI_NONE,
1131 ABI_AIX, /* IBM's AIX */
1132 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1133 ABI_V4, /* System V.4/eabi */
1134 ABI_NT, /* Windows/NT */
1135 ABI_SOLARIS /* Solaris */
1136 };
1137
1138 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1139
1140 /* Default ABI to compile code for */
1141 #ifndef DEFAULT_ABI
1142 #define DEFAULT_ABI ABI_AIX
1143 /* The prefix to add to user-visible assembler symbols. */
1144 #define USER_LABEL_PREFIX "."
1145 #endif
1146
1147 /* Structure used to define the rs6000 stack */
1148 typedef struct rs6000_stack {
1149 int first_gp_reg_save; /* first callee saved GP register used */
1150 int first_fp_reg_save; /* first callee saved FP register used */
1151 int lr_save_p; /* true if the link reg needs to be saved */
1152 int cr_save_p; /* true if the CR reg needs to be saved */
1153 int toc_save_p; /* true if the TOC needs to be saved */
1154 int push_p; /* true if we need to allocate stack space */
1155 int calls_p; /* true if the function makes any calls */
1156 int main_p; /* true if this is main */
1157 int main_save_p; /* true if this is main and we need to save args */
1158 int fpmem_p; /* true if float/int conversion temp needed */
1159 enum rs6000_abi abi; /* which ABI to use */
1160 int gp_save_offset; /* offset to save GP regs from initial SP */
1161 int fp_save_offset; /* offset to save FP regs from initial SP */
1162 int lr_save_offset; /* offset to save LR from initial SP */
1163 int cr_save_offset; /* offset to save CR from initial SP */
1164 int toc_save_offset; /* offset to save the TOC pointer */
1165 int varargs_save_offset; /* offset to save the varargs registers */
1166 int main_save_offset; /* offset to save main's args */
1167 int fpmem_offset; /* offset for float/int conversion temp */
1168 int reg_size; /* register size (4 or 8) */
1169 int varargs_size; /* size to hold V.4 args passed in regs */
1170 int vars_size; /* variable save area size */
1171 int parm_size; /* outgoing parameter size */
1172 int main_size; /* size to hold saving main's args */
1173 int save_size; /* save area size */
1174 int fixed_size; /* fixed size of stack frame */
1175 int gp_size; /* size of saved GP registers */
1176 int fp_size; /* size of saved FP registers */
1177 int cr_size; /* size to hold CR if not in save_size */
1178 int lr_size; /* size to hold LR if not in save_size */
1179 int fpmem_size; /* size to hold float/int conversion */
1180 int toc_size; /* size to hold TOC if not in save_size */
1181 int total_size; /* total bytes allocated for stack */
1182 } rs6000_stack_t;
1183
1184 /* Define this if pushing a word on the stack
1185 makes the stack pointer a smaller address. */
1186 #define STACK_GROWS_DOWNWARD
1187
1188 /* Define this if the nominal address of the stack frame
1189 is at the high-address end of the local variables;
1190 that is, each additional local variable allocated
1191 goes at a more negative offset in the frame.
1192
1193 On the RS/6000, we grow upwards, from the area after the outgoing
1194 arguments. */
1195 /* #define FRAME_GROWS_DOWNWARD */
1196
1197 /* Size of the outgoing register save area */
1198 #define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
1199
1200 /* Size of the fixed area on the stack */
1201 #define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
1202
1203 /* Address to save the TOC register */
1204 #define RS6000_SAVE_TOC plus_constant (stack_pointer_rtx, 20)
1205
1206 /* Offset & size for fpmem stack locations used for converting between
1207 float and integral types. */
1208 extern int rs6000_fpmem_offset;
1209 extern int rs6000_fpmem_size;
1210
1211 /* Size of the V.4 varargs area if needed */
1212 #define RS6000_VARARGS_AREA 0
1213
1214 /* Whether a V.4 varargs area is needed */
1215 extern int rs6000_sysv_varargs_p;
1216
1217 /* Align an address */
1218 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1219
1220 /* Initialize data used by insn expanders. This is called from
1221 init_emit, once for each function, before code is generated. */
1222 #define INIT_EXPANDERS rs6000_init_expanders ()
1223
1224 /* Size of V.4 varargs area in bytes */
1225 #define RS6000_VARARGS_SIZE \
1226 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1227
1228 /* Offset of V.4 varargs area */
1229 #define RS6000_VARARGS_OFFSET \
1230 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
1231 + RS6000_SAVE_AREA)
1232
1233 /* Offset within stack frame to start allocating local variables at.
1234 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1235 first local allocated. Otherwise, it is the offset to the BEGINNING
1236 of the first local allocated.
1237
1238 On the RS/6000, the frame pointer is the same as the stack pointer,
1239 except for dynamic allocations. So we start after the fixed area and
1240 outgoing parameter area. */
1241
1242 #define STARTING_FRAME_OFFSET \
1243 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
1244 + RS6000_VARARGS_AREA \
1245 + RS6000_SAVE_AREA)
1246
1247 /* Offset from the stack pointer register to an item dynamically
1248 allocated on the stack, e.g., by `alloca'.
1249
1250 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1251 length of the outgoing arguments. The default is correct for most
1252 machines. See `function.c' for details. */
1253 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1254 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
1255 + (STACK_POINTER_OFFSET))
1256
1257 /* If we generate an insn to push BYTES bytes,
1258 this says how many the stack pointer really advances by.
1259 On RS/6000, don't define this because there are no push insns. */
1260 /* #define PUSH_ROUNDING(BYTES) */
1261
1262 /* Offset of first parameter from the argument pointer register value.
1263 On the RS/6000, we define the argument pointer to the start of the fixed
1264 area. */
1265 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1266
1267 /* Define this if stack space is still allocated for a parameter passed
1268 in a register. The value is the number of bytes allocated to this
1269 area. */
1270 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1271
1272 /* Define this if the above stack space is to be considered part of the
1273 space allocated by the caller. */
1274 #define OUTGOING_REG_PARM_STACK_SPACE
1275
1276 /* This is the difference between the logical top of stack and the actual sp.
1277
1278 For the RS/6000, sp points past the fixed area. */
1279 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1280
1281 /* Define this if the maximum size of all the outgoing args is to be
1282 accumulated and pushed during the prologue. The amount can be
1283 found in the variable current_function_outgoing_args_size. */
1284 #define ACCUMULATE_OUTGOING_ARGS
1285
1286 /* Value is the number of bytes of arguments automatically
1287 popped when returning from a subroutine call.
1288 FUNDECL is the declaration node of the function (as a tree),
1289 FUNTYPE is the data type of the function (as a tree),
1290 or for a library call it is an identifier node for the subroutine name.
1291 SIZE is the number of bytes of arguments passed on the stack. */
1292
1293 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1294
1295 /* Define how to find the value returned by a function.
1296 VALTYPE is the data type of the value (as a tree).
1297 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1298 otherwise, FUNC is 0.
1299
1300 On RS/6000 an integer value is in r3 and a floating-point value is in
1301 fp1, unless -msoft-float. */
1302
1303 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1304 gen_rtx (REG, TYPE_MODE (VALTYPE), \
1305 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
1306
1307 /* Define how to find the value returned by a library function
1308 assuming the value has mode MODE. */
1309
1310 #define LIBCALL_VALUE(MODE) \
1311 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
1312
1313 /* The definition of this macro implies that there are cases where
1314 a scalar value cannot be returned in registers.
1315
1316 For the RS/6000, any structure or union type is returned in memory, except for
1317 Solaris, which returns structures <= 8 bytes in registers. */
1318
1319 #define RETURN_IN_MEMORY(TYPE) \
1320 (TYPE_MODE (TYPE) == BLKmode \
1321 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
1322
1323 /* Minimum and maximum general purpose registers used to hold arguments. */
1324 #define GP_ARG_MIN_REG 3
1325 #define GP_ARG_MAX_REG 10
1326 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1327
1328 /* Minimum and maximum floating point registers used to hold arguments. */
1329 #define FP_ARG_MIN_REG 33
1330 #define FP_ARG_AIX_MAX_REG 45
1331 #define FP_ARG_V4_MAX_REG 40
1332 #define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
1333 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1334
1335 /* Return registers */
1336 #define GP_ARG_RETURN GP_ARG_MIN_REG
1337 #define FP_ARG_RETURN FP_ARG_MIN_REG
1338
1339 /* Flags for the call/call_value rtl operations set up by function_arg */
1340 #define CALL_NORMAL 0x00000000 /* no special processing */
1341 #define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1342 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1343 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1344 #define CALL_LONG 0x00000008 /* always call indirect */
1345
1346 /* Define cutoff for using external functions to save floating point */
1347 #define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1348
1349 /* 1 if N is a possible register number for a function value
1350 as seen by the caller.
1351
1352 On RS/6000, this is r3 and fp1. */
1353 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
1354
1355 /* 1 if N is a possible register number for function argument passing.
1356 On RS/6000, these are r3-r10 and fp1-fp13. */
1357 #define FUNCTION_ARG_REGNO_P(N) \
1358 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1359 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
1360
1361 \f
1362 /* Define a data type for recording info about an argument list
1363 during the scan of that argument list. This data type should
1364 hold all necessary information about the function itself
1365 and about the args processed so far, enough to enable macros
1366 such as FUNCTION_ARG to determine where the next arg should go.
1367
1368 On the RS/6000, this is a structure. The first element is the number of
1369 total argument words, the second is used to store the next
1370 floating-point register number, and the third says how many more args we
1371 have prototype types for.
1372
1373 The System V.4 varargs/stdarg support requires that this structure's size
1374 be a multiple of sizeof(int), and that WORDS, FREGNO, NARGS_PROTOTYPE,
1375 ORIG_NARGS, and VARARGS_OFFSET be the first five ints. */
1376
1377 typedef struct rs6000_args
1378 {
1379 int words; /* # words uses for passing GP registers */
1380 int fregno; /* next available FP register */
1381 int nargs_prototype; /* # args left in the current prototype */
1382 int orig_nargs; /* Original value of nargs_prototype */
1383 int varargs_offset; /* offset of the varargs save area */
1384 int prototype; /* Whether a prototype was defined */
1385 int call_cookie; /* Do special things for this call */
1386 } CUMULATIVE_ARGS;
1387
1388 /* Define intermediate macro to compute the size (in registers) of an argument
1389 for the RS/6000. */
1390
1391 #define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1392 (! (NAMED) ? 0 \
1393 : (MODE) != BLKmode \
1394 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1395 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1396
1397 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1398 for a call to a function whose data type is FNTYPE.
1399 For a library call, FNTYPE is 0. */
1400
1401 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1402 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
1403
1404 /* Similar, but when scanning the definition of a procedure. We always
1405 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1406
1407 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1408 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
1409
1410 /* Update the data in CUM to advance over an argument
1411 of mode MODE and data type TYPE.
1412 (TYPE is null for libcalls where that information may not be available.) */
1413
1414 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1415 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1416
1417 /* Non-zero if we can use a floating-point register to pass this arg. */
1418 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1419 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1420 && (CUM).fregno <= FP_ARG_MAX_REG \
1421 && TARGET_HARD_FLOAT)
1422
1423 /* Determine where to put an argument to a function.
1424 Value is zero to push the argument on the stack,
1425 or a hard register in which to store the argument.
1426
1427 MODE is the argument's machine mode.
1428 TYPE is the data type of the argument (as a tree).
1429 This is null for libcalls where that information may
1430 not be available.
1431 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1432 the preceding args and about the function being called.
1433 NAMED is nonzero if this argument is a named parameter
1434 (otherwise it is an extra parameter matching an ellipsis).
1435
1436 On RS/6000 the first eight words of non-FP are normally in registers
1437 and the rest are pushed. The first 13 FP args are in registers.
1438
1439 If this is floating-point and no prototype is specified, we use
1440 both an FP and integer register (or possibly FP reg and stack). Library
1441 functions (when TYPE is zero) always have the proper types for args,
1442 so we can pass the FP value just in one register. emit_library_function
1443 doesn't support EXPR_LIST anyway. */
1444
1445 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1446 function_arg (&CUM, MODE, TYPE, NAMED)
1447
1448 /* For an arg passed partly in registers and partly in memory,
1449 this is the number of registers used.
1450 For args passed entirely in registers or entirely in memory, zero. */
1451
1452 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1453 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1454
1455 /* A C expression that indicates when an argument must be passed by
1456 reference. If nonzero for an argument, a copy of that argument is
1457 made in memory and a pointer to the argument is passed instead of
1458 the argument itself. The pointer is passed in whatever way is
1459 appropriate for passing a pointer to that type. */
1460
1461 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1462 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1463
1464 /* If defined, a C expression that gives the alignment boundary, in bits,
1465 of an argument with the specified mode and type. If it is not defined,
1466 PARM_BOUNDARY is used for all arguments. */
1467
1468 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1469 function_arg_boundary (MODE, TYPE)
1470
1471 /* Perform any needed actions needed for a function that is receiving a
1472 variable number of arguments.
1473
1474 CUM is as above.
1475
1476 MODE and TYPE are the mode and type of the current parameter.
1477
1478 PRETEND_SIZE is a variable that should be set to the amount of stack
1479 that must be pushed by the prolog to pretend that our caller pushed
1480 it.
1481
1482 Normally, this macro will push all remaining incoming registers on the
1483 stack and set PRETEND_SIZE to the length of the registers pushed. */
1484
1485 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1486 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1487
1488 /* If defined, is a C expression that produces the machine-specific
1489 code for a call to `__builtin_saveregs'. This code will be moved
1490 to the very beginning of the function, before any parameter access
1491 are made. The return value of this function should be an RTX that
1492 contains the value to use as the return of `__builtin_saveregs'.
1493
1494 The argument ARGS is a `tree_list' containing the arguments that
1495 were passed to `__builtin_saveregs'.
1496
1497 If this macro is not defined, the compiler will output an ordinary
1498 call to the library function `__builtin_saveregs'. */
1499
1500 #define EXPAND_BUILTIN_SAVEREGS(ARGS) \
1501 expand_builtin_saveregs (ARGS)
1502
1503 /* This macro generates the assembly code for function entry.
1504 FILE is a stdio stream to output the code to.
1505 SIZE is an int: how many units of temporary storage to allocate.
1506 Refer to the array `regs_ever_live' to determine which registers
1507 to save; `regs_ever_live[I]' is nonzero if register number I
1508 is ever used in the function. This macro is responsible for
1509 knowing which registers should not be saved even if used. */
1510
1511 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1512
1513 /* Output assembler code to FILE to increment profiler label # LABELNO
1514 for profiling a function entry. */
1515
1516 #define FUNCTION_PROFILER(FILE, LABELNO) \
1517 output_function_profiler ((FILE), (LABELNO));
1518
1519 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1520 the stack pointer does not matter. No definition is equivalent to
1521 always zero.
1522
1523 On the RS/6000, this is non-zero because we can restore the stack from
1524 its backpointer, which we maintain. */
1525 #define EXIT_IGNORE_STACK 1
1526
1527 /* This macro generates the assembly code for function exit,
1528 on machines that need it. If FUNCTION_EPILOGUE is not defined
1529 then individual return instructions are generated for each
1530 return statement. Args are same as for FUNCTION_PROLOGUE.
1531
1532 The function epilogue should not depend on the current stack pointer!
1533 It should use the frame pointer only. This is mandatory because
1534 of alloca; we also take advantage of it to omit stack adjustments
1535 before returning. */
1536
1537 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1538 \f
1539 /* TRAMPOLINE_TEMPLATE deleted */
1540
1541 /* Length in units of the trampoline for entering a nested function. */
1542
1543 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1544
1545 /* Emit RTL insns to initialize the variable parts of a trampoline.
1546 FNADDR is an RTX for the address of the function's pure code.
1547 CXT is an RTX for the static chain value for the function. */
1548
1549 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1550 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1551 \f
1552 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1553 with arguments ARGS is a valid machine specific attribute for DECL.
1554 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1555
1556 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1557 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1558
1559 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1560 with arguments ARGS is a valid machine specific attribute for TYPE.
1561 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1562
1563 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1564 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1565
1566 /* If defined, a C expression whose value is zero if the attributes on
1567 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1568 two if they are nearly compatible (which causes a warning to be
1569 generated). */
1570
1571 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1572 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1573
1574 /* If defined, a C statement that assigns default attributes to newly
1575 defined TYPE. */
1576
1577 #define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1578 (rs6000_set_default_type_attributes (TYPE))
1579
1580 \f
1581 /* Definitions for __builtin_return_address and __builtin_frame_address.
1582 __builtin_return_address (0) should give link register (65), enable
1583 this. */
1584 /* This should be uncommented, so that the link register is used, but
1585 currently this would result in unmatched insns and spilling fixed
1586 registers so we'll leave it for another day. When these problems are
1587 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1588 (mrs) */
1589 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1590
1591 /* Number of bytes into the frame return addresses can be found. See
1592 rs6000_stack_info in rs6000.c for more information on how the different
1593 abi's store the return address. */
1594 #define RETURN_ADDRESS_OFFSET \
1595 ((DEFAULT_ABI == ABI_AIX \
1596 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
1597 (DEFAULT_ABI == ABI_V4 \
1598 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
1599 (DEFAULT_ABI == ABI_NT) ? -4 : \
1600 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
1601
1602 /* The current return address is in link register (65). The return address
1603 of anything farther back is accessed normally at an offset of 8 from the
1604 frame pointer. */
1605 #define RETURN_ADDR_RTX(count, frame) \
1606 ((count == -1) \
1607 ? gen_rtx (REG, Pmode, 65) \
1608 : gen_rtx (MEM, Pmode, \
1609 memory_address (Pmode, \
1610 plus_constant (copy_to_reg (gen_rtx (MEM, Pmode, \
1611 memory_address (Pmode, frame))), \
1612 RETURN_ADDRESS_OFFSET))))
1613 \f
1614 /* Definitions for register eliminations.
1615
1616 We have two registers that can be eliminated on the RS/6000. First, the
1617 frame pointer register can often be eliminated in favor of the stack
1618 pointer register. Secondly, the argument pointer register can always be
1619 eliminated; it is replaced with either the stack or frame pointer.
1620
1621 In addition, we use the elimination mechanism to see if r30 is needed
1622 Initially we assume that it isn't. If it is, we spill it. This is done
1623 by making it an eliminable register. We replace it with itself so that
1624 if it isn't needed, then existing uses won't be modified. */
1625
1626 /* This is an array of structures. Each structure initializes one pair
1627 of eliminable registers. The "from" register number is given first,
1628 followed by "to". Eliminations of the same "from" register are listed
1629 in order of preference. */
1630 #define ELIMINABLE_REGS \
1631 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1632 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1633 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1634 { 30, 30} }
1635
1636 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1637 Frame pointer elimination is automatically handled.
1638
1639 For the RS/6000, if frame pointer elimination is being done, we would like
1640 to convert ap into fp, not sp.
1641
1642 We need r30 if -mminimal-toc was specified, and there are constant pool
1643 references. */
1644
1645 #define CAN_ELIMINATE(FROM, TO) \
1646 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1647 ? ! frame_pointer_needed \
1648 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1649 : 1)
1650
1651 /* Define the offset between two registers, one to be eliminated, and the other
1652 its replacement, at the start of a routine. */
1653 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1654 { \
1655 rs6000_stack_t *info = rs6000_stack_info (); \
1656 \
1657 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1658 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1659 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1660 (OFFSET) = info->total_size; \
1661 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1662 (OFFSET) = (info->push_p) ? info->total_size : 0; \
1663 else if ((FROM) == 30) \
1664 (OFFSET) = 0; \
1665 else \
1666 abort (); \
1667 }
1668 \f
1669 /* Addressing modes, and classification of registers for them. */
1670
1671 /* #define HAVE_POST_INCREMENT */
1672 /* #define HAVE_POST_DECREMENT */
1673
1674 #define HAVE_PRE_DECREMENT
1675 #define HAVE_PRE_INCREMENT
1676
1677 /* Macros to check register numbers against specific register classes. */
1678
1679 /* These assume that REGNO is a hard or pseudo reg number.
1680 They give nonzero only if REGNO is a hard reg of the suitable class
1681 or a pseudo reg currently allocated to a suitable hard reg.
1682 Since they use reg_renumber, they are safe only once reg_renumber
1683 has been allocated, which happens in local-alloc.c. */
1684
1685 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1686 ((REGNO) < FIRST_PSEUDO_REGISTER \
1687 ? (REGNO) <= 31 || (REGNO) == 67 \
1688 : (reg_renumber[REGNO] >= 0 \
1689 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1690
1691 #define REGNO_OK_FOR_BASE_P(REGNO) \
1692 ((REGNO) < FIRST_PSEUDO_REGISTER \
1693 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1694 : (reg_renumber[REGNO] > 0 \
1695 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1696 \f
1697 /* Maximum number of registers that can appear in a valid memory address. */
1698
1699 #define MAX_REGS_PER_ADDRESS 2
1700
1701 /* Recognize any constant value that is a valid address. */
1702
1703 #define CONSTANT_ADDRESS_P(X) \
1704 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1705 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1706 || GET_CODE (X) == HIGH)
1707
1708 /* Nonzero if the constant value X is a legitimate general operand.
1709 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1710
1711 On the RS/6000, all integer constants are acceptable, most won't be valid
1712 for particular insns, though. Only easy FP constants are
1713 acceptable. */
1714
1715 #define LEGITIMATE_CONSTANT_P(X) \
1716 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1717 || easy_fp_constant (X, GET_MODE (X)))
1718
1719 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1720 and check its validity for a certain class.
1721 We have two alternate definitions for each of them.
1722 The usual definition accepts all pseudo regs; the other rejects
1723 them unless they have been allocated suitable hard regs.
1724 The symbol REG_OK_STRICT causes the latter definition to be used.
1725
1726 Most source files want to accept pseudo regs in the hope that
1727 they will get allocated to the class that the insn wants them to be in.
1728 Source files for reload pass need to be strict.
1729 After reload, it makes no difference, since pseudo regs have
1730 been eliminated by then. */
1731
1732 #ifndef REG_OK_STRICT
1733
1734 /* Nonzero if X is a hard reg that can be used as an index
1735 or if it is a pseudo reg. */
1736 #define REG_OK_FOR_INDEX_P(X) \
1737 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1738
1739 /* Nonzero if X is a hard reg that can be used as a base reg
1740 or if it is a pseudo reg. */
1741 #define REG_OK_FOR_BASE_P(X) \
1742 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1743
1744 #else
1745
1746 /* Nonzero if X is a hard reg that can be used as an index. */
1747 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1748 /* Nonzero if X is a hard reg that can be used as a base reg. */
1749 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1750
1751 #endif
1752 \f
1753 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1754 that is a valid memory address for an instruction.
1755 The MODE argument is the machine mode for the MEM expression
1756 that wants to use this address.
1757
1758 On the RS/6000, there are four valid address: a SYMBOL_REF that
1759 refers to a constant pool entry of an address (or the sum of it
1760 plus a constant), a short (16-bit signed) constant plus a register,
1761 the sum of two registers, or a register indirect, possibly with an
1762 auto-increment. For DFmode and DImode with an constant plus register,
1763 we must ensure that both words are addressable or PowerPC64 with offset
1764 word aligned. */
1765
1766 #define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
1767 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1768 && CONSTANT_POOL_ADDRESS_P (X) \
1769 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1770
1771 /* TARGET_64BIT TOC64 guaranteed to have 64 bit alignment. */
1772 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1773 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
1774 || (TARGET_TOC \
1775 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1776 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1777 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1778
1779 #define LEGITIMATE_SMALL_DATA_P(MODE, X) \
1780 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1781 && !flag_pic && !TARGET_TOC \
1782 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1783 && small_data_operand (X, MODE))
1784
1785 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1786 (GET_CODE (X) == CONST_INT \
1787 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1788
1789 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1790 (GET_CODE (X) == PLUS \
1791 && GET_CODE (XEXP (X, 0)) == REG \
1792 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1793 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1794 && (((MODE) != DFmode && (MODE) != DImode) \
1795 || (TARGET_32BIT \
1796 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1797 : ! (INTVAL (XEXP (X, 1)) & 3))) \
1798 && ((MODE) != TImode \
1799 || (TARGET_32BIT \
1800 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1801 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1802 && ! (INTVAL (XEXP (X, 1)) & 3)))))
1803
1804 #define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1805 (GET_CODE (X) == PLUS \
1806 && GET_CODE (XEXP (X, 0)) == REG \
1807 && GET_CODE (XEXP (X, 1)) == REG \
1808 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1809 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1810 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1811 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1812
1813 #define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1814 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1815
1816 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1817 (TARGET_ELF \
1818 && !flag_pic && !TARGET_TOC \
1819 && (MODE) != DImode \
1820 && (MODE) != TImode \
1821 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1822 && GET_CODE (X) == LO_SUM \
1823 && GET_CODE (XEXP (X, 0)) == REG \
1824 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1825 && CONSTANT_P (XEXP (X, 1)))
1826
1827 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1828 { if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1829 goto ADDR; \
1830 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
1831 && TARGET_UPDATE \
1832 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1833 goto ADDR; \
1834 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1835 goto ADDR; \
1836 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1837 goto ADDR; \
1838 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1839 goto ADDR; \
1840 if ((MODE) != TImode \
1841 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1842 && (TARGET_64BIT || (MODE) != DImode) \
1843 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1844 goto ADDR; \
1845 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1846 goto ADDR; \
1847 }
1848 \f
1849 /* Try machine-dependent ways of modifying an illegitimate address
1850 to be legitimate. If we find one, return the new, valid address.
1851 This macro is used in only one place: `memory_address' in explow.c.
1852
1853 OLDX is the address as it was before break_out_memory_refs was called.
1854 In some cases it is useful to look at this to decide what needs to be done.
1855
1856 MODE and WIN are passed so that this macro can use
1857 GO_IF_LEGITIMATE_ADDRESS.
1858
1859 It is always safe for this macro to do nothing. It exists to recognize
1860 opportunities to optimize the output.
1861
1862 On RS/6000, first check for the sum of a register with a constant
1863 integer that is out of range. If so, generate code to add the
1864 constant with the low-order 16 bits masked to the register and force
1865 this result into another register (this can be done with `cau').
1866 Then generate an address of REG+(CONST&0xffff), allowing for the
1867 possibility of bit 16 being a one.
1868
1869 Then check for the sum of a register and something not constant, try to
1870 load the other things into a register and return the sum. */
1871
1872 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1873 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1874 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1875 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1876 { HOST_WIDE_INT high_int, low_int; \
1877 rtx sum; \
1878 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
1879 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1880 if (low_int & 0x8000) \
1881 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
1882 sum = force_operand (gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1883 GEN_INT (high_int)), 0); \
1884 (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (low_int)); \
1885 goto WIN; \
1886 } \
1887 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1888 && GET_CODE (XEXP (X, 1)) != CONST_INT \
1889 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1890 && (TARGET_64BIT || (MODE) != DImode) \
1891 && (MODE) != TImode) \
1892 { \
1893 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1894 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
1895 goto WIN; \
1896 } \
1897 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
1898 && !flag_pic \
1899 && GET_CODE (X) != CONST_INT \
1900 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
1901 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1902 && (MODE) != DImode && (MODE) != TImode) \
1903 { \
1904 rtx reg = gen_reg_rtx (Pmode); \
1905 emit_insn (gen_elf_high (reg, (X))); \
1906 (X) = gen_rtx (LO_SUM, Pmode, reg, (X)); \
1907 } \
1908 }
1909
1910 /* Go to LABEL if ADDR (a legitimate address expression)
1911 has an effect that depends on the machine mode it is used for.
1912
1913 On the RS/6000 this is true if the address is valid with a zero offset
1914 but not with an offset of four (this means it cannot be used as an
1915 address for DImode or DFmode) or is a pre-increment or decrement. Since
1916 we know it is valid, we just check for an address that is not valid with
1917 an offset of four. */
1918
1919 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1920 { if (GET_CODE (ADDR) == PLUS \
1921 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
1922 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
1923 (TARGET_32BIT ? 4 : 8))) \
1924 goto LABEL; \
1925 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
1926 goto LABEL; \
1927 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
1928 goto LABEL; \
1929 if (GET_CODE (ADDR) == LO_SUM) \
1930 goto LABEL; \
1931 }
1932 \f
1933 /* The register number of the register used to address a table of
1934 static data addresses in memory. In some cases this register is
1935 defined by a processor's "application binary interface" (ABI).
1936 When this macro is defined, RTL is generated for this register
1937 once, as with the stack pointer and frame pointer registers. If
1938 this macro is not defined, it is up to the machine-dependent files
1939 to allocate such a register (if necessary). */
1940
1941 /* #define PIC_OFFSET_TABLE_REGNUM */
1942
1943 /* Define this macro if the register defined by
1944 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1945 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
1946
1947 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1948
1949 /* By generating position-independent code, when two different
1950 programs (A and B) share a common library (libC.a), the text of
1951 the library can be shared whether or not the library is linked at
1952 the same address for both programs. In some of these
1953 environments, position-independent code requires not only the use
1954 of different addressing modes, but also special code to enable the
1955 use of these addressing modes.
1956
1957 The `FINALIZE_PIC' macro serves as a hook to emit these special
1958 codes once the function is being compiled into assembly code, but
1959 not before. (It is not done before, because in the case of
1960 compiling an inline function, it would lead to multiple PIC
1961 prologues being included in functions which used inline functions
1962 and were compiled to assembly language.) */
1963
1964 #define FINALIZE_PIC rs6000_finalize_pic ()
1965
1966 /* A C expression that is nonzero if X is a legitimate immediate
1967 operand on the target machine when generating position independent
1968 code. You can assume that X satisfies `CONSTANT_P', so you need
1969 not check this. You can also assume FLAG_PIC is true, so you need
1970 not check it either. You need not define this macro if all
1971 constants (including `SYMBOL_REF') can be immediate operands when
1972 generating position independent code. */
1973
1974 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1975
1976 /* In rare cases, correct code generation requires extra machine
1977 dependent processing between the second jump optimization pass and
1978 delayed branch scheduling. On those machines, define this macro
1979 as a C statement to act on the code starting at INSN.
1980
1981 On the RS/6000, we use it to make sure the GOT_TOC register marker
1982 that FINALIZE_PIC is supposed to remove actually got removed. */
1983
1984 #define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
1985
1986 \f
1987 /* Define this if some processing needs to be done immediately before
1988 emitting code for an insn. */
1989
1990 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1991
1992 /* Specify the machine mode that this machine uses
1993 for the index in the tablejump instruction. */
1994 #define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
1995
1996 /* Define this if the tablejump instruction expects the table
1997 to contain offsets from the address of the table.
1998 Do not define this if the table should contain absolute addresses. */
1999 #define CASE_VECTOR_PC_RELATIVE
2000
2001 /* Specify the tree operation to be used to convert reals to integers. */
2002 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2003
2004 /* This is the kind of divide that is easiest to do in the general case. */
2005 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2006
2007 /* Define this as 1 if `char' should by default be signed; else as 0. */
2008 #define DEFAULT_SIGNED_CHAR 0
2009
2010 /* This flag, if defined, says the same insns that convert to a signed fixnum
2011 also convert validly to an unsigned one. */
2012
2013 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2014
2015 /* Max number of bytes we can move from memory to memory
2016 in one reasonably fast instruction. */
2017 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2018 #define MAX_MOVE_MAX 8
2019
2020 /* Nonzero if access to memory by bytes is no faster than for words.
2021 Also non-zero if doing byte operations (specifically shifts) in registers
2022 is undesirable. */
2023 #define SLOW_BYTE_ACCESS 1
2024
2025 /* Define if operations between registers always perform the operation
2026 on the full register even if a narrower mode is specified. */
2027 #define WORD_REGISTER_OPERATIONS
2028
2029 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2030 will either zero-extend or sign-extend. The value of this macro should
2031 be the code that says which one of the two operations is implicitly
2032 done, NIL if none. */
2033 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2034
2035 /* Define if loading short immediate values into registers sign extends. */
2036 #define SHORT_IMMEDIATES_SIGN_EXTEND
2037 \f
2038 /* The RS/6000 uses the XCOFF format. */
2039
2040 #define XCOFF_DEBUGGING_INFO
2041
2042 /* Define if the object format being used is COFF or a superset. */
2043 #define OBJECT_FORMAT_COFF
2044
2045 /* Define the magic numbers that we recognize as COFF. */
2046
2047 #define MY_ISCOFF(magic) \
2048 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC)
2049
2050 /* This is the only version of nm that collect2 can work with. */
2051 #define REAL_NM_FILE_NAME "/usr/ucb/nm"
2052
2053 /* We don't have GAS for the RS/6000 yet, so don't write out special
2054 .stabs in cc1plus. */
2055
2056 #define FASCIST_ASSEMBLER
2057
2058 #ifndef ASM_OUTPUT_CONSTRUCTOR
2059 #define ASM_OUTPUT_CONSTRUCTOR(file, name)
2060 #endif
2061 #ifndef ASM_OUTPUT_DESTRUCTOR
2062 #define ASM_OUTPUT_DESTRUCTOR(file, name)
2063 #endif
2064
2065 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2066 is done just by pretending it is already truncated. */
2067 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2068
2069 /* Specify the machine mode that pointers have.
2070 After generation of rtl, the compiler makes no further distinction
2071 between pointers and any other objects of this machine mode. */
2072 #define Pmode (TARGET_32BIT ? SImode : DImode)
2073
2074 /* Mode of a function address in a call instruction (for indexing purposes).
2075
2076 Doesn't matter on RS/6000. */
2077 #define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
2078
2079 /* Define this if addresses of constant functions
2080 shouldn't be put through pseudo regs where they can be cse'd.
2081 Desirable on machines where ordinary constants are expensive
2082 but a CALL with constant address is cheap. */
2083 #define NO_FUNCTION_CSE
2084
2085 /* Define this to be nonzero if shift instructions ignore all but the low-order
2086 few bits.
2087
2088 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2089 have been dropped from the PowerPC architecture. */
2090
2091 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2092
2093 /* Use atexit for static constructors/destructors, instead of defining
2094 our own exit function. */
2095 #define HAVE_ATEXIT
2096
2097 /* Compute the cost of computing a constant rtl expression RTX
2098 whose rtx-code is CODE. The body of this macro is a portion
2099 of a switch statement. If the code is computed here,
2100 return it with a return statement. Otherwise, break from the switch.
2101
2102 On the RS/6000, if it is valid in the insn, it is free. So this
2103 always returns 0. */
2104
2105 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2106 case CONST_INT: \
2107 case CONST: \
2108 case LABEL_REF: \
2109 case SYMBOL_REF: \
2110 case CONST_DOUBLE: \
2111 case HIGH: \
2112 return 0;
2113
2114 /* Provide the costs of a rtl expression. This is in the body of a
2115 switch on CODE. */
2116
2117 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2118 case PLUS: \
2119 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2120 && (unsigned HOST_WIDE_INT) ((INTVAL (XEXP (X, 1)) \
2121 + 0x8000) >= 0x10000)) \
2122 ? COSTS_N_INSNS (2) \
2123 : COSTS_N_INSNS (1)); \
2124 case AND: \
2125 return ((non_and_cint_operand (XEXP (X, 1), SImode)) \
2126 ? COSTS_N_INSNS (2) \
2127 : COSTS_N_INSNS (1)); \
2128 case IOR: \
2129 case XOR: \
2130 return ((non_logical_cint_operand (XEXP (X, 1), SImode)) \
2131 ? COSTS_N_INSNS (2) \
2132 : COSTS_N_INSNS (1)); \
2133 case MULT: \
2134 switch (rs6000_cpu) \
2135 { \
2136 case PROCESSOR_RIOS1: \
2137 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2138 ? COSTS_N_INSNS (5) \
2139 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2140 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2141 case PROCESSOR_RIOS2: \
2142 case PROCESSOR_MPCCORE: \
2143 return COSTS_N_INSNS (2); \
2144 case PROCESSOR_PPC601: \
2145 return COSTS_N_INSNS (5); \
2146 case PROCESSOR_PPC603: \
2147 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2148 ? COSTS_N_INSNS (5) \
2149 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2150 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2151 case PROCESSOR_PPC403: \
2152 case PROCESSOR_PPC604: \
2153 case PROCESSOR_PPC620: \
2154 return COSTS_N_INSNS (4); \
2155 } \
2156 case DIV: \
2157 case MOD: \
2158 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2159 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2160 return COSTS_N_INSNS (2); \
2161 /* otherwise fall through to normal divide. */ \
2162 case UDIV: \
2163 case UMOD: \
2164 switch (rs6000_cpu) \
2165 { \
2166 case PROCESSOR_RIOS1: \
2167 return COSTS_N_INSNS (19); \
2168 case PROCESSOR_RIOS2: \
2169 return COSTS_N_INSNS (13); \
2170 case PROCESSOR_MPCCORE: \
2171 return COSTS_N_INSNS (6); \
2172 case PROCESSOR_PPC403: \
2173 return COSTS_N_INSNS (33); \
2174 case PROCESSOR_PPC601: \
2175 return COSTS_N_INSNS (36); \
2176 case PROCESSOR_PPC603: \
2177 return COSTS_N_INSNS (37); \
2178 case PROCESSOR_PPC604: \
2179 case PROCESSOR_PPC620: \
2180 return COSTS_N_INSNS (20); \
2181 } \
2182 case FFS: \
2183 return COSTS_N_INSNS (4); \
2184 case MEM: \
2185 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2186 return 5;
2187
2188 /* Compute the cost of an address. This is meant to approximate the size
2189 and/or execution delay of an insn using that address. If the cost is
2190 approximated by the RTL complexity, including CONST_COSTS above, as
2191 is usually the case for CISC machines, this macro should not be defined.
2192 For aggressively RISCy machines, only one insn format is allowed, so
2193 this macro should be a constant. The value of this macro only matters
2194 for valid addresses.
2195
2196 For the RS/6000, everything is cost 0. */
2197
2198 #define ADDRESS_COST(RTX) 0
2199
2200 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2201 should be adjusted to reflect any required changes. This macro is used when
2202 there is some systematic length adjustment required that would be difficult
2203 to express in the length attribute. */
2204
2205 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2206
2207 /* Add any extra modes needed to represent the condition code.
2208
2209 For the RS/6000, we need separate modes when unsigned (logical) comparisons
2210 are being done and we need a separate mode for floating-point. We also
2211 use a mode for the case when we are comparing the results of two
2212 comparisons. */
2213
2214 #define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
2215
2216 /* Define the names for the modes specified above. */
2217 #define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
2218
2219 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2220 return the mode to be used for the comparison. For floating-point, CCFPmode
2221 should be used. CCUNSmode should be used for unsigned comparisons.
2222 CCEQmode should be used when we are doing an inequality comparison on
2223 the result of a comparison. CCmode should be used in all other cases. */
2224
2225 #define SELECT_CC_MODE(OP,X,Y) \
2226 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2227 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2228 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2229 ? CCEQmode : CCmode))
2230
2231 /* Define the information needed to generate branch and scc insns. This is
2232 stored from the compare operation. Note that we can't use "rtx" here
2233 since it hasn't been defined! */
2234
2235 extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2236 extern int rs6000_compare_fp_p;
2237
2238 /* Set to non-zero by "fix" operation to indicate that itrunc and
2239 uitrunc must be defined. */
2240
2241 extern int rs6000_trunc_used;
2242
2243 /* Function names to call to do floating point truncation. */
2244
2245 #define RS6000_ITRUNC "__itrunc"
2246 #define RS6000_UITRUNC "__uitrunc"
2247
2248 /* Prefix and suffix to use to saving floating point */
2249 #ifndef SAVE_FP_PREFIX
2250 #define SAVE_FP_PREFIX "._savef"
2251 #define SAVE_FP_SUFFIX ""
2252 #endif
2253
2254 /* Prefix and suffix to use to restoring floating point */
2255 #ifndef RESTORE_FP_PREFIX
2256 #define RESTORE_FP_PREFIX "._restf"
2257 #define RESTORE_FP_SUFFIX ""
2258 #endif
2259
2260 /* Function name to call to do profiling. */
2261 #define RS6000_MCOUNT ".__mcount"
2262
2263 \f
2264 /* Control the assembler format that we output. */
2265
2266 /* A C string constant describing how to begin a comment in the target
2267 assembler language. The compiler assumes that the comment will end at
2268 the end of the line. */
2269 #define ASM_COMMENT_START " #"
2270
2271 /* Output at beginning of assembler file.
2272
2273 Initialize the section names for the RS/6000 at this point.
2274
2275 Specify filename to assembler.
2276
2277 We want to go into the TOC section so at least one .toc will be emitted.
2278 Also, in order to output proper .bs/.es pairs, we need at least one static
2279 [RW] section emitted.
2280
2281 We then switch back to text to force the gcc2_compiled. label and the space
2282 allocated after it (when profiling) into the text section.
2283
2284 Finally, declare mcount when profiling to make the assembler happy. */
2285
2286 #define ASM_FILE_START(FILE) \
2287 { \
2288 rs6000_gen_section_name (&xcoff_bss_section_name, \
2289 main_input_filename, ".bss_"); \
2290 rs6000_gen_section_name (&xcoff_private_data_section_name, \
2291 main_input_filename, ".rw_"); \
2292 rs6000_gen_section_name (&xcoff_read_only_section_name, \
2293 main_input_filename, ".ro_"); \
2294 \
2295 output_file_directive (FILE, main_input_filename); \
2296 toc_section (); \
2297 if (write_symbols != NO_DEBUG) \
2298 private_data_section (); \
2299 text_section (); \
2300 if (profile_flag) \
2301 fprintf (FILE, "\t.extern %s\n", RS6000_MCOUNT); \
2302 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
2303 }
2304
2305 /* Output at end of assembler file.
2306
2307 On the RS/6000, referencing data should automatically pull in text. */
2308
2309 #define ASM_FILE_END(FILE) \
2310 { \
2311 text_section (); \
2312 fputs ("_section_.text:\n", FILE); \
2313 data_section (); \
2314 fputs ("\t.long _section_.text\n", FILE); \
2315 }
2316
2317 /* We define this to prevent the name mangler from putting dollar signs into
2318 function names. */
2319
2320 #define NO_DOLLAR_IN_LABEL
2321
2322 /* We define this to 0 so that gcc will never accept a dollar sign in a
2323 variable name. This is needed because the AIX assembler will not accept
2324 dollar signs. */
2325
2326 #define DOLLARS_IN_IDENTIFIERS 0
2327
2328 /* Implicit library calls should use memcpy, not bcopy, etc. */
2329
2330 #define TARGET_MEM_FUNCTIONS
2331
2332 /* Define the extra sections we need. We define three: one is the read-only
2333 data section which is used for constants. This is a csect whose name is
2334 derived from the name of the input file. The second is for initialized
2335 global variables. This is a csect whose name is that of the variable.
2336 The third is the TOC. */
2337
2338 #define EXTRA_SECTIONS \
2339 read_only_data, private_data, read_only_private_data, toc, bss
2340
2341 /* Define the name of our readonly data section. */
2342
2343 #define READONLY_DATA_SECTION read_only_data_section
2344
2345
2346 /* Define the name of the section to use for the exception tables.
2347 TODO: test and see if we can use read_only_data_section, if so,
2348 remove this. */
2349
2350 #define EXCEPTION_SECTION data_section
2351
2352 /* If we are referencing a function that is static or is known to be
2353 in this file, make the SYMBOL_REF special. We can use this to indicate
2354 that we can branch to this function without emitting a no-op after the
2355 call. */
2356
2357 #define ENCODE_SECTION_INFO(DECL) \
2358 if (TREE_CODE (DECL) == FUNCTION_DECL \
2359 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2360 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2361
2362 /* Indicate that jump tables go in the text section. */
2363
2364 #define JUMP_TABLES_IN_TEXT_SECTION
2365
2366 /* Define the routines to implement these extra sections. */
2367
2368 #define EXTRA_SECTION_FUNCTIONS \
2369 \
2370 void \
2371 read_only_data_section () \
2372 { \
2373 if (in_section != read_only_data) \
2374 { \
2375 fprintf (asm_out_file, ".csect %s[RO]\n", \
2376 xcoff_read_only_section_name); \
2377 in_section = read_only_data; \
2378 } \
2379 } \
2380 \
2381 void \
2382 private_data_section () \
2383 { \
2384 if (in_section != private_data) \
2385 { \
2386 fprintf (asm_out_file, ".csect %s[RW]\n", \
2387 xcoff_private_data_section_name); \
2388 \
2389 in_section = private_data; \
2390 } \
2391 } \
2392 \
2393 void \
2394 read_only_private_data_section () \
2395 { \
2396 if (in_section != read_only_private_data) \
2397 { \
2398 fprintf (asm_out_file, ".csect %s[RO]\n", \
2399 xcoff_private_data_section_name); \
2400 in_section = read_only_private_data; \
2401 } \
2402 } \
2403 \
2404 void \
2405 toc_section () \
2406 { \
2407 if (TARGET_MINIMAL_TOC) \
2408 { \
2409 /* toc_section is always called at least once from ASM_FILE_START, \
2410 so this is guaranteed to always be defined once and only once \
2411 in each file. */ \
2412 if (! toc_initialized) \
2413 { \
2414 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2415 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
2416 toc_initialized = 1; \
2417 } \
2418 \
2419 if (in_section != toc) \
2420 fputs (".csect toc_table[RW]\n", asm_out_file); \
2421 } \
2422 else \
2423 { \
2424 if (in_section != toc) \
2425 fputs (".toc\n", asm_out_file); \
2426 } \
2427 in_section = toc; \
2428 }
2429
2430 /* Flag to say the TOC is initialized */
2431 extern int toc_initialized;
2432
2433 /* This macro produces the initial definition of a function name.
2434 On the RS/6000, we need to place an extra '.' in the function name and
2435 output the function descriptor.
2436
2437 The csect for the function will have already been created by the
2438 `text_section' call previously done. We do have to go back to that
2439 csect, however. */
2440
2441 /* ??? What do the 16 and 044 in the .function line really mean? */
2442
2443 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2444 { if (TREE_PUBLIC (DECL)) \
2445 { \
2446 fputs ("\t.globl .", FILE); \
2447 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2448 putc ('\n', FILE); \
2449 } \
2450 else \
2451 { \
2452 fputs ("\t.lglobl .", FILE); \
2453 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2454 putc ('\n', FILE); \
2455 } \
2456 fputs (".csect ", FILE); \
2457 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2458 fputs ("[DS]\n", FILE); \
2459 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2460 fputs (":\n", FILE); \
2461 fputs ((TARGET_32BIT) ? "\t.long ." : "\t.llong .", FILE); \
2462 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2463 fputs (", TOC[tc0], 0\n", FILE); \
2464 fputs (".csect .text[PR]\n.", FILE); \
2465 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2466 fputs (":\n", FILE); \
2467 if (write_symbols == XCOFF_DEBUG) \
2468 xcoffout_declare_function (FILE, DECL, NAME); \
2469 }
2470
2471 /* Return non-zero if this entry is to be written into the constant pool
2472 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2473 containing one of them. If -mfp-in-toc (the default), we also do
2474 this for floating-point constants. We actually can only do this
2475 if the FP formats of the target and host machines are the same, but
2476 we can't check that since not every file that uses
2477 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2478
2479 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2480 (TARGET_TOC \
2481 && (GET_CODE (X) == SYMBOL_REF \
2482 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2483 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2484 || GET_CODE (X) == LABEL_REF \
2485 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2486 && GET_CODE (X) == CONST_DOUBLE \
2487 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2488 && BITS_PER_WORD == HOST_BITS_PER_INT)))
2489
2490 /* Select section for constant in constant pool.
2491
2492 On RS/6000, all constants are in the private read-only data area.
2493 However, if this is being placed in the TOC it must be output as a
2494 toc entry. */
2495
2496 #define SELECT_RTX_SECTION(MODE, X) \
2497 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2498 toc_section (); \
2499 else \
2500 read_only_private_data_section (); \
2501 }
2502
2503 /* Macro to output a special constant pool entry. Go to WIN if we output
2504 it. Otherwise, it is written the usual way.
2505
2506 On the RS/6000, toc entries are handled this way. */
2507
2508 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2509 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2510 { \
2511 output_toc (FILE, X, LABELNO); \
2512 goto WIN; \
2513 } \
2514 }
2515
2516 /* Select the section for an initialized data object.
2517
2518 On the RS/6000, we have a special section for all variables except those
2519 that are static. */
2520
2521 #define SELECT_SECTION(EXP,RELOC) \
2522 { \
2523 if ((TREE_CODE (EXP) == STRING_CST \
2524 && !flag_writable_strings) \
2525 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
2526 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
2527 && DECL_INITIAL (EXP) \
2528 && (DECL_INITIAL (EXP) == error_mark_node \
2529 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2530 && ! (RELOC))) \
2531 { \
2532 if (TREE_PUBLIC (EXP)) \
2533 read_only_data_section (); \
2534 else \
2535 read_only_private_data_section (); \
2536 } \
2537 else \
2538 { \
2539 if (TREE_PUBLIC (EXP)) \
2540 data_section (); \
2541 else \
2542 private_data_section (); \
2543 } \
2544 }
2545
2546 /* This outputs NAME to FILE up to the first null or '['. */
2547
2548 #define RS6000_OUTPUT_BASENAME(FILE, NAME) \
2549 { \
2550 char *_p; \
2551 \
2552 STRIP_NAME_ENCODING (_p, (NAME)); \
2553 assemble_name ((FILE), _p); \
2554 }
2555
2556 /* Remove any trailing [DS] or the like from the symbol name. */
2557
2558 #define STRIP_NAME_ENCODING(VAR,NAME) \
2559 do \
2560 { \
2561 char *_name = (NAME); \
2562 int _len; \
2563 if (_name[0] == '*') \
2564 _name++; \
2565 _len = strlen (_name); \
2566 if (_name[_len - 1] != ']') \
2567 (VAR) = _name; \
2568 else \
2569 { \
2570 (VAR) = (char *) alloca (_len + 1); \
2571 strcpy ((VAR), _name); \
2572 (VAR)[_len - 4] = '\0'; \
2573 } \
2574 } \
2575 while (0)
2576
2577 /* Output something to declare an external symbol to the assembler. Most
2578 assemblers don't need this.
2579
2580 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2581 name. Normally we write this out along with the name. In the few cases
2582 where we can't, it gets stripped off. */
2583
2584 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2585 { rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2586 if ((TREE_CODE (DECL) == VAR_DECL \
2587 || TREE_CODE (DECL) == FUNCTION_DECL) \
2588 && (NAME)[strlen (NAME) - 1] != ']') \
2589 { \
2590 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2591 strcpy (_name, XSTR (_symref, 0)); \
2592 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2593 XSTR (_symref, 0) = _name; \
2594 } \
2595 fputs ("\t.extern ", FILE); \
2596 assemble_name (FILE, XSTR (_symref, 0)); \
2597 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2598 { \
2599 fputs ("\n\t.extern .", FILE); \
2600 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2601 } \
2602 putc ('\n', FILE); \
2603 }
2604
2605 /* Similar, but for libcall. We only have to worry about the function name,
2606 not that of the descriptor. */
2607
2608 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
2609 { fputs ("\t.extern .", FILE); \
2610 assemble_name (FILE, XSTR (FUN, 0)); \
2611 putc ('\n', FILE); \
2612 }
2613
2614 /* Output to assembler file text saying following lines
2615 may contain character constants, extra white space, comments, etc. */
2616
2617 #define ASM_APP_ON ""
2618
2619 /* Output to assembler file text saying following lines
2620 no longer contain unusual constructs. */
2621
2622 #define ASM_APP_OFF ""
2623
2624 /* Output before instructions. */
2625
2626 #define TEXT_SECTION_ASM_OP ".csect .text[PR]"
2627
2628 /* Output before writable data. */
2629
2630 #define DATA_SECTION_ASM_OP ".csect .data[RW]"
2631
2632 /* How to refer to registers in assembler output.
2633 This sequence is indexed by compiler's hard-register-number (see above). */
2634
2635 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2636
2637 #define REGISTER_NAMES \
2638 { \
2639 &rs6000_reg_names[ 0][0], /* r0 */ \
2640 &rs6000_reg_names[ 1][0], /* r1 */ \
2641 &rs6000_reg_names[ 2][0], /* r2 */ \
2642 &rs6000_reg_names[ 3][0], /* r3 */ \
2643 &rs6000_reg_names[ 4][0], /* r4 */ \
2644 &rs6000_reg_names[ 5][0], /* r5 */ \
2645 &rs6000_reg_names[ 6][0], /* r6 */ \
2646 &rs6000_reg_names[ 7][0], /* r7 */ \
2647 &rs6000_reg_names[ 8][0], /* r8 */ \
2648 &rs6000_reg_names[ 9][0], /* r9 */ \
2649 &rs6000_reg_names[10][0], /* r10 */ \
2650 &rs6000_reg_names[11][0], /* r11 */ \
2651 &rs6000_reg_names[12][0], /* r12 */ \
2652 &rs6000_reg_names[13][0], /* r13 */ \
2653 &rs6000_reg_names[14][0], /* r14 */ \
2654 &rs6000_reg_names[15][0], /* r15 */ \
2655 &rs6000_reg_names[16][0], /* r16 */ \
2656 &rs6000_reg_names[17][0], /* r17 */ \
2657 &rs6000_reg_names[18][0], /* r18 */ \
2658 &rs6000_reg_names[19][0], /* r19 */ \
2659 &rs6000_reg_names[20][0], /* r20 */ \
2660 &rs6000_reg_names[21][0], /* r21 */ \
2661 &rs6000_reg_names[22][0], /* r22 */ \
2662 &rs6000_reg_names[23][0], /* r23 */ \
2663 &rs6000_reg_names[24][0], /* r24 */ \
2664 &rs6000_reg_names[25][0], /* r25 */ \
2665 &rs6000_reg_names[26][0], /* r26 */ \
2666 &rs6000_reg_names[27][0], /* r27 */ \
2667 &rs6000_reg_names[28][0], /* r28 */ \
2668 &rs6000_reg_names[29][0], /* r29 */ \
2669 &rs6000_reg_names[30][0], /* r30 */ \
2670 &rs6000_reg_names[31][0], /* r31 */ \
2671 \
2672 &rs6000_reg_names[32][0], /* fr0 */ \
2673 &rs6000_reg_names[33][0], /* fr1 */ \
2674 &rs6000_reg_names[34][0], /* fr2 */ \
2675 &rs6000_reg_names[35][0], /* fr3 */ \
2676 &rs6000_reg_names[36][0], /* fr4 */ \
2677 &rs6000_reg_names[37][0], /* fr5 */ \
2678 &rs6000_reg_names[38][0], /* fr6 */ \
2679 &rs6000_reg_names[39][0], /* fr7 */ \
2680 &rs6000_reg_names[40][0], /* fr8 */ \
2681 &rs6000_reg_names[41][0], /* fr9 */ \
2682 &rs6000_reg_names[42][0], /* fr10 */ \
2683 &rs6000_reg_names[43][0], /* fr11 */ \
2684 &rs6000_reg_names[44][0], /* fr12 */ \
2685 &rs6000_reg_names[45][0], /* fr13 */ \
2686 &rs6000_reg_names[46][0], /* fr14 */ \
2687 &rs6000_reg_names[47][0], /* fr15 */ \
2688 &rs6000_reg_names[48][0], /* fr16 */ \
2689 &rs6000_reg_names[49][0], /* fr17 */ \
2690 &rs6000_reg_names[50][0], /* fr18 */ \
2691 &rs6000_reg_names[51][0], /* fr19 */ \
2692 &rs6000_reg_names[52][0], /* fr20 */ \
2693 &rs6000_reg_names[53][0], /* fr21 */ \
2694 &rs6000_reg_names[54][0], /* fr22 */ \
2695 &rs6000_reg_names[55][0], /* fr23 */ \
2696 &rs6000_reg_names[56][0], /* fr24 */ \
2697 &rs6000_reg_names[57][0], /* fr25 */ \
2698 &rs6000_reg_names[58][0], /* fr26 */ \
2699 &rs6000_reg_names[59][0], /* fr27 */ \
2700 &rs6000_reg_names[60][0], /* fr28 */ \
2701 &rs6000_reg_names[61][0], /* fr29 */ \
2702 &rs6000_reg_names[62][0], /* fr30 */ \
2703 &rs6000_reg_names[63][0], /* fr31 */ \
2704 \
2705 &rs6000_reg_names[64][0], /* mq */ \
2706 &rs6000_reg_names[65][0], /* lr */ \
2707 &rs6000_reg_names[66][0], /* ctr */ \
2708 &rs6000_reg_names[67][0], /* ap */ \
2709 \
2710 &rs6000_reg_names[68][0], /* cr0 */ \
2711 &rs6000_reg_names[69][0], /* cr1 */ \
2712 &rs6000_reg_names[70][0], /* cr2 */ \
2713 &rs6000_reg_names[71][0], /* cr3 */ \
2714 &rs6000_reg_names[72][0], /* cr4 */ \
2715 &rs6000_reg_names[73][0], /* cr5 */ \
2716 &rs6000_reg_names[74][0], /* cr6 */ \
2717 &rs6000_reg_names[75][0], /* cr7 */ \
2718 \
2719 &rs6000_reg_names[76][0], /* fpmem */ \
2720 }
2721
2722 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2723 following for it. Switch to use the alternate names since
2724 they are more mnemonic. */
2725
2726 #define DEBUG_REGISTER_NAMES \
2727 { \
2728 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2729 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2730 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2731 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2732 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2733 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2734 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2735 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2736 "mq", "lr", "ctr", "ap", \
2737 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2738 "fpmem" \
2739 }
2740
2741 /* Table of additional register names to use in user input. */
2742
2743 #define ADDITIONAL_REGISTER_NAMES \
2744 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
2745 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
2746 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
2747 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
2748 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
2749 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
2750 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
2751 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
2752 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
2753 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
2754 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
2755 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
2756 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
2757 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
2758 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
2759 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
2760 /* no additional names for: mq, lr, ctr, ap */ \
2761 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
2762 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
2763 "cc", 68, "sp", 1, "toc", 2 }
2764
2765 /* How to renumber registers for dbx and gdb. */
2766
2767 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2768
2769 /* Text to write out after a CALL that may be replaced by glue code by
2770 the loader. This depends on the AIX version. */
2771 #define RS6000_CALL_GLUE "cror 31,31,31"
2772
2773 /* This is how to output the definition of a user-level label named NAME,
2774 such as the label on a static function or variable NAME. */
2775
2776 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2777 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2778
2779 /* This is how to output a command to make the user-level label named NAME
2780 defined for reference from other files. */
2781
2782 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2783 do { fputs ("\t.globl ", FILE); \
2784 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
2785
2786 /* This is how to output a reference to a user-level label named NAME.
2787 `assemble_name' uses this. */
2788
2789 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2790 fputs (NAME, FILE)
2791
2792 /* This is how to output an internal numbered label where
2793 PREFIX is the class of label and NUM is the number within the class. */
2794
2795 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2796 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2797
2798 /* This is how to output an internal label prefix. rs6000.c uses this
2799 when generating traceback tables. */
2800
2801 #define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2802 fprintf (FILE, "%s..", PREFIX)
2803
2804 /* This is how to output a label for a jump table. Arguments are the same as
2805 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2806 passed. */
2807
2808 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2809 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2810
2811 /* This is how to store into the string LABEL
2812 the symbol_ref name of an internal numbered label where
2813 PREFIX is the class of label and NUM is the number within the class.
2814 This is suitable for output with `assemble_name'. */
2815
2816 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2817 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
2818
2819 /* This is how to output an assembler line defining a `double' constant. */
2820
2821 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
2822 { \
2823 if (REAL_VALUE_ISINF (VALUE) \
2824 || REAL_VALUE_ISNAN (VALUE) \
2825 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2826 { \
2827 long t[2]; \
2828 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2829 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
2830 t[0] & 0xffffffff, t[1] & 0xffffffff); \
2831 } \
2832 else \
2833 { \
2834 char str[30]; \
2835 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2836 fprintf (FILE, "\t.double 0d%s\n", str); \
2837 } \
2838 }
2839
2840 /* This is how to output an assembler line defining a `float' constant. */
2841
2842 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
2843 { \
2844 if (REAL_VALUE_ISINF (VALUE) \
2845 || REAL_VALUE_ISNAN (VALUE) \
2846 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2847 { \
2848 long t; \
2849 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2850 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2851 } \
2852 else \
2853 { \
2854 char str[30]; \
2855 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2856 fprintf (FILE, "\t.float 0d%s\n", str); \
2857 } \
2858 }
2859
2860 /* This is how to output an assembler line defining an `int' constant. */
2861
2862 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2863 do { \
2864 if (TARGET_32BIT) \
2865 { \
2866 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
2867 UNITS_PER_WORD, 1); \
2868 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
2869 UNITS_PER_WORD, 1); \
2870 } \
2871 else \
2872 { \
2873 fputs ("\t.llong ", FILE); \
2874 output_addr_const (FILE, (VALUE)); \
2875 putc ('\n', FILE); \
2876 } \
2877 } while (0)
2878
2879 #define ASM_OUTPUT_INT(FILE,VALUE) \
2880 ( fputs ("\t.long ", FILE), \
2881 output_addr_const (FILE, (VALUE)), \
2882 putc ('\n', FILE))
2883
2884 /* Likewise for `char' and `short' constants. */
2885
2886 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2887 ( fputs ("\t.short ", FILE), \
2888 output_addr_const (FILE, (VALUE)), \
2889 putc ('\n', FILE))
2890
2891 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2892 ( fputs ("\t.byte ", FILE), \
2893 output_addr_const (FILE, (VALUE)), \
2894 putc ('\n', FILE))
2895
2896 /* This is how to output an assembler line for a numeric constant byte. */
2897
2898 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2899 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
2900
2901 /* This is how to output an assembler line to define N characters starting
2902 at P to FILE. */
2903
2904 #define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
2905
2906 /* This is how to output code to push a register on the stack.
2907 It need not be very fast code.
2908
2909 On the rs6000, we must keep the backchain up to date. In order
2910 to simplify things, always allocate 16 bytes for a push (System V
2911 wants to keep stack aligned to a 16 byte boundary). */
2912
2913 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2914 do { \
2915 extern char *reg_names[]; \
2916 asm_fprintf (FILE, "\t{stu|stwu} %s,-16(%s)\n\t{st|stw} %s,8(%s)\n", \
2917 reg_names[1], reg_names[1], reg_names[REGNO], \
2918 reg_names[1]); \
2919 } while (0)
2920
2921 /* This is how to output an insn to pop a register from the stack.
2922 It need not be very fast code. */
2923
2924 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2925 do { \
2926 extern char *reg_names[]; \
2927 asm_fprintf (FILE, "\t{l|lwz} %s,8(%s)\n\t{ai|addic} %s,%s,16\n", \
2928 reg_names[REGNO], reg_names[1], reg_names[1], \
2929 reg_names[1]); \
2930 } while (0)
2931
2932 /* This is how to output an element of a case-vector that is absolute.
2933 (RS/6000 does not use such vectors, but we must define this macro
2934 anyway.) */
2935
2936 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2937 do { char buf[100]; \
2938 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
2939 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2940 assemble_name (FILE, buf); \
2941 putc ('\n', FILE); \
2942 } while (0)
2943
2944 /* This is how to output an element of a case-vector that is relative. */
2945
2946 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2947 do { char buf[100]; \
2948 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
2949 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2950 assemble_name (FILE, buf); \
2951 putc ('-', FILE); \
2952 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2953 assemble_name (FILE, buf); \
2954 putc ('\n', FILE); \
2955 } while (0)
2956
2957 /* This is how to output an assembler line
2958 that says to advance the location counter
2959 to a multiple of 2**LOG bytes. */
2960
2961 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2962 if ((LOG) != 0) \
2963 fprintf (FILE, "\t.align %d\n", (LOG))
2964
2965 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2966 fprintf (FILE, "\t.space %d\n", (SIZE))
2967
2968 /* This says how to output an assembler line
2969 to define a global common symbol. */
2970
2971 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
2972 do { fputs (".comm ", (FILE)); \
2973 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2974 if ( (SIZE) > 4) \
2975 fprintf ((FILE), ",%d,3\n", (SIZE)); \
2976 else \
2977 fprintf( (FILE), ",%d\n", (SIZE)); \
2978 } while (0)
2979
2980 /* This says how to output an assembler line
2981 to define a local common symbol. */
2982
2983 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2984 do { fputs (".lcomm ", (FILE)); \
2985 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2986 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
2987 } while (0)
2988
2989 /* Store in OUTPUT a string (made with alloca) containing
2990 an assembler-name for a local static variable named NAME.
2991 LABELNO is an integer which is different for each call. */
2992
2993 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2994 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2995 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2996
2997 /* Define the parentheses used to group arithmetic operations
2998 in assembler code. */
2999
3000 #define ASM_OPEN_PAREN "("
3001 #define ASM_CLOSE_PAREN ")"
3002
3003 /* Define results of standard character escape sequences. */
3004 #define TARGET_BELL 007
3005 #define TARGET_BS 010
3006 #define TARGET_TAB 011
3007 #define TARGET_NEWLINE 012
3008 #define TARGET_VT 013
3009 #define TARGET_FF 014
3010 #define TARGET_CR 015
3011
3012 /* Print operand X (an rtx) in assembler syntax to file FILE.
3013 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3014 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3015
3016 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3017
3018 /* Define which CODE values are valid. */
3019
3020 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3021 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
3022
3023 /* Print a memory address as an operand to reference that memory location. */
3024
3025 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3026
3027 /* Define the codes that are matched by predicates in rs6000.c. */
3028
3029 #define PREDICATE_CODES \
3030 {"short_cint_operand", {CONST_INT}}, \
3031 {"u_short_cint_operand", {CONST_INT}}, \
3032 {"non_short_cint_operand", {CONST_INT}}, \
3033 {"gpc_reg_operand", {SUBREG, REG}}, \
3034 {"cc_reg_operand", {SUBREG, REG}}, \
3035 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
3036 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
3037 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
3038 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
3039 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
3040 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
3041 {"easy_fp_constant", {CONST_DOUBLE}}, \
3042 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
3043 {"lwa_operand", {SUBREG, MEM, REG}}, \
3044 {"volatile_mem_operand", {MEM}}, \
3045 {"offsettable_addr_operand", {REG, SUBREG, PLUS}}, \
3046 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
3047 {"add_operand", {SUBREG, REG, CONST_INT}}, \
3048 {"non_add_cint_operand", {CONST_INT}}, \
3049 {"and_operand", {SUBREG, REG, CONST_INT}}, \
3050 {"non_and_cint_operand", {CONST_INT}}, \
3051 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
3052 {"non_logical_cint_operand", {CONST_INT}}, \
3053 {"mask_operand", {CONST_INT}}, \
3054 {"count_register_operand", {REG}}, \
3055 {"fpmem_operand", {REG}}, \
3056 {"call_operand", {SYMBOL_REF, REG}}, \
3057 {"current_file_function_operand", {SYMBOL_REF}}, \
3058 {"input_operand", {SUBREG, MEM, REG, CONST_INT, SYMBOL_REF}}, \
3059 {"load_multiple_operation", {PARALLEL}}, \
3060 {"store_multiple_operation", {PARALLEL}}, \
3061 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
3062 GT, LEU, LTU, GEU, GTU}}, \
3063 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
3064 GT, LEU, LTU, GEU, GTU}},
3065
3066
3067 /* uncomment for disabling the corresponding default options */
3068 /* #define MACHINE_no_sched_interblock */
3069 /* #define MACHINE_no_sched_speculative */
3070 /* #define MACHINE_no_sched_speculative_load */
3071
3072 /* indicate that issue rate is defined for this machine
3073 (no need to use the default) */
3074 #define ISSUE_RATE get_issue_rate ()
3075
3076 /* General flags. */
3077 extern int flag_pic;
3078 extern int optimize;
3079 extern int flag_expensive_optimizations;
3080 extern int frame_pointer_needed;
3081
3082 /* Declare functions in rs6000.c */
3083 extern void output_options ();
3084 extern void rs6000_override_options ();
3085 extern void rs6000_file_start ();
3086 extern struct rtx_def *rs6000_float_const ();
3087 extern struct rtx_def *rs6000_immed_double_const ();
3088 extern struct rtx_def *rs6000_got_register ();
3089 extern int direct_return ();
3090 extern int any_operand ();
3091 extern int short_cint_operand ();
3092 extern int u_short_cint_operand ();
3093 extern int non_short_cint_operand ();
3094 extern int gpc_reg_operand ();
3095 extern int cc_reg_operand ();
3096 extern int reg_or_short_operand ();
3097 extern int reg_or_neg_short_operand ();
3098 extern int reg_or_u_short_operand ();
3099 extern int reg_or_cint_operand ();
3100 extern int got_operand ();
3101 extern int got_no_const_operand ();
3102 extern int num_insns_constant ();
3103 extern int easy_fp_constant ();
3104 extern int volatile_mem_operand ();
3105 extern int offsettable_addr_operand ();
3106 extern int mem_or_easy_const_operand ();
3107 extern int add_operand ();
3108 extern int non_add_cint_operand ();
3109 extern int logical_operand ();
3110 extern int non_logical_operand ();
3111 extern int mask_constant ();
3112 extern int mask_operand ();
3113 extern int and_operand ();
3114 extern int count_register_operand ();
3115 extern int fpmem_operand ();
3116 extern int non_and_cint_operand ();
3117 extern int reg_or_mem_operand ();
3118 extern int lwa_operand ();
3119 extern int call_operand ();
3120 extern int current_file_function_operand ();
3121 extern int input_operand ();
3122 extern int small_data_operand ();
3123 extern void init_cumulative_args ();
3124 extern void function_arg_advance ();
3125 extern int function_arg_boundary ();
3126 extern struct rtx_def *function_arg ();
3127 extern int function_arg_partial_nregs ();
3128 extern int function_arg_pass_by_reference ();
3129 extern void setup_incoming_varargs ();
3130 extern struct rtx_def *expand_builtin_saveregs ();
3131 extern struct rtx_def *rs6000_stack_temp ();
3132 extern int expand_block_move ();
3133 extern int load_multiple_operation ();
3134 extern int store_multiple_operation ();
3135 extern int branch_comparison_operator ();
3136 extern int scc_comparison_operator ();
3137 extern int includes_lshift_p ();
3138 extern int includes_rshift_p ();
3139 extern int registers_ok_for_quad_peep ();
3140 extern int addrs_ok_for_quad_peep ();
3141 extern enum reg_class secondary_reload_class ();
3142 extern int ccr_bit ();
3143 extern void rs6000_finalize_pic ();
3144 extern void rs6000_reorg ();
3145 extern void rs6000_save_machine_status ();
3146 extern void rs6000_restore_machine_status ();
3147 extern void rs6000_init_expanders ();
3148 extern void print_operand ();
3149 extern void print_operand_address ();
3150 extern int first_reg_to_save ();
3151 extern int first_fp_reg_to_save ();
3152 extern int rs6000_makes_calls ();
3153 extern rs6000_stack_t *rs6000_stack_info ();
3154 extern void output_prolog ();
3155 extern void output_epilog ();
3156 extern void output_toc ();
3157 extern void output_ascii ();
3158 extern void rs6000_gen_section_name ();
3159 extern void output_function_profiler ();
3160 extern int rs6000_adjust_cost ();
3161 extern void rs6000_trampoline_template ();
3162 extern int rs6000_trampoline_size ();
3163 extern void rs6000_initialize_trampoline ();
3164 extern int rs6000_comp_type_attributes ();
3165 extern int rs6000_valid_decl_attribute_p ();
3166 extern int rs6000_valid_type_attribute_p ();
3167 extern void rs6000_set_default_type_attributes ();
3168 extern struct rtx_def *rs6000_dll_import_ref ();
3169 extern struct rtx_def *rs6000_longcall_ref ();
3170
3171 /* See nonlocal_goto_receiver for when this must be set. */
3172
3173 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_TOC && TARGET_MINIMAL_TOC)