634044495f13346968754ef7a234eb080ae53986
[gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26
27 /* Names to predefine in the preprocessor for this target machine. */
28
29 #define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 \
30 -Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
31
32 /* Print subsidiary information on the compiler version in use. */
33 #define TARGET_VERSION ;
34
35 /* Default string to use for cpu if not specified. */
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT ((char *)0)
38 #endif
39
40 /* Tell the assembler to assume that all undefined names are external.
41
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
47
48 /* #define ASM_SPEC "-u %(asm_cpu)" */
49
50 /* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
52
53 #define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
54
55 /* Common CPP definitions used by CPP_SPEC amonst the various targets
56 for handling -mcpu=xxx switches. */
57 #define CPP_CPU_SPEC \
58 "%{!mcpu*: \
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
64 %{mcpu=common: -D_ARCH_COM} \
65 %{mcpu=power: -D_ARCH_PWR} \
66 %{mcpu=power2: -D_ARCH_PWR2} \
67 %{mcpu=powerpc: -D_ARCH_PPC} \
68 %{mcpu=rios: -D_ARCH_PWR} \
69 %{mcpu=rios1: -D_ARCH_PWR} \
70 %{mcpu=rios2: -D_ARCH_PWR2} \
71 %{mcpu=rsc: -D_ARCH_PWR} \
72 %{mcpu=rsc1: -D_ARCH_PWR} \
73 %{mcpu=403: -D_ARCH_PPC} \
74 %{mcpu=505: -D_ARCH_PPC} \
75 %{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
76 %{mcpu=602: -D_ARCH_PPC} \
77 %{mcpu=603: -D_ARCH_PPC} \
78 %{mcpu=603e: -D_ARCH_PPC} \
79 %{mcpu=604: -D_ARCH_PPC} \
80 %{mcpu=620: -D_ARCH_PPC} \
81 %{mcpu=821: -D_ARCH_PPC} \
82 %{mcpu=860: -D_ARCH_PPC}"
83
84 #ifndef CPP_DEFAULT_SPEC
85 #define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
86 #endif
87
88 #ifndef CPP_SYSV_SPEC
89 #define CPP_SYSV_SPEC ""
90 #endif
91
92 #ifndef CPP_ENDIAN_SPEC
93 #define CPP_ENDIAN_SPEC ""
94 #endif
95
96 #ifndef CPP_ENDIAN_DEFAULT_SPEC
97 #define CPP_ENDIAN_DEFAULT_SPEC ""
98 #endif
99
100 #ifndef CPP_SYSV_DEFAULT_SPEC
101 #define CPP_SYSV_DEFAULT_SPEC ""
102 #endif
103
104 /* Common ASM definitions used by ASM_SPEC amonst the various targets
105 for handling -mcpu=xxx switches. */
106 #define ASM_CPU_SPEC \
107 "%{!mcpu*: \
108 %{mpower: %{!mpower2: -mpwr}} \
109 %{mpower2: -mpwrx} \
110 %{mpowerpc*: -mppc} \
111 %{mno-power: %{!mpowerpc*: -mcom}} \
112 %{!mno-power: %{!mpower2: %(asm_default)}}} \
113 %{mcpu=common: -mcom} \
114 %{mcpu=power: -mpwr} \
115 %{mcpu=power2: -mpwrx} \
116 %{mcpu=powerpc: -mppc} \
117 %{mcpu=rios: -mpwr} \
118 %{mcpu=rios1: -mpwr} \
119 %{mcpu=rios2: -mpwrx} \
120 %{mcpu=rsc: -mpwr} \
121 %{mcpu=rsc1: -mpwr} \
122 %{mcpu=403: -mppc} \
123 %{mcpu=505: -mppc} \
124 %{mcpu=601: -m601} \
125 %{mcpu=602: -mppc} \
126 %{mcpu=603: -mppc} \
127 %{mcpu=603e: -mppc} \
128 %{mcpu=604: -mppc} \
129 %{mcpu=620: -mppc} \
130 %{mcpu=821: -mppc} \
131 %{mcpu=860: -mppc}"
132
133 #ifndef ASM_DEFAULT_SPEC
134 #define ASM_DEFAULT_SPEC ""
135 #endif
136
137 /* This macro defines names of additional specifications to put in the specs
138 that can be used in various specifications like CC1_SPEC. Its definition
139 is an initializer with a subgrouping for each command option.
140
141 Each subgrouping contains a string constant, that defines the
142 specification name, and a string constant that used by the GNU CC driver
143 program.
144
145 Do not define this macro if it does not need to do anything. */
146
147 #ifndef SUBTARGET_EXTRA_SPECS
148 #define SUBTARGET_EXTRA_SPECS
149 #endif
150
151 #define EXTRA_SPECS \
152 { "cpp_cpu", CPP_CPU_SPEC }, \
153 { "cpp_default", CPP_DEFAULT_SPEC }, \
154 { "cpp_sysv", CPP_SYSV_SPEC }, \
155 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
156 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
157 { "cpp_endian", CPP_ENDIAN_SPEC }, \
158 { "asm_cpu", ASM_CPU_SPEC }, \
159 { "asm_default", ASM_DEFAULT_SPEC }, \
160 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
161 { "link_libg", LINK_LIBG_SPEC }, \
162 SUBTARGET_EXTRA_SPECS
163
164 /* Default location of syscalls.exp under AIX */
165 #ifndef CROSS_COMPILE
166 #define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
167 #else
168 #define LINK_SYSCALLS_SPEC ""
169 #endif
170
171 /* Default location of libg.exp under AIX */
172 #ifndef CROSS_COMPILE
173 #define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
174 #else
175 #define LINK_LIBG_SPEC ""
176 #endif
177
178 /* Define the options for the binder: Start text at 512, align all segments
179 to 512 bytes, and warn if there is text relocation.
180
181 The -bhalt:4 option supposedly changes the level at which ld will abort,
182 but it also suppresses warnings about multiply defined symbols and is
183 used by the AIX cc command. So we use it here.
184
185 -bnodelcsect undoes a poor choice of default relating to multiply-defined
186 csects. See AIX documentation for more information about this.
187
188 -bM:SRE tells the linker that the output file is Shared REusable. Note
189 that to actually build a shared library you will also need to specify an
190 export list with the -Wl,-bE option. */
191
192 #define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
193 %{static:-bnso %(link_syscalls) } \
194 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
195
196 /* Profiled library versions are used by linking with special directories. */
197 #define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
198 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
199
200 /* gcc must do the search itself to find libgcc.a, not use -l. */
201 #define LIBGCC_SPEC "libgcc.a%s"
202
203 /* Don't turn -B into -L if the argument specifies a relative file name. */
204 #define RELATIVE_PREFIX_NOT_LINKDIR
205
206 /* Architecture type. */
207
208 extern int target_flags;
209
210 /* Use POWER architecture instructions and MQ register. */
211 #define MASK_POWER 0x01
212
213 /* Use POWER2 extensions to POWER architecture. */
214 #define MASK_POWER2 0x02
215
216 /* Use PowerPC architecture instructions. */
217 #define MASK_POWERPC 0x04
218
219 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
220 #define MASK_PPC_GPOPT 0x08
221
222 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
223 #define MASK_PPC_GFXOPT 0x10
224
225 /* Use PowerPC-64 architecture instructions. */
226 #define MASK_POWERPC64 0x20
227
228 /* Use revised mnemonic names defined for PowerPC architecture. */
229 #define MASK_NEW_MNEMONICS 0x40
230
231 /* Disable placing fp constants in the TOC; can be turned on when the
232 TOC overflows. */
233 #define MASK_NO_FP_IN_TOC 0x80
234
235 /* Disable placing symbol+offset constants in the TOC; can be turned on when
236 the TOC overflows. */
237 #define MASK_NO_SUM_IN_TOC 0x100
238
239 /* Output only one TOC entry per module. Normally linking fails if
240 there are more than 16K unique variables/constants in an executable. With
241 this option, linking fails only if there are more than 16K modules, or
242 if there are more than 16K unique variables/constant in a single module.
243
244 This is at the cost of having 2 extra loads and one extra store per
245 function, and one less allocatable register. */
246 #define MASK_MINIMAL_TOC 0x200
247
248 /* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
249 #define MASK_64BIT 0x400
250
251 /* Disable use of FPRs. */
252 #define MASK_SOFT_FLOAT 0x800
253
254 /* Enable load/store multiple, even on powerpc */
255 #define MASK_MULTIPLE 0x1000
256 #define MASK_MULTIPLE_SET 0x2000
257
258 /* Use string instructions for block moves */
259 #define MASK_STRING 0x4000
260 #define MASK_STRING_SET 0x8000
261
262 /* Temporary debug switches */
263 #define MASK_DEBUG_STACK 0x10000
264 #define MASK_DEBUG_ARG 0x20000
265
266 #define TARGET_POWER (target_flags & MASK_POWER)
267 #define TARGET_POWER2 (target_flags & MASK_POWER2)
268 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
269 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
270 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
271 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
272 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
273 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
274 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
275 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
276 #define TARGET_64BIT (target_flags & MASK_64BIT)
277 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
278 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
279 #define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
280 #define TARGET_STRING (target_flags & MASK_STRING)
281 #define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
282 #define TARGET_DEBUG_STACK (target_flags & MASK_DEBUG_STACK)
283 #define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
284
285 #define TARGET_32BIT (! TARGET_64BIT)
286 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
287
288 /* Pseudo target to indicate whether the object format is ELF
289 (to get around not having conditional compilation in the md file) */
290 #ifndef TARGET_ELF
291 #define TARGET_ELF 0
292 #endif
293
294 /* If this isn't V.4, don't support -mno-toc. */
295 #ifndef TARGET_NO_TOC
296 #define TARGET_NO_TOC 0
297 #define TARGET_TOC 1
298 #endif
299
300 /* Pseudo target to say whether this is Windows NT */
301 #ifndef TARGET_WINDOWS_NT
302 #define TARGET_WINDOWS_NT 0
303 #endif
304
305 /* Pseudo target to say whether this is MAC */
306 #ifndef TARGET_MACOS
307 #define TARGET_MACOS 0
308 #endif
309
310 /* Pseudo target to say whether this is AIX */
311 #ifndef TARGET_AIX
312 #if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
313 #define TARGET_AIX 0
314 #else
315 #define TARGET_AIX 1
316 #endif
317 #endif
318
319 #ifndef TARGET_XL_CALL
320 #define TARGET_XL_CALL 0
321 #endif
322
323 /* Run-time compilation parameters selecting different hardware subsets.
324
325 Macro to define tables used to set the flags.
326 This is a list in braces of pairs in braces,
327 each pair being { "NAME", VALUE }
328 where VALUE is the bits to set or minus the bits to clear.
329 An empty string NAME is used to identify the default VALUE. */
330
331 /* This is meant to be redefined in the host dependent files */
332 #ifndef SUBTARGET_SWITCHES
333 #define SUBTARGET_SWITCHES
334 #endif
335
336 #define TARGET_SWITCHES \
337 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
338 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
339 | MASK_POWER2)}, \
340 {"no-power2", - MASK_POWER2}, \
341 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
342 | MASK_STRING)}, \
343 {"powerpc", MASK_POWERPC}, \
344 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
345 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
346 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
347 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
348 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
349 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
350 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
351 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
352 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
353 | MASK_MINIMAL_TOC)}, \
354 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
355 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
356 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
357 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
358 {"minimal-toc", MASK_MINIMAL_TOC}, \
359 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
360 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
361 {"hard-float", - MASK_SOFT_FLOAT}, \
362 {"soft-float", MASK_SOFT_FLOAT}, \
363 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
364 {"no-multiple", - MASK_MULTIPLE}, \
365 {"no-multiple", MASK_MULTIPLE_SET}, \
366 {"string", MASK_STRING | MASK_STRING_SET}, \
367 {"no-string", - MASK_STRING}, \
368 {"no-string", MASK_STRING_SET}, \
369 {"debug-stack", MASK_DEBUG_STACK}, \
370 {"debug-arg", MASK_DEBUG_ARG}, \
371 SUBTARGET_SWITCHES \
372 {"", TARGET_DEFAULT}}
373
374 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
375
376 /* Processor type. */
377 enum processor_type
378 {PROCESSOR_RIOS1,
379 PROCESSOR_RIOS2,
380 PROCESSOR_MPCCORE,
381 PROCESSOR_PPC403,
382 PROCESSOR_PPC601,
383 PROCESSOR_PPC603,
384 PROCESSOR_PPC604,
385 PROCESSOR_PPC620};
386
387 extern enum processor_type rs6000_cpu;
388
389 /* Recast the processor type to the cpu attribute. */
390 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
391
392 /* Define generic processor types based upon current deployment. */
393 #define PROCESSOR_COMMON PROCESSOR_PPC601
394 #define PROCESSOR_POWER PROCESSOR_RIOS1
395 #define PROCESSOR_POWERPC PROCESSOR_PPC604
396
397 /* Define the default processor. This is overridden by other tm.h files. */
398 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
399
400 /* Specify the dialect of assembler to use. New mnemonics is dialect one
401 and the old mnemonics are dialect zero. */
402 #define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
403
404 /* This macro is similar to `TARGET_SWITCHES' but defines names of
405 command options that have values. Its definition is an
406 initializer with a subgrouping for each command option.
407
408 Each subgrouping contains a string constant, that defines the
409 fixed part of the option name, and the address of a variable.
410 The variable, type `char *', is set to the variable part of the
411 given option if the fixed part matches. The actual option name
412 is made by appending `-m' to the specified name.
413
414 Here is an example which defines `-mshort-data-NUMBER'. If the
415 given option is `-mshort-data-512', the variable `m88k_short_data'
416 will be set to the string `"512"'.
417
418 extern char *m88k_short_data;
419 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
420
421 /* This is meant to be overriden in target specific files. */
422 #ifndef SUBTARGET_OPTIONS
423 #define SUBTARGET_OPTIONS
424 #endif
425
426 #define TARGET_OPTIONS \
427 { \
428 {"cpu=", &rs6000_select[1].string}, \
429 {"tune=", &rs6000_select[2].string}, \
430 SUBTARGET_OPTIONS \
431 }
432
433 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
434 struct rs6000_cpu_select
435 {
436 char *string;
437 char *name;
438 int set_tune_p;
439 int set_arch_p;
440 };
441
442 extern struct rs6000_cpu_select rs6000_select[];
443
444
445 /* Sometimes certain combinations of command options do not make sense
446 on a particular target machine. You can define a macro
447 `OVERRIDE_OPTIONS' to take account of this. This macro, if
448 defined, is executed once just after all the command options have
449 been parsed.
450
451 On the RS/6000 this is used to define the target cpu type. */
452
453 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
454
455 /* Show we can debug even without a frame pointer. */
456 #define CAN_DEBUG_WITHOUT_FP
457 \f
458 /* target machine storage layout */
459
460 /* Define to support cross compilation to an RS6000 target. */
461 #define REAL_ARITHMETIC
462
463 /* Define this macro if it is advisable to hold scalars in registers
464 in a wider mode than that declared by the program. In such cases,
465 the value is constrained to be within the bounds of the declared
466 type, but kept valid in the wider mode. The signedness of the
467 extension may differ from that of the type. */
468
469 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
470 if (GET_MODE_CLASS (MODE) == MODE_INT \
471 && GET_MODE_SIZE (MODE) < 4) \
472 (MODE) = SImode;
473
474 /* Define this if most significant bit is lowest numbered
475 in instructions that operate on numbered bit-fields. */
476 /* That is true on RS/6000. */
477 #define BITS_BIG_ENDIAN 1
478
479 /* Define this if most significant byte of a word is the lowest numbered. */
480 /* That is true on RS/6000. */
481 #define BYTES_BIG_ENDIAN 1
482
483 /* Define this if most significant word of a multiword number is lowest
484 numbered.
485
486 For RS/6000 we can decide arbitrarily since there are no machine
487 instructions for them. Might as well be consistent with bits and bytes. */
488 #define WORDS_BIG_ENDIAN 1
489
490 /* number of bits in an addressable storage unit */
491 #define BITS_PER_UNIT 8
492
493 /* Width in bits of a "word", which is the contents of a machine register.
494 Note that this is not necessarily the width of data type `int';
495 if using 16-bit ints on a 68000, this would still be 32.
496 But on a machine with 16-bit registers, this would be 16. */
497 #define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
498 #define MAX_BITS_PER_WORD 64
499
500 /* Width of a word, in units (bytes). */
501 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
502 #define MIN_UNITS_PER_WORD 4
503 #define UNITS_PER_FP_WORD 8
504
505 /* Type used for ptrdiff_t, as a string used in a declaration. */
506 #define PTRDIFF_TYPE "int"
507
508 /* Type used for wchar_t, as a string used in a declaration. */
509 #define WCHAR_TYPE "short unsigned int"
510
511 /* Width of wchar_t in bits. */
512 #define WCHAR_TYPE_SIZE 16
513
514 /* A C expression for the size in bits of the type `short' on the
515 target machine. If you don't define this, the default is half a
516 word. (If this would be less than one storage unit, it is
517 rounded up to one unit.) */
518 #define SHORT_TYPE_SIZE 16
519
520 /* A C expression for the size in bits of the type `int' on the
521 target machine. If you don't define this, the default is one
522 word. */
523 #define INT_TYPE_SIZE 32
524
525 /* A C expression for the size in bits of the type `long' on the
526 target machine. If you don't define this, the default is one
527 word. */
528 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
529 #define MAX_LONG_TYPE_SIZE 64
530
531 /* A C expression for the size in bits of the type `long long' on the
532 target machine. If you don't define this, the default is two
533 words. */
534 #define LONG_LONG_TYPE_SIZE 64
535
536 /* A C expression for the size in bits of the type `char' on the
537 target machine. If you don't define this, the default is one
538 quarter of a word. (If this would be less than one storage unit,
539 it is rounded up to one unit.) */
540 #define CHAR_TYPE_SIZE BITS_PER_UNIT
541
542 /* A C expression for the size in bits of the type `float' on the
543 target machine. If you don't define this, the default is one
544 word. */
545 #define FLOAT_TYPE_SIZE 32
546
547 /* A C expression for the size in bits of the type `double' on the
548 target machine. If you don't define this, the default is two
549 words. */
550 #define DOUBLE_TYPE_SIZE 64
551
552 /* A C expression for the size in bits of the type `long double' on
553 the target machine. If you don't define this, the default is two
554 words. */
555 #define LONG_DOUBLE_TYPE_SIZE 64
556
557 /* Width in bits of a pointer.
558 See also the macro `Pmode' defined below. */
559 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
560
561 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
562 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
563
564 /* Boundary (in *bits*) on which stack pointer should be aligned. */
565 #define STACK_BOUNDARY 64
566
567 /* Allocation boundary (in *bits*) for the code of a function. */
568 #define FUNCTION_BOUNDARY 32
569
570 /* No data type wants to be aligned rounder than this. */
571 #define BIGGEST_ALIGNMENT 64
572
573 /* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
574 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
575 (DECL_MODE (FIELD) != DFmode ? (COMPUTED) : MIN ((COMPUTED), 32))
576
577 /* Alignment of field after `int : 0' in a structure. */
578 #define EMPTY_FIELD_BOUNDARY 32
579
580 /* Every structure's size must be a multiple of this. */
581 #define STRUCTURE_SIZE_BOUNDARY 8
582
583 /* A bitfield declared as `int' forces `int' alignment for the struct. */
584 #define PCC_BITFIELD_TYPE_MATTERS 1
585
586 /* AIX increases natural record alignment to doubleword if the first
587 field is an FP double while the FP fields remain word aligned. */
588 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
589 ((TREE_CODE (STRUCT) == RECORD_TYPE \
590 || TREE_CODE (STRUCT) == UNION_TYPE \
591 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
592 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
593 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
594 : MAX ((COMPUTED), (SPECIFIED)))
595
596 /* Make strings word-aligned so strcpy from constants will be faster. */
597 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
598 (TREE_CODE (EXP) == STRING_CST \
599 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
600
601 /* Make arrays of chars word-aligned for the same reasons. */
602 #define DATA_ALIGNMENT(TYPE, ALIGN) \
603 (TREE_CODE (TYPE) == ARRAY_TYPE \
604 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
605 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
606
607 /* Non-zero if move instructions will actually fail to work
608 when given unaligned data. */
609 #define STRICT_ALIGNMENT 0
610 \f
611 /* Standard register usage. */
612
613 /* Number of actual hardware registers.
614 The hardware registers are assigned numbers for the compiler
615 from 0 to just below FIRST_PSEUDO_REGISTER.
616 All registers that the compiler knows about must be given numbers,
617 even those that are not normally considered general registers.
618
619 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
620 an MQ register, a count register, a link register, and 8 condition
621 register fields, which we view here as separate registers.
622
623 In addition, the difference between the frame and argument pointers is
624 a function of the number of registers saved, so we need to have a
625 register for AP that will later be eliminated in favor of SP or FP.
626 This is a normal register, but it is fixed.
627
628 We also create a pseudo register for float/int conversions, that will
629 really represent the memory location used. It is represented here as
630 a register, in order to work around problems in allocating stack storage
631 in inline functions. */
632
633 #define FIRST_PSEUDO_REGISTER 77
634
635 /* 1 for registers that have pervasive standard uses
636 and are not available for the register allocator.
637
638 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
639
640 cr5 is not supposed to be used.
641
642 On System V implementations, r13 is fixed and not available for use. */
643
644 #ifndef FIXED_R13
645 #define FIXED_R13 0
646 #endif
647
648 #define FIXED_REGISTERS \
649 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
650 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
651 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
652 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
653 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
654
655 /* 1 for registers not available across function calls.
656 These must include the FIXED_REGISTERS and also any
657 registers that can be used without being saved.
658 The latter must include the registers where values are returned
659 and the register where structure-value addresses are passed.
660 Aside from that, you can include as many other registers as you like. */
661
662 #define CALL_USED_REGISTERS \
663 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
664 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
665 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
666 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
667 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
668
669 /* List the order in which to allocate registers. Each register must be
670 listed once, even those in FIXED_REGISTERS.
671
672 We allocate in the following order:
673 fp0 (not saved or used for anything)
674 fp13 - fp2 (not saved; incoming fp arg registers)
675 fp1 (not saved; return value)
676 fp31 - fp14 (saved; order given to save least number)
677 cr1, cr6, cr7 (not saved or special)
678 cr0 (not saved, but used for arithmetic operations)
679 cr2, cr3, cr4 (saved)
680 r0 (not saved; cannot be base reg)
681 r9 (not saved; best for TImode)
682 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
683 r3 (not saved; return value register)
684 r31 - r13 (saved; order given to save least number)
685 r12 (not saved; if used for DImode or DFmode would use r13)
686 mq (not saved; best to use it if we can)
687 ctr (not saved; when we have the choice ctr is better)
688 lr (saved)
689 cr5, r1, r2, ap (fixed) */
690
691 #define REG_ALLOC_ORDER \
692 {32, \
693 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
694 33, \
695 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
696 50, 49, 48, 47, 46, \
697 69, 74, 75, 68, 70, 71, 72, \
698 0, \
699 9, 11, 10, 8, 7, 6, 5, 4, \
700 3, \
701 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
702 18, 17, 16, 15, 14, 13, 12, \
703 64, 66, 65, \
704 73, 1, 2, 67, 76}
705
706 /* True if register is floating-point. */
707 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
708
709 /* True if register is a condition register. */
710 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
711
712 /* True if register is an integer register. */
713 #define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
714
715 /* True if register is the temporary memory location used for int/float
716 conversion. */
717 #define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
718
719 /* Return number of consecutive hard regs needed starting at reg REGNO
720 to hold something of mode MODE.
721 This is ordinarily the length in words of a value of mode MODE
722 but can be less for certain modes in special long registers.
723
724 On RS/6000, ordinary registers hold 32 bits worth;
725 a single floating point register holds 64 bits worth. */
726
727 #define HARD_REGNO_NREGS(REGNO, MODE) \
728 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
729 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
730 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
731
732 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
733 For POWER and PowerPC, the GPRs can hold any mode, but the float
734 registers only can hold floating modes and DImode, and CR register only
735 can hold CC modes. We cannot put TImode anywhere except general
736 register and it must be able to fit within the register set. */
737
738 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
739 (FP_REGNO_P (REGNO) ? \
740 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
741 || (GET_MODE_CLASS (MODE) == MODE_INT \
742 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
743 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
744 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
745 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
746 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
747 : 1)
748
749 /* Value is 1 if it is a good idea to tie two pseudo registers
750 when one has mode MODE1 and one has mode MODE2.
751 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
752 for any hard reg, then this must be 0 for correct output. */
753 #define MODES_TIEABLE_P(MODE1, MODE2) \
754 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
755 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
756 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
757 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
758 : GET_MODE_CLASS (MODE1) == MODE_CC \
759 ? GET_MODE_CLASS (MODE2) == MODE_CC \
760 : GET_MODE_CLASS (MODE2) == MODE_CC \
761 ? GET_MODE_CLASS (MODE1) == MODE_CC \
762 : 1)
763
764 /* A C expression returning the cost of moving data from a register of class
765 CLASS1 to one of CLASS2.
766
767 On the RS/6000, copying between floating-point and fixed-point
768 registers is expensive. */
769
770 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
771 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
772 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
773 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
774 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
775 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
776 || (CLASS1) == LINK_OR_CTR_REGS) \
777 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
778 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
779 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
780 : 2)
781
782 /* A C expressions returning the cost of moving data of MODE from a register to
783 or from memory.
784
785 On the RS/6000, bump this up a bit. */
786
787 #define MEMORY_MOVE_COST(MODE) \
788 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
789 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
790 ? 3 : 2) \
791 + 4)
792
793 /* Specify the cost of a branch insn; roughly the number of extra insns that
794 should be added to avoid a branch.
795
796 Set this to 3 on the RS/6000 since that is roughly the average cost of an
797 unscheduled conditional branch. */
798
799 #define BRANCH_COST 3
800
801 /* A C statement (sans semicolon) to update the integer variable COST
802 based on the relationship between INSN that is dependent on
803 DEP_INSN through the dependence LINK. The default is to make no
804 adjustment to COST. On the RS/6000, ignore the cost of anti- and
805 output-dependencies. In fact, output dependencies on the CR do have
806 a cost, but it is probably not worthwhile to track it. */
807
808 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
809 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
810
811 /* Define this macro to change register usage conditional on target flags.
812 Set MQ register fixed (already call_used) if not POWER architecture
813 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
814 Conditionally disable FPRs. */
815
816 #define CONDITIONAL_REGISTER_USAGE \
817 { \
818 if (! TARGET_POWER) \
819 fixed_regs[64] = 1; \
820 if (TARGET_SOFT_FLOAT) \
821 for (i = 32; i < 64; i++) \
822 fixed_regs[i] = call_used_regs[i] = 1; \
823 }
824
825 /* Specify the registers used for certain standard purposes.
826 The values of these macros are register numbers. */
827
828 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
829 /* #define PC_REGNUM */
830
831 /* Register to use for pushing function arguments. */
832 #define STACK_POINTER_REGNUM 1
833
834 /* Base register for access to local variables of the function. */
835 #define FRAME_POINTER_REGNUM 31
836
837 /* Value should be nonzero if functions must have frame pointers.
838 Zero means the frame pointer need not be set up (and parms
839 may be accessed via the stack pointer) in functions that seem suitable.
840 This is computed in `reload', in reload1.c. */
841 #define FRAME_POINTER_REQUIRED 0
842
843 /* Base register for access to arguments of the function. */
844 #define ARG_POINTER_REGNUM 67
845
846 /* Place to put static chain when calling a function that requires it. */
847 #define STATIC_CHAIN_REGNUM 11
848
849 /* count register number for special purposes */
850 #define COUNT_REGISTER_REGNUM 66
851
852 /* Special register that represents memory, used for float/int conversions. */
853 #define FPMEM_REGNUM 76
854
855 /* Register to use as a placeholder for the GOT/allocated TOC register.
856 FINALIZE_PIC will change all uses of this register to a an appropriate
857 pseudo register when it adds the code to setup the GOT. We use r2
858 because it is a reserved register in all of the ABI's. */
859 #define GOT_TOC_REGNUM 2
860
861 /* Place that structure value return address is placed.
862
863 On the RS/6000, it is passed as an extra parameter. */
864 #define STRUCT_VALUE 0
865 \f
866 /* Define the classes of registers for register constraints in the
867 machine description. Also define ranges of constants.
868
869 One of the classes must always be named ALL_REGS and include all hard regs.
870 If there is more than one class, another class must be named NO_REGS
871 and contain no registers.
872
873 The name GENERAL_REGS must be the name of a class (or an alias for
874 another name such as ALL_REGS). This is the class of registers
875 that is allowed by "g" or "r" in a register constraint.
876 Also, registers outside this class are allocated only when
877 instructions express preferences for them.
878
879 The classes must be numbered in nondecreasing order; that is,
880 a larger-numbered class must never be contained completely
881 in a smaller-numbered class.
882
883 For any two classes, it is very desirable that there be another
884 class that represents their union. */
885
886 /* The RS/6000 has three types of registers, fixed-point, floating-point,
887 and condition registers, plus three special registers, MQ, CTR, and the
888 link register.
889
890 However, r0 is special in that it cannot be used as a base register.
891 So make a class for registers valid as base registers.
892
893 Also, cr0 is the only condition code register that can be used in
894 arithmetic insns, so make a separate class for it.
895
896 There is a special 'registrer' (76), which is not a register, but a
897 placeholder for memory allocated to convert between floating point and
898 integral types. This works around a problem where if we allocate memory
899 with allocate_stack_{local,temp} and the function is an inline function, the
900 memory allocated will clobber memory in the caller. So we use a special
901 register, and if that is used, we allocate stack space for it. */
902
903 enum reg_class
904 {
905 NO_REGS,
906 BASE_REGS,
907 GENERAL_REGS,
908 FLOAT_REGS,
909 NON_SPECIAL_REGS,
910 MQ_REGS,
911 LINK_REGS,
912 CTR_REGS,
913 LINK_OR_CTR_REGS,
914 SPECIAL_REGS,
915 SPEC_OR_GEN_REGS,
916 CR0_REGS,
917 CR_REGS,
918 NON_FLOAT_REGS,
919 FPMEM_REGS,
920 FLOAT_OR_FPMEM_REGS,
921 ALL_REGS,
922 LIM_REG_CLASSES
923 };
924
925 #define N_REG_CLASSES (int) LIM_REG_CLASSES
926
927 /* Give names of register classes as strings for dump file. */
928
929 #define REG_CLASS_NAMES \
930 { \
931 "NO_REGS", \
932 "BASE_REGS", \
933 "GENERAL_REGS", \
934 "FLOAT_REGS", \
935 "NON_SPECIAL_REGS", \
936 "MQ_REGS", \
937 "LINK_REGS", \
938 "CTR_REGS", \
939 "LINK_OR_CTR_REGS", \
940 "SPECIAL_REGS", \
941 "SPEC_OR_GEN_REGS", \
942 "CR0_REGS", \
943 "CR_REGS", \
944 "NON_FLOAT_REGS", \
945 "FPMEM_REGS", \
946 "FLOAT_OR_FPMEM_REGS", \
947 "ALL_REGS" \
948 }
949
950 /* Define which registers fit in which classes.
951 This is an initializer for a vector of HARD_REG_SET
952 of length N_REG_CLASSES. */
953
954 #define REG_CLASS_CONTENTS \
955 { \
956 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
957 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
958 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
959 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
960 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
961 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
962 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
963 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
964 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
965 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
966 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
967 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
968 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
969 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
970 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
971 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
972 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
973 }
974
975 /* The same information, inverted:
976 Return the class number of the smallest class containing
977 reg number REGNO. This could be a conditional expression
978 or could index an array. */
979
980 #define REGNO_REG_CLASS(REGNO) \
981 ((REGNO) == 0 ? GENERAL_REGS \
982 : (REGNO) < 32 ? BASE_REGS \
983 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
984 : (REGNO) == 68 ? CR0_REGS \
985 : CR_REGNO_P (REGNO) ? CR_REGS \
986 : (REGNO) == 64 ? MQ_REGS \
987 : (REGNO) == 65 ? LINK_REGS \
988 : (REGNO) == 66 ? CTR_REGS \
989 : (REGNO) == 67 ? BASE_REGS \
990 : (REGNO) == 76 ? FPMEM_REGS \
991 : NO_REGS)
992
993 /* The class value for index registers, and the one for base regs. */
994 #define INDEX_REG_CLASS GENERAL_REGS
995 #define BASE_REG_CLASS BASE_REGS
996
997 /* Get reg_class from a letter such as appears in the machine description. */
998
999 #define REG_CLASS_FROM_LETTER(C) \
1000 ((C) == 'f' ? FLOAT_REGS \
1001 : (C) == 'b' ? BASE_REGS \
1002 : (C) == 'h' ? SPECIAL_REGS \
1003 : (C) == 'q' ? MQ_REGS \
1004 : (C) == 'c' ? CTR_REGS \
1005 : (C) == 'l' ? LINK_REGS \
1006 : (C) == 'x' ? CR0_REGS \
1007 : (C) == 'y' ? CR_REGS \
1008 : (C) == 'z' ? FPMEM_REGS \
1009 : NO_REGS)
1010
1011 /* The letters I, J, K, L, M, N, and P in a register constraint string
1012 can be used to stand for particular ranges of immediate operands.
1013 This macro defines what the ranges are.
1014 C is the letter, and VALUE is a constant value.
1015 Return 1 if VALUE is in the range specified by C.
1016
1017 `I' is signed 16-bit constants
1018 `J' is a constant with only the high-order 16 bits non-zero
1019 `K' is a constant with only the low-order 16 bits non-zero
1020 `L' is a constant that can be placed into a mask operand
1021 `M' is a constant that is greater than 31
1022 `N' is a constant that is an exact power of two
1023 `O' is the constant zero
1024 `P' is a constant whose negation is a signed 16-bit constant */
1025
1026 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1027 ( (C) == 'I' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
1028 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
1029 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
1030 : (C) == 'L' ? mask_constant (VALUE) \
1031 : (C) == 'M' ? (VALUE) > 31 \
1032 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1033 : (C) == 'O' ? (VALUE) == 0 \
1034 : (C) == 'P' ? (unsigned) ((- (VALUE)) + 0x8000) < 0x1000 \
1035 : 0)
1036
1037 /* Similar, but for floating constants, and defining letters G and H.
1038 Here VALUE is the CONST_DOUBLE rtx itself.
1039
1040 We flag for special constants when we can copy the constant into
1041 a general register in two insns for DF/DI and one insn for SF.
1042
1043 'H' is used for DI/DF constants that take 3 insns. */
1044
1045 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1046 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1047 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1048 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1049 : 0)
1050
1051 /* Optional extra constraints for this machine.
1052
1053 'Q' means that is a memory operand that is just an offset from a reg.
1054 'R' is for AIX TOC entries.
1055 'S' is for Windows NT SYMBOL_REFs
1056 'T' is for Windows NT LABEL_REFs.
1057 'U' is for V.4 small data references. */
1058
1059 #define EXTRA_CONSTRAINT(OP, C) \
1060 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1061 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
1062 : (C) == 'S' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == SYMBOL_REF)\
1063 : (C) == 'T' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == LABEL_REF) \
1064 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1065 && small_data_operand (OP, GET_MODE (OP))) \
1066 : 0)
1067
1068 /* Given an rtx X being reloaded into a reg required to be
1069 in class CLASS, return the class of reg to actually use.
1070 In general this is just CLASS; but on some machines
1071 in some cases it is preferable to use a more restrictive class.
1072
1073 On the RS/6000, we have to return NO_REGS when we want to reload a
1074 floating-point CONST_DOUBLE to force it to be copied to memory. */
1075
1076 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1077 ((GET_CODE (X) == CONST_DOUBLE \
1078 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1079 ? NO_REGS : (CLASS))
1080
1081 /* Return the register class of a scratch register needed to copy IN into
1082 or out of a register in CLASS in MODE. If it can be done directly,
1083 NO_REGS is returned. */
1084
1085 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1086 secondary_reload_class (CLASS, MODE, IN)
1087
1088 /* If we are copying between FP registers and anything else, we need a memory
1089 location. */
1090
1091 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1092 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1093
1094 /* Return the maximum number of consecutive registers
1095 needed to represent mode MODE in a register of class CLASS.
1096
1097 On RS/6000, this is the size of MODE in words,
1098 except in the FP regs, where a single reg is enough for two words. */
1099 #define CLASS_MAX_NREGS(CLASS, MODE) \
1100 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1101 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
1102 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1103 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1104
1105 /* If defined, gives a class of registers that cannot be used as the
1106 operand of a SUBREG that changes the size of the object. */
1107
1108 #define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
1109 \f
1110 /* Stack layout; function entry, exit and calling. */
1111
1112 /* Enumeration to give which calling sequence to use. */
1113 enum rs6000_abi {
1114 ABI_NONE,
1115 ABI_AIX, /* IBM's AIX */
1116 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1117 ABI_V4, /* System V.4/eabi */
1118 ABI_NT, /* Windows/NT */
1119 ABI_SOLARIS /* Solaris */
1120 };
1121
1122 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1123
1124 /* Default ABI to compile code for */
1125 #ifndef DEFAULT_ABI
1126 #define DEFAULT_ABI ABI_AIX
1127 /* The prefix to add to user-visible assembler symbols. */
1128 #define USER_LABEL_PREFIX "."
1129 #endif
1130
1131 /* Structure used to define the rs6000 stack */
1132 typedef struct rs6000_stack {
1133 int first_gp_reg_save; /* first callee saved GP register used */
1134 int first_fp_reg_save; /* first callee saved FP register used */
1135 int lr_save_p; /* true if the link reg needs to be saved */
1136 int cr_save_p; /* true if the CR reg needs to be saved */
1137 int toc_save_p; /* true if the TOC needs to be saved */
1138 int push_p; /* true if we need to allocate stack space */
1139 int calls_p; /* true if the function makes any calls */
1140 int main_p; /* true if this is main */
1141 int main_save_p; /* true if this is main and we need to save args */
1142 int fpmem_p; /* true if float/int conversion temp needed */
1143 enum rs6000_abi abi; /* which ABI to use */
1144 int gp_save_offset; /* offset to save GP regs from initial SP */
1145 int fp_save_offset; /* offset to save FP regs from initial SP */
1146 int lr_save_offset; /* offset to save LR from initial SP */
1147 int cr_save_offset; /* offset to save CR from initial SP */
1148 int toc_save_offset; /* offset to save the TOC pointer */
1149 int varargs_save_offset; /* offset to save the varargs registers */
1150 int main_save_offset; /* offset to save main's args */
1151 int fpmem_offset; /* offset for float/int conversion temp */
1152 int reg_size; /* register size (4 or 8) */
1153 int varargs_size; /* size to hold V.4 args passed in regs */
1154 int vars_size; /* variable save area size */
1155 int parm_size; /* outgoing parameter size */
1156 int main_size; /* size to hold saving main's args */
1157 int save_size; /* save area size */
1158 int fixed_size; /* fixed size of stack frame */
1159 int gp_size; /* size of saved GP registers */
1160 int fp_size; /* size of saved FP registers */
1161 int cr_size; /* size to hold CR if not in save_size */
1162 int lr_size; /* size to hold LR if not in save_size */
1163 int fpmem_size; /* size to hold float/int conversion */
1164 int toc_size; /* size to hold TOC if not in save_size */
1165 int total_size; /* total bytes allocated for stack */
1166 } rs6000_stack_t;
1167
1168 /* Define this if pushing a word on the stack
1169 makes the stack pointer a smaller address. */
1170 #define STACK_GROWS_DOWNWARD
1171
1172 /* Define this if the nominal address of the stack frame
1173 is at the high-address end of the local variables;
1174 that is, each additional local variable allocated
1175 goes at a more negative offset in the frame.
1176
1177 On the RS/6000, we grow upwards, from the area after the outgoing
1178 arguments. */
1179 /* #define FRAME_GROWS_DOWNWARD */
1180
1181 /* Size of the outgoing register save area */
1182 #define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
1183
1184 /* Size of the fixed area on the stack */
1185 #define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
1186
1187 /* Address to save the TOC register */
1188 #define RS6000_SAVE_TOC plus_constant (stack_pointer_rtx, 20)
1189
1190 /* Whether a separate TOC save area is needed */
1191 extern int rs6000_save_toc_p;
1192
1193 /* Offset & size for fpmem stack locations used for converting between
1194 float and integral types. */
1195 extern int rs6000_fpmem_offset;
1196 extern int rs6000_fpmem_size;
1197
1198 /* Size of the V.4 varargs area if needed */
1199 #define RS6000_VARARGS_AREA 0
1200
1201 /* Whether a V.4 varargs area is needed */
1202 extern int rs6000_sysv_varargs_p;
1203
1204 /* Align an address */
1205 #define ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1206
1207 /* Initialize data used by insn expanders. This is called from
1208 init_emit, once for each function, before code is generated. */
1209 #define INIT_EXPANDERS rs6000_init_expanders ()
1210
1211 /* Size of V.4 varargs area in bytes */
1212 #define RS6000_VARARGS_SIZE \
1213 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1214
1215 /* Offset of V.4 varargs area */
1216 #define RS6000_VARARGS_OFFSET \
1217 (ALIGN (current_function_outgoing_args_size, 8) \
1218 + RS6000_SAVE_AREA)
1219
1220 /* Offset within stack frame to start allocating local variables at.
1221 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1222 first local allocated. Otherwise, it is the offset to the BEGINNING
1223 of the first local allocated.
1224
1225 On the RS/6000, the frame pointer is the same as the stack pointer,
1226 except for dynamic allocations. So we start after the fixed area and
1227 outgoing parameter area. */
1228
1229 #define STARTING_FRAME_OFFSET \
1230 (ALIGN (current_function_outgoing_args_size, 8) \
1231 + RS6000_VARARGS_AREA \
1232 + RS6000_SAVE_AREA)
1233
1234 /* Offset from the stack pointer register to an item dynamically
1235 allocated on the stack, e.g., by `alloca'.
1236
1237 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1238 length of the outgoing arguments. The default is correct for most
1239 machines. See `function.c' for details. */
1240 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1241 (ALIGN (current_function_outgoing_args_size, 8) \
1242 + (STACK_POINTER_OFFSET))
1243
1244 /* If we generate an insn to push BYTES bytes,
1245 this says how many the stack pointer really advances by.
1246 On RS/6000, don't define this because there are no push insns. */
1247 /* #define PUSH_ROUNDING(BYTES) */
1248
1249 /* Offset of first parameter from the argument pointer register value.
1250 On the RS/6000, we define the argument pointer to the start of the fixed
1251 area. */
1252 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1253
1254 /* Define this if stack space is still allocated for a parameter passed
1255 in a register. The value is the number of bytes allocated to this
1256 area. */
1257 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1258
1259 /* Define this if the above stack space is to be considered part of the
1260 space allocated by the caller. */
1261 #define OUTGOING_REG_PARM_STACK_SPACE
1262
1263 /* This is the difference between the logical top of stack and the actual sp.
1264
1265 For the RS/6000, sp points past the fixed area. */
1266 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1267
1268 /* Define this if the maximum size of all the outgoing args is to be
1269 accumulated and pushed during the prologue. The amount can be
1270 found in the variable current_function_outgoing_args_size. */
1271 #define ACCUMULATE_OUTGOING_ARGS
1272
1273 /* Value is the number of bytes of arguments automatically
1274 popped when returning from a subroutine call.
1275 FUNDECL is the declaration node of the function (as a tree),
1276 FUNTYPE is the data type of the function (as a tree),
1277 or for a library call it is an identifier node for the subroutine name.
1278 SIZE is the number of bytes of arguments passed on the stack. */
1279
1280 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1281
1282 /* Define how to find the value returned by a function.
1283 VALTYPE is the data type of the value (as a tree).
1284 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1285 otherwise, FUNC is 0.
1286
1287 On RS/6000 an integer value is in r3 and a floating-point value is in
1288 fp1, unless -msoft-float. */
1289
1290 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1291 gen_rtx (REG, TYPE_MODE (VALTYPE), \
1292 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
1293
1294 /* Define how to find the value returned by a library function
1295 assuming the value has mode MODE. */
1296
1297 #define LIBCALL_VALUE(MODE) \
1298 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
1299
1300 /* The definition of this macro implies that there are cases where
1301 a scalar value cannot be returned in registers.
1302
1303 For the RS/6000, any structure or union type is returned in memory, except for
1304 Solaris, which returns structures <= 8 bytes in registers. */
1305
1306 #define RETURN_IN_MEMORY(TYPE) \
1307 (TYPE_MODE (TYPE) == BLKmode \
1308 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
1309
1310 /* Minimum and maximum general purpose registers used to hold arguments. */
1311 #define GP_ARG_MIN_REG 3
1312 #define GP_ARG_MAX_REG 10
1313 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1314
1315 /* Minimum and maximum floating point registers used to hold arguments. */
1316 #define FP_ARG_MIN_REG 33
1317 #define FP_ARG_AIX_MAX_REG 45
1318 #define FP_ARG_V4_MAX_REG 40
1319 #define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
1320 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1321
1322 /* Return registers */
1323 #define GP_ARG_RETURN GP_ARG_MIN_REG
1324 #define FP_ARG_RETURN FP_ARG_MIN_REG
1325
1326 /* Flags for the call/call_value rtl operations set up by function_arg */
1327 #define CALL_NORMAL 0x00000000 /* no special processing */
1328 #define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1329 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1330 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1331 #define CALL_LONG 0x00000008 /* always call indirect */
1332
1333 /* Define cutoff for using external functions to save floating point */
1334 #define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1335
1336 /* 1 if N is a possible register number for a function value
1337 as seen by the caller.
1338
1339 On RS/6000, this is r3 and fp1. */
1340 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
1341
1342 /* 1 if N is a possible register number for function argument passing.
1343 On RS/6000, these are r3-r10 and fp1-fp13. */
1344 #define FUNCTION_ARG_REGNO_P(N) \
1345 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1346 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
1347
1348 \f
1349 /* Define a data type for recording info about an argument list
1350 during the scan of that argument list. This data type should
1351 hold all necessary information about the function itself
1352 and about the args processed so far, enough to enable macros
1353 such as FUNCTION_ARG to determine where the next arg should go.
1354
1355 On the RS/6000, this is a structure. The first element is the number of
1356 total argument words, the second is used to store the next
1357 floating-point register number, and the third says how many more args we
1358 have prototype types for.
1359
1360 The System V.4 varargs/stdarg support requires that this structure's size
1361 be a multiple of sizeof(int), and that WORDS, FREGNO, NARGS_PROTOTYPE,
1362 ORIG_NARGS, and VARARGS_OFFSET be the first five ints. */
1363
1364 typedef struct rs6000_args
1365 {
1366 int words; /* # words uses for passing GP registers */
1367 int fregno; /* next available FP register */
1368 int nargs_prototype; /* # args left in the current prototype */
1369 int orig_nargs; /* Original value of nargs_prototype */
1370 int varargs_offset; /* offset of the varargs save area */
1371 int prototype; /* Whether a prototype was defined */
1372 int call_cookie; /* Do special things for this call */
1373 } CUMULATIVE_ARGS;
1374
1375 /* Define intermediate macro to compute the size (in registers) of an argument
1376 for the RS/6000. */
1377
1378 #define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1379 (! (NAMED) ? 0 \
1380 : (MODE) != BLKmode \
1381 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1382 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1383
1384 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1385 for a call to a function whose data type is FNTYPE.
1386 For a library call, FNTYPE is 0. */
1387
1388 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1389 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
1390
1391 /* Similar, but when scanning the definition of a procedure. We always
1392 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1393
1394 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1395 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
1396
1397 /* Update the data in CUM to advance over an argument
1398 of mode MODE and data type TYPE.
1399 (TYPE is null for libcalls where that information may not be available.) */
1400
1401 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1402 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1403
1404 /* Non-zero if we can use a floating-point register to pass this arg. */
1405 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1406 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1407 && (CUM).fregno <= FP_ARG_MAX_REG \
1408 && TARGET_HARD_FLOAT)
1409
1410 /* Determine where to put an argument to a function.
1411 Value is zero to push the argument on the stack,
1412 or a hard register in which to store the argument.
1413
1414 MODE is the argument's machine mode.
1415 TYPE is the data type of the argument (as a tree).
1416 This is null for libcalls where that information may
1417 not be available.
1418 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1419 the preceding args and about the function being called.
1420 NAMED is nonzero if this argument is a named parameter
1421 (otherwise it is an extra parameter matching an ellipsis).
1422
1423 On RS/6000 the first eight words of non-FP are normally in registers
1424 and the rest are pushed. The first 13 FP args are in registers.
1425
1426 If this is floating-point and no prototype is specified, we use
1427 both an FP and integer register (or possibly FP reg and stack). Library
1428 functions (when TYPE is zero) always have the proper types for args,
1429 so we can pass the FP value just in one register. emit_library_function
1430 doesn't support EXPR_LIST anyway. */
1431
1432 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1433 function_arg (&CUM, MODE, TYPE, NAMED)
1434
1435 /* For an arg passed partly in registers and partly in memory,
1436 this is the number of registers used.
1437 For args passed entirely in registers or entirely in memory, zero. */
1438
1439 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1440 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1441
1442 /* A C expression that indicates when an argument must be passed by
1443 reference. If nonzero for an argument, a copy of that argument is
1444 made in memory and a pointer to the argument is passed instead of
1445 the argument itself. The pointer is passed in whatever way is
1446 appropriate for passing a pointer to that type. */
1447
1448 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1449 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1450
1451 /* If defined, a C expression that gives the alignment boundary, in bits,
1452 of an argument with the specified mode and type. If it is not defined,
1453 PARM_BOUNDARY is used for all arguments. */
1454
1455 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1456 function_arg_boundary (MODE, TYPE)
1457
1458 /* Perform any needed actions needed for a function that is receiving a
1459 variable number of arguments.
1460
1461 CUM is as above.
1462
1463 MODE and TYPE are the mode and type of the current parameter.
1464
1465 PRETEND_SIZE is a variable that should be set to the amount of stack
1466 that must be pushed by the prolog to pretend that our caller pushed
1467 it.
1468
1469 Normally, this macro will push all remaining incoming registers on the
1470 stack and set PRETEND_SIZE to the length of the registers pushed. */
1471
1472 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1473 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1474
1475 /* If defined, is a C expression that produces the machine-specific
1476 code for a call to `__builtin_saveregs'. This code will be moved
1477 to the very beginning of the function, before any parameter access
1478 are made. The return value of this function should be an RTX that
1479 contains the value to use as the return of `__builtin_saveregs'.
1480
1481 The argument ARGS is a `tree_list' containing the arguments that
1482 were passed to `__builtin_saveregs'.
1483
1484 If this macro is not defined, the compiler will output an ordinary
1485 call to the library function `__builtin_saveregs'. */
1486
1487 #define EXPAND_BUILTIN_SAVEREGS(ARGS) \
1488 expand_builtin_saveregs (ARGS)
1489
1490 /* This macro generates the assembly code for function entry.
1491 FILE is a stdio stream to output the code to.
1492 SIZE is an int: how many units of temporary storage to allocate.
1493 Refer to the array `regs_ever_live' to determine which registers
1494 to save; `regs_ever_live[I]' is nonzero if register number I
1495 is ever used in the function. This macro is responsible for
1496 knowing which registers should not be saved even if used. */
1497
1498 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1499
1500 /* Output assembler code to FILE to increment profiler label # LABELNO
1501 for profiling a function entry. */
1502
1503 #define FUNCTION_PROFILER(FILE, LABELNO) \
1504 output_function_profiler ((FILE), (LABELNO));
1505
1506 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1507 the stack pointer does not matter. No definition is equivalent to
1508 always zero.
1509
1510 On the RS/6000, this is non-zero because we can restore the stack from
1511 its backpointer, which we maintain. */
1512 #define EXIT_IGNORE_STACK 1
1513
1514 /* This macro generates the assembly code for function exit,
1515 on machines that need it. If FUNCTION_EPILOGUE is not defined
1516 then individual return instructions are generated for each
1517 return statement. Args are same as for FUNCTION_PROLOGUE.
1518
1519 The function epilogue should not depend on the current stack pointer!
1520 It should use the frame pointer only. This is mandatory because
1521 of alloca; we also take advantage of it to omit stack adjustments
1522 before returning. */
1523
1524 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1525 \f
1526 /* Output assembler code for a block containing the constant parts
1527 of a trampoline, leaving space for the variable parts.
1528
1529 The trampoline should set the static chain pointer to value placed
1530 into the trampoline and should branch to the specified routine. */
1531 #define TRAMPOLINE_TEMPLATE(FILE) rs6000_trampoline_template (FILE)
1532
1533 /* Length in units of the trampoline for entering a nested function. */
1534
1535 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1536
1537 /* Emit RTL insns to initialize the variable parts of a trampoline.
1538 FNADDR is an RTX for the address of the function's pure code.
1539 CXT is an RTX for the static chain value for the function. */
1540
1541 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1542 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1543 \f
1544 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1545 with arguments ARGS is a valid machine specific attribute for DECL.
1546 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1547
1548 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1549 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1550
1551 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1552 with arguments ARGS is a valid machine specific attribute for TYPE.
1553 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1554
1555 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1556 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1557
1558 /* If defined, a C expression whose value is zero if the attributes on
1559 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1560 two if they are nearly compatible (which causes a warning to be
1561 generated). */
1562
1563 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1564 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1565
1566 /* If defined, a C statement that assigns default attributes to newly
1567 defined TYPE. */
1568
1569 #define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1570 (rs6000_set_default_type_attributes (TYPE))
1571
1572 \f
1573 /* Definitions for __builtin_return_address and __builtin_frame_address.
1574 __builtin_return_address (0) should give link register (65), enable
1575 this. */
1576 /* This should be uncommented, so that the link register is used, but
1577 currently this would result in unmatched insns and spilling fixed
1578 registers so we'll leave it for another day. When these problems are
1579 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1580 (mrs) */
1581 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1582
1583 /* Number of bytes into the frame return addresses can be found. See
1584 rs6000_stack_info in rs6000.c for more information on how the different
1585 abi's store the return address. */
1586 #define RETURN_ADDRESS_OFFSET \
1587 ((DEFAULT_ABI == ABI_AIX \
1588 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
1589 (DEFAULT_ABI == ABI_V4 \
1590 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
1591 (DEFAULT_ABI == ABI_NT) ? -4 : \
1592 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
1593
1594 /* The current return address is in link register (65). The return address
1595 of anything farther back is accessed normally at an offset of 8 from the
1596 frame pointer. */
1597 #define RETURN_ADDR_RTX(count, frame) \
1598 ((count == -1) \
1599 ? gen_rtx (REG, Pmode, 65) \
1600 : gen_rtx (MEM, Pmode, \
1601 memory_address (Pmode, \
1602 plus_constant (copy_to_reg (gen_rtx (MEM, Pmode, \
1603 memory_address (Pmode, frame))), \
1604 RETURN_ADDRESS_OFFSET))))
1605 \f
1606 /* Definitions for register eliminations.
1607
1608 We have two registers that can be eliminated on the RS/6000. First, the
1609 frame pointer register can often be eliminated in favor of the stack
1610 pointer register. Secondly, the argument pointer register can always be
1611 eliminated; it is replaced with either the stack or frame pointer.
1612
1613 In addition, we use the elimination mechanism to see if r30 is needed
1614 Initially we assume that it isn't. If it is, we spill it. This is done
1615 by making it an eliminable register. We replace it with itself so that
1616 if it isn't needed, then existing uses won't be modified. */
1617
1618 /* This is an array of structures. Each structure initializes one pair
1619 of eliminable registers. The "from" register number is given first,
1620 followed by "to". Eliminations of the same "from" register are listed
1621 in order of preference. */
1622 #define ELIMINABLE_REGS \
1623 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1624 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1625 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1626 { 30, 30} }
1627
1628 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1629 Frame pointer elimination is automatically handled.
1630
1631 For the RS/6000, if frame pointer elimination is being done, we would like
1632 to convert ap into fp, not sp.
1633
1634 We need r30 if -mminimal-toc was specified, and there are constant pool
1635 references. */
1636
1637 #define CAN_ELIMINATE(FROM, TO) \
1638 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1639 ? ! frame_pointer_needed \
1640 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1641 : 1)
1642
1643 /* Define the offset between two registers, one to be eliminated, and the other
1644 its replacement, at the start of a routine. */
1645 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1646 { \
1647 rs6000_stack_t *info = rs6000_stack_info (); \
1648 \
1649 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1650 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1651 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1652 (OFFSET) = info->total_size; \
1653 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1654 (OFFSET) = (info->push_p) ? info->total_size : 0; \
1655 else if ((FROM) == 30) \
1656 (OFFSET) = 0; \
1657 else \
1658 abort (); \
1659 }
1660 \f
1661 /* Addressing modes, and classification of registers for them. */
1662
1663 /* #define HAVE_POST_INCREMENT */
1664 /* #define HAVE_POST_DECREMENT */
1665
1666 #define HAVE_PRE_DECREMENT
1667 #define HAVE_PRE_INCREMENT
1668
1669 /* Macros to check register numbers against specific register classes. */
1670
1671 /* These assume that REGNO is a hard or pseudo reg number.
1672 They give nonzero only if REGNO is a hard reg of the suitable class
1673 or a pseudo reg currently allocated to a suitable hard reg.
1674 Since they use reg_renumber, they are safe only once reg_renumber
1675 has been allocated, which happens in local-alloc.c. */
1676
1677 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1678 ((REGNO) < FIRST_PSEUDO_REGISTER \
1679 ? (REGNO) <= 31 || (REGNO) == 67 \
1680 : (reg_renumber[REGNO] >= 0 \
1681 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1682
1683 #define REGNO_OK_FOR_BASE_P(REGNO) \
1684 ((REGNO) < FIRST_PSEUDO_REGISTER \
1685 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1686 : (reg_renumber[REGNO] > 0 \
1687 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1688 \f
1689 /* Maximum number of registers that can appear in a valid memory address. */
1690
1691 #define MAX_REGS_PER_ADDRESS 2
1692
1693 /* Recognize any constant value that is a valid address. */
1694
1695 #define CONSTANT_ADDRESS_P(X) \
1696 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1697 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1698 || GET_CODE (X) == HIGH)
1699
1700 /* Nonzero if the constant value X is a legitimate general operand.
1701 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1702
1703 On the RS/6000, all integer constants are acceptable, most won't be valid
1704 for particular insns, though. Only easy FP constants are
1705 acceptable. */
1706
1707 #define LEGITIMATE_CONSTANT_P(X) \
1708 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1709 || easy_fp_constant (X, GET_MODE (X)))
1710
1711 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1712 and check its validity for a certain class.
1713 We have two alternate definitions for each of them.
1714 The usual definition accepts all pseudo regs; the other rejects
1715 them unless they have been allocated suitable hard regs.
1716 The symbol REG_OK_STRICT causes the latter definition to be used.
1717
1718 Most source files want to accept pseudo regs in the hope that
1719 they will get allocated to the class that the insn wants them to be in.
1720 Source files for reload pass need to be strict.
1721 After reload, it makes no difference, since pseudo regs have
1722 been eliminated by then. */
1723
1724 #ifndef REG_OK_STRICT
1725
1726 /* Nonzero if X is a hard reg that can be used as an index
1727 or if it is a pseudo reg. */
1728 #define REG_OK_FOR_INDEX_P(X) \
1729 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1730
1731 /* Nonzero if X is a hard reg that can be used as a base reg
1732 or if it is a pseudo reg. */
1733 #define REG_OK_FOR_BASE_P(X) \
1734 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1735
1736 #else
1737
1738 /* Nonzero if X is a hard reg that can be used as an index. */
1739 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1740 /* Nonzero if X is a hard reg that can be used as a base reg. */
1741 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1742
1743 #endif
1744 \f
1745 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1746 that is a valid memory address for an instruction.
1747 The MODE argument is the machine mode for the MEM expression
1748 that wants to use this address.
1749
1750 On the RS/6000, there are four valid address: a SYMBOL_REF that
1751 refers to a constant pool entry of an address (or the sum of it
1752 plus a constant), a short (16-bit signed) constant plus a register,
1753 the sum of two registers, or a register indirect, possibly with an
1754 auto-increment. For DFmode and DImode with an constant plus register,
1755 we must ensure that both words are addressable or PowerPC64 with offset
1756 word aligned. */
1757
1758 #define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
1759 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1760 && CONSTANT_POOL_ADDRESS_P (X) \
1761 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1762
1763 /* TARGET_64BIT TOC64 guaranteed to have 64 bit alignment. */
1764 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1765 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
1766 || (TARGET_TOC \
1767 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1768 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1769 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1770
1771 #define LEGITIMATE_SMALL_DATA_P(MODE, X) \
1772 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1773 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1774 && small_data_operand (X, MODE))
1775
1776 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1777 (GET_CODE (X) == CONST_INT \
1778 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1779
1780 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1781 (GET_CODE (X) == PLUS \
1782 && GET_CODE (XEXP (X, 0)) == REG \
1783 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1784 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1785 && (((MODE) != DFmode && (MODE) != DImode) \
1786 || (TARGET_32BIT \
1787 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1788 : ! (INTVAL (XEXP (X, 1)) & 3))) \
1789 && ((MODE) != TImode \
1790 || (TARGET_32BIT \
1791 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1792 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1793 && ! (INTVAL (XEXP (X, 1)) & 3)))))
1794
1795 #define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1796 (GET_CODE (X) == PLUS \
1797 && GET_CODE (XEXP (X, 0)) == REG \
1798 && GET_CODE (XEXP (X, 1)) == REG \
1799 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1800 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1801 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1802 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1803
1804 #define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1805 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1806
1807 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1808 (TARGET_ELF \
1809 && (MODE) != DImode \
1810 && (MODE) != TImode \
1811 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1812 && GET_CODE (X) == LO_SUM \
1813 && GET_CODE (XEXP (X, 0)) == REG \
1814 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1815 && CONSTANT_P (XEXP (X, 1)))
1816
1817 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1818 { if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1819 goto ADDR; \
1820 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
1821 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1822 goto ADDR; \
1823 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1824 goto ADDR; \
1825 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1826 goto ADDR; \
1827 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1828 goto ADDR; \
1829 if ((MODE) != TImode \
1830 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1831 && (TARGET_64BIT || (MODE) != DImode) \
1832 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1833 goto ADDR; \
1834 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1835 goto ADDR; \
1836 }
1837 \f
1838 /* Try machine-dependent ways of modifying an illegitimate address
1839 to be legitimate. If we find one, return the new, valid address.
1840 This macro is used in only one place: `memory_address' in explow.c.
1841
1842 OLDX is the address as it was before break_out_memory_refs was called.
1843 In some cases it is useful to look at this to decide what needs to be done.
1844
1845 MODE and WIN are passed so that this macro can use
1846 GO_IF_LEGITIMATE_ADDRESS.
1847
1848 It is always safe for this macro to do nothing. It exists to recognize
1849 opportunities to optimize the output.
1850
1851 On RS/6000, first check for the sum of a register with a constant
1852 integer that is out of range. If so, generate code to add the
1853 constant with the low-order 16 bits masked to the register and force
1854 this result into another register (this can be done with `cau').
1855 Then generate an address of REG+(CONST&0xffff), allowing for the
1856 possibility of bit 16 being a one.
1857
1858 Then check for the sum of a register and something not constant, try to
1859 load the other things into a register and return the sum. */
1860
1861 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1862 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1863 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1864 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1865 { HOST_WIDE_INT high_int, low_int; \
1866 rtx sum; \
1867 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
1868 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1869 if (low_int & 0x8000) \
1870 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
1871 sum = force_operand (gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1872 GEN_INT (high_int)), 0); \
1873 (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (low_int)); \
1874 goto WIN; \
1875 } \
1876 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1877 && GET_CODE (XEXP (X, 1)) != CONST_INT \
1878 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1879 && (TARGET_64BIT || (MODE) != DImode) \
1880 && (MODE) != TImode) \
1881 { \
1882 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1883 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
1884 goto WIN; \
1885 } \
1886 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
1887 && GET_CODE (X) != CONST_INT \
1888 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
1889 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1890 && (MODE) != DImode && (MODE) != TImode) \
1891 { \
1892 rtx reg = gen_reg_rtx (Pmode); \
1893 emit_insn (gen_elf_high (reg, (X))); \
1894 (X) = gen_rtx (LO_SUM, Pmode, reg, (X)); \
1895 } \
1896 }
1897
1898 /* Go to LABEL if ADDR (a legitimate address expression)
1899 has an effect that depends on the machine mode it is used for.
1900
1901 On the RS/6000 this is true if the address is valid with a zero offset
1902 but not with an offset of four (this means it cannot be used as an
1903 address for DImode or DFmode) or is a pre-increment or decrement. Since
1904 we know it is valid, we just check for an address that is not valid with
1905 an offset of four. */
1906
1907 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1908 { if (GET_CODE (ADDR) == PLUS \
1909 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
1910 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
1911 (TARGET_32BIT ? 4 : 8))) \
1912 goto LABEL; \
1913 if (GET_CODE (ADDR) == PRE_INC) \
1914 goto LABEL; \
1915 if (GET_CODE (ADDR) == PRE_DEC) \
1916 goto LABEL; \
1917 if (GET_CODE (ADDR) == LO_SUM) \
1918 goto LABEL; \
1919 }
1920 \f
1921 /* The register number of the register used to address a table of
1922 static data addresses in memory. In some cases this register is
1923 defined by a processor's "application binary interface" (ABI).
1924 When this macro is defined, RTL is generated for this register
1925 once, as with the stack pointer and frame pointer registers. If
1926 this macro is not defined, it is up to the machine-dependent files
1927 to allocate such a register (if necessary). */
1928
1929 /* #define PIC_OFFSET_TABLE_REGNUM */
1930
1931 /* Define this macro if the register defined by
1932 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1933 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
1934
1935 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1936
1937 /* By generating position-independent code, when two different
1938 programs (A and B) share a common library (libC.a), the text of
1939 the library can be shared whether or not the library is linked at
1940 the same address for both programs. In some of these
1941 environments, position-independent code requires not only the use
1942 of different addressing modes, but also special code to enable the
1943 use of these addressing modes.
1944
1945 The `FINALIZE_PIC' macro serves as a hook to emit these special
1946 codes once the function is being compiled into assembly code, but
1947 not before. (It is not done before, because in the case of
1948 compiling an inline function, it would lead to multiple PIC
1949 prologues being included in functions which used inline functions
1950 and were compiled to assembly language.) */
1951
1952 #define FINALIZE_PIC rs6000_finalize_pic ()
1953
1954 /* A C expression that is nonzero if X is a legitimate immediate
1955 operand on the target machine when generating position independent
1956 code. You can assume that X satisfies `CONSTANT_P', so you need
1957 not check this. You can also assume FLAG_PIC is true, so you need
1958 not check it either. You need not define this macro if all
1959 constants (including `SYMBOL_REF') can be immediate operands when
1960 generating position independent code. */
1961
1962 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1963
1964 /* In rare cases, correct code generation requires extra machine
1965 dependent processing between the second jump optimization pass and
1966 delayed branch scheduling. On those machines, define this macro
1967 as a C statement to act on the code starting at INSN.
1968
1969 On the RS/6000, we use it to make sure the GOT_TOC register marker
1970 that FINALIZE_PIC is supposed to remove actually got removed. */
1971
1972 #define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
1973
1974 \f
1975 /* Define this if some processing needs to be done immediately before
1976 emitting code for an insn. */
1977
1978 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1979
1980 /* Specify the machine mode that this machine uses
1981 for the index in the tablejump instruction. */
1982 #define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
1983
1984 /* Define this if the tablejump instruction expects the table
1985 to contain offsets from the address of the table.
1986 Do not define this if the table should contain absolute addresses. */
1987 #define CASE_VECTOR_PC_RELATIVE
1988
1989 /* Specify the tree operation to be used to convert reals to integers. */
1990 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1991
1992 /* This is the kind of divide that is easiest to do in the general case. */
1993 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1994
1995 /* Define this as 1 if `char' should by default be signed; else as 0. */
1996 #define DEFAULT_SIGNED_CHAR 0
1997
1998 /* This flag, if defined, says the same insns that convert to a signed fixnum
1999 also convert validly to an unsigned one. */
2000
2001 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2002
2003 /* Max number of bytes we can move from memory to memory
2004 in one reasonably fast instruction. */
2005 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2006 #define MAX_MOVE_MAX 8
2007
2008 /* Nonzero if access to memory by bytes is no faster than for words.
2009 Also non-zero if doing byte operations (specifically shifts) in registers
2010 is undesirable. */
2011 #define SLOW_BYTE_ACCESS 1
2012
2013 /* Define if operations between registers always perform the operation
2014 on the full register even if a narrower mode is specified. */
2015 #define WORD_REGISTER_OPERATIONS
2016
2017 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2018 will either zero-extend or sign-extend. The value of this macro should
2019 be the code that says which one of the two operations is implicitly
2020 done, NIL if none. */
2021 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2022
2023 /* Define if loading short immediate values into registers sign extends. */
2024 #define SHORT_IMMEDIATES_SIGN_EXTEND
2025 \f
2026 /* The RS/6000 uses the XCOFF format. */
2027
2028 #define XCOFF_DEBUGGING_INFO
2029
2030 /* Define if the object format being used is COFF or a superset. */
2031 #define OBJECT_FORMAT_COFF
2032
2033 /* Define the magic numbers that we recognize as COFF. */
2034
2035 #define MY_ISCOFF(magic) \
2036 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC)
2037
2038 /* This is the only version of nm that collect2 can work with. */
2039 #define REAL_NM_FILE_NAME "/usr/ucb/nm"
2040
2041 /* We don't have GAS for the RS/6000 yet, so don't write out special
2042 .stabs in cc1plus. */
2043
2044 #define FASCIST_ASSEMBLER
2045
2046 #ifndef ASM_OUTPUT_CONSTRUCTOR
2047 #define ASM_OUTPUT_CONSTRUCTOR(file, name)
2048 #endif
2049 #ifndef ASM_OUTPUT_DESTRUCTOR
2050 #define ASM_OUTPUT_DESTRUCTOR(file, name)
2051 #endif
2052
2053 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2054 is done just by pretending it is already truncated. */
2055 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2056
2057 /* Specify the machine mode that pointers have.
2058 After generation of rtl, the compiler makes no further distinction
2059 between pointers and any other objects of this machine mode. */
2060 #define Pmode (TARGET_32BIT ? SImode : DImode)
2061
2062 /* Mode of a function address in a call instruction (for indexing purposes).
2063
2064 Doesn't matter on RS/6000. */
2065 #define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
2066
2067 /* Define this if addresses of constant functions
2068 shouldn't be put through pseudo regs where they can be cse'd.
2069 Desirable on machines where ordinary constants are expensive
2070 but a CALL with constant address is cheap. */
2071 #define NO_FUNCTION_CSE
2072
2073 /* Define this to be nonzero if shift instructions ignore all but the low-order
2074 few bits.
2075
2076 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2077 have been dropped from the PowerPC architecture. */
2078
2079 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2080
2081 /* Use atexit for static constructors/destructors, instead of defining
2082 our own exit function. */
2083 #define HAVE_ATEXIT
2084
2085 /* Compute the cost of computing a constant rtl expression RTX
2086 whose rtx-code is CODE. The body of this macro is a portion
2087 of a switch statement. If the code is computed here,
2088 return it with a return statement. Otherwise, break from the switch.
2089
2090 On the RS/6000, if it is valid in the insn, it is free. So this
2091 always returns 0. */
2092
2093 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2094 case CONST_INT: \
2095 case CONST: \
2096 case LABEL_REF: \
2097 case SYMBOL_REF: \
2098 case CONST_DOUBLE: \
2099 case HIGH: \
2100 return 0;
2101
2102 /* Provide the costs of a rtl expression. This is in the body of a
2103 switch on CODE. */
2104
2105 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2106 case MULT: \
2107 switch (rs6000_cpu) \
2108 { \
2109 case PROCESSOR_RIOS1: \
2110 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2111 ? COSTS_N_INSNS (5) \
2112 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2113 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2114 case PROCESSOR_RIOS2: \
2115 case PROCESSOR_MPCCORE: \
2116 return COSTS_N_INSNS (2); \
2117 case PROCESSOR_PPC601: \
2118 return COSTS_N_INSNS (5); \
2119 case PROCESSOR_PPC603: \
2120 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2121 ? COSTS_N_INSNS (5) \
2122 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2123 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2124 case PROCESSOR_PPC403: \
2125 case PROCESSOR_PPC604: \
2126 case PROCESSOR_PPC620: \
2127 return COSTS_N_INSNS (4); \
2128 } \
2129 case DIV: \
2130 case MOD: \
2131 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2132 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2133 return COSTS_N_INSNS (2); \
2134 /* otherwise fall through to normal divide. */ \
2135 case UDIV: \
2136 case UMOD: \
2137 switch (rs6000_cpu) \
2138 { \
2139 case PROCESSOR_RIOS1: \
2140 return COSTS_N_INSNS (19); \
2141 case PROCESSOR_RIOS2: \
2142 return COSTS_N_INSNS (13); \
2143 case PROCESSOR_MPCCORE: \
2144 return COSTS_N_INSNS (6); \
2145 case PROCESSOR_PPC403: \
2146 return COSTS_N_INSNS (33); \
2147 case PROCESSOR_PPC601: \
2148 return COSTS_N_INSNS (36); \
2149 case PROCESSOR_PPC603: \
2150 return COSTS_N_INSNS (37); \
2151 case PROCESSOR_PPC604: \
2152 case PROCESSOR_PPC620: \
2153 return COSTS_N_INSNS (20); \
2154 } \
2155 case FFS: \
2156 return COSTS_N_INSNS (4); \
2157 case MEM: \
2158 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2159 return 5;
2160
2161 /* Compute the cost of an address. This is meant to approximate the size
2162 and/or execution delay of an insn using that address. If the cost is
2163 approximated by the RTL complexity, including CONST_COSTS above, as
2164 is usually the case for CISC machines, this macro should not be defined.
2165 For aggressively RISCy machines, only one insn format is allowed, so
2166 this macro should be a constant. The value of this macro only matters
2167 for valid addresses.
2168
2169 For the RS/6000, everything is cost 0. */
2170
2171 #define ADDRESS_COST(RTX) 0
2172
2173 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2174 should be adjusted to reflect any required changes. This macro is used when
2175 there is some systematic length adjustment required that would be difficult
2176 to express in the length attribute. */
2177
2178 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2179
2180 /* Add any extra modes needed to represent the condition code.
2181
2182 For the RS/6000, we need separate modes when unsigned (logical) comparisons
2183 are being done and we need a separate mode for floating-point. We also
2184 use a mode for the case when we are comparing the results of two
2185 comparisons. */
2186
2187 #define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
2188
2189 /* Define the names for the modes specified above. */
2190 #define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
2191
2192 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2193 return the mode to be used for the comparison. For floating-point, CCFPmode
2194 should be used. CCUNSmode should be used for unsigned comparisons.
2195 CCEQmode should be used when we are doing an inequality comparison on
2196 the result of a comparison. CCmode should be used in all other cases. */
2197
2198 #define SELECT_CC_MODE(OP,X,Y) \
2199 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2200 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2201 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2202 ? CCEQmode : CCmode))
2203
2204 /* Define the information needed to generate branch and scc insns. This is
2205 stored from the compare operation. Note that we can't use "rtx" here
2206 since it hasn't been defined! */
2207
2208 extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2209 extern int rs6000_compare_fp_p;
2210
2211 /* Set to non-zero by "fix" operation to indicate that itrunc and
2212 uitrunc must be defined. */
2213
2214 extern int rs6000_trunc_used;
2215
2216 /* Function names to call to do floating point truncation. */
2217
2218 #define RS6000_ITRUNC "itrunc"
2219 #define RS6000_UITRUNC "uitrunc"
2220
2221 /* Prefix and suffix to use to saving floating point */
2222 #ifndef SAVE_FP_PREFIX
2223 #define SAVE_FP_PREFIX "._savef"
2224 #define SAVE_FP_SUFFIX ""
2225 #endif
2226
2227 /* Prefix and suffix to use to restoring floating point */
2228 #ifndef RESTORE_FP_PREFIX
2229 #define RESTORE_FP_PREFIX "._restf"
2230 #define RESTORE_FP_SUFFIX ""
2231 #endif
2232
2233 \f
2234 /* Control the assembler format that we output. */
2235
2236 /* A C string constant describing how to begin a comment in the target
2237 assembler language. The compiler assumes that the comment will end at
2238 the end of the line. */
2239 #define ASM_COMMENT_START " #"
2240
2241 /* Output at beginning of assembler file.
2242
2243 Initialize the section names for the RS/6000 at this point.
2244
2245 Specify filename to assembler.
2246
2247 We want to go into the TOC section so at least one .toc will be emitted.
2248 Also, in order to output proper .bs/.es pairs, we need at least one static
2249 [RW] section emitted.
2250
2251 We then switch back to text to force the gcc2_compiled. label and the space
2252 allocated after it (when profiling) into the text section.
2253
2254 Finally, declare mcount when profiling to make the assembler happy. */
2255
2256 #define ASM_FILE_START(FILE) \
2257 { \
2258 rs6000_gen_section_name (&xcoff_bss_section_name, \
2259 main_input_filename, ".bss_"); \
2260 rs6000_gen_section_name (&xcoff_private_data_section_name, \
2261 main_input_filename, ".rw_"); \
2262 rs6000_gen_section_name (&xcoff_read_only_section_name, \
2263 main_input_filename, ".ro_"); \
2264 \
2265 output_file_directive (FILE, main_input_filename); \
2266 toc_section (); \
2267 if (write_symbols != NO_DEBUG) \
2268 private_data_section (); \
2269 text_section (); \
2270 if (profile_flag) \
2271 fputs ("\t.extern .mcount\n", FILE); \
2272 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
2273 }
2274
2275 /* Output at end of assembler file.
2276
2277 On the RS/6000, referencing data should automatically pull in text. */
2278
2279 #define ASM_FILE_END(FILE) \
2280 { \
2281 text_section (); \
2282 fputs ("_section_.text:\n", FILE); \
2283 data_section (); \
2284 fputs ("\t.long _section_.text\n", FILE); \
2285 }
2286
2287 /* We define this to prevent the name mangler from putting dollar signs into
2288 function names. */
2289
2290 #define NO_DOLLAR_IN_LABEL
2291
2292 /* We define this to 0 so that gcc will never accept a dollar sign in a
2293 variable name. This is needed because the AIX assembler will not accept
2294 dollar signs. */
2295
2296 #define DOLLARS_IN_IDENTIFIERS 0
2297
2298 /* Implicit library calls should use memcpy, not bcopy, etc. */
2299
2300 #define TARGET_MEM_FUNCTIONS
2301
2302 /* Define the extra sections we need. We define three: one is the read-only
2303 data section which is used for constants. This is a csect whose name is
2304 derived from the name of the input file. The second is for initialized
2305 global variables. This is a csect whose name is that of the variable.
2306 The third is the TOC. */
2307
2308 #define EXTRA_SECTIONS \
2309 read_only_data, private_data, read_only_private_data, toc, bss
2310
2311 /* Define the name of our readonly data section. */
2312
2313 #define READONLY_DATA_SECTION read_only_data_section
2314
2315
2316 /* Define the name of the section to use for the exception tables.
2317 TODO: test and see if we can use read_only_data_section, if so,
2318 remove this. */
2319
2320 #define EXCEPTION_SECTION data_section
2321
2322 /* If we are referencing a function that is static or is known to be
2323 in this file, make the SYMBOL_REF special. We can use this to indicate
2324 that we can branch to this function without emitting a no-op after the
2325 call. */
2326
2327 #define ENCODE_SECTION_INFO(DECL) \
2328 if (TREE_CODE (DECL) == FUNCTION_DECL \
2329 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2330 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2331
2332 /* Indicate that jump tables go in the text section. */
2333
2334 #define JUMP_TABLES_IN_TEXT_SECTION
2335
2336 /* Define the routines to implement these extra sections. */
2337
2338 #define EXTRA_SECTION_FUNCTIONS \
2339 \
2340 void \
2341 read_only_data_section () \
2342 { \
2343 if (in_section != read_only_data) \
2344 { \
2345 fprintf (asm_out_file, ".csect %s[RO]\n", \
2346 xcoff_read_only_section_name); \
2347 in_section = read_only_data; \
2348 } \
2349 } \
2350 \
2351 void \
2352 private_data_section () \
2353 { \
2354 if (in_section != private_data) \
2355 { \
2356 fprintf (asm_out_file, ".csect %s[RW]\n", \
2357 xcoff_private_data_section_name); \
2358 \
2359 in_section = private_data; \
2360 } \
2361 } \
2362 \
2363 void \
2364 read_only_private_data_section () \
2365 { \
2366 if (in_section != read_only_private_data) \
2367 { \
2368 fprintf (asm_out_file, ".csect %s[RO]\n", \
2369 xcoff_private_data_section_name); \
2370 in_section = read_only_private_data; \
2371 } \
2372 } \
2373 \
2374 void \
2375 toc_section () \
2376 { \
2377 if (TARGET_MINIMAL_TOC) \
2378 { \
2379 static int toc_initialized = 0; \
2380 \
2381 /* toc_section is always called at least once from ASM_FILE_START, \
2382 so this is guaranteed to always be defined once and only once \
2383 in each file. */ \
2384 if (! toc_initialized) \
2385 { \
2386 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2387 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
2388 toc_initialized = 1; \
2389 } \
2390 \
2391 if (in_section != toc) \
2392 fputs (".csect toc_table[RW]\n", asm_out_file); \
2393 } \
2394 else \
2395 { \
2396 if (in_section != toc) \
2397 fputs (".toc\n", asm_out_file); \
2398 } \
2399 in_section = toc; \
2400 }
2401
2402 /* This macro produces the initial definition of a function name.
2403 On the RS/6000, we need to place an extra '.' in the function name and
2404 output the function descriptor.
2405
2406 The csect for the function will have already been created by the
2407 `text_section' call previously done. We do have to go back to that
2408 csect, however. */
2409
2410 /* ??? What do the 16 and 044 in the .function line really mean? */
2411
2412 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2413 { if (TREE_PUBLIC (DECL)) \
2414 { \
2415 fputs ("\t.globl .", FILE); \
2416 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2417 putc ('\n', FILE); \
2418 } \
2419 else \
2420 { \
2421 fputs ("\t.lglobl .", FILE); \
2422 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2423 putc ('\n', FILE); \
2424 } \
2425 fputs (".csect ", FILE); \
2426 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2427 fputs ("[DS]\n", FILE); \
2428 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2429 fputs (":\n", FILE); \
2430 fputs ((TARGET_32BIT) ? "\t.long ." : "\t.llong .", FILE); \
2431 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2432 fputs (", TOC[tc0], 0\n", FILE); \
2433 fputs (".csect .text[PR]\n.", FILE); \
2434 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2435 fputs (":\n", FILE); \
2436 if (write_symbols == XCOFF_DEBUG) \
2437 xcoffout_declare_function (FILE, DECL, NAME); \
2438 }
2439
2440 /* Return non-zero if this entry is to be written into the constant pool
2441 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2442 containing one of them. If -mfp-in-toc (the default), we also do
2443 this for floating-point constants. We actually can only do this
2444 if the FP formats of the target and host machines are the same, but
2445 we can't check that since not every file that uses
2446 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2447
2448 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2449 (TARGET_TOC \
2450 && (GET_CODE (X) == SYMBOL_REF \
2451 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2452 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2453 || GET_CODE (X) == LABEL_REF \
2454 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2455 && GET_CODE (X) == CONST_DOUBLE \
2456 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2457 && BITS_PER_WORD == HOST_BITS_PER_INT)))
2458
2459 /* Select section for constant in constant pool.
2460
2461 On RS/6000, all constants are in the private read-only data area.
2462 However, if this is being placed in the TOC it must be output as a
2463 toc entry. */
2464
2465 #define SELECT_RTX_SECTION(MODE, X) \
2466 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2467 toc_section (); \
2468 else \
2469 read_only_private_data_section (); \
2470 }
2471
2472 /* Macro to output a special constant pool entry. Go to WIN if we output
2473 it. Otherwise, it is written the usual way.
2474
2475 On the RS/6000, toc entries are handled this way. */
2476
2477 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2478 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2479 { \
2480 output_toc (FILE, X, LABELNO); \
2481 goto WIN; \
2482 } \
2483 }
2484
2485 /* Select the section for an initialized data object.
2486
2487 On the RS/6000, we have a special section for all variables except those
2488 that are static. */
2489
2490 #define SELECT_SECTION(EXP,RELOC) \
2491 { \
2492 if ((TREE_CODE (EXP) == STRING_CST \
2493 && !flag_writable_strings) \
2494 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
2495 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
2496 && DECL_INITIAL (EXP) \
2497 && (DECL_INITIAL (EXP) == error_mark_node \
2498 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2499 && ! (RELOC))) \
2500 { \
2501 if (TREE_PUBLIC (EXP)) \
2502 read_only_data_section (); \
2503 else \
2504 read_only_private_data_section (); \
2505 } \
2506 else \
2507 { \
2508 if (TREE_PUBLIC (EXP)) \
2509 data_section (); \
2510 else \
2511 private_data_section (); \
2512 } \
2513 }
2514
2515 /* This outputs NAME to FILE up to the first null or '['. */
2516
2517 #define RS6000_OUTPUT_BASENAME(FILE, NAME) \
2518 { \
2519 char *_p; \
2520 \
2521 STRIP_NAME_ENCODING (_p, (NAME)); \
2522 assemble_name ((FILE), _p); \
2523 }
2524
2525 /* Remove any trailing [DS] or the like from the symbol name. */
2526
2527 #define STRIP_NAME_ENCODING(VAR,NAME) \
2528 do \
2529 { \
2530 char *_name = (NAME); \
2531 int _len; \
2532 if (_name[0] == '*') \
2533 _name++; \
2534 _len = strlen (_name); \
2535 if (_name[_len - 1] != ']') \
2536 (VAR) = _name; \
2537 else \
2538 { \
2539 (VAR) = (char *) alloca (_len + 1); \
2540 strcpy ((VAR), _name); \
2541 (VAR)[_len - 4] = '\0'; \
2542 } \
2543 } \
2544 while (0)
2545
2546 /* Output something to declare an external symbol to the assembler. Most
2547 assemblers don't need this.
2548
2549 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2550 name. Normally we write this out along with the name. In the few cases
2551 where we can't, it gets stripped off. */
2552
2553 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2554 { rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2555 if ((TREE_CODE (DECL) == VAR_DECL \
2556 || TREE_CODE (DECL) == FUNCTION_DECL) \
2557 && (NAME)[strlen (NAME) - 1] != ']') \
2558 { \
2559 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2560 strcpy (_name, XSTR (_symref, 0)); \
2561 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2562 XSTR (_symref, 0) = _name; \
2563 } \
2564 fputs ("\t.extern ", FILE); \
2565 assemble_name (FILE, XSTR (_symref, 0)); \
2566 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2567 { \
2568 fputs ("\n\t.extern .", FILE); \
2569 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2570 } \
2571 putc ('\n', FILE); \
2572 }
2573
2574 /* Similar, but for libcall. We only have to worry about the function name,
2575 not that of the descriptor. */
2576
2577 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
2578 { fputs ("\t.extern .", FILE); \
2579 assemble_name (FILE, XSTR (FUN, 0)); \
2580 putc ('\n', FILE); \
2581 }
2582
2583 /* Output to assembler file text saying following lines
2584 may contain character constants, extra white space, comments, etc. */
2585
2586 #define ASM_APP_ON ""
2587
2588 /* Output to assembler file text saying following lines
2589 no longer contain unusual constructs. */
2590
2591 #define ASM_APP_OFF ""
2592
2593 /* Output before instructions. */
2594
2595 #define TEXT_SECTION_ASM_OP ".csect .text[PR]"
2596
2597 /* Output before writable data. */
2598
2599 #define DATA_SECTION_ASM_OP ".csect .data[RW]"
2600
2601 /* How to refer to registers in assembler output.
2602 This sequence is indexed by compiler's hard-register-number (see above). */
2603
2604 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2605
2606 #define REGISTER_NAMES \
2607 { \
2608 &rs6000_reg_names[ 0][0], /* r0 */ \
2609 &rs6000_reg_names[ 1][0], /* r1 */ \
2610 &rs6000_reg_names[ 2][0], /* r2 */ \
2611 &rs6000_reg_names[ 3][0], /* r3 */ \
2612 &rs6000_reg_names[ 4][0], /* r4 */ \
2613 &rs6000_reg_names[ 5][0], /* r5 */ \
2614 &rs6000_reg_names[ 6][0], /* r6 */ \
2615 &rs6000_reg_names[ 7][0], /* r7 */ \
2616 &rs6000_reg_names[ 8][0], /* r8 */ \
2617 &rs6000_reg_names[ 9][0], /* r9 */ \
2618 &rs6000_reg_names[10][0], /* r10 */ \
2619 &rs6000_reg_names[11][0], /* r11 */ \
2620 &rs6000_reg_names[12][0], /* r12 */ \
2621 &rs6000_reg_names[13][0], /* r13 */ \
2622 &rs6000_reg_names[14][0], /* r14 */ \
2623 &rs6000_reg_names[15][0], /* r15 */ \
2624 &rs6000_reg_names[16][0], /* r16 */ \
2625 &rs6000_reg_names[17][0], /* r17 */ \
2626 &rs6000_reg_names[18][0], /* r18 */ \
2627 &rs6000_reg_names[19][0], /* r19 */ \
2628 &rs6000_reg_names[20][0], /* r20 */ \
2629 &rs6000_reg_names[21][0], /* r21 */ \
2630 &rs6000_reg_names[22][0], /* r22 */ \
2631 &rs6000_reg_names[23][0], /* r23 */ \
2632 &rs6000_reg_names[24][0], /* r24 */ \
2633 &rs6000_reg_names[25][0], /* r25 */ \
2634 &rs6000_reg_names[26][0], /* r26 */ \
2635 &rs6000_reg_names[27][0], /* r27 */ \
2636 &rs6000_reg_names[28][0], /* r28 */ \
2637 &rs6000_reg_names[29][0], /* r29 */ \
2638 &rs6000_reg_names[30][0], /* r30 */ \
2639 &rs6000_reg_names[31][0], /* r31 */ \
2640 \
2641 &rs6000_reg_names[32][0], /* fr0 */ \
2642 &rs6000_reg_names[33][0], /* fr1 */ \
2643 &rs6000_reg_names[34][0], /* fr2 */ \
2644 &rs6000_reg_names[35][0], /* fr3 */ \
2645 &rs6000_reg_names[36][0], /* fr4 */ \
2646 &rs6000_reg_names[37][0], /* fr5 */ \
2647 &rs6000_reg_names[38][0], /* fr6 */ \
2648 &rs6000_reg_names[39][0], /* fr7 */ \
2649 &rs6000_reg_names[40][0], /* fr8 */ \
2650 &rs6000_reg_names[41][0], /* fr9 */ \
2651 &rs6000_reg_names[42][0], /* fr10 */ \
2652 &rs6000_reg_names[43][0], /* fr11 */ \
2653 &rs6000_reg_names[44][0], /* fr12 */ \
2654 &rs6000_reg_names[45][0], /* fr13 */ \
2655 &rs6000_reg_names[46][0], /* fr14 */ \
2656 &rs6000_reg_names[47][0], /* fr15 */ \
2657 &rs6000_reg_names[48][0], /* fr16 */ \
2658 &rs6000_reg_names[49][0], /* fr17 */ \
2659 &rs6000_reg_names[50][0], /* fr18 */ \
2660 &rs6000_reg_names[51][0], /* fr19 */ \
2661 &rs6000_reg_names[52][0], /* fr20 */ \
2662 &rs6000_reg_names[53][0], /* fr21 */ \
2663 &rs6000_reg_names[54][0], /* fr22 */ \
2664 &rs6000_reg_names[55][0], /* fr23 */ \
2665 &rs6000_reg_names[56][0], /* fr24 */ \
2666 &rs6000_reg_names[57][0], /* fr25 */ \
2667 &rs6000_reg_names[58][0], /* fr26 */ \
2668 &rs6000_reg_names[59][0], /* fr27 */ \
2669 &rs6000_reg_names[60][0], /* fr28 */ \
2670 &rs6000_reg_names[61][0], /* fr29 */ \
2671 &rs6000_reg_names[62][0], /* fr30 */ \
2672 &rs6000_reg_names[63][0], /* fr31 */ \
2673 \
2674 &rs6000_reg_names[64][0], /* mq */ \
2675 &rs6000_reg_names[65][0], /* lr */ \
2676 &rs6000_reg_names[66][0], /* ctr */ \
2677 &rs6000_reg_names[67][0], /* ap */ \
2678 \
2679 &rs6000_reg_names[68][0], /* cr0 */ \
2680 &rs6000_reg_names[69][0], /* cr1 */ \
2681 &rs6000_reg_names[70][0], /* cr2 */ \
2682 &rs6000_reg_names[71][0], /* cr3 */ \
2683 &rs6000_reg_names[72][0], /* cr4 */ \
2684 &rs6000_reg_names[73][0], /* cr5 */ \
2685 &rs6000_reg_names[74][0], /* cr6 */ \
2686 &rs6000_reg_names[75][0], /* cr7 */ \
2687 \
2688 &rs6000_reg_names[76][0], /* fpmem */ \
2689 }
2690
2691 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2692 following for it. Switch to use the alternate names since
2693 they are more mnemonic. */
2694
2695 #define DEBUG_REGISTER_NAMES \
2696 { \
2697 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2698 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2699 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2700 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2701 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2702 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2703 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2704 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2705 "mq", "lr", "ctr", "ap", \
2706 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2707 "fpmem" \
2708 }
2709
2710 /* Table of additional register names to use in user input. */
2711
2712 #define ADDITIONAL_REGISTER_NAMES \
2713 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
2714 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
2715 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
2716 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
2717 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
2718 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
2719 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
2720 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
2721 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
2722 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
2723 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
2724 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
2725 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
2726 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
2727 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
2728 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
2729 /* no additional names for: mq, lr, ctr, ap */ \
2730 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
2731 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
2732 "cc", 68, "sp", 1, "toc", 2 }
2733
2734 /* How to renumber registers for dbx and gdb. */
2735
2736 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2737
2738 /* Text to write out after a CALL that may be replaced by glue code by
2739 the loader. This depends on the AIX version. */
2740 #define RS6000_CALL_GLUE "cror 31,31,31"
2741
2742 /* This is how to output the definition of a user-level label named NAME,
2743 such as the label on a static function or variable NAME. */
2744
2745 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2746 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2747
2748 /* This is how to output a command to make the user-level label named NAME
2749 defined for reference from other files. */
2750
2751 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2752 do { fputs ("\t.globl ", FILE); \
2753 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
2754
2755 /* This is how to output a reference to a user-level label named NAME.
2756 `assemble_name' uses this. */
2757
2758 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2759 fputs (NAME, FILE)
2760
2761 /* This is how to output an internal numbered label where
2762 PREFIX is the class of label and NUM is the number within the class. */
2763
2764 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2765 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2766
2767 /* This is how to output an internal label prefix. rs6000.c uses this
2768 when generating traceback tables. */
2769
2770 #define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2771 fprintf (FILE, "%s..", PREFIX)
2772
2773 /* This is how to output a label for a jump table. Arguments are the same as
2774 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2775 passed. */
2776
2777 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2778 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2779
2780 /* This is how to store into the string LABEL
2781 the symbol_ref name of an internal numbered label where
2782 PREFIX is the class of label and NUM is the number within the class.
2783 This is suitable for output with `assemble_name'. */
2784
2785 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2786 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
2787
2788 /* This is how to output an assembler line defining a `double' constant. */
2789
2790 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
2791 { \
2792 if (REAL_VALUE_ISINF (VALUE) \
2793 || REAL_VALUE_ISNAN (VALUE) \
2794 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2795 { \
2796 long t[2]; \
2797 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2798 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
2799 t[0] & 0xffffffff, t[1] & 0xffffffff); \
2800 } \
2801 else \
2802 { \
2803 char str[30]; \
2804 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2805 fprintf (FILE, "\t.double 0d%s\n", str); \
2806 } \
2807 }
2808
2809 /* This is how to output an assembler line defining a `float' constant. */
2810
2811 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
2812 { \
2813 if (REAL_VALUE_ISINF (VALUE) \
2814 || REAL_VALUE_ISNAN (VALUE) \
2815 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2816 { \
2817 long t; \
2818 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2819 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2820 } \
2821 else \
2822 { \
2823 char str[30]; \
2824 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2825 fprintf (FILE, "\t.float 0d%s\n", str); \
2826 } \
2827 }
2828
2829 /* This is how to output an assembler line defining an `int' constant. */
2830
2831 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2832 do { \
2833 if (TARGET_32BIT) \
2834 { \
2835 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
2836 UNITS_PER_WORD, 1); \
2837 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
2838 UNITS_PER_WORD, 1); \
2839 } \
2840 else \
2841 { \
2842 fputs ("\t.llong ", FILE); \
2843 output_addr_const (FILE, (VALUE)); \
2844 putc ('\n', FILE); \
2845 } \
2846 } while (0)
2847
2848 #define ASM_OUTPUT_INT(FILE,VALUE) \
2849 ( fputs ("\t.long ", FILE), \
2850 output_addr_const (FILE, (VALUE)), \
2851 putc ('\n', FILE))
2852
2853 /* Likewise for `char' and `short' constants. */
2854
2855 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2856 ( fputs ("\t.short ", FILE), \
2857 output_addr_const (FILE, (VALUE)), \
2858 putc ('\n', FILE))
2859
2860 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2861 ( fputs ("\t.byte ", FILE), \
2862 output_addr_const (FILE, (VALUE)), \
2863 putc ('\n', FILE))
2864
2865 /* This is how to output an assembler line for a numeric constant byte. */
2866
2867 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2868 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
2869
2870 /* This is how to output an assembler line to define N characters starting
2871 at P to FILE. */
2872
2873 #define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
2874
2875 /* This is how to output code to push a register on the stack.
2876 It need not be very fast code. */
2877
2878 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2879 do { \
2880 extern char *reg_names[]; \
2881 asm_fprintf (FILE, "\{tstu|stwu} %s,-4(%s)\n", reg_names[REGNO], \
2882 reg_names[1]); \
2883 } while (0)
2884
2885 /* This is how to output an insn to pop a register from the stack.
2886 It need not be very fast code. */
2887
2888 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2889 do { \
2890 extern char *reg_names[]; \
2891 asm_fprintf (FILE, "\t{l|lwz} %s,0(%s)\n\t{ai|addic} %s,%s,4\n", \
2892 reg_names[REGNO], reg_names[1], reg_names[1], \
2893 reg_names[1]); \
2894 } while (0)
2895
2896 /* This is how to output an element of a case-vector that is absolute.
2897 (RS/6000 does not use such vectors, but we must define this macro
2898 anyway.) */
2899
2900 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2901 do { char buf[100]; \
2902 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
2903 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2904 assemble_name (FILE, buf); \
2905 putc ('\n', FILE); \
2906 } while (0)
2907
2908 /* This is how to output an element of a case-vector that is relative. */
2909
2910 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2911 do { char buf[100]; \
2912 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
2913 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2914 assemble_name (FILE, buf); \
2915 putc ('-', FILE); \
2916 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2917 assemble_name (FILE, buf); \
2918 putc ('\n', FILE); \
2919 } while (0)
2920
2921 /* This is how to output an assembler line
2922 that says to advance the location counter
2923 to a multiple of 2**LOG bytes. */
2924
2925 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2926 if ((LOG) != 0) \
2927 fprintf (FILE, "\t.align %d\n", (LOG))
2928
2929 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2930 fprintf (FILE, "\t.space %d\n", (SIZE))
2931
2932 /* This says how to output an assembler line
2933 to define a global common symbol. */
2934
2935 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
2936 do { fputs (".comm ", (FILE)); \
2937 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2938 if ( (SIZE) > 4) \
2939 fprintf ((FILE), ",%d,3\n", (SIZE)); \
2940 else \
2941 fprintf( (FILE), ",%d\n", (SIZE)); \
2942 } while (0)
2943
2944 /* This says how to output an assembler line
2945 to define a local common symbol. */
2946
2947 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2948 do { fputs (".lcomm ", (FILE)); \
2949 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2950 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
2951 } while (0)
2952
2953 /* Store in OUTPUT a string (made with alloca) containing
2954 an assembler-name for a local static variable named NAME.
2955 LABELNO is an integer which is different for each call. */
2956
2957 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2958 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2959 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2960
2961 /* Define the parentheses used to group arithmetic operations
2962 in assembler code. */
2963
2964 #define ASM_OPEN_PAREN "("
2965 #define ASM_CLOSE_PAREN ")"
2966
2967 /* Define results of standard character escape sequences. */
2968 #define TARGET_BELL 007
2969 #define TARGET_BS 010
2970 #define TARGET_TAB 011
2971 #define TARGET_NEWLINE 012
2972 #define TARGET_VT 013
2973 #define TARGET_FF 014
2974 #define TARGET_CR 015
2975
2976 /* Print operand X (an rtx) in assembler syntax to file FILE.
2977 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2978 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2979
2980 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2981
2982 /* Define which CODE values are valid. */
2983
2984 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2985 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
2986
2987 /* Print a memory address as an operand to reference that memory location. */
2988
2989 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2990
2991 /* Define the codes that are matched by predicates in rs6000.c. */
2992
2993 #define PREDICATE_CODES \
2994 {"short_cint_operand", {CONST_INT}}, \
2995 {"u_short_cint_operand", {CONST_INT}}, \
2996 {"non_short_cint_operand", {CONST_INT}}, \
2997 {"gpc_reg_operand", {SUBREG, REG}}, \
2998 {"cc_reg_operand", {SUBREG, REG}}, \
2999 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
3000 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
3001 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
3002 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
3003 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
3004 {"easy_fp_constant", {CONST_DOUBLE}}, \
3005 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
3006 {"lwa_operand", {SUBREG, MEM, REG}}, \
3007 {"volatile_mem_operand", {MEM}}, \
3008 {"offsettable_addr_operand", {REG, SUBREG, PLUS}}, \
3009 {"fp_reg_or_mem_operand", {SUBREG, MEM, REG}}, \
3010 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
3011 {"add_operand", {SUBREG, REG, CONST_INT}}, \
3012 {"non_add_cint_operand", {CONST_INT}}, \
3013 {"and_operand", {SUBREG, REG, CONST_INT}}, \
3014 {"non_and_cint_operand", {CONST_INT}}, \
3015 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
3016 {"non_logical_cint_operand", {CONST_INT}}, \
3017 {"mask_operand", {CONST_INT}}, \
3018 {"count_register_operand", {REG}}, \
3019 {"fpmem_operand", {REG}}, \
3020 {"call_operand", {SYMBOL_REF, REG}}, \
3021 {"current_file_function_operand", {SYMBOL_REF}}, \
3022 {"input_operand", {SUBREG, MEM, REG, CONST_INT, SYMBOL_REF}}, \
3023 {"load_multiple_operation", {PARALLEL}}, \
3024 {"store_multiple_operation", {PARALLEL}}, \
3025 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
3026 GT, LEU, LTU, GEU, GTU}}, \
3027 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
3028 GT, LEU, LTU, GEU, GTU}},
3029
3030
3031 /* uncomment for disabling the corresponding default options */
3032 /* #define MACHINE_no_sched_interblock */
3033 /* #define MACHINE_no_sched_speculative */
3034 /* #define MACHINE_no_sched_speculative_load */
3035
3036 /* indicate that issue rate is defined for this machine
3037 (no need to use the default) */
3038 #define MACHINE_issue_rate
3039
3040 /* General flags. */
3041 extern int flag_pic;
3042 extern int optimize;
3043 extern int flag_expensive_optimizations;
3044 extern int frame_pointer_needed;
3045
3046 /* Declare functions in rs6000.c */
3047 extern void output_options ();
3048 extern void rs6000_override_options ();
3049 extern void rs6000_file_start ();
3050 extern struct rtx_def *rs6000_float_const ();
3051 extern struct rtx_def *rs6000_immed_double_const ();
3052 extern struct rtx_def *rs6000_got_register ();
3053 extern int direct_return ();
3054 extern int any_operand ();
3055 extern int short_cint_operand ();
3056 extern int u_short_cint_operand ();
3057 extern int non_short_cint_operand ();
3058 extern int gpc_reg_operand ();
3059 extern int cc_reg_operand ();
3060 extern int reg_or_short_operand ();
3061 extern int reg_or_neg_short_operand ();
3062 extern int reg_or_u_short_operand ();
3063 extern int reg_or_cint_operand ();
3064 extern int got_operand ();
3065 extern int num_insns_constant ();
3066 extern int easy_fp_constant ();
3067 extern int volatile_mem_operand ();
3068 extern int offsettable_addr_operand ();
3069 extern int fp_reg_or_mem_operand ();
3070 extern int mem_or_easy_const_operand ();
3071 extern int add_operand ();
3072 extern int non_add_cint_operand ();
3073 extern int logical_operand ();
3074 extern int non_logical_operand ();
3075 extern int mask_constant ();
3076 extern int mask_operand ();
3077 extern int and_operand ();
3078 extern int count_register_operand ();
3079 extern int fpmem_operand ();
3080 extern int non_and_cint_operand ();
3081 extern int reg_or_mem_operand ();
3082 extern int lwa_operand ();
3083 extern int call_operand ();
3084 extern int current_file_function_operand ();
3085 extern int input_operand ();
3086 extern int small_data_operand ();
3087 extern void init_cumulative_args ();
3088 extern void function_arg_advance ();
3089 extern int function_arg_boundary ();
3090 extern struct rtx_def *function_arg ();
3091 extern int function_arg_partial_nregs ();
3092 extern int function_arg_pass_by_reference ();
3093 extern void setup_incoming_varargs ();
3094 extern struct rtx_def *expand_builtin_saveregs ();
3095 extern struct rtx_def *rs6000_stack_temp ();
3096 extern int expand_block_move ();
3097 extern int load_multiple_operation ();
3098 extern int store_multiple_operation ();
3099 extern int branch_comparison_operator ();
3100 extern int scc_comparison_operator ();
3101 extern int includes_lshift_p ();
3102 extern int includes_rshift_p ();
3103 extern int registers_ok_for_quad_peep ();
3104 extern int addrs_ok_for_quad_peep ();
3105 extern enum reg_class secondary_reload_class ();
3106 extern int ccr_bit ();
3107 extern void rs6000_finalize_pic ();
3108 extern void rs6000_reorg ();
3109 extern void rs6000_save_machine_status ();
3110 extern void rs6000_restore_machine_status ();
3111 extern void rs6000_init_expanders ();
3112 extern void print_operand ();
3113 extern void print_operand_address ();
3114 extern int first_reg_to_save ();
3115 extern int first_fp_reg_to_save ();
3116 extern int rs6000_makes_calls ();
3117 extern rs6000_stack_t *rs6000_stack_info ();
3118 extern void output_prolog ();
3119 extern void output_epilog ();
3120 extern void output_toc ();
3121 extern void output_ascii ();
3122 extern void rs6000_gen_section_name ();
3123 extern void output_function_profiler ();
3124 extern int rs6000_adjust_cost ();
3125 extern void rs6000_trampoline_template ();
3126 extern int rs6000_trampoline_size ();
3127 extern void rs6000_initialize_trampoline ();
3128 extern int rs6000_comp_type_attributes ();
3129 extern int rs6000_valid_decl_attribute_p ();
3130 extern int rs6000_valid_type_attribute_p ();
3131 extern void rs6000_set_default_type_attributes ();
3132 extern struct rtx_def *rs6000_dll_import_ref ();
3133 extern struct rtx_def *rs6000_longcall_ref ();