tm.texi (BLOCK_REG_PADDING): Describe.
[gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 2, or (at your
11 option) any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the
20 Free Software Foundation, 59 Temple Place - Suite 330, Boston,
21 MA 02111-1307, USA. */
22
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions. */
25
26 /* Definitions for the object file format. These are set at
27 compile-time. */
28
29 #define OBJECT_XCOFF 1
30 #define OBJECT_ELF 2
31 #define OBJECT_PEF 3
32 #define OBJECT_MACHO 4
33
34 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
35 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
36 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
37 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
38
39 #ifndef TARGET_AIX
40 #define TARGET_AIX 0
41 #endif
42
43 /* Default string to use for cpu if not specified. */
44 #ifndef TARGET_CPU_DEFAULT
45 #define TARGET_CPU_DEFAULT ((char *)0)
46 #endif
47
48 /* Common ASM definitions used by ASM_SPEC among the various targets
49 for handling -mcpu=xxx switches. */
50 #define ASM_CPU_SPEC \
51 "%{!mcpu*: \
52 %{mpower: %{!mpower2: -mpwr}} \
53 %{mpower2: -mpwrx} \
54 %{mpowerpc*: -mppc} \
55 %{mno-power: %{!mpowerpc*: -mcom}} \
56 %{!mno-power: %{!mpower2: %(asm_default)}}} \
57 %{mcpu=common: -mcom} \
58 %{mcpu=power: -mpwr} \
59 %{mcpu=power2: -mpwrx} \
60 %{mcpu=power3: -m604} \
61 %{mcpu=power4: -mpower4} \
62 %{mcpu=powerpc: -mppc} \
63 %{mcpu=rios: -mpwr} \
64 %{mcpu=rios1: -mpwr} \
65 %{mcpu=rios2: -mpwrx} \
66 %{mcpu=rsc: -mpwr} \
67 %{mcpu=rsc1: -mpwr} \
68 %{mcpu=401: -mppc} \
69 %{mcpu=403: -m403} \
70 %{mcpu=405: -m405} \
71 %{mcpu=405fp: -m405} \
72 %{mcpu=440: -m440} \
73 %{mcpu=440fp: -m440} \
74 %{mcpu=505: -mppc} \
75 %{mcpu=601: -m601} \
76 %{mcpu=602: -mppc} \
77 %{mcpu=603: -mppc} \
78 %{mcpu=603e: -mppc} \
79 %{mcpu=ec603e: -mppc} \
80 %{mcpu=604: -mppc} \
81 %{mcpu=604e: -mppc} \
82 %{mcpu=620: -mppc} \
83 %{mcpu=630: -m604} \
84 %{mcpu=740: -mppc} \
85 %{mcpu=7400: -mppc} \
86 %{mcpu=7450: -mppc} \
87 %{mcpu=750: -mppc} \
88 %{mcpu=801: -mppc} \
89 %{mcpu=821: -mppc} \
90 %{mcpu=823: -mppc} \
91 %{mcpu=860: -mppc} \
92 %{mcpu=8540: -me500} \
93 %{maltivec: -maltivec}"
94
95 #define CPP_DEFAULT_SPEC ""
96
97 #define ASM_DEFAULT_SPEC ""
98
99 /* This macro defines names of additional specifications to put in the specs
100 that can be used in various specifications like CC1_SPEC. Its definition
101 is an initializer with a subgrouping for each command option.
102
103 Each subgrouping contains a string constant, that defines the
104 specification name, and a string constant that used by the GCC driver
105 program.
106
107 Do not define this macro if it does not need to do anything. */
108
109 #define SUBTARGET_EXTRA_SPECS
110
111 #define EXTRA_SPECS \
112 { "cpp_default", CPP_DEFAULT_SPEC }, \
113 { "asm_cpu", ASM_CPU_SPEC }, \
114 { "asm_default", ASM_DEFAULT_SPEC }, \
115 SUBTARGET_EXTRA_SPECS
116
117 /* Architecture type. */
118
119 extern int target_flags;
120
121 /* Use POWER architecture instructions and MQ register. */
122 #define MASK_POWER 0x00000001
123
124 /* Use POWER2 extensions to POWER architecture. */
125 #define MASK_POWER2 0x00000002
126
127 /* Use PowerPC architecture instructions. */
128 #define MASK_POWERPC 0x00000004
129
130 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
131 #define MASK_PPC_GPOPT 0x00000008
132
133 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
134 #define MASK_PPC_GFXOPT 0x00000010
135
136 /* Use PowerPC-64 architecture instructions. */
137 #define MASK_POWERPC64 0x00000020
138
139 /* Use revised mnemonic names defined for PowerPC architecture. */
140 #define MASK_NEW_MNEMONICS 0x00000040
141
142 /* Disable placing fp constants in the TOC; can be turned on when the
143 TOC overflows. */
144 #define MASK_NO_FP_IN_TOC 0x00000080
145
146 /* Disable placing symbol+offset constants in the TOC; can be turned on when
147 the TOC overflows. */
148 #define MASK_NO_SUM_IN_TOC 0x00000100
149
150 /* Output only one TOC entry per module. Normally linking fails if
151 there are more than 16K unique variables/constants in an executable. With
152 this option, linking fails only if there are more than 16K modules, or
153 if there are more than 16K unique variables/constant in a single module.
154
155 This is at the cost of having 2 extra loads and one extra store per
156 function, and one less allocable register. */
157 #define MASK_MINIMAL_TOC 0x00000200
158
159 /* Nonzero for the 64bit model: longs and pointers are 64 bits. */
160 #define MASK_64BIT 0x00000400
161
162 /* Disable use of FPRs. */
163 #define MASK_SOFT_FLOAT 0x00000800
164
165 /* Enable load/store multiple, even on PowerPC */
166 #define MASK_MULTIPLE 0x00001000
167
168 /* Use string instructions for block moves */
169 #define MASK_STRING 0x00002000
170
171 /* Disable update form of load/store */
172 #define MASK_NO_UPDATE 0x00004000
173
174 /* Disable fused multiply/add operations */
175 #define MASK_NO_FUSED_MADD 0x00008000
176
177 /* Nonzero if we need to schedule the prolog and epilog. */
178 #define MASK_SCHED_PROLOG 0x00010000
179
180 /* Use AltiVec instructions. */
181 #define MASK_ALTIVEC 0x00020000
182
183 /* Return small structures in memory (as the AIX ABI requires). */
184 #define MASK_AIX_STRUCT_RET 0x00040000
185
186 /* The only remaining free bits are 0x00780000. sysv4.h uses
187 0x00800000 -> 0x40000000, and 0x80000000 is not available
188 because target_flags is signed. */
189
190 #define TARGET_POWER (target_flags & MASK_POWER)
191 #define TARGET_POWER2 (target_flags & MASK_POWER2)
192 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
193 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
194 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
195 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
196 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
197 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
198 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
199 #define TARGET_64BIT (target_flags & MASK_64BIT)
200 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
201 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
202 #define TARGET_STRING (target_flags & MASK_STRING)
203 #define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
204 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
205 #define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
206 #define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
207 #define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
208
209 #define TARGET_32BIT (! TARGET_64BIT)
210 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
211 #define TARGET_UPDATE (! TARGET_NO_UPDATE)
212 #define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
213
214 #ifndef HAVE_AS_TLS
215 #define HAVE_AS_TLS 0
216 #endif
217
218 #ifdef IN_LIBGCC2
219 /* For libgcc2 we make sure this is a compile time constant */
220 #if defined (__64BIT__) || defined (__powerpc64__)
221 #define TARGET_POWERPC64 1
222 #else
223 #define TARGET_POWERPC64 0
224 #endif
225 #else
226 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
227 #endif
228
229 #define TARGET_XL_CALL 0
230
231 /* Run-time compilation parameters selecting different hardware subsets.
232
233 Macro to define tables used to set the flags.
234 This is a list in braces of pairs in braces,
235 each pair being { "NAME", VALUE }
236 where VALUE is the bits to set or minus the bits to clear.
237 An empty string NAME is used to identify the default VALUE. */
238
239 #define TARGET_SWITCHES \
240 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
241 N_("Use POWER instruction set")}, \
242 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
243 | MASK_POWER2), \
244 N_("Use POWER2 instruction set")}, \
245 {"no-power2", - MASK_POWER2, \
246 N_("Do not use POWER2 instruction set")}, \
247 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
248 | MASK_STRING), \
249 N_("Do not use POWER instruction set")}, \
250 {"powerpc", MASK_POWERPC, \
251 N_("Use PowerPC instruction set")}, \
252 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
253 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
254 N_("Do not use PowerPC instruction set")}, \
255 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
256 N_("Use PowerPC General Purpose group optional instructions")},\
257 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
258 N_("Don't use PowerPC General Purpose group optional instructions")},\
259 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
260 N_("Use PowerPC Graphics group optional instructions")},\
261 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
262 N_("Don't use PowerPC Graphics group optional instructions")},\
263 {"powerpc64", MASK_POWERPC64, \
264 N_("Use PowerPC-64 instruction set")}, \
265 {"no-powerpc64", - MASK_POWERPC64, \
266 N_("Don't use PowerPC-64 instruction set")}, \
267 {"altivec", MASK_ALTIVEC , \
268 N_("Use AltiVec instructions")}, \
269 {"no-altivec", - MASK_ALTIVEC , \
270 N_("Don't use AltiVec instructions")}, \
271 {"new-mnemonics", MASK_NEW_MNEMONICS, \
272 N_("Use new mnemonics for PowerPC architecture")},\
273 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
274 N_("Use old mnemonics for PowerPC architecture")},\
275 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
276 | MASK_MINIMAL_TOC), \
277 N_("Put everything in the regular TOC")}, \
278 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
279 N_("Place floating point constants in TOC")}, \
280 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
281 N_("Don't place floating point constants in TOC")},\
282 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
283 N_("Place symbol+offset constants in TOC")}, \
284 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
285 N_("Don't place symbol+offset constants in TOC")},\
286 {"minimal-toc", MASK_MINIMAL_TOC, \
287 "Use only one TOC entry per procedure"}, \
288 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
289 ""}, \
290 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
291 N_("Place variable addresses in the regular TOC")},\
292 {"hard-float", - MASK_SOFT_FLOAT, \
293 N_("Use hardware fp")}, \
294 {"soft-float", MASK_SOFT_FLOAT, \
295 N_("Do not use hardware fp")}, \
296 {"multiple", MASK_MULTIPLE, \
297 N_("Generate load/store multiple instructions")}, \
298 {"no-multiple", - MASK_MULTIPLE, \
299 N_("Do not generate load/store multiple instructions")},\
300 {"string", MASK_STRING, \
301 N_("Generate string instructions for block moves")},\
302 {"no-string", - MASK_STRING, \
303 N_("Do not generate string instructions for block moves")},\
304 {"update", - MASK_NO_UPDATE, \
305 N_("Generate load/store with update instructions")},\
306 {"no-update", MASK_NO_UPDATE, \
307 N_("Do not generate load/store with update instructions")},\
308 {"fused-madd", - MASK_NO_FUSED_MADD, \
309 N_("Generate fused multiply/add instructions")},\
310 {"no-fused-madd", MASK_NO_FUSED_MADD, \
311 N_("Don't generate fused multiply/add instructions")},\
312 {"sched-prolog", MASK_SCHED_PROLOG, \
313 ""}, \
314 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
315 N_("Don't schedule the start and end of the procedure")},\
316 {"sched-epilog", MASK_SCHED_PROLOG, \
317 ""}, \
318 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
319 ""}, \
320 {"aix-struct-return", MASK_AIX_STRUCT_RET, \
321 N_("Return all structures in memory (AIX default)")},\
322 {"svr4-struct-return", - MASK_AIX_STRUCT_RET, \
323 N_("Return small structures in registers (SVR4 default)")},\
324 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET, \
325 ""},\
326 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET, \
327 ""},\
328 SUBTARGET_SWITCHES \
329 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
330 ""}}
331
332 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
333
334 /* This is meant to be redefined in the host dependent files */
335 #define SUBTARGET_SWITCHES
336
337 /* Processor type. Order must match cpu attribute in MD file. */
338 enum processor_type
339 {
340 PROCESSOR_RIOS1,
341 PROCESSOR_RIOS2,
342 PROCESSOR_RS64A,
343 PROCESSOR_MPCCORE,
344 PROCESSOR_PPC403,
345 PROCESSOR_PPC405,
346 PROCESSOR_PPC440,
347 PROCESSOR_PPC601,
348 PROCESSOR_PPC603,
349 PROCESSOR_PPC604,
350 PROCESSOR_PPC604e,
351 PROCESSOR_PPC620,
352 PROCESSOR_PPC630,
353 PROCESSOR_PPC750,
354 PROCESSOR_PPC7400,
355 PROCESSOR_PPC7450,
356 PROCESSOR_PPC8540,
357 PROCESSOR_POWER4
358 };
359
360 extern enum processor_type rs6000_cpu;
361
362 /* Recast the processor type to the cpu attribute. */
363 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
364
365 /* Define generic processor types based upon current deployment. */
366 #define PROCESSOR_COMMON PROCESSOR_PPC601
367 #define PROCESSOR_POWER PROCESSOR_RIOS1
368 #define PROCESSOR_POWERPC PROCESSOR_PPC604
369 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
370
371 /* Define the default processor. This is overridden by other tm.h files. */
372 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
373 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
374
375 /* Specify the dialect of assembler to use. New mnemonics is dialect one
376 and the old mnemonics are dialect zero. */
377 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
378
379 /* This is meant to be overridden in target specific files. */
380 #define SUBTARGET_OPTIONS
381
382 #define TARGET_OPTIONS \
383 { \
384 {"cpu=", &rs6000_select[1].string, \
385 N_("Use features of and schedule code for given CPU"), 0}, \
386 {"tune=", &rs6000_select[2].string, \
387 N_("Schedule code for given CPU"), 0}, \
388 {"debug=", &rs6000_debug_name, N_("Enable debug output"), 0}, \
389 {"traceback=", &rs6000_traceback_name, \
390 N_("Select full, part, or no traceback table"), 0}, \
391 {"abi=", &rs6000_abi_string, N_("Specify ABI to use"), 0}, \
392 {"long-double-", &rs6000_long_double_size_string, \
393 N_("Specify size of long double (64 or 128 bits)"), 0}, \
394 {"isel=", &rs6000_isel_string, \
395 N_("Specify yes/no if isel instructions should be generated"), 0}, \
396 {"spe=", &rs6000_spe_string, \
397 N_("Specify yes/no if SPE SIMD instructions should be generated"), 0},\
398 {"float-gprs=", &rs6000_float_gprs_string, \
399 N_("Specify yes/no if using floating point in the GPRs"), 0}, \
400 {"vrsave=", &rs6000_altivec_vrsave_string, \
401 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec"), 0}, \
402 {"longcall", &rs6000_longcall_switch, \
403 N_("Avoid all range limits on call instructions"), 0}, \
404 {"no-longcall", &rs6000_longcall_switch, "", 0}, \
405 {"align-", &rs6000_alignment_string, \
406 N_("Specify alignment of structure fields default/natural"), 0}, \
407 SUBTARGET_OPTIONS \
408 }
409
410 /* Support for a compile-time default CPU, et cetera. The rules are:
411 --with-cpu is ignored if -mcpu is specified.
412 --with-tune is ignored if -mtune is specified.
413 --with-float is ignored if -mhard-float or -msoft-float are
414 specified. */
415 #define OPTION_DEFAULT_SPECS \
416 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
417 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
418 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
419
420 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
421 struct rs6000_cpu_select
422 {
423 const char *string;
424 const char *name;
425 int set_tune_p;
426 int set_arch_p;
427 };
428
429 extern struct rs6000_cpu_select rs6000_select[];
430
431 /* Debug support */
432 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
433 extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
434 extern int rs6000_debug_stack; /* debug stack applications */
435 extern int rs6000_debug_arg; /* debug argument handling */
436
437 #define TARGET_DEBUG_STACK rs6000_debug_stack
438 #define TARGET_DEBUG_ARG rs6000_debug_arg
439
440 extern const char *rs6000_traceback_name; /* Type of traceback table. */
441
442 /* These are separate from target_flags because we've run out of bits
443 there. */
444 extern const char *rs6000_long_double_size_string;
445 extern int rs6000_long_double_type_size;
446 extern int rs6000_altivec_abi;
447 extern int rs6000_spe_abi;
448 extern int rs6000_isel;
449 extern int rs6000_spe;
450 extern int rs6000_float_gprs;
451 extern const char *rs6000_float_gprs_string;
452 extern const char *rs6000_isel_string;
453 extern const char *rs6000_spe_string;
454 extern const char *rs6000_altivec_vrsave_string;
455 extern int rs6000_altivec_vrsave;
456 extern const char *rs6000_longcall_switch;
457 extern int rs6000_default_long_calls;
458 extern const char* rs6000_alignment_string;
459 extern int rs6000_alignment_flags;
460
461 /* Alignment options for fields in structures for sub-targets following
462 AIX-like ABI.
463 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
464 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
465
466 Override the macro definitions when compiling libobjc to avoid undefined
467 reference to rs6000_alignment_flags due to library's use of GCC alignment
468 macros which use the macros below. */
469
470 #ifndef IN_TARGET_LIBS
471 #define MASK_ALIGN_POWER 0x00000000
472 #define MASK_ALIGN_NATURAL 0x00000001
473 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
474 #else
475 #define TARGET_ALIGN_NATURAL 0
476 #endif
477
478 /* Define TARGET_MFCRF if the target assembler supports the optional
479 field operand for mfcr and the target processor supports the
480 instruction. */
481
482 #ifdef HAVE_AS_MFCRF
483 #define TARGET_MFCRF (rs6000_cpu == PROCESSOR_POWER4)
484 #else
485 #define TARGET_MFCRF 0
486 #endif
487
488 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
489 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
490 #define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
491
492 #define TARGET_SPE_ABI 0
493 #define TARGET_SPE 0
494 #define TARGET_E500 0
495 #define TARGET_ISEL 0
496 #define TARGET_FPRS 1
497
498 /* Sometimes certain combinations of command options do not make sense
499 on a particular target machine. You can define a macro
500 `OVERRIDE_OPTIONS' to take account of this. This macro, if
501 defined, is executed once just after all the command options have
502 been parsed.
503
504 Don't use this macro to turn on various extra optimizations for
505 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
506
507 On the RS/6000 this is used to define the target cpu type. */
508
509 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
510
511 /* Define this to change the optimizations performed by default. */
512 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
513
514 /* Show we can debug even without a frame pointer. */
515 #define CAN_DEBUG_WITHOUT_FP
516
517 /* Target pragma. */
518 #define REGISTER_TARGET_PRAGMAS() do { \
519 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
520 } while (0)
521
522 /* Target #defines. */
523 #define TARGET_CPU_CPP_BUILTINS() \
524 rs6000_cpu_cpp_builtins (pfile)
525
526 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
527 we're compiling for. Some configurations may need to override it. */
528 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
529 do \
530 { \
531 if (BYTES_BIG_ENDIAN) \
532 { \
533 builtin_define ("__BIG_ENDIAN__"); \
534 builtin_define ("_BIG_ENDIAN"); \
535 builtin_assert ("machine=bigendian"); \
536 } \
537 else \
538 { \
539 builtin_define ("__LITTLE_ENDIAN__"); \
540 builtin_define ("_LITTLE_ENDIAN"); \
541 builtin_assert ("machine=littleendian"); \
542 } \
543 } \
544 while (0)
545 \f
546 /* Target machine storage layout. */
547
548 /* Define this macro if it is advisable to hold scalars in registers
549 in a wider mode than that declared by the program. In such cases,
550 the value is constrained to be within the bounds of the declared
551 type, but kept valid in the wider mode. The signedness of the
552 extension may differ from that of the type. */
553
554 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
555 if (GET_MODE_CLASS (MODE) == MODE_INT \
556 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
557 (MODE) = word_mode;
558
559 /* Define this if function arguments should also be promoted using the above
560 procedure. */
561
562 #define PROMOTE_FUNCTION_ARGS
563
564 /* Likewise, if the function return value is promoted. */
565
566 #define PROMOTE_FUNCTION_RETURN
567
568 /* Define this if most significant bit is lowest numbered
569 in instructions that operate on numbered bit-fields. */
570 /* That is true on RS/6000. */
571 #define BITS_BIG_ENDIAN 1
572
573 /* Define this if most significant byte of a word is the lowest numbered. */
574 /* That is true on RS/6000. */
575 #define BYTES_BIG_ENDIAN 1
576
577 /* Define this if most significant word of a multiword number is lowest
578 numbered.
579
580 For RS/6000 we can decide arbitrarily since there are no machine
581 instructions for them. Might as well be consistent with bits and bytes. */
582 #define WORDS_BIG_ENDIAN 1
583
584 #define MAX_BITS_PER_WORD 64
585
586 /* Width of a word, in units (bytes). */
587 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
588 #ifdef IN_LIBGCC2
589 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
590 #else
591 #define MIN_UNITS_PER_WORD 4
592 #endif
593 #define UNITS_PER_FP_WORD 8
594 #define UNITS_PER_ALTIVEC_WORD 16
595 #define UNITS_PER_SPE_WORD 8
596
597 /* Type used for ptrdiff_t, as a string used in a declaration. */
598 #define PTRDIFF_TYPE "int"
599
600 /* Type used for size_t, as a string used in a declaration. */
601 #define SIZE_TYPE "long unsigned int"
602
603 /* Type used for wchar_t, as a string used in a declaration. */
604 #define WCHAR_TYPE "short unsigned int"
605
606 /* Width of wchar_t in bits. */
607 #define WCHAR_TYPE_SIZE 16
608
609 /* A C expression for the size in bits of the type `short' on the
610 target machine. If you don't define this, the default is half a
611 word. (If this would be less than one storage unit, it is
612 rounded up to one unit.) */
613 #define SHORT_TYPE_SIZE 16
614
615 /* A C expression for the size in bits of the type `int' on the
616 target machine. If you don't define this, the default is one
617 word. */
618 #define INT_TYPE_SIZE 32
619
620 /* A C expression for the size in bits of the type `long' on the
621 target machine. If you don't define this, the default is one
622 word. */
623 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
624 #define MAX_LONG_TYPE_SIZE 64
625
626 /* A C expression for the size in bits of the type `long long' on the
627 target machine. If you don't define this, the default is two
628 words. */
629 #define LONG_LONG_TYPE_SIZE 64
630
631 /* A C expression for the size in bits of the type `float' on the
632 target machine. If you don't define this, the default is one
633 word. */
634 #define FLOAT_TYPE_SIZE 32
635
636 /* A C expression for the size in bits of the type `double' on the
637 target machine. If you don't define this, the default is two
638 words. */
639 #define DOUBLE_TYPE_SIZE 64
640
641 /* A C expression for the size in bits of the type `long double' on
642 the target machine. If you don't define this, the default is two
643 words. */
644 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
645
646 /* Constant which presents upper bound of the above value. */
647 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
648
649 /* Define this to set long double type size to use in libgcc2.c, which can
650 not depend on target_flags. */
651 #ifdef __LONG_DOUBLE_128__
652 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
653 #else
654 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
655 #endif
656
657 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
658 #define WIDEST_HARDWARE_FP_SIZE 64
659
660 /* Width in bits of a pointer.
661 See also the macro `Pmode' defined below. */
662 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
663
664 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
665 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
666
667 /* Boundary (in *bits*) on which stack pointer should be aligned. */
668 #define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
669
670 /* Allocation boundary (in *bits*) for the code of a function. */
671 #define FUNCTION_BOUNDARY 32
672
673 /* No data type wants to be aligned rounder than this. */
674 #define BIGGEST_ALIGNMENT 128
675
676 /* A C expression to compute the alignment for a variables in the
677 local store. TYPE is the data type, and ALIGN is the alignment
678 that the object would ordinarily have. */
679 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
680 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
681 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
682
683 /* Alignment of field after `int : 0' in a structure. */
684 #define EMPTY_FIELD_BOUNDARY 32
685
686 /* Every structure's size must be a multiple of this. */
687 #define STRUCTURE_SIZE_BOUNDARY 8
688
689 /* Return 1 if a structure or array containing FIELD should be
690 accessed using `BLKMODE'.
691
692 For the SPE, simd types are V2SI, and gcc can be tempted to put the
693 entire thing in a DI and use subregs to access the internals.
694 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
695 back-end. Because a single GPR can hold a V2SI, but not a DI, the
696 best thing to do is set structs to BLKmode and avoid Severe Tire
697 Damage. */
698 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
699 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
700
701 /* A bit-field declared as `int' forces `int' alignment for the struct. */
702 #define PCC_BITFIELD_TYPE_MATTERS 1
703
704 /* Make strings word-aligned so strcpy from constants will be faster.
705 Make vector constants quadword aligned. */
706 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
707 (TREE_CODE (EXP) == STRING_CST \
708 && (ALIGN) < BITS_PER_WORD \
709 ? BITS_PER_WORD \
710 : (ALIGN))
711
712 /* Make arrays of chars word-aligned for the same reasons.
713 Align vectors to 128 bits. */
714 #define DATA_ALIGNMENT(TYPE, ALIGN) \
715 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
716 : TREE_CODE (TYPE) == ARRAY_TYPE \
717 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
718 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
719
720 /* Nonzero if move instructions will actually fail to work
721 when given unaligned data. */
722 #define STRICT_ALIGNMENT 0
723
724 /* Define this macro to be the value 1 if unaligned accesses have a cost
725 many times greater than aligned accesses, for example if they are
726 emulated in a trap handler. */
727 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
728 (STRICT_ALIGNMENT \
729 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
730 || (MODE) == DImode) \
731 && (ALIGN) < 32))
732 \f
733 /* Standard register usage. */
734
735 /* Number of actual hardware registers.
736 The hardware registers are assigned numbers for the compiler
737 from 0 to just below FIRST_PSEUDO_REGISTER.
738 All registers that the compiler knows about must be given numbers,
739 even those that are not normally considered general registers.
740
741 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
742 an MQ register, a count register, a link register, and 8 condition
743 register fields, which we view here as separate registers. AltiVec
744 adds 32 vector registers and a VRsave register.
745
746 In addition, the difference between the frame and argument pointers is
747 a function of the number of registers saved, so we need to have a
748 register for AP that will later be eliminated in favor of SP or FP.
749 This is a normal register, but it is fixed.
750
751 We also create a pseudo register for float/int conversions, that will
752 really represent the memory location used. It is represented here as
753 a register, in order to work around problems in allocating stack storage
754 in inline functions. */
755
756 #define FIRST_PSEUDO_REGISTER 113
757
758 /* This must be included for pre gcc 3.0 glibc compatibility. */
759 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
760
761 /* Add 32 dwarf columns for synthetic SPE registers. The SPE
762 synthetic registers are 113 through 145. */
763 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 32)
764
765 /* The SPE has an additional 32 synthetic registers starting at 1200.
766 We must map them here to sane values in the unwinder to avoid a
767 huge hole in the unwind tables.
768
769 FIXME: the AltiVec ABI has AltiVec registers being 1124-1155, and
770 the VRSAVE SPR (SPR256) assigned to register 356. When AltiVec EH
771 is verified to be working, this macro should be changed
772 accordingly. */
773 #define DWARF_REG_TO_UNWIND_COLUMN(r) ((r) > 1200 ? ((r) - 1200 + 113) : (r))
774
775 /* 1 for registers that have pervasive standard uses
776 and are not available for the register allocator.
777
778 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
779 as a local register; for all other OS's r2 is the TOC pointer.
780
781 cr5 is not supposed to be used.
782
783 On System V implementations, r13 is fixed and not available for use. */
784
785 #define FIXED_REGISTERS \
786 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
787 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
788 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
789 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
790 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
791 /* AltiVec registers. */ \
792 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
793 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
794 1, 1 \
795 , 1, 1 \
796 }
797
798 /* 1 for registers not available across function calls.
799 These must include the FIXED_REGISTERS and also any
800 registers that can be used without being saved.
801 The latter must include the registers where values are returned
802 and the register where structure-value addresses are passed.
803 Aside from that, you can include as many other registers as you like. */
804
805 #define CALL_USED_REGISTERS \
806 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
807 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
808 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
809 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
810 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
811 /* AltiVec registers. */ \
812 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
813 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
814 1, 1 \
815 , 1, 1 \
816 }
817
818 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
819 the entire set of `FIXED_REGISTERS' be included.
820 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
821 This macro is optional. If not specified, it defaults to the value
822 of `CALL_USED_REGISTERS'. */
823
824 #define CALL_REALLY_USED_REGISTERS \
825 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
826 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
827 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
828 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
829 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
830 /* AltiVec registers. */ \
831 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
832 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
833 0, 0 \
834 , 0, 0 \
835 }
836
837 #define MQ_REGNO 64
838 #define CR0_REGNO 68
839 #define CR1_REGNO 69
840 #define CR2_REGNO 70
841 #define CR3_REGNO 71
842 #define CR4_REGNO 72
843 #define MAX_CR_REGNO 75
844 #define XER_REGNO 76
845 #define FIRST_ALTIVEC_REGNO 77
846 #define LAST_ALTIVEC_REGNO 108
847 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
848 #define VRSAVE_REGNO 109
849 #define VSCR_REGNO 110
850 #define SPE_ACC_REGNO 111
851 #define SPEFSCR_REGNO 112
852
853 /* List the order in which to allocate registers. Each register must be
854 listed once, even those in FIXED_REGISTERS.
855
856 We allocate in the following order:
857 fp0 (not saved or used for anything)
858 fp13 - fp2 (not saved; incoming fp arg registers)
859 fp1 (not saved; return value)
860 fp31 - fp14 (saved; order given to save least number)
861 cr7, cr6 (not saved or special)
862 cr1 (not saved, but used for FP operations)
863 cr0 (not saved, but used for arithmetic operations)
864 cr4, cr3, cr2 (saved)
865 r0 (not saved; cannot be base reg)
866 r9 (not saved; best for TImode)
867 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
868 r3 (not saved; return value register)
869 r31 - r13 (saved; order given to save least number)
870 r12 (not saved; if used for DImode or DFmode would use r13)
871 mq (not saved; best to use it if we can)
872 ctr (not saved; when we have the choice ctr is better)
873 lr (saved)
874 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
875 spe_acc, spefscr (fixed)
876
877 AltiVec registers:
878 v0 - v1 (not saved or used for anything)
879 v13 - v3 (not saved; incoming vector arg registers)
880 v2 (not saved; incoming vector arg reg; return value)
881 v19 - v14 (not saved or used for anything)
882 v31 - v20 (saved; order given to save least number)
883 */
884
885 #if FIXED_R2 == 1
886 #define MAYBE_R2_AVAILABLE
887 #define MAYBE_R2_FIXED 2,
888 #else
889 #define MAYBE_R2_AVAILABLE 2,
890 #define MAYBE_R2_FIXED
891 #endif
892
893 #define REG_ALLOC_ORDER \
894 {32, \
895 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
896 33, \
897 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
898 50, 49, 48, 47, 46, \
899 75, 74, 69, 68, 72, 71, 70, \
900 0, MAYBE_R2_AVAILABLE \
901 9, 11, 10, 8, 7, 6, 5, 4, \
902 3, \
903 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
904 18, 17, 16, 15, 14, 13, 12, \
905 64, 66, 65, \
906 73, 1, MAYBE_R2_FIXED 67, 76, \
907 /* AltiVec registers. */ \
908 77, 78, \
909 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
910 79, \
911 96, 95, 94, 93, 92, 91, \
912 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
913 97, 109, 110 \
914 , 111, 112 \
915 }
916
917 /* True if register is floating-point. */
918 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
919
920 /* True if register is a condition register. */
921 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
922
923 /* True if register is a condition register, but not cr0. */
924 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
925
926 /* True if register is an integer register. */
927 #define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
928
929 /* SPE SIMD registers are just the GPRs. */
930 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
931
932 /* True if register is the XER register. */
933 #define XER_REGNO_P(N) ((N) == XER_REGNO)
934
935 /* True if register is an AltiVec register. */
936 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
937
938 /* Return number of consecutive hard regs needed starting at reg REGNO
939 to hold something of mode MODE.
940 This is ordinarily the length in words of a value of mode MODE
941 but can be less for certain modes in special long registers.
942
943 For the SPE, GPRs are 64 bits but only 32 bits are visible in
944 scalar instructions. The upper 32 bits are only available to the
945 SIMD instructions.
946
947 POWER and PowerPC GPRs hold 32 bits worth;
948 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
949
950 #define HARD_REGNO_NREGS(REGNO, MODE) \
951 (FP_REGNO_P (REGNO) \
952 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
953 : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
954 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
955 : ALTIVEC_REGNO_P (REGNO) \
956 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
957 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
958
959 #define ALTIVEC_VECTOR_MODE(MODE) \
960 ((MODE) == V16QImode \
961 || (MODE) == V8HImode \
962 || (MODE) == V4SFmode \
963 || (MODE) == V4SImode)
964
965 #define SPE_VECTOR_MODE(MODE) \
966 ((MODE) == V4HImode \
967 || (MODE) == V2SFmode \
968 || (MODE) == V1DImode \
969 || (MODE) == V2SImode)
970
971 /* Define this macro to be nonzero if the port is prepared to handle
972 insns involving vector mode MODE. At the very least, it must have
973 move patterns for this mode. */
974
975 #define VECTOR_MODE_SUPPORTED_P(MODE) \
976 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
977 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
978
979 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
980 For POWER and PowerPC, the GPRs can hold any mode, but values bigger
981 than one register cannot go past R31. The float
982 registers only can hold floating modes and DImode, and CR register only
983 can hold CC modes. We cannot put TImode anywhere except general
984 register and it must be able to fit within the register set. */
985
986 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
987 (INT_REGNO_P (REGNO) ? \
988 INT_REGNO_P (REGNO + HARD_REGNO_NREGS (REGNO, MODE) - 1) \
989 : FP_REGNO_P (REGNO) ? \
990 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
991 || (GET_MODE_CLASS (MODE) == MODE_INT \
992 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
993 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
994 : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
995 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
996 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
997 : GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)
998
999 /* Value is 1 if it is a good idea to tie two pseudo registers
1000 when one has mode MODE1 and one has mode MODE2.
1001 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1002 for any hard reg, then this must be 0 for correct output. */
1003 #define MODES_TIEABLE_P(MODE1, MODE2) \
1004 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
1005 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
1006 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
1007 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
1008 : GET_MODE_CLASS (MODE1) == MODE_CC \
1009 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1010 : GET_MODE_CLASS (MODE2) == MODE_CC \
1011 ? GET_MODE_CLASS (MODE1) == MODE_CC \
1012 : SPE_VECTOR_MODE (MODE1) \
1013 ? SPE_VECTOR_MODE (MODE2) \
1014 : SPE_VECTOR_MODE (MODE2) \
1015 ? SPE_VECTOR_MODE (MODE1) \
1016 : ALTIVEC_VECTOR_MODE (MODE1) \
1017 ? ALTIVEC_VECTOR_MODE (MODE2) \
1018 : ALTIVEC_VECTOR_MODE (MODE2) \
1019 ? ALTIVEC_VECTOR_MODE (MODE1) \
1020 : 1)
1021
1022 /* Post-reload, we can't use any new AltiVec registers, as we already
1023 emitted the vrsave mask. */
1024
1025 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1026 (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
1027
1028 /* A C expression returning the cost of moving data from a register of class
1029 CLASS1 to one of CLASS2. */
1030
1031 #define REGISTER_MOVE_COST rs6000_register_move_cost
1032
1033 /* A C expressions returning the cost of moving data of MODE from a register to
1034 or from memory. */
1035
1036 #define MEMORY_MOVE_COST rs6000_memory_move_cost
1037
1038 /* Specify the cost of a branch insn; roughly the number of extra insns that
1039 should be added to avoid a branch.
1040
1041 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1042 unscheduled conditional branch. */
1043
1044 #define BRANCH_COST 3
1045
1046 /* Override BRANCH_COST heuristic which empirically produces worse
1047 performance for fold_range_test(). */
1048
1049 #define RANGE_TEST_NON_SHORT_CIRCUIT 0
1050
1051 /* A fixed register used at prologue and epilogue generation to fix
1052 addressing modes. The SPE needs heavy addressing fixes at the last
1053 minute, and it's best to save a register for it.
1054
1055 AltiVec also needs fixes, but we've gotten around using r11, which
1056 is actually wrong because when use_backchain_to_restore_sp is true,
1057 we end up clobbering r11.
1058
1059 The AltiVec case needs to be fixed. Dunno if we should break ABI
1060 compatibility and reserve a register for it as well.. */
1061
1062 #define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
1063
1064 /* Define this macro to change register usage conditional on target flags.
1065 Set MQ register fixed (already call_used) if not POWER architecture
1066 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
1067 64-bit AIX reserves GPR13 for thread-private data.
1068 Conditionally disable FPRs. */
1069
1070 #define CONDITIONAL_REGISTER_USAGE \
1071 { \
1072 int i; \
1073 if (! TARGET_POWER) \
1074 fixed_regs[64] = 1; \
1075 if (TARGET_64BIT) \
1076 fixed_regs[13] = call_used_regs[13] \
1077 = call_really_used_regs[13] = 1; \
1078 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
1079 for (i = 32; i < 64; i++) \
1080 fixed_regs[i] = call_used_regs[i] \
1081 = call_really_used_regs[i] = 1; \
1082 if (DEFAULT_ABI == ABI_V4 \
1083 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1084 && flag_pic == 2) \
1085 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1086 if (DEFAULT_ABI == ABI_V4 \
1087 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1088 && flag_pic == 1) \
1089 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1090 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1091 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1092 if (DEFAULT_ABI == ABI_DARWIN \
1093 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1094 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1095 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1096 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1097 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1098 if (TARGET_ALTIVEC) \
1099 global_regs[VSCR_REGNO] = 1; \
1100 if (TARGET_SPE) \
1101 { \
1102 global_regs[SPEFSCR_REGNO] = 1; \
1103 fixed_regs[FIXED_SCRATCH] \
1104 = call_used_regs[FIXED_SCRATCH] \
1105 = call_really_used_regs[FIXED_SCRATCH] = 1; \
1106 } \
1107 if (! TARGET_ALTIVEC) \
1108 { \
1109 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1110 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1111 call_really_used_regs[VRSAVE_REGNO] = 1; \
1112 } \
1113 if (TARGET_ALTIVEC_ABI) \
1114 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
1115 call_used_regs[i] = call_really_used_regs[i] = 1; \
1116 }
1117
1118 /* Specify the registers used for certain standard purposes.
1119 The values of these macros are register numbers. */
1120
1121 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1122 /* #define PC_REGNUM */
1123
1124 /* Register to use for pushing function arguments. */
1125 #define STACK_POINTER_REGNUM 1
1126
1127 /* Base register for access to local variables of the function. */
1128 #define FRAME_POINTER_REGNUM 31
1129
1130 /* Value should be nonzero if functions must have frame pointers.
1131 Zero means the frame pointer need not be set up (and parms
1132 may be accessed via the stack pointer) in functions that seem suitable.
1133 This is computed in `reload', in reload1.c. */
1134 #define FRAME_POINTER_REQUIRED 0
1135
1136 /* Base register for access to arguments of the function. */
1137 #define ARG_POINTER_REGNUM 67
1138
1139 /* Place to put static chain when calling a function that requires it. */
1140 #define STATIC_CHAIN_REGNUM 11
1141
1142 /* Link register number. */
1143 #define LINK_REGISTER_REGNUM 65
1144
1145 /* Count register number. */
1146 #define COUNT_REGISTER_REGNUM 66
1147
1148 /* Place that structure value return address is placed.
1149
1150 On the RS/6000, it is passed as an extra parameter. */
1151 #define STRUCT_VALUE 0
1152 \f
1153 /* Define the classes of registers for register constraints in the
1154 machine description. Also define ranges of constants.
1155
1156 One of the classes must always be named ALL_REGS and include all hard regs.
1157 If there is more than one class, another class must be named NO_REGS
1158 and contain no registers.
1159
1160 The name GENERAL_REGS must be the name of a class (or an alias for
1161 another name such as ALL_REGS). This is the class of registers
1162 that is allowed by "g" or "r" in a register constraint.
1163 Also, registers outside this class are allocated only when
1164 instructions express preferences for them.
1165
1166 The classes must be numbered in nondecreasing order; that is,
1167 a larger-numbered class must never be contained completely
1168 in a smaller-numbered class.
1169
1170 For any two classes, it is very desirable that there be another
1171 class that represents their union. */
1172
1173 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1174 and condition registers, plus three special registers, MQ, CTR, and the
1175 link register. AltiVec adds a vector register class.
1176
1177 However, r0 is special in that it cannot be used as a base register.
1178 So make a class for registers valid as base registers.
1179
1180 Also, cr0 is the only condition code register that can be used in
1181 arithmetic insns, so make a separate class for it. */
1182
1183 enum reg_class
1184 {
1185 NO_REGS,
1186 BASE_REGS,
1187 GENERAL_REGS,
1188 FLOAT_REGS,
1189 ALTIVEC_REGS,
1190 VRSAVE_REGS,
1191 VSCR_REGS,
1192 SPE_ACC_REGS,
1193 SPEFSCR_REGS,
1194 NON_SPECIAL_REGS,
1195 MQ_REGS,
1196 LINK_REGS,
1197 CTR_REGS,
1198 LINK_OR_CTR_REGS,
1199 SPECIAL_REGS,
1200 SPEC_OR_GEN_REGS,
1201 CR0_REGS,
1202 CR_REGS,
1203 NON_FLOAT_REGS,
1204 XER_REGS,
1205 ALL_REGS,
1206 LIM_REG_CLASSES
1207 };
1208
1209 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1210
1211 /* Give names of register classes as strings for dump file. */
1212
1213 #define REG_CLASS_NAMES \
1214 { \
1215 "NO_REGS", \
1216 "BASE_REGS", \
1217 "GENERAL_REGS", \
1218 "FLOAT_REGS", \
1219 "ALTIVEC_REGS", \
1220 "VRSAVE_REGS", \
1221 "VSCR_REGS", \
1222 "SPE_ACC_REGS", \
1223 "SPEFSCR_REGS", \
1224 "NON_SPECIAL_REGS", \
1225 "MQ_REGS", \
1226 "LINK_REGS", \
1227 "CTR_REGS", \
1228 "LINK_OR_CTR_REGS", \
1229 "SPECIAL_REGS", \
1230 "SPEC_OR_GEN_REGS", \
1231 "CR0_REGS", \
1232 "CR_REGS", \
1233 "NON_FLOAT_REGS", \
1234 "XER_REGS", \
1235 "ALL_REGS" \
1236 }
1237
1238 /* Define which registers fit in which classes.
1239 This is an initializer for a vector of HARD_REG_SET
1240 of length N_REG_CLASSES. */
1241
1242 #define REG_CLASS_CONTENTS \
1243 { \
1244 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1245 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1246 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1247 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1248 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1249 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1250 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1251 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1252 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1253 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1254 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1255 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1256 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1257 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1258 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1259 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1260 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1261 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1262 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1263 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1264 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
1265 }
1266
1267 /* The same information, inverted:
1268 Return the class number of the smallest class containing
1269 reg number REGNO. This could be a conditional expression
1270 or could index an array. */
1271
1272 #define REGNO_REG_CLASS(REGNO) \
1273 ((REGNO) == 0 ? GENERAL_REGS \
1274 : (REGNO) < 32 ? BASE_REGS \
1275 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1276 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1277 : (REGNO) == CR0_REGNO ? CR0_REGS \
1278 : CR_REGNO_P (REGNO) ? CR_REGS \
1279 : (REGNO) == MQ_REGNO ? MQ_REGS \
1280 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1281 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1282 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1283 : (REGNO) == XER_REGNO ? XER_REGS \
1284 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1285 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1286 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1287 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1288 : NO_REGS)
1289
1290 /* The class value for index registers, and the one for base regs. */
1291 #define INDEX_REG_CLASS GENERAL_REGS
1292 #define BASE_REG_CLASS BASE_REGS
1293
1294 /* Get reg_class from a letter such as appears in the machine description. */
1295
1296 #define REG_CLASS_FROM_LETTER(C) \
1297 ((C) == 'f' ? FLOAT_REGS \
1298 : (C) == 'b' ? BASE_REGS \
1299 : (C) == 'h' ? SPECIAL_REGS \
1300 : (C) == 'q' ? MQ_REGS \
1301 : (C) == 'c' ? CTR_REGS \
1302 : (C) == 'l' ? LINK_REGS \
1303 : (C) == 'v' ? ALTIVEC_REGS \
1304 : (C) == 'x' ? CR0_REGS \
1305 : (C) == 'y' ? CR_REGS \
1306 : (C) == 'z' ? XER_REGS \
1307 : NO_REGS)
1308
1309 /* The letters I, J, K, L, M, N, and P in a register constraint string
1310 can be used to stand for particular ranges of immediate operands.
1311 This macro defines what the ranges are.
1312 C is the letter, and VALUE is a constant value.
1313 Return 1 if VALUE is in the range specified by C.
1314
1315 `I' is a signed 16-bit constant
1316 `J' is a constant with only the high-order 16 bits nonzero
1317 `K' is a constant with only the low-order 16 bits nonzero
1318 `L' is a signed 16-bit constant shifted left 16 bits
1319 `M' is a constant that is greater than 31
1320 `N' is a positive constant that is an exact power of two
1321 `O' is the constant zero
1322 `P' is a constant whose negation is a signed 16-bit constant */
1323
1324 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1325 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1326 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1327 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
1328 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1329 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1330 : (C) == 'M' ? (VALUE) > 31 \
1331 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
1332 : (C) == 'O' ? (VALUE) == 0 \
1333 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1334 : 0)
1335
1336 /* Similar, but for floating constants, and defining letters G and H.
1337 Here VALUE is the CONST_DOUBLE rtx itself.
1338
1339 We flag for special constants when we can copy the constant into
1340 a general register in two insns for DF/DI and one insn for SF.
1341
1342 'H' is used for DI/DF constants that take 3 insns. */
1343
1344 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1345 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1346 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1347 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1348 : 0)
1349
1350 /* Optional extra constraints for this machine.
1351
1352 'Q' means that is a memory operand that is just an offset from a reg.
1353 'R' is for AIX TOC entries.
1354 'S' is a constant that can be placed into a 64-bit mask operand
1355 'T' is a constant that can be placed into a 32-bit mask operand
1356 'U' is for V.4 small data references.
1357 'W' is a vector constant that can be easily generated (no mem refs).
1358 't' is for AND masks that can be performed by two rldic{l,r} insns. */
1359
1360 #define EXTRA_CONSTRAINT(OP, C) \
1361 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1362 : (C) == 'R' ? legitimate_constant_pool_address_p (OP) \
1363 : (C) == 'S' ? mask64_operand (OP, DImode) \
1364 : (C) == 'T' ? mask_operand (OP, SImode) \
1365 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
1366 && small_data_operand (OP, GET_MODE (OP))) \
1367 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1368 && (fixed_regs[CR0_REGNO] \
1369 || !logical_operand (OP, DImode)) \
1370 && !mask64_operand (OP, DImode)) \
1371 : (C) == 'W' ? (easy_vector_constant (OP, GET_MODE (OP))) \
1372 : 0)
1373
1374 /* Given an rtx X being reloaded into a reg required to be
1375 in class CLASS, return the class of reg to actually use.
1376 In general this is just CLASS; but on some machines
1377 in some cases it is preferable to use a more restrictive class.
1378
1379 On the RS/6000, we have to return NO_REGS when we want to reload a
1380 floating-point CONST_DOUBLE to force it to be copied to memory.
1381
1382 We also don't want to reload integer values into floating-point
1383 registers if we can at all help it. In fact, this can
1384 cause reload to abort, if it tries to generate a reload of CTR
1385 into a FP register and discovers it doesn't have the memory location
1386 required.
1387
1388 ??? Would it be a good idea to have reload do the converse, that is
1389 try to reload floating modes into FP registers if possible?
1390 */
1391
1392 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1393 (((GET_CODE (X) == CONST_DOUBLE \
1394 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1395 ? NO_REGS \
1396 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1397 && (CLASS) == NON_SPECIAL_REGS) \
1398 ? GENERAL_REGS \
1399 : (CLASS)))
1400
1401 /* Return the register class of a scratch register needed to copy IN into
1402 or out of a register in CLASS in MODE. If it can be done directly,
1403 NO_REGS is returned. */
1404
1405 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1406 secondary_reload_class (CLASS, MODE, IN)
1407
1408 /* If we are copying between FP or AltiVec registers and anything
1409 else, we need a memory location. */
1410
1411 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1412 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1413 || (CLASS2) == FLOAT_REGS \
1414 || (CLASS1) == ALTIVEC_REGS \
1415 || (CLASS2) == ALTIVEC_REGS))
1416
1417 /* Return the maximum number of consecutive registers
1418 needed to represent mode MODE in a register of class CLASS.
1419
1420 On RS/6000, this is the size of MODE in words,
1421 except in the FP regs, where a single reg is enough for two words. */
1422 #define CLASS_MAX_NREGS(CLASS, MODE) \
1423 (((CLASS) == FLOAT_REGS) \
1424 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1425 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1426
1427
1428 /* Return a class of registers that cannot change FROM mode to TO mode. */
1429
1430 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1431 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1432 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) \
1433 : (TARGET_SPE && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1) \
1434 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
1435 : 0)
1436
1437 /* Stack layout; function entry, exit and calling. */
1438
1439 /* Enumeration to give which calling sequence to use. */
1440 enum rs6000_abi {
1441 ABI_NONE,
1442 ABI_AIX, /* IBM's AIX */
1443 ABI_V4, /* System V.4/eabi */
1444 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1445 };
1446
1447 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1448
1449 /* Structure used to define the rs6000 stack */
1450 typedef struct rs6000_stack {
1451 int first_gp_reg_save; /* first callee saved GP register used */
1452 int first_fp_reg_save; /* first callee saved FP register used */
1453 int first_altivec_reg_save; /* first callee saved AltiVec register used */
1454 int lr_save_p; /* true if the link reg needs to be saved */
1455 int cr_save_p; /* true if the CR reg needs to be saved */
1456 unsigned int vrsave_mask; /* mask of vec registers to save */
1457 int toc_save_p; /* true if the TOC needs to be saved */
1458 int push_p; /* true if we need to allocate stack space */
1459 int calls_p; /* true if the function makes any calls */
1460 enum rs6000_abi abi; /* which ABI to use */
1461 int gp_save_offset; /* offset to save GP regs from initial SP */
1462 int fp_save_offset; /* offset to save FP regs from initial SP */
1463 int altivec_save_offset; /* offset to save AltiVec regs from initial SP */
1464 int lr_save_offset; /* offset to save LR from initial SP */
1465 int cr_save_offset; /* offset to save CR from initial SP */
1466 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
1467 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
1468 int toc_save_offset; /* offset to save the TOC pointer */
1469 int varargs_save_offset; /* offset to save the varargs registers */
1470 int ehrd_offset; /* offset to EH return data */
1471 int reg_size; /* register size (4 or 8) */
1472 int varargs_size; /* size to hold V.4 args passed in regs */
1473 int vars_size; /* variable save area size */
1474 int parm_size; /* outgoing parameter size */
1475 int save_size; /* save area size */
1476 int fixed_size; /* fixed size of stack frame */
1477 int gp_size; /* size of saved GP registers */
1478 int fp_size; /* size of saved FP registers */
1479 int altivec_size; /* size of saved AltiVec registers */
1480 int cr_size; /* size to hold CR if not in save_size */
1481 int lr_size; /* size to hold LR if not in save_size */
1482 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1483 int altivec_padding_size; /* size of altivec alignment padding if
1484 not in save_size */
1485 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
1486 int spe_padding_size;
1487 int toc_size; /* size to hold TOC if not in save_size */
1488 int total_size; /* total bytes allocated for stack */
1489 int spe_64bit_regs_used;
1490 } rs6000_stack_t;
1491
1492 /* Define this if pushing a word on the stack
1493 makes the stack pointer a smaller address. */
1494 #define STACK_GROWS_DOWNWARD
1495
1496 /* Define this if the nominal address of the stack frame
1497 is at the high-address end of the local variables;
1498 that is, each additional local variable allocated
1499 goes at a more negative offset in the frame.
1500
1501 On the RS/6000, we grow upwards, from the area after the outgoing
1502 arguments. */
1503 /* #define FRAME_GROWS_DOWNWARD */
1504
1505 /* Size of the outgoing register save area */
1506 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1507 || DEFAULT_ABI == ABI_DARWIN) \
1508 ? (TARGET_64BIT ? 64 : 32) \
1509 : 0)
1510
1511 /* Size of the fixed area on the stack */
1512 #define RS6000_SAVE_AREA \
1513 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1514 << (TARGET_64BIT ? 1 : 0))
1515
1516 /* MEM representing address to save the TOC register */
1517 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1518 plus_constant (stack_pointer_rtx, \
1519 (TARGET_32BIT ? 20 : 40)))
1520
1521 /* Size of the V.4 varargs area if needed */
1522 #define RS6000_VARARGS_AREA 0
1523
1524 /* Align an address */
1525 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1526
1527 /* Size of V.4 varargs area in bytes */
1528 #define RS6000_VARARGS_SIZE \
1529 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1530
1531 /* Offset within stack frame to start allocating local variables at.
1532 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1533 first local allocated. Otherwise, it is the offset to the BEGINNING
1534 of the first local allocated.
1535
1536 On the RS/6000, the frame pointer is the same as the stack pointer,
1537 except for dynamic allocations. So we start after the fixed area and
1538 outgoing parameter area. */
1539
1540 #define STARTING_FRAME_OFFSET \
1541 (RS6000_ALIGN (current_function_outgoing_args_size, \
1542 TARGET_ALTIVEC ? 16 : 8) \
1543 + RS6000_VARARGS_AREA \
1544 + RS6000_SAVE_AREA)
1545
1546 /* Offset from the stack pointer register to an item dynamically
1547 allocated on the stack, e.g., by `alloca'.
1548
1549 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1550 length of the outgoing arguments. The default is correct for most
1551 machines. See `function.c' for details. */
1552 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1553 (RS6000_ALIGN (current_function_outgoing_args_size, \
1554 TARGET_ALTIVEC ? 16 : 8) \
1555 + (STACK_POINTER_OFFSET))
1556
1557 /* If we generate an insn to push BYTES bytes,
1558 this says how many the stack pointer really advances by.
1559 On RS/6000, don't define this because there are no push insns. */
1560 /* #define PUSH_ROUNDING(BYTES) */
1561
1562 /* Offset of first parameter from the argument pointer register value.
1563 On the RS/6000, we define the argument pointer to the start of the fixed
1564 area. */
1565 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1566
1567 /* Offset from the argument pointer register value to the top of
1568 stack. This is different from FIRST_PARM_OFFSET because of the
1569 register save area. */
1570 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1571
1572 /* Define this if stack space is still allocated for a parameter passed
1573 in a register. The value is the number of bytes allocated to this
1574 area. */
1575 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1576
1577 /* Define this if the above stack space is to be considered part of the
1578 space allocated by the caller. */
1579 #define OUTGOING_REG_PARM_STACK_SPACE
1580
1581 /* This is the difference between the logical top of stack and the actual sp.
1582
1583 For the RS/6000, sp points past the fixed area. */
1584 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1585
1586 /* Define this if the maximum size of all the outgoing args is to be
1587 accumulated and pushed during the prologue. The amount can be
1588 found in the variable current_function_outgoing_args_size. */
1589 #define ACCUMULATE_OUTGOING_ARGS 1
1590
1591 /* Value is the number of bytes of arguments automatically
1592 popped when returning from a subroutine call.
1593 FUNDECL is the declaration node of the function (as a tree),
1594 FUNTYPE is the data type of the function (as a tree),
1595 or for a library call it is an identifier node for the subroutine name.
1596 SIZE is the number of bytes of arguments passed on the stack. */
1597
1598 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1599
1600 /* Define how to find the value returned by a function.
1601 VALTYPE is the data type of the value (as a tree).
1602 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1603 otherwise, FUNC is 0. */
1604
1605 #define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1606
1607 /* Define how to find the value returned by a library function
1608 assuming the value has mode MODE. */
1609
1610 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1611
1612 /* The AIX ABI for the RS/6000 specifies that all structures are
1613 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1614 specifies that structures <= 8 bytes are returned in r3/r4, but a
1615 draft put them in memory, and GCC used to implement the draft
1616 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1617 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1618 compatibility can change DRAFT_V4_STRUCT_RET to override the
1619 default, and -m switches get the final word. See
1620 rs6000_override_options for more details.
1621
1622 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
1623 long double support is enabled. These values are returned in memory.
1624
1625 int_size_in_bytes returns -1 for variable size objects, which go in
1626 memory always. The cast to unsigned makes -1 > 8. */
1627
1628 #define RETURN_IN_MEMORY(TYPE) \
1629 ((AGGREGATE_TYPE_P (TYPE) \
1630 && (TARGET_AIX_STRUCT_RET \
1631 || (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8)) \
1632 || (DEFAULT_ABI == ABI_V4 && TYPE_MODE (TYPE) == TFmode))
1633
1634 /* DRAFT_V4_STRUCT_RET defaults off. */
1635 #define DRAFT_V4_STRUCT_RET 0
1636
1637 /* Let RETURN_IN_MEMORY control what happens. */
1638 #define DEFAULT_PCC_STRUCT_RETURN 0
1639
1640 /* Mode of stack savearea.
1641 FUNCTION is VOIDmode because calling convention maintains SP.
1642 BLOCK needs Pmode for SP.
1643 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1644 #define STACK_SAVEAREA_MODE(LEVEL) \
1645 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1646 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1647
1648 /* Minimum and maximum general purpose registers used to hold arguments. */
1649 #define GP_ARG_MIN_REG 3
1650 #define GP_ARG_MAX_REG 10
1651 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1652
1653 /* Minimum and maximum floating point registers used to hold arguments. */
1654 #define FP_ARG_MIN_REG 33
1655 #define FP_ARG_AIX_MAX_REG 45
1656 #define FP_ARG_V4_MAX_REG 40
1657 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1658 || DEFAULT_ABI == ABI_DARWIN) \
1659 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1660 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1661
1662 /* Minimum and maximum AltiVec registers used to hold arguments. */
1663 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1664 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1665 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1666
1667 /* Return registers */
1668 #define GP_ARG_RETURN GP_ARG_MIN_REG
1669 #define FP_ARG_RETURN FP_ARG_MIN_REG
1670 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1671
1672 /* Flags for the call/call_value rtl operations set up by function_arg */
1673 #define CALL_NORMAL 0x00000000 /* no special processing */
1674 /* Bits in 0x00000001 are unused. */
1675 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1676 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1677 #define CALL_LONG 0x00000008 /* always call indirect */
1678 #define CALL_LIBCALL 0x00000010 /* libcall */
1679
1680 /* 1 if N is a possible register number for a function value
1681 as seen by the caller.
1682
1683 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1684 #define FUNCTION_VALUE_REGNO_P(N) \
1685 ((N) == GP_ARG_RETURN \
1686 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT) \
1687 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC))
1688
1689 /* 1 if N is a possible register number for function argument passing.
1690 On RS/6000, these are r3-r10 and fp1-fp13.
1691 On AltiVec, v2 - v13 are used for passing vectors. */
1692 #define FUNCTION_ARG_REGNO_P(N) \
1693 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1694 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1695 && TARGET_ALTIVEC) \
1696 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1697 && TARGET_HARD_FLOAT))
1698 \f
1699 /* A C structure for machine-specific, per-function data.
1700 This is added to the cfun structure. */
1701 typedef struct machine_function GTY(())
1702 {
1703 /* Whether a System V.4 varargs area was created. */
1704 int sysv_varargs_p;
1705 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1706 int ra_needs_full_frame;
1707 /* Some local-dynamic symbol. */
1708 const char *some_ld_name;
1709 /* Whether the instruction chain has been scanned already. */
1710 int insn_chain_scanned_p;
1711 } machine_function;
1712
1713 /* Define a data type for recording info about an argument list
1714 during the scan of that argument list. This data type should
1715 hold all necessary information about the function itself
1716 and about the args processed so far, enough to enable macros
1717 such as FUNCTION_ARG to determine where the next arg should go.
1718
1719 On the RS/6000, this is a structure. The first element is the number of
1720 total argument words, the second is used to store the next
1721 floating-point register number, and the third says how many more args we
1722 have prototype types for.
1723
1724 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1725 the next available GP register, `fregno' is the next available FP
1726 register, and `words' is the number of words used on the stack.
1727
1728 The varargs/stdarg support requires that this structure's size
1729 be a multiple of sizeof(int). */
1730
1731 typedef struct rs6000_args
1732 {
1733 int words; /* # words used for passing GP registers */
1734 int fregno; /* next available FP register */
1735 int vregno; /* next available AltiVec register */
1736 int nargs_prototype; /* # args left in the current prototype */
1737 int prototype; /* Whether a prototype was defined */
1738 int stdarg; /* Whether function is a stdarg function. */
1739 int call_cookie; /* Do special things for this call */
1740 int sysv_gregno; /* next available GP register */
1741 } CUMULATIVE_ARGS;
1742
1743 /* Define intermediate macro to compute the size (in registers) of an argument
1744 for the RS/6000. */
1745
1746 #define RS6000_ARG_SIZE(MODE, TYPE) \
1747 ((MODE) != BLKmode \
1748 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1749 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1750
1751 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1752 for a call to a function whose data type is FNTYPE.
1753 For a library call, FNTYPE is 0. */
1754
1755 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1756 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE)
1757
1758 /* Similar, but when scanning the definition of a procedure. We always
1759 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1760
1761 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1762 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE)
1763
1764 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1765
1766 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1767 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE)
1768
1769 /* Update the data in CUM to advance over an argument
1770 of mode MODE and data type TYPE.
1771 (TYPE is null for libcalls where that information may not be available.) */
1772
1773 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1774 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1775
1776 /* Nonzero if we can use a floating-point register to pass this arg. */
1777 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1778 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1779 && (CUM).fregno <= FP_ARG_MAX_REG \
1780 && TARGET_HARD_FLOAT && TARGET_FPRS)
1781
1782 /* Nonzero if we can use an AltiVec register to pass this arg. */
1783 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1784 (ALTIVEC_VECTOR_MODE (MODE) \
1785 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1786 && TARGET_ALTIVEC_ABI)
1787
1788 /* Determine where to put an argument to a function.
1789 Value is zero to push the argument on the stack,
1790 or a hard register in which to store the argument.
1791
1792 MODE is the argument's machine mode.
1793 TYPE is the data type of the argument (as a tree).
1794 This is null for libcalls where that information may
1795 not be available.
1796 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1797 the preceding args and about the function being called.
1798 NAMED is nonzero if this argument is a named parameter
1799 (otherwise it is an extra parameter matching an ellipsis).
1800
1801 On RS/6000 the first eight words of non-FP are normally in registers
1802 and the rest are pushed. The first 13 FP args are in registers.
1803
1804 If this is floating-point and no prototype is specified, we use
1805 both an FP and integer register (or possibly FP reg and stack). Library
1806 functions (when TYPE is zero) always have the proper types for args,
1807 so we can pass the FP value just in one register. emit_library_function
1808 doesn't support EXPR_LIST anyway. */
1809
1810 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1811 function_arg (&CUM, MODE, TYPE, NAMED)
1812
1813 /* For an arg passed partly in registers and partly in memory,
1814 this is the number of registers used.
1815 For args passed entirely in registers or entirely in memory, zero. */
1816
1817 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1818 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1819
1820 /* A C expression that indicates when an argument must be passed by
1821 reference. If nonzero for an argument, a copy of that argument is
1822 made in memory and a pointer to the argument is passed instead of
1823 the argument itself. The pointer is passed in whatever way is
1824 appropriate for passing a pointer to that type. */
1825
1826 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1827 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1828
1829 /* If defined, a C expression which determines whether, and in which
1830 direction, to pad out an argument with extra space. The value
1831 should be of type `enum direction': either `upward' to pad above
1832 the argument, `downward' to pad below, or `none' to inhibit
1833 padding. */
1834
1835 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1836
1837 /* If defined, a C expression that gives the alignment boundary, in bits,
1838 of an argument with the specified mode and type. If it is not defined,
1839 PARM_BOUNDARY is used for all arguments. */
1840
1841 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1842 function_arg_boundary (MODE, TYPE)
1843
1844 /* Define to nonzero if complex arguments should be split into their
1845 corresponding components.
1846
1847 This should be set for Linux and Darwin as well, but we can't break
1848 the ABIs at the moment. For now, only AIX gets fixed. */
1849 #define SPLIT_COMPLEX_ARGS (DEFAULT_ABI == ABI_AIX)
1850
1851 /* Perform any needed actions needed for a function that is receiving a
1852 variable number of arguments.
1853
1854 CUM is as above.
1855
1856 MODE and TYPE are the mode and type of the current parameter.
1857
1858 PRETEND_SIZE is a variable that should be set to the amount of stack
1859 that must be pushed by the prolog to pretend that our caller pushed
1860 it.
1861
1862 Normally, this macro will push all remaining incoming registers on the
1863 stack and set PRETEND_SIZE to the length of the registers pushed. */
1864
1865 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1866 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1867
1868 /* Define the `__builtin_va_list' type for the ABI. */
1869 #define BUILD_VA_LIST_TYPE(VALIST) \
1870 (VALIST) = rs6000_build_va_list ()
1871
1872 /* Implement `va_start' for varargs and stdarg. */
1873 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1874 rs6000_va_start (valist, nextarg)
1875
1876 /* Implement `va_arg'. */
1877 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1878 rs6000_va_arg (valist, type)
1879
1880 #define PAD_VARARGS_DOWN \
1881 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1882
1883 /* Define this macro to be a nonzero value if the location where a function
1884 argument is passed depends on whether or not it is a named argument. */
1885 #define STRICT_ARGUMENT_NAMING 1
1886
1887 /* Output assembler code to FILE to increment profiler label # LABELNO
1888 for profiling a function entry. */
1889
1890 #define FUNCTION_PROFILER(FILE, LABELNO) \
1891 output_function_profiler ((FILE), (LABELNO));
1892
1893 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1894 the stack pointer does not matter. No definition is equivalent to
1895 always zero.
1896
1897 On the RS/6000, this is nonzero because we can restore the stack from
1898 its backpointer, which we maintain. */
1899 #define EXIT_IGNORE_STACK 1
1900
1901 /* Define this macro as a C expression that is nonzero for registers
1902 that are used by the epilogue or the return' pattern. The stack
1903 and frame pointer registers are already be assumed to be used as
1904 needed. */
1905
1906 #define EPILOGUE_USES(REGNO) \
1907 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
1908 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1909 || (current_function_calls_eh_return \
1910 && TARGET_AIX \
1911 && (REGNO) == 2))
1912
1913 \f
1914 /* TRAMPOLINE_TEMPLATE deleted */
1915
1916 /* Length in units of the trampoline for entering a nested function. */
1917
1918 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1919
1920 /* Emit RTL insns to initialize the variable parts of a trampoline.
1921 FNADDR is an RTX for the address of the function's pure code.
1922 CXT is an RTX for the static chain value for the function. */
1923
1924 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1925 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1926 \f
1927 /* Definitions for __builtin_return_address and __builtin_frame_address.
1928 __builtin_return_address (0) should give link register (65), enable
1929 this. */
1930 /* This should be uncommented, so that the link register is used, but
1931 currently this would result in unmatched insns and spilling fixed
1932 registers so we'll leave it for another day. When these problems are
1933 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1934 (mrs) */
1935 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1936
1937 /* Number of bytes into the frame return addresses can be found. See
1938 rs6000_stack_info in rs6000.c for more information on how the different
1939 abi's store the return address. */
1940 #define RETURN_ADDRESS_OFFSET \
1941 ((DEFAULT_ABI == ABI_AIX \
1942 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1943 (DEFAULT_ABI == ABI_V4) ? 4 : \
1944 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1945
1946 /* The current return address is in link register (65). The return address
1947 of anything farther back is accessed normally at an offset of 8 from the
1948 frame pointer. */
1949 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1950 (rs6000_return_addr (COUNT, FRAME))
1951
1952 \f
1953 /* Definitions for register eliminations.
1954
1955 We have two registers that can be eliminated on the RS/6000. First, the
1956 frame pointer register can often be eliminated in favor of the stack
1957 pointer register. Secondly, the argument pointer register can always be
1958 eliminated; it is replaced with either the stack or frame pointer.
1959
1960 In addition, we use the elimination mechanism to see if r30 is needed
1961 Initially we assume that it isn't. If it is, we spill it. This is done
1962 by making it an eliminable register. We replace it with itself so that
1963 if it isn't needed, then existing uses won't be modified. */
1964
1965 /* This is an array of structures. Each structure initializes one pair
1966 of eliminable registers. The "from" register number is given first,
1967 followed by "to". Eliminations of the same "from" register are listed
1968 in order of preference. */
1969 #define ELIMINABLE_REGS \
1970 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1971 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1972 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1973 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1974
1975 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1976 Frame pointer elimination is automatically handled.
1977
1978 For the RS/6000, if frame pointer elimination is being done, we would like
1979 to convert ap into fp, not sp.
1980
1981 We need r30 if -mminimal-toc was specified, and there are constant pool
1982 references. */
1983
1984 #define CAN_ELIMINATE(FROM, TO) \
1985 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1986 ? ! frame_pointer_needed \
1987 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1988 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1989 : 1)
1990
1991 /* Define the offset between two registers, one to be eliminated, and the other
1992 its replacement, at the start of a routine. */
1993 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1994 { \
1995 rs6000_stack_t *info = rs6000_stack_info (); \
1996 \
1997 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1998 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1999 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
2000 (OFFSET) = info->total_size; \
2001 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
2002 (OFFSET) = (info->push_p) ? info->total_size : 0; \
2003 else if ((FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM) \
2004 (OFFSET) = 0; \
2005 else \
2006 abort (); \
2007 }
2008 \f
2009 /* Addressing modes, and classification of registers for them. */
2010
2011 #define HAVE_PRE_DECREMENT 1
2012 #define HAVE_PRE_INCREMENT 1
2013
2014 /* Macros to check register numbers against specific register classes. */
2015
2016 /* These assume that REGNO is a hard or pseudo reg number.
2017 They give nonzero only if REGNO is a hard reg of the suitable class
2018 or a pseudo reg currently allocated to a suitable hard reg.
2019 Since they use reg_renumber, they are safe only once reg_renumber
2020 has been allocated, which happens in local-alloc.c. */
2021
2022 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2023 ((REGNO) < FIRST_PSEUDO_REGISTER \
2024 ? (REGNO) <= 31 || (REGNO) == 67 \
2025 : (reg_renumber[REGNO] >= 0 \
2026 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
2027
2028 #define REGNO_OK_FOR_BASE_P(REGNO) \
2029 ((REGNO) < FIRST_PSEUDO_REGISTER \
2030 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
2031 : (reg_renumber[REGNO] > 0 \
2032 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
2033 \f
2034 /* Maximum number of registers that can appear in a valid memory address. */
2035
2036 #define MAX_REGS_PER_ADDRESS 2
2037
2038 /* Recognize any constant value that is a valid address. */
2039
2040 #define CONSTANT_ADDRESS_P(X) \
2041 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2042 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
2043 || GET_CODE (X) == HIGH)
2044
2045 /* Nonzero if the constant value X is a legitimate general operand.
2046 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2047
2048 On the RS/6000, all integer constants are acceptable, most won't be valid
2049 for particular insns, though. Only easy FP constants are
2050 acceptable. */
2051
2052 #define LEGITIMATE_CONSTANT_P(X) \
2053 (((GET_CODE (X) != CONST_DOUBLE \
2054 && GET_CODE (X) != CONST_VECTOR) \
2055 || GET_MODE (X) == VOIDmode \
2056 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
2057 || easy_fp_constant (X, GET_MODE (X)) \
2058 || easy_vector_constant (X, GET_MODE (X))) \
2059 && !rs6000_tls_referenced_p (X))
2060
2061 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2062 and check its validity for a certain class.
2063 We have two alternate definitions for each of them.
2064 The usual definition accepts all pseudo regs; the other rejects
2065 them unless they have been allocated suitable hard regs.
2066 The symbol REG_OK_STRICT causes the latter definition to be used.
2067
2068 Most source files want to accept pseudo regs in the hope that
2069 they will get allocated to the class that the insn wants them to be in.
2070 Source files for reload pass need to be strict.
2071 After reload, it makes no difference, since pseudo regs have
2072 been eliminated by then. */
2073
2074 #ifdef REG_OK_STRICT
2075 # define REG_OK_STRICT_FLAG 1
2076 #else
2077 # define REG_OK_STRICT_FLAG 0
2078 #endif
2079
2080 /* Nonzero if X is a hard reg that can be used as an index
2081 or if it is a pseudo reg in the non-strict case. */
2082 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2083 ((! (STRICT) \
2084 && (REGNO (X) <= 31 \
2085 || REGNO (X) == ARG_POINTER_REGNUM \
2086 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
2087 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
2088
2089 /* Nonzero if X is a hard reg that can be used as a base reg
2090 or if it is a pseudo reg in the non-strict case. */
2091 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2092 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
2093
2094 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2095 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
2096 \f
2097 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2098 that is a valid memory address for an instruction.
2099 The MODE argument is the machine mode for the MEM expression
2100 that wants to use this address.
2101
2102 On the RS/6000, there are four valid address: a SYMBOL_REF that
2103 refers to a constant pool entry of an address (or the sum of it
2104 plus a constant), a short (16-bit signed) constant plus a register,
2105 the sum of two registers, or a register indirect, possibly with an
2106 auto-increment. For DFmode and DImode with a constant plus register,
2107 we must ensure that both words are addressable or PowerPC64 with offset
2108 word aligned.
2109
2110 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2111 32-bit DImode, TImode), indexed addressing cannot be used because
2112 adjacent memory cells are accessed by adding word-sized offsets
2113 during assembly output. */
2114
2115 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2116 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2117 goto ADDR; \
2118 }
2119 \f
2120 /* Try machine-dependent ways of modifying an illegitimate address
2121 to be legitimate. If we find one, return the new, valid address.
2122 This macro is used in only one place: `memory_address' in explow.c.
2123
2124 OLDX is the address as it was before break_out_memory_refs was called.
2125 In some cases it is useful to look at this to decide what needs to be done.
2126
2127 MODE and WIN are passed so that this macro can use
2128 GO_IF_LEGITIMATE_ADDRESS.
2129
2130 It is always safe for this macro to do nothing. It exists to recognize
2131 opportunities to optimize the output.
2132
2133 On RS/6000, first check for the sum of a register with a constant
2134 integer that is out of range. If so, generate code to add the
2135 constant with the low-order 16 bits masked to the register and force
2136 this result into another register (this can be done with `cau').
2137 Then generate an address of REG+(CONST&0xffff), allowing for the
2138 possibility of bit 16 being a one.
2139
2140 Then check for the sum of a register and something not constant, try to
2141 load the other things into a register and return the sum. */
2142
2143 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2144 { rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2145 if (result != NULL_RTX) \
2146 { \
2147 (X) = result; \
2148 goto WIN; \
2149 } \
2150 }
2151
2152 /* Try a machine-dependent way of reloading an illegitimate address
2153 operand. If we find one, push the reload and jump to WIN. This
2154 macro is used in only one place: `find_reloads_address' in reload.c.
2155
2156 Implemented on rs6000 by rs6000_legitimize_reload_address.
2157 Note that (X) is evaluated twice; this is safe in current usage. */
2158
2159 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2160 do { \
2161 int win; \
2162 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2163 (int)(TYPE), (IND_LEVELS), &win); \
2164 if ( win ) \
2165 goto WIN; \
2166 } while (0)
2167
2168 /* Go to LABEL if ADDR (a legitimate address expression)
2169 has an effect that depends on the machine mode it is used for. */
2170
2171 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2172 do { \
2173 if (rs6000_mode_dependent_address (ADDR)) \
2174 goto LABEL; \
2175 } while (0)
2176 \f
2177 /* The register number of the register used to address a table of
2178 static data addresses in memory. In some cases this register is
2179 defined by a processor's "application binary interface" (ABI).
2180 When this macro is defined, RTL is generated for this register
2181 once, as with the stack pointer and frame pointer registers. If
2182 this macro is not defined, it is up to the machine-dependent files
2183 to allocate such a register (if necessary). */
2184
2185 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2186 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
2187
2188 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2189
2190 /* Define this macro if the register defined by
2191 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2192 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
2193
2194 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2195
2196 /* By generating position-independent code, when two different
2197 programs (A and B) share a common library (libC.a), the text of
2198 the library can be shared whether or not the library is linked at
2199 the same address for both programs. In some of these
2200 environments, position-independent code requires not only the use
2201 of different addressing modes, but also special code to enable the
2202 use of these addressing modes.
2203
2204 The `FINALIZE_PIC' macro serves as a hook to emit these special
2205 codes once the function is being compiled into assembly code, but
2206 not before. (It is not done before, because in the case of
2207 compiling an inline function, it would lead to multiple PIC
2208 prologues being included in functions which used inline functions
2209 and were compiled to assembly language.) */
2210
2211 /* #define FINALIZE_PIC */
2212
2213 /* A C expression that is nonzero if X is a legitimate immediate
2214 operand on the target machine when generating position independent
2215 code. You can assume that X satisfies `CONSTANT_P', so you need
2216 not check this. You can also assume FLAG_PIC is true, so you need
2217 not check it either. You need not define this macro if all
2218 constants (including `SYMBOL_REF') can be immediate operands when
2219 generating position independent code. */
2220
2221 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2222 \f
2223 /* Define this if some processing needs to be done immediately before
2224 emitting code for an insn. */
2225
2226 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2227
2228 /* Specify the machine mode that this machine uses
2229 for the index in the tablejump instruction. */
2230 #define CASE_VECTOR_MODE SImode
2231
2232 /* Define as C expression which evaluates to nonzero if the tablejump
2233 instruction expects the table to contain offsets from the address of the
2234 table.
2235 Do not define this if the table should contain absolute addresses. */
2236 #define CASE_VECTOR_PC_RELATIVE 1
2237
2238 /* Define this as 1 if `char' should by default be signed; else as 0. */
2239 #define DEFAULT_SIGNED_CHAR 0
2240
2241 /* This flag, if defined, says the same insns that convert to a signed fixnum
2242 also convert validly to an unsigned one. */
2243
2244 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2245
2246 /* Max number of bytes we can move from memory to memory
2247 in one reasonably fast instruction. */
2248 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2249 #define MAX_MOVE_MAX 8
2250
2251 /* Nonzero if access to memory by bytes is no faster than for words.
2252 Also nonzero if doing byte operations (specifically shifts) in registers
2253 is undesirable. */
2254 #define SLOW_BYTE_ACCESS 1
2255
2256 /* Define if operations between registers always perform the operation
2257 on the full register even if a narrower mode is specified. */
2258 #define WORD_REGISTER_OPERATIONS
2259
2260 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2261 will either zero-extend or sign-extend. The value of this macro should
2262 be the code that says which one of the two operations is implicitly
2263 done, NIL if none. */
2264 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2265
2266 /* Define if loading short immediate values into registers sign extends. */
2267 #define SHORT_IMMEDIATES_SIGN_EXTEND
2268 \f
2269 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2270 is done just by pretending it is already truncated. */
2271 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2272
2273 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
2274 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2275 ((VALUE) = ((MODE) == SImode ? 32 : 64))
2276
2277 /* The CTZ patterns return -1 for input of zero. */
2278 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
2279
2280 /* Specify the machine mode that pointers have.
2281 After generation of rtl, the compiler makes no further distinction
2282 between pointers and any other objects of this machine mode. */
2283 #define Pmode (TARGET_32BIT ? SImode : DImode)
2284
2285 /* Mode of a function address in a call instruction (for indexing purposes).
2286 Doesn't matter on RS/6000. */
2287 #define FUNCTION_MODE SImode
2288
2289 /* Define this if addresses of constant functions
2290 shouldn't be put through pseudo regs where they can be cse'd.
2291 Desirable on machines where ordinary constants are expensive
2292 but a CALL with constant address is cheap. */
2293 #define NO_FUNCTION_CSE
2294
2295 /* Define this to be nonzero if shift instructions ignore all but the low-order
2296 few bits.
2297
2298 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2299 have been dropped from the PowerPC architecture. */
2300
2301 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2302
2303 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2304 should be adjusted to reflect any required changes. This macro is used when
2305 there is some systematic length adjustment required that would be difficult
2306 to express in the length attribute. */
2307
2308 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2309
2310 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2311 COMPARE, return the mode to be used for the comparison. For
2312 floating-point, CCFPmode should be used. CCUNSmode should be used
2313 for unsigned comparisons. CCEQmode should be used when we are
2314 doing an inequality comparison on the result of a
2315 comparison. CCmode should be used in all other cases. */
2316
2317 #define SELECT_CC_MODE(OP,X,Y) \
2318 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2319 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2320 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2321 ? CCEQmode : CCmode))
2322
2323 /* Can the condition code MODE be safely reversed? This is safe in
2324 all cases on this port, because at present it doesn't use the
2325 trapping FP comparisons (fcmpo). */
2326 #define REVERSIBLE_CC_MODE(MODE) 1
2327
2328 /* Given a condition code and a mode, return the inverse condition. */
2329 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2330
2331 /* Define the information needed to generate branch and scc insns. This is
2332 stored from the compare operation. */
2333
2334 extern GTY(()) rtx rs6000_compare_op0;
2335 extern GTY(()) rtx rs6000_compare_op1;
2336 extern int rs6000_compare_fp_p;
2337 \f
2338 /* Control the assembler format that we output. */
2339
2340 /* A C string constant describing how to begin a comment in the target
2341 assembler language. The compiler assumes that the comment will end at
2342 the end of the line. */
2343 #define ASM_COMMENT_START " #"
2344
2345 /* Implicit library calls should use memcpy, not bcopy, etc. */
2346
2347 #define TARGET_MEM_FUNCTIONS
2348
2349 /* Flag to say the TOC is initialized */
2350 extern int toc_initialized;
2351
2352 /* Macro to output a special constant pool entry. Go to WIN if we output
2353 it. Otherwise, it is written the usual way.
2354
2355 On the RS/6000, toc entries are handled this way. */
2356
2357 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2358 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2359 { \
2360 output_toc (FILE, X, LABELNO, MODE); \
2361 goto WIN; \
2362 } \
2363 }
2364
2365 #ifdef HAVE_GAS_WEAK
2366 #define RS6000_WEAK 1
2367 #else
2368 #define RS6000_WEAK 0
2369 #endif
2370
2371 #if RS6000_WEAK
2372 /* Used in lieu of ASM_WEAKEN_LABEL. */
2373 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2374 do \
2375 { \
2376 fputs ("\t.weak\t", (FILE)); \
2377 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2378 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2379 && DEFAULT_ABI == ABI_AIX) \
2380 { \
2381 if (TARGET_XCOFF) \
2382 fputs ("[DS]", (FILE)); \
2383 fputs ("\n\t.weak\t.", (FILE)); \
2384 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2385 } \
2386 fputc ('\n', (FILE)); \
2387 if (VAL) \
2388 { \
2389 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2390 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2391 && DEFAULT_ABI == ABI_AIX) \
2392 { \
2393 fputs ("\t.set\t.", (FILE)); \
2394 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2395 fputs (",.", (FILE)); \
2396 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2397 fputc ('\n', (FILE)); \
2398 } \
2399 } \
2400 } \
2401 while (0)
2402 #endif
2403
2404 /* This implements the `alias' attribute. */
2405 #undef ASM_OUTPUT_DEF_FROM_DECLS
2406 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2407 do \
2408 { \
2409 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2410 const char *name = IDENTIFIER_POINTER (TARGET); \
2411 if (TREE_CODE (DECL) == FUNCTION_DECL \
2412 && DEFAULT_ABI == ABI_AIX) \
2413 { \
2414 if (TREE_PUBLIC (DECL)) \
2415 { \
2416 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2417 { \
2418 fputs ("\t.globl\t.", FILE); \
2419 RS6000_OUTPUT_BASENAME (FILE, alias); \
2420 putc ('\n', FILE); \
2421 } \
2422 } \
2423 else if (TARGET_XCOFF) \
2424 { \
2425 fputs ("\t.lglobl\t.", FILE); \
2426 RS6000_OUTPUT_BASENAME (FILE, alias); \
2427 putc ('\n', FILE); \
2428 } \
2429 fputs ("\t.set\t.", FILE); \
2430 RS6000_OUTPUT_BASENAME (FILE, alias); \
2431 fputs (",.", FILE); \
2432 RS6000_OUTPUT_BASENAME (FILE, name); \
2433 fputc ('\n', FILE); \
2434 } \
2435 ASM_OUTPUT_DEF (FILE, alias, name); \
2436 } \
2437 while (0)
2438
2439 #define TARGET_ASM_FILE_START rs6000_file_start
2440
2441 /* Output to assembler file text saying following lines
2442 may contain character constants, extra white space, comments, etc. */
2443
2444 #define ASM_APP_ON ""
2445
2446 /* Output to assembler file text saying following lines
2447 no longer contain unusual constructs. */
2448
2449 #define ASM_APP_OFF ""
2450
2451 /* How to refer to registers in assembler output.
2452 This sequence is indexed by compiler's hard-register-number (see above). */
2453
2454 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2455
2456 #define REGISTER_NAMES \
2457 { \
2458 &rs6000_reg_names[ 0][0], /* r0 */ \
2459 &rs6000_reg_names[ 1][0], /* r1 */ \
2460 &rs6000_reg_names[ 2][0], /* r2 */ \
2461 &rs6000_reg_names[ 3][0], /* r3 */ \
2462 &rs6000_reg_names[ 4][0], /* r4 */ \
2463 &rs6000_reg_names[ 5][0], /* r5 */ \
2464 &rs6000_reg_names[ 6][0], /* r6 */ \
2465 &rs6000_reg_names[ 7][0], /* r7 */ \
2466 &rs6000_reg_names[ 8][0], /* r8 */ \
2467 &rs6000_reg_names[ 9][0], /* r9 */ \
2468 &rs6000_reg_names[10][0], /* r10 */ \
2469 &rs6000_reg_names[11][0], /* r11 */ \
2470 &rs6000_reg_names[12][0], /* r12 */ \
2471 &rs6000_reg_names[13][0], /* r13 */ \
2472 &rs6000_reg_names[14][0], /* r14 */ \
2473 &rs6000_reg_names[15][0], /* r15 */ \
2474 &rs6000_reg_names[16][0], /* r16 */ \
2475 &rs6000_reg_names[17][0], /* r17 */ \
2476 &rs6000_reg_names[18][0], /* r18 */ \
2477 &rs6000_reg_names[19][0], /* r19 */ \
2478 &rs6000_reg_names[20][0], /* r20 */ \
2479 &rs6000_reg_names[21][0], /* r21 */ \
2480 &rs6000_reg_names[22][0], /* r22 */ \
2481 &rs6000_reg_names[23][0], /* r23 */ \
2482 &rs6000_reg_names[24][0], /* r24 */ \
2483 &rs6000_reg_names[25][0], /* r25 */ \
2484 &rs6000_reg_names[26][0], /* r26 */ \
2485 &rs6000_reg_names[27][0], /* r27 */ \
2486 &rs6000_reg_names[28][0], /* r28 */ \
2487 &rs6000_reg_names[29][0], /* r29 */ \
2488 &rs6000_reg_names[30][0], /* r30 */ \
2489 &rs6000_reg_names[31][0], /* r31 */ \
2490 \
2491 &rs6000_reg_names[32][0], /* fr0 */ \
2492 &rs6000_reg_names[33][0], /* fr1 */ \
2493 &rs6000_reg_names[34][0], /* fr2 */ \
2494 &rs6000_reg_names[35][0], /* fr3 */ \
2495 &rs6000_reg_names[36][0], /* fr4 */ \
2496 &rs6000_reg_names[37][0], /* fr5 */ \
2497 &rs6000_reg_names[38][0], /* fr6 */ \
2498 &rs6000_reg_names[39][0], /* fr7 */ \
2499 &rs6000_reg_names[40][0], /* fr8 */ \
2500 &rs6000_reg_names[41][0], /* fr9 */ \
2501 &rs6000_reg_names[42][0], /* fr10 */ \
2502 &rs6000_reg_names[43][0], /* fr11 */ \
2503 &rs6000_reg_names[44][0], /* fr12 */ \
2504 &rs6000_reg_names[45][0], /* fr13 */ \
2505 &rs6000_reg_names[46][0], /* fr14 */ \
2506 &rs6000_reg_names[47][0], /* fr15 */ \
2507 &rs6000_reg_names[48][0], /* fr16 */ \
2508 &rs6000_reg_names[49][0], /* fr17 */ \
2509 &rs6000_reg_names[50][0], /* fr18 */ \
2510 &rs6000_reg_names[51][0], /* fr19 */ \
2511 &rs6000_reg_names[52][0], /* fr20 */ \
2512 &rs6000_reg_names[53][0], /* fr21 */ \
2513 &rs6000_reg_names[54][0], /* fr22 */ \
2514 &rs6000_reg_names[55][0], /* fr23 */ \
2515 &rs6000_reg_names[56][0], /* fr24 */ \
2516 &rs6000_reg_names[57][0], /* fr25 */ \
2517 &rs6000_reg_names[58][0], /* fr26 */ \
2518 &rs6000_reg_names[59][0], /* fr27 */ \
2519 &rs6000_reg_names[60][0], /* fr28 */ \
2520 &rs6000_reg_names[61][0], /* fr29 */ \
2521 &rs6000_reg_names[62][0], /* fr30 */ \
2522 &rs6000_reg_names[63][0], /* fr31 */ \
2523 \
2524 &rs6000_reg_names[64][0], /* mq */ \
2525 &rs6000_reg_names[65][0], /* lr */ \
2526 &rs6000_reg_names[66][0], /* ctr */ \
2527 &rs6000_reg_names[67][0], /* ap */ \
2528 \
2529 &rs6000_reg_names[68][0], /* cr0 */ \
2530 &rs6000_reg_names[69][0], /* cr1 */ \
2531 &rs6000_reg_names[70][0], /* cr2 */ \
2532 &rs6000_reg_names[71][0], /* cr3 */ \
2533 &rs6000_reg_names[72][0], /* cr4 */ \
2534 &rs6000_reg_names[73][0], /* cr5 */ \
2535 &rs6000_reg_names[74][0], /* cr6 */ \
2536 &rs6000_reg_names[75][0], /* cr7 */ \
2537 \
2538 &rs6000_reg_names[76][0], /* xer */ \
2539 \
2540 &rs6000_reg_names[77][0], /* v0 */ \
2541 &rs6000_reg_names[78][0], /* v1 */ \
2542 &rs6000_reg_names[79][0], /* v2 */ \
2543 &rs6000_reg_names[80][0], /* v3 */ \
2544 &rs6000_reg_names[81][0], /* v4 */ \
2545 &rs6000_reg_names[82][0], /* v5 */ \
2546 &rs6000_reg_names[83][0], /* v6 */ \
2547 &rs6000_reg_names[84][0], /* v7 */ \
2548 &rs6000_reg_names[85][0], /* v8 */ \
2549 &rs6000_reg_names[86][0], /* v9 */ \
2550 &rs6000_reg_names[87][0], /* v10 */ \
2551 &rs6000_reg_names[88][0], /* v11 */ \
2552 &rs6000_reg_names[89][0], /* v12 */ \
2553 &rs6000_reg_names[90][0], /* v13 */ \
2554 &rs6000_reg_names[91][0], /* v14 */ \
2555 &rs6000_reg_names[92][0], /* v15 */ \
2556 &rs6000_reg_names[93][0], /* v16 */ \
2557 &rs6000_reg_names[94][0], /* v17 */ \
2558 &rs6000_reg_names[95][0], /* v18 */ \
2559 &rs6000_reg_names[96][0], /* v19 */ \
2560 &rs6000_reg_names[97][0], /* v20 */ \
2561 &rs6000_reg_names[98][0], /* v21 */ \
2562 &rs6000_reg_names[99][0], /* v22 */ \
2563 &rs6000_reg_names[100][0], /* v23 */ \
2564 &rs6000_reg_names[101][0], /* v24 */ \
2565 &rs6000_reg_names[102][0], /* v25 */ \
2566 &rs6000_reg_names[103][0], /* v26 */ \
2567 &rs6000_reg_names[104][0], /* v27 */ \
2568 &rs6000_reg_names[105][0], /* v28 */ \
2569 &rs6000_reg_names[106][0], /* v29 */ \
2570 &rs6000_reg_names[107][0], /* v30 */ \
2571 &rs6000_reg_names[108][0], /* v31 */ \
2572 &rs6000_reg_names[109][0], /* vrsave */ \
2573 &rs6000_reg_names[110][0], /* vscr */ \
2574 &rs6000_reg_names[111][0], /* spe_acc */ \
2575 &rs6000_reg_names[112][0], /* spefscr */ \
2576 }
2577
2578 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2579 following for it. Switch to use the alternate names since
2580 they are more mnemonic. */
2581
2582 #define DEBUG_REGISTER_NAMES \
2583 { \
2584 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2585 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2586 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2587 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2588 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2589 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2590 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2591 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2592 "mq", "lr", "ctr", "ap", \
2593 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2594 "xer", \
2595 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2596 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2597 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2598 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
2599 "vrsave", "vscr", \
2600 "spe_acc", "spefscr" \
2601 }
2602
2603 /* Table of additional register names to use in user input. */
2604
2605 #define ADDITIONAL_REGISTER_NAMES \
2606 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2607 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2608 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2609 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2610 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2611 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2612 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2613 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2614 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2615 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2616 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2617 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2618 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2619 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2620 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2621 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2622 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2623 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2624 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2625 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2626 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2627 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2628 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2629 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2630 {"vrsave", 109}, {"vscr", 110}, \
2631 {"spe_acc", 111}, {"spefscr", 112}, \
2632 /* no additional names for: mq, lr, ctr, ap */ \
2633 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2634 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2635 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2636
2637 /* Text to write out after a CALL that may be replaced by glue code by
2638 the loader. This depends on the AIX version. */
2639 #define RS6000_CALL_GLUE "cror 31,31,31"
2640
2641 /* This is how to output an element of a case-vector that is relative. */
2642
2643 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2644 do { char buf[100]; \
2645 fputs ("\t.long ", FILE); \
2646 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2647 assemble_name (FILE, buf); \
2648 putc ('-', FILE); \
2649 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2650 assemble_name (FILE, buf); \
2651 putc ('\n', FILE); \
2652 } while (0)
2653
2654 /* This is how to output an assembler line
2655 that says to advance the location counter
2656 to a multiple of 2**LOG bytes. */
2657
2658 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2659 if ((LOG) != 0) \
2660 fprintf (FILE, "\t.align %d\n", (LOG))
2661
2662 /* Pick up the return address upon entry to a procedure. Used for
2663 dwarf2 unwind information. This also enables the table driven
2664 mechanism. */
2665
2666 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2667 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2668
2669 /* Describe how we implement __builtin_eh_return. */
2670 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2671 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2672
2673 /* Print operand X (an rtx) in assembler syntax to file FILE.
2674 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2675 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2676
2677 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2678
2679 /* Define which CODE values are valid. */
2680
2681 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2682 ((CODE) == '.' || (CODE) == '&')
2683
2684 /* Print a memory address as an operand to reference that memory location. */
2685
2686 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2687
2688 /* Define the codes that are matched by predicates in rs6000.c. */
2689
2690 #define PREDICATE_CODES \
2691 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2692 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
2693 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2694 LABEL_REF, SUBREG, REG, MEM}}, \
2695 {"short_cint_operand", {CONST_INT}}, \
2696 {"u_short_cint_operand", {CONST_INT}}, \
2697 {"non_short_cint_operand", {CONST_INT}}, \
2698 {"exact_log2_cint_operand", {CONST_INT}}, \
2699 {"gpc_reg_operand", {SUBREG, REG}}, \
2700 {"cc_reg_operand", {SUBREG, REG}}, \
2701 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2702 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2703 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2704 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
2705 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2706 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2707 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2708 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2709 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2710 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2711 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2712 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2713 {"rs6000_tls_symbol_ref", {SYMBOL_REF}}, \
2714 {"easy_fp_constant", {CONST_DOUBLE}}, \
2715 {"easy_vector_constant", {CONST_VECTOR}}, \
2716 {"easy_vector_constant_add_self", {CONST_VECTOR}}, \
2717 {"zero_fp_constant", {CONST_DOUBLE}}, \
2718 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2719 {"lwa_operand", {SUBREG, MEM, REG}}, \
2720 {"volatile_mem_operand", {MEM}}, \
2721 {"offsettable_mem_operand", {MEM}}, \
2722 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2723 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2724 {"non_add_cint_operand", {CONST_INT}}, \
2725 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2726 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2727 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
2728 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2729 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2730 {"mask_operand", {CONST_INT}}, \
2731 {"mask_operand_wrap", {CONST_INT}}, \
2732 {"mask64_operand", {CONST_INT}}, \
2733 {"mask64_2_operand", {CONST_INT}}, \
2734 {"count_register_operand", {REG}}, \
2735 {"xer_operand", {REG}}, \
2736 {"symbol_ref_operand", {SYMBOL_REF}}, \
2737 {"rs6000_tls_symbol_ref", {SYMBOL_REF}}, \
2738 {"call_operand", {SYMBOL_REF, REG}}, \
2739 {"current_file_function_operand", {SYMBOL_REF}}, \
2740 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2741 CONST_DOUBLE, SYMBOL_REF}}, \
2742 {"load_multiple_operation", {PARALLEL}}, \
2743 {"store_multiple_operation", {PARALLEL}}, \
2744 {"vrsave_operation", {PARALLEL}}, \
2745 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2746 GT, LEU, LTU, GEU, GTU, \
2747 UNORDERED, ORDERED, \
2748 UNGE, UNLE }}, \
2749 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2750 UNORDERED }}, \
2751 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2752 GT, LEU, LTU, GEU, GTU, \
2753 UNORDERED, ORDERED, \
2754 UNGE, UNLE }}, \
2755 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2756 GT, LEU, LTU, GEU, GTU}}, \
2757 {"boolean_operator", {AND, IOR, XOR}}, \
2758 {"boolean_or_operator", {IOR, XOR}}, \
2759 {"altivec_register_operand", {REG}}, \
2760 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
2761
2762 /* uncomment for disabling the corresponding default options */
2763 /* #define MACHINE_no_sched_interblock */
2764 /* #define MACHINE_no_sched_speculative */
2765 /* #define MACHINE_no_sched_speculative_load */
2766
2767 /* General flags. */
2768 extern int flag_pic;
2769 extern int optimize;
2770 extern int flag_expensive_optimizations;
2771 extern int frame_pointer_needed;
2772
2773 enum rs6000_builtins
2774 {
2775 /* AltiVec builtins. */
2776 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2777 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2778 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2779 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2780 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2781 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2782 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2783 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2784 ALTIVEC_BUILTIN_VADDUBM,
2785 ALTIVEC_BUILTIN_VADDUHM,
2786 ALTIVEC_BUILTIN_VADDUWM,
2787 ALTIVEC_BUILTIN_VADDFP,
2788 ALTIVEC_BUILTIN_VADDCUW,
2789 ALTIVEC_BUILTIN_VADDUBS,
2790 ALTIVEC_BUILTIN_VADDSBS,
2791 ALTIVEC_BUILTIN_VADDUHS,
2792 ALTIVEC_BUILTIN_VADDSHS,
2793 ALTIVEC_BUILTIN_VADDUWS,
2794 ALTIVEC_BUILTIN_VADDSWS,
2795 ALTIVEC_BUILTIN_VAND,
2796 ALTIVEC_BUILTIN_VANDC,
2797 ALTIVEC_BUILTIN_VAVGUB,
2798 ALTIVEC_BUILTIN_VAVGSB,
2799 ALTIVEC_BUILTIN_VAVGUH,
2800 ALTIVEC_BUILTIN_VAVGSH,
2801 ALTIVEC_BUILTIN_VAVGUW,
2802 ALTIVEC_BUILTIN_VAVGSW,
2803 ALTIVEC_BUILTIN_VCFUX,
2804 ALTIVEC_BUILTIN_VCFSX,
2805 ALTIVEC_BUILTIN_VCTSXS,
2806 ALTIVEC_BUILTIN_VCTUXS,
2807 ALTIVEC_BUILTIN_VCMPBFP,
2808 ALTIVEC_BUILTIN_VCMPEQUB,
2809 ALTIVEC_BUILTIN_VCMPEQUH,
2810 ALTIVEC_BUILTIN_VCMPEQUW,
2811 ALTIVEC_BUILTIN_VCMPEQFP,
2812 ALTIVEC_BUILTIN_VCMPGEFP,
2813 ALTIVEC_BUILTIN_VCMPGTUB,
2814 ALTIVEC_BUILTIN_VCMPGTSB,
2815 ALTIVEC_BUILTIN_VCMPGTUH,
2816 ALTIVEC_BUILTIN_VCMPGTSH,
2817 ALTIVEC_BUILTIN_VCMPGTUW,
2818 ALTIVEC_BUILTIN_VCMPGTSW,
2819 ALTIVEC_BUILTIN_VCMPGTFP,
2820 ALTIVEC_BUILTIN_VEXPTEFP,
2821 ALTIVEC_BUILTIN_VLOGEFP,
2822 ALTIVEC_BUILTIN_VMADDFP,
2823 ALTIVEC_BUILTIN_VMAXUB,
2824 ALTIVEC_BUILTIN_VMAXSB,
2825 ALTIVEC_BUILTIN_VMAXUH,
2826 ALTIVEC_BUILTIN_VMAXSH,
2827 ALTIVEC_BUILTIN_VMAXUW,
2828 ALTIVEC_BUILTIN_VMAXSW,
2829 ALTIVEC_BUILTIN_VMAXFP,
2830 ALTIVEC_BUILTIN_VMHADDSHS,
2831 ALTIVEC_BUILTIN_VMHRADDSHS,
2832 ALTIVEC_BUILTIN_VMLADDUHM,
2833 ALTIVEC_BUILTIN_VMRGHB,
2834 ALTIVEC_BUILTIN_VMRGHH,
2835 ALTIVEC_BUILTIN_VMRGHW,
2836 ALTIVEC_BUILTIN_VMRGLB,
2837 ALTIVEC_BUILTIN_VMRGLH,
2838 ALTIVEC_BUILTIN_VMRGLW,
2839 ALTIVEC_BUILTIN_VMSUMUBM,
2840 ALTIVEC_BUILTIN_VMSUMMBM,
2841 ALTIVEC_BUILTIN_VMSUMUHM,
2842 ALTIVEC_BUILTIN_VMSUMSHM,
2843 ALTIVEC_BUILTIN_VMSUMUHS,
2844 ALTIVEC_BUILTIN_VMSUMSHS,
2845 ALTIVEC_BUILTIN_VMINUB,
2846 ALTIVEC_BUILTIN_VMINSB,
2847 ALTIVEC_BUILTIN_VMINUH,
2848 ALTIVEC_BUILTIN_VMINSH,
2849 ALTIVEC_BUILTIN_VMINUW,
2850 ALTIVEC_BUILTIN_VMINSW,
2851 ALTIVEC_BUILTIN_VMINFP,
2852 ALTIVEC_BUILTIN_VMULEUB,
2853 ALTIVEC_BUILTIN_VMULESB,
2854 ALTIVEC_BUILTIN_VMULEUH,
2855 ALTIVEC_BUILTIN_VMULESH,
2856 ALTIVEC_BUILTIN_VMULOUB,
2857 ALTIVEC_BUILTIN_VMULOSB,
2858 ALTIVEC_BUILTIN_VMULOUH,
2859 ALTIVEC_BUILTIN_VMULOSH,
2860 ALTIVEC_BUILTIN_VNMSUBFP,
2861 ALTIVEC_BUILTIN_VNOR,
2862 ALTIVEC_BUILTIN_VOR,
2863 ALTIVEC_BUILTIN_VSEL_4SI,
2864 ALTIVEC_BUILTIN_VSEL_4SF,
2865 ALTIVEC_BUILTIN_VSEL_8HI,
2866 ALTIVEC_BUILTIN_VSEL_16QI,
2867 ALTIVEC_BUILTIN_VPERM_4SI,
2868 ALTIVEC_BUILTIN_VPERM_4SF,
2869 ALTIVEC_BUILTIN_VPERM_8HI,
2870 ALTIVEC_BUILTIN_VPERM_16QI,
2871 ALTIVEC_BUILTIN_VPKUHUM,
2872 ALTIVEC_BUILTIN_VPKUWUM,
2873 ALTIVEC_BUILTIN_VPKPX,
2874 ALTIVEC_BUILTIN_VPKUHSS,
2875 ALTIVEC_BUILTIN_VPKSHSS,
2876 ALTIVEC_BUILTIN_VPKUWSS,
2877 ALTIVEC_BUILTIN_VPKSWSS,
2878 ALTIVEC_BUILTIN_VPKUHUS,
2879 ALTIVEC_BUILTIN_VPKSHUS,
2880 ALTIVEC_BUILTIN_VPKUWUS,
2881 ALTIVEC_BUILTIN_VPKSWUS,
2882 ALTIVEC_BUILTIN_VREFP,
2883 ALTIVEC_BUILTIN_VRFIM,
2884 ALTIVEC_BUILTIN_VRFIN,
2885 ALTIVEC_BUILTIN_VRFIP,
2886 ALTIVEC_BUILTIN_VRFIZ,
2887 ALTIVEC_BUILTIN_VRLB,
2888 ALTIVEC_BUILTIN_VRLH,
2889 ALTIVEC_BUILTIN_VRLW,
2890 ALTIVEC_BUILTIN_VRSQRTEFP,
2891 ALTIVEC_BUILTIN_VSLB,
2892 ALTIVEC_BUILTIN_VSLH,
2893 ALTIVEC_BUILTIN_VSLW,
2894 ALTIVEC_BUILTIN_VSL,
2895 ALTIVEC_BUILTIN_VSLO,
2896 ALTIVEC_BUILTIN_VSPLTB,
2897 ALTIVEC_BUILTIN_VSPLTH,
2898 ALTIVEC_BUILTIN_VSPLTW,
2899 ALTIVEC_BUILTIN_VSPLTISB,
2900 ALTIVEC_BUILTIN_VSPLTISH,
2901 ALTIVEC_BUILTIN_VSPLTISW,
2902 ALTIVEC_BUILTIN_VSRB,
2903 ALTIVEC_BUILTIN_VSRH,
2904 ALTIVEC_BUILTIN_VSRW,
2905 ALTIVEC_BUILTIN_VSRAB,
2906 ALTIVEC_BUILTIN_VSRAH,
2907 ALTIVEC_BUILTIN_VSRAW,
2908 ALTIVEC_BUILTIN_VSR,
2909 ALTIVEC_BUILTIN_VSRO,
2910 ALTIVEC_BUILTIN_VSUBUBM,
2911 ALTIVEC_BUILTIN_VSUBUHM,
2912 ALTIVEC_BUILTIN_VSUBUWM,
2913 ALTIVEC_BUILTIN_VSUBFP,
2914 ALTIVEC_BUILTIN_VSUBCUW,
2915 ALTIVEC_BUILTIN_VSUBUBS,
2916 ALTIVEC_BUILTIN_VSUBSBS,
2917 ALTIVEC_BUILTIN_VSUBUHS,
2918 ALTIVEC_BUILTIN_VSUBSHS,
2919 ALTIVEC_BUILTIN_VSUBUWS,
2920 ALTIVEC_BUILTIN_VSUBSWS,
2921 ALTIVEC_BUILTIN_VSUM4UBS,
2922 ALTIVEC_BUILTIN_VSUM4SBS,
2923 ALTIVEC_BUILTIN_VSUM4SHS,
2924 ALTIVEC_BUILTIN_VSUM2SWS,
2925 ALTIVEC_BUILTIN_VSUMSWS,
2926 ALTIVEC_BUILTIN_VXOR,
2927 ALTIVEC_BUILTIN_VSLDOI_16QI,
2928 ALTIVEC_BUILTIN_VSLDOI_8HI,
2929 ALTIVEC_BUILTIN_VSLDOI_4SI,
2930 ALTIVEC_BUILTIN_VSLDOI_4SF,
2931 ALTIVEC_BUILTIN_VUPKHSB,
2932 ALTIVEC_BUILTIN_VUPKHPX,
2933 ALTIVEC_BUILTIN_VUPKHSH,
2934 ALTIVEC_BUILTIN_VUPKLSB,
2935 ALTIVEC_BUILTIN_VUPKLPX,
2936 ALTIVEC_BUILTIN_VUPKLSH,
2937 ALTIVEC_BUILTIN_MTVSCR,
2938 ALTIVEC_BUILTIN_MFVSCR,
2939 ALTIVEC_BUILTIN_DSSALL,
2940 ALTIVEC_BUILTIN_DSS,
2941 ALTIVEC_BUILTIN_LVSL,
2942 ALTIVEC_BUILTIN_LVSR,
2943 ALTIVEC_BUILTIN_DSTT,
2944 ALTIVEC_BUILTIN_DSTST,
2945 ALTIVEC_BUILTIN_DSTSTT,
2946 ALTIVEC_BUILTIN_DST,
2947 ALTIVEC_BUILTIN_LVEBX,
2948 ALTIVEC_BUILTIN_LVEHX,
2949 ALTIVEC_BUILTIN_LVEWX,
2950 ALTIVEC_BUILTIN_LVXL,
2951 ALTIVEC_BUILTIN_LVX,
2952 ALTIVEC_BUILTIN_STVX,
2953 ALTIVEC_BUILTIN_STVEBX,
2954 ALTIVEC_BUILTIN_STVEHX,
2955 ALTIVEC_BUILTIN_STVEWX,
2956 ALTIVEC_BUILTIN_STVXL,
2957 ALTIVEC_BUILTIN_VCMPBFP_P,
2958 ALTIVEC_BUILTIN_VCMPEQFP_P,
2959 ALTIVEC_BUILTIN_VCMPEQUB_P,
2960 ALTIVEC_BUILTIN_VCMPEQUH_P,
2961 ALTIVEC_BUILTIN_VCMPEQUW_P,
2962 ALTIVEC_BUILTIN_VCMPGEFP_P,
2963 ALTIVEC_BUILTIN_VCMPGTFP_P,
2964 ALTIVEC_BUILTIN_VCMPGTSB_P,
2965 ALTIVEC_BUILTIN_VCMPGTSH_P,
2966 ALTIVEC_BUILTIN_VCMPGTSW_P,
2967 ALTIVEC_BUILTIN_VCMPGTUB_P,
2968 ALTIVEC_BUILTIN_VCMPGTUH_P,
2969 ALTIVEC_BUILTIN_VCMPGTUW_P,
2970 ALTIVEC_BUILTIN_ABSS_V4SI,
2971 ALTIVEC_BUILTIN_ABSS_V8HI,
2972 ALTIVEC_BUILTIN_ABSS_V16QI,
2973 ALTIVEC_BUILTIN_ABS_V4SI,
2974 ALTIVEC_BUILTIN_ABS_V4SF,
2975 ALTIVEC_BUILTIN_ABS_V8HI,
2976 ALTIVEC_BUILTIN_ABS_V16QI
2977 /* SPE builtins. */
2978 , SPE_BUILTIN_EVADDW,
2979 SPE_BUILTIN_EVAND,
2980 SPE_BUILTIN_EVANDC,
2981 SPE_BUILTIN_EVDIVWS,
2982 SPE_BUILTIN_EVDIVWU,
2983 SPE_BUILTIN_EVEQV,
2984 SPE_BUILTIN_EVFSADD,
2985 SPE_BUILTIN_EVFSDIV,
2986 SPE_BUILTIN_EVFSMUL,
2987 SPE_BUILTIN_EVFSSUB,
2988 SPE_BUILTIN_EVLDDX,
2989 SPE_BUILTIN_EVLDHX,
2990 SPE_BUILTIN_EVLDWX,
2991 SPE_BUILTIN_EVLHHESPLATX,
2992 SPE_BUILTIN_EVLHHOSSPLATX,
2993 SPE_BUILTIN_EVLHHOUSPLATX,
2994 SPE_BUILTIN_EVLWHEX,
2995 SPE_BUILTIN_EVLWHOSX,
2996 SPE_BUILTIN_EVLWHOUX,
2997 SPE_BUILTIN_EVLWHSPLATX,
2998 SPE_BUILTIN_EVLWWSPLATX,
2999 SPE_BUILTIN_EVMERGEHI,
3000 SPE_BUILTIN_EVMERGEHILO,
3001 SPE_BUILTIN_EVMERGELO,
3002 SPE_BUILTIN_EVMERGELOHI,
3003 SPE_BUILTIN_EVMHEGSMFAA,
3004 SPE_BUILTIN_EVMHEGSMFAN,
3005 SPE_BUILTIN_EVMHEGSMIAA,
3006 SPE_BUILTIN_EVMHEGSMIAN,
3007 SPE_BUILTIN_EVMHEGUMIAA,
3008 SPE_BUILTIN_EVMHEGUMIAN,
3009 SPE_BUILTIN_EVMHESMF,
3010 SPE_BUILTIN_EVMHESMFA,
3011 SPE_BUILTIN_EVMHESMFAAW,
3012 SPE_BUILTIN_EVMHESMFANW,
3013 SPE_BUILTIN_EVMHESMI,
3014 SPE_BUILTIN_EVMHESMIA,
3015 SPE_BUILTIN_EVMHESMIAAW,
3016 SPE_BUILTIN_EVMHESMIANW,
3017 SPE_BUILTIN_EVMHESSF,
3018 SPE_BUILTIN_EVMHESSFA,
3019 SPE_BUILTIN_EVMHESSFAAW,
3020 SPE_BUILTIN_EVMHESSFANW,
3021 SPE_BUILTIN_EVMHESSIAAW,
3022 SPE_BUILTIN_EVMHESSIANW,
3023 SPE_BUILTIN_EVMHEUMI,
3024 SPE_BUILTIN_EVMHEUMIA,
3025 SPE_BUILTIN_EVMHEUMIAAW,
3026 SPE_BUILTIN_EVMHEUMIANW,
3027 SPE_BUILTIN_EVMHEUSIAAW,
3028 SPE_BUILTIN_EVMHEUSIANW,
3029 SPE_BUILTIN_EVMHOGSMFAA,
3030 SPE_BUILTIN_EVMHOGSMFAN,
3031 SPE_BUILTIN_EVMHOGSMIAA,
3032 SPE_BUILTIN_EVMHOGSMIAN,
3033 SPE_BUILTIN_EVMHOGUMIAA,
3034 SPE_BUILTIN_EVMHOGUMIAN,
3035 SPE_BUILTIN_EVMHOSMF,
3036 SPE_BUILTIN_EVMHOSMFA,
3037 SPE_BUILTIN_EVMHOSMFAAW,
3038 SPE_BUILTIN_EVMHOSMFANW,
3039 SPE_BUILTIN_EVMHOSMI,
3040 SPE_BUILTIN_EVMHOSMIA,
3041 SPE_BUILTIN_EVMHOSMIAAW,
3042 SPE_BUILTIN_EVMHOSMIANW,
3043 SPE_BUILTIN_EVMHOSSF,
3044 SPE_BUILTIN_EVMHOSSFA,
3045 SPE_BUILTIN_EVMHOSSFAAW,
3046 SPE_BUILTIN_EVMHOSSFANW,
3047 SPE_BUILTIN_EVMHOSSIAAW,
3048 SPE_BUILTIN_EVMHOSSIANW,
3049 SPE_BUILTIN_EVMHOUMI,
3050 SPE_BUILTIN_EVMHOUMIA,
3051 SPE_BUILTIN_EVMHOUMIAAW,
3052 SPE_BUILTIN_EVMHOUMIANW,
3053 SPE_BUILTIN_EVMHOUSIAAW,
3054 SPE_BUILTIN_EVMHOUSIANW,
3055 SPE_BUILTIN_EVMWHSMF,
3056 SPE_BUILTIN_EVMWHSMFA,
3057 SPE_BUILTIN_EVMWHSMI,
3058 SPE_BUILTIN_EVMWHSMIA,
3059 SPE_BUILTIN_EVMWHSSF,
3060 SPE_BUILTIN_EVMWHSSFA,
3061 SPE_BUILTIN_EVMWHUMI,
3062 SPE_BUILTIN_EVMWHUMIA,
3063 SPE_BUILTIN_EVMWLSMIAAW,
3064 SPE_BUILTIN_EVMWLSMIANW,
3065 SPE_BUILTIN_EVMWLSSIAAW,
3066 SPE_BUILTIN_EVMWLSSIANW,
3067 SPE_BUILTIN_EVMWLUMI,
3068 SPE_BUILTIN_EVMWLUMIA,
3069 SPE_BUILTIN_EVMWLUMIAAW,
3070 SPE_BUILTIN_EVMWLUMIANW,
3071 SPE_BUILTIN_EVMWLUSIAAW,
3072 SPE_BUILTIN_EVMWLUSIANW,
3073 SPE_BUILTIN_EVMWSMF,
3074 SPE_BUILTIN_EVMWSMFA,
3075 SPE_BUILTIN_EVMWSMFAA,
3076 SPE_BUILTIN_EVMWSMFAN,
3077 SPE_BUILTIN_EVMWSMI,
3078 SPE_BUILTIN_EVMWSMIA,
3079 SPE_BUILTIN_EVMWSMIAA,
3080 SPE_BUILTIN_EVMWSMIAN,
3081 SPE_BUILTIN_EVMWHSSFAA,
3082 SPE_BUILTIN_EVMWSSF,
3083 SPE_BUILTIN_EVMWSSFA,
3084 SPE_BUILTIN_EVMWSSFAA,
3085 SPE_BUILTIN_EVMWSSFAN,
3086 SPE_BUILTIN_EVMWUMI,
3087 SPE_BUILTIN_EVMWUMIA,
3088 SPE_BUILTIN_EVMWUMIAA,
3089 SPE_BUILTIN_EVMWUMIAN,
3090 SPE_BUILTIN_EVNAND,
3091 SPE_BUILTIN_EVNOR,
3092 SPE_BUILTIN_EVOR,
3093 SPE_BUILTIN_EVORC,
3094 SPE_BUILTIN_EVRLW,
3095 SPE_BUILTIN_EVSLW,
3096 SPE_BUILTIN_EVSRWS,
3097 SPE_BUILTIN_EVSRWU,
3098 SPE_BUILTIN_EVSTDDX,
3099 SPE_BUILTIN_EVSTDHX,
3100 SPE_BUILTIN_EVSTDWX,
3101 SPE_BUILTIN_EVSTWHEX,
3102 SPE_BUILTIN_EVSTWHOX,
3103 SPE_BUILTIN_EVSTWWEX,
3104 SPE_BUILTIN_EVSTWWOX,
3105 SPE_BUILTIN_EVSUBFW,
3106 SPE_BUILTIN_EVXOR,
3107 SPE_BUILTIN_EVABS,
3108 SPE_BUILTIN_EVADDSMIAAW,
3109 SPE_BUILTIN_EVADDSSIAAW,
3110 SPE_BUILTIN_EVADDUMIAAW,
3111 SPE_BUILTIN_EVADDUSIAAW,
3112 SPE_BUILTIN_EVCNTLSW,
3113 SPE_BUILTIN_EVCNTLZW,
3114 SPE_BUILTIN_EVEXTSB,
3115 SPE_BUILTIN_EVEXTSH,
3116 SPE_BUILTIN_EVFSABS,
3117 SPE_BUILTIN_EVFSCFSF,
3118 SPE_BUILTIN_EVFSCFSI,
3119 SPE_BUILTIN_EVFSCFUF,
3120 SPE_BUILTIN_EVFSCFUI,
3121 SPE_BUILTIN_EVFSCTSF,
3122 SPE_BUILTIN_EVFSCTSI,
3123 SPE_BUILTIN_EVFSCTSIZ,
3124 SPE_BUILTIN_EVFSCTUF,
3125 SPE_BUILTIN_EVFSCTUI,
3126 SPE_BUILTIN_EVFSCTUIZ,
3127 SPE_BUILTIN_EVFSNABS,
3128 SPE_BUILTIN_EVFSNEG,
3129 SPE_BUILTIN_EVMRA,
3130 SPE_BUILTIN_EVNEG,
3131 SPE_BUILTIN_EVRNDW,
3132 SPE_BUILTIN_EVSUBFSMIAAW,
3133 SPE_BUILTIN_EVSUBFSSIAAW,
3134 SPE_BUILTIN_EVSUBFUMIAAW,
3135 SPE_BUILTIN_EVSUBFUSIAAW,
3136 SPE_BUILTIN_EVADDIW,
3137 SPE_BUILTIN_EVLDD,
3138 SPE_BUILTIN_EVLDH,
3139 SPE_BUILTIN_EVLDW,
3140 SPE_BUILTIN_EVLHHESPLAT,
3141 SPE_BUILTIN_EVLHHOSSPLAT,
3142 SPE_BUILTIN_EVLHHOUSPLAT,
3143 SPE_BUILTIN_EVLWHE,
3144 SPE_BUILTIN_EVLWHOS,
3145 SPE_BUILTIN_EVLWHOU,
3146 SPE_BUILTIN_EVLWHSPLAT,
3147 SPE_BUILTIN_EVLWWSPLAT,
3148 SPE_BUILTIN_EVRLWI,
3149 SPE_BUILTIN_EVSLWI,
3150 SPE_BUILTIN_EVSRWIS,
3151 SPE_BUILTIN_EVSRWIU,
3152 SPE_BUILTIN_EVSTDD,
3153 SPE_BUILTIN_EVSTDH,
3154 SPE_BUILTIN_EVSTDW,
3155 SPE_BUILTIN_EVSTWHE,
3156 SPE_BUILTIN_EVSTWHO,
3157 SPE_BUILTIN_EVSTWWE,
3158 SPE_BUILTIN_EVSTWWO,
3159 SPE_BUILTIN_EVSUBIFW,
3160
3161 /* Compares. */
3162 SPE_BUILTIN_EVCMPEQ,
3163 SPE_BUILTIN_EVCMPGTS,
3164 SPE_BUILTIN_EVCMPGTU,
3165 SPE_BUILTIN_EVCMPLTS,
3166 SPE_BUILTIN_EVCMPLTU,
3167 SPE_BUILTIN_EVFSCMPEQ,
3168 SPE_BUILTIN_EVFSCMPGT,
3169 SPE_BUILTIN_EVFSCMPLT,
3170 SPE_BUILTIN_EVFSTSTEQ,
3171 SPE_BUILTIN_EVFSTSTGT,
3172 SPE_BUILTIN_EVFSTSTLT,
3173
3174 /* EVSEL compares. */
3175 SPE_BUILTIN_EVSEL_CMPEQ,
3176 SPE_BUILTIN_EVSEL_CMPGTS,
3177 SPE_BUILTIN_EVSEL_CMPGTU,
3178 SPE_BUILTIN_EVSEL_CMPLTS,
3179 SPE_BUILTIN_EVSEL_CMPLTU,
3180 SPE_BUILTIN_EVSEL_FSCMPEQ,
3181 SPE_BUILTIN_EVSEL_FSCMPGT,
3182 SPE_BUILTIN_EVSEL_FSCMPLT,
3183 SPE_BUILTIN_EVSEL_FSTSTEQ,
3184 SPE_BUILTIN_EVSEL_FSTSTGT,
3185 SPE_BUILTIN_EVSEL_FSTSTLT,
3186
3187 SPE_BUILTIN_EVSPLATFI,
3188 SPE_BUILTIN_EVSPLATI,
3189 SPE_BUILTIN_EVMWHSSMAA,
3190 SPE_BUILTIN_EVMWHSMFAA,
3191 SPE_BUILTIN_EVMWHSMIAA,
3192 SPE_BUILTIN_EVMWHUSIAA,
3193 SPE_BUILTIN_EVMWHUMIAA,
3194 SPE_BUILTIN_EVMWHSSFAN,
3195 SPE_BUILTIN_EVMWHSSIAN,
3196 SPE_BUILTIN_EVMWHSMFAN,
3197 SPE_BUILTIN_EVMWHSMIAN,
3198 SPE_BUILTIN_EVMWHUSIAN,
3199 SPE_BUILTIN_EVMWHUMIAN,
3200 SPE_BUILTIN_EVMWHGSSFAA,
3201 SPE_BUILTIN_EVMWHGSMFAA,
3202 SPE_BUILTIN_EVMWHGSMIAA,
3203 SPE_BUILTIN_EVMWHGUMIAA,
3204 SPE_BUILTIN_EVMWHGSSFAN,
3205 SPE_BUILTIN_EVMWHGSMFAN,
3206 SPE_BUILTIN_EVMWHGSMIAN,
3207 SPE_BUILTIN_EVMWHGUMIAN,
3208 SPE_BUILTIN_MTSPEFSCR,
3209 SPE_BUILTIN_MFSPEFSCR,
3210 SPE_BUILTIN_BRINC
3211 };